Supporting Information

Synthesis of 3-CF₃-4-acyl-substituted quinoline derivatives via a cascade reaction of nitrosoarenes and β -CF₃-1,3-enynes

Wenhui Li^a, Shuangping Huang^a, Qiang Liu^a, Xing Li^{a,*} and Wenwen Chen^{b,*}

 ^aDepartment of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China. E-mail: <u>lixing@tyut.edu.cn</u>
^bSchool of Chemistry and Material Science, Shanxi Normal University, 339, Taiyu Road, Taiyuan 030000, People's Republic of China. Email: chenww@sxnu.edu.cn

Table of Contents

1. General information	S2
2. Optimization of reaction conditions	S2
3. General procedures	S4
3.1 Operational procedure for the synthesis of compound 2n-3	S4
3.2 General procedure for the synthesis of products 3	S4
3.3 Operational procedure for 5.0 mmol-scale preparation of product 3aa	S4
3.4 Operational procedure for the synthesis of compounds 4 and 5	S5
4. Crystal data of products 3aa, 3va and 4	S5
5. Characterization data for substrate 2n	S9
6. Characterization data for all products 3	S10
7. Characterization data for compound 4	S22
8. Characterization data for compound 5	S23
9. References	S23
10. ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra for substrate 2n	S25
11. ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra for products 3	S26
12. ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra for compound 4	S79
13. ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra for compound 5	S80

1. General information

Unless otherwise indicated, all reagents were purchased from commercial sources and used without further purification. And deuterated solvents were purchased from Sigma-Aldrich. Substrates such as nitrosoarenes¹ and 2-CF₃-1,3-enynes² were synthesized according to the corresponding literature procedures. Unless otherwise stated, all reactions were accomplished in the reaction tubes under air atmosphere. All reactions were monitored by thin layer chromatography (TLC). Column chromatography was carried out using 200-300 mesh silica gel. ¹H NMR spectra were recorded on a Bruker Avance III 400 or 600 MHz NMR spectrometer and chemical shifts (in ppm) were referred to $CDCl_3$ ($\delta = 7.26$ ppm), as an internal standard. ¹H NMR spectra were recorded as follows: chemical shift, multiplicity (s = singlet; d = doublet; q = quartet; m = multiplet; br = broad), coupling constant (Hz), and integral. Proton-decoupled ¹³C NMR spectra were obtained by using the same NMR spectrometer, running at 150 or 100 MHz, respectively and were calibrated with CDCl₃ (δ = 77.16 ppm). The ¹⁹F NMR spectra were recorded at 564 or 376 MHz. High-resolution mass spectra were performed on a micrOTOF-Q II instrument with an ESI source. Melting points were measured with an RD-II melting point apparatus and are uncorrected.

2. Optimization of reaction conditions

Next, some other reaction conditions including catalyst loading, amount of base, solvent dosage and temperature were also examined, respectively (Table 2). 30 mol% $Cu(OTf)_2$ and 0.5 equiv of DMAP were suitable for this transformation. Increasing or decreasing their amounts led to the lower yields (Table 2, entry 1 vs 2–7 and entry 1 vs 8–11). The solvent dosage had little effect on the reaction yield (Table 2, entries 12–14). It was more appropriate to use 0.8 mL EA (Table 2, entry 13). Variation of reaction temperature could not further improve the yield (Table 2, entries 13 and 15–17). The investigation of material ratio showed that the better yield (83%) was obtained when the ratio of nitrosobenzene **1a** and [3-(trifluoromethyl)but-3-en-1-yn-1-yl]benzene **2a** was 2.3:1.0 (Table 2, entry 22 vs 13, 18–21 and 23–25). After systematic optimization of the reaction conditions, the optimal condition was

determined. In the presence of $Cu(OTf)_2$ (22.0 mg, 0.06 mmol, 30 mol%) and DMAP (12.5 mg, 0.10 mmol, 0.5 equiv), the reaction of nitrosobenzene **1a** (50.8 mg, 0.46 mmol, 2.3 equiv.) and (3-(trifluoromethyl)but-3-en-1-yn-1-yl)benzene **2a** (40.5 mg, 0.20 mmol, 1.0 equiv.) was conducted in ethyl acetate (EA, 0.8 mL) at 30 °C for 12 h, affording the desired product **3aa** in 83% yield (Table 2, entry 22).

	N _v O ₊	CF ₃	Cu(OTf) ₂ , DMAP Solvent, T		O CF ₃	
	1a	2a		3aa		
entry	catalyst (mol%)	base (equiv)	solvent (mL)	T/ºC	1a:2a	yield ^b (%)
1	Cu(OTf) ₂ (30)	DMAP (0.5)	DCE (1.0)	30	1.0:1.0	55
2	Cu(OTf) ₂ (10)	DMAP (0.5)	DCE (1.0)	30	1.0:1.0	38
3	Cu(OTf) ₂ (20)	DMAP (0.5)	DCE (1.0)	30	1.0:1.0	43
4	Cu(OTf) ₂ (25)	DMAP (0.5)	DCE (1.0)	30	1.0:1.0	50
5	Cu(OTf) ₂ (28)	DMAP (0.5)	DCE (1.0)	30	1.0:1.0	50
6	Cu(OTf) ₂ (32)	DMAP (0.5)	DCE (1.0)	30	1.0:1.0	53
7	$Cu(OTf)_2$ (35)	DMAP (0.5)	DCE (1.0)	30	1.0:1.0	50
8	$Cu(OTf)_2$ (30)	DMAP (0.4)	DCE (1.0)	30	1.0:1.0	49
9	$Cu(OTf)_2$ (30)	DMAP (0.45)	DCE (1.0)	30	1.0:1.0	50
10	$Cu(OTf)_2$ (30)	DMAP (0.6)	DCE (1.0)	30	1.0:1.0	52
11	$Cu(OTf)_2$ (30)	DMAP (0.7)	DCE (1.0)	30	1.0:1.0	50
12	$Cu(OTf)_2$ (30)	DMAP (0.5)	EA (0.5)	30	1.0:1.0	67
13	$Cu(OTf)_2$ (30)	DMAP (0.5)	EA (0.8)	30	1.0:1.0	70
14	$Cu(OTf)_2$ (30)	DMAP (0.5)	EA (1.2)	30	1.0:1.0	63
15	$Cu(OTf)_2$ (30)	DMAP (0.5)	EA (0.8)	<mark>20</mark>	1.0:1.0	47
16	$Cu(OTf)_2$ (30)	DMAP (0.5)	EA (0.8)	<mark>40</mark>	1.0:1.0	70
17	Cu(OTf) ₂ (30)	DMAP (0.5)	EA (0.8)	<mark>50</mark>	1.0:1.0	62
18	Cu(OTf) ₂ (30)	DMAP (0.5)	EA (0.8)	30	1.3:1.0	78
19	$Cu(OTf)_2$ (30)	DMAP (0.5)	EA (0.8)	30	1.5:1.0	77
20	Cu(OTf) ₂ (30)	DMAP (0.5)	EA (0.8)	30	1.7:1.0	75
21	Cu(OTf) ₂ (30)	DMAP (0.5)	EA (0.8)	30	2.0:1.0	76
22	Cu(OTf) ₂ (30)	DMAP (0.5)	EA (0.8)	30	2.3:1.0	83
23	Cu(OTf) ₂ (30)	DMAP (0.5)	EA (0.8)	30	1.0:1.3	77
24	Cu(OTf) ₂ (30)	DMAP (0.5)	EA (0.8)	30	1.0:1.5	78
25	Cu(OTf) ₂ (30)	DMAP (0.5)	EA (0.8)	30	1.0:2.0	75

Table 2. Optimization of Other Reaction Conditions^a

^{*a*} Unless otherwise noted, all reactions were performed with nitrosobenzene **1a** (22.1 mg, 0.2 mmol, 1.0 equiv.), [3-(trifluoromethyl)-3-buten-1-ynyl]benzene **2a** (40.5 mg, 0.2 mmol, 1.0 equiv.), a catalyst (0.06 mmol, 30 mol%) and a base (0.1 mmol, 0.5 equiv.) in a solvent (1.0 mL) at 30 °C (water bath) under air atmosphere for 12 h. ^{*b*} Isolated yield after column chromatography.

3. General procedures

3.1 Operational procedure for the synthesis of compound 2n-3^{3,4}

To a 100 mL of round-bottom flask equipped with a magnetic stir bar were added (*R*)-2-(4-isopropylphenyl)propanoic acid **2n-1** (2.5 g, 12.0 mmol, 1.2 equiv.), 3ethynylphenol **2n-2** (1.1 mL, 10.0 mmol, 1.0 equiv.), dicyclohexylcarbodiimide (DCC, 3.1 g, 15.0 mmol, 1.5 equiv.), 4-dimethylaminopyridine (DMAP, 122.2 mg, 1.0 mmol, 10 mol%) and CH_2Cl_2 (30 mL). The mixture was then stirred at room temperature for 24 h. Finally, after the reaction mixture was evaporated, the residue was purified by column chromatography (silica gel, hexane/EtOAc) to give the 3-ethynylphenyl (*R*)-2-(4-isopropylphenyl)propanoate **2n-3**.

Subsequently, substrate **2n** was synthesized using the compound **2n-3** as a starting material via the method in the reference 2.

3.2 General procedure for the synthesis of products 3

To a reaction system of nitrosobenzene **1a** (0.46 mmol, 2.3 equiv), $Cu(OTf)_2$ (0.06 mmol, 30 mol%) and DMAP (1.0 mmol, 0.5 equiv.) in ethyl acetate (EA) as a solvent (0.8 mL) was added (3-(trifluoromethyl)but-3-en-1-yn-1-yl)benzene **2a** (0.2 mmol). Then, the resultant solution was stirred under air atmosphere at 30 °C (water bath) for 12 h. Finally, the reaction mixture was purified by silica gel column chromatography (PE:EA = 15:1) to provide the corresponding product **3aa** (83% yield).

3.3 Operational procedure for 5.0 mmol-scale preparation of product 3aa

The reaction system of Cu(OTf)₂ (1.5 mmol, 30 mol%), DMAP (2.5 mmol, 0.5

equiv.), nitrosobenzene **1a** (11.5 mmol, 2.3 equiv.) and (3-(trifluoromethyl)but-3-en-1-yn-1-yl)benzene **2a** (5 mmol) in ethyl acetate as a solvent (20.0 mL) was stirred at 30 °C (water bath) for 15 h. At last, the reaction mixture was concentrated in vacuum and purified by silica gel column chromatography to give the desired product **3aa** (0.998 g, 67% isolated yield).

3.4 Operational procedure for the synthesis of compounds 4 and 5

To a solution of the phenyl(3-(trifluoromethyl)quinolin-4-yl)methanone 3aa (30.7 mg, 0.1 mmol) in CH₂Cl₂ (1.0 mL) was added *m*-chloroperoxybenzoic acid (*m*-CPBA, 28.0 mg, 0.13 mmol, 1.3 equiv.) at 0 °C. The reaction mixture was then allowed to stir at room temperature (water bath) for 24 h. Next, the reaction mixture was washed with saturated aq. NaHCO₃ solution (2.0 mL) and extracted with CH₂Cl₂ (5.0 mL X 3). The organic extracts were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel to obtain the pure 4-benzoyl-3-(trifluoromethyl)quinoline 1-oxide 4 (94% yield). To a 10 mL round bottom flask equipped with a magnetic stir bar were consecutively added 4-benzoyl-3-(trifluoromethyl)quinoline 1-oxide 4 (96.1 mg, 0.3 mmol), H₂O (3.0 mL) and MsCl (51.6 µL, 0.6 mmol). Subsequently, the reaction system was stirred at room temperature (water bath) for 5 h and the mixture was then extracted with CH₂Cl₂ (10.0 mL X 3). The organic extracts were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel to obtain the pure 4-benzoyl-3-(trifluoromethyl)quinolin-2(1*H*)-one **5** (94 % yield).

4. Crystal data of products 3aa, 3va and 4

Crystallographic data for compounds **3aa** (2212193), **3va** (2255170) and **4** (2255167) have been deposited with the Cambridge Crystallographic Data Centre, Copies of the data can be obtained, free of charge, on application to CCDC (Email:

deposit@ccdc.cam.ac.uk).

CCDC number	2212193
Identification code	3aa
Empirical formula	C ₁₇ H ₁₀ F ₃ NO
Formula weight	301.26
Temperature/K	293(2)
Crystal system	monoclinic
Space group	C2/c
a/Å	23.0671(4)
b/Å	7.9648(2)
c/Å	15.0332(3)
α/°	90
β/°	94.736(2)
γ/°	90
Volume/Å ³	2752.54(10)
Ζ	8
$\rho_{calc}g/cm^3$	1.454
μ/mm^{-1}	1.019
F(000)	1232.0

Crystal size/mm ³	0.29 imes 0.25 imes 0.2
Radiation	$Cu K\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	7.692 to 143.066
Index ranges	$-24 \le h \le 28, -9 \le k \le 9, -18 \le l \le 15$
Reflections collected	5836
Independent reflections	2617 [$R_{int} = 0.0192, R_{sigma} = 0.0247$]
Data/restraints/parameters	2617/0/199
Goodness-of-fit on F ²	1.128
Final R indexes [I>=2σ (I)]	$R_1 = 0.0838, wR_2 = 0.2317$
Final R indexes [all data]	$R_1 = 0.0962, wR_2 = 0.2380$
Largest diff. peak/hole / e Å ⁻³	0.80/-0.46

CCDC number	2255170
Identification code	3va
Empirical formula	$C_{19}H_{14}F_3NO$
Formula weight	329.31
Temperature/K	298
Space group	P -1
a/Å	8.201(3)
b/Å	9.496(3)

c/Å	11.840(4)
α/°	100.468 (8)
β/°	96.571 (7)
γ/°	9115.027 (8)
Volume/Å ³	802.4 (5)
Ζ	2
$\rho_{calc}g/cm^3$	1.363
μ/mm^{-1}	0.108
F(000)	340.0
Nref	4030
Tmin, Tmax	0.974, 0.984
h, k, lmax	10, 12, 15
Data completeness	0.967
Theta(max)	28.427
R(reflections)	0.0896 (2876)
wR2(reflections)	0.2929 (3895)
S	1.079
Npar	219

CCDC number	2255167
Identification code	4

Empirical formula	$C_{17}H_{10}F_{3}NO_{2}$
Formula weight	317.26
Temperature/K	298
Space group	C2/c
a/Å	25.164(3)
b/Å	8.0110(8)
c/Å	14.6926(14)
α/°	90
β/°	109.992 (2)
γ/°	90
Volume/Å ³	2783.4(5)
Z	8
$\rho_{calc}g/cm^3$	1.514
μ/mm ⁻¹	0.127
F(000)	1296.0
Nref	3490
Tmin, Tmax	0.966, 0.972
h, k, lmax	33, 10, 19
Data completeness	0.993
Theta(max)	28.363
R(reflections)	0.1088(2791)
wR2(reflections)	0.4121(3464)
S	1.872
Npar	208

5. Characterization data for substrate 2n

White oil, Silica gel TLC $R_f = 0.50$ (PE); ¹H NMR (600 MHz, CDCl₃) δ 7.35–7.30 (m, 4H), 7.17–7.16 (m, 3H), 7.04–7.03 (m, 1H), 6.13 (s, 1H), 5.95 (s, 1H), 3.95 (q, J = 1.8 Hz, 1H), 2.49 (d, J = 4.2 Hz, 2H), 1.91–1.86 (m, 1H), 1.63–1.62 (m, 3H), 0.94–0.92 (m, 6H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 173.1, 150.8, 141.1, 137.1, 129.7, 129.5, 129.4, 127.3, 124.9, 123.0, 122.9, 122.7 (q, J = 35.3 Hz), 121.4 (q, J = 272.0 Hz), 92.3, 82.2, 45.4, 45.3, 45.2, 30.3, 22.5, 18.6 ppm; ¹⁹F NMR (564 MHz, CDCl₃) δ -67.9 (s, 3F) ppm; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₂₄H₂₃F₃NaO₂⁺, 423.1542; found, 423.1548.

6. Characterization data for all products 3

Phenyl(3-(trifluoromethyl)quinolin-4-yl)methanone (3aa)

Yellow solid, 50.0 mg, 83% yield. Mp: 118–120 °C. Silica gel TLC $R_f = 0.20$ (PE:EA = 15:1); ¹H NMR (600 MHz, CDCl₃) δ 9.21 (s, 1H), 8.26–8.25 (m, 1H), 7.88–7.85 (m, 1H), 7.78–7.77 (m, 2H), 7.66–7.61 (m, 2H), 7.58–7.55 (m, 1H), 7.49–7.46 (m, 2H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 194.2, 149.4, 146.5 (q, J = 4.2 Hz), 144.9 (q, J = 2.4 Hz), 136.2, 134.9, 132.3, 130.3, 129.8, 129.2, 128.9, 126.3, 124.0, 123.5 (q, J = 273.0 Hz), 119.7 (q, J = 32.3 Hz) ppm; ¹⁹F NMR (564 MHz, CDCl₃) δ -57.1 (s, 3F) ppm; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₁F₃NO⁺, 302.0787; found, 302.0794.

(8-Methyl-3-(trifluoromethyl)quinolin-4-yl)(phenyl)methanone (3ba)

Yellow oil, 35.3 mg, 56% yield. Silica gel TLC $R_f = 0.20$ (pure PE); ¹H NMR (600 MHz, CDCl₃) δ 9.23–9.21 (m, 1H), 7.77–7.76 (m, 2H), 7.71–7.70 (m, 1H), 7.66–7.61 (m, 1H), 7.49–7.44 (m, 4H), 2.89–2.86 (m, 3H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 194.5, 148.5, 145.2 (q, J = 4.1 Hz), 145.0 (q, J = 2.3 Hz), 136.4, 134.8, 132.3, 129.8, 129.1, 128.6, 124.2, 124.0, 123.6 (q, J = 272.9 Hz), 119.5 (q, J = 31.8 Hz) ppm; ¹⁹F NMR (564 MHz, CDCl₃) δ -57.1 (s, 3F) ppm; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₃F₃NO⁺, 316.0944; found, 316.0943.

(5-Methyl-3-(trifluoromethyl)quinolin-4-yl)(phenyl)methanone (**3ca**) (7-Methyl-3-(trifluoromethyl)quinolin-4-yl)(phenyl)methanone (**3c'a**)

Yellow solid, 49.2 mg, 78% yield. Mp: 137–140 °C. Silica gel TLC $R_f = 0.20$ (PE:EA = 20:1); ¹**H NMR** (400 MHz, CDCl₃) δ 9.17 (s, 0.14H), 9.15 (s, 1H), 8.15–8.13 (m,

0.07H), 8.02 (s, 1H), 7.77–7.72 (m, 2.28H), 7.65–7.60 (m, 1.16H), 7.50–7.44 (m, 3.46H), 7.41 (s, 0.15H), 7.39–7.37 (m, 1H), 2.58 (s, 3H), 2.38 (s, 0.45H) ppm; ¹³C{¹H} **NMR** (100 MHz, CDCl₃) δ 196.1, 194.3, 150.8, 149.7, 146.4 (q, J = 4.2 Hz), 145.9 (q, J = 4.8 Hz), 144.5, 143.2, 136.2, 136.0, 134.8, 134.5, 131.9, 131.1, 129.8, 129.4, 129.2, 129.1, 125.8, 123.6 (q, J = 272.7 Hz), 123.5, 122.0, 118.9 (q, J = 31.9 Hz), 23.9, 22.1 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -55.2 (s, 3F), -57.0 (s, 3F) ppm; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₃F₃NO⁺, 316.0944; found, 316.0946.

(6-Methyl-3-(trifluoromethyl)quinolin-4-yl)(phenyl)methanone (3da)

Yellow solid, 47.9 mg, 76% yield. Mp: 100–102 °C. Silica gel TLC $R_f = 0.20$ (PE:EA = 15:1); ¹H NMR (400 MHz, CDCl₃) δ 9.13 (s, 1H), 8.14–8.12 (m, 1H), 7.78–7.77 (m, 1H), 7.70–7.62 (m, 2H), 7.50–7.45 (m, 2H), 7.35 (s, 1H), 2.42 (s, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 194.5, 148.1, 145.4 (q, J = 5.0 Hz), 144.0 (q, J = 3.5 Hz), 139.3, 136.2, 134.9, 134.6, 129.9, 129.8, 129.1, 124.9, 124.8, 123.1 (q, J = 277.2 Hz), 119.6 (q, J = 30.3 Hz), 21.9 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -57.0 (s, 3F) ppm; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₃F₃NO⁺, 316.0944; found, 316.0945.

(6-Methoxy-3-(trifluoromethyl)quinolin-4-yl)(phenyl)methanone (3ea)

Yellow solid, 19.9 mg, 30% yield. Mp: 111–113 °C. Silica gel TLC $R_f = 0.20$ (PE:EA = 30:1); ¹**H NMR** (600 MHz, CDCl₃) δ 9.05 (s, 1H), 8.14–8.13 (m, 1H), 7.78–7.77 (m, 2H), 7.66–7.63 (m, 1H), 7.51–7.46 (m, 3H), 3.70 (s, 3H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 194.6, 159.3, 145.8, 143.8 (q, J = 4.4 Hz), 143.1 (q, J = 2.4 Hz), 136.2, 134.9, 131.6, 129.8, 129.2, 125.2, 123.6 (q, J = 273.0 Hz), 120.1 (q, J = 31.8 Hz), 103.5, 55.7 ppm; ¹⁹F NMR (564 MHz, CDCl₃) δ -57.0 (s, 3F) ppm; **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₃F₃NO₂⁺, 332.0893; found, 332.0890.

(7-(tert-Butyl)-3-(trifluoromethyl)quinolin-4-yl)(phenyl)methanone (3ga)

Yellow solid, 46.5 mg, 65% yield. Mp: 115–116 °C. Silica gel TLC $R_f = 0.20$ (PE:EA

= 30:1); ¹**H NMR** (600 MHz, CDCl₃) δ 9.17–9.16 (m, 1H), 8.20–8.19 (m, 1H), 7.79–7.76 (m, 2H), 7.65–7.61 (m, 2H), 7.55–7.52 (m, 1H), 7.48–7.45 (m, 2H), 1.42–1.41 (m, 9H) ppm; ¹³C{¹H} **NMR** (150 MHz, CDCl₃) δ 194.3, 156.1, 149.7, 146.3 (q, *J* = 4.1 Hz), 144.4 (q, *J* = 2.4 Hz), 136.3, 134.8, 129.8, 129.1, 127.9, 125.7, 125.5, 123.6 (q, *J* = 272.9 Hz), 121.9, 119.1 (q, *J* = 30.9 Hz), 35.5, 31.0 ppm; ¹⁹F **NMR** (564 MHz, CDCl₃) δ -57.0 (s, 3F) ppm; **HRMS** (ESI) *m/z*: [M + H]⁺ calcd for C₂₁H₁₉F₃NO⁺, 358.1413; found, 358.1418.

(8-Fluoro-3-(trifluoromethyl)quinolin-4-yl)(phenyl)methanone (3ha)

Yellow solid, 33.2 mg, 52% yield. Mp: 120–122 °C. Silica gel TLC $R_f = 0.20$ (PE:EA = 30:1); ¹H NMR (600 MHz, CDCl₃) δ 9.25 (s, 1H), 7.76–7.75 (m, 2H), 7.66–7.64 (m, 1H), 7.58–7.51 (m, 2H), 7.48 (t, J = 6.0 Hz, 2H), 7.41–7.40 (m, 1H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 193.4, 158.1 (d, J = 258.5 Hz), 146.7 (q, J = 2.4 Hz), 144.8 (q, J = 2.4 Hz), 139.8 (d, J = 11.9 Hz), 136.0 (d, J = 0.9 Hz), 135.1, 129.8, 129.3, 129.2, 129.0, 128.9, 125.6 (d, J = 1.5 Hz), 123.2 (q, J = 273.3 Hz), 122.0 (d, J = 5.0 Hz), 120.8 (q, J = 32.3 Hz) ppm; ¹⁹F NMR (564 MHz, CDCl₃) δ -57.3 (s, 3F), -122.7 (s, 1F) ppm; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₀F₄NO⁺, 320.0693; found, 320.0707.

(7-Fluoro-3-(trifluoromethyl)quinolin-4-yl)(phenyl)methanone (3ia)

Yellow oil, 47.9 mg, 75% yield. Silica gel TLC $R_f = 0.20$ (PE:EA = 30:1); ¹H NMR (400 MHz, CDCl₃) δ 9.20 (s, 1H), 7.89–7.87 (m, 1H), 7.76–7.75 (m, 2H), 7.67–7.62 (m, 2H), 7.50–7.47 (m, 2H), 7.37–7.34 (m, 1H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 193.7, 164.5 (d, J = 254.3 Hz), 150.9 (d, J = 13.2 Hz), 147.6 (q, J = 4.1 Hz), 136.0, 135.1, 129.8, 129.3, 128.6 (d, J = 10.1 Hz), 123.4 (q, J = 272.9 Hz), 121.0, 119.7, 119.5, 119.3 (q, J = 29.3 Hz), 114.2, 114.1 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -57.1 (s, 3F), -104.2 (s, 1F) ppm; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₀F₄NO⁺, 320.0693; found, 320.0700.

(6-Fluoro-3-(trifluoromethyl)quinolin-4-yl)(phenyl)methanone (3ja)

Yellow oil, 49.8 mg, 78% yield. Silica gel TLC $R_f = 0.20$ (PE:EA = 15:1); ¹H NMR (600 MHz, CDCl₃) δ 9.17 (s, 1H), 8.28–8.25 (m, 1H), 7.77–7.75 (m, 2H), 7.68–7.61 (m, 2H), 7.51–7.47 (m, 2H), 7.23–7.20 (m, 1H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 193.6, 161.5 (d, J = 376.8 Hz), 146.6, 145.8 (dt, J = 10.5 Hz, J = 4.7 Hz), 144.3 (dt, J = 5.3 Hz, J = 3.8 Hz), 135.8, 135.2, 132.9 (d, J = 14.0 Hz), 129.8, 129.3, 124.8 (d, J = 15.2 Hz), 123.3 (q, J = 273.1 Hz), 122.9, 122.7, 120.5 (q, J = 48.2 Hz), 109.8 (d, J = 35.1 Hz) ppm; ¹⁹F NMR (564 MHz, CDCl₃) δ -57.2 (s, 3F), -108.6 (s, 1F) ppm; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₀F₄NO⁺, 320.0693; found, 320.0690.

(8-Chloro-3-(trifluoromethyl)quinolin-4-yl)(phenyl)methanone (3ka)

Yellow oil, 30.2 mg, 45% yield. Silica gel TLC $R_f = 0.20$ (PE:EA = 70:1); ¹H NMR (400 MHz, CDCl₃) δ 9.32 (s, 1H), 8.00–7.98 (m, 1H), 7.76–7.74 (m, 2H), 7.68–7.64 (m, 1H), 7.58–7.54 (m, 1H), 7.51–7.46 (m, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 193.5, 147.0 (q, J = 4.1 Hz), 145.7, 145.5 (q, J = 2.3 Hz), 136.0, 135.2, 134.7, 132.4, 129.8, 129.3, 128.8, 128.7, 125.5, 125.3, 123.2 (q, J = 273.2 Hz), 120.7 (q, J = 32.2 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -57.3 (s, 3F) ppm; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₀ClF₃NO⁺, 336.0398; found, 336.0405.

(7-Chloro-3-(trifluoromethyl)quinolin-4-yl)(phenyl)methanone (3la)

Yellow oil, 36.3 mg, 54% yield. Silica gel TLC $R_f = 0.20$ (PE:EA = 50:1); ¹H NMR (400 MHz, CDCl₃) δ 9.20 (s, 1H), 8.25 (d, J = 2.0 Hz, 1H), 7.76–7.74 (m, 2H), 7.68–7.64 (m, 1H), 7.56–7.46 (m, 4H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 193.5, 149.8, 147.0 (q, J = 4.0 Hz), 144.9 (q, J = 2.3 Hz), 138.6, 136.0, 135.2, 130.0, 129.8, 129.3, 128.6, 127.5, 123.3 (q, J = 273.0 Hz), 122.4, 119.9 (q, J = 32.2 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -57.2 (s, 3F) ppm; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₀ClF₃NO⁺, 336.0398; found, 336.0408.

(6-Chloro-3-(trifluoromethyl)quinolin-4-yl)(phenyl)methanone (3ma)

Yellow solid, 50.4 mg, 75% yield. Mp: 115–117 °C. Silica gel TLC $R_f = 0.20$ (PE:EA = 30:1); ¹H NMR (600 MHz, CDCl₃) δ 9.17 (s, 1H), 8.18–8.16 (m, 1H), 7.77–7.75 (m, 3H), 7.65–7.62 (m, 1H), 7.58–7.57 (m, 1H), 7.48–7.46 (m, 2H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 193.4, 147.8, 146.6 (q, J = 2.7 Hz), 144.0 (q, J = 2.6 Hz), 135.9, 135.2, 135.1, 133.3, 131.8, 129.8, 129.3, 124.9, 124.6, 123.2 (q, J = 273.3 Hz), 120.5 (q, J = 31.2 Hz) ppm; ¹⁹F NMR (564 MHz, CDCl₃) δ -57.2 (s, 3F) ppm; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₀ClF₃NO⁺, 336.0398; found, 336.0404.

(6-Nitro-3-(trifluoromethyl)quinolin-4-yl)(phenyl)methanone (3pa)

Yellow oil, 35.3 mg, 51% yield. Silica gel TLC $R_f = 0.20$ (PE:EA = 20:1); ¹H NMR (400 MHz, CDCl₃) δ 9.36 (s, 1H), 8.64–8.61 (m, 1H), 8.54 (d, J = 2.4 Hz, 1H), 8.44–8.42 (m, 1H), 7.78–7.76 (m, 2H), 7.72–7.68 (m, 1H), 7.54–7.50 (m, 2H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 192.5, 151.1, 149.9 (q, J = 3.9 Hz), 146.9 (q, J = 2.9 Hz), 135.7, 132.4, 130.0, 129.5, 128.9, 124.3 (q, J = 272.9 Hz), 123.3, 121.5 (q, J = 32.5 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -57.4 (s, 3F) ppm; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₇H₁₀F₃N₂O₃⁺, 347.0638; found, 347.0635.

4-Benzoyl-3-(trifluoromethyl)quinoline-6-carbonitrile (3qa)

Yellow solid, 52.9 mg, 81% yield. Mp: 168–170 °C. Silica gel TLC $R_f = 0.20$ (PE:EA = 10:1); ¹**H NMR** (600 MHz, CDCl₃) δ 9.32 (s, 1H), 8.37–8.36 (m, 1H), 8.01–7.99 (m, 2H), 7.80–7.75 (m, 2H), 7.72–7.69 (m, 1H), 7.54–7.51 (m, 2H) ppm; ¹³C{¹H} **NMR** (150 MHz, CDCl₃) δ 192.7, 150.1, 149.3 (q, J = 2.9 Hz), 145.4 (q, J = 2.6 Hz), 135.6, 133.2, 133.0, 132.8, 132.4, 131.9, 129.9, 129.5, 126.2, 123.6, 122.9 (q, J = 273.6 Hz), 121.4 (q, J = 35.7 Hz), 117.6, 112.9 ppm; ¹⁹F NMR (564 MHz, CDCl₃) δ -57.4 (s, 3F) ppm; **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₀F₃N₂O⁺, 327.0740; found, 327.0737.

(6,7-Dimethyl-3-(trifluoromethyl)quinolin-4-yl)(phenyl)methanone (3ra)

(5,6-Dimethyl-3-(trifluoromethyl)quinolin-4-yl)(phenyl)methanone (**3r'a**)

Yellow solid, 50.1 mg, 76% yield. Mp: 98–100 °C. Silica gel TLC $R_f = 0.20$ (PE:EA = 15:1); ¹**H NMR** (600 MHz, CDCl₃) δ 9.11–9.09 (m, 1.15H), 8.03 (d, J = 9.0 Hz, 0.15H), 7.99 (s, 1H), 7.77 (d, J = 7.8 Hz, 2H), 7.69 (d, J = 9.0 Hz, 0.28H), 7.64–7.59 (m, 1.16H), 7.31 (s, 1.12H), 2.48 (s, 3H), 2.41 (s, 0.45H), 2.31 (s, 3H), 2.27 (s, 0.45H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 196.6, 194.6, 149.7, 148.7, 145.4 (q, J = 3.9 Hz), 144.9 (q, J = 4.8 Hz), 143.7, 143.3, 139.4, 138.2, 136.3, 135.5, 134.8, 134.4, 133.0, 129.8, 129.4, 129.1, 128.5, 125.1, 123.7 (q, J = 272.7 Hz), 122.5, 118.8 (q, J = 32.0 Hz), 21.9, 20.6, 20.4, 19.0 ppm; ¹⁹F NMR (564 MHz, CDCl₃) δ -54.9 (s, 3F), 56.9 (s, 3F) ppm; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₉H₁₅F₃NO⁺, 330.1100; found, 330.1094.

(6,8-Dichloro-3-(trifluoromethyl)quinolin-4-yl)(phenyl)methanone (3sa)

Yellow solid, 30.4 mg, 41% yield. Mp: 102–104 °C. Silica gel TLC $R_f = 0.20$ (PE:EA = 30:1); ¹H NMR (600 MHz, CDCl₃) δ 9.29 (s, 1H), 7.97 (d, J = 1.8 Hz, 1H), 7.75–7.72 (m, 2H), 7.70–7.68 (m, 1H), 7.52–7.50 (m, 3H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 192.9, 147.1 (q, J = 3.6 Hz), 144.7 (d, J = 2.3 Hz), 144.4, 136.0, 135.7, 135.5, 134.6, 133.1, 129.9, 129.4, 125.8, 124.0, 121.6 (q, J = 32.3 Hz), 123.0 (q, J = 276.6 Hz) ppm; ¹⁹F NMR (564 MHz, CDCl₃) δ -57.4 (s, 3F) ppm; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₉Cl₂F₃NO⁺, 370.0008; found, 370.0010.

(5,7-Difluoro-3-(trifluoromethyl)quinolin-4-yl)(phenyl)methanone (**3ua**)

Yellow solid, 38.4 mg, 57% yield. Mp: 106–107 °C. Silica gel TLC $R_f = 0.20$ (PE:EA = 30:1); ¹H NMR (600 MHz, CDCl₃) δ 9.22 (s, 1H), 7.77–7.73 (m, 3H), 7.65–7.62 (m, 1H), 7.49–7.47 (m, 2H), 7.12–7.08 (m, 1H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 192.6, 164.0 (dd, J = 254.6 Hz, J = 14.0 Hz), 158.7 (dd, J = 261.5 Hz, J = 14.0 Hz), 150.8 (d, J = 12.6 Hz), 148.8 (q, J = 2.6 Hz), 142.6, 135.9, 134.6, 129.3, 129.1, 123.2 (q, J = 273.6 Hz), 120.5 (q, J = 31.4 Hz), 110.9 (d, J = 4.8 Hz), 110.8 (q, J = 4.4 Hz), 105.6, 105.4 (d, J = 4.5 Hz), 105.2 ppm; ¹⁹F NMR (564 MHz, CDCl₃) δ -62.9(s, 1F), -64.1(s, 1F), -70.1 (s, 3F) ppm; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₉F₅NO⁺, 338.0599; found, 338.0600.

(5,7-Dimethyl-3-(trifluoromethyl)quinolin-4-yl)(phenyl)methanone (3va)

Yellow solid, 52.1 mg, 79% yield. Mp: 110–112 °C. Silica gel TLC $R_f = 0.20$ (PE:EA = 30:1); ¹H NMR (600 MHz, CDCl₃) δ 9.04 (s, 1H), 7.83 (s, 1H), 7.54–7.51 (m, 1H), 7.37 (s, 4H), 7.16 (s, 1H), 2.44 (s, 3H), 2.25 (s, 3H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 196.2, 151.2, 145.9 (q, J = 4.1 Hz), 144.5 (q, J = 3.2 Hz), 142.6, 137.6, 135.4, 134.5, 134.2, 129.1, 128.3, 123.7 (q, J = 273.8 Hz), 121.5, 119.9 (q, J = 30.9 Hz), 23.7, 21.7 ppm; ¹⁹F NMR (564 MHz, CDCl₃) δ -55.2 (s, 3F) ppm; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₉H₁₅F₃NO⁺, 330.1100; found, 330.1107.

o-Tolyl(3-(trifluoromethyl)quinolin-4-yl)methanone (**3ab**)

Yellow solid, 47.9 mg, 76% yield. Mp: 120–122 °C. Silica gel TLC $R_f = 0.20$ (PE:EA = 15:1); ¹H NMR (400 MHz, CDCl₃) δ 9.18 (s, 1H), 8.26–8.23 (m, 1H), 7.88–7.84 (m, 1H), 7.68–7.66 (m, 1H), 7.60–7.56 (m, 1H), 7.50–7.45 (m, 1H), 7.41–7.39 (m, 1H), 7.17–7.10 (m, 2H), 2.83 (s, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 195.5, 149.5, 146.6 (q, J = 4.2 Hz), 146.2 (q, J = 3.6 Hz), 141.4, 134.7, 133.7, 132.8, 132.2, 130.2, 128.8, 126.4, 126.1, 124.1, 123.6 (q, J = 273.1 Hz), 119.2 (q, J = 31.9 Hz), 22.4 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -57.2 (s, 3F) ppm; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₃F₃NO⁺, 316.0944; found, 316.0947.

m-Tolyl(3-(trifluoromethyl)quinolin-4-yl)methanone (**3ac**)

Yellow solid, 51.7 mg, 82% yield. Mp: 102–103°C. Silica gel TLC $R_f = 0.20$ (PE:EA = 15:1); ¹**H NMR** (400 MHz, CDCl₃) δ 9.20 (s, 1H), 8.26–8.24 (m, 1H), 7.89–7.84 (m, 1H), 7.65–7.61 (m, 2H), 7.57–7.53 (m, 1H), 7.50–7.44 (m, 2H), 7.35–7.31 (m, 1H), 2.37 (s, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 194.3, 149.4, 146.5 (q, J = 6.0 Hz), 145.1 (q, J = 3.6 Hz), 139.2, 136.2, 135.8, 132.2, 130.2, 129.9, 129.0, 128.8, 127.4, 126.3, 124.0, 123.5 (q, J = 272.9 Hz), 119.7 (q, J = 32.0 Hz), 21.4 ppm;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -57.1 (s, 3F) ppm; **HRMS** (ESI) *m/z*: [M + H]⁺ calcd for C₁₈H₁₃F₃NO⁺, 316.0944; found, 316.0943.

p-Tolyl(3-(trifluoromethyl)quinolin-4-yl)methanone (**3ad**)

Yellow oil, 53.6 mg, 85% yield. Silica gel TLC $R_f = 0.20$ (PE:EA = 50:1); ¹H NMR (400 MHz, CDCl₃) δ 9.21 (s, 1H), 8.27–8.24 (m, 1H), 7.88–7.84 (m, 1H), 7.68–7.62 (m, 3H), 7.58–7.54 (m, 1H), 7.28–7.27 (m, 2H), 2.43 (s, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 193.7, 149.3, 146.4 (q, J = 4.1 Hz), 146.3, 145.2 (q, J = 2.4 Hz), 133.9, 132.2, 130.2, 130.0, 129.9, 128.8, 126.4, 124.0, 123.5 (q, J = 272.9 Hz), 119.7 (q, J = 31.7 Hz), 22.0 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -57.1 (s, 3F) ppm; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₃F₃NO⁺, 316.0944; found, 316.0951.

(4-Methoxyphenyl)(3-(trifluoromethyl)quinolin-4-yl)methanone (3ae)

White solid, 46.4 mg, 70% yield. Mp: 111–113 °C. Silica gel TLC $R_f = 0.20$ (PE:EA = 100:1); ¹H NMR (600 MHz, CDCl₃) δ 9.19 (s, 1H), 8.24–8.23 (m, 1H), 7.86–7.84 (m, 1H), 7.73 (s, 2H), 7.65–7.64 (m, 1H), 7.57–7.54 (m, 1H), 6.93–6.92 (m, 2H), 3.86 (s, 3H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 192.4, 165.0, 149.4, 146.5 (q, J = 4.1 Hz), 145.3 (q, J = 2.4 Hz), 132.3, 132.2, 130.2, 129.5, 128.7, 126.4, 124.1, 123.5 (q, J = 269.6 Hz), 119.6 (q, J = 32.0 Hz), 114.5, 55.8 ppm; ¹⁹F NMR (564 MHz, CDCl₃) δ -57.2 (s, 3F) ppm; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₃F₃NO₂⁺, 332.0893; found, 332.0896.

(4-Propylphenyl)(3-(trifluoromethyl)quinolin-4-yl)methanone (3af)

Yellow oil, 57.0 mg, 83% yield. Silica gel TLC $R_f = 0.20$ (PE:EA = 50:1); ¹H NMR (400 MHz, CDCl₃) δ 9.21 (s, 1H), 8.26–8.24 (m, 1H), 7.88–7.84 (m, 1H), 7.70–7.63

(m, 3H), 7.58–7.54 (m, 1H), 7.28–7.27 (m, 2H), 2.65 (t, J = 7.6 Hz, 2H), 1.71–1.62 (m, 2H), 0.95 (t, J = 7.6 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 193.7, 150.8, 149.4, 146.4 (q, J = 3.7 Hz), 145.2 (q, J = 2.3 Hz), 134.1, 132.2, 130.2, 129.9, 129.2, 128.7, 127.6, 126.4, 124.0, 123.5 (q, J = 273.0 Hz), 119.6 (q, J = 32.1 Hz), 38.3, 24.1, 13.9 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -57.1 (s, 3F) ppm; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₀H₁₇F₃NO⁺, 344.1257; found, 344.1255.

(2-Fluorophenyl)(3-(trifluoromethyl)quinolin-4-yl)methanone (3ag)

Yellow solid, 34.5 mg, 54% yield. Mp: 45–46 °C. Silica gel TLC $R_f = 0.20$ (PE:EA = 30:1); ¹H NMR (400 MHz, CDCl₃) δ 9.18 (s, 1H), 8.25–8.23 (m, 1H), 8.08–8.05 (m, 1H), 7.86–7.84 (m, 1H), 7.65–7.61 (m, 2H), 7.58–7.55 (m, 1H), 7.35–7.32 (m, 2H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 190.3, 162.5 (d, J = 259.1 Hz), 149.4, 146.4 (q, J = 4.1 Hz), 136.5 (d, J = 9.2 Hz), 132.0, 131.0, 130.2, 128.6, 125.3, 124.9 (d, J = 3.8 Hz), 123.1 (d, J = 2.0 Hz), 123.4 (q, J = 272.7 Hz), 118.4 (q, J = 29.7 Hz), 117.3, 117.1 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -57.2 (s, 3F), -108.3 (s, 1F) ppm; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₀F₄NO⁺, 320.0693; found, 320.0701.

(3-Fluorophenyl)(3-(trifluoromethyl)quinolin-4-yl)methanone (**3ah**)

Yellow oil, 53.0 mg, 83% yield. Silica gel TLC $R_f = 0.20$ (PE:EA = 30:1); ¹H NMR (400 MHz, CDCl₃) δ 9.22 (s, 1H), 8.28–8.26 (m, 1H), 7.91–7.87 (m, 1H), 7.59–7.58 (m, 2H), 7.56–7.54 (m, 1H), 7.45–7.43 (m, 2H), 7.37–7.32 (m, 1H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 193.0, 163.1 (d, J = 372.5 Hz), 149.4, 146.4 (q, J = 4.3 Hz), 144.1 (q, J = 2.1 Hz), 138.1, 132.4, 131.0 (d, J = 7.6 Hz), 130.4, 129.1, 126.0, 125.9 (d, J = 3.0 Hz), 123.8, 123.4 (q, J = 274.2 Hz), 122.2, 122.0, 119.8 (q, J = 29.7 Hz), 116.0,115.8 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -57.0 (s, 3F), -110.6 (s, 1F) ppm; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₀F₄NO⁺, 320.0693; found, 320.0703.

(4-Fluorophenyl)(3-(trifluoromethyl)quinolin-4-yl)methanone (3ai)

Yellow solid, 55.0 mg, 86% yield. Mp: 119–121 °C. Silica gel TLC $R_f = 0.20$ (PE:EA = 30:1); ¹H NMR (600 MHz, CDCl₃) δ 9.20 (s, 1H), 8.26–8.24 (m, 1H), 7.88–7.85 (m, 1H), 7.81–7.79 (m, 2H), 7.60–7.56 (m, 2H), 7.15–7.13 (m, 2H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 192.5, (d, J = 256.8 Hz), 149.4, 146.4 (q, J = 4.2 Hz), 144.4 (q, J = 2.4 Hz), 132.8, 132.6 (d, J = 9.8 Hz), 132.3, 130.3, 129.0, 126.1, 123.8, 123.4 (q, J = 272.9 Hz), 119.7 (q, J = 32.0 Hz), 116.6, 116.5 ppm; ¹⁹F NMR (564 MHz, CDCl₃) δ -57.1 (s, 3F), -101.4 (s, 1F) ppm; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₀ClF₃NO⁺, 320.0693; found, 320.0698.

(2-Chlorophenyl)(3-(trifluoromethyl)quinolin-4-yl)methanone (3aj)

Yellow solid, 43.0 mg, 64% yield. Mp: 142–143 °C. Silica gel TLC $R_f = 0.20$ (PE:EA = 30:1); ¹H NMR (600 MHz, CDCl₃) δ 9.18 (s, 1H), 8.25–8.24 (m, 1H), 7.89–7.86 (m, 1H), 7.70–7.67 (m, 2H), 7.61–7.59 (m, 1H), 7.54–7.49 (m, 2H), 7.36–7.34 (m, 1H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 192.3, 149.6, 146.5 (q, J = 4.4 Hz), 134.9, 134.8, 134.4, 133.2, 132.2 (d, J = 5.6 Hz), 130.3, 129.0, 127.3, 125.8, 123.8, 123.5 (q, J = 272.9 Hz), 119.1 (q, J = 32.0 Hz) ppm; ¹⁹F NMR (564 MHz, CDCl₃) δ -57.1 (s, 3F) ppm; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₀ClF₃NO⁺, 336.0398; found, 336.0411.

(4-Chlorophenyl)(3-(trifluoromethyl)quinolin-4-yl)methanone (3ak)

Yellow oil, 47.0 mg, 70% yield. Silica gel TLC $R_f = 0.20$ (PE:EA = 50:1); ¹H NMR (400 MHz, CDCl₃) δ 9.21 (s, 1H), 8.27–8.25 (m, 1H), 7.91–7.84 (m, 1H), 7.72–7.70 (m, 2H), 7.58–7.57 (m, 2H), 7.46–7.44 (m, 2H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 192.9, 149.5, 146.4 (q, J = 1.8 Hz), 146.4 (q, J = 2.3 Hz), 141.7, 134.6, 132.4, 131.1, 130.4, 129.6, 129.0, 126.0, 123.8, 123.4 (q, J = 272.9 Hz), 122.0, 119.7 (q, J = 32.2 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -57.1 (s, 3F) ppm; HRMS (ESI)

m/z: [M + H]⁺ calcd for C₁₇H₁₀ClF₃NO⁺, 336.0398; found, 336.0400.

(4-Nitrophenyl)(3-(trifluoromethyl)quinolin-4-yl)methanone (3al)

Yellow oil, 40.2 mg, 58% yield. Silica gel TLC $R_f = 0.20$ (PE:EA = 30:1); ¹H NMR (600 MHz, CDCl₃) δ 9.25 (s, 1H), 8.34–8.30 (m, 3H), 7.96–7.90 (m, 3H), 7.63–7.60 (m, 1H), 7.55–7.53 (m, 2H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 192.7, 151.3, 149.5, 146.4 (q, J = 4.1 Hz), 143.4 (q, J = 2.3 Hz), 140.1, 132.7, 130.7, 130.5, 129.4, 125.6, 125.3, 124.5, 124.0, 123.5, 123.3 (q, J = 272.9 Hz), 119.8 (q, J = 32.1 Hz) ppm; ¹⁹F NMR (564 MHz, CDCl₃) δ -56.9 (s, 3F) ppm; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₀F₃N₂O₃⁺, 347.0638; found, 347.0640.

(4-Bromophenyl)(3-(trifluoromethyl)quinolin-4-yl)methanone (3am)

Yellow solid, 57.8 mg, 76% yield. Mp: 137–140 °C. Silica gel TLC $R_f = 0.20$ (PE:EA = 40:1); ¹H NMR (600 MHz, CDCl₃) δ 9.20 (s, 1H), 8.26 (d, J = 8.4 Hz, 1H), 7.89–7.86 (m, 1H), 7.62 (s, 4H), 7.58–7.57 (m, 2H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 193.1, 149.4, 146.4 (q, J = 4.1 Hz), 144.2 (q, J = 2.4 Hz), 135.0, 132.6, 132.4, 130.4, 129.0, 126.0, 123.8, 123.4 (q, J = 272.9 Hz), 119.7 (q, J = 32.0 Hz) ppm; ¹⁹F NMR (564 MHz, CDCl₃) δ -57.1 (s, 3F) ppm; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₀BrF₃NO⁺, 379.9892; found, 379.9896.

4-(3-(Trifluoromethyl)quinoline-4-carbonyl)phenyl(*R*)-2-(4-isopropylphenyl)propanoate (**3an**)

Yellow oil, 72.8 mg, 72% yield. Silica gel TLC $R_f = 0.20$ (PE:EA = 30:1); ¹H NMR (600 MHz, CDCl₃) δ 9.23 (s, 1H), 8.29–8.28 (m, 1H), 7.91–7.88 (m, 1H), 7.62–7.58 (m, 3H), 7.43–7.41 (m, 2H), 7.29–7.28 (m, 3H), 7.17–7.15 (m, 2H), 3.97–3.94 (m,

1H), 2.50–2.49 (m, 2H), 1.92–1.86 (m, 1H), 1.63–1.61 (m, 3H), 0.94–0.93 (m, 6H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 193.2, 172.9, 151.6, 149.4, 146.4 (q, J = 2.1 Hz), 144.3 (q, J = 2.3 Hz), 141.2, 137.4, 136.9, 132.3, 130.1, 129.7, 129.0, 128.3, 127.7, 127.3, 126.2, 123.4 (q, J = 273.0 Hz), 121.9, 45.3, 45.2, 30.3, 22.5, 18.6, 18.5 ppm; ¹⁹F NMR (564 MHz, CDCl₃) δ -57.0 (s, 3F) ppm; HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₂₉H₂₅F₃NO₃⁺, 506.1938; found, 506.1937.

Naphthalen-1-yl(3-(trifluoromethyl)quinolin-4-yl)methanone (**3ao**)

Yellow oil, 51.3 mg, 73% yield. Silica gel TLC $R_f = 0.20$ (PE:EA = 20:1); ¹H NMR (400 MHz, CDCl₃) δ 9.47 (d, 1H, J = 8.4Hz), 9.25 (s, 1H), 8.29–8.27 (m, 1H), 8.12–8.10 (m, 1H), 7.99–7.97 (m, 1H), 7.89–7.80 (m, 2H), 7.76–7.74 (m, 1H), 7.70–7.66 (m, 1H), 7.57–7.53 (m, 1H), 7.49–7.47 (m, 1H), 7.37–7.33 (m, 1H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 195.7, 149.6 (q, J = 3.4 Hz), 146.6 (q, J = 6.3 Hz), 146.1, 136.1, 135.4, 134.2, 132.2, 132.0, 130.8, 129.9, 129.0, 128.9, 127.4, 126.5, 126.3, 125.0, 124.4, 123.6 (q, J = 273.2 Hz), 119.4 (q, J = 34.5 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -57.0 (s, 3F) ppm; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₃F₃NO⁺, 352.0944; found, 352.0941.

Thiophen-2-yl(3-(trifluoromethyl)quinolin-4-yl)methanone (3ap)

Yellow oil, 43.0 mg, 70% yield. Silica gel TLC $R_f = 0.20$ (PE:EA = 20:1); ¹H NMR (400 MHz, CDCl₃) δ 9.20 (s, 1H), 8.26–8.24 (m, 1H), 7.90–7.84 (m, 2H), 7.77–7.75 (m, 1H), 7.63–7.59 (m, 1H), 7.21–7.20 (m, 1H), 7.10–7.08 (m, 1H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 185.7, 149.5, 146.4 (q, J = 4.0 Hz), 144.1 (q, J = 2.4 Hz), 143.6, 136.9, 136.5, 132.3, 130.1, 128.9, 127.5, 126.3, 123.8, 123.4 (q, J = 273.0 Hz), 119.5 (q, J = 31.9 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -57.1 (s, 3F) ppm; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₅H₉F₃NOS⁺, 308.0351; found, 308.0358.

(3-(Trifluoromethyl)quinolin-4-yl)(triisopropylsilyl)methanone (3aq)

Yellow oil, 32.0 mg, 42% yield. Silica gel TLC $R_f = 0.20$ (PE:EA = 40:1); ¹H NMR (600 MHz, CDCl₃) δ 9.01 (s, 1H), 8.21–8.20 (m, 1H), 7.86–7.84 (m, 1H), 7.68–7.66 (m, 1H), 7.62–7.60 (m, 1H), 1.04 (s, 21H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 191.6, 152.1, 149.5, 146.9 (q, J = 3.9 Hz), 132.1, 130.6, 128.1, 125.7, 123.8 (q, J = 273.2 Hz), 122.4, 117.0 (q, J = 32.0 Hz), 18.5, 17.8, 12.4, 11.4 ppm; ¹⁹F NMR (564 MHz, CDCl₃) δ -54.8 (s, 3F) ppm; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₀H₂₇F₃NOSi⁺, 382.1809; found, 382.1819.

4-Chloro-1-(3-(trifluoromethyl)quinolin-4-yl)butan-1-one (**3ar**)

Yellow oil, 16.9 mg, 28% yield. Silica gel TLC $R_f = 0.30$ (PE:EA = 20:1); ¹H NMR (600 MHz, CDCl₃) δ 9.12 (s, 1H), 8.23–8.22 (m, 1H), 7.91–7.88 (m, 1H), 7.71–7.67 (m, 2H), 3.74–3.71 (m, 2H), 3.14–3.12 (m, 2H), 3.34–2.32 (m, 2H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 203.0, 149.6, 146.3 (q, J = 3.9 Hz), 146.1 (q, J = 2.3 Hz), 132.4, 130.5, 129.1, 125.0, 123.6 (q, J = 272.7 Hz), 122.4, 117.9 (q, J = 32.0 Hz), 43.9, 42.0, 26.0 ppm; ¹⁹F NMR (564 MHz, CDCl₃) δ -57.1 (s, 3F) ppm; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₄H₁₂ClF₃NO⁺, 302.0544; found, 302.0548.

7. Characterization data for compound 4

4-Benzoyl-3-(trifluoromethyl)quinoline 1-oxide 4

White solid, 29.8 mg, 94% yield. Mp: 172–174 °C. Silica gel TLC $R_f = 0.20$ (PE:EA = 1:1); ¹**H NMR** (400 MHz, CDCl₃) δ 8.83 (d, 1H, J = 8.80 Hz), 8.78 (s, 1H), 7.91–7.87 (m, 1H), 7.81–7.80 (m, 2H), 7.68–7.64 (m, 3H), 7.52–7.48 (m, 2H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 193.0, 142.7 (q, J = 2.5 Hz), 136.3 (q, J = 1.4 Hz), 135.2, 135.0, 133.3, 132.9, 131.8, 130.7, 129.9, 129.3, 127.4, 127.2, 122.1 (q, J = 273.5 Hz), 122.0 (q, J = 34.1 Hz), 120.4 ppm; ¹⁹F NMR (376MHz, CDCl₃) δ -58.1 (s,

3F) ppm; **HRMS** (ESI) m/z: $[M + H]^+$ calcd for $C_{17}H_{11}F_3NO_2^+$, 318.0736; found, 318.0741.

8. Characterization data for compound 5

4-Benzoyl-3-(trifluoromethyl)quinolin-2(1H)-one 5

White solid, 29.8 mg, 94% yield. Mp: 270–271 °C. Silica gel TLC $R_f = 0.20$ (PE:EA = 2:1); ¹H NMR (400 MHz, CDCl₃) δ 12.77 (s, 1H), 7.91–7.89 (m, 2H), 7.67–7.66 (m, 2H), 7.56–7.51 (m, 3H), 7.32–7.30 (m, 1H), 7.20–7.17 (m, 1H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 193.0, 160.1 (q, J = 5.2 Hz), 151.1 (q, J = 4.0 Hz), 139.4, 135.5, 135.1, 133.9, 129.4, 129.3, 127.5, 124.1, 122.4 (q, J = 272.7 Hz), 117.0, 116.3 ppm; ¹⁹F NMR (376MHz, CDCl₃) δ -59.0 (s, 3F) ppm; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₁F₃NO₂⁺, 318.0736; found, 318.0746.

9. References

(1) (a) Priewisch, B.; Rück-Braun, K. Efficient Preparation of Nitrosoarenes for the Synthesis of Azobenzenes. *J. Org. Chem.* **2005**, *70*, 2350. (b) Hu, W.; Yu, J.-T.; Liu, S.; Jiang, Y.; Cheng, J. Copper-mediated Annulation of 2-(1-Arylvinyl) Anilines and Aryl Nitrosos towards 2,3-Diaryl-2H-indazoles. *Org. Chem. Front.* **2017**, *4*, 22.

(2) Hu, C.-M.; Hong, F.; Xu, Y.-Y. Synthesis of trifluoromethyl-substituted conjugated enynes including a fluorinated siccayne. *J. Fluorine Chem.* **1993**, *64*, 1.

(3) März, M.; Kohout, M.; Neveselý, T.; Chudoba, J.; Prukała, D.; Niziński, S.; Sikorski, M.; Burdziński, G.; Cibulka, R. Azodicarboxylate-free esterification with triphenylphosphine mediated by flavin and visible light: method development and stereoselectivity control. *Org. Biomol. Chem.* **2018**, *16*, 6809.

(4) The information for compound **2n**, See: Zhang, J.; Ma, Z.-G.; Tian, Y.; Li, W.; Gao, W.-C.; Chang, H.-H. Divergent synthesis of fluorinated alkenes, allenes, and enynes via reaction of 2-trifluoromethyl-1,3-enynes with carbon nucleophiles. *J. Org. Chem.* **2022**, *87*, 15086.

11. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra for all products 3

f1 (ppm) 0 -10

3ca + 3c'a

3da

S30

S31

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 fl (ppm)

3ga

S33

3ha

-9.245 7.758 7.745 7.745 7.7.650 7.7.650 7.7.650 7.7.650 7.7.556 7.7.5577 7.7.5577 7.7.5577 7.7.5577 7.7.5577 7.7.5577

f1 (ppm)

3ia

-9.168 8.270 8.261 -8.261 -7.770 -7.468 -7.468 -7.468 -7.468 -7.227 -7.220 -7.220 -7.197

3ka

S39

3ma

200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 fl (ppm)

$\begin{array}{c} -9.362\\ -9.362\\ 8.541\\ 8.541\\ 8.543\\ 8.541\\ 8.543\\ 8.543\\ 8.543\\ 8.543\\ 8.543\\ 8.543\\ 8.543\\ 7.702\\ 7.702\\ 7.702\\ 7.702\\ 6.996\\ 6.996\end{array}$

3qa

3ra + 3r'a

S47

3sa

3ua

3va

-15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -110 -120 fl (ppm)

3ab

-2.832

3ac

-20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 fl (ppm)

3ae

3ag

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 f1 (ppm)

105 95 f1 (ppm)

3aj

S65

3ak

3al

-9.253 = 2.253 = 2.299 = 7.033 = 7.633 = 7.549 = 7.549

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 fl (ppm)

3am

3ao

3ap

-15 -25 -35 -45 -55 -65 -75 -85 -95 -105 -115 -125 -135 -145 fl (ppm)

3aq

12. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra for compound 4

S78

13. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra for compound 5

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 fl (ppm)