Carboxylic Acids as Double Aryl Group Donors for Biaryl Synthesis

Wenzhi Zhang,[†] Jie Ma,[†] Fengyan Zhou,[†] Michal Szostak,^{*,‡} and Chengwei Liu,^{*,§}

[†]College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, 1 Bei'an Road, Zaozhuang, Shandong 277160, China

[‡]Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States

[§]Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China

michal.szostak@rutgers.edu; chengwei_liu@shu.edu.cn

Supporting Information

Table of Contents	1
List of Known Compounds/General Methods	2
Experimental Procedures and Characterization Data	3
Experimental Procedures	3
Characterization Data of Aryl Boronic Esters	5
Characterization Date for Hydrolysis of Aryl Boronic Esters	13
Characterization Date for Suzuki of Carboxylic Acids and Boronic Acids	21
References	36
¹ H and ¹³ C NMR Spectra	37

Corresponding Authors:

Prof. Dr. M. SzostakProf. Dr. C. LiuRutgers UniversityShanghai Universitymichal.szostak@rutgers.educhengwei_liu@shu.edu.cn

List of Known Compounds/General Methods

All starting materials reported in the manuscript have been previously described in literature or prepared by the method reported previously. Phenylboronic acid were prepared by standard methods. All experiments involving palladium were performed using standard Schlenk techniques under argon atmosphere unless stated otherwise. All solvents were purchased at the highest commercial grade and used as received or after purification by passing through activated alumina columns or distillation from sodium/benzophenone under nitrogen. All solvents were deoxygenated prior to use. All other chemicals were purchased at the highest commercial grade and used as received. Reaction glassware was oven-dried at 140 °C for at least 24 h or flame-dried prior to use, allowed to cool under vacuum and purged with argon (three cycles). All products were identified using ¹H NMR analysis and comparison with authentic samples. GC and/or GC/MS analysis was used for volatile products. All yields refer to yields determined by ¹H NMR and/or GC or GC/MS using an internal standard (optimization) and isolated yields (preparative runs) unless stated otherwise. ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ on Bruker spectrometers at 400 MHz (¹H NMR) and 100 MHz (¹³C NMR). All shifts are reported in parts per million (ppm) relative to residual CHCl₃ peak (7.26 and 77.03 ppm, ¹H NMR and ¹³C NMR, respectively). All coupling constants (*J*) are reported in hertz (Hz). Abbreviations are: s, singlet; d, doublet; t, triplet; q, quartet; brs, broad singlet. All flash chromatography was performed using silica gel, 60 Å, 300 mesh. TLC analysis was carried out on glass plates coated with silica gel 60 F254, 0.2 mm thickness. The plates were visualized using a 254 nm ultraviolet lamp or aqueous potassium permanganate solutions. ¹H NMR and ¹³C NMR data are given for all compounds in the Supporting Experimental. ¹H NMR, and ¹³C NMR data are reported for all new compounds.

Experimental Procedures and Characterization Data

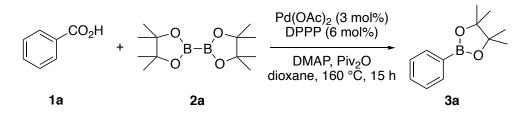
General Procedure for Decarbonylative Borylation of Carboxylic Acids. An oven-dried vial equipped with a magnetic stir bar was charged with carboxylic acid (1.0 equiv), bis(pinacolato)diboron (1.5 equiv), Pd(OAc)₂ (typically, 3 mol%), ligand (typically, 6 mol%), 4-dimethyl-aminopyridine (1.5 equiv) and trimethylacetic anhydride (1.5 equiv), placed under a positive pressure of argon, and subjected to three evacuation/backfilling cycles under high vacuum. Dioxane (0.20 M) was added with vigorous stirring at room temperature, the reaction mixture was placed in a preheated oil bath at 160 °C, and stirred for the indicated time at 160 °C.

Representative Procedure for Decarbonylative Borylation of Carboxylic Acids. An oven-dried vial equipped with a magnetic stir bar was charged with benzoic acid (244 mg, 2.0 mmol, 1.0 equiv), bis(pinacolato)diboron (762 mg, 1.5 equiv), Pd(OAc)₂ (14 mg, 3 mol%), 1,3-bis(diphenyl-phosphino)propane (52 mg, 6 mol%), 4-dimethylaminopyridine (366 mg, 1.5 equiv) and trimethylacetic anhydride (558 mg, 1.5 equiv), placed under a positive pressure of argon, and subjected to three evacuation/backfilling cycles under high vacuum. Dioxane (0.20 M) was added with vigorous stirring at room temperature, the reaction mixture was placed in a preheated oil bath at 160 °C, and stirred for the indicated time at 160 °C. After the indicated time, the reaction mixture was cooled down to room temperature, diluted with CH₂Cl₂ (10 mL), filtered, and concentrated. Purification by chromatography on silica gel (CH₂Cl₂/petroleum ether) afforded the title product. Yield 98% (400.0 mg). White solid. Characterization data are included in the section below.

General Procedure for Hydrolysis of Boronic Esters. A round-bottom flask equipped with a magnetic stir bar was charged with 4,4,5,5-tetramethyl-2-phenyl-1,3,2-dioxaborolane (1.0 equiv) and THF/H₂O (4:1, 10 mL), the NalO₄ (8.0 equiv) was added. The suspension was stirred for 40 min at room temperature, then HCI (1.0 M, 1.5 mL) was added, the mixture was stirred for 48 h at room temperature.

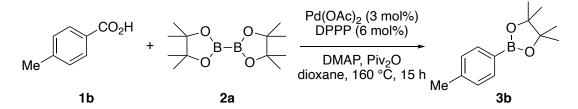
Representative Procedure for Hydrolysis of Boronic Esters. A round-bottom flask equipped with a magnetic stir bar was charged with 4,4,5,5-tetramethyl-2-phenyl-1,3,2-dioxaborolane (neat, 204.1 mg, 1.0 mmol, 1.0 equiv) and THF/H₂O (4:1, 10 mL), the NalO₄

(1.71 g, 8.0 mmol, 8.0 equiv) was added. The suspension was stirred for 40 min at room temperature, then HCI (1.0 M, 1.5 mL) was added, the mixture was stirred for 48 h at room temperature. After the indicated time, the reaction mixture was diluted with water (10 mL) and extracted with EtOAC (3×30 mL). The combined organic phases were washed with brine (30 mL) and water (30 mL), dried, filtered, and concentrated. Purification by chromatography on silica gel (ethyl acetate/petroleum ether) afforded the title product. Yield 69% (84.1mg). White solid. Characterization data are included in the section below.

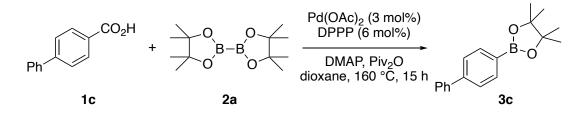

General Procedure for Decarbonylative Suzuki-Miyaura Coupling of Carboxylic Acids.

An oven-dried vial equipped with a stir bar was charged with carboxylic acid (neat, 0.2 mmol, 1.0 equiv), aryl boronic acid (neat, 2.0 equiv), $Pd(OAc)_2$ (typically, 3 mol%), ligand (typically, 6 mol%), *N*,*N*-diisopropylethylamine (typically, 2.0 equiv), boric acid (2.0 equiv) and trimethylacetic anhydride (2.0 equiv), placed under a positive pressure of argon, and subjected to three evacuation/backfilling cycles under high vacuum. Dioxane (0.20 M) was added with vigorous stirring at room temperature, the reaction mixture was placed in a preheated oil bath at 160 °C, and stirred for the indicated time at 160 °C.

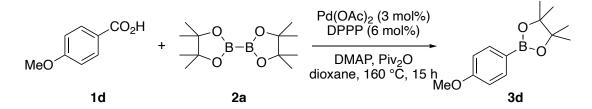
Representative Procedure for Decarbonylative Suzuki-Miyaura Coupling of Carboxylic Acids. An oven-dried vial equipped with a stir bar was charged with 3-pyridinecarboxylic acid (neat, 24.6 mg, 0.2 mmol, 1.0 equiv), 4-tolylboronic acid (neat, 54.4 mg, 0.4 mmol, 2.0 equiv), Pd(OAc)₂ (1.4 mg, 0.006 mmol, 3 mol%), 1,3-bis(diphenylphosphino)propane (5.0 mg, 0.012 mmol, 6 mol%), *N*,*N*-diisopropylethylamine (51.6 mg, 0.4 mmol, 2.0 equiv), boric acid (24.8 mg, 0.4 mmol, 2.0 equiv) and trimethylacetic anhydride (74.4 mg, 0.4 mmol, 2.0 equiv), placed under a positive pressure of argon, and subjected to three evacuation/backfilling cycles under high vacuum. Dioxane (0.20 M) was added with vigorous stirring at room temperature, the reaction mixture was placed in a preheated oil bath at 160 °C, and stirred for 15 h at 160 °C. After the indicated time, the reaction mixture was cooled down to room temperature, diluted with CH₂Cl₂ (10.0 mL), filtered, and concentrated. Purification by chromatography on silica gel (ethyl acetate/hexane) afforded the title product. Yield 96% (32.5 mg). White solid. Characterization data are included in the section below.


Characterization Data of Aryl Boronic Esters

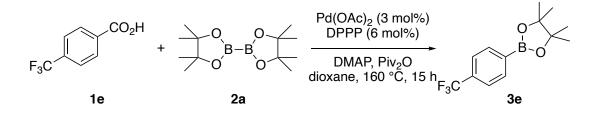
4,4,5,5- Tetramethyl-2-phenyl-1,3,2-dioxaborolane (Scheme 1, 3a)¹


According to the general procedure, the reaction of benzoic acid (2.0 mmol, 1.0 equiv), bis(pinacolato)diboron (3.0 mmol, 1.5 equiv), Pd(OAc)₂ (3 mol%), 1,3-bis(diphenyl-phosphino)propane (6 mol%), 4-dimethylaminopyridine (3.0 mmol, 1.5 equiv) and trimethylacetic anhydride (3.0 mmol, 1.5 equiv) in 1,4-dioxane (10.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 98% yield (400.0 mg). White solid. <u>¹H NMR (400 MHz, CDCl₃)</u> δ 7.83-7.81 (d, *J* = 7.5 Hz, 2H), 7.39-7.36 (m, 1H), 7.24-7.23 (m, 2H), 1.23 (s, 12H). <u>¹³C NMR (100 MHz, CDCl₃)</u> δ 134.75, 131.27, 127.72, 83.78, 24.88.

4,4,5,5-Tetramethyl-2-(4-methylphenyl)-1,3,2-dioxaborolane (Scheme 1, 3b)²

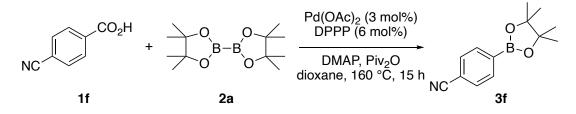

According to the general procedure, the reaction of 4-methylbenzoic acid (2.0 mmol, 1.0 equiv), bis(pinacolato)diboron (3.0 mmol,1.5 equiv), Pd(OAc)₂ (3 mol%), 1,3-bis(diphenyl-phosphino)propane (6 mol%), 4-dimethylaminopyridine (3.0 mmol,1.5 equiv) and trimethyl acetic anhydride (3.0 mmol, 1.5 equiv) in 1,4-dioxane (10.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 78% yield (340.4 mg). White solid. <u>**1**H NMR (400 MHz, CDCl₃)</u> δ 7.71-7.69 (d, *J* = 7.9 Hz, 2H), 7.20-7.18 (d, *J* = 7.6 Hz, 2H), 2.36 (s,3H), 1.34 (s,12H). <u>**1**3C NMR (100 MHz, CDCl₃)</u> δ 141.42,134,81,128.54, 83.63, 25.04, 21.74.

2-(4-Biphenylyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (Scheme 1, 3c)¹

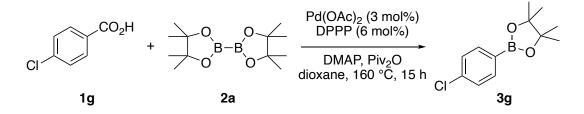


According to the general procedure, the reaction of 4-phenylbenzoic acid (2.0 mmol, 1.0 equiv), bis(pinacolato)diboron (3.0 mmol, 1.5 equiv), Pd(OAc)₂ (3 mol%), 1,3-bis(diphenyl-phosphino)propane (6 mol%), 4-dimethylaminopyridine (3.0 mmol, 1.5 equiv) and trimethylacetic anhydride (3.0 mmol,1.5 equiv) in 1,4-dioxane (10.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 88% yield (493.0 mg). White solid. <u>¹H NMR (400 MHz, CDCl₃)</u> δ 7.90-7.88(m, 2H), 7.64-7.61 (m,4H), 7.47-7.43 (t, *J* = 7.5 Hz, 2H), 7.38-7.34 (t, *J* = 8.0 Hz, 1H), 1.37 (s, 12H). <u>¹³C NMR (100 MHz, CDCl₃)</u> δ 143.90, 141.02, 135.26, 128.78, 127.57, 127.25, 126.48, 83.84, 24.89.

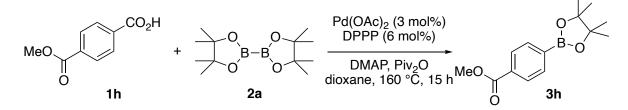
2-(4-Methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (Scheme 1, 3d)¹


According to the general procedure, the reaction of 4-methoxybenzoic acid (2.0 mmol, 1.0 equiv), bis(pinacolato)diboron (3.0 mmol, 1.5 equiv), Pd(OAc)₂ (3 mol%), 1,3-bis(diphenyl-phosphino)propane (6 mol%), 4-dimethylaminopyridine (3.0 mmol,1.5 equiv) and trimethylacetic anhydride (3.0 mmol, 1.5 equiv) in 1,4-dioxane (10.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 64% yield (299.6 mg). White solid. <u>¹H NMR (400 MHz, CDCl₃)</u> δ 7.77 -7.75 (d, *J* = 10.8 Hz,2H), 6.91-6.89 (d, *J* = 6.8 Hz, 2H), 3.83 (s, 3H), 1.33 (s, 12H). <u>¹³C NMR (100 MHz, CDCl₃)</u> δ 162.14, 136.52, 113.31, 83.56, 55.10, 27.87.

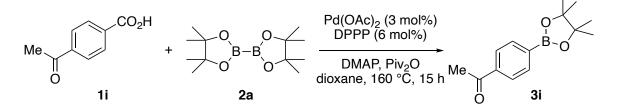
4,4,5,5-Tetramethyl-2-(4-(trifluoromethyl)phenyl)-1,3,2-dioxaborolane (Scheme 1, 3e)¹


According to the general procedure, the reaction of 4-(trifluoromethyl) benzoic acid (2.0 mmol, 1.0 equiv), bis(pinacolato)diboron (3,0 mmol, 1.5 equiv), Pd(OAc)₂ (3 mol%), 1,3-bis-(diphenylphosphino)propane (6 mol%), 4-dimethylaminopyridine (3.0 mmol, 1.5 equiv) and trimethylacetic anhydride (3.0 mmol, 1.5 equiv) in 1,4-dioxane (10.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 96% yield (522.4 mg). White solid. <u>¹H NMR (400 MHz, CDCl₃)</u> δ 7.92-7.90 (d, *J* = 7.8 Hz 2H), 7.62-7.60 (d, *J* = 7.8 Hz, 2H), 1.36 (s, 12H). <u>¹³C NMR (100 MHz, CDCl₃)</u> δ 135.02, 132.83 (q, *J* ^{*F*}= 32 Hz), 124.33 (q, *J* ^{*F*}= 4 Hz), 124.15 (q, *J* ^{*F*}= 270 Hz), 84.28, 24.87. <u>¹⁹F NMR (376 MHz, CDCl₃)</u> δ -63.02.

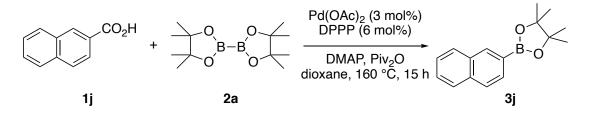
4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzonitrile (Scheme 1, 3f)¹


According to the general procedure, the reaction of 4-cyanobenzoic acid (2.0 mmol, 1.0 equiv), bis(pinacolato)diboron (3.0 mmol, 1.5 equiv), Pd(OAc)₂ (3 mol%), 1,3-bis (diphenylphosphino)propane (6 mol%), 4-dimethylaminopyridine (3.0 mmol, 1.5 equiv) and trimethylacetic anhydride (3.0 mmol, 1.5 equiv) in 1,4-dioxane (10.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 92% yield (421.6 mg). White solid. <u>¹H NMR (400 MHz, CDCl₃)</u> δ 7.89-7.87(d, *J* = 8.2 Hz, 2H), 7.65-7.63 (d, *J* = 8.3 Hz, 2H), 1.35 (s, 12H).¹³C NMR (100 MHz, CDCl₃) δ 135.11, 131.16, 118.90 114.54, 84.51, 24.88.

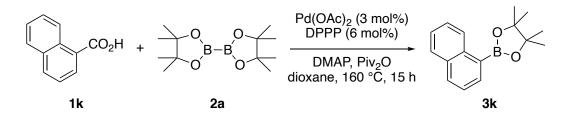
2-(4-Chlorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (Scheme 1, 3g)¹


According to the general procedure, the reaction of 4-chlorobenzoic acid (2.0 mmol, 1.0 equiv), bis(pinacolato)diboron (3.0 mmol, 1.5 equiv), Pd(OAc)₂ (3 mol%), 1,3-bis(diphenyl-phosphino)propane (6 mol%), 4-dimethylaminopyridine (3.0 mmol, 1.5 equiv) and trimethyl acetic anhydride (3.0 mmol, 1.5 equiv) in 1,4-dioxane (10.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 89% yield (423.8 mg). White solid. <u>¹H NMR (400 MHz, CDCl₃)</u> δ 7.74-7.72 (d, *J* = 8.3 Hz, 2H), 7.35-7.33 (d, *J* = 8.4 Hz, 2H), 1.34 (s, 12H). <u>¹³C NMR (100 MHz, CDCl₃)</u> δ 137.54, 136.13, 128.02, 84.02, 24.87.

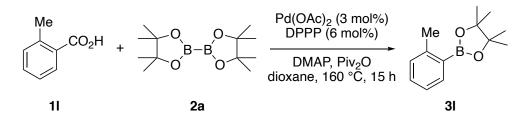
Methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (Scheme 1, 3h)¹


According to the general procedure, the reaction of mono-methyl terephthlate (2.0 mmol, 1.0 equiv), bis(pinacolato)diboron (3.0 mmol, 1.5 equiv), Pd(OAc)₂ (3 mol%), 1,3-bis(diphenylphosphino)propane (6 mol%), 4-dimethylaminopyridine (3.0 mmol, 1.5 equiv) and trimethylacetic anhydride (3.0 mmol, 1.5 equiv) in 1,4-dioxane (10.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 96% yield (561.0 mg). White solid. <u>¹H NMR (400 MHz, CDCl₃)</u> δ 8.03-8.01 (d, *J* = 8.3 Hz, 2H), 7.88-7.86 (d, *J* = 8.3 Hz, 2H), 3.92 (s, 3H), 1.36 (s, 12H). <u>¹³C NMR (100 MHz, CDCl₃)</u> δ 167.16, 134.67, 132.30, 128.61, 84.19, 52.18, 24.90.

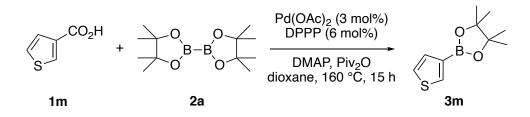
4-Acetylphenylboronic acid pinacol ester (Scheme 1, 3i)¹


According to the general procedure, the reaction of 4-acetylbenzoic acid (2.0 mmol, 1.0 equiv), bis(pinacolato)diboron (3.0 mmol, 1.5 equiv), Pd(OAc)₂ (3 mol%), 1,3-bis(diphenylphosphino) propane (6 mol%), 4-dimethylaminopyridine (3.0 mmol, 1.5 equiv) and trimethylacetic anhydride (3.0 mmol, 1.5 equiv) in 1,4-dioxane (10.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 92% yield (452.8 mg). White solid. <u>¹H NMR (400 MHz, CDCl₃)</u> δ 7.94-7.92 (d, *J* = 8.4 Hz, 2H), 7.90-7.88 (d, *J* = 8.3 Hz, 2H), 2.62 (s, 3H), 1.36 (s, 12H). <u>¹³C NMR (100 MHz, CDCl₃)</u> δ 198.52, 139.00, 134.94, 127.31, 84.24, 26.81, 24.90.

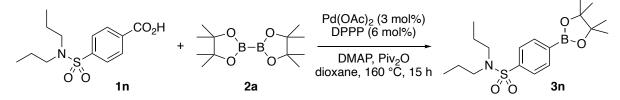
4,4,5,5-Tetramethyl-2-(naphthalen-2-yl)-1,3,2-dioxaborolane (Scheme 1, 3j)¹


According to the general procedure, the reaction of 2-naphthoic acid (2.0 mmol, 1.0 equiv), bis(pinacolato)diboron (3.0 mmol, 1.5 equiv), Pd(OAc)₂ (3 mol%), 1,3-bis(diphenylphosphino)propane (6 mol%), 4-dimethylaminopyridine (3.0 mmol, 1.5 equiv) and trimethylacetic anhydride (3.0 mmol, 1.5 equiv) in 1,4-dioxane (10.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 81% yield (411.8 mg). White solid. <u>¹H NMR (400 MHz, CDCl₃)</u> δ 8.37 (s, 1H), 7.90 (s, 1H), 7.82 (s, 3H), 7.53- 7.45 (m, 2H), 1.40 (s, 12H). <u>¹³C NMR (100MHz, CDCl₃)</u> δ 136.26, 135.04, 132.82, 130.41, 128.68, 127.72, 126.99, 125.81, 83.95, 24.95.

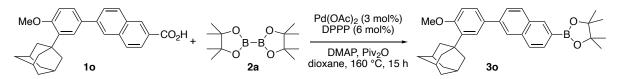
Naphthalene-1-boronic acid pinacol ester (Scheme 1, 3k)²


According to the general procedure, the reaction of 1-naphthoic acid (2.0 mmol, 1.0 equiv), bis(pinacolato)diboron (3.0)mmol. 1.5 equiv), $Pd(OAc)_2$ (3 mol%). 1,3-bis(diphenylphosphino) propane (6 mol%), 4-dimethylaminopyridine (3.0 mmol, 1.5 equiv) and trimethylacetic anhydride (3.0 mmol, 1.5 equiv) in 1,4-dioxane (10.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 87% yield (442.2 mg). White solid. <u>¹H NMR (400 MHz, CDCl₃)</u> δ 8.78-8.76 (d, J = 8.4 Hz, 1H), 8.09-8.07 (dd, J = 6.8, 1.1 Hz, 1H), 7.95-7.93 (d, J = 8.2 Hz, 1H), 7.85-7.83 (d, J = 8.5 Hz, 1H), 7.56-7.52 (m, 1H), 7.49-7.46(m, 2H), 1.43 (s, 12H).¹³C NMR (100 MHz, CDCl₃)δ 136.92, 135.65, 133.20, 131.62, 128.41, 128.35, 126.35, 125.49, 124.97, 83.75, 24.98.

4,4,5,5-Tetramethyl-2-(o-tolyl)-1,3,2-dioxaborolane (Scheme 1, 3l)¹

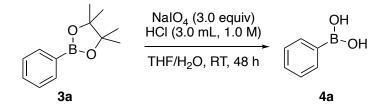

According to the general procedure, the reaction of 2-methylbenzoic acid (2.0 mmol, 1.0 equiv), bis(pinacolato)diboron (3.0 mmol, 1.5 equiv), Pd(OAc)₂ (3 mol%), 1,3-bis(diphenylphosphino)propane (6 mol%), 4-dimethylaminopyridine (3.0 mmol, 1.5 equiv) and trimethylacetic anhydride (3.0 mmol, 1.5 equiv) in 1,4-dioxane (10.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 80% yield (349.0 mg). White solid. <u>¹H NMR (400 MHz, CDCl_3)</u> δ 7.76-7.75 (dd, *J* = 7.7,1.6 Hz, 1H), 7.34-7.30 (td, *J* = 7.5,1.6 Hz, 1H), 7.17-7.14 (m, 2H), 2.54 (s, 3H), 1.34 (s, 12H). <u>¹³C NMR</u> (100 MHz, CDCl_3) δ 144.83, 135.86, 130.79, 129.77, 124.70, 83.39, 24.89, 22.23.

4,4,5,5-Tetramethyl-2-thiophen-3-yl-[1,3,2]dioxaborolane (Scheme 1, 3m)¹

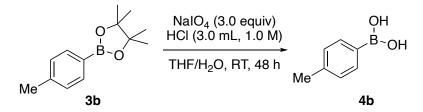

According to the general procedure, the reaction of 3-thiophenezoic acid (2.0 mmol, 1.0 equiv), bis(pinacolato)diboron (3.0 mmol, 1.5 equiv), Pd(OAc)₂ (3 mol%), 1,3-bis(diphenylphosphino)propane (6 mol%), 4-dimethylaminopyridine (3.0 mmol, 1.5 equiv) and trimethylacetic anhydride (3.0 mmol,1.5 equiv) in 1,4-dioxane (10.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 61% yield (256.2 mg). White solid. <u>¹H NMR (400 MHz, CDCl₃)</u> δ 7.93-7.92 (d, *J* = 3.6 Hz, 1H), 7.42-7.40 (d, *J* = 4.0 Hz, 1H), 7.35-7.33 (m, 1H), 1.34 (s, 12H). <u>¹³C NMR (100 MHz, CDCl₃)</u> δ 136.47, 132.03, 125.35,83.67, 24.85.

N,*N*-dipropyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzenesulfonamide (Scheme 1, 3n)¹

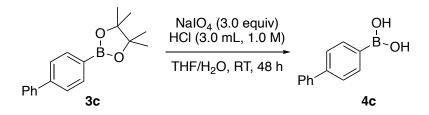
According to the general procedure, the reaction of probenecid (2.0 mmol, 1.0 equiv), bis(pinacolato)diboron (3.0)mmol, 1.5 $Pd(OAc)_2$ (3 equiv), mol%), 1,3-bis(diphenylphosphino)propane (6 mol%), 4-dimethylaminopyridine (3.0 mmol, 1.5 equiv) and trimethylacetic anhydride (3.0 mmol, 1.5e quiv) in 1,4-dioxane (10.0 mL) for 15 h at 160 °C, afforded after work-up and chromatograph the title compound in 97% yield (712.4 mg). White solid. <u>¹H NMR (400 MHz, CDCl₃)</u> δ 7.92-7.90 (d, J = 8.3 Hz, 2H), 7.78-7.76 (d, J = 8.3 Hz, 2H), 3.08-3.04 (t, J = 8.0 Hz,4H), 1.55-1.47 (m, 4H), 1.35 (s, 12H), 0.87-0.83 (t, J = 7.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 142.31, 135.21, 126.01, 84.36, 49.93, 24.86, 21.92, 11.16.


2-(6-(3-((3r,5r,7r)-Adamantan-1-yl)-4-methoxyphenyl)naphthalen-2-yl)-4,4,5,5-tetrame thyl-1,3,2-dioxaborolane (Scheme 1, 30)³

According to the general procedure, the reaction of adapalene (2.0 mmol, 1.0 equiv), bis(pinacolato)diboron (3.0)mmol, 1.5 equiv), $Pd(OAc)_2$ (3 mol%), 1,3-bis(diphenylphosphino)propane (6 mol%), 4-dimethylaminopyridine (3.0 mmol, 1.5 equiv) and trimethyl acetic anhydride (3.0 mmol, 1.5 equiv) in 1,4-dioxane (10.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 53% yield (524.0 mg). White solid. ¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 1H), 8.05-8.03 (t, J = 4.0 Hz 2H), 7.97 (s, 2H), 7.86-7.83 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.61 (d, *J* = 2.3 Hz, 1H), 7.57-7.55 (dd, J = 8.4, 2.3 Hz, 1H), 7.02-7.00 (d, J = 8.4 Hz, 1H), 3.91 (s, 3H), 2.18 (s, 6H), 2.11 (s, 2H), 2.11 (s, 2H)3H), 1.81 (s, 6H), 1.25 (s, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 159.13, 139.13, 136.97, 134.38, 133.79, 132.33,131.38, 129.92, 129.18, 126.90, 126.03, 125.82, 125.04, 123.19, 112.16, 84.73, 55.20, 40.62, 37.13, 29.12, 25.96.


Characterization Date for Hydrolysis of Aryl Boronic Esters

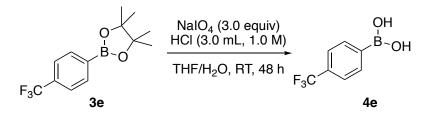
Phenylboronic acid (Scheme 2, 4a)²


According to the general procedure, the reaction of 4,4,5,5-tetramethyl-2-phenyl-1,3,2-dioxaborolane (1.0 mmol, 1.0 equiv), NaIO₄ (8.0 equiv) in THF/H₂O (4:1, 10 mL) for 40 min at room temperature, then HCI (1.0 M, 1.5 mL) was added, the mixture was stirred for 48 h at room temperature, afforded after work-up and chromatography the title compound in 69% yield (84.1 mg). White solid. <u>¹H NMR (400 MHz, DMSO-d_6)</u> δ 7.91-7.89 (dd, *J* = 6.8, 2.5 Hz, 2H), 7.40-7.36 (m, 3H). <u>¹³C NMR (100 MHz, DMSO-d_6)</u> δ 133.50, 129.52, 127.50.

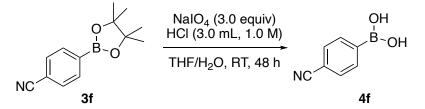
4-Tolylboronic acid (Scheme 2, 4b)²

According to the general procedure, the reaction of 4,4,5,5-tetramethyl-2-(4-methylphenyl)-1,3,2-dioxaborolane (1.0 mmol, 1.0 equiv), NaIO₄ (8.0 equiv) in THF/H₂O (4:1, 10 mL) for 40 min at room temperature, then HCI (1.0 M, 1.5 mL) was added, the mixture was stirred for 48 h at room temperature, afforded after work-up and chromatography the title compound in 86% yield (116.5 mg). White solid. <u>¹H NMR (400 MHz, DMSO-d_6)</u> δ 7.77-7.76 (d, *J* = 7.7 Hz, 2H), 7.19-7.17 (d, *J* = 7.7 Hz, 2H), 2.32 (s, 3H). <u>¹³C NMR (100</u> <u>MHz, DMSO-d_6)</u> δ 138.66, 133.57, 128.14, 21.26.

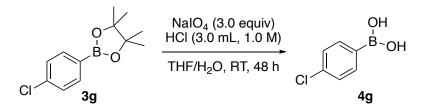
4-Biphenylboronic acid (Scheme 2, 4c)⁴


According to the general procedure, the reaction of 2-(4-biphenylyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1.0 mmol, 1.0 equiv), NaIO₄ (8.0 equiv) in THF/H₂O (4:1, 10 mL) for 40 min at room temperature, then HCI (1.0 M, 1.5 mL) was added, the mixture was stirred for 48 h at room temperature, afforded after work-up and chromatography the title compound in 84% yield (166.2 mg). White solid. <u>¹H NMR (400 MHz, DMSO-d_6)</u> δ 7.93-7.91 (d, *J* = 8.0 Hz, 2H), 7.69-7.63 (dd, *J* = 15.6, 7.7 Hz, 4H), 7.48-7.44 (t, *J* = 7.6 Hz, 2H), 7.38-7.34 (t, *J* = 7.3 Hz, 1H). <u>¹³C NMR (100 MHz, DMSO-d_6)</u> δ 141.69, 140.21, 134.90, 129.01, 127.64, 126.79, 125.76.

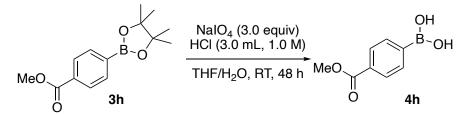
4-Methoxyphenyl-boronic acid (Scheme 2, 4d)²


According to the general procedure, the reaction of 2-(4-methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1.0 mmol, 1.0 equiv), NaIO₄ (8.0 equiv) in THF/H₂O (4:1, 10 mL) for 40 min at room temperature, then HCI (1.0 M, 1.5 mL) was added, the mixture was stirred for 48 h at room temperature, afforded after work-up and chromatography the title compound in 75% yield (113.4 mg). White solid. <u>¹H NMR (400 MHz, DMSO-d_6)</u> δ 7.77-7.75 (d, *J* = 8.6 Hz, 2H), 6.90-6.88 (d, *J* = 8.6 Hz, 2H), 3.75(s, 3H). <u>¹³C NMR (100 MHz, DMSO-d_6)</u> δ 161.05, 135.98, 113.04, 54.92.

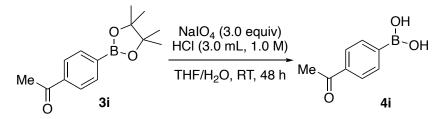
(4-(Trifluoromethyl)phenyl)boronic acid (Scheme 2, 4e)²


According to the general procedure, the reaction of 4,4,5,5-tetramethyl-2-(4-(trifluoromethyl) phenyl)-1,3,2-dioxaborolane (1.0 mmol, 1.0 equiv), NaIO₄ (8.0 equiv) in THF/H₂O (4:1, 10 mL) for 40 min at room temperature, then HCI (1.0 M, 1.5 mL) was added, the mixture was stirred for 48 h at room temperature, afforded after work-up and chromatography the title compound in 78% yield (148.2 mg). White solid. ¹H NMR (400 <u>MHz, DMSO-d₆)</u> δ 8.01-7.99 (d, *J* = 7.8 Hz, 2H), 7.68-7.66 (d, *J* = 7.9 Hz, 2H). ¹³C NMR (100MHz, DMSO-d₆) δ 134.79, 130.34 (q, *J*^{*F*}= 31 Hz), 124.48 (q, *J*^{*F*}= 270 Hz), 123.99 (q, *J*^{*F*}= 4.0 Hz). ¹⁹F NMR (376 MHz, DMSO) δ -63.02.

4-Cyanophenylboronic acid (Scheme 2, 4f)²


According to the general procedure, the reaction of 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzonitrile (1.0 mmol, 1.0 equiv), NaIO₄ (8.0 equiv) in THF/H₂O (4:1, 10 mL) for 40 min at room temperature, then HCI (1.0 M, 1.5 mL) was added, the mixture was stirred for 48 h at room temperature, afforded after work-up and chromatography the title compound in 84% yield (123.1 mg). White solid. <u>¹H NMR (400 MHz, DMSO-d_6)</u> δ 8.07-8.05 (d, *J* = 8.6 Hz, 2H), 7.95-7.93 (d, *J* = 8.6 Hz, 2H). <u>¹³C NMR (100MHz, DMSO-d_6)</u> δ 132.72, 130.00, 118.26, 115.16.

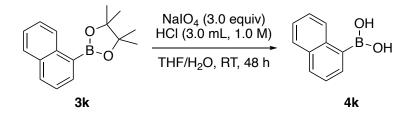
4-Chlorophenylboronic acid (Scheme 2, 4g)²


According to the general procedure, the reaction of 2-(4-chlorophenyl)-4,4,5,5tetramethyl-1,3,2-dioxaborolane (1.0 mmol, 1.0 equiv), NaIO₄ (8.0 equiv) in THF/H₂O (4:1, 10 mL) for 40 min at room temperature, then HCI (1.0 M, 1.5 mL) was added, the mixture was stirred for 48 h at room temperature, afforded after work-up and chromatography the title compound in 68% yield (105.7 mg). White solid. <u>¹H NMR (400 MHz, DMSO-d₆)</u> δ 7.88-7.86 (d, *J* = 8.1 Hz, 2H), 7.44-7.42 (d, *J* = 8.2 Hz, 2H). <u>¹³C NMR (100MHz, DMSO-d₆)</u> δ 136.02, 135.30, 127.60.

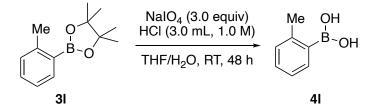
4-(Methoxycarbonyl)phenylboronic acid (Scheme 2, 4h)⁵

According to the general procedure the reaction of methyl 4-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)-benzoate (1.0 mmol, 1.0 equiv), NaIO₄ (8.0 equiv) in THF/H₂O (4:1, 10 mL) for 40 min at room temperature, then HCI (1.0 M, 1.5 mL) was added, the mixture was stirred for 48 h at room temperature, afforded after work-up and chromatography the title compound in 76% yield (136.7 mg). White solid. <u>¹H NMR (400 MHz, DMSO-d₆)</u> δ 7.91 (s, 4H), 3.84 (s, 3H). <u>¹³C NMR (100MHz, DMSO-d₆)</u> δ 166.46, 134.32, 130.82, 128.01, 52.15.

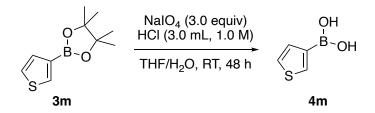
(4-Acetylphenyl)boronic acid (Scheme 2, 4i)⁶


According to the general procedure. the reaction of 4-acetylphenylboronic acid pinacol ester (1.0 mmol, 1.0 equiv), NaIO₄ (8.0 equiv) in THF/H₂O (4:1, 10 mL) for 40 min at room temperature, then HCI (1.0 M, 1.5 mL) was added, the mixture was stirred for 48 h at room temperature, afforded after work-up and chromatography the title compound in 74% yield (121.4 mg). White solid. <u>¹H NMR (400 MHz, DMSO-d_6)</u> δ 7.92-7.91 (d, *J* = 1.9 Hz, 4H), 2.57 (s, 3H). <u>¹³C NMR (100MHz, DMSO-d_6)</u> δ 198.35, 137.93, 134.35, 127.06, 26.88.

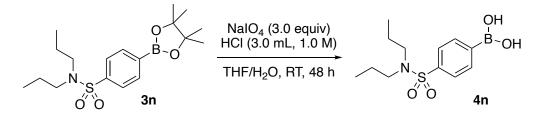
2-Naphthaleneboronic acid (Scheme 2, 4j)⁷


According to the general procedure, the reaction of 4,4,5,5-tetramethyl-2-(naphthalen-2-yl)-1,3,2-dioxaborolane (1.0 mmol, 1.0 equiv), NaIO₄ (8.0 equiv) in THF/H₂O (4:1, 10 mL) for 40 min at room temperature, then HCI (1.0 M, 1.5 mL) was added, the mixture was stirred for 48 h at room temperature, afforded after work-up and chromatography the title compound in 98% yield (168.5 mg). White solid. ¹H NMR (400 MHz, DMSO-d₆) δ 8.39 (s, 1H), 8.21 (s, 2H), 7.92-7.84 (dt, J = 17.6, 9.0 Hz, 4H), 7.53-7.49 (m, 2H). ¹³C NMR (100MHz, DMSO-d₆) δ 134.99, 134.06, 132.46, 130.66, 128.37, 127.51, 126.63, 126.42, 125.79.

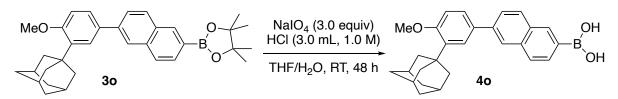
Naphthalene-1-boronic acid pinacol ester (Scheme 2, 4k)⁸


According to the general procedure, the reaction of naphthalene-1-boronic acid pinacol ester 1.0 mmol, 1.0 equiv), NaIO₄ (8.0 equiv) in THF/H₂O (4:1, 10 mL) for 40 min at room temperature, then HCI (1.0 M, 1.5 mL) was added, the mixture was stirred for 48 h at room temperature, afforded after work-up and chromatography the title compound in 82% yield (141.2 mg). White solid. <u>¹H NMR (400 MHz, DMSO-d_6)</u> δ 8.42-8.40 (d, *J* = 7.7 Hz, 1H), 7.92- 7.88 (m, 2H), 7.78-7.76 (dd, *J* = 6.7, 1.0 Hz, 1H), 7.52-7.47 (tt, *J* = 6.8, 3.5 Hz, 3H). <u>¹³C NMR (100MHz, DMSO-d_6)</u> δ 135.66, 132.91, 132.10, 129.21, 128.80, 128.27, 125.69, 125.42, 125.14.

2-Methylphenylboronic acid (Scheme 2, 41)⁹

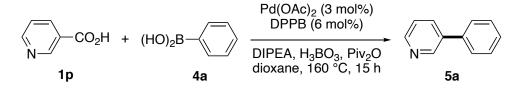

According to the general procedure, the reaction of 4,4,5,5-tetramethyl-2-(o-tolyl)-1,3,2dioxaborolane (1.0 mmol, 1.0 equiv), NaIO₄ (8.0 equiv) in THF/H₂O (4:1, 10 mL) for 40 min at room temperature, then HCI (1.0 M, 1.5 mL) was added, the mixture was stirred for 48 h at room temperature, afforded after work-up and chromatography the title compound in 83% yield (112.7 mg). White solid. <u>¹H NMR (400 MHz, DMSO-d_6)</u> δ 7.92-7.90 (d, *J* = 7.3 Hz, 1H), 7.28-7.22 (m, 1H), 7.20-7.09 (dt, *J* = 12.9, 7.1 Hz, 2H), 2.67 (s, 3H). <u>¹³C NMR</u> (100MHz, DMSO-d_6) δ 143.33, 134.73, 129.87, 129.21, 124.64, 22.37.

3-Thiopheneboronic acid (Scheme 2, 4m)⁸

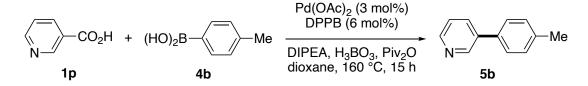

According to the general procedure, the reaction of 4,4,5,5-tetramethyl-2-thiophen-3-yl-[1,3,2]dioxaborolane (1.0 mmol, 1.0 equiv), NaIO₄ (8.0 equiv) in THF/H₂O (4:1, 10 mL) for 40 min at room temperature, then HCI (1.0 M, 1.5 mL) was added, the mixture was stirred for 48 h at room temperature, afforded after work-up and chromatography the title compound in 90% yield (115.3 mg). White solid. <u>¹H NMR (400 MHz, DMSO-d_6)</u> δ 8.01 (s, 2H), 7.97-7.96 (m, 1H), 7.48-7.46 (dd, J = 4.8, 2.7 Hz, 1H), 7.42- 7.41 (m, 1H). <u>¹³C NMR</u> (100MHz, DMSO-d_6) δ 134.95, 132.52, 125.19.

(4-(N,N-dipropylsulfamoyl)phenyl) boronic acid (Scheme 2, 4n)¹⁰

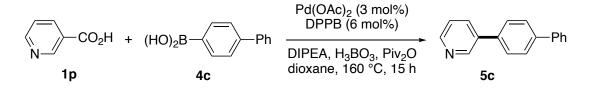
According to the general procedure, the reaction of *N*,*N*-dipropyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzenesulfonamide (1.0 mmol, 1.0 equiv), NaIO₄ (8.0 equiv) in THF/H₂O (4:1, 10 mL) for 40 min at room temperature, then HCI (1.0 M, 1.5 mL) was added, the mixture was stirred for 48 h at room temperature, afforded after work-up and chromatography the title compound in 70% yield (199.5 mg). Yellow solid. ¹H NMR (400 MHz, DMSO-d₆) δ 8.36 (s, 2H), 7.97-7.95 (d, *J* = 8.2 Hz, 2H), 7.75-7.73 (d, *J* = 8.3 Hz, 2H), 3.03-2.99 (m, 4H), 1.50-1.40 (m, 4H), 0.82-0.78 (t, *J* = 7.4 Hz, 6H). ¹³C NMR (100MHz, DMSO-d₆) δ 140.67, 134.79, 125.58, 49.66, 21.65, 11.02.


(6-(3-((3r,5r,7r)-Adamantan-1-yl)-4-methoxyphenyl)naphthalen-2-yl)boronic acid (Scheme 2, 40)¹¹

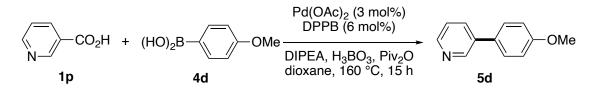
According to the general procedure, the reaction of 2-(6-(3-((3r,5r,7r)-adamantan-1-yl) -4-methoxy-phenyl)naphthalen-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1.0 mmol, 1.0 equiv), NaIO₄ (8.0 equiv) in THF/H₂O (4:1, 10 mL) for 40 min at room temperature, then HCI (1.0 M, 1.5 mL) was added, the mixture was stirred for 48 h at room temperature, afforded after work-up and chromatography the title compound in 62% yield (255.2 mg). White solid. <u>¹H NMR (400 MHz, DMSO-d_6)</u> δ 8.59 (s, 1H), 8.22 (s, 1H), 8.16-8.14 (d, *J* = 8.7 Hz, 1H), 8.08-8.06 (d, *J* = 8.7 Hz, 1H), 7.99-7.96 (dd, *J* = 8.6, 1.5 Hz, 1H), 7.90-7.87 (dd, *J* = 8.6, 1.6 Hz, 1H), 7.67-7.64 (dd, *J* = 8.5, 2.2 Hz, 1H), 7.58 -7.57 (d, *J* = 2.2 Hz, 1H), 7.13-7.11 (d, *J* = 8.6 Hz, 1H), 3.87 (s, 3H), 2.14 (s, 6H), 2.07 (s, 3H), 1.76 (s, 6H). <u>¹³C NMR</u> (100MHz, DMSO-d_6) δ 158.44, 140.07, 137.89, 135.32, 131.35, 130.75, 130.10, 129.69, 128.20, 125.80, 125.61, 125.33, 124.93, 123.92, 112.55, 55.19, 36.39, 28.23, 18.13.


Characterization Date for Suzuki of Carboxylic Acids and Boronic Acids

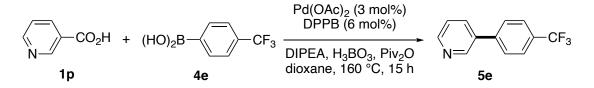
3-Phenylpyridine (Scheme 3, 5a)¹²


According to the general procedure, the reaction of 3-pyridinecarboxylic acid (0.2mmol, 1.0 equiv), phenylboronic acid (2.0) $Pd(OAc)_2$ (3 mol%), equiv), 1,4-bis(diphenylphosphino)butane (6 mol%), N,N-diisopropylethylamine (2.0 equiv), H₃BO₃ (2.0 equiv) and trimethylacetic anhydride (2.0 equiv) in 1,4-dioxane (1.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 82% yield (25.4 mg). White solid. ¹H NMR (400 MHz, CDCl₃) δ 8.89 (s, 1H), 8.62 (s, 1H), 7.93-7.91 (d, J = 11.8 Hz, 1H), 7.60-7.58 (d, J = 5.0 Hz, 2H), 7.51-7.47 (t, J = 7.4 Hz, 2H), 7.43-7.39 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 148.02, 147.94, 137.55, 134.95, 129.13, 128.26, 127.18, 123.82.

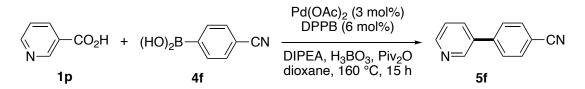
3-(p-Tolyl)pyridine (Scheme 3, 5b)¹³


According to the general procedure, the reaction of 3-pyridinecarboxylic acid (0.2 mmol, 1.0 equiv), 4-tolylboronic acid (2.0)equiv), $Pd(OAc)_2$ (3 mol%), 1,4-bis(diphenylphosphino)butane (6 mol%), N,N-diisopropylethylamine (2.0 equiv), H₃BO₃ (2.0 equiv) and trimethylacetic anhydride (2.0 equiv) in 1,4-dioxane (1.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 96% yield (32.5 mg). White solid. ¹H NMR (400 MHz, CDCl₃) δ 8.85 (s, 1H), 8.58 -8.57 (d, J = 4.0 Hz, 1H), 7.88-7.87 (d, J = 4.0 Hz, 1H), 7.50-7.48 (d, J = 8.0 Hz, 2H), 7.38-7.35 (q, J = 4.0 Hz, 1H), 7.30-7.28 (d, J = 8.0 Hz, 2H), 2.41 (s, 3H). <u>¹³C NMR (100 MHz, CDCl₃)</u> δ 147.93, 138.13, 136.74, 134.83, 134.40, 129.84, 129.35, 127.00, 123.64, 21.16.

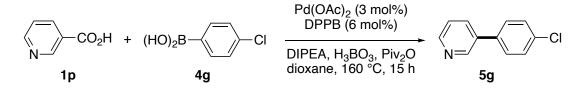
3-([1,1'-Biphenyl]-4-yl)pyridine (Scheme 3, 5c)¹³


According to the general procedure, the reaction of 3-pyridinecarboxylic acid (0.2 mmol, 1.0 equiv), 4-biphenylboronic acid (2.0)equiv), $Pd(OAc)_2$ (3 mol%), 1,4-bis(diphenylphosphino)butane (6 mol%), N,N-diisopropylethylamine (2.0 equiv), H₃BO₃ (2.0 equiv) and trimethylacetic anhydride (2.0 equiv) in 1,4-dioxane (1.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 92% yield (42.5 mg). White solid. ¹H NMR (400 MHz, CDCl₃) δ 8.92 (s, 1H), 8.62 (s, 1H), 7.94-7.92 (d, J = 9.8 Hz, 1H), 7.73-7.71 (d, J = 8.5 Hz, 2H), 7.68-7.74 (m, 4H), 7.50-7.46 (t, J = 7.5 Hz, 2H), 7.41-7.37 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 148.45, 148.17, 141.05, 140.38, 136.66, 136.24, 134.30, 130.72, 128.91, 127.83, 127.52, 127.09, 123.66.

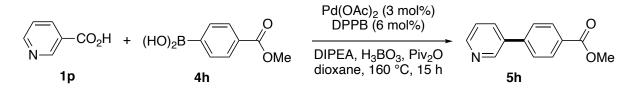
3-(4-Methoxyphenyl)- pyridine (Scheme 3, 5d)¹²


According to the general procedure, the reaction of 3-pyridinecarboxylic acid (0.2 mmol, 1.0 4-methoxyphenylboronic (2.0)(3 mol%), equiv), acid equiv), Pd(OAc)₂ 1,4-bis(diphenylphosphino)butane (6 mol%), N,N-diisopropylethylamine (2.0 equiv), H₃BO₃ (2.0 equiv) and trimethylacetic anhydride (2.0 equiv) in 1,4-dioxane (1.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 87% yield (32.2 mg). White solid. <u>**H NMR (400 MHz, CDCl**</u>) δ 8.83 (s, 1H), 8.56 (s, 1H), 7.85-7.83 (d, J =8.2 Hz, 1H), 7.54-7.51 (m, 2H), 7.36-7.33 (dd, *J* = 7.6, 4.8 Hz, 1H), 7.03-7.01 (m, 2H), 3.86 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.79, 147.93, 147.80, 137.91, 133.95, 130.24, 128.25, 123.57, 114.57, 55.40.

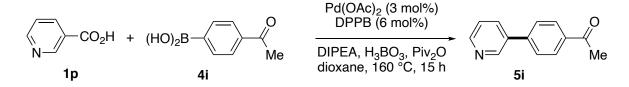
3-(4-(Trifluoromethoxy)phenyl)-pyridine (Scheme 3, 5e)¹²


According to the general procedure, the reaction of 3-pyridinecarboxylic acid (0.2 mmol, 1.0 equiv), 4-(trifluoromethyl)phenylboronic acid (2.0 equiv), Pd(OAc)₂ (3 mol%), 1,4-bis(diphenylphosphino)butane (6 mol%), *N*,*N*-diisopropylethylamine (2.0 equiv), H₃BO₃ (2.0 equiv) and trimethylacetic anhydride (2.0 equiv) in 1,4-dioxane (1.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 81% yield (36.1 mg). White solid. <u>¹H NMR (400 MHz, CDCl₃)</u> δ 8.87 (s, 1H), 8.67 (s, 1H), 7.92-7.90 (d, *J* = 7.9 Hz, 1H), 7.76-7.69 (m, 4H), 7.44-7.41 (dd, *J* = 7.8, 4.8 Hz 1H). <u>¹³C NMR (100 MHz, CDCl₃)</u> δ 149.36, 148.33, 141.39, 135.34, 134.58, 130.26 (q, J^F=32 Hz), 127.52, 126.07 (q, J^F=4.0 Hz), 124.10 (d, J^F=270 Hz), 123.75. <u>¹⁹F NMR (376MHz, CDCl₃)</u> δ -62.56.

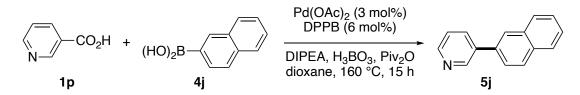
4-(Pyridin-3-yl)benzonitrile (Scheme 3, 5f)¹²


According to the general procedure, the reaction of 3-pyridinecarboxylic acid (0.2 mmol, 1.0 mol%), equiv), 4-cyanophenylboronic acid (2.0)(3 equiv), Pd(OAc)₂ 1,4-bis(diphenylphosphino)butane (6 mol%), N,N-diisopropylethylamine (2.0 equiv), H₃BO₃ (2.0 equiv) and trimethylacetic anhydride (2.0 equiv) in 1,4-dioxane (1.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 94% yield (33.9 mg). White solid. <u>¹H NMR (400 MHz, CDCl₃)</u> δ 8.86 (s, 1H), 8.68 (s, 1H), 7.92-7.90 (d, J =8.3 Hz, 1H), 7.80-7.78 (d, J = 8.5 Hz, 2H), 7.71-7.69 (d, J = 8.5 Hz, 2H), 7.46-7.43 (dd, J = 7.8, 4.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 149.61, 148.12, 142.26, 134.67, 132.92, 127.83, 123.93, 118.55, 116.46, 112.02.

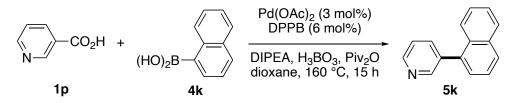
3-(4-Chlorophenyl)pyridine (Scheme 3, 5g)¹⁴


According to the general procedure, the reaction of 3-pyridinecarboxylic acid (0.2mmol, 1.0 equiv), 4-chlorophenylboronic acid (2.0)equiv), $Pd(OAc)_2$ (3 mol%), 1,4-bisdiphenylphosphino)butane (6 mol%), N,N-diisopropylethylamine (2.0 equiv), H₃BO₃ (2.0 equiv) and trimethylacetic anhydride (2.0 equiv) in 1,4-dioxane (1.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 61% yield (23.1 mg). White solid. <u>¹H NMR (400 MHz, CDCl₃)</u> δ 8.83 (s, 1H), 8.62-8.60 (d, J = 5.9 Hz, 1H), 7.86-7.84 (d, J = 8.0 Hz, 1H), 7.55-7.51 (d, J = 6.5 Hz, 2H), 7.47-7.44 (d, J = 8.6 Hz, 2H), 7.40-7.37 (dd, J = 7.8, 4.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 148.66, 148.02, 136.25, 135.63, 134.37, 129.34, 128.43, 127.19, 123.71.

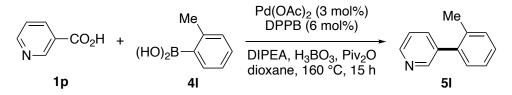
Methyl-4-(pyridin-3-yl)benzoate (Scheme 3, 5h)¹²


According to the general procedure, the reaction of 3-pyridinecarboxylic acid (0.2 mmol, 1.0 equiv), (4-(methoxycarbonyl)phenyl)boronic acid (2.0 equiv), Pd(OAc)₂ (3 mol%), 1,4-bis(diphenylphosphino)butane (6 mol%), *N*,*N*-diisopropylethylamine (2.0 equiv), H₃BO₃ (2.0 equiv) and trimethylacetic anhydride (2.0 equiv) in 1,4-dioxane (1.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 98% yield (41.8 mg). White solid. <u>¹H NMR (400 MHz, CDCl₃)</u> δ 8.89 (s, 1H), 8.65 (s,1H), 8.16-8.14 (d, *J* = 8.5 Hz, 2H), 7.93-7.91 (d, *J* = 9.5 Hz, 1H), 7.68-7.65 (d, *J* = 8.5, 2H), 7.43-7.40 (m, 1H), 3.95 (s, 3H). <u>¹³C NMR (100 MHz, CDCl₃)</u> δ 167.04 149.34, 148.35, 142.37, 136.54, 135.50, 134.55, 130.11, 129.17, 127.33, 52.16.

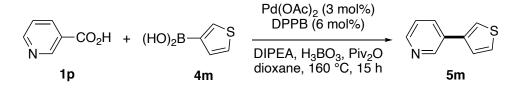
1-(4-(Pyridin-3-yl)phenyl)ethanone (Scheme 3, 5i)¹²


According to the general procedure, the reaction of 3-pyridinecarboxylic acid (0.2 mmol, 1.0 equiv), 4-acetylphenylboronic acid (2.0)equiv), $Pd(OAc)_2$ (3 mol%), 1,4-bis(diphenylphosphino)butane (6 mol%), N,N-diisopropylethylamine (2.0 equiv), H₃BO₃ (2.0 equiv) and trimethylacetic anhydride (2.0 equiv) in 1,4-dioxane (1.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 95% yield (37.4 mg). White solid. <u>¹H NMR (400 MHz, CDCl₃)</u> δ 8.89 (s, 1H), 8.65 -8.64 (d, J = 5.6 Hz, 1H), 8.09-8.07 (d, J = 8.5 Hz, 2H), 7.93-7.91 (d, J = 8.0 Hz, 1H), 7.70-7.68 (d, J = 8.0 Hz, 2H), 7.43-7.40 (dd, J = 7.7, 4.8 Hz, 1H), 2.66 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.60, 149.33, 148.34, 142.36, 136.54, 134.54, 129.16, 129.03, 127.47, 127.32, 26.74.

3-(Naphthalen-2-yl)pyridine (Scheme 3, 5j)¹²


According to the general procedure, the reaction of 3-pyridinecarboxylic acid (0.2 mmol, 1.0 equiv), 2-naphthaleneboronic acid (2.0)(3 mol%), equiv), $Pd(OAc)_2$ 1,4-bis(diphenylphosphino)butane (6 mol%), N,N-diisopropylethylamine (2.0 equiv), H₃BO₃ (2.0 equiv) and trimethylacetic anhydride (2.0 equiv) in 1,4-dioxane (1.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 93% yield (38.1 mg). White solid. <u>¹H NMR (400 MHz, CDCl₃)</u>δ 9.00 (s, 1H), 8.64 (s, 1H), 8.05 (s, 1H), 8.02-8.0 (d, J = 7.9 Hz, 1H), 7.98-7.88 (m, 4H), 7.73-7.71 (dd, J = 8.5, 1.8Hz, 1H), 7.75-7.52 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 148.53, 148.46, 135.13, 134.67, 133.59, 132.90, 132.25, 128.93, 128.26, 127.73, 126.65, 126.49, 126.20, 125.05, 123.70.

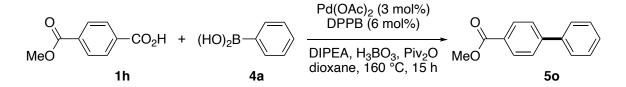
3-(Naphthalen-1-yl)pyridine (Scheme 3, 5k)¹³


According to the general procedure, the reaction of 3-pyridinecarboxylic acid (0.2 mmol, 1.0 (3 equiv), 1-naphthylboronic acid (2.0)equiv), $Pd(OAc)_2$ mol%), 1,4-bis(diphenylphosphino)butane (6 mol%), N,N-diisopropylethylamine (2.0 equiv), H₃BO₃ (2.0 equiv) and trimethylacetic anhydride (2.0 equiv) in 1,4-dioxane (1.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 61% yield (25.0 mg). White solid. ¹H NMR (400 MHz, CDCl₃) δ 8.78-8.71 (d, J = 28.4 Hz, 2H), 7.95-7.91 (t, J = 7.0 Hz, 2H), 7.85-7.80 (dd, J = 15.2, 8.1 Hz, 2H), 7.58-7.53 (m, 2H), 7.51-7.49 (dd, J = 8.6, 1.4 Hz, 1H), 7.48-7.45 (m,1H), 7.44-7.42 (dd, J = 7.0, 1.1 Hz, 1H). ¹³C NMR (100) <u>MHz, CDCl₃</u>) δ 150.57, 148.40, 137.55, 136.26, 133.81, 131.47, 128.60, 128.51, 127.44, 126.60, 126.14, 125.42, 125.28, 124.33, 123.25.

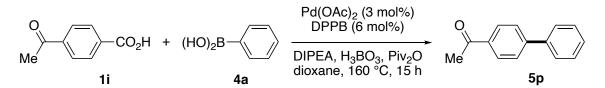
3-(o-Tolyl)pyridine (Scheme 3, 5l)¹⁵

According to the general procedure, the reaction of 3-pyridinecarboxylic acid (0.2 mmol, 1.0 equiv), 2-methylphenylboronic (2.0)equiv), Pd(OAc)₂ (3 mol%), acid 1,4-bis(diphenylphosphino)butane (6 mol%), N,N-diisopropylethylamine (2.0 equiv), H₃BO₃ (2.0 equiv) and trimethylacetic anhydride (2.0 equiv) in 1,4-dioxane (1.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 62% yield (21.0 mg). White solid. ¹H NMR (400 MHz, CDCl₃) δ 8.94 (s, 1H), 8.81-8.79 (dd, J = 4.8, 1.4 Hz, 1H), 8.16-8.13 (dt, J = 7.9, 2.0 Hz, 1H), 7.68-7.65 (dt, J = 7.8, 1.9 Hz, 3H), 7.46-7.42 (m, 2H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 149.68, 147.84, 137.97, 136.74, 135.60, 131.12, 130.58, 129.87, 128.16, 126.10, 123.12, 20.38.

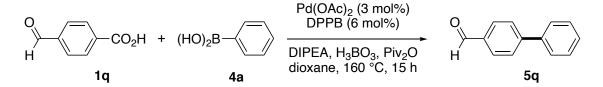
3-(Thiophen-3-yl)pyridine (Scheme 3, 5m)¹²


According to the general procedure, the reaction of 3-pyridinecarboxylic acid (0.2 mmol, 1.0 equiv), 3-thiopheneboronic acid (2.0)equiv), $Pd(OAc)_2$ (3 mol%), 1,4-bis(diphenylphosphino)butane (6 mol%), N,N-diisopropylethylamine (2.0 equiv), H₃BO₃ (2.0 equiv) and trimethylacetic anhydride (2.0 equiv) in 1,4-dioxane (1.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 80% yield (25.8 mg). White solid. ¹H NMR (400 MHz, CDCl₃) δ 9.07 (s, 1H), 8.83 (s, 1H), 8.18-8.16 (d, J =7.9 Hz, 1H), 7.98-7.97 (dd, J = 2.9, 1.2 Hz, 1H), 7.62-7.61 (dd, J = 5.1, 1.2 Hz, 1H), 7.50-7.46 (dd, J = 7.8, 4.9 Hz, 1H), 7.45-7.43 (dd, J = 5.1, 2.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) § 152.62, 150.04, 140.71, 136.87, 134.65, 134.30, 128.29, 126.94, 123.62.

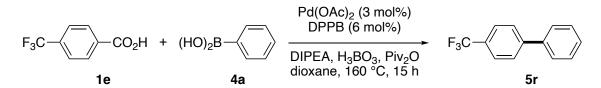
6-Phenylquinoline (Scheme 3, 5n)¹²


According to the general procedure, the reaction of quinoline-6-carboxylic acid (0.2 mmol, 1.0 (3 equiv), phenyl boronic acid (2.0)equiv), Pd(OAc)₂ mol%), 1,4-bis(diphenylphosphino)butane (6 mol%), N,N-diisopropylethylamine (2.0 equiv), H₃BO₃ (2.0 equiv) and trimethylacetic anhydride (2.0 equiv) in 1,4-dioxane (1.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 76% yield (31.2 mg). White solid. <u>¹H NMR (400 MHz, CDCl₃)</u> δ 9.05-9.04 (d, J = 3.2 Hz, 1H), 8.31-8.25 (m, 3H), 8.20-8.17 (dd, J = 8.7, 1.8 Hz, 1H), 7.87-7.85 (m, 2H), 7.67-7.63 (t, J = 7.4 Hz, 1H), 7.55-7.52 (t, J = 7.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 152.20, 137.88, 137.37, 135.66, 132.80, 131.37, 130.14, 129.82, 129.56, 128.52, 1276.36, 126.15, 122.03.

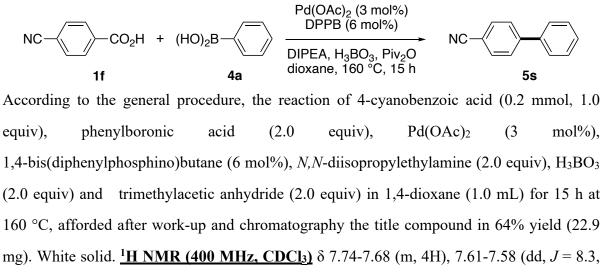
Methyl-[1,1'-biphenyl]-4-carboxylate (Scheme 4, 50)¹²


According to the general procedure, the reaction of 4-(methoxycarbonyl) benzoic acid (0.2 mmol, 1.0 equiv), phenylboronic acid (2.0)equiv), $Pd(OAc)_2$ (3 mol%), 1,4-bis(diphenylphosphino)butane (6 mol%), N,N-diisopropylethylamine (2.0 equiv), H₃BO₃ (2.0 equiv) and trimethylacetic anhydride (2.0 equiv) in 1,4-dioxane (1.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 87% yield (34.1 mg). White solid. ¹H NMR (400 MHz, CDCl₃) δ 8.13-8.10 (d, J = 10.4 Hz, 2H), 7.68-7.62 (dd, J = 15.2, 8.3 Hz, 4H), 7.49-7.45 (t, J = 7.4 Hz, 2H), 7.40-7.38 (d, J = 8.5 Hz, 1H), 3.95 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.04, 145.65, 140.02, 130.11, 128.94,128.89, 128.16, 127.30, 127.07, 51.16.

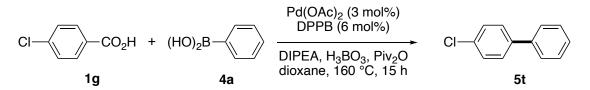
1-([1,1'-Biphenyl]-4-yl)ethanone (Scheme 4, 5p)¹²


According to the general procedure, the reaction of 4-acetylbenzoic acid (0.2 mmol, 1.0 equiv), phenylboronic (2.0)(3 mol%), acid equiv), $Pd(OAc)_2$ 1,4-bis(diphenylphosphino)butane (6 mol%), N,N-diisopropylethylamine (2.0 equiv), H₃BO₃ (2.0 equiv) and trimethylacetic anhydride (2.0 equiv) in 1,4-dioxane (1.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 75% yield (22.4 mg). White solid. <u>¹H NMR (400 MHz, CDCl₃)</u> δ 8.05-8.03 (d, J = 8.5 Hz, 2H), 7.70-7.69 (d, J = 6.7 Hz, 2H), 7.65-7.63 (d, J = 8.5 Hz, 2H), 7.50-7.46 (t, J = 7.9 Hz, 2H), 7.42-7.39 (t, J=7.3 Hz 1H), 2.65 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.82, 145.81, 139.89, 135.85, 128.97, 128.94, 128.25, 127.29, 127.25, 26.70.

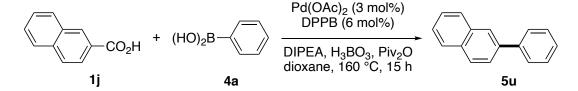
[1,1'-Biphenyl]-4-carbaldehyde (Scheme 4, 5q)¹²


According to the general procedure, the reaction of 4-formylbenzoic acid (0.2 mmol, 1.0 equiv), phenylboronic acid (2.0)equiv), $Pd(OAc)_2$ (3 mol%), 1,4-bis(diphenylphosphino)butane (6 mol%), N,N-diisopropylethylamine (2.0 equiv), H₃BO₃ (2.0 equiv) and trimethylacetic anhydride (2.0 equiv) in 1,4-dioxane (1.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 92% yield (33.5 mg). White solid. <u>¹H NMR (400 MHz, CDCl₃)</u> δ 10.06 (s, 1H), 7.97-7.95 (d, J = 8.4 Hz, 2H), 7.77-7.75 (d, J = 8.2 Hz, 2H), 7.66-7.63 (m, 2H), 7.51-7.47 (td, J = 6.6, 6.1, 1.5 Hz, 2H), 7.44-7.40 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 191.99, 147.22 139.72, 135.17, 130.29, 129.03, 128.49, 127.70, 127.38.

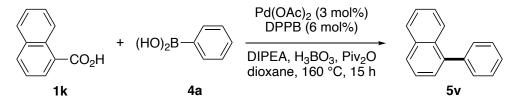
4-(Trifluoromethyl)-1,1'-biphenyl (Scheme 4, 5r)¹²


According to the general procedure, the reaction of 4-(trifluoromethyl) benzoic acid (0.2 mmol, phenylboronic acid (2.0)1.0 equiv), equiv), $Pd(OAc)_2$ (3 mol%), 1,4-bis(diphenylphosphino)butane (6 mol%), N,N-diisopropylethylamine (2.0 equiv), H₃BO₃ (2.0 equiv) and trimethylacetic anhydride (2.0 equiv) in 1,4-dioxane (1.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 96% yield (42.6 mg). White solid. <u>**H NMR (400 MHz, CDCl**</u>₃) δ 7.70 (s, 4H), 7.62-7.60 (d, J = 7.2 Hz, 2H), 7.50-7.47 (t, J = 7.1 Hz, 2H), 7.43-7.41 (d, J = 7.0 Hz, 1H). <u>¹³C NMR (100 MHz, CDCl₃)</u> δ 144.74, 139.78, 129.33 (q, J^F= 32 Hz), 129.00, 128.19, 127.43, 127.29, 125.72 (q, J^F= 3 Hz), 124.31 (q, J^F= 270 Hz). ¹⁹F NMR (376 MHz, CDCl3) δ -62.37.

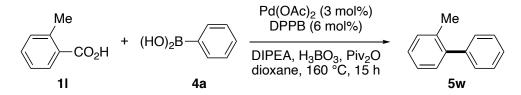
[1,1'-Biphenyl]-4-carbonitrile (Scheme 4, 5s)¹²


1.4 Hz, 2H), 7.51-7.47 (m, 2H), 7.45-7.43 (d, *J* = 8.6, Hz, 1H). <u>¹³C NMR (100 MHz, CDCl₃)</u> δ 145.70, 139.19, 132.62, 129.13, 128.67, 127.75, 127.25, 118.97, 110.92.

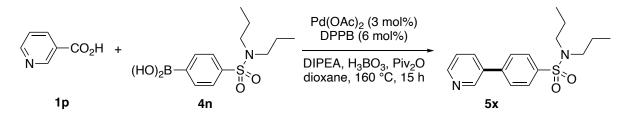
4-Chloro-1,1'-biphenyl (Scheme 4, 5t)¹⁷


According to the general procedure, the reaction of 4-chlorobenzoic acid (0.2 mmol, 1.0 equiv), phenylboronic acid (2.0 equiv), $Pd(OAc)_2$ (3 mol%), 1,4-bis(diphenylphosphino)butane (6 mol%), *N*,*N*-diisopropylethylamine (2.0 equiv), H₃BO₃ (2.0 equiv) and trimethylacetic anhydride (2.0 equiv) in 1,4-dioxane (1.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 60% yield (24.1 mg). White solid. <u>¹H NMR (400 MHz, CDCl₃)</u> δ 7.82-7.75 (m, 4H), 7.63-7.59 (t, *J* = 8.0 Hz, 1H), 7.51-7.46 (dd, *J* = 8.0, 4.0 Hz, 4H). <u>¹³C NMR (100 MHz, CDCl₃)</u> δ 138.93, 137.26, 135.88, 132.68, 131.50, 129.96, 128.67, 128.43.

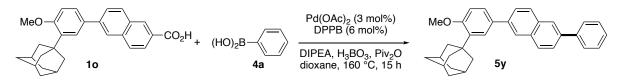
2-Phenylnaphthalene (Scheme 4, 5u)¹⁸


According to the general procedure, the reaction of 2-naphthalenecarboxylic acid (0.2 mmol, 1.0 equiv), phenylboronic acid (2.0)equiv), $Pd(OAc)_2$ (3 mol%), 1,4-bis(diphenyl-phosphino)butane (6 mol%), N,N-diisopropylethylamine (2.0 equiv), H₃BO₃ (2.0 equiv) and trimethylacetic anhydride (2.0 equiv) in 1,4-dioxane (1.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 54% yield (22.0 mg). White solid. 1H NMR (400 MHz, CDCl3) & 8.05 (s, 1H), 7.93-7.86 (m, 3H), 7.77-7.72 (m, 3H), 7.52-7.47 (m, 4H), 7.40-7.37 (t, J = 7.4 Hz, 1H). ¹³C NMR (100 MHz, **CDCl₃**) δ 138.57, 133.68, 132.62, 128.87, 128.43, 128.21, 127.66, 127.45, 127.37, 126.30, 125.95, 125.82, 125.61

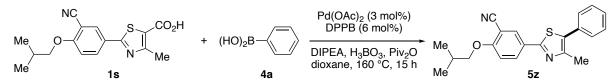
1-Phenylnaphthalene (Scheme 4, 5v)¹²


According to the general procedure, the reaction of 1-naphthoic acid (0.2 mmol, 1.0 equiv), phenylboronic acid (2.0 equiv), Pd(OAc)₂ (3 mol%), 1,4-bis(diphenyl-phosphino)butane (6 mol%), *N*,*N*-diisopropylethylamine (2.0 equiv), H₃BO₃ (2.0 equiv) and trimethylacetic anhydride (2.0 equiv) in 1,4-dioxane (1.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 74% yield (30.0 mg). White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.93-7.91 (d, *J* = 8.4 Hz, 2H), 7.89-7.86 (d, *J* = 8.2 Hz, 1H), 7.56-7.47 (m, 6H), 7.46-7.42 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 140.75, 140.26, 133.78, 131.61, 130.08, 128.27, 127.63, 127.24, 126.93, 126.03, 125.77, 125.39.

2-Methyl-1,1'-biphenyl (Scheme 4, 5w)¹⁷

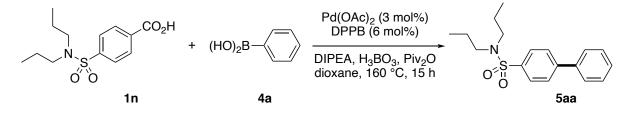

According to the general procedure, the reaction of 2-methylbenzoic acid (0.2 mmol, 1.0 equiv), phenylboronic acid (2.0)equiv), $Pd(OAc)_2$ (3 mol%), 1,4-bis(diphenyl-phosphino)butane (6 mol%), N,N-diisopropylethylamine (2.0 equiv), H₃BO₃ (2.0 equiv) and trimethylacetic anhydride (2.0 equiv) in 1,4-dioxane (1.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 57% yield (19.2 mg). White solid. <u>¹H NMR (400 MHz, CDCl₃)</u> δ 7.44-7.40 (t, J = 7.2 Hz, 2H), 7.36-7.32 (m, 3H), 7.27-7.26 (d, J = 3.6 Hz, 2H), 7.25-7.23 (m, 2H), 2.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) & 141.95, 135.82, 135.36, 129.80, 129.28, 129.20, 128.07, 127.25, 127.15, 126.76, 125.76, 125.53, 20.48.

N,*N*-dipropyl-4-(pyridin-3-yl)benzenesulfonamide (Scheme 5, 5x)

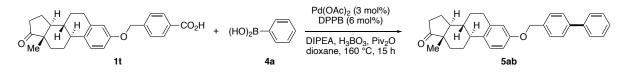

According to the general procedure, the reaction of probenecid (0.2 mmol, 1.0 equiv), 3-pyridine-carboxylic acid (2.0)equiv), $Pd(OAc)_2$ (3 mol%), 1,4-bis(diphenylphosphino)butane (6 mol%), N,N-diisopropylethylamine (2.0 equiv), H₃BO₃ (2.0 equiv) and trimethylacetic anhydride (2.0 equiv) in 1,4-dioxane (1.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 67% yield (39.4 mg). <u>New compound</u>. Yellow solid. <u>Mp</u> = 82-84 °C. <u>¹H NMR (400 MHz, CDCl₃)</u> δ 8.87 (s, 1H), 8.66-8.65 (d, J = 4.0 Hz, 1H), 7.92-7.90 (d, J = 8.0 Hz, 3H), 7.71-7.69(d, J = 8.0 Hz, 2H), 7.45-7.42 (q, J = 4.0 Hz, 1H), 3.13-3.09 (t, J = 8.0 Hz, 4H), 1.63-1.53 (m, 4H), 0.90-0.87 (t, J = 4.0 Hz, 6H). <u>13C NMR (100 MHz, CDCl</u>₃) δ 149.24, 148.08, 141.54, 139.83, 135.16, 134.81, 127.85, 127.67, 123.88, 50.09, 22.08, 11.21. HRMS-ESI calcd for (M⁺+H) 319.1480. found 319.1482. **IR:** 2965.21, 2875.26, 1667.88, 1586.15, 1467.68, 1425.02, 1153.69, 798.74.

(3r,5r,7r)-1-(2-Methoxy-5-(6-phenylnaphthalen-2-yl)-phenyl)adamantane (Scheme 5, 5y)

According to the general procedure, the reaction of adapalene (0.2 mmol, 1.0 equiv), phenylboronic acid (2.0 equiv), Pd(OAc)₂ (3 mol%), 1,4-bis(diphenyl-phosphino)butane (6 mol%), *N*,*N*-diisopropylethylamine (2.0 equiv), H₃BO₃ (2.0 equiv) and trimethylacetic anhydride (2.0 equiv) in 1,4-dioxane (1.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 76% yield (67.5 mg). *New compound*. Yellow solid. **Mp** = 78-80 °C. **¹H NMR (400 MHz, CDCl₃)** δ 8.28 (s, 1H), 8.05 (s, 1H), 7.98-7.95 (d, *J* = 11.8 Hz, 3H), 7.89-7.86 (m, 2H), 7.83-7.80 (d, *J* = 8.6 Hz, 1H), 7.63-7.61 (d, *J* = 2.9 Hz, 2H), 7.58-7.51 (q, *J* = 8.0, 7.3 Hz, 3H), 7.02-7.00 (d, *J* = 8.5 Hz, 1H), 3.91 (s, 3H), 2.19 (s, 6H), 2.11 (s, 3H), 1.81 (s, 6H). **¹³C NMR (100 MHz, CDCl₃)** δ 158.98, 141.53, 139.06, 134.36, 132.30, 131.83,130.99, 130.09, 129.81, 128.40, 128.35, 126.62, 126.17, 125.99, 125.76, 124.78, 112.14, 55.20, 40.62, 37.14, 31.51, 29.12. **HRMS-ESI** calcd for (M⁺+H) 445.2526, found 445.2382. **IR:** 2902.81, 2850.75, 1625.64, 1462.27, 1060.54, 755.99, 691.72.

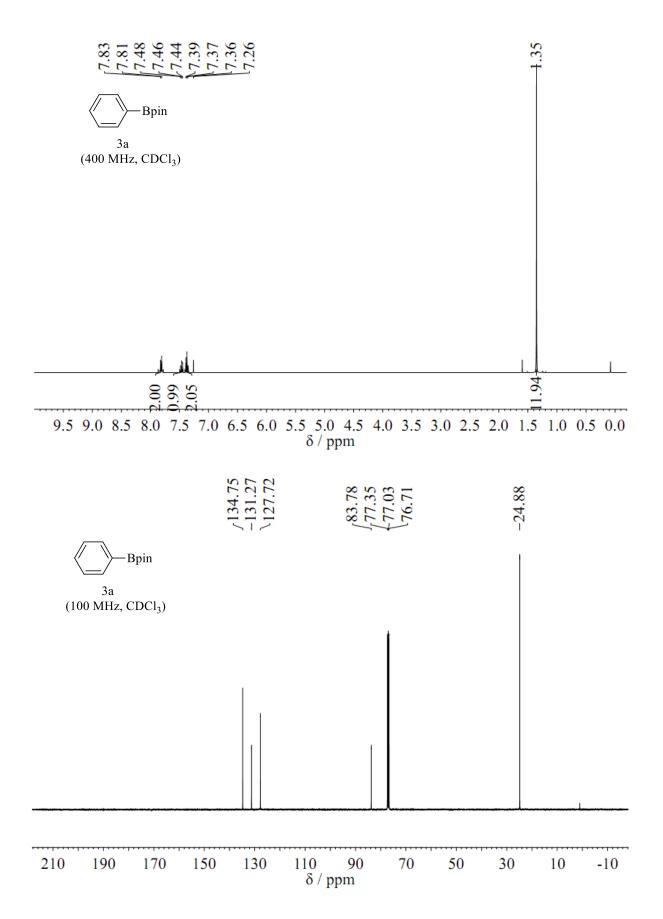

2-Isobutoxy-5-(4-methyl-5-phenylthiazol-2-yl)-benzonitrile (Scheme 5, 5z)

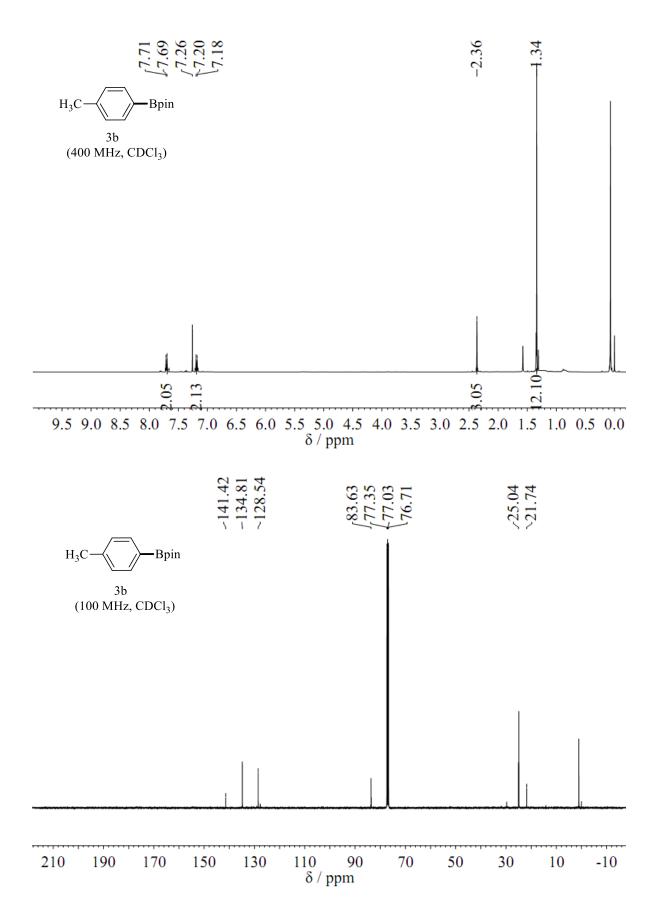
According to the general procedure, the reaction of febuxostat (0.2 mmol, 1.0 equiv), phenylboronic acid (2.0 equiv), $Pd(OAc)_2$ (3 mol%), 1,4-bis(diphenylphosphino)butane (6 mol%), *N*,*N*-diisopropylethylamine (2.0 equiv), H₃BO₃ (2.0 equiv) and trimethylacetic anhydride (2.0 equiv) in 1,4-dioxane (1.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 61% yield (57.1 mg). *New compound*. Yellow solid.

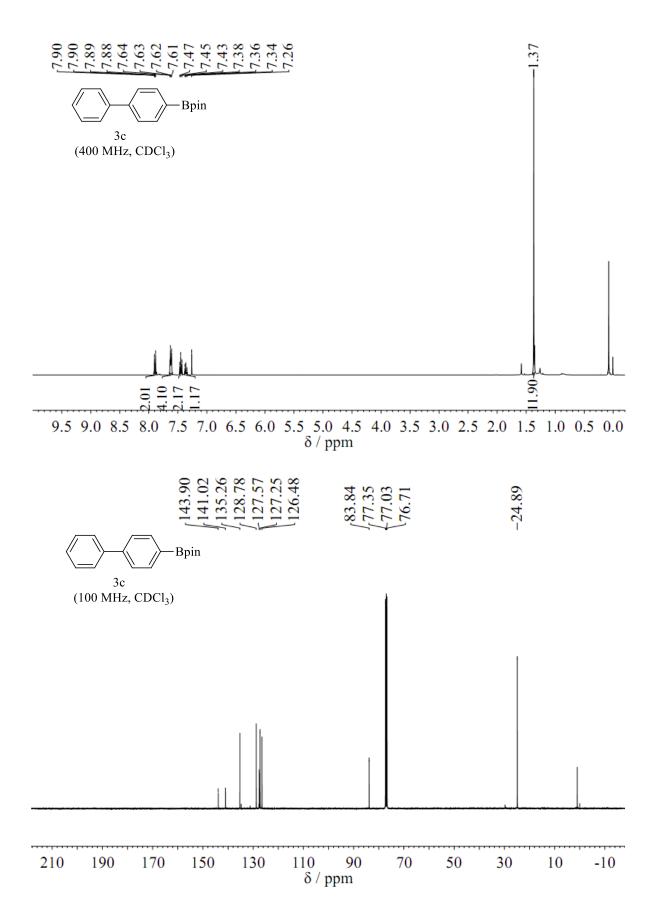

 $\underline{\mathbf{Mp}} = 62-64 \ ^{\circ}\text{C}. \ \underline{^{1}\text{H NMR (400 MHz, CHCl_3)}} \ \delta \ 8.13-8.12 \ (\text{d}, J = 2.2 \text{ Hz}, 1\text{H}), 8.08-8.05 \ (\text{dd}, J = 8.8, 2.3 \text{ Hz}, 1\text{H}), 7.82-7.79 \ (\text{dd}, J = 8.3, 1.3 \text{ Hz}, 1\text{H}), 7.59-7.57 \ (\text{d}, J = 8.7 \text{ Hz}, 1\text{H}), 7.50-7.44 \ (\text{m}, 2\text{H}), 7.00- 6.98 \ (\text{d}, J = 8.8 \text{ Hz}, 1\text{H}), 6.87 \ (\text{d}, J = 0.9 \text{ Hz}, 1\text{H}), 3.89-3.87 \ (\text{d}, J = 6.5 \text{ Hz}, 2\text{H}), 2.49 \ (\text{s}, 3\text{H}), 2.23-2.16 \ (\text{dt}, J = 13.3, 6.7 \text{ Hz}, 1\text{H}), 1.09-1.08 \ (\text{d}, J = 6.7 \text{ Hz}, 6\text{H}). \\ \underline{^{13}\text{C NMR (100 MHz, CDCl_3)}} \ \delta \ 164.99, \ 161.70, \ 154.04, \ 137.59, \ 132.45, \ 132.15, \ 131.66, \\ 130.09, \ 128.29, \ 126.93, \ 115.73, \ 113.52, \ 112.50, \ 102.67, \ 75.55, \ 27.11, \ 19.09, \ 17.21. \\ \mathbf{HRMS-ESI} \ \text{calcd for (M^++H) } 349.1375; \ \text{found } 349.1376. \ \mathbf{IR:} 2923.88, \ 2853.09, \ 2227.89, \\ 1730.90, \ 1659.22, \ 1505.13, \ 1446.94, \ 1012.71, \ 734.14, \ 702.16. \\ \end{array}$

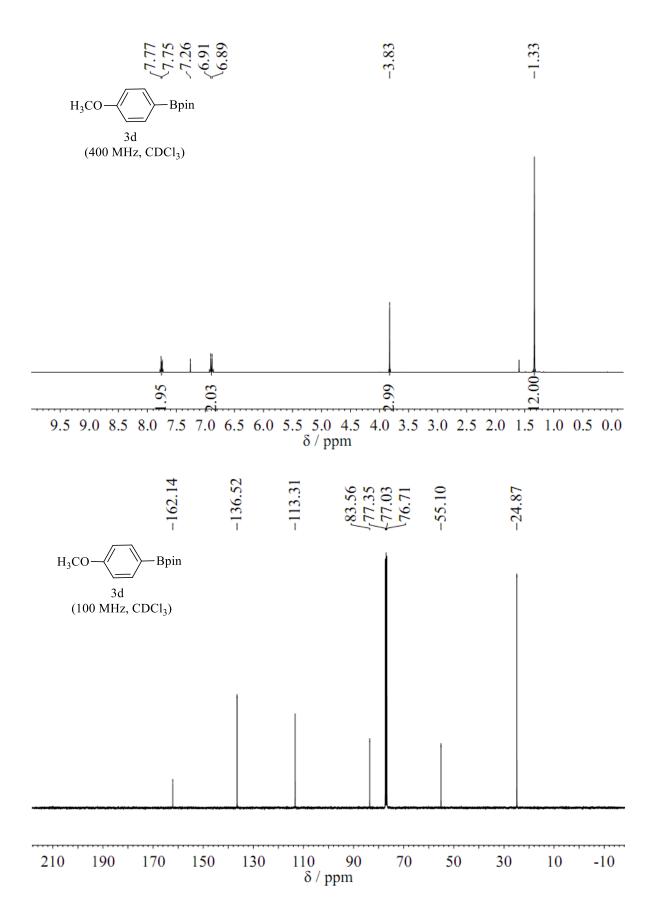
N,*N*-dipropyl-[1,1'-biphenyl]-4-sulfonamide(Scheme 5, 5aa)¹²

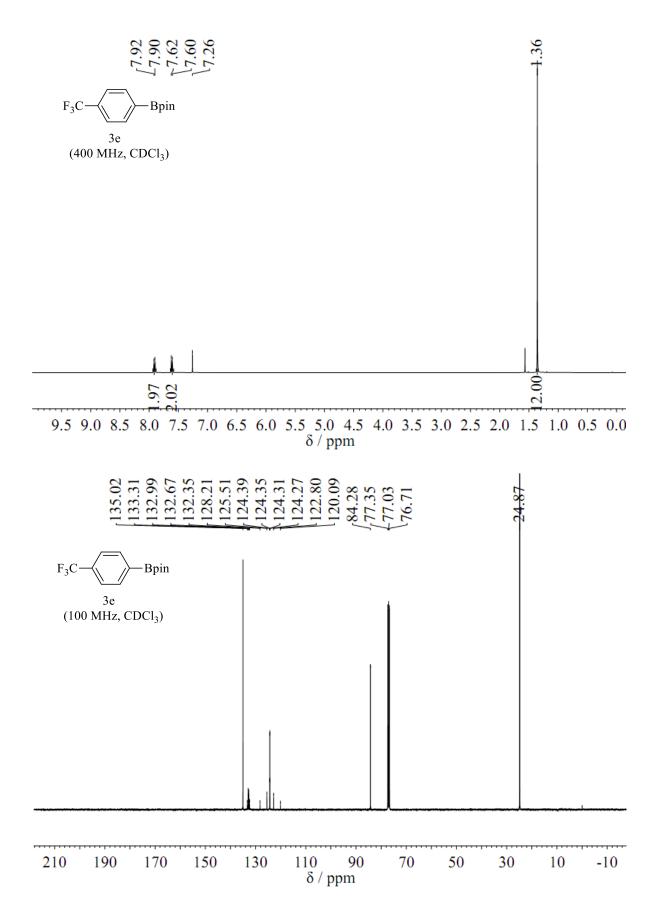
According to the general procedure, the reaction of probenecid (0.2 mmol, 1.0 equiv), phenylboronic acid (2.0 equiv), Pd(OAc)₂ (3 mol%), 1,4-bis(diphenylphosphino)butane (6 mol%), *N*,*N*-diisopropylethylamine (2.0 equiv), H₃BO₃ (2.0 equiv) and trimethylacetic anhydride (2.0 equiv) in 1,4-dioxane (1.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 97% yield (61.5 mg). White solid. <u>¹H NMR (400 MHz, CDCl₃)</u> δ 7.92-7.86 (m, 2H), 7.77-7.69 (d, *J* = 8.9 Hz, 2H), 7.62-7.60 (d, *J* = 7.9 Hz, 2H), 7.53-7.46 (m, 2H), 7.43-7.39 (dd, *J* = 8.2, 6.4 Hz, 1H), 3.13-3.09 (m, 4H), 1.61-1.55 (q, *J* = 7.5 Hz, 4H), 0.91-0.87 (t, *J* = 7.4 Hz, 6H). <u>¹³C NMR (100 MHz, CDCl₃)</u> δ 145.08, 139.40, 138.74, 130.12 129.03, 128.39, 127.58, 127.29, 50.12, 22.11, 11.23.


(13S)-3-([1,1'-Biphenyl]-4-ylmethoxy)-13-methyl-7,8,9,11,12,13,15,16-octahydro-6H-cyc lopenta[a]phenanthren-17(14H)-one (Scheme 5, 5ab)




According to the general procedure, the reaction of 4-((((13S)-13-methyl-17-oxo-7,8,9,11, 12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl)oxy)methyl)benzoic acid (0.2 mmol, 1.0 equiv), phenylboronic acid (2.0 equiv), Pd(OAc)₂ (3 mol%), 1,4-bis(diphenylphosphino)butane (6 mol%), N,N-diisopropylethylamine (2.0 equiv), H₃BO₃ (2.0 equiv) and trimethylacetic anhydride (2.0 equiv) in 1,4-dioxane (1.0 mL) for 15 h at 160 °C, afforded after work-up and chromatography the title compound in 63% yield (55.0 mg). <u>New compound</u>. Yellow solid. <u>Mp</u> = 56-58 °C. <u>¹H NMR (400 MHz, CDCl₃) δ </u> 7.84-7.79 (m, 4H), 7.62-7.58 (t, J = 8.0 Hz, 1H), 7.56-7.53 (d, J = 12.0 Hz, 2H), 7.51-7.47 (t, J = 8.0 Hz, 2H), 7.23-7.21 (d, J = 8.0 Hz, 1H), 6.81-6.78 (dd, J = 8.0, 4.0 Hz, 1H), 6.74 (s, 1H), 5.14 (s, 2H), 2.92-2.89 (q, J = 4.0 Hz, 3H), 2.54-2.47 (dd, J = 20.0, 8.0Hz, 1H), 2.41-2.39 (d, *J* = 8.0Hz, 1H), 2.29-1.94 (m, 8H), 1.68-1.60 (m, 2H), 1.51-1.49 (d, *J* = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.92, 156.86, 148.55, 138.05, 137.43, 132.38, 130.17, 128.81, 128.57, 127.96, 127.37, 127.14, 121.62, 114.90, 112.40, 69.72, 50.41, 44.15, 37.98, 35.87, 31.54, 29.41, 26.34, 25.74, 21.60, 13.83. HRMS-ESI calcd for (M⁺+H) 437.2481; found 437.2473. IR: 2921.46, 2852.29, 1736.82, 1659.39, 1494.39, 1204.79, 799.06, 731.04, 704.61.


Reference


- 1. Liu, C.; Ji, C.; Hong, X.; Szostak, M. Angew. Chem. Int. Ed. 2018, 51, 16963-16968.
- 2. Adelphe, M.; John D.; Bhuwan, C. J. Am. Chem. Soc. 2016, 9, 2985-2988.
- 3. Li, H.; Ma, B.; Liu, Q. Angew. Chem. Int. Ed. 2020, 34, 14388-14393.
- 4. Calum, W.; Julien, C.; Albert, I. Org. Lett. 2015, 17, 6030-6033.
- 5. Madoori, M.; Narra, V.; Jonnadula, V. Phys. Chem. Chem. Phys. 2017, 39, 26535-26539.
- 6. Liu, B.; Jin, F.; Wang, T. Angew. Chem. Int. Ed .2017, 41, 12712-12717.
- 7. Jiang, M.; Yang, H.; Fu, H. Org. Lett. 2016, 18, 5248-5251.
- 8. Timo, L.; Frédéric, R.; Leroux. Org. Lett. 2011, 13, 4479-4481.
- 9. Clary, J.; Terry, J.; Scott, E. Heterocycles, 2012, 1, 331-341.
- 10. Muzaffar, K.; Zhao, J; Sharafitdin, M. Adv. Synth. Catal. 2020, 4, 776-781.
- 11. Sarshar; S. PCT. WO 2007/028104 A2 .2007,3,1-67.
- 12. Liu, C.; Ji, C.; Qin, Z. Iscience. 2019, 19, 749-759.
- 13. Nicole, A.; La, B.; Jennifer, A. Eur. J. Org. Chem. 2015, 1, 5546-5553.
- 14. Ankur, M.; Anshu, S.; Aurobinda, M. Dalton Trans. 2019, 48, 17083-17096.
- 15. Yoichi, M.; Toshihiro, W.; Tomohiko, B. Chem. Eur. J. 2010, 37, 11311-11319.
- 16. Tang, J.; Biafora, A.; J, L. Angew. Chem. Int. Ed. 2015, 54, 13130-13133.
- 17. Derible, A.; Diebold, C.; Dentzer, J. Eur. J. Org. Chem. 2014, 34, 7699-7706.
- 18. Ambre, R.; Yang, H.; Chen, W. Eur. J. Inorg. Chem. 2019, 30, 3511-3517.

