Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2023

- Supporting Information-

Visible Light Induced Deoxygenation of Sulfoxides with Isopropanol

Jinwu Zhao, *^a Zhigao Luo, ^a Yipeng Liu, ^a Shiting Chen, ^a Junye He, ^a Jingxiu Xu, ^a Weigao Hu, ^a Zunnan Huang *^b and Wenfang Xiong *^a

^a School of Pharmacy, Guangdong Medical University, Dongguan 523808, China. E-mail: jwzhao@gdmu.edu.cn, xiongwf@gdmu.edu.cn

^b Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Medical University, Dongguan 523808, China. Email: zn_huang@gdmu.edu.cn.

Table of Contents

1. General information	S1
2. Preparation of starting material	S1
3. Experimental setup	S1
4. Typical procedure for the deoxygenation of sulfoxides	S1
5. Gram scale synthesis	S1
6. Mechanistic Studies	S2
6.1 Radical trapping experiments	
6.2 Parallel KIE experiments	
6.3 Light on/off experiments	S6
6.4 Cyclic voltammetry experiments	S6
7. Analytic data of the obtained compounds	S7
8. References	S13
9. Copies of NMR spectra	S15

1. General information

All reagents were of analytical grade and obtained from commercial suppliers and used without further purification (except **a22**). ¹H and ¹³C NMR spectra were obtained on a Bruker AVANCE III HD 400 at 400 MHz and 100 MHz respectively, using CDCl₃ or DMSO-d6 as the solvent with tetramethylsilane (TMS) as an internal standard at room temperature. GC-MS were performed on Thermo Trace DSQ. Column chromatography was performed using silica gel (200–300 mesh). A 25 W LED light source was assembled from 430–440 nm 2835 LED beads with a peak wavelength of 435 nm without the use of any filter (Planck ShenZhen Opto-Electronic Technology Co.,Ltd).

2. Preparation of starting material

The sulfoxide 1-methyl-3-(methylsulfinyl)benzene (**a22**) was synthetized according to the previously reported procedure. ² Its NMR data is in entire agreement with previous descriptions. ¹⁸ ¹H NMR (400 MHz, CDCl₃) δ 7.44 (s, 1H), 7.39 – 7.33 (m, 2H), 7.24 (m, 1H), 2.66 (s, 3H), 2.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.5, 139.6, 131.8, 129.1, 123.7, 120.6, 43.9, 21.4.

3. Experimental setup

4. Typical procedure for the deoxygenation of sulfoxides

To a quarts test-tube (25 mL) were added AQ (10.4 mg, 0.05 mmol), TEAF (dihydrate, 4.6 mg, 0.025 mmol), sulfoxide **a** (0.5 mmol) and 2 mL of mixed solvent (sulfolane */i*-PrOH = 3:1). The reaction mixture was stirred at room temperature under the irradiation at 430–440 nm (25 W LED, distance = 8-10 cm, cooling by air) for 12 h. After this, the reaction was quenched by the addition of 10 mL of water, and the aqueous solution was extracted with CH₂Cl₂ (3 × 10 mL). The combined extract was dried with anhydrous MgSO₄ and evaporated under vacuum. The residue was purified by a silica gel packed flash chromatography column to afford the desired sulfide **b**.

5. Gram scale synthesis

To a quarts test-tube (50 mL) were added AQ (104.1 mg, 0.5 mmol), TEAF (dihydrate, 46.3 mg, 0.25 mmol), di-n-octyl sulfoxide (**a2**) (1.37 g, 5 mmol) and 20 mL of mixed solvent (sulfolane /i-PrOH = 3:1). The reaction mixture was stirred at room temperature under the irradiation at 430-440 nm (25 W LED \times 3, distance = 8 cm, cooling by air) for 12 h. After that, the reaction mixture was transferred to a separating funnel and diluted with CH₂Cl₂ (100 mL). The organic phase was washed three times with water, dried over MgSO₄ and concentrated. The crude product was purified by a silica gel packed flash chromatography column with pure hexane as the eluent to give **b2** (1.05 g, 81% yield).

6. Mechanistic Studies

6.1 Radical trapping experiments

The trapping products of radical intermediate were detected by HRMS (thermo fisher Q Exactive, using APCI in negative ion mode)

6.2 Parallel KIE experiments

To a quarts test-tube (25 mL) were added AQ (10.4 mg, 0.05 mmol), TEAF (dihydrate, 4.6 mg, 0.025 mmol), sulfoxide **a** (0.5 mmol), isopropanol or isopropanol-2-d1 (0.5 mL) and sulfolane (1.5 mL). The reaction mixture was stirred at room temperature under the irradiation at 430–440 nm (25 W LED, distance = 8–10 cm, cooling by air) for indicated time. Then, the reaction was quenched by the addition of 10 mL of water, and the aqueous solution was extracted with CH₂Cl₂ (3 × 10 mL). The combined extract was dried with anhydrous MgSO₄. After filtration and evaporation, the obtained crude mixture was analyzed by GC/MS using *n*-dodecane as an internal standard.

	Time (h)	2	4	6	8
Yield	isopropanol	19.21	30.43	44.86	68.25
	isopropanol-2-d1	7.52	10.23	15.46	22.38

6.3 Light on/off experiments

6.4 Cyclic voltammetry experiments

Cyclic voltammetry (CV) experiments of isopropanol and dibutyl sulfoxide were recorded on a Bio-Logic VMP-300 multi-channel electrochemical workstation using the three-electrode cell with a rate of 20 mV s⁻¹ in CH₃CN solution (N,N,N-tributylbutan-1-aminium hexafluorophosphate, 0.1mol mL⁻¹) and bubbling with nitrogen for two minutes. In which glassy carbon electrode (GCE) was used as a working electrode, Ag/AgCl and KCl (sat.) worked as the reference electrode, and platinum disk as the counter electrode.

(b) CV curves of isopropanol

7. Analytic data of the obtained compounds

∕s∕∕∕

dibutyl sulfide (b1)¹

Yield: 60.7 mg, 83% (99% GC yield); colorless oil; pure hexane; ¹H NMR (400 MHz, CDCl₃) δ 2.53 (t, J = 7.4 Hz, 2H), 1.59 (p, J = 7.4 Hz, 2H), 1.43 (h, J = 7.3 Hz, 2H), 0.94 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 31.8, 22.0, 13.7.

n-C₈H₁₇ S *n*-C₈H₁₇

dioctyl sulfide (b2)²

Yield: 117.6 mg, 91%; colorless oil; pure hexane; ¹H NMR (400 MHz, CDCl₃) δ 2.50 (t, *J* = 7.6 Hz, 4H), 1.58 (m, 4H), 1.45 – 1.18 (m, 20H), 0.87 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 32.2, 31.8, 29.8, 29.2, 29.0, 22.7, 14.1.

$$n-C_{12}H_{25} S_{n-C_{12}H_{25}}$$

didodecyl sulfide (b3)³

Yield: 148.3 mg, 80%; colorless oil; pure hexane; ¹H NMR (400 MHz, CDCl₃) δ 2.49 (t, *J* = 8.5 Hz, 4H), 1.57 (t, *J* = 7.8 Hz, 4H), 1.38 (d, *J* = 7.3 Hz, 4H), 1.26 (m, 32H), 0.88 (t, *J* = 6.8 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 32.2, 31.9, 29.8, 29.7, 29.6, 29.4, 29.3, 29.0, 22.7, 14.1.

dodecyl methyl sulfide (b4)¹

Yield: 94.1 mg, 87%; colorless oil; pure hexane; ¹H NMR (400 MHz, CDCl₃) δ 2.49 (t, *J* = 7.4 Hz, 2H), 2.10 (s, 3H), 1.60 (p, *J* = 7.3 Hz, 2H), 1.38 (t, *J* = 7.3 Hz, 2H), 1.27 (m, 16H), 0.89 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 34.3, 31.9, 29.6, 29.6, 29.6, 29.5, 29.3, 29.2, 29.1, 28.8, 22.6, 15.4, 14.0.

diisopentyl sulfide (b5)⁴

Yield: 75.0 mg, 86% (95% GC yield); colorless oil; pure hexane; ¹H NMR (400 MHz, CDCl₃) δ 2.52 (t, 4H), 1.74 – 1.62 (m, 2H), 1.47 (q, *J* = 7.3 Hz, 4H), 0.91 (d, *J* = 7.2 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 38.7, 30.1, 27.5, 22.3.

∕^S_t-Bu

tert-butyl methyl sulfide (b6)⁵

Yield: 31.3 mg, 26% (84% GC yield); colorless oil; pure hexane; ¹H NMR (400 MHz, CDCl₃) δ 2.05 (s, 3H), 1.31 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 40.7, 30.2, 11.4.

benzyl methyl sulfide (b7)⁶

Yield: 55.3 mg, 80%; colorless oil; pure hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.29 (t, *J* = 3.5 Hz, 4H), 7.25 – 7.21 (m, 1H), 3.66 (s, 2H), 1.98 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 138.3, 128.9, 128.5, 127.0, 38.4, 15.0.

Ph、_S、_Ph

dibenzyl sulfide (b8)¹

Yield: 49.3 mg, 46%; white solid; pure hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.19 (m, 10H), 3.60 (s, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 138.2, 129.0, 128.5, 127.0, 35.6.

dimethyl 3,3'-thiodipropionate (b9) 7

Yield: 95.9 mg, 92%; colorless oil; hexane/ethyl acetate = 5:1; ¹H NMR (400 MHz, CDCl₃) δ 3.71 (s, 6H), 2.81 (t, *J* = 6.5 Hz, 4H), 2.63 (t, *J* = 7.7 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 172.2, 51.8, 34.5, 27.0.

_s___ `CI

2-chloroethyl ethyl sulfide (b10) ⁸

Yield: 49.9 mg, 80% (99% GC yield); colorless oil; pure hexane; ¹H NMR (400 MHz, CDCl₃) δ 3.63 (t, 2H), 2.87 (t, *J* = 8.2 Hz, 2H), 2.60 (q, *J* = 10.4, 9.0 Hz, 2H), 1.28 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 43.1, 33.8, 26.3, 14.9.

_S__S_

bis(methylthio)methane (b11)¹

Yield: 32.5 mg, 60% (95% GC yield); colorless oil; pure hexane; ¹H NMR (400 MHz, CDCl₃) δ 3.63 (s, 2H), 2.16 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 40.1, 14.3.

∕s′ NHBoc

(tert-butoxycarbonyl)methionine (b12) 9

Yield: 93.3 mg, 80%; white solid; hexane/ethyl acetate = 2:1, with 2% AcOH; ¹H NMR (400 MHz, CDCl₃) δ 4.47 (d, *J* = 6.4 Hz, 1H), 2.60 (t, *J* = 7.5 Hz, 2H), 2.34 – 1.84 (m, 5H), 1.47 (s, 9H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 174.4, 156.1, 78.5, 52.8, 30.8, 30.3, 28.6, 15.0.

S

tetrahydrothiophene (b13) $^{\rm 1}$

Yield: 25.6 mg, 58% (98% GC yield); colorless oil; pure hexane; ¹H NMR (400 MHz, CDCl₃) δ 2.86 (t, 4H), 2.09 – 1.80 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 31.7, 31.0.

thiomorpholine (b14) 10

Yield: 43.9 mg, 85%; colorless oil; hexane/ethyl acetate = 10:1, with 5% Et₃N; ¹H NMR (400 MHz, CDCl₃) δ 3.11 (q, *J* = 3.6, 2.9 Hz, 4H), 2.60 (t, *J* = 4.6 Hz, 4H), 1.87 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 47.8, 28.2.

tetrahydro-4H-thiopyran-4-one (b15) 11

Yield: 54.0 mg, 93%; colorless oil; hexane/ethyl acetate = 10:1; ¹H NMR (400 MHz, CDCl₃) δ 2.96 (t, J = 6.0 Hz, 1H), 2.69 (t, J = 4.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 208.3, 44.0, 30.0.

methyl phenyl sulfide (16)¹

Yield: 55.9 mg, 90%; colorless oil; pure hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, 4H), 7.18 (t, *J* = 6.5 Hz, 1H), 2.52 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 138.4, 128.8, 126.7, 125.0, 15.9.

S

methyl p-tolyl sulfide (17) 1

Yield: 61.5 mg, 89%; colorless oil; pure hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.17 (d, *J* = 8.3 Hz, 2H), 7.09 (d, *J* = 8.5 Hz, 2H), 2.45 (s, 3H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 135.1, 134.8, 129.7, 127.3, 21.0, 16.5.

4-methoxyphenyl methyl sulfide (b18)¹

Yield: 64.0 mg, 83%; colorless oil; hexane/ethyl acetate = 10:1; ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, J = 8.8 Hz, 2H), 6.88 (d, J = 8.7 Hz, 2H), 3.81 (s, 3H), 2.47 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.1, 130.1, 128.7, 114.6, 55.3, 18.0.

S R

4-bromophenyl methyl sulfide (b19)¹

Yield: 86.3 mg, 85%; white solid; pure hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 8.6 Hz, 2H), 7.08 (d, *J* = 8.5 Hz, 2H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 137.8, 131.8, 128.1, 118.6, 15.9.

S

4-(methylthio)benzoic acid (b20)¹²

Yield: 73.2 mg, 87%; white solid, hexane/ethyl acetate = 5:1, with 5% AcOH; ¹H NMR (400 MHz, DMSO- d_6) δ 12.88 (s, 1H), 7.87 (dd, J = 8.3, 2.1 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 2.53 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 167.5, 145.3, 130.2, 127.1, 125.3, 14.4.

1-(4-(methylthio)phenyl)ethan-1-one (b21)¹

Yield: 75.6 mg, 91%; white solid; hexane/ethyl acetate = 10:1; ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 8.5 Hz, 2H), 7.28 (d, J = 8.5 Hz, 2H), 2.58 (s,3H), 2.54 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.1, 145.8, 133.4, 128.7, 124.9, 26.4, 14.7

methyl(m-tolyl)sulfane (b22)¹⁹

Yield: 59.4 mg, 86%; colorless oil; pure hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.21 (t, *J* = 7.6 Hz, 1H), 7.15 – 7.07 (m, 2H), 6.99 (d, *J* = 7.5 Hz, 1H), 2.51 (s, 3H), 2.37 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 138.6, 138.2, 128.7, 127.4, 126.0, 123.7, 21.4, 15.9.

(3-bromophenyl)(methyl)sulfane (b23)¹⁹

Yield: 83.3 mg, 82%; colorless oil; pure hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.39 (t, *J* = 2.0 Hz, 1H), 7.28 (m, 1H), 7.22 – 7.11 (m, 2H), 2.50 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.0, 130.1, 128.8, 128.0, 125.0, 122.9, 15.7.

2-bromophenyl methyl sulfide (b24)¹

Yield: 77.2 mg, 76%; colorless oil; pure hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.32 (td, *J* = 7.6, 1.3 Hz, 1H), 7.16 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.03 (td, *J* = 7.6, 1.5 Hz, 1H), 2.50 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 139.6, 132.6, 127.7, 125.6, 125.4, 121.7, 15.7.

2-(methylthio)benzoic acid (b25)²

Yield: 58.9 mg, 70%; white solid; hexane/ethyl acetate = 5:1, with 5% AcOH; ¹H NMR (400 MHz, DMSO- d_6) δ 13.01 (s, 1H), 7.91 (d, *J* = 7.8 Hz, 1H), 7.55 (t, *J* = 7.7 Hz, 1H), 7.36 (d, *J* = 8.1 Hz, 1H), 7.21 (t, *J* = 7.5 Hz, 1H), 2.40 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 167.9, 143.0, 133.0, 131.4, 127.7, 125.0, 123.9, 15.2.

methyl 2-(phenylthio)acetate (b26)²

Yield: 72.0 mg, 79%; colorless oil; hexane/ethyl acetate = 10:1; ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 7.7 Hz, 2H), 7.33 (t, J = 7.5 Hz, 2H), 7.31 – 7.21 (m, 1H), 3.74 (s, 3H), 3.68 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 170.1, 134.9, 129.9, 129.0, 127.0, 52.5, 36.5.

phenyl trifluoromethyl sulfide (b27)¹²

Yield: 24.9 mg, 28%; colorless oil; pure hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 7.6 Hz, 2H), 7.50 (t, *J* = 7.1 Hz, 1H), 7.42 (t, *J* = 7.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 136.4, 130.8, 129.7 (q, *J* = 306.6 Hz), 129.5, 124.4. ¹⁹F NMR (377 MHz, CDCl₃) δ -42.76.

1,2-bis(phenylthio)ethane (b28)¹⁴

Yield: 114.6 mg, 93%; white solid; pure hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.28 (m, 8H), 7.27 – 7.22 (m, 2H), 3.12 (s, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 135.0, 130.0, 129.0, 126.5, 33.3.

4-bromophenyl isopropyl sulfide (b29)¹³

Yield: 92.4 mg, 80%; colorless oil; pure hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.39 (m, 2H), 7.27 (d, *J* = 8.2 Hz, 2H), 3.37 (hept, *J* = 6.6 Hz, 1H), 1.31 (d, *J* = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 133.3, 131.8, 38.3, 23.0.

diphenyl sulfide (b30)¹

Yield: 76.4 mg, 82%; colorless oil; pure hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.21 (m, 10H). ¹³C NMR (101 MHz, CDCl₃) δ 135.8, 131.1, 129.2, 127.1.

di-p-tolyl sulfide (b31)¹

Yield: 80.4 mg, 75%; white solid; pure hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.25 (m, 4H), 7.14 (d, *J* = 8.0 Hz, 4H), 2.37 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 136.9, 132.7, 131.1, 129.9, 21.1.

bis(4-chlorophenyl) sulfide (b32)¹

Yield: 111.0 mg, 87%; white solid; pure hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.20 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 133.9, 133.4, 132.3, 129.4.

dibenzo[b,d]thiophene (b33) 15

Yield: 82.0 mg, 89%; white solid; pure hexane; ¹H NMR (400 MHz, CDCl₃) δ 8.19 (dt, *J* = 7.3, 3.6 Hz, 2H), 7.89 (dt, *J* = 7.2, 3.6 Hz, 2H), 7.55 – 7.44 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 139.4, 135.5, 126.7, 124.3, 122.8, 121.5.

fulvestran sulfide 16

Yield: 162.5 mg, 55%; white solid; hexane/ethyl acetate = 3:1; ¹H NMR (600 MHz, CDCl₃) δ 7.17 (d, J = 8.4 Hz, 1H), 6.65 (dd, J = 8.4, 2.7 Hz, 1H), 6.57 (d, J = 2.7 Hz, 1H), 3.78 (t, J = 8.5 Hz, 1H), 2.88 (dd, J = 16.9, 5.5 Hz, 1H), 2.73 (d, J = 16.8 Hz, 1H), 2.61 (t, J = 7.0 Hz, 2H), 2.52 (t, J = 7.4 Hz, 2H), 2.42 – 2.27 (m, 2H), 2.26 – 2.10 (m, 3H), 1.91 (m, 3H), 1.76 (m, 1H), 1.69 – 1.55 (m, 4H), 1.53 – 1.42 (m, 2H), 1.38 (m, 4H), 1.35 – 1.25 (m, 10H), 1.23 – 1.15 (m, 2H), 1.05 (m, 1H), 0.80 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.7, 137.1, 131.7, 127.0, 118.9 (qt, $J_{CF}^1 = 285.0$ Hz, $J_{CF}^2 = 36.1$ Hz) 116.2, 115.6 (qt, $J_{CF}^1 = 251.8$ Hz, $J_{CF}^2 = 37.6$ Hz) 112.9, 82.1, 46.5, 43.4, 42.0, 38.1, 36.9, 34.6, 33.2, 32.0, 31.3, 30.5, 30.0, 29.7, 29.6 (t, $J_{CF} = 22$ Hz), 29.5, 29.2, 28.9, 28.2, 27.3, 25.6, 22.7, 20.4, 11.1. ¹⁹F NMR (377 MHz, CDCl₃) δ -85.40, -117.90

sulfinpyrazone sulfide ¹⁷

Yield: 288.4 mg, 75%; white solid; hexane/ethyl acetate = 1:5; ¹H NMR (400 MHz, CDCl₃) δ 7.29 (q, *J* = 9.1 Hz, 12H), 7.16 (q, *J* = 7.8 Hz, 3H), 3.66 – 3.57 (m, 1H), 3.20 (t, *J* = 8.5 Hz, 2H), 2.35 (q, *J* = 7.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 169.7, 135.8, 134.8, 129.9, 129.1, 129.0, 126.9, 126.6, 122.7, 44.5, 30.4, 27.1.

8. References

- H. Ishikawa, S. Yamaguchi, A. Nakata, K. Nakajima, S. Yamazoe, J. Yamasaki, T. Mizugaki and T. Mitsudome, JACS Au, 2022, 2, 419-427.
- A. K. Clarke, A. Parkin, R. J. K. Taylor, W. P. Unsworth and J. A. Rossi-Ashton, ACS Catal., 2020, 10, 5814-5820.
- A. S. Touchy, S. M. A. Hakim Siddiki, W. Onodera, K. Kon and K.-i. Shimizu, *Green Chem.*, 2016, 18, 2554–2560.
- 4. M. Zaidlewicz, J. V. B. Kanth and H. C. Brown, J. Org. Chem., 2000, 65, 6697-6702.
- 5. S. Enthaler, *Catal. Sci. Technol.*, 2011, **1**, 104-110.
- F. Ding, Y. Jiang, S. Gan, R. L.-Y. Bao, K. Lin and L. Shi, *Eur. J. Org. Chem.*, 2017, 2017, 3427-3430.
- 7. Y. Sasano, N. Kogure, S. Nagasawa, K. Kasabata and Y. Iwabuchi, *Org. Lett.*, 2018, **20**, 6104-6107.
- N. V. Russavskaya, N. A. Korchevin, O. V. Alekminskaya, E. N. Sukhomazova, E. P. Levanova and E. N. Deryagina, *Russ. J. Org. Chem.*, 2002, **38**, 1445-1448.
- F. Scharinger, Á. M. Pálvölgyi, M. Weisz, M. Weil, C. Stanetty, M. Schnürch and K. Bica-Schröder, Angew. Chem. Int. Ed., 2022, 61, e202202189.
- 10. M. Yar, E. M. McGarrigle and V. K. Aggarwal, Angew. Chem. Int. Ed., 2008, 47, 3784-3786.

- 11. T. Mitsudome, Y. Takahashi, T. Mizugaki, K. Jitsukawa and K. Kaneda, *Angew. Chem. Int. Ed.*, 2014, **53**, 8348-8351.
- 12. N. Sakai, R. Shimada and Y. Ogiwara, Asian J. Org. Chem., 2021, 10, 845-850.
- 13. J. Yan, J.-f. Poon, V. P. Singh, P. Gates and L. Engman, Org. Lett., 2015, 17, 6162-6165.
- 14. Y. Fang, T. Rogge, L. Ackermann, S.-Y. Wang and S.-J. Ji, Nat. Commun., 2018, 9, 2240.
- 15. Z. Kong, C. Pan, M. Li, L. Wen and W. Guo, *Green Chem.*, 2021, 23, 2773-2777.
- 16. D. Caprioglio and S. P. Fletcher, *Chem. Commun.*, 2015, **51**, 14866-14868.
- 17. S. Scheibye, A. A. El-Barbary, S. O. Lawesson, H. Fritz and G. Rihs, *Tetrahedron*, 1982, **38**, 3753-3760.
- 18. K. J. Liu, Z. Wang, L. H. Lu, J. Y. Chen, F. Zeng, Y. W. Lin, Z. Cao, X. Yu and W. M.He, *Green Chem.*, 2021, **23**, 496-500.
- 19. X. M. Wu, J. M. Lou and G. B. Yan, *Synlett*, 2016, **27**, 2269-2273.

9. Copies of NMR spectra

S15

23:55 24 25:55 25:55 25:555

-3.71 2.88 2.58 2.56 2.66

↓ 38 ↓ 38 ↓ 38 ↓ 38 ↓ 38 ↓ 38 ↓ 38 ↓ 58

2.85 2.85 2.85 2.85 1.96 1.96 1.96 1.96

S29

S30

S_

b17

S35

S37

20 10 0 -10 -20 -30 -40 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

---3.12

133.88 133.41 132.26 129.44

ci D CI

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

b33

b33

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)

