Supporting Information

Visible Light-mediated Hydrogen Atom Transfer and Proton Transfer for the Conversion of (2-Vinylaryl)methanol Derivatives to Arylaldehydes or Aryl Ketones

Jun Yan ${ }^{[a]}$, Ziqi Yu ${ }^{[a]}$, Hao-Zhao Wei ${ }^{[a]}$, Min Shi ${ }^{*[a, b]}$ and Yin Wei* ${ }^{*[b]}$${ }^{a}$ Key Laboratory for Advanced Materials \& Institute of Fine Chemicals, School of Chemistry \&Molecular Engineering, East China University of Science and Technology, 130 Meilong Road,Shanghai 200237, P. R. China, ${ }^{b}$ State Key Laboratory of Organometallic Chemistry, Center forExcellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Instituteof Organic Chemistry, Chinese Academy of Sciences, 345 LinglingRoad, Shanghai 200032, P. R.China.mshi@mail.sioc.ac.cn, weiyin@sioc.ac.cn
Table of Contents

1. General remarks 2
2. General procedures for the synthesis of substrates $\mathbf{1}$ 4
3. General procedure for the synthesis of $\mathbf{2}$ 13
4. Mechanistic Investigations 14
5. Transformation of the products 20
6. Spectroscopic data of substrates $\mathbf{1}$ 22
7. Spectroscopic data of products 92
8. Computational details 175
9. References 205

1. General remarks

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded at $400 \mathrm{MHz}, 100 \mathrm{MHz}$ and 376 MHz , respectively. HRMS spectra were recorded by EI, ESI, FI method. Infrared spectra were recorded on a PerkinElmer PE-983 spectrometer with absorption in cm^{-1}. Mass spectra were recorded by EI, ESI, and HRMS was measured on an Agilent Technologies 6224 TOF LC/MS instrument and a Waters Micromass GCT Permier. Melting points were determined on a digital melting point apparatus and temperatures were uncorrected. The employed solvents were dried up by standard methods when necessary. Commercially obtained reagents were used without further purification. All reactions were monitored by TLC plate analysis with silica gel coated plates (Huanghai GF254). Flash column chromatography was performed by using 300-400 mesh silica gel eluting with ethyl acetate and petroleum ether at increased pressure.

Reaction setup

Figure S1. 5 W LEDs strip and reaction setup

As depicted in the picture, reactions were carried out in oven-dried sealed tubes. The reaction temperature was maintained at room temperature by a water bath and a fan.

2. General procedures for the synthesis of substrates 1

Synthesis of substrates $\mathbf{1 a - 1 h}, \mathbf{1 j - 1 z}$, and $\mathbf{1 a i} \mathbf{i}^{1,2}$

S6
1

S1 (10.0 mmol) and dry tetrahydrofuran (THF, 40.0 mL) were added to a Schlenk flask under argon atmosphere. Then Grignard's reagent $\mathbf{S 2}$ (1.2 equiv) was added dropwise at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at room temperature for 3 h before quenching with a $\mathrm{HCl}(1.0 \mathrm{M})$ solution and extracted three times with ethyl acetate (EtOAc). The combine organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated under reduced pressure and purified by a silica gel column chromatography to obtain the corresponding carboxylic acids (S3).

MeI (2.0 equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.5 equiv) were added to a solution of $\mathbf{S 3}$ (1.0 equiv) in N, N dimethylformamide (DMF). The resulting mixture was stirred at room temperature for 3 h before EtOAc was added and washed three times with water. The organic phase was dried over anhydrous
$\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to obtain the corresponding crude products ($\mathbf{S 4}$).
Methyltriphenylphosphonium bromide ($10.0 \mathrm{mmol}, 2.0$ equiv) and dry THF (50 mL) were added to a Schlenk flask under argon atmosphere and then t-BuOK (1.0 M in THF, $15 \mathrm{~mL}, 3.0$ equiv) was added dropwise. The resulting mixture was stirred at room temperature for 30 minutes, then $\mathbf{S 3}$ (5.0 $\mathrm{mmol})$ was added and stirred for 16 h . The mixture was quenched with a $\mathrm{NaOH}(10 \%, 50 \mathrm{~mL})$ solution, then the aqueous phase was acidified with a $\mathrm{HCl}(1.0 \mathrm{M})$ solution to $\mathrm{pH}=1$ and extracted three times with EtOAc. The combine organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated under reduced pressure and purified by a silica gel column chromatography to obtain the corresponding carboxylic acids (S5).

3-bromopropyltriphenylphosphonium bromide ($6.0 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{NaH}(12.0 \mathrm{mmol}, 1.2$ equiv) were added to a Schlenk flask under argon atmosphere and then dry THF was added. The mixture was stirred at $75^{\circ} \mathrm{C}$ for 2 h and then a solution of compound $\mathbf{S 4}(5.0 \mathrm{mmol}, 1.0$ equiv) in 5.0 mL THF was added. The reaction mixture was stirred at $75^{\circ} \mathrm{C}$ overnight before quenching with a $\mathrm{HCl}(1.0 \mathrm{M})$ solution and extracted three times with EtOAc. The combine organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated under reduced pressure and purified by a silica gel column chromatography to obtain the corresponding products $\mathbf{S 6}$.

DIBAL-H ($1.0 \mathrm{M}, 4.0$ equiv) was added slowly to a solution of $\mathbf{S 5}$ or $\mathbf{S 6}$ (1.0 equiv) in dry dichloromethane (DCM) at $-78{ }^{\circ} \mathrm{C}$ under argon atmosphere. After that, the reaction mixture was stirred at room temperature for 3 h and quenching with 10 mL of $\mathrm{H}_{2} \mathrm{O}, 30.0 \mathrm{~mL}$ of $15 \% \mathrm{NaOH}, 10$ mL of $\mathrm{H}_{2} \mathrm{O}$ sequence. The resulting mixture was stirred at room temperature for 1 h and extracted three times with EtOAc. The combine organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated under reduced pressure and purified by a silica gel column chromatography to obtain the corresponding products 1.

Synthesis of substrates 1ac-1ah

S8 were synthesized according to the previous literature. ${ }^{[2]}$ Alkyltriphenylphosphonium bromide ($24.0 \mathrm{mmol}, 1.2$ equiv) and dry THF (50.0 mL) were added to a Schlenk flask under argon atmosphere and then t-BuOK (1.0 M in THF, $24 \mathrm{~mL}, 1.2$ equiv) was added dropwise. The resulting mixture was stirred at room temperature for 30 minutes before $\mathbf{S 3}(20.0 \mathrm{mmol})$ was added. The reaction mixture was stirred at rt for 2 h before quenching with a $\mathrm{HCl}(1.0 \mathrm{M})$ solution and extracted three times with EtOAc. The combine organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated under reduced pressure and purified by a silica gel column chromatography to obtain the corresponding product $\mathbf{S 8}$.
$n-\mathrm{BuLi}(2.4 \mathrm{M}, 1.2$ equiv) was added slowly to a solution of $\mathbf{S 8}$ (1.0 equiv) in dry THF at -78 ${ }^{\circ} \mathrm{C}$ under argon atmosphere. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 minutes and then DMF (5.0 $\mathrm{mmol}, 1.0$ equiv) was added. The reaction was stirred at rt for 2 h before quenching with a $\mathrm{HCl}(1.0$ M) solution and extracted three times with EtOAc. The combine organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated under reduced pressure and purified by a silica gel column chromatography to obtain the corresponding products $\mathbf{S 9}$.

CuI (2.2 equiv), LiCl (2.2 equiv) and dry THF (30.0 mL) were added to a Schlenk flask under argon atmosphere. The resulting mixture was stirred at $-40^{\circ} \mathrm{C}$ for 30 minutes, then a solution of $\mathbf{S 9}$ (1.0 equiv) in dry THF was added. The reaction mixture was stirred at rt for 2 h before quenching with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted three times with EtOAc. The combine organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated under reduced pressure and purified by a silica gel column chromatography to obtain the corresponding products $\mathbf{1}$.

Synthesis of substrates $\mathbf{1 r}$ and $\mathbf{1 a j}^{3}$

Phosphate ester and dry THF were added to a Schlenk flask under argon atmosphere and then t BuOK (1.0 M in THF) was added dropwise. The resulting mixture was stirred at room temperature for 30 minutes before $\mathbf{S 4}$ was added. The reaction mixture was stirred at $75^{\circ} \mathrm{C}$ overnight before quenching with a $\mathrm{HCl}(1.0 \mathrm{M})$ solution and extracted three times with EtOAc. The combine organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated under reduced pressure and purified by a silica gel column chromatography to obtain the corresponding products $\mathbf{S 1 0}$.
$\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathbf{S 1 1}$, and dry toluene $(30.0 \mathrm{~mL})$ were added to a Schlenk flask under argon atmosphere. The reaction mixture was stirred at $75^{\circ} \mathrm{C}$ overnight. The organic phase was concentrated under reduced pressure and purified by a silica gel column chromatography to obtain the corresponding products S12.

DIBAL-H ($1.0 \mathrm{M}, 5.0$ equiv) was added slowly to a solution of $\mathbf{S 1 0}$ or $\mathbf{S 1 2}$ (1.0 equiv) in dry dichloromethane (DCM) at $-78{ }^{\circ} \mathrm{C}$ under argon atmosphere. After that, the reaction mixture was stirred at room temperature for 3 h and quenching with 10 mL of $\mathrm{H}_{2} \mathrm{O}, 30.0 \mathrm{~mL}$ of $15 \% \mathrm{NaOH}, 10$ mL of $\mathrm{H}_{2} \mathrm{O}$ sequence. The resulting mixture was stirred at room temperature for 1 h and extracted three times with EtOAc. The combine organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated under reduced pressure and purified by a silica gel column chromatography to obtain the corresponding products $\mathbf{1 r}$ or 1aj.

Synthesis of substrate 1al

$\mathbf{1}(5.0 \mathrm{mmol}), \mathrm{CBr}_{4}(6.0 \mathrm{mmol}, 1.2$ equiv) and dry DCM $(10 \mathrm{~mL})$ were added to a Schlenk flask under argon atmosphere and then $\mathrm{PPh}_{3}(1.0 \mathrm{M}$ in $\mathrm{DCM}, 6.0 \mathrm{~mL}, 1.2$ equiv) was added dropwise at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h before quenching with $\mathrm{H}_{2} \mathrm{O}$ and extracted three times with EtOAc. The combine organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated under reduced pressure and purified by a silica gel column chromatography to obtain the corresponding product S13.

S13 (4.0 mmol), potassium thioacetate (4.8 mmol , 1.2 equiv), and acetone $(20 \mathrm{~mL})$ were added to a Schlenk flask under argon atmosphere. The reaction mixture was stirred at rt overnight before quenching with $\mathrm{H}_{2} \mathrm{O}$ and extracted three times with EtOAc. The combine organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated under reduced pressure and purified by a silica gel column chromatography to obtain the corresponding products $\mathbf{S 1 4}$.
$\mathrm{LiAlH}_{4}(1.0 \mathrm{M}, 2.0$ equiv) was added slowly to a solution of $\mathbf{S 1 4}$ (1.0 equiv) in dry THF at -78 ${ }^{\circ} \mathrm{C}$ under argon atmosphere. After that, the reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 3 h and quenching with 10 mL of $\mathrm{H}_{2} \mathrm{O}, 30.0 \mathrm{~mL}$ of $15 \% \mathrm{NaOH}, 10 \mathrm{~mL}$ of $\mathrm{H}_{2} \mathrm{O}$ sequence. The resulting mixture was stirred at room temperature for 1 h and extracted three times with EtOAc. The combine organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated under reduced pressure and purified by a silica gel column chromatography to obtain the corresponding product $\mathbf{1 a l}$.

Synthesis of the deuterated substrates. ${ }^{4}$

3-bromopropyltriphenylphosphonium bromide ($6.0 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{NaH}(12.0 \mathrm{mmol}, 1.2$ equiv) were added to a Schlenk flask under argon atmosphere and then dry THF was added. The mixture was stirred at $75^{\circ} \mathrm{C}$ for 2 h and then a solution of compound $\mathbf{S 7}$ ($5.0 \mathrm{mmol}, 1.0$ equiv) in 5 mL THF was added. The reaction mixture was stirred at $75^{\circ} \mathrm{C}$ overnight before quenching with a $\mathrm{HCl}(1.0 \mathrm{M})$ solution and extracted three times with EtOAc. The combine organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated under reduced pressure and purified by a silica gel column chromatography to obtain the corresponding product $\mathbf{S 8}$.
$\mathbf{S 8}(4.0 \mathrm{mmol})$ and dry tetrahydrofuran (THF, 10 mL) were added to a Schlenk flask under argon atmosphere, then $n-\operatorname{BuLi}\left(2.4 \mathrm{M}, 1.2\right.$ equiv) was added dropwise at $-78^{\circ} \mathrm{C}$. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h , and then d_{7}-DMF was added slowly. Afterward, the reaction mixture was stirred at rt for 3 h before quenching with $\mathrm{H}_{2} \mathrm{O}$ and extracted three times with EtOAc. The combine organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated under reduced pressure and purified by a silica gel column chromatography to obtain the corresponding product $\mathbf{S 9}$.
NaBH_{4} (1.2 equiv) was added slowly to a solution of $\mathbf{S 9}$ (1.0 equiv) in MeOH at $0^{\circ} \mathrm{C}$. After that, the reaction mixture was stirred at room temperature for 3 h before quenching with $\mathrm{H}_{2} \mathrm{O}$ and extracted three times with EtOAc. The combine organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated under reduced pressure and purified by a silica gel column chromatography to obtain the deuterated product $\left[D_{I}\right]$-1a with $97 \% \mathrm{D}$ content.
NaBD_{4} (1.2 equiv) was added slowly to a solution of $\mathbf{S 9}$ (1.0 equiv) in MeOH at $0^{\circ} \mathrm{C}$. After that, the reaction mixture was stirred at room temperature for 3 h before quenching with $\mathrm{H}_{2} \mathrm{O}$ and extracted three times with EtOAc. The combine organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated under reduced pressure and purified by a silica gel column chromatography to obtain the deuterated product $\left[D_{2}\right]$-1a with $99 \% \mathrm{D}$ content.
(2-(cyclopropylidene(phenyl)methyl)phenyl)methanol $\mathbf{1 a}$ (2.0 mmol) was added to MeOD (5 mL) in a Schlenk tube and the mixture was stirred at room temperature for 48 h . The reaction solvent was removed by reduced pressure distillation. Repeat the above operation to obtain deuterated product [$\left.D_{I}\right]$-1a' with 90% D content.

$\stackrel{m}{4}$

$\stackrel{8}{\circ}$

3. General procedure for the synthesis of 2

To a 10.0 mL sealed tube were added substrate $\mathbf{1}(0.20 \mathrm{mmol}, 1.0$ equiv $), \operatorname{Ir}\left(\mathrm{dF}^{2}-\mathrm{CF}_{3}{ }^{-}\right.$ ppy $)_{2}($ dtbbpy $) \mathrm{PF}_{6}\left(0.004 \mathrm{mmol}, 0.02\right.$ equiv), and $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$, then the resulting mixture was bubbled with argon for 15 minutes. The resulting mixture was stirred upon irradiation of 5 W blue LEDs at rt for 3-48 hours. Then, the solvent was removed under vacuum and the residue was purified by a silica gel column chromatography (petroleum ether : ethyl acetate $=10: 1$) to give the desired products $\mathbf{2}$ in 24 - 96% yields.

4. Mechanistic Investigations

4.1 Deuterium labeling experiment

a)

$\left[D_{1}\right]-\mathbf{1} \mathbf{a}, \mathrm{D}>99 \%$
[D_{1}]-2a, yield: 55\%, $k_{H} / k_{D}=5.7$
b)

$\left[D_{2}\right]-1 \mathbf{a}, \mathrm{D}>99 \%$

c)

Experimental procedure:
a) To a 10.0 mL sealed tube were added substrate $\left[D_{I}\right]-\mathbf{1 a}\left(0.20 \mathrm{mmol}, 1.0\right.$ equiv), $\operatorname{Ir}\left(\mathrm{dF}^{2}-\mathrm{CF}_{3}-\right.$ ppy $)_{2}($ dtbbpy $) \mathrm{PF}_{6}\left(0.004 \mathrm{mmol}, 0.02\right.$ equiv), and $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$, then the resulting mixture was bubbled with argon for 15 minutes. The resulting mixture was stirred upon irradiation of 5 W blue LEDs at rt for 12 hours. Then, the solvent was removed under vacuum and the residue was purified by a silica gel column chromatography (petroleum ether: ethyl acetate $=10: 1$) to give the desired product $\left[D_{1}\right]$-2a in 55% yield.
b) To a 10.0 mL sealed tube were added substrate $\left[D_{2}\right]-1 \mathbf{1 a}\left(0.20 \mathrm{mmol}, 1.0\right.$ equiv), $\operatorname{Ir}\left(\mathrm{dF}^{-} \mathrm{CF}_{3}-\right.$ ppy $)_{2}($ dtbbpy $) \mathrm{PF}_{6}\left(0.004 \mathrm{mmol}, 0.02\right.$ equiv), and $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$, then the resulting mixture was bubbled with argon for 15 minutes. The resulting mixture was stirred upon irradiation of 5 W blue LEDs at rt for 24 hours. Then, the solvent was removed under vacuum and the residue was purified
by a silica gel column chromatography (petroleum ether: ethyl acetate $=10: 1$) to give the desired product $\left[D_{2}\right]$-2a in 50% yield with 99% D content.
c) To a 10.0 mL sealed tube were added substrate $\left[D_{I}\right]-\mathbf{1 a} \mathbf{a}^{\prime}(0.20 \mathrm{mmol}, 1.0$ equiv $), \operatorname{Ir}\left(\mathrm{dF}^{2}-\mathrm{CF}_{3}-\right.$ ppy $)_{2}($ dtbbpy $) \mathrm{PF}_{6}\left(0.004 \mathrm{mmol}, 0.02\right.$ equiv), and $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$, then the resulting mixture was bubbled with argon for 15 minutes. The resulting mixture was stirred upon irradiation of 5 W blue LEDs at rt for 24 hours. Then, the solvent was removed under vacuum and the residue was purified by a silica gel column chromatography (petroleum ether: ethyl acetate $=10: 1$) to give the desired product $\left[D_{I}\right]-\mathbf{2 a} \mathbf{a}^{\prime}$ in 91% yield with 87% D content.

4.2 Luminescence quenching experiments (Stern-Volmer studies).

Emission intensities were recorded using a Hitachi F-4600 FL spectrophotometer with a 10 nm band width. Different concentration of $\mathbf{1 a}$ solutions were prepared and added to a 1 cm path length quartz cuvette fitted with a Teflon® septum under argon atmosphere. In this experiment, the appropriate amount of $\mathbf{1 a}$ was added to a 0.001 M photocatalyst solution in MeCN under an argon atmosphere and the emission from the sample was collected. The photocatalyst was excited at 435 nm and the emission intensity is collected at $430-600 \mathrm{~nm}$.

Fluorescence quenching experiment

Stern-Volmer quenching experiment

4.3 Cyclic Voltammetry Experiments

Cyclic Voltammogram was recorded by the CH Instruments Electrochemical Workstation model CHI760E used a Pt as counter electrode, a glassy carbon as working electrode and a saturated glycerol electrode as reference electrode. A solution of the substrates $\mathbf{1 a}$ or $\mathbf{1 1}$ in $\mathrm{MeCN}(0.1 \mathrm{M})$ was tested with $0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$ as the supporting electrolyte. Scan rate $=0.1 \mathrm{~V} / \mathrm{s}$.

4.3 Quantum Yield and Light on/off Experiments

To further investigate whether the reaction involved a chain process, we measured the quantum yield of the reaction of $\mathbf{1 a}$.

$$
\phi=\frac{n_{x}}{n_{p}}=\frac{n_{x}}{\frac{\Delta E \times S \times t}{N_{A} h v}}=\frac{n_{x} \times N_{A} \times h \times c}{\Delta E \times S \times t \times \lambda}
$$

n_{x} is the amount of photochemical or photophysical events x occurred during irradiation, n_{p} is the number of photons absorbed by the reactant. E is the radiant power. S is the irradiated area. t is the irradiated time. N_{A} is the Avogadro constant. h is the Planck constant. v is the frequency of incident light. n_{x} was analyzed by ${ }^{1} \mathrm{H}$ NMR, ΔE was measured by ILT1400 Portable Radiometer/Photometer. ${ }^{5}$

To a cuvette were added substrate $\mathbf{1}\left(0.20 \mathrm{mmol}, 1.0\right.$ equiv), $\operatorname{Ir}\left(\mathrm{dF}^{2}-\mathrm{CF}_{3}-\mathrm{ppy}\right)_{2}(\mathrm{dtbbpy}) \mathrm{PF}_{6}(0.004$ mmol, 0.02 equiv), and $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$, then the resulting mixture was bubbled with argon for 15 minutes. The resulting mixture was stirred upon irradiation of 100 W blue LEDs at rt for 30 min . The reaction mixture was concentrated in vacuo and analyzed by ${ }^{1} \mathrm{H}$ NMR spectrum using 1,3,5trimethoxybenzene as an internal standard. The quantum yield is calculated to be 0.13 .

In the control experiment shown below, successive intervals of irradiation and dark periods. The result was that the reaction process was completely interrupted in the absence of light and resumed with further light, demonstrating that continuous light is necessary for the 1a to 2a conversion process.

5. Transformation of the products

(a) Methyltriphenylphosphonium bromide (0.40 mmol , 2.0 equiv) and dry THF (5.0 mL) were added to a flame-dried Schlenk tube under argon atmosphere and then t-BuOK (1.0 M in THF, 0.4 $\mathrm{mL}, 2.0$ equiv) was added dropwise. The resulting mixture was stirred at room temperature for 30 minutes, then $2 \mathbf{a}(0.2 \mathrm{mmol})$ was added and stirred for 3 h before quenching with a $\mathrm{HCl}(1.0 \mathrm{M})$ solution and extracted three times with EtOAc. The combine organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phase was concentrated under reduced pressure and purified by a silica gel column chromatography to obtain the corresponding product 4.
(b) To a flame-dried Schlenk tube were added 2a ($0.20 \mathrm{mmol}, 1.0$ equiv), phenylsilane (0.24 $\mathrm{mmol}, 1.2$ equiv), boron tribromide (0.24 mmol , 1.2 equiv, 0.24 mL 1.0 M solution in DCM) and anhydrous DCM (0.6 mL) under argon. The resulting mixture was stirred for 3 h before quenching with a solution of pinacol ($0.6 \mathrm{mmol}, 3.0$ equiv) in $\mathrm{Et}_{3} \mathrm{~N}(1.0 \mathrm{~mL})$. The organic phase was concentrated under reduced pressure and purified by a silica gel column chromatography to obtain the corresponding product 5 .
(c) To a flame-dried Schlenk tube were added $\mathbf{2 a}\left(0.20 \mathrm{mmol}, 1.0\right.$ equiv), $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(0.24$ mmol, 1.2 equiv), $\mathrm{CH}_{3} \mathrm{COONa}\left(0.24 \mathrm{mmol}, 1.2\right.$ equiv) and $\mathrm{HCOOH} / \mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~mL}, 3: 2)$ and the resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 3 h . The organic phase was concentrated under reduced pressure and purified by a silica gel column chromatography to obtain the corresponding product 6
(d) To a flame-dried Schlenk tube were added 2a ($0.20 \mathrm{mmol}, 1.0$ equiv) or $\mathbf{2 b}(0.20 \mathrm{mmol}, 1.0$ equiv), phenylacetophenone ($0.60 \mathrm{mmol}, 3.0$ equiv), $\mathrm{NH}_{4} \mathrm{I}$ ($0.40 \mathrm{mmol}, 2$ equiv), DMSO (0.60 mmol , 3.0 equiv) and $\mathrm{PhCl}(0.8 \mathrm{~mL})$ and the resulting mixture was stirred at $130^{\circ} \mathrm{C}$ for 12 h under molecular oxygen (1.0 atm). The organic phase was concentrated under reduced pressure and purified by a silica gel column chromatography to obtain the corresponding products $\mathbf{7}$ or $\mathbf{8}$.
(e) To a flame-dried Schlenk tube were added $\mathbf{2 b}$ ($0.20 \mathrm{mmol}, 1.0$ equiv), dimethyl malonate (0.40 mmol , 2 equiv) AcOH ($0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$), piperazine ($0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$), and toluene $(2.0 \mathrm{~mL})$ and the resulting mixture was stirred at $100^{\circ} \mathrm{C}$ for 12 h . The organic phase was concentrated under reduced pressure and purified by a silica gel column chromatography to obtain the corresponding product 9 .

6. Spectroscopic data of substrates 1

(2-(cyclopropylidene(phenyl)methyl)phenyl)methanol (1a)

A white solid, M.P.: $116-118{ }^{\circ} \mathrm{C}, 2100 \mathrm{mg}, 82 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 7.54(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 2 \mathrm{H}), 4.44(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.64-1.57(\mathrm{~m}, 2 \mathrm{H}) 1.42(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.15-1.11(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta$ $140.2,139.6,139.2,130.3,128.4,127.8,127.7,127.6,127.1,126.5,125.0,77.4,77.1,76.8,63.2,5.6$, 1.7. IR (acetone) v 3274, 3050, 2923, 1596, 1490, 1442, 1364, 1158, 1004, $835 \mathrm{~cm}^{-1}$. HRMS (EI) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}\left(\mathrm{M}^{+}\right):$238.1196, Found: 238.1194.

(2-(1-phenylvinyl)phenyl)methanol (1b)

This is a known compound and its spectroscopic data are consistent with those in the previous literature. ${ }^{1}$ CAS number: 71264-86-3. A colorless oil. $908 \mathrm{mg}, 80 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, TMS, $400 \mathrm{MHz}) \delta 7.49(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 7 \mathrm{H}), 5.79(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.25(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 1.55(\mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 150 \mathrm{MHz}\right) \delta 148.3$, 140.6, 140.5, 138.7, 130.2, 128.6, 128.1, 128.1, 128.0, 127.6, 126.6, 115.7, 63.2.

(2-(1-(4-chlorophenyl)vinyl)phenyl)methanol (1c)

This is a known compound and its spectroscopic data are consistent with those in the previous literature. ${ }^{1}$ CAS number: 98216-74-1. A colorless oil. $843 \mathrm{mg}, 71 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, TMS, $400 \mathrm{MHz}) \delta 7.51(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 5 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~s}$, $1 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 1.96(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 147.1,139.8,139.0,138.6$, 133.8, 130.1, 128.7, 128.2, 127.88, 127.85, 127.6, 116.1, 62.9.

(2-(1-(4-(trifluoromethyl)phenyl)vinyl)phenyl)methanol (1d)

This is a known compound and its spectroscopic data are consistent with those in the previous literature. ${ }^{4}$ CAS number: $345295-66-1$. A colorless oil. $608 \mathrm{mg}, 78 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right.$, $400 \mathrm{MHz}) \delta 7.56-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.38$ $(\mathrm{d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta$ 147.1, 144.0, $139.5,138.6,130.2,129.8(\mathrm{q}, J=32.4 \mathrm{~Hz}), 128.3,127.9,127.7,126.8,125.5(\mathrm{q}, J=3.8 \mathrm{~Hz}), 123.8$ $(\mathrm{q}, J=271.0 \mathrm{~Hz}), 117.7,62.9 .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{CFCl}_{3}, 376 \mathrm{MHz}\right) \delta-62.6$.

2.58

(2-(1-(p-tolyl)vinyl)phenyl)methanol (1e)

This is a known compound and its spectroscopic data are consistent with those in the previous literature. ${ }^{[1]}$ CAS number: $2001050-08-2$. A colorless oil. $704 \mathrm{mg}, 80 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right.$, $400 \mathrm{MHz}) \delta 7.48(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.76(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 2.33(\mathrm{~s}$, $3 \mathrm{H}), 1.45(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 148.1,140.7,138.6,137.9,137.8,130.2$, $129.2,128.1,128.0,127.6,126.4,114.7,63.3,21.1$.

(

(2-(1-(4-methoxyphenyl)vinyl)phenyl)methanol (1f)

This is a known compound and its spectroscopic data are consistent with those in the previous literature. ${ }^{6}$ CAS number: 2001050-09-3. A white solid. $765 \mathrm{mg}, 87 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right.$, $400 \mathrm{MHz}) \delta 7.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $5.70(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100\right.$ MHz) $\delta 159.5,147.6,140.7,138.7,133.2,130.1,128.0,127.9,127.8,127.6,113.9,113.7,63.2,55.3$.

(2-(1-(3-chlorophenyl)vinyl)phenyl)methanol (1g)

A colorless oil, $450 \mathrm{mg}, 84 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 7.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.39-7.29 (m, 2H), 7.26-7.17 (m, 4H), $7.10(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J$
 $130.2,129.7,128.3,128.0,127.9,127.7,126.5,124.8,116.9,63.0$. IR (acetone) v 3376, 3054, 2971, $1597,1493,1444,1189,1073,904,695 \mathrm{~cm}^{-1}$. HRMS (EI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}\left(\mathrm{M}^{+}\right): 244.0649$, Found: 244.0647.

(2-(1-(thiophen-2-yl)vinyl)phenyl)methanol (1h)

This is a known compound and its spectroscopic data are consistent with those in the previous literature. ${ }^{1}$ CAS number: 2712651-65-3. A white solid, $810 \mathrm{mg}, 81 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, TMS, $400 \mathrm{MHz}) \delta 7.51(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.4,1 \mathrm{H})$, $7.20(\mathrm{~d}, J=5.2,1 \mathrm{H}), 6.90-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.61-6.60(\mathrm{~m}, 1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H})$, $1.75(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta$ 145.2, 141.7, 139.6, 138.7, 129.7, 128.3, 128.0, 127.5, 126.2, 125.4, 114.0, 63.0.

(5-chloro-2-(1-phenylvinyl)phenyl)methanol (1i)
A colorless oil, $572 \mathrm{mg}, 86 \%$ yield. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 7.50(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.29-7.22 (m, 6H), $7.17(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.75$ (br, 1 H$) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 147.0,142.4,139.6,138.6,134.5,130.2,129.7,128.3$, $128.0,127.9,127.7,126.5,124.8,116.9,77.4,77.1,76.8,63.0$. IR (acetone) v 3382, 3056, 2973, $1594,1494,1478,1403,1190,908,879 \mathrm{~cm}^{-1} . \mathrm{HRMS}(\mathrm{EI}) \mathrm{Calcd}$. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}\left(\mathrm{M}^{+}\right): 244.0649$, Found: 244.0643.

(4-chloro-2-(1-phenylvinyl)phenyl)methanol (1j)
This is a known compound and its spectroscopic data are consistent with those in the previous literature. ${ }^{6}$ CAS number: 2191304-69-3. A colorless oil, $491 \mathrm{mg}, 76 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{TMS}$, $400 \mathrm{MHz}) \delta 7.42(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.23(\mathrm{~m}, 7 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}), 1.72$ $(\mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 147.1,141.9,139.9,137.2,133.1,129.9,129.3,128.6$, 128.2, 128.0, 126.5, 116.3, 62.4 .

등
$\stackrel{\text { F }}{\substack{4 \\ i}}$ $\stackrel{\underset{i}{\mathrm{~F}}}{\underset{i}{\mathrm{~F}}}$

(4-bromo-2-(1-phenylvinyl)phenyl)methanol (1k)

This is a known compound and its spectroscopic data are consistent with those in the previous literature. ${ }^{4}$ CAS number: $2821886-40-0$. A colorless oil, $481 \mathrm{mg}, 73 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{TMS}$, $400 \mathrm{MHz}) \delta 7.49(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 5 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 5.23(\mathrm{~s}$, $1 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H}), 1.50(\mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, TMS, 100 MHz$) \delta 146.8,142.0,139.6,137.4$, $132.5,130.7,129.3,128.4,128.0,126.2,121.0,116.0,62.2$.

(5-bromo-2-(1-phenylvinyl)phenyl)methanol (11)
A colorless oil, $451 \mathrm{mg}, 70 \%$ yield. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 7.67(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.45(\mathrm{dd}, J=8.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H})$, $4.38(\mathrm{~s}, 2 \mathrm{H}), 1.67-1.63(\mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 147.2,140.8,139.9,139.0$, $131.7,130.6,130.4,128.6,128.2,126.4,122.0,116.0,62.4$. IR (acetone) v 3330, 3081, 2926, 1613, 1493, 1477, 1397, 908, 864, $706 \mathrm{~cm}^{-1}$. HRMS (EI) Calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}\left(\mathrm{M}^{+}\right): 288.0144$, Found: 288.0138.

(5-methyl-2-(1-phenylvinyl)phenyl)methanol (1m)
This is a known compound and its spectroscopic data are consistent with those in the previous literature. ${ }^{4}$ CAS number: $2821886-39-7$. A colorless oil, $231 \mathrm{mg}, 82 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right.$, $400 \mathrm{MHz}) \delta 7.39(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.21(\mathrm{dd}, J=7.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=$ $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{br}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 148.4,140.8,140.5,137.3,135.8,130.9,128.7,128.5$, $128.3,128.0,126.6,115.5,63.0,21.1$.

(4-methyl-2-(1-phenylvinyl)phenyl)methanol (1n)

A colorless oil, $161 \mathrm{mg}, 78 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 7.32-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.17-$ $7.16(\mathrm{~m}, 2 \mathrm{H}), 5.78(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{br}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 148.3,140.9,138.4,137.8,137.6,130.2,128.9,128.5$, 128.3, 127.9, 126.6, 115.5, 63.2, 21.2. IR (acetone) v 3351, 3052, 2923, 1581, 1493, 1445, 1027, 906, 819, $780 \mathrm{~cm}^{-1}$. HRMS (EI) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}\left(\mathrm{M}^{+}\right):$244.1196, Found: 244.1198.

(3-(1-phenylvinyl)naphthalen-2-yl)methanol (10)

A white solid, M.P.: $110-112{ }^{\circ} \mathrm{C}, 332 \mathrm{mg}, 87 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 7.95(\mathrm{~s}$, $1 \mathrm{H}), 7.90-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~s}, 5 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 4.54$ (s, 2H), $1.61(\mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 148.2,140.4,138.8,137.8,133.3,133.0$, 130.3, 128.3, 128.2, 128.1, 128.0, 127.7, 127.6, 126.3, 126.2, 126.0, 124.2, 116.2, 63.2. IR (acetone) v 3367, 3056, 2925, 1600, 1508, 1492, 1444, 1039, 880, $699 \mathrm{~cm}^{-1}$. HRMS (EI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}$ $\left(\mathrm{M}^{+}\right):$260.1196, Found: 260.1202.

(2-(1-phenylprop-1-en-1-yl)phenyl)methanol (1p)

A yellow oil, $107 \mathrm{mg}, 63 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 7.56(\mathrm{dd}, J=6.8,2.1 \mathrm{~Hz}$, $0.8 \mathrm{H}), 7.42-7.17(\mathrm{~m}, 8.3 \mathrm{H}), 6.37(\mathrm{q}, J=7.0 \mathrm{~Hz}, 0.8 \mathrm{H}), 5.88(\mathrm{q}, J=7.2 \mathrm{~Hz}, 0.21 \mathrm{H}), 4.44-4.20(\mathrm{~m}$, $2 \mathrm{H}), 1.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.56 \mathrm{H}), 1.65(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3.1 \mathrm{H}), 1.47(\mathrm{br}, 0.26 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, TMS, 100 MHz) $\delta 143.0,141.3,141.2,140.4,139.9,139.1,138.5,137.9,130.4,129.3,128.4,128.2$, 128.1, 127.9, 127.6, 127.54, 127.46, 127.4, 127.0, 126.0, 124.8, 63.3, 63.0, 15.6, 15.5. IR (acetone) v 3333, 3058, 2932, 1495, 1445, 1379, 1198, 1030, 870, $698 \mathrm{~cm}^{-1}$. HRMS (EI) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}$ $\left(\mathrm{M}^{+}\right):$224.1196, Found: 224.1196.

N
nin

(2-(1-phenylbut-1-en-1-yl)phenyl)methanol (1q)

A colorless oil. $131 \mathrm{mg}, 68 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 7.53(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 0.60 \mathrm{H})$, $7.41-7.16(\mathrm{~m}, 8.24 \mathrm{H}), 6.25(\mathrm{t}, J=7.4 \mathrm{~Hz}, 0.61 \mathrm{H}), 5.74(\mathrm{t}, J=7.4 \mathrm{~Hz}, 0.43 \mathrm{H}), 4.42(\mathrm{~d}, J=4.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.38-2.31(\mathrm{~m}, 0.96 \mathrm{H}), 1.99-1.94(\mathrm{~m}, 1,21 \mathrm{H}), 1.46$ (br, 0.55), 1.32 (br, 0.36), $1.10(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1.36 \mathrm{H}), 1.01(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1.71 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 142.9,141.2,140.2,139.8$, 139.1, 138.9, 138.6, 138.1, 134.8, 132.2, 130.5, 130.4, 129.2, 128.4, 128.3, 128.2, 127.9, 127.7, $127.54,127.51,127.45,127.1,127.1,126.1,63.4,63.1,23.3,22.9,14.7,14.1$. IR (acetone) v 3333, 3059, 2930, 1493, 1444, 1374, 1195, 1031, 869, $699 \mathrm{~cm}^{-1}$. HRMS (EI) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{16}\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)^{+}$: 220.1247, Found: 220.1245.

(E)-3-(2-(hydroxymethyl)phenyl)-3-phenylprop-2-en-1-ol (1r)

A colorless oil, $256 \mathrm{mg}, 78 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 7.47-7.45(\mathrm{~m}, 1 \mathrm{H})$, 7.35$7.20(\mathrm{~m}, 7 \mathrm{H}), 7.11-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=9.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{q}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{~s}$, 2H), 3.96-3.92(m, 1H), 3.81-3.76(m, 1H). ${ }^{13} \mathrm{C}^{\mathrm{N}} \mathrm{NR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 142.5,140.1,138.6$, $137.9,130.2,129.9,128.4,128.11,128.07,127.8,127.4,126.5,62.6,59.4$. IR (acetone) v 3312, 3027, $2924,2877,1492,1445,1198,1109,964,695 \mathrm{~cm}^{-1}$. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)^{+}: 222.1039$, Found: 222.1038 .

(2-((4-(tert-butyl)phenyl)(cyclopropylidene)methyl)phenyl)methanol (1s)
A colorless oil. $381 \mathrm{mg}, 81 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 7.52(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.39-7.29 (m, 6H), 7.21-7.19 (m, 1H), $4.44(\mathrm{~s}, 2 \mathrm{H}), 1.61-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}), 1.12-1.08(\mathrm{~m}$, 2H). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 150 \mathrm{MHz}\right) \delta 150.1,139.9,139.2,137.4,130.3,128.2,127.9$, 127.60, $127.57,126.2,125.3,123.9,63.4,34.5,31.3,5.6,1.6$ IR (acetone) v $3367,2962,2903,1518,1461$, 1363, 1228, 1019, 836, $759 \mathrm{~cm}^{-1}$. HRMS (EI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}\left(\mathrm{M}^{+}\right):$292.1822, Found: 292.1817.

(2-((4-chlorophenyl)(cyclopropylidene)methyl)phenyl)methanol (1t)
A colorless oil. $306 \mathrm{mg}, 81 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 7.54(\mathrm{~d}, J=7.2 \mathrm{~Hz} 1 \mathrm{H})$, 7.42-7.37 (m, 1H), 7.36-7.32 (m, 3H), 7.26-7.24 (m, 2H), 7.20-7.17 (m, 1H), 4.43 (s, 2H), 1.62-1.58 $(\mathrm{m}, 2 \mathrm{H}), 1.50(\mathrm{br}, 1 \mathrm{H}), 1.14-1.11(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 139.1,139.0,138.7$, $132.7,130.2,128.5,127.8,127.7,127.6,127.4,125.6,77.4,77.1,76.8,63.0,5.6,1.8$. IR (acetone) v $3312,3048,2972,1489,1448,1399,1189,1092,903,760 \mathrm{~cm}^{-1}$. HRMS (EI) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClO}$ $\left(\mathrm{M}^{+}\right): 270.0806$, Found: 270.0801 .

[^0]
(2-(cyclopropylidene(4-fluorophenyl)methyl)phenyl)methanol (1u)
A colorless oil, $401 \mathrm{mg}, 87 \%$ yield ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 7.54(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.40-7.32 (m, 4H), $7.20(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 1.63-1.57(\mathrm{~m}, 3 \mathrm{H})$,
 $\mathrm{Hz}), 136.4,130.2,128.1,128.0,127.8,127.6,126.4,125.6,124.5,115.2(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 63.1,5.5$, 1.8. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-115.3. IR (acetone) v 3369, 3025, 2972, 1482, 1445, 1224, 1189, 1100, 904, $757 \mathrm{~cm}^{-1}$. HRMS (EI) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{FO}\left(\mathrm{M}^{+}\right): 254.1101$, Found: 254.1104.

190	180	170	160	150	140	130	120	110	100	${ }_{\mathrm{fl}}{ }^{9}(\mathrm{p}$	80	70	60	50	40	30	20	10	0	-10

-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	$\begin{gathered} \hline 130 \\ \text { fl } \end{gathered}$	-140 (ppm)	-150	-160	-170	-180	-190	-200	-210	-220	-230	-240	-25

(2-(cyclopropylidene(4-methoxyphenyl)methyl)phenyl)methanol (1v)

A white solid, M.P.: $106-108{ }^{\circ} \mathrm{C}, 391 \mathrm{mg}, 72 \%$ yield, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 7.53(\mathrm{~d}, \mathrm{~J}$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{br}, 1 \mathrm{H}), 1.13-1.09(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, TMS, 100 MHz$)$ $\delta 158.6,139.9,139.1,133.0,130.2,127.80,127.77,127.61,127.5,122.5,113.7,63.3,55.2,5.4,1.6$. IR (acetone) v 3382, 2933, 1604, 1577, 1452, 1300, 1176, 1032, 756, $700 \mathrm{~cm}^{-1}$. HRMS (FI) Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right): 266.1301$, Found: 266.1305 .

(2-(cyclopropylidene(3-methoxyphenyl)methyl)phenyl)methanol (1w)
A colorless oil, $208 \mathrm{mg}, 73 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 7.52(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.39-7.30 (m, 2H), 7.22-7.17 (m, 2H), 7.01-7.00 (m, 1H), $6.94(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.76(\mathrm{~m}, 1 \mathrm{H})$, $4.44(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{br}, 1 \mathrm{H}), 1.14-1.11(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, TMS, 150 MHz) $\delta 159.7,141.8,139.6,139.2,130.3,129.3,128.3,127.9,127.7,127.6,125.3,119.2$, $112.5,112.2,63.3,55.2,5.6,1.7$. IR (acetone) v 3383, 2969, 1596, 1577, 1463, 1287, 1162, 1039, 752, $697 \mathrm{~cm}^{-1}$. HRMS (EI) Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right):$266.1301, Found: 266.1298.

(2-(cyclopropylidene(thiophen-2-yl)methyl)phenyl)methanol (1x)
A white solid, M.P.: $105-108^{\circ} \mathrm{C}, 290 \mathrm{mg}, 73 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 7.57(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.18(\mathrm{~m}, 3 \mathrm{H}), 6.92-6.90(\mathrm{~m}$, $1 \mathrm{H}), 6.57(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 1.56-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.25-1.21(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, TMS, 100 MHz$) \delta 146.2,139.2,138.5,129.9,128.0,127.9,127.5,127.0,124.9,124.5,123.9,123.7$, $63.1,5.7,3.4$. IR (acetone) v 3336, 3067, 2970, 1600, 1484, 1234, 1032, 844, 753, $697 \mathrm{~cm}^{-1} . \mathrm{HRMS}$
(EI) Calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{OS}\left(\mathrm{M}^{+}\right): 242.0760$, Found: 242.0762 .

(2-(cyclopropylidene(naphthalen-2-yl)methyl)phenyl)methanol (1y)

A yellow solid, M.P.: $125-128{ }^{\circ} \mathrm{C}, 408 \mathrm{mg}, 89 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 7.91-$ $7.81(\mathrm{~m}, 3 \mathrm{H}), 7.71-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.47-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.30(\mathrm{~m}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 1.75-1.71(\mathrm{~m}$, $3 \mathrm{H}), 1.21-1.17(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, TMS, 100 MHz) 139.6, 139.3, 137.7, 133.5, 132.6, 130.4, $128.6,128.2,128.0,127.80,127.78,127.7,127.6,126.2,125.9,125.8,125.5,124.6,63.2,5.9,1.8$. IR (acetone) v 3380, 3056, 2974, 1600, 1505, 1485, 1193, 1037, 866, $749 \mathrm{~cm}^{-1}$. HRMS (EI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}\left(\mathrm{M}^{+}\right): 286.1352$, Found: 286.1354 .

(2-(cyclobutylidene(phenyl)methyl)phenyl)methanol (1z)

A white solid, M.P.: $115-117{ }^{\circ} \mathrm{C}, 150 \mathrm{mg}, 85 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 7.51-7.49$ $(\mathrm{m}, 1 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.12(\mathrm{~m}, 6 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 3.17-3.13(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.58(\mathrm{~m}, 2 \mathrm{H})$, 2.11-2.03 (m, 2H), $1.62(\mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}^{\mathrm{N}}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 142.3,139.7,139.1,138.3$, $131.1,130.6,128.3,128.1,127.6,127.5,127.1,126.3,63.2,32.9,31.8,17.5$. IR (acetone) v 3344, $3056,2951,1494,1443,1412,1197,1032,901,695 \mathrm{~cm}^{-1}$. HRMS (EI) Calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{2}\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)^{+}$: 232.1247, Found: 232.1248.

(2-(prop-1-en-2-yl)phenyl)methanol (1aa)

This is a known compound and its spectroscopic data are consistent with those in the previous literature. ${ }^{6}$ CAS number: $180092-32-4$. A colorless oil, $501 \mathrm{mg}, 90 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right.$, $400 \mathrm{MHz}) \delta$ 7.46-7.43 (m, 1H), 7.29-7.25 (m, 2H), 7.18-7.15 (m, 1H), $5.23(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 4.70$ (s, 2H), $2.08(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta$ 144.7, 142.9, 137.3, 128.1, 128.0, 127.5, 127.2, 115.4, 63.0, 25.1.

(2-vinylphenyl)methanol (1ab)

This is a known compound and its spectroscopic data are consistent with those in the previous literature. ${ }^{8}$ CAS number: $35106-82-2$. A colorless oil, $601 \mathrm{mg}, 93 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, TMS, $400 \mathrm{MHz}) \delta 7.54(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{dd}, J=17.4,10.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.71(\mathrm{~d}, J$ $=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.84(\mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, TMS, 100 MHz$) \delta 137.5,136.6,133.7,128.3,128.2,127.9,125.9,116.5,63.4$.

1-(2-(cyclopropylidene(phenyl)methyl)phenyl)ethan-1-ol (1ac)

A white solid, M.P.: $115-118{ }^{\circ} \mathrm{C}, 327 \mathrm{mg}, 89 \%$ yield. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 7.62(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 2 \mathrm{H}), 4.80(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $1.77(\mathrm{br}, 1 \mathrm{H}), 1.63-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.16-1.05(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, TMS, 100 MHz$) \delta 144.1,140.3,138.8,130.2,128.5,128.3,127.9,127.3,126.9,126.3,125.2,124.6$, $66.8,24.3,5.6,1.5$. IR (acetone) $v 3376,3054,2971,1597,1493,1444,1189,1073,904,695 \mathrm{~cm}^{-1}$. HRMS (EI) Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}\left(\mathrm{M}^{+}\right): 250.1352$, Found: 250.1355.

1-(2-(1-phenylvinyl)phenyl)ethan-1-ol (1ad)

This is a known compound and its spectroscopic data are consistent with those in the previous literature. ${ }^{8}$ CAS number: $2597348-95-1$. A white solid, $331 \mathrm{mg}, 79 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, TMS, $400 \mathrm{MHz}) \delta 7.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.19(\mathrm{~m}, 7 \mathrm{H}), 5.81(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.21(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{br}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 148.4,143.7,140.7,139.6,130.2,128.5,128.3,128.0,127.3,126.4$, 125.4, 115.6, 66.7, 24.3.

1-(2-(1-phenylvinyl)phenyl)pentan-1-ol (1ae)

This is a known compound and its spectroscopic data are consistent with those in the previous literature. ${ }^{9}$ CAS number: 2111919-00-5. A colorless oil, $310 \mathrm{mg}, 88 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, TMS, $400 \mathrm{MHz}) \delta 7.58(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.24(\mathrm{~m}, 7 \mathrm{H}), 5.82(\mathrm{~d}, J=1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.23(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{dd}, J=8.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{br}, 1 \mathrm{H}), 1.67-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.57-$ $1.48(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.04(\mathrm{~m}, 4 \mathrm{H}), 0.81(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 148.6$, $142.9,140.9,139.9,130.2,128.4,128.2,127.9,127.2,126.4,125.8,115.6,70.5,37.9,28.1,22.4$, 13.9.

[^1]

3-methyl-1-(2-(1-phenylvinyl)phenyl)butan-1-ol (1af)
This is a known compound and its spectroscopic data are consistent with those in the previous literature. ${ }^{10}$ CAS number: 1632462-81-7. A colorless oil, $345 \mathrm{mg}, 87 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{TMS}$, $400 \mathrm{MHz}) \delta 7.57(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.22(\mathrm{~m}, 7 \mathrm{H}), 5.80(\mathrm{~d}, J=1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.22(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{dd}, J=9.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.66-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{br}, 1 \mathrm{H}), 1.33-$ $1.21(\mathrm{~m}, 2 \mathrm{H}), 0.90-0.84(\mathrm{~m}, 1 \mathrm{H}) 0.79(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.67(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, TMS, 100 MHz) $\delta 148.6,143.2,140.9,139.8,130.3,128.5,128.3,127.9,127.2,126.4,125.9,115.7$, 68.7, 47.5, 24.8, 23.4, 21.5 .

[^2]

2-methyl-1-(2-(1-phenylvinyl)phenyl)propan-1-ol (1ag)
A colorless oil, $201 \mathrm{mg}, 81 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 7.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.41-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.22(\mathrm{~m}, 7 \mathrm{H}), 5.80(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{br}, 1 \mathrm{H}), 0.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.62(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, TMS, 100 MHz$) \delta 148.7,141.9,141.0,140.6,130.3,128.5,128.0,127.9,127.2,126.4$, 126.3, 115.8, 75.8, 34.4, 19.6, 18.2. IR (acetone) v 3449, 3057, 2929, 1613, 1573, 1493, 1444, 1027, 904, $709 \mathrm{~cm}^{-1}$. HRMS (EI) Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18}\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)^{+}: 234.1403$, Found: 234.1403.

N
Z
+
$\stackrel{n}{i n}$

[^3]

3-(1,3-dioxolan-2-yl)-1-(2-(1-phenylvinyl)phenyl)propan-1-ol (1ah)

A colorless oil, $340 \mathrm{mg}, 80 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 7.55(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.36(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.17(\mathrm{~m}, 7 \mathrm{H}), 5.77(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.70(\mathrm{t}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=8.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.79-3.73(\mathrm{~m}, 2 \mathrm{H}), 2.19$ (br, 1H), 1.76-1.48 (m, 4H). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 148.5,142.5,140.8,139.8,130.2$, $128.4,128.2,127.9,127.2,126.4,125.8,115.8,104.2,70.3,64.9,64.8,32.4,30.2$. IR (acetone) v $3425,3059,2928,1614,1573,1494,1407,1322,906,770 \mathrm{~cm}^{-1}$. HRMS (FI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3}$ $\left(\mathrm{M}^{+}\right): 310.1563$, Found: 310.1560.

[^4]

(2-(1-phenylvinyl)phenyl)methanethiol (1al)

A colorless oil, $203 \mathrm{mg}, 68 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, TMS, 400 MHz) $\delta 7.34-7.20(\mathrm{~m}, 6 \mathrm{H})$, 7.18$7.14(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 2 \mathrm{H}), 3.32$ $(\mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 147.7,141.6,140.5,135.1,130.52,130.48,128.4$, $127.8,127.6,127.4,126.7,116.2,41.6$. IR (acetone) v 3400, 3058, 2929, 1610, 1551, 1493, 1407, 1321, $906,777 \mathrm{~cm}^{-1}$. HRMS (EI) Calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~S}\left(\mathrm{M}^{+}\right): 226.0811$, Found: 226.0807.

7. Spectroscopic data of products

2-(cyclopropyl(phenyl)methyl)benzaldehyde (2a)

A white solid, M.P.: 67-69 ${ }^{\circ} \mathrm{C}, 44.4 \mathrm{mg}, 94 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 10.19(\mathrm{~s}$, $1 \mathrm{H}), 7.81(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.44-1.35(\mathrm{~m}$, $1 \mathrm{H}), 0.79-0.72,(\mathrm{~m}, 1 \mathrm{H}), 0.64-0.57(\mathrm{~m}, 1 \mathrm{H}), 0.47-0.41(\mathrm{~m}, 1 \mathrm{H}), 0.27-0.21(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, TMS, 100 MHz$) \delta 192.3,147.3,144.6,133.8,133.6,131.6,129.5,128.5,128.3,128.2,126.7,126.2$, $49.6,17.2,6.3,4.6 . \operatorname{IR}$ (acetone) v 3064, 3001, 2860, 1690, 1597, 1493, 1451, 1200, $871,751 \mathrm{~cm}^{-1}$. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}\left(\mathrm{M}^{+}\right):$236.1196, Found: 236.1202.

2-(1-phenylethyl)benzaldehyde (2b)

This is a known compound and its spectroscopic data are consistent with those in the previous literature. ${ }^{11}$ CAS number: 61608-90-0. A colorless oil. $35.3 \mathrm{mg}, 84 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, TMS, $400 \mathrm{MHz}) \delta 10.31(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.30-7.16(\mathrm{~m}, 5 \mathrm{H}), 5.24(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right.$, $100 \mathrm{MHz}) \delta 192.4,148.6,145.6,133.9,133.3,132.0,128.5,128.4,127.8,126.6,126.2,38.9,22.2$.

2-(1-(4-chlorophenyl)ethyl)benzaldehyde (2c)

A colorless oil. $47.0 \mathrm{mg}, 96 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 10.26(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{dd}, J$ $=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.15(\mathrm{~m}, 2 \mathrm{H}), 5.28(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 192.6,147.9,144.2,134.0,133.2,133.0,131.9,129.2,128.5,128.3$, 126.8, 38.2, 22.1. IR (acetone) v 3061, 2962, 2876, 1693, 1598, 1489, 1396, 1197, 908, $835 \mathrm{~cm}^{-1}$.

Calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}\left(\mathrm{M}^{+}\right): 244.0649$, Found: 244.0650.

2-(1-(4-(trifluoromethyl)phenyl)ethyl)benzaldehyde (2d)
A colorless oil. $40.6 \mathrm{mg}, 73 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 10.14(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{dd}, J$ $=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.30(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right.$, $100 \mathrm{MHz}) \delta 192.7,149.8,147.3,134.0,133.6,133.3,128.5(\mathrm{~d}, J=32.2 \mathrm{~Hz}), 128.4,128.2,127.0$, $125.3(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 124.2(\mathrm{q}, J=273.6 \mathrm{~Hz}), 38.7,21.9 .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.4 . \mathrm{IR}$ (acetone) $v 3076,2870,2735,1689,1571,1452,1293,1186,864,695$. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{OF}_{3}\left(\mathrm{M}^{+}\right)$: 278.0913, Found: 278.0908.

?

2-(1-(p-tolyl)ethyl)benzaldehyde (2e)

A colorless oil. $40.8 \mathrm{mg}, 91 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 10.31(\mathrm{~s}, 1 \mathrm{H}), 7.83-7.80$ $(\mathrm{m}, 1 \mathrm{H}), 7.52(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~s}, 4 \mathrm{H}), 5.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.30$ $(\mathrm{s}, 3 \mathrm{H}), 1.65(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 192.4,148.8,142.7,135.7$, $133.9,133.3,131.7,129.2,128.3,127.6,126.5,38.5,22.3,21.0$. IR (acetone) v 2967, 2873, 1692, 1598, 1511, 1486, 1246, 1031, 825, $748 \mathrm{~cm}^{-1}$. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}\left(\mathrm{M}^{+}\right): 224.1196$, Found: 224.1207.

2-(1-(4-methoxyphenyl)ethyl)benzaldehyde (2f)

A colorless oil. $31.2 \mathrm{mg}, 65 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 10.34(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.83(\mathrm{~m}$, $2 \mathrm{H}), 5.20(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{TMS}, 100$ $\mathrm{MHz}) \delta 192.4,157.9,149.0,137.8,133.9,133.2,131.8,128.7,128.3,126.5,113.8,55.2,38.0,22.3$. IR (acetone) v 2966, 2831, 1690, 1598, 1489, 1453, 1245, 1029, 831, $769 \mathrm{~cm}^{-1}$. HRMS (EI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right): 240.1145$, Found: 240.1143.

[^5]

2-(1-(3-chlorophenyl)ethyl)benzaldehyde (2g)

A colorless oil. $44.1 \mathrm{mg}, 90 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 10.24(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{dd}, J$ $=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.22-7.08 (m, 4H), $5.28(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100\right.$ MHz) $\delta 192.6,147.7,147.6,134.3,134.0,133.2,133.1,129.7,128.4,127.9,126.9,126.4,126.2$, 38.5, 22.0. IR (acetone) v 3076, 2970, 2735, 1690, 1596, 1474, 1409, 1080, 824, $695 \mathrm{~cm}^{-1}$. HRMS (EI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}\left(\mathrm{M}^{+}\right): ~ 244.0649$, Found: 244.0648.

2-(1-(thiophen-2-yl)ethyl)benzaldehyde (2h)

A colorless oil. $35.9 \mathrm{mg}, 83 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 10.30(\mathrm{~s}, 1 \mathrm{H}), 7.83$ (dd, J $=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{dd}, J=5.2,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.93(\mathrm{dd}, J=5.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.82(\mathrm{~m}, 1 \mathrm{H}), 5.50(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, TMS, 100 MHz) δ 192.6, 149.7, 148.3, 134.1, 132.9, 132.6, 128.3, 126.9, 126.6, 124.2, 123.9, 34.6, 23.3. IR (acetone) v 3061, 2969, 2865, 1691, 1598, 1485, 1450, 1023, 851, $697 \mathrm{~cm}^{-1}$. HRMS (EI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{SO}\left(\mathrm{M}^{+}\right):$216.0603, Found: 216.0604

5-chloro-2-(1-phenylethyl)benzaldehyde (2i)
A colorless oil. $45.4 \mathrm{mg}, 93 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 10.25(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=8.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 3 \mathrm{H}), 5.12(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.64(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, TMS, 100 MHz) $\delta 190.7,146.9,145.0,134.5,133.8$, $132.9,130.9,130.1,128.6,127.6,126.5,38.6,22.2$. IR (acetone) v 3061, 2971, 2863, 1688, 1594, 1479, 1451, 1027, 832, $699 \mathrm{~cm}^{-1}$. HRMS (EI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}\left(\mathrm{M}^{+}\right):$244.0649, Found: 244.0656.

N
$\stackrel{i}{\infty}$
$\stackrel{\pi}{4}$
N

[^6]

4-chloro-2-(1-phenylethyl)benzaldehyde (2j)

A colorless oil. $44.4 \mathrm{mg}, 91 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 10.24(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.17(\mathrm{~m}, 7 \mathrm{H}), 5.19(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, TMS, 100 MHz) $\delta 191.0,150.3,144.8,140.5,133.2,131.7,128.7,128.6,127.7,127.0,126.5,38.8$, 22.1. IR (acetone) v 3060, 2970, 2873, 1687, 1587, 1479, 1450, 1027, 832, $698 \mathrm{~cm}^{-1}$. HRMS (EI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}\left(\mathrm{M}^{+}\right): 244.0649$, Found: 244.0669.

4-bromo-2-(1-phenylethyl)benzaldehyde (2k)

A colorless oil. $53.6 \mathrm{mg}, 93 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 10.24(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 3 \mathrm{H}), 5.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.66(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 191.2,150.3,144.8,133.1,132.0$, 131.6, 130.1, 129.5, 128.7, 127.7, 126.6, 38.8, 22.1. IR (acetone) v 3063, 2970, 2870, 1689, 1583, 1473, 1450, 1028, 854, $699 \mathrm{~cm}^{-1}$. HRMS (EI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}\left(\mathrm{M}^{+}\right): 288.0144$, Found: 288.0148.

5-bromo-2-(1-phenylethyl)benzaldehyde (21)
A colorless oil. $34.6 \mathrm{mg}, 60 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 10.25(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.16(\mathrm{~m}, 6 \mathrm{H}), 5.12(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, TMS, 100 MHz) δ 190.6, 147.4, 144.9, 136.7, 134.8, 133.9, 130.3, $128.6,127.6,126.5,120.7,38.7,22.1$. IR (acetone) v 3060, 2970, 2873, 1689, 1587, 1479, 1450, 1027, 877, $697 \mathrm{~cm}^{-1}$. HRMS (EI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}\left(\mathrm{M}^{+}\right)$: 288.0144, Found: 288.0146.

5-methyl-2-(1-phenylethyl)benzaldehyde (2m)
This is a known compound and its spectroscopic data are consistent with those in the previous literature. ${ }^{12}$ CAS number: $1979200-43-5$. A colorless oil. $25.6 \mathrm{mg}, 57 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, TMS, 400 MHz$) \delta 10.28(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=8.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.24$ $(\mathrm{m}, 3 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 3 \mathrm{H}), 5.17(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 192.6,145.9,145.7,136.3,134.7,133.1,132.2,128.4,128.4,127.7$, 126.1, 38.5, 22.2, 20.7.

4-(2-bromophenyl)-1-phenylbutan-1-one (2n)

A colorless oil. $40.4 \mathrm{mg}, 90 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 10.24(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 5 \mathrm{H}), 5.23(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 192.1,148.6,145.7,144.9,132.4,131.0,129.1$, $128.4,127.8,127.4,126.1,38.7,22.1,22.0$. IR (acetone) v 3055, 2970, 2877, 1692, 1627, 1494, 1451, 1179, 891, $698 \mathrm{~cm}^{-1}$. HRMS (EI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}\left(\mathrm{M}^{+}\right): 224.1196$, Found: 224.1198.

[^7]

3-(1-phenylethyl)-2-naphthaldehyde (20)

A white solid. $36.4 \mathrm{mg}, 70 \%$ yield. M.P.: $72-74{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 10.28(\mathrm{~s}$, $1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.53(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.17(\mathrm{~m}, 5 \mathrm{H}), 5.33(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta$ 192.6, 146.1, 143.0, 136.1, 135.7, 132.2, 131.2, 129.2, 129.1, $128.4,127.9,127.7,127.2,126.6,126.1,39.6,22.5$. IR (acetone) v $3053,2968,2876,1692,1626$, 1493, 1450, 1174, 894, $700 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{ONa}(\mathrm{M}+\mathrm{Na})^{+}: 283.1093$, Found: 283.1088.

2-(1-phenylpropyl)benzaldehyde (2p)

A colorless oil. $26.9 \mathrm{mg}, 60 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 10.36(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.23(\mathrm{~m}$, $4 \mathrm{H}), 7.17(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.00(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 192.5,147.5,144.2,133.8,132.0,128.4,128.3,128.2,126.5,126.2$, $77.3,29.1,12.6 . \operatorname{IR}$ (acetone) v $3027,2957,2931,1690,1573,1494,1408,1285,700,660 \mathrm{~cm}^{-1}$. HRMS (EI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}(\mathrm{M})^{+}: 224.1196$, Found: 224.1201.

2-(1-phenylbutyl)benzaldehyde (2q)

A colorless oil. $11.9 \mathrm{mg}, 25 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 10.36(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J$ $=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{td}, J=7.6,1.4$ Hz, 1H), 7.29-7.23 (m, 4H), 7.19-7.15 (m, 1H), 5.10 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.28$ $(\mathrm{m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 192.5,147.6,144.3,133.9$, 133.6, 132.0, 128.4, 128.3, 128.2, 126.4, 126.2, 44.0, 38.4, 21.1, 14.1. IR (acetone) v 3028, 2957, 2931, 2870, 1627, 1494, 1452, 1203, 756, $660 \mathrm{~cm}^{-1}$. HRMS (EI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}\left(\mathrm{M}^{+}\right): 238.1352$, Found: 238.1354.

-192.55

-147.62
-144.32
$\left[\begin{array}{l}133.86 \\ -133.61 \\ -132.04 \\ \hline 128.43 \\ 128.34 \\ 128.19 \\ 126.44 \\ 126.21\end{array}\right.$
 $\stackrel{\infty}{\infty}$ -21.10
-14.07

1	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	$\stackrel{1}{40}$	30	10	10
200	190	180		160	150	140	130	120	fl	(ppm)	90	8	70	6	50	40	30	20	10

2-(3-hydroxy-1-phenylpropyl)benzaldehyde (2r)

A colorless oil. $28.8 \mathrm{mg}, 60 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 10.31(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 1 \mathrm{H}), 5.35(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.52(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 193.5,147.0,143.6,134.0,133.7,133.0,128.8,128.6,128.2,126.7$, $126.5,60.5,40.2,38.6$. IR (acetone) v 3389, 3026, 2936, 2875, 1626, 1494, 1451, 1206, 758, 700 cm^{-1}. HRMS (EI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)^{+}: 222.1039$, Found: 222.1039.

2-((4-(tert-butyl)phenyl)(cyclopropyl)methyl)benzaldehyde (2s)

A colorless oil. $53.8 \mathrm{mg}, 92 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 10.22(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{dd}, J$ $=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{td}, J=7.6,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.28-7.26$ (m, 2H), 7.17-7.15 (m, 2H), 4.26 (d, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.38-1.28$ (m, 1H), 1.28 (s, $9 H), 0.79-0.70(\mathrm{~m}, 1 \mathrm{H}), 0.62-0.56(\mathrm{~m}, 1 \mathrm{H}), 0.48-0.42(\mathrm{~m}, 1 \mathrm{H}), 0.25-0.20(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, TMS, 150 MHz) δ 192.4, 149.0, 147.7, 141.5, 133.8, 133.6, 131.1, 129.6, 127.7, 126.6, 125.3, 49.3, $34.4,31.4,17.3,6.5,4.6$. IR (acetone) v 3001, 2961, 2866, 1693, 1461, 1409, 1201, 1019, 755, 659 cm^{-1}. HRMS (EI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}\left(\mathrm{M}^{+}\right)$: 292.1822, Found: 292.1831.

2-((4-chlorophenyl)(cyclopropyl)methyl)benzaldehyde (2t)

A colorless oil. $51.4 \mathrm{mg}, 95 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 10.13(\mathrm{~s}, 1 \mathrm{H}), 7.81-7.78$ $(\mathrm{m}, 1 \mathrm{H}), 7.65-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{td}, J=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 4 \mathrm{H}), 4.36(\mathrm{~d}, J=9.4 \mathrm{~Hz}$, $1 H), 1.36-1.34(\mathrm{~m}, 1 \mathrm{H}), 0.74-0.63(\mathrm{~m}, 1 \mathrm{H}), 0.61-0.60(\mathrm{~m}, 1 \mathrm{H}), 0.43-0.39(\mathrm{~m}, 1 \mathrm{H}), 0.26-0.22(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 150 \mathrm{MHz}\right) \delta 192.5,146.7,143.2,133.9,133.5,132.8,132.0,129.6,129.5$, $128.42,128.41,126.9,49.0,17.1,6.2,4.7$. IR (acetone) v $3073,3001,2857,2740,1692,1573,1450$, 1020, 870, $657 \mathrm{~cm}^{-1}$ HRMS (EI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClO}\left(\mathrm{M}^{+}\right): 270.0806$, Found: 270.0801 .

2-(cyclopropyl(4-fluorophenyl)methyl)benzaldehyde (2u)

A colorless oil. $38.7 \mathrm{mg}, 76 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 10.15(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.18(\mathrm{~m}$, $2 \mathrm{H}), 6.95(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.41-1.32(\mathrm{~m}, 1 \mathrm{H}), 0.79-0.72(\mathrm{~m}, 1 \mathrm{H}), 0.65-$ $0.58(\mathrm{~m}, 1 \mathrm{H}), 0.45-0.39(\mathrm{~m}, 1 \mathrm{H}), 0.27-0.21(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 192.5$, 161.4 (d, $J=246.4 \mathrm{~Hz}$), 147.0, 140.3, 133.9, 133.5, 132.5, 129.6 (d, $J=8 \mathrm{~Hz}$), 129.4, 126.9, 115.1 $(\mathrm{d}, J=21 \mathrm{~Hz}), 48.8,17.3,6.2,4.7 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-115.3. IR (acetone) v 3063, 3001, 2860, 1690, 1597, 1572, 1450, 1408, 1019, 871, $699 \mathrm{~cm}^{-1}$ HRMS (EI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{FO}\left(\mathrm{M}^{+}\right)$: 254.1101, Found: 254.1105.

2-(cyclopropyl(4-methoxyphenyl)methyl)benzaldehyde (2v)

A colorless oil. $43.6 \mathrm{mg}, 82 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 10.20(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{dd}, J$ $=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{td}, J=7.4,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ (s, 3H), $1.41-1.32(\mathrm{~m}, 1 \mathrm{H}), 0.78-0.71(\mathrm{~m}, 1 \mathrm{H}), 0.63-0.56(\mathrm{~m}, 1 \mathrm{H}), 0.45-0.39(\mathrm{~m}, 1 \mathrm{H}), 0.25-0.19(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, TMS, 100 MHz$) \delta 192.4,157.9,147.6,136.8,133.8,133.5,131.5,129.4,129.1,126.6$, 113.7, 55.2, 48.8, 17.2, 6.2, 4.6. IR (acetone) v 3002, 2955, 2835, 1693, 1491, 1463, 1248, 1035, 758, $700 \mathrm{~cm}^{-1}$. HRMS (EI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$: 266.1301, Found: 266.1303.

2-(cyclopropyl(3-methoxyphenyl)methyl)benzaldehyde (2w)

A colorless oil. $31.9 \mathrm{mg}, 60 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 10.20(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{dd}, J$ $=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{td}, J=7.6,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{dd}, J=8.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=9.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 1.43-1.34(\mathrm{~m}, 1 \mathrm{H}), 0.80-0.73(\mathrm{~m}, 1 \mathrm{H}), 0.64-0.57(\mathrm{~m}, 1 \mathrm{H}), 0.48-0.42(\mathrm{~m}, 1 \mathrm{H})$, 0.27-0.21 (m, 1H). ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 150 \mathrm{MHz}\right) \delta 192.4,159.6,147.2,146.3,134.0,133.9$, $133.5,131.6,129.54,129.53,129.3,126.8,126.7,120.8,114.6,114.5,111.0,55.1,49.7,17.2,6.4$, 4.7. IR (acetone) v 3071, 2955, 2835, 1693, 1490, 1463, 1179, 1109, 758, $700 \mathrm{~cm}^{-1}$. HRMS (EI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right): 266.1301$, Found: 266.1298 .

2-(cyclopropyl(thiophen-2-yl)methyl)benzaldehyde (2x)
A colorless oil. $41.2 \mathrm{mg}, 85 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 10.21(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{t}, J=4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.75(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.55-1.47(\mathrm{~m}, \mathrm{H}), 0.86-0.80(\mathrm{~m}, 1 \mathrm{H}), 0.58-$ $0.52(\mathrm{~m}, 2 \mathrm{H}), 0.30-0.27(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 192.4,148.9,146.6,134.0$, $133.3,131.9,129.4,127.1,126.5,124.6,123.9,45.4,18.4,6.8,4.5$. IR (acetone) v 3074, 3001, 2857, 1692, 1450, 1293, 1183, 1020, 750, $696 \mathrm{~cm}^{-1} . \mathrm{HRMS}(\mathrm{EI})$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{OS}\left(\mathrm{M}^{+}\right): 242.0760$, Found: 242.0763.

2-(cyclopropyl(naphthalen-2-yl)methyl)benzaldehyde (2y)

A colorless oil. $40.1 \mathrm{mg}, 70 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 10.28(\mathrm{~s}, 1 \mathrm{H}), 7.88-7.72$ $(\mathrm{m}, 6 \mathrm{H}), 7.63(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.37(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=$ $9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.48(\mathrm{~m}, 1 \mathrm{H}), 0.85-0.81(\mathrm{~m}, 1 \mathrm{H}), 0.71-0.66(\mathrm{~m}, 1 \mathrm{H}), 0.57-0.51(\mathrm{~m}, 1 \mathrm{H}), 0.39-0.33$ $(\mathrm{m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 192.5,147.1,142.2,133.9,133.6,133.4,132.1,132.0$, 129.7, 127.9, 127.8, 127.6, 127.1, 126.8, 126.3, 126.0, 125.6, 49.6, 17.2, 6.3, 4.8. IR (acetone) v 3057, $3001,2855,1691,1507,1291,1201,1019,750,661 \mathrm{~cm}^{-1}$. HRMS (EI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}\left(\mathrm{M}^{+}\right)$: 286.1352, Found: 286.1345.

[^8]

2-(cyclobutyl(phenyl)methyl)benzaldehyde (2z)
A colorless oil. $29.5 \mathrm{mg}, 59 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 10.35(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.13(\mathrm{~m}$, $5 \mathrm{H}), 5.01(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.81(\mathrm{~m}, 3 \mathrm{H}), 1.69-1.63$ $(\mathrm{m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 192.5,145.9,143.2,134.0,133.8,131.8,128.6,128.3$, $128.2,126.5,126.2,51.3,40.5,27.9,27.3,17.6$. IR (acetone) v $3063,3026,2856,1690,1494,1290$, 1206, 1030, $754,667 \mathrm{~cm}^{-1}$. HRMS (EI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}\left(\mathrm{M}^{+}\right): 250.1352$, Found: 250.1353.

2-isopropylbenzaldehyde (2aa)

This is a known compound and its spectroscopic data are consistent with those in the previous literature. ${ }^{13}$ CAS number: 6502-22-3. A colorless oil. $10.1 \mathrm{mg}, 34 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right.$, $400 \mathrm{MHz}) \delta 10.37(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.95(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, TMS, 100 MHz$) \delta 192.4,151.4,134.1,133.0,131.5,126.2,126.1,27.7,23.9$.

 1111

[^9]

2-ethylbenzaldehyde (2ab)

This is a known compound and its spectroscopic data are consistent with those in the previous literature. ${ }^{14}$ CAS number: 22927-13-5. A colorless oil. $6.5 \mathrm{mg}, 24 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right.$, $400 \mathrm{MHz}) \delta 10.29(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.30$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100\right.$ $\mathrm{MHz}) \delta 192.4,147.1,133.9,133.5,131.7,130.2,126.3,25.7,16.3$.

30	220	210	200	190	180	170	160	150	140	130	$\begin{aligned} & 120 \\ & \mathrm{fl} \end{aligned}$	$\begin{gathered} 110 \\ \mathrm{ppm}) \end{gathered}$	100	90	80	70	60	50	40	30	20	10

1-(2-(cyclopropyl(phenyl)methyl)phenyl)ethan-1-one (2ac)

A colorless oil. $30.0 \mathrm{mg}, 60 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.46-7.42 (m, 2H), 7.28-7.22 (m, 4H), 7.18-7.13 (m, 3H), $3.97(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.36-$ $1.20(\mathrm{~m}, 1 \mathrm{H}), 0.70-0.60(\mathrm{~m}, 2 \mathrm{H}), 0.38-0.33(\mathrm{~m}, 1 \mathrm{H}), 0.30-0.25(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100\right.$ $\mathrm{MHz}) \delta 204.1,145.1,143.8,139.8,130.6,129.2,128.7,128.1,127.4,125.9,125.7,50.3,30.2,17.0$, 5.9, 5.1. IR (acetone) v 3063, 3025, 2857, 1692, 1492, 1252, 1072, 1019, 738, $700 \mathrm{~cm}^{-1}$. HRMS (EI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}\left(\mathrm{M}^{+}\right): 250.1352$, Found: 250.1353 .

$\stackrel{\infty}{\stackrel{\infty}{+}}$

M N N
N

1-(2-(1-phenylethyl)phenyl)ethan-1-one (2ad)

This is a known compound and its spectroscopic data are consistent with those in the previous literature. ${ }^{15}$ CAS number: $161467-47-6$. A colorless oil. $36.3 \mathrm{mg}, 81 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, TMS, $400 \mathrm{MHz}) \delta 7.46(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 3 \mathrm{H})$, $4.86(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right)$ $\delta 203.8,146.2,145.1,139.3,130.9,128.4,128.2,128.0,127.6,125.9,125.7,39.5,30.3,22.0$.

1-(2-(1-phenylethyl)phenyl)pentan-1-one (2ae)

This is a known compound and its spectroscopic data are consistent with those in the previous literature. ${ }^{16}$ CAS number: $854660-28-9$. A colorless oil. $42.1 \mathrm{mg}, 79 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right.$, $400 \mathrm{MHz}) \delta 7.39-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 3 \mathrm{H}), 4.73(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-$ $2.68(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.43(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.55-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.22(\mathrm{~m}, 3 \mathrm{H}), 0.86$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 206.9,146.2,144.6,140.2,130.4,128.2$, $128.2,128.1,126.9,125.9,125.7,77.4,42.5,39.7,26.1,22.3,22.1,13.9$.

3-methyl-1-(2-(1-phenylethyl)phenyl)butan-1-one (2af)
A colorless oil. $39.9 \mathrm{mg}, 75 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 7.40(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35(\mathrm{dd}, J=7.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.13(\mathrm{~m}$, $3 \mathrm{H}), 4.75(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=16.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=16.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-$ $2.12(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 206.2,146.2,144.9,140.1,130.5,128.5,128.3,128.0,127.1,125.9$, 125.7, 51.7, 39.6, 24.6, 22.64, 22.61, 22.1. IR (acetone) v 30631 2954, 2869, 1685, 1493, 1260, 1057, 1011, 998, $754 \mathrm{~cm}^{-1}$. HRMS (EI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}\left(\mathrm{M}^{+}\right): 266.1665$, Found: 266.1668.
\qquad

2-methyl-1-(2-(1-phenylethyl)phenyl)propan-1-one (2ag)

This is a known compound and its spectroscopic data are consistent with those in the previous literature. ${ }^{17}$ CAS number: 1620210-43-6. A colorless oil. $36.3 \mathrm{mg}, 72 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, TMS, 400 MHz) $\delta 7.41-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.14(\mathrm{~m}, 6 \mathrm{H}), 4.64(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.25-3.18(\mathrm{~m}, 1 \mathrm{H})$, $1.61(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.27-1.22(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, TMS, 100 MHz$) \delta 210.2,146.1,145.4,139.3,130.5,128.5,128.2,128.0,126.8,126.0$, 125.6, 39.7, 39.6, 22.3, 18.3, 18.3.
\qquad
${ }^{\circ}$

2-methyl-1-(2-(1-phenylethyl)phenyl)propan-1-one (2ah)
A colorless oil. $43.5 \mathrm{mg}, 70 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 7.43(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 3 \mathrm{H}), 4.87(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.85-3.79(\mathrm{~m}, 2 \mathrm{H}), 2.89-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.87$ $(\mathrm{m}, 2 \mathrm{H}), 1.60(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 205.4,146.2,144.9,139.7$, $130.6,128.3,128.2,128.1,127.1,125.9,125.7,103.4,65.0,39.6,36.6,27.8,22.0$. IR (acetone) v $3060,3025,2966,1690,1493,1408,1139,1026,785,701 \mathrm{~cm}^{-1}$. HRMS (EI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3}$ $\left(\mathrm{M}^{+}\right): 310.1563$, Found: 310.1568.

20	210	200	190	180	170	160	150	140	130	120	$\begin{gathered} 110 \\ \mathrm{fl} \end{gathered}$	$\begin{gathered} 100 \\ (\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

7-butyl-8-methyl-8-phenylbicyclo[4.2.0]octa-1,3,5-trien-7-ol (3 and 3')
A colorless oil. $27.6 \mathrm{mg}, 51 \%$ yield, d.r. $=3: 2 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 7.43-7.27(\mathrm{~m}$, $5 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 4 \mathrm{H}), 2.03-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.73-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.51(\mathrm{~m}, 1 \mathrm{H})$, $1.47-1.34(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathrm{TMS}, 125 \mathrm{MHz}\right) \delta 149.0,148.3,143.7$, $129.5,128.5,128.1,127.7,126.8,123.2,122.8,84.7,63.2,35.5,26.8,23.8,23.4,14.2$. IR (acetone) v 3465, 3027, 2957, 2871, 1489, 1447, 1397, 1092, 934, $698 \mathrm{~cm}^{-1}$. HRMS (EI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}$ (M^{+}): 266.1665, Found: 266.1666.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 7.48-7.15(\mathrm{~m}, 9 \mathrm{H}), 2.40(\mathrm{~s}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.53(\mathrm{~m}, 1 \mathrm{H})$, $1.47-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.20-0.92(\mathrm{~m}, 3 \mathrm{H}), 0.76(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.1$, 148.7, 143.7, 129.4, 128.1, 127.8, 126.9, 126.2, 123.4, 123.1, 85.9, 61.7, 38.0, 26.9, 25.0, 23.0, 14.1. IR (acetone) v 3464, 3026, 2930, 2871, 1487, 1446, 1395, 1092, 934, $700 \mathrm{~cm}^{-1}$. HRMS (FI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}\left(\mathrm{M}^{+}\right): 266.1665$, Found: 266.1670.

180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ (\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10	0

1-(cyclopropyl(phenyl)methyl)-2-vinylbenzene (4)

A colorless oil. $42.2 \mathrm{mg}, 90 \%$ yield. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.31-$ $7.15(\mathrm{~m}, 7 \mathrm{H}), 6.86(\mathrm{dd}, J=17.4,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.56(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.40-1.35(\mathrm{~m}, 1 \mathrm{H}), 0.74-0.69(\mathrm{~m}, 1 \mathrm{H}), 0.61-0.56(\mathrm{~m}, 1 \mathrm{H}), 0.39-0.36(\mathrm{~m}, 1 \mathrm{H})$, 0.22-0.18 (m, 1H). ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 125 \mathrm{MHz}\right) \delta 144.8,142.0,137.0,135.2,128.4,128.2$, $128.2,127.7,126.4,126.2,126.0,115.9,51.4,16.9,6.0,4.5$. IR (acetone) v 3061, 3024, 3001, 1493, 1480, 1450, 1019, 989, 749, $699 \mathrm{~cm}^{-1}$. HRMS (EI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{18}\left(\mathrm{M}^{+}\right): 234.1403$, Found: 234.1405.

S \int

1-(bromomethyl)-2-(cyclopropyl(phenyl)methyl)benzene (5)
A colorless oil. $18.7 \mathrm{mg}, 31 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 7.61(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.37-7.19 (m, 8 H$), 4.36(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.43-$ $1.37(\mathrm{~m}, 1 \mathrm{H}), 0.72-0.62(\mathrm{~m}, 2 \mathrm{H}), 0.44-0.39(\mathrm{~m}, 1 \mathrm{H}), 0.29-0.26(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100\right.$ $\mathrm{MHz}) \delta 144.4,143.7,135.6,130.8,129.0,128.4,128.1,126.8,126.4,50.6,32.1,17.1,5.9,4.7$. IR (acetone) $v 3061,3025,3001,1493,1450,1428,1074,1020,767,699 \mathrm{~cm}^{-1}$. HRMS (FI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{Br}\left(\mathrm{M}^{+}\right): 300.0508$, Found: 300.0504 .

| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | 1 |
| :--- |

(E)-2-(cyclopropyl(phenyl)methyl)benzaldehyde oxime (6)

A colorless oil. $30.2 \mathrm{mg}, 60 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 8.30(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H})$, $7.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.16(\mathrm{~m}, 6 \mathrm{H}), 3.61$ $(\mathrm{d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.41-1.32(\mathrm{~m}, 1 \mathrm{H}), 0.77-0.70(\mathrm{~m}, 1 \mathrm{H}), 0.63-0.58(\mathrm{~m}, 1 \mathrm{H}), 0.41-0.36(\mathrm{~m}, 1 \mathrm{H})$, 0.23-0.17 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 149.0,144.2,143.4,130.1,129.9,128.9$, $128.4,128.1,126.8,126.6,126.3,51.2,16.9,6.1,4.6$. IR (acetone) v 3329, 3062, 3001, 2886, 1746, 1493, 1450, 1048, 1020, 755, $700 \mathrm{~cm}^{-1}$. HRMS (FI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ON}\left(\mathrm{M}^{+}\right): 251.1305$, Found: 251.1308.

[^10]

4-(2-(cyclopropyl(phenyl)methyl)phenyl)-2,6-diphenylpyridine (7)

A colorless oil. $30.1 \mathrm{mg}, 35 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, TMS, 400 MHz$) \delta 8.09(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H})$, 7.81 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.39(\mathrm{~m}, 10 \mathrm{H}), 7.32-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.14$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.46$ (d, J $=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.47-1.41(\mathrm{~m}, 1 \mathrm{H}), 0.71-0.59(\mathrm{~m}, 2 \mathrm{H}), 0.31-0.28(\mathrm{~m}, 1 \mathrm{H}), 0.15-0.11(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 156.3,151.2,144.9,142.1,140.1,139.2,129.4,129.0,128.7,128.6$, $128.4,128.28,128.26,127.0,126.3,126.0,119.5,51.7,17.6,6.0,4.7$. IR (acetone) v 3062, 3025 , 2928, 1690, 1594, 1450, 1069, 1027, 777, $696 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{~N}\left(\mathrm{M}^{+}\right): 438.2216$, Found: 438.2210 .

2,6-diphenyl-4-(2-(1-phenylethyl)phenyl)pyridine (8)

A colorless oil. $31.3 \mathrm{mg}, 38 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 8.05(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H})$, $7.51-7.40(\mathrm{~m}, 10 \mathrm{H}), 7.33(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.04(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{q}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 156.4,151.2,146.6$, $142.9,139.9,139.2,129.5,129.0,128.6,128.5,128.4,127.7,127.6,127.0,126.3,125.9,119.5,41.0$, 22.8. IR (acetone) v 3061, 3026, 2927, 1689, 1540, 1449, 1125, 1027, 760, $668 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{~N}\left(\mathrm{M}^{+}\right): 412.2060$, Found: 412.2052 .

[^11]

Dimethyl 2-(2-(1-phenylethyl)benzylidene)malonate (9)

A colorless oil. $54.5 \mathrm{mg}, 84 \%$ yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 4 \mathrm{H}), 4.34(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}$, $3 \mathrm{H}), 1.62(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 166.4,164.2,145.3,144.9,143.5$, $132.5,130.1,128.4,128.0,127.8,127.7,127.4,126.3,126.2,52.6,52.3,41.5,21.7$. IR (acetone) v $3025,2952,1726,1627,1435,1363,1211,1178,816,699 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}$ $(\mathrm{M}+\mathrm{Na})^{+}: 347.1253$, Found: 347.1248.

8. Computational details

All quantum mechanical calculations have been performed with Gaussian 16. The geometries of all species have been optimized at M06/def2svp level. The subsequent frequency calculations on the stationary points were carried out at the same level of theory to ascertain the nature of the stationary points as minima on the respective potential energy surfaces. The conformational space of flexible systems has first been searched manually and checked by xtb 6.0 program. ${ }^{18}$ Thermochemical corrections to 298.15 K have been calculated for all minima from unscaled vibrational frequencies obtained at this same level. The thermochemical corrections have been combined with single-point energies calculated at the SMD/M06/def2tzvpp//M06/def2svp level to yield free energy G_{298} at 298.15 K. The solvent effect was estimated by the IEFPCM method with radii and nonelectrostatic terms for SMD salvation model in acetonitrile $(\varepsilon=35.688)$.

	$\mathrm{E}_{\text {tot }}$	H_{298}	G_{298}
1a	-732.338744	-732.338744	-732.104125
Int-1a	-732.263832	-731.970064	-732.033133
Ts-1a	-732.242619	-731.954231	-732.014331
Int-2a	-732.302194	-732.008444	-732.070964
Int-3a	-732.310752	-732.014776	-732.073992
Ts-2a	-732.306983	-732.016095	-732.073266
Ts-3a	-732.293235	-731.999234	-732.057507
2a	-732.368948	-732.072449	-732.131522
3a	-732.336894	-732.040463	-732.099048
1b	-654.989248	-654.728352	-654.7849
Int-1b	-654.907313	-654.650127	-654.707531
Ts-1b	-654.889165	-654.636564	-654.691715
Int-2b	-654.939631	-654.681757	-654.7403
Int-3b	-654.960637	-654.700351	-654.756498
Ts-2b	-654.947388	-654.691995	-654.744907
Ts-3b	-654.933922	-654.675422	-654.728953
2b	-655.011335	-654.750471	-654.806058
3b	-654.977768	-654.716674	-654.770762
1ae	-812.176189	-811.797548	-811.866363
Int-1ae	-812.095129	-811.720512	-811.791202
Ts-1ae	-812.079921	-811.709825	-811.778621
Int-2ae	-812.127374	-811.751853	-811.823366

Int-3ae	-812.147986	-811.770428	-811.839520
Int-2ae' $^{\prime}$	-812.127120	-811.751467	-811.823698
Int-3ae' $^{\prime}$	-812.149408	-811.77166	-811.840823
Ts-2ae	-812.140132	-811.766959	-811.834335
Ts-3ae	-812.123888	-811.748006	-811.813468
Ts-3ae'	-812.123368	-811.813846	-811.854388
Ts-4	-812.107609	-811.733128	-811.801746
$\mathbf{T s - 5}$	-812.086964	-811.712161	-811.778749
$\mathbf{2 a e}$	-812.202019	-811.823613	-811.893181
$\mathbf{3}$	-812.165864	-811.787379	-811.852386
$\mathbf{3}$	-812.164283	-811.786353	-811.854980

1a

$1 \backslash 1 \backslash G I N C-B 2164 \backslash S P \backslash R M 06 \backslash d e f 2 T Z V P P \backslash C 17 H 1601 \backslash R O O T \backslash 23-M a r-2023 \backslash 0 \backslash \backslash \# p$ def2T ZVPP m06 scrf=(iefpcm, smd, solvent=Acetonitrile)
1a
0,1\C,0,1.328442, $-1.071993,-0.946493 \backslash C, 0,1.357389,0.137456,-0.236795 \backslash C, 0,2.595783,0.587$ $2,0.251074 \backslash C, 0,3.759506,-0.139383,0.029436 \backslash C, 0,3.716026,-1.335751,-0.6$ $86863 \backslash$ С, $0,2.495325,-1.79718,-1.171937 \backslash$ н, $0,0.375079,-1.454359,-1.322021$ \H, 0, 2. $640525,1.517047,0.824153 \backslash \mathrm{H}, 0,4.711263,0.229338,0.423815 \backslash \mathrm{H}, 0,4.6$ $32071,-1.907608,-0.861808 \backslash \mathrm{H}, 0,2.446196,-2.735538,-1.73216 \backslash \mathrm{C}, 0,0.116735$, 0.919055,-0.027189\C,0,-1.206694,0.249925,-0.183558\C,0,-1.600626,-0. $832411,0.623951 \backslash C, 0,-2.098375,0.727841,-1.153186 \backslash C, 0,-2.855994,-1.4131$ $15,0.424642 \backslash \mathrm{C}, 0,-3.346263,0.142779,-1.339842 \backslash \mathrm{H}, 0,-1.787092,1.569551,-1$ $.780389 \backslash \mathrm{C}, 0,-3.728113,-0.938132,-0.548373 \backslash \mathrm{H}, 0,-3.144554,-2.260514,1.05$ $6535 \backslash \mathrm{H}, 0,-4.020988,0.530039,-2.108992 \backslash \mathrm{H}, 0,-4.70583,-1.408251,-0.688018$ \C, 0, 0.133193,2.226098,0.257531\C,0,-0.646641,3.427361,0.524259\C,0,0. $874793,3.459959,0.484952 \backslash$ н, $0,1.365907,3.94665,-0.368272 \backslash$ н, $0,1.407937,3$ $.598201,1.435108 \backslash \mathrm{H}, 0,-1.140421,3.534259,1.498922 \backslash \mathrm{H}, 0,-1.195018,3.90053$ $8,-0.300498 \backslash \mathrm{C}, 0,-0.709142,-1.424915,1.677207 \backslash \mathrm{H}, 0,-1.29759,-1.540881,2$. $61318 \backslash 0,0,-0.245357,-2.669149,1.214375 \backslash \mathrm{H}, 0,0.122083,-0.73143,1.9098 \backslash \mathrm{H}$, $0,0.441231,-2.982618,1.812748 \backslash \backslash$ Version=ES64L-G16RevA.03\State=1-A $\backslash H F=-$ $732.3387442 \backslash \mathrm{RMSD}=8.285 \mathrm{e}-09 \backslash$ Dipole=0.2534951,0.5277172,0.7099081\Quadru pole=1.6223833,-0.1952131,-1.4271702,-1.1478394,3.6668724,-1.974771 \PG $=C 01[X(C 17 H 1601)] \backslash \backslash @$

Int-1a

$1 \backslash 1 \backslash G I N C-B 2146 \backslash S P \backslash U M 06 \backslash d e f 2 T Z V P P \backslash C 17 H 1601(3) \backslash R O O T \backslash 23-M a r-2023 \backslash 0 \backslash \backslash \# p$ sc $r f=(i e f p c m, s m d, s o l v e n t=A c e t o n i t r i l e)$ M06 def2tzvpp
int1 $\backslash \backslash 0,3 \backslash C, 0,1.63$ $131,-1.11589,-0.679459 \backslash C, 0,1.477484,0.22947,-0.254409 \backslash C, 0,2.656938,0.9$ $76685,0.003963 \backslash C, 0,3.911269,0.411311,-0.153183 \backslash C, 0,4.041285,-0.916706$, $-0.573161 \backslash \mathrm{C}, 0,2.892136,-1.670541,-0.832491 \backslash \mathrm{H}, 0,0.740735,-1.721875,-0.8$ $68362 \backslash \mathrm{H}, 0,2.553615,2.018049,0.330721 \backslash \mathrm{H}, 0,4.804656,1.009209,0.051727 \backslash \mathrm{H}$, $0,5.032895,-1.361284,-0.697896 \backslash \mathrm{H}, 0,2.985446,-2.710376,-1.160239 \backslash \mathrm{C}, 0,0$. $191981,0.828304,-0.098449 \backslash C, 0,-1.076766,0.095243,-0.345259 \backslash C, 0,-1.6009$ $26,-0.813209,0.593508 \backslash C, 0,-1.802857,0.357396,-1.516031 \backslash C, 0,-2.814134,-$ $1.451131,0.323698 \backslash \mathrm{C}, 0,-3.011982,-0.282737,-1.769941 \backslash \mathrm{H}, 0,-1.389472,1.06$ $436,-2.243741 \backslash C, 0,-3.521076,-1.193186,-0.846143 \backslash H, 0,-3.203996,-2.16776$ $4,1.055312 \backslash \mathrm{H}, 0,-3.557039,-0.072464,-2.694849 \backslash \mathrm{H}, 0,-4.470175,-1.701754,-$ $1.038149 \backslash C, 0,0.04554,2.201129,0.349229 \backslash C, 0,-0.811787,2.818483,1.379645$ $\backslash \mathrm{C}, 0,-0.825273,3.322387,-0.041273 \backslash \mathrm{H}, 0,-1.706442,3.108624,-0.66278 \backslash \mathrm{H}, 0$, $-0.362703,4.297334,-0.246924 \backslash H, 0,-0.34556,3.448247,2.149455 \backslash H, 0,-1.679$ $122,2.243758,1.737258 \backslash C, 0,-0.849543,-1.173133,1.841704 \backslash \mathrm{H}, 0,-1.571914,-$ $1.272124,2.680338 \backslash 0,0,-0.168809,-2.382183,1.611307 \backslash \mathrm{H}, 0,-0.153933,-0.35$ 1913, 2. $108044 \backslash \mathrm{H}, 0,0.47189,-2.515812,2.31794 \backslash$ VVersion=ES64L-G16RevA. $03 \backslash$ State $=3-A \backslash H F=-732.2638318 \backslash S 2=2.034883 \backslash S 2-1=0 . \backslash S 2 A=2.000639 \backslash R M S D=7.871 e$ -09\Dipole=-0.3548634,0.4988659,0.6905083\Quadrupole=1.754865,-1.84562 $71,0.0907621,-0.357858,2.9141383,-1.3654654 \backslash \mathrm{PG}=\mathrm{C01}[\mathrm{X}(\mathrm{C} 17 \mathrm{H} 1601)] \backslash \backslash @$

Ts-1a

$1 \backslash 1 \backslash G I N C-B 2117 \backslash S P \backslash U M 06 \backslash d e f 2 T Z V P P \backslash C 17 H 1601(3) \backslash R O O T \backslash 23-M a r-2023 \backslash 0 \backslash \backslash \# p$ sc $r f=(i e f p c m, s m d, s o l v e n t=A c e t o n i t r i l e)$ M06 def2tzvpp
ts1
0, 3\C,0,1.679 $107,-1.32788,0.826344 \backslash C, 0,1.488127,-0.219213,-0.029244 \backslash C, 0,2.640253,0$. $337931,-0.625369 \backslash C, 0,3.903421,-0.193838,-0.394912 \backslash C, 0,4.065578,-1.2931$ $22,0.447097 \backslash \mathrm{C}, 0,2.943025,-1.852734,1.058862 \backslash \mathrm{H}, 0,0.813467,-1.755708,1.3$

4059 һ $, 0,2.541112,1.183717,-1.310248 \backslash \mathrm{H}, 0,4.773186,0.253065,-0.885778 \backslash \mathrm{H}$ $, 0,5.060689,-1.70852,0.629532 \backslash \mathrm{H}, 0,3.056332,-2.703751,1.737228 \backslash \mathrm{C}, 0,0.16$ $1263,0.349151,-0.22837 \backslash C, 0,-1.027909,-0.484686,-0.24158 \backslash C, 0,-2.306124$, $0.057948,0.078063 \backslash C, 0,-0.982934,-1.830845,-0.671224 \backslash C, 0,-3.45413,-0.71$ 8037,-0.062086\C,0,-2.135486,-2.592521,-0.793035\H,0,-0.020528,-2.2645 $94,-0.958279 \backslash C, 0,-3.383068,-2.040238,-0.495179 \backslash \mathrm{H}, 0,-4.422594,-0.274247$ $, 0.193669 \backslash \mathrm{H}, 0,-2.063697,-3.626021,-1.144888 \backslash \mathrm{H}, 0,-4.29323,-2.637866,-0$. $596801 \backslash C, 0,-0.037906,1.794394,-0.392129 \backslash C, 0,0.427545,2.760861,-1.42547$ $9 \backslash C, 0,0.798374,2.94391,0.01968 \backslash \mathrm{H}, 0,1.835558,2.750842,0.3251 \backslash \mathrm{H}, 0,0.3234$ $55,3.764312,0.576325 \backslash \mathrm{H}, 0,-0.313173,3.443617,-1.863425 \backslash \mathrm{H}, 0,1.201154,2.4$ $52124,-2.140418 \backslash \mathrm{C}, 0,-2.378221,1.440367,0.603592 \backslash \mathrm{H}, 0,-3.315887,1.974206$ $, 0.352814 \backslash 0,0,-2.025648,1.498468,1.941112 \backslash \mathrm{H}, 0,-1.378124,1.950281,-0.05$ $1605 \backslash \mathrm{H}, 0,-1.998038,2.422116,2.217105 \backslash \backslash$ Version=ES64L-G16RevA.03\State=3 $-A \backslash H F=-732.2426193 \backslash S 2=2.031326 \backslash$ S2-1=0. $\backslash \mathrm{S} 2 \mathrm{~A}=2.000625 \backslash \mathrm{RMSD}=7.900 \mathrm{e}-09 \backslash \mathrm{Dip}$ ole=-0.1566856,0.8148417,-0.2220208\Quadrupole=3.6447767,5.0736961,-8. 7184728,-3.7114693,-0.7023492,1.0740496\PG=C01 [X(C17H16O1)]
@

Int-2a

$1 \backslash 1 \backslash G I N C-B 2173 \backslash S P \backslash R M 06 \backslash d e f 2 T Z V P P \backslash C 17 H 1601 \backslash R O O T \backslash 23-M a r-2023 \backslash 0 \backslash \backslash \# p$ scrf= (iefpcm,smd,solvent=Acetonitrile) M06 def2tzvpp
int3
0,1\C,0,1.54550 $1,-0.522853,-1.255962 \backslash C, 0,1.257197,0.365071,-0.210623 \backslash C, 0,2.319545,0.8$ $07108,0.590507 \backslash C, 0,3.61849,0.356289,0.375916 \backslash C, 0,3.886185,-0.540929,-0$ $.656232 \backslash C, 0,2.843534,-0.973821,-1.475022 \backslash \mathrm{H}, 0,0.729898,-0.856062,-1.906$ $14 \backslash \mathrm{H}, 0,2.11102,1.492554,1.419213 \backslash \mathrm{H}, 0,4.429469,0.707996,1.021288 \backslash \mathrm{H}, 0,4$. 907455,-0.892291,-0.831341\H, 0, 3.046296,-1.66041,-2.302796\C,0,-0.1266 $91,0.855595,0.005389 \backslash C, 0,-1.176686,-0.025512,0.117112 \backslash C, 0,-0.995624,-1$ $.488475,0.297439 \backslash C, 0,-2.577644,0.367097,-0.005496 \backslash C, 0,-1.997273,-2.369$ $404,-0.282021 \backslash C, 0,-3.534293,-0.516543,-0.383987 \backslash \mathrm{H}, 0,-2.868445,1.408224$ $, 0.136807 \backslash \mathrm{C}, 0,-3.220212,-1.903131,-0.623709 \backslash \mathrm{H}, 0,-1.764155,-3.437802,-0$ $.360716 \backslash \mathrm{H}, 0,-4.562156,-0.169154,-0.527065 \backslash \mathrm{H}, 0,-3.984651,-2.57516,-1.02$
$3195 \backslash C, 0,-0.203254,2.348599,-0.00294 \backslash C, 0,-1.171902,3.186717,0.788485 \backslash C$ $, 0,-1.251386,3.18275,-0.699905 \backslash H, 0,-2.077154,2.661685,-1.191666 \backslash \mathrm{H}, 0,-0$.901013,4.067289,-1.240649\H,0,-0.776032,4.076794,1.287316\H,0,-1.9409 $65,2.664965,1.36616 \backslash C, 0,-0.061317,-2.080271,1.087432 \backslash н, 0,0.794821,2.79$ 3689,-0.078029\H,0,-0.028717,-3.177753,1.136648\0,0,0.818618,-1.419504 ,1.850622\H,0,1.410372,-2.038252,2.290902
Version=ES64L-G16RevA.03\St ate=1-A $\backslash \mathrm{HF}=-732.3107516 \backslash \mathrm{RMSD}=7.442 \mathrm{e}-09 \backslash \mathrm{Dipole}=0.7250124,-0.7213111,0.6$ 476335\Quadrupole=-1.026256,5.8711189,-4.8448629,-3.8217098,4.6550977, $-1.5022602 \backslash \mathrm{PG}=\mathrm{C} 01[\mathrm{X}(\mathrm{C} 17 \mathrm{H} 1601)] \backslash \backslash$

Int-3a

$1 \backslash 1 \backslash G I N C-B 2173 \backslash S P \backslash R M 06 \backslash d e f 2 T Z V P P \backslash C 17 H 1601 \backslash R O O T \backslash 23-M a r-2023 \backslash 0 \backslash \backslash$ \#p scrf= (iefpcm,smd,solvent=Acetonitrile) M06 def2tzvpp
int3
0,1\C,0,1.54550 $1,-0.522853,-1.255962 \backslash C, 0,1.257197,0.365071,-0.210623 \backslash C, 0,2.319545,0.8$ $07108,0.590507 \backslash C, 0,3.61849,0.356289,0.375916 \backslash C, 0,3.886185,-0.540929,-0$ $.656232 \backslash C, 0,2.843534,-0.973821,-1.475022 \backslash \mathrm{H}, 0,0.729898,-0.856062,-1.906$ $14 \backslash \mathrm{H}, 0,2.11102,1.492554,1.419213 \backslash \mathrm{H}, 0,4.429469,0.707996,1.021288 \backslash \mathrm{H}, 0,4$. $907455,-0.892291,-0.831341 \backslash$ н $, 0,3.046296,-1.66041,-2.302796 \backslash$ С $, 0,-0.1266$ $91,0.855595,0.005389 \backslash C, 0,-1.176686,-0.025512,0.117112 \backslash C, 0,-0.995624,-1$ $.488475,0.297439 \backslash C, 0,-2.577644,0.367097,-0.005496 \backslash C, 0,-1.997273,-2.369$ $404,-0.282021 \backslash C, 0,-3.534293,-0.516543,-0.383987 \backslash H, 0,-2.868445,1.408224$ $, 0.136807 \backslash \mathrm{C}, 0,-3.220212,-1.903131,-0.623709 \backslash \mathrm{H}, 0,-1.764155,-3.437802,-0$ $.360716 \backslash$ н, $0,-4.562156,-0.169154,-0.527065 \backslash$ н $, 0,-3.984651,-2.57516,-1.02$ $3195 \backslash C, 0,-0.203254,2.348599,-0.00294 \backslash C, 0,-1.171902,3.186717,0.788485 \backslash C$ $, 0,-1.251386,3.18275,-0.699905 \backslash \mathrm{H}, 0,-2.077154,2.661685,-1.191666 \backslash \mathrm{H}, 0,-0$.901013,4.067289,-1.240649\н,0,-0.776032,4.076794,1.287316\н,0,-1.9409 $65,2.664965,1.36616 \backslash C, 0,-0.061317,-2.080271,1.087432 \backslash \mathrm{H}, 0,0.794821,2.79$ 3689,-0.078029\H, 0,-0.028717,-3.177753,1.136648\0,0,0.818618,-1.419504 ,1.850622\н, 0,1.410372,-2.038252,2.290902
Version=ES64L-G16RevA.03\St ate=1-A $\backslash \mathrm{HF}=-732.3107516 \backslash \mathrm{RMSD}=7.442 \mathrm{e}-09 \backslash$ Dipole $=0.7250124,-0.7213111,0.6$ 476335\Quadrupole=-1.026256,5.8711189,-4.8448629,-3.8217098,4.6550977,

```
-1.5022602\PG=C01 [X(C17H16O1)]\\@
```


Ts-2a

$1 \backslash 1 \backslash G I N C-B 2153 \backslash S P \backslash R M 06 \backslash d e f 2 T Z V P P \backslash C 17 H 1601 \backslash R O O T \backslash 23-M a r-2023 \backslash 0 \backslash \backslash \# p$ scrf= (iefpcm,smd,solvent=Acetonitrile) M06 def2tzvpp
ts2
0,1\C,0,1.840419 $,-1.232778,0.747509 \backslash C, 0,1.548131,0.007253,0.14539 \backslash C, 0,2.626059,0.72372$ $7,-0.403285 \backslash C, 0,3.923117,0.217112,-0.368165 \backslash C, 0,4.186324,-1.01904,0.21$ $538 \backslash \mathrm{C}, 0,3.132238,-1.741873,0.775425 \backslash \mathrm{H}, 0,1.028686,-1.797032,1.220148 \backslash \mathrm{H}$, $0,2.444401,1.690709,-0.879449 \backslash H, 0,4.73896,0.798031,-0.809505 \backslash H, 0,5.205$ $762,-1.414425,0.241982 \backslash \mathrm{H}, 0,3.322707,-2.707671,1.253573 \backslash \mathrm{C}, 0,0.167852,0$. $538196,0.173234 \backslash C, 0,-0.924625,-0.352742,-0.108531 \backslash C, 0,-2.225685,-0.147$ 99, 0.488527\C, 0,-0.795082,-1.506775,-0.935004 \C,0,-3.335353,-0.962488, $0.115834 \backslash C, 0,-1.883984,-2.268832,-1.282212 \backslash H, 0,0.185907,-1.729421,-1.3$ $654 \backslash \mathrm{C}, 0,-3.179461,-1.99015,-0.772209 \backslash \mathrm{H}, 0,-4.309206,-0.760445,0.576254 \backslash$ $\mathrm{H}, 0,-1.753573,-3.095783,-1.987202 \backslash \mathrm{H}, 0,-4.031035,-2.606753,-1.070783 \backslash \mathrm{C}$, $0,0.026921,1.995618,-0.188231 \backslash C, 0,-1.205861,2.5936,-0.784319 \backslash C, 0,-0.00$ $4584,2.393918,-1.646127 \backslash \mathrm{H}, 0,-0.029665,1.570111,-2.369515 \backslash \mathrm{H}, 0,0.573264$, $3.266679,-1.969169 \backslash \mathrm{H}, 0,-1.460774,3.613417,-0.480376 \backslash \mathrm{H}, 0,-2.076926,1.95$ $4064,-0.958286 \backslash C, 0,-2.29149,0.596809,1.675879 \backslash H, 0,0.600285,2.675904,0$. $458634 \backslash \mathrm{H}, 0,-0.431541,0.932958,1.530602 \backslash \mathrm{H}, 0,-3.188487,0.517213,2.313932$ $\backslash 0,0,-1.306049,1.253883,2.15 \backslash \backslash$ Version=ES64L-G16RevA.03\State=1-A $\backslash H F=-7$ $32.306983 \backslash \operatorname{RMSD}=6.346 e-09 \backslash$ Dipole=-1.2279223,-0.3269,-0.1528412\Quadrupo $l e=5.611882,0.5511522,-6.1630342,2.3814376,-3.5064287,-0.6692986 \backslash \mathrm{PG}=\mathrm{C} 0$ $1[\mathrm{X}(\mathrm{C} 17 \mathrm{H} 1601)] \backslash \backslash @$

Ts-3a

$1 \backslash 1 \backslash G I N C-B 2135 \backslash S P \backslash R M 06 \backslash d e f 2 T Z V P P \backslash C 17 H 1601 \backslash R O O T \backslash 29-M a r-2023 \backslash 0 \backslash \backslash \# p$ def2t zvpp m06 scrf=(iefpcm, smd, solvent=Acetonitrile)
ts3
0,1\c,0,1.269061 $,-1.220736,-0.892119 \backslash C, 0,1.233879,0.080501,-0.352183 \backslash C, 0,2.466124,0.66$ 695,-0.003465\C,0,3.666516,-0.017897,-0.16652\C,0,3.679993,-1.310445,-
$0.686161 \backslash C, 0,2.469362,-1.90269,-1.047361 \backslash H, 0,0.33363,-1.69514,-1.20771$ $3 \backslash H, 0,2.477013,1.676894,0.420514 \backslash \mathrm{H}, 0,4.605384,0.466884,0.120076 \backslash \mathrm{H}, 0,4$. $62325,-1.848074,-0.817748 \backslash H, 0,2.460296,-2.910758,-1.47376 \backslash \mathrm{C}, 0,-0.01946$ $8,0.839276,-0.189802 \backslash C, 0,-1.293924,0.168315,-0.286932 \backslash C, 0,-1.368876,-0$ $.787133,0.747879 \backslash C, 0,-2.332213,0.240421,-1.235442 \backslash C, 0,-2.241419,-1.888$ $934,0.669722 \backslash C, 0,-3.259389,-0.788426,-1.25216 \backslash \mathrm{H}, 0,-2.346587,1.024019,-$ $2.000199 \backslash \mathrm{C}, 0,-3.189278,-1.865801,-0.336754 \backslash \mathrm{H}, 0,-2.209375,-2.692827,1.4$ $11264 \backslash \mathrm{H}, 0,-4.039193,-0.798669,-2.020025 \backslash \mathrm{H}, 0,-3.919835,-2.676572,-0.415$ $039 \backslash C, 0,0.080147,2.308763,-0.411232 \backslash C, 0,0.000524,3.275972,0.750756 \backslash C, 0$ $,-1.108725,3.207129,-0.239786 \backslash \mathrm{H}, 0,-2.049421,2.746794,0.080685 \backslash \mathrm{H}, 0,-1.2$ $3168,4.0339,-0.94572 \backslash \mathrm{H}, 0,0.669372,4.142622,0.741738 \backslash \mathrm{H}, 0,-0.175955,2.85$ $727,1.747701 \backslash C, 0,-0.446361,-0.384443,1.750135 \backslash \mathrm{H}, 0,-0.503436,0.623785,2$ $.169044 \backslash 0,0,0.269031,-1.297863,2.411471 \backslash \mathrm{H}, 0,0.715418,-0.901337,3.16965$ 9\H, 0, 0.803148,2.609173,-1.183697
Version=ES64L-G16RevA.03\State=1-A $H F=-732.2932348 \backslash R M S D=4.962 e-09 \backslash$ Dipole $=-0.3163795,0.7017269,1.2441033 \backslash Q$ uadrupole=-3.080414,-0.4476268,3.5280408,2.6507993,4.7016802,0.3587966 $\backslash \mathrm{PG}=\mathrm{C} 01[\mathrm{X}(\mathrm{C} 17 \mathrm{H} 1601)] \backslash \backslash @$

$2 a$

$1 \backslash 1 \backslash G I N C-B 2153 \backslash S P \backslash R M 06 \backslash d e f 2 T Z V P P \backslash C 17 H 1601 \backslash R O O T \backslash 23-M a r-2023 \backslash 0 \backslash \backslash \# p s c r f=$ (iefpcm,smd,solvent=Acetonitrile) M06 def2tzvpp
2b
0,1\C,0,1.929907, $-0.882082,1.189316 \backslash C, 0,1.569318,0.169622,0.336226 \backslash C, 0,2.53295,0.666437$ $,-0.544547 \backslash C, 0,3.818775,0.123824,-0.575131 \backslash C, 0,4.161538,-0.922766,0.27$ $4462 \backslash \mathrm{C}, 0,3.208717,-1.425642,1.161214 \backslash \mathrm{H}, 0,1.18228,-1.277303,1.887606 \backslash \mathrm{H}$, $0,2.277939,1.488432,-1.219672 \backslash \mathrm{H}, 0,4.559278,0.52774,-1.272157 \backslash \mathrm{H}, 0,5.169$ $958,-1.345909,0.250537 \backslash \mathrm{H}, 0,3.46767,-2.244734,1.838843 \backslash \mathrm{C}, 0,0.155162,0.7$ $1085,0.416391 \backslash C, 0,-0.857574,-0.307457,-0.070809 \backslash C, 0,-2.120522,-0.48669$ $8,0.542123 \backslash C, 0,-0.56053,-1.09672,-1.186256 \backslash C, 0,-3.019482,-1.431953,0.0$ $26187 \backslash C, 0,-1.468454,-2.021254,-1.696737 \backslash \mathrm{H}, 0,0.420635,-0.98802,-1.66034$ $6 \backslash C, 0,-2.709732,-2.195663,-1.089916 \backslash \mathrm{H}, 0,-3.986423,-1.558631,0.526611 \backslash \mathrm{H}$
$, 0,-1.198018,-2.615261,-2.574667 \backslash \mathrm{H}, 0,-3.424725,-2.924085,-1.48119 \backslash \mathrm{C}, 0$, $-0.005282,2.068548,-0.252419 \backslash C, 0,-1.320072,2.600642,-0.7172 \backslash C, 0,-0.268$ $041,2.241041,-1.71902 \backslash \mathrm{H}, 0,-0.435624,1.342054,-2.323582 \backslash \mathrm{H}, 0,0.25518,3.0$ $43437,-2.249517 \backslash \mathrm{H}, 0,-1.538916,3.65702,-0.536903 \backslash \mathrm{H}, 0,-2.197786,1.948319$ $,-0.654421 \backslash \mathrm{C}, 0,-2.595961,0.247211,1.738228 \backslash \mathrm{H}, 0,0.667073,2.815104,0.190$ $814 \backslash \mathrm{H}, 0,-0.057794,0.884849,1.48352 \backslash \mathrm{H}, 0,-3.611138,-0.105463,2.074286 \backslash 0$, $0,-2.031736,1.125602,2.340948 \backslash \backslash V e r s i o n=E S 64 L-G 16 R e v A .03 \backslash$ State=1-A $\backslash H F=-$ $732.3689482 \backslash \mathrm{RMSD}=3.954 \mathrm{e}-09 \backslash \mathrm{Dipole}=-0.3939918,-1.0252717,-1.0721315 \backslash$ Qua drupole=5.6349364,-0.2730597,-5.3618767,5.434219,0.1236291,-3.3179892\} $P G=C 01[X(C 17 H 1601)] \backslash \backslash @$

3a

$1 \backslash 1 \backslash G I N C-B 2131 \backslash S P \backslash R M 06 \backslash d e f 2 T Z V P P \backslash C 17 H 1601 \backslash R O O T \backslash 03-A p r-2023 \backslash 0 \backslash \backslash \# p$ scrf= (iefpcm,smd,solvent=Acetonitrile) M06 def2tzvpp
int1
0,1\C,0,-1.5573 $72,-0.931742,1.100714 \backslash C, 0,-1.374192,-0.022223,0.057576 \backslash C, 0,-2.495843,0$ $.354472,-0.695357 \backslash C, 0,-3.75751,-0.161246,-0.4158 \backslash C, 0,-3.925839,-1.0623$ $48,0.634559 \backslash \mathrm{C}, 0,-2.821639,-1.443273,1.390853 \backslash \mathrm{H}, 0,-0.694621,-1.25198,1$. $69266 \backslash \mathrm{H}, 0,-2.382152,1.075082,-1.515609 \backslash \mathrm{H}, 0,-4.617129,0.145748,-1.01910$ $4 \backslash H, 0,-4.91654,-1.46692,0.860513 \backslash H, 0,-2.941419,-2.15181,2.215848 \backslash C, 0,-$ $0.024842,0.553739,-0.287861 \backslash C, 0,1.193967,-0.101296,0.343825 \backslash C, 0,1.6983$ $47,-0.556781,-0.867083 \backslash C, 0,1.865203,-0.307062,1.542462 \backslash C, 0,2.887376,-1$ $.2621,-0.966079 \backslash C, 0,3.070255,-1.01521,1.458903 \backslash H, 0,1.489296,0.041899,2$ $.510269 \backslash \mathrm{C}, 0,3.568093,-1.482688,0.236538 \backslash \mathrm{H}, 0,3.282264,-1.633933,-1.9156$ $06 \backslash \mathrm{H}, 0,3.639308,-1.215244,2.372095 \backslash \mathrm{H}, 0,4.512553,-2.035468,0.228189 \backslash \mathrm{C}, 0$ $,-0.045437,2.069306,-0.213721 \backslash C, 0,1.20571,2.865738,-0.009265 \backslash C, 0,0.188$ $975,2.766737,1.08664 \backslash \mathrm{H}, 0,0.434978,2.142677,1.953617 \backslash \mathrm{H}, 0,-0.416417,3.64$ $52,1.328568 \backslash \mathrm{H}, 0,1.303697,3.816056,-0.542639 \backslash \mathrm{H}, 0,2.148731,2.322502,0.11$ $9203 \backslash C, 0,0.559702,0.003219,-1.676791 \backslash \mathrm{H}, 0,0.848676,0.848066,-2.341565 \backslash 0$ $, 0,-0.161394,-0.975238,-2.347649 \backslash \mathrm{H}, 0,-1.014536,-0.611389,-2.613731 \backslash \mathrm{H}, 0$,-0.795265,2.527959,-0.872194
Version=ES64L-G16RevA. $03 \backslash$ State=1-A $\backslash H F=-$
$732.3368942 \backslash \mathrm{RMSD}=4.450 \mathrm{e}-09 \backslash \mathrm{Dipole}=-0.2844837,0.7514912,0.0332811 \backslash$ Quadr upole $=4.0238943,-4.7762762,0.752382,-2.300155,3.5517738,-5.8658127 \backslash \mathrm{PG}=$ C01 [X(C17H16O1)]
@

1b

1 \1 \GINC-A01R04N01 \SP\RM06\def2TZVPP\C15H1401 \ACJSGGHI7X\05-May-2023\0 $\backslash \backslash \# p$ scrf=(iefpcm, smd, solvent=Acetonitrile) M06 def2tzvpp $\backslash \backslash 1 \backslash \backslash 0,1 \backslash C, 0$, $-1.563191,-0.201725,-1.028959 \backslash C, 0,-1.605906,0.096395,0.341459 \backslash C, 0,-2.8$ $63015,0.202892,0.956159 \backslash C, 0,-4.033076,0.040411,0.223467 \backslash C, 0,-3.974713$, $-0.236553,-1.142175 \backslash \mathrm{C}, 0,-2.734836,-0.358291,-1.764196 \backslash \mathrm{H}, 0,-0.592274,-0$ $.305299,-1.524952 \backslash \mathrm{H}, 0,-2.922044,0.392809,2.032262 \backslash \mathrm{H}, 0,-5.001964,0.1194$ $11,0.725419 \backslash H, 0,-2.676921,-0.58161,-2.833509 \backslash C, 0,-0.35013,0.300287,1.1$ $01624 \backslash C, 0,0.879062,-0.367681,0.582937 \backslash C, 0,1.905377,0.365824,-0.037376 \backslash$ $C, 0,0.999147,-1.755751,0.698038 \backslash C, 0,3.032135,-0.307777,-0.513981 \backslash C, 0,2$ $.129354,-2.417923,0.228556 \backslash \mathrm{H}, 0,0.183184,-2.316967,1.16681 \backslash \mathrm{C}, 0,3.148061$ $,-1.688536,-0.37906 \backslash \mathrm{H}, 0,3.815634,0.273807,-1.005043 \backslash \mathrm{H}, 0,2.211253,-3.50$ $3665,0.333031 \backslash H, 0,4.038697,-2.198601,-0.758042 \backslash \mathrm{C}, 0,-0.288351,1.047223$, $2.214908 \backslash \mathrm{C}, 0,1.785616,1.856063,-0.203679 \backslash \mathrm{H}, 0,1.854172,2.339714,0.79454$ $8 \backslash 0,0,2.778159,2.324458,-1.07005 \backslash H, 0,2.711947,3.282128,-1.121518 \backslash H, 0,-$ $1.15974,1.578214,2.610639 \backslash \mathrm{H}, 0,0.652342,1.152536,2.765113 \backslash \mathrm{H}, 0,0.762999$, $2.090501,-0.573327 \backslash \mathrm{H}, 0,-4.895758,-0.367784,-1.717369 \backslash \backslash$ Version=ES64L-G1 6RevC.01\State=1-A\HF=-654.989248\RMSD=6.427e-09\Dipole=-0.5342839,0.6 870356,0.2145184\Quadrupole=-0.8489455,3.2000785,-2.3511331,1.2323526, $-0.0945339,1.5543305 \backslash \mathrm{PG}=\mathrm{C01}$ [X(C15H14O1)]
@

Int-1b

$1 \backslash 1 \backslash G I N C-A 01 R 04 N 04 \backslash S P \backslash U M 06 \backslash d e f 2 T Z V P P \backslash C 15 H 1401$ (3) \ACJSGGHI7X\05-May-202 $3 \backslash 0 \backslash \ \# p$ scrf=(iefpcm,smd,solvent=Acetonitrile) M06 def2tzvpp
int1
0, $3 \backslash C, 0,-1.931397,0.809392,0.75165 \backslash C, 0,-1.666058,-0.264481,-0.136019 \backslash C, 0$ $,-2.78179,-1.000069,-0.609468 \backslash C, 0,-4.077077,-0.661908,-0.249135 \backslash C, 0,-4$ $.313628,0.411088,0.613246 \backslash \mathrm{C}, 0,-3.229121,1.135674,1.11482 \backslash \mathrm{H}, 0,-1.095208$
$, 1.36917,1.179724 \backslash \mathrm{H}, 0,-2.607751,-1.846147,-1.283507 \backslash \mathrm{H}, 0,-4.91683,-1.24$ $2314,-0.64306 \backslash \mathrm{H}, 0,-3.400849,1.963124,1.809894 \backslash \mathrm{C}, 0,-0.328499,-0.657192$, $-0.504821 \backslash C, 0,0.826643,0.234196,-0.351616 \backslash C, 0,2.098985,-0.234331,0.064$ $811 \backslash C, 0,0.70119,1.59801,-0.686386 \backslash C, 0,3.168884,0.654938,0.144423 \backslash C, 0,1$ $.778938,2.470527,-0.611876 \backslash \mathrm{H}, 0,-0.266058,1.963522,-1.044605 \backslash \mathrm{C}, 0,3.0196$ $71,1.998865,-0.191083 \backslash \mathrm{H}, 0,4.131459,0.273069,0.49137 \backslash \mathrm{H}, 0,1.649544,3.519$ $94,-0.892356 \backslash \mathrm{H}, 0,3.875805,2.67643,-0.123558 \backslash \mathrm{C}, 0,-0.135098,-1.948791,-1$ $.174702 \backslash \mathrm{C}, 0,2.302949,-1.669592,0.460611 \backslash \mathrm{H}, 0,2.226906,-2.304095,-0.4509$ $02 \backslash 0,0,3.538414,-1.830486,1.094836 \backslash \mathrm{H}, 0,3.66914,-2.765482,1.276009 \backslash \mathrm{H}, 0$, $-0.172042,-2.900107,-0.628219 \backslash H, 0,-0.131245,-2.014754,-2.271707 \backslash H, 0,1$. $45748,-1.980436,1.113572 \backslash \mathrm{H}, 0,-5.335217,0.674022,0.901919 \backslash \backslash$ Version=ES 64 L-G16RevC.01\State=3-A $\backslash H F=-654.9073129 \backslash S 2=2.036553 \backslash S 2-1=0 . \backslash S 2 A=2.00081$ $7 \backslash \mathrm{RMSD}=9.073 \mathrm{e}-09 \backslash$ Dipole=-0.3971991,-0.8788425,-0.1409607\Quadrupole=-1 $.7417965,7.5025552,-5.7607587,-3.3337276,0.1571418,0.964926 \backslash \mathrm{PG}=\mathrm{C} 01$ [X(C15H1401)]
@

Int-1b

1 \1 \GINC-A01R04N04 \SP\UM06\def2TZVPP\C15H14O1 (3) \ACJSGGHI7X\05-May-202 $3 \backslash 0 \backslash \ \# p$ scrf=(iefpcm,smd,solvent=Acetonitrile) M06 def2tzvpp
int1
0, $3 \backslash C, 0,-1.931397,0.809392,0.75165 \backslash C, 0,-1.666058,-0.264481,-0.136019 \backslash C, 0$ $,-2.78179,-1.000069,-0.609468 \backslash C, 0,-4.077077,-0.661908,-0.249135 \backslash C, 0,-4$ $.313628,0.411088,0.613246 \backslash \mathrm{C}, 0,-3.229121,1.135674,1.11482 \backslash \mathrm{H}, 0,-1.095208$ $, 1.36917,1.179724 \backslash \mathrm{H}, 0,-2.607751,-1.846147,-1.283507 \backslash \mathrm{H}, 0,-4.91683,-1.24$ $2314,-0.64306 \backslash \mathrm{H}, 0,-3.400849,1.963124,1.809894 \backslash \mathrm{C}, 0,-0.328499,-0.657192$, $-0.504821 \backslash C, 0,0.826643,0.234196,-0.351616 \backslash C, 0,2.098985,-0.234331,0.064$ $811 \backslash C, 0,0.70119,1.59801,-0.686386 \backslash C, 0,3.168884,0.654938,0.144423 \backslash C, 0,1$ $.778938,2.470527,-0.611876 \backslash \mathrm{H}, 0,-0.266058,1.963522,-1.044605 \backslash \mathrm{C}, 0,3.0196$ $71,1.998865,-0.191083 \backslash \mathrm{H}, 0,4.131459,0.273069,0.49137 \backslash \mathrm{H}, 0,1.649544,3.519$ $94,-0.892356 \backslash H, 0,3.875805,2.67643,-0.123558 \backslash C, 0,-0.135098,-1.948791,-1$ $.174702 \backslash \mathrm{C}, 0,2.302949,-1.669592,0.460611 \backslash \mathrm{H}, 0,2.226906,-2.304095,-0.4509$
$02 \backslash 0,0,3.538414,-1.830486,1.094836 \backslash \mathrm{H}, 0,3.66914,-2.765482,1.276009 \backslash \mathrm{H}, 0$, $-0.172042,-2.900107,-0.628219 \backslash \mathrm{H}, 0,-0.131245,-2.014754,-2.271707 \backslash \mathrm{H}, 0,1$. $45748,-1.980436,1.113572 \backslash \mathrm{H}, 0,-5.335217,0.674022,0.901919 \backslash \backslash$ Version=ES64 L-G16RevC.01 \State=3-A $\backslash H F=-654.9073129 \backslash S 2=2.036553 \backslash S 2-1=0 . \backslash S 2 A=2.00081$ $7 \backslash \mathrm{RMSD}=9.073 \mathrm{e}-09 \backslash$ Dipole=-0.3971991,-0.8788425,-0.1409607\Quadrupole=-1 $.7417965,7.5025552,-5.7607587,-3.3337276,0.1571418,0.964926 \backslash \mathrm{PG}=\mathrm{C} 01 \quad[\mathrm{X}($ C15H14O1)]
@

Ts-1b

1 \1 \GINC-A01R04N04 \SP\UM06\def2TZVPP\C15H14O1 (3) \ACJSGGHI7X\05-May-202 $3 \backslash 0 \backslash \ \# p$ scrf=(iefpcm,smd,solvent=Acetonitrile) M06 def2tzvpp
ts1
0,3 $\backslash C, 0,-2.04536,0.818862,0.738121 \backslash C, 0,-1.661448,-0.278469,-0.071017 \backslash C, 0$, $-2.700306,-1.052261,-0.641188 \backslash C, 0,-4.03519,-0.730379,-0.441652 \backslash C, 0,-4$. $388435,0.364019,0.349736 \backslash \mathrm{C}, 0,-3.381825,1.129726,0.942383 \backslash \mathrm{H}, 0,-1.273029$ $, 1.40877,1.240238 \backslash \mathrm{H}, 0,-2.437651,-1.907663,-1.271756 \backslash \mathrm{H}, 0,-4.813602,-1.3$ $39762,-0.910809 \backslash \mathrm{H}, 0,-3.64574,1.975943,1.584013 \backslash \mathrm{C}, 0,-0.276989,-0.647953$ $,-0.26942 \backslash C, 0,0.820185,0.298938,-0.167044 \backslash C, 0,2.12684,-0.153587,0.1765$ $49 \backslash C, 0,0.673518,1.662078,-0.511522 \backslash C, 0,3.215013,0.716885,0.120677 \backslash C, 0$, $1.760441,2.522018,-0.54033 \backslash H, 0,-0.31014,2.028199,-0.81939 \backslash C, 0,3.039837$, $2.05183,-0.229746 \backslash \mathrm{H}, 0,4.205316,0.328496,0.373949 \backslash \mathrm{H}, 0,1.615521,3.56633$ $1,-0.83232 \backslash \mathrm{H}, 0,3.899012,2.728037,-0.261499 \backslash \mathrm{C}, 0,0.061537,-2.033871,-0.6$ $68164 \backslash C, 0,2.291297,-1.555405,0.611508 \backslash 0,0,3.568746,-2.036384,0.436965 \backslash$ $\mathrm{H}, 0,3.664298,-2.865411,0.916682 \backslash \mathrm{H}, 0,0.263857,-2.206355,-1.739099 \backslash \mathrm{H}, 0,1$ $.369743,-2.123443,-0.097198 \backslash H, 0,-0.5143,-2.847921,-0.205953 \backslash H, 0,1.8730$ $07,-1.742131,1.622619 \backslash \mathrm{H}, 0,-5.440965,0.613383,0.51145 \backslash \backslash$ Version=ES $64 \mathrm{~L}-\mathrm{G} 1$ 6RevC. $01 \backslash$ State $=3-A \backslash H F=-654.8891648 \backslash S 2=2.03225 \backslash S 2-1=0 . \backslash S 2 A=2.000655 \backslash \mathrm{RMS}$ $D=6.286 e-09 \backslash$ Dipole $=-0.0472013,-0.7399848,0.5260634 \backslash$ Quadrupole $=-0.51815$ $19,5.863523,-5.3453712,-3.3552396,3.8909293,-1.4023043 \backslash \mathrm{PG}=\mathrm{C} 01 \quad[\mathrm{X}(\mathrm{C} 15 \mathrm{H} 1$ 401)]
@

Ts-1b

$1 \backslash 1 \backslash G I N C-A 01 R 04 N 04 \backslash S P \backslash U M 06 \backslash d e f 2 T Z V P P \backslash C 15 H 14 O 1$ (3) \ACJSGGHI7X\05-May-202 $3 \backslash 0 \backslash \ \# p$ scrf=(iefpcm,smd,solvent=Acetonitrile) M06 def2tzvpp
ts $1 \backslash \backslash 0,3$ $\backslash C, 0,-2.04536,0.818862,0.738121 \backslash C, 0,-1.661448,-0.278469,-0.071017 \backslash C, 0$, $-2.700306,-1.052261,-0.641188 \backslash C, 0,-4.03519,-0.730379,-0.441652 \backslash C, 0,-4$. $388435,0.364019,0.349736 \backslash \mathrm{C}, 0,-3.381825,1.129726,0.942383 \backslash \mathrm{H}, 0,-1.273029$ $, 1.40877,1.240238 \backslash \mathrm{H}, 0,-2.437651,-1.907663,-1.271756 \backslash \mathrm{H}, 0,-4.813602,-1.3$ $39762,-0.910809 \backslash \mathrm{H}, 0,-3.64574,1.975943,1.584013 \backslash \mathrm{C}, 0,-0.276989,-0.647953$ $,-0.26942 \backslash C, 0,0.820185,0.298938,-0.167044 \backslash C, 0,2.12684,-0.153587,0.1765$ $49 \backslash C, 0,0.673518,1.662078,-0.511522 \backslash C, 0,3.215013,0.716885,0.120677 \backslash C, 0$, $1.760441,2.522018,-0.54033 \backslash \mathrm{H}, 0,-0.31014,2.028199,-0.81939 \backslash \mathrm{C}, 0,3.039837$, $2.05183,-0.229746 \backslash \mathrm{H}, 0,4.205316,0.328496,0.373949 \backslash \mathrm{H}, 0,1.615521,3.56633$ $1,-0.83232 \backslash \mathrm{H}, 0,3.899012,2.728037,-0.261499 \backslash \mathrm{C}, 0,0.061537,-2.033871,-0.6$ $68164 \backslash C, 0,2.291297,-1.555405,0.611508 \backslash 0,0,3.568746,-2.036384,0.436965 \backslash$ $H, 0,3.664298,-2.865411,0.916682 \backslash \mathrm{H}, 0,0.263857,-2.206355,-1.739099 \backslash \mathrm{H}, 0,1$ $.369743,-2.123443,-0.097198 \backslash H, 0,-0.5143,-2.847921,-0.205953 \backslash H, 0,1.8730$ $07,-1.742131,1.622619 \backslash \mathrm{H}, 0,-5.440965,0.613383,0.51145 \backslash \backslash$ Version=ES64L-G1 6RevC. $01 \backslash$ State=3-A $\backslash H F=-654.8891648 \backslash S 2=2.03225 \backslash S 2-1=0 . \backslash S 2 A=2.000655 \backslash R M S$ $D=6.286 e-09 \backslash$ Dipole $=-0.0472013,-0.7399848,0.5260634 \backslash$ Quadrupole $=-0.51815$ $19,5.863523,-5.3453712,-3.3552396,3.8909293,-1.4023043 \backslash \mathrm{PG}=\mathrm{C01} \quad[\mathrm{X}(\mathrm{C} 15 \mathrm{H} 1$ 401)]
@

Int-2b

$1 \backslash 1 \backslash G I N C-A 01 R 04 N 01 \backslash S P \backslash U M 06 \backslash d e f 2 T Z V P P \backslash C 15 H 1401$ (3) \ACJSGGHI7X\05-May-202 $3 \backslash 0 \backslash \backslash \# p$ scrf=(iefpcm,smd,solvent=Acetonitrile) M06 def2tzvpp
int1
0, $3 \backslash C, 0,-1.427792,0.415763,-1.047064 \backslash C, 0,-1.462583,-0.477854,0.05781 \backslash C, 0$ $,-2.733952,-0.741812,0.63362 \backslash C, 0,-3.884983,-0.144204,0.142417 \backslash C, 0,-3.8$ $23109,0.733851,-0.942731 \backslash \mathrm{C}, 0,-2.584337,1.003817,-1.532698 \backslash \mathrm{H}, 0,-0.46766$ $, 0.623208,-1.5296 \backslash \mathrm{H}, 0,-2.811228,-1.421258,1.487246 \backslash \mathrm{H}, 0,-4.848821,-0.36$ $4619,0.611523 \backslash \mathrm{H}, 0,-2.524644,1.680846,-2.390322 \backslash \mathrm{C}, 0,-0.271912,-1.087788$
$, 0.56264 \backslash C, 0,1.064272,-0.702707,0.054369 \backslash C, 0,1.609155,0.602306,0.29436$ $3 \backslash C, 0,1.835415,-1.636339,-0.63336 \backslash C, 0,2.906634,0.895879,-0.204734 \backslash C, 0$, $3.111442,-1.330135,-1.116355 \backslash \mathrm{H}, 0,1.414267,-2.633846,-0.80478 \backslash \mathrm{C}, 0,3.637$ $564,-0.053406,-0.897506 \backslash$ н $, 0,3.321689,1.88981,-0.017985 \backslash$ н $, 0,3.687985,-2$ $.083832,-1.659758 \backslash \mathrm{H}, 0,4.635438,0.198111,-1.269585 \backslash \mathrm{C}, 0,-0.34459,-2.1550$ $44,1.607448 \backslash C, 0,0.891115,1.566473,1.024879$ पH, $0,-0.102056,1.366305,1.44$ $0722 \backslash 0,0,1.446261,2.775371,1.252002 \backslash \mathrm{H}, 0,0.823909,3.334742,1.727488 \backslash \mathrm{H}, 0$ $,-1.066949,-2.949674,1.347034 \backslash \mathrm{H}, 0,0.63741,-2.624187,1.765343 \backslash \mathrm{H}, 0,-0.66$ 9807,-1.752228,2.586808\H,0,-4.733655,1.200857,-1.32874
Version=ES64L -G16RevC. $01 \backslash$ State $=3-A \backslash H F=-654.9396309 \backslash S 2=2.054035 \backslash S 2-1=0 . \backslash S 2 A=2.001816$ \backslash RMSD $=8.144 \mathrm{e}-09 \backslash$ Dipole $=-0.7203345,0.3437949,0.8125015 \backslash$ Quadrupole=-2.48 $43459,3.6415651,-1.1572192,-2.1535501,-3.5624668,1.3680499 \backslash \mathrm{PG}=\mathrm{CO1}$ [X(C 15H14O1)]
@

Int-3b

$1 \backslash 1 \backslash G I N C-A 01 R 04 N 04 \backslash S P \backslash R M 06 \backslash d e f 2 T Z V P P \backslash C 15 H 1401 \backslash A C J S G G H I 7 X \backslash 05-M a y-2023 \backslash 0$
\#p scrf=(iefpcm,smd,solvent=Acetonitrile) M06 def2tzvpp
int1
0,1\C $, 0,-2.132394,0.182339,1.153341 \backslash C, 0,-1.6615,-0.366392,-0.049503 \backslash C, 0,-2$. 588176,-0.575644,-1.081971\С,0,-3.927953,-0.2335,-0.925701\C,0,-4.3777 $84,0.314125,0.274575 \backslash \mathrm{C}, 0,-3.473345,0.519759,1.314238 \backslash \mathrm{H}, 0,-1.424223,0.3$ 38893,1.974203\H,0,-2.24497,-0.994913,-2.034104\H,0,-4.627901,-0.39276 $9,-1.751525 \backslash$ н $, 0,-3.815955,0.942056,2.263756 \backslash$ С, $0,-0.237313,-0.758365,-0$ $.199234 \backslash C, 0,0.7759,0.160915,-0.042519 \backslash C, 0,2.218717,-0.168084,0.014258 \backslash$ $C, 0,0.476402,1.58733,-0.03888 \backslash C, 0,3.183383,0.866135,-0.318417 \backslash C, 0,1.43$ $0177,2.529001,-0.235224 \backslash \mathrm{H}, 0,-0.5699,1.894811,0.029551 \backslash \mathrm{C}, 0,2.810491,2.1$ $61228,-0.427224 \backslash$ н, $0,4.231247,0.571898,-0.417627 \backslash$ н $, 0,1.144293,3.583803$, $-0.289391 \backslash H, 0,3.551975,2.935828,-0.643046 \backslash C, 0,-0.024501,-2.199732,-0.5$ $43923 \backslash$ С, $0,2.683553,-1.359867,0.479055 \backslash \mathrm{H}, 0,2.016057,-2.129512,0.877383 \backslash$ 0, 0, 4. $004153,-1.62462,0.540954 \backslash \mathrm{H}, 0,4.146114,-2.493731,0.928139 \backslash \mathrm{H}, 0,-0$. $839587,-2.566591,-1.188712 \backslash \mathrm{H}, 0,0.936059,-2.368237,-1.059292 \backslash \mathrm{H}, 0,-0.038$
$512,-2.858396,0.346349 \backslash \mathrm{H}, 0,-5.431856,0.578345,0.39947 \backslash \backslash$ Version=ES $64 \mathrm{~L}-\mathrm{G}$ 16RevC. $01 \backslash$ State $=1-A \backslash H F=-654.9606367 \backslash \operatorname{RMSD}=5.994 e-09 \backslash$ Dipole=0.17014,-1.3 572807,0.4558334\Quadrupole=1.1224865,3.4406814,-4.5631679,-8.4372924, $3.2479443,-1.5211806 \backslash \mathrm{PG}=\mathrm{C01}[\mathrm{X}(\mathrm{C} 15 \mathrm{H} 1401)] \backslash \backslash @$

Ts-2b

1 \1 \GINC-A01R02N08\SP\RM06\def2TZVPP\C15H14O1 \ACJSGGHI7X\05-May-2023\0 $\backslash \backslash \# p$ scrf=(iefpcm,smd,solvent=Acetonitrile) M06 def2tzvpp
ts2
0,1\C, $0,1.718359,-0.725825,0.921834 \backslash C, 0,1.486605,0.20706,-0.109579 \backslash C, 0,2.605$ $956,0.638582,-0.843326 \backslash C, 0,3.880658,0.143041,-0.579789 \backslash C, 0,4.081882,-0$ $.79588,0.427745 \backslash \mathrm{C}, 0,2.987949,-1.225199,1.180457 \backslash \mathrm{H}, 0,0.87771,-1.046332$, $1.546984 \backslash \mathrm{H}, 0,2.483101,1.372288,-1.644527 \backslash \mathrm{H}, 0,4.728237,0.497188,-1.1746$ $93 \backslash H, 0,3.129566,-1.947162,1.99064 \backslash C, 0,0.133839,0.752748,-0.335743 \backslash C, 0$, $-1.006819,-0.115142,-0.254527 \backslash C, 0,-2.297949,0.41428,0.129727 \backslash C, 0,-0.95$ $6683,-1.520046,-0.489185 \backslash C, 0,-3.467741,-0.400245,0.067117 \backslash C, 0,-2.10074$ $3,-2.277747,-0.544166 \backslash \mathrm{H}, 0,0.009453,-1.974647,-0.726393 \backslash \mathrm{C}, 0,-3.380736,-$ $1.716958,-0.288188 \backslash \mathrm{H}, 0,-4.430927,0.046399,0.339151 \backslash \mathrm{H}, 0,-2.02664,-3.334$ $808,-0.818328 \backslash \mathrm{H}, 0,-4.275449,-2.341517,-0.350566 \backslash \mathrm{C}, 0,0.026085,1.935331$, $-1.286406 \backslash \mathrm{C}, 0,-2.316508,1.574074,0.918118 \backslash \mathrm{H}, 0,-3.228515,1.824531,1.486$ $475 \backslash 0,0,-1.284936,2.292824,1.144048 \backslash \mathrm{H}, 0,-0.43299,1.685925,0.741689 \backslash \mathrm{H}, 0$ $, 0.578597,2.823055,-0.931591 \backslash H, 0,0.436714,1.670444,-2.278192 \backslash \mathrm{H}, 0,-1.01$ $8047,2.236331,-1.45203 \backslash \mathrm{H}, 0,5.083746,-1.182736,0.634476 \backslash$ Version=ES64L-G16RevC.01\State=1-A\HF=-654.9473878\RMSD=7.318e-09\Dipole=-1.2612361, $-0.3635929,-0.0409423 \backslash$ Quadrupole $=6.6608312,-2.1245686,-4.5362625,-0.40$ 7443,-2.9125702,-2.336493\PG=C01 [X(C15H14O1)]
@

Ts-3b

1 \1 \GINC-A02R04N06\SP\RM06\def2TZVPP\C15H14O1 \ACJSGGHI7X\05-May-2023\0 $\backslash \backslash \# p$ scrf=(iefpcm,smd,solvent=Acetonitrile) M06 def2tzvpp
ts3
0,1\C, $0,-1.762079,-0.846679,-0.805827 \backslash C, 0,-1.520117,0.113588,0.200944 \backslash C, 0,-2$
$.6451,0.714766,0.803981 \backslash C, 0,-3.936649,0.356624,0.435204 \backslash C, 0,-4.151392$, $-0.608083,-0.548303 \backslash \mathrm{C}, 0,-3.053373,-1.206906,-1.16735 \backslash \mathrm{H}, 0,-0.907853,-1$. $302955,-1.318011 \backslash \mathrm{H}, 0,-2.505423,1.467351,1.5847 \backslash \mathrm{H}, 0,-4.78984,0.834995,0$ $.925999 \backslash \mathrm{H}, 0,-3.207549,-1.956075,-1.949952 \backslash \mathrm{C}, 0,-0.15427,0.491828,0.5413$ $96 \backslash C, 0,0.943765,-0.410542,0.267613 \backslash C, 0,2.003963,0.323977,-0.308472 \backslash C, 0$ $, 1.127444,-1.778341,0.545096 \backslash C, 0,3.330619,-0.155438,-0.281344 \backslash C, 0,2.41$ $4553,-2.285433,0.471332 \backslash \mathrm{H}, 0,0.299331,-2.39571,0.909282 \backslash \mathrm{C}, 0,3.511912,-1$ $.469478,0.104382 \backslash \mathrm{H}, 0,4.166512,0.467166,-0.614216 \backslash \mathrm{H}, 0,2.600926,-3.32679$ $3,0.751633 \backslash \mathrm{H}, 0,4.516972,-1.902421,0.102337 \backslash \mathrm{C}, 0,0.04214,1.575383,1.5698$ $69 \backslash C, 0,1.436128,1.476259,-0.903442 \backslash 0,0,2.11493,2.632137,-0.943313 \backslash \mathrm{H}, 0$, $1.721413,3.232661,-1.588152 \backslash \mathrm{H}, 0,-0.405204,1.281988,2.541279 \backslash \mathrm{H}, 0,1.1082$ $57,1.772835,1.752463 \backslash \mathrm{H}, 0,-0.431324,2.532077,1.283656 \backslash \mathrm{H}, 0,0.558056,1.37$ 5776,-1.548726\H,0,-5.168969,-0.887128,-0.836258
Version=ES64L-G16Rev C. $01 \backslash$ State=1-A $\backslash H F=-654.9339223 \backslash R M S D=2.105 e-09 \backslash$ Dipole $=-0.0606505,0.8405$ $196,-0.8086397 \backslash$ Quadrupole $=-1.6572914,3.8564963,-2.1992049,0.2143846,-2$ $.2348861,-3.3663866 \backslash \mathrm{PG}=\mathrm{C01}[\mathrm{X}(\mathrm{C} 15 \mathrm{H} 1401)] \backslash \backslash @$

2b

1 \1 \GINC-A01R04N01 \SP\RM06\def2TZVPP\C15H14O1 \ACJSGGHI7X\05-May-2023\0
\#p scrf=(iefpcm,smd,solvent=Acetonitrile) M06 def2tzvpp
int1
0,1\C $, 0,1.83884,-0.152038,-1.294389 \backslash C, 0,1.588615,-0.505919,0.038213 \backslash C, 0,2.6$ $2515,-0.370698,0.963906 \backslash C, 0,3.876103,0.108255,0.570009 \backslash C, 0,4.109827,0$. $456867,-0.755613 \backslash \mathrm{C}, 0,3.082727,0.32358,-1.690822 \backslash \mathrm{H}, 0,1.031479,-0.250054$ $,-2.030143 \backslash H, 0,2.466405,-0.639925,2.012189 \backslash H, 0,4.674492,0.206761,1.311$ $547 \backslash \mathrm{H}, 0,3.255137,0.59159,-2.73735 \backslash \mathrm{C}, 0,0.206139,-1.007459,0.404814 \backslash \mathrm{C}, 0$, $-0.847613,0.080027,0.25321 \backslash C, 0,-2.159115,-0.183654,-0.194083 \backslash C, 0,-0.53$ $6987,1.388649,0.640058 \backslash C, 0,-3.102443,0.853064,-0.262808 \backslash C, 0,-1.482002$, $2.406722,0.577959 \backslash \mathrm{H}, 0,0.476387,1.613024,0.989815 \backslash \mathrm{C}, 0,-2.773494,2.14332$ $6,0.11924 \backslash \mathrm{H}, 0,-4.103133,0.599203,-0.624962 \backslash \mathrm{H}, 0,-1.205638,3.419194,0.88$ $7051 \backslash \mathrm{H}, 0,-3.515807,2.944251,0.063895 \backslash \mathrm{C}, 0,0.106863,-1.618264,1.798054 \backslash \mathrm{C}$
$, 0,-2.624693,-1.530863,-0.600054 \backslash 0,0,-3.743601,-1.772887,-0.980414 \backslash \mathrm{H}, 0$ $, 0.264779,-0.855834,2.579603 \backslash H, 0,-0.896382,-2.042402,1.962554 \backslash H, 0,0.84$ $6317,-2.422138,1.943495 \backslash \mathrm{H}, 0,-1.866857,-2.354094,-0.532445 \backslash \mathrm{H}, 0,-0.01651$ $6,-1.806522,-0.324826 \backslash \mathrm{H}, 0,5.090633,0.830467,-1.063273 \backslash \backslash$ Version=ES $64 \mathrm{~L}-\mathrm{G}$ 16RevC.01 \State=1-A $\backslash H F=-655.0113348 \backslash \mathrm{RMSD}=7.388 \mathrm{e}-09 \backslash$ Dipole=1.3000127,0. $6665061,0.6590625 \backslash$ Quadrupole=-6.6292011,3.3934851,3.235716, -6.1009573, $-2.5350801,-1.8525623 \backslash \mathrm{PG}=\mathrm{C01}[\mathrm{X}(\mathrm{C} 15 \mathrm{H} 1401)] \backslash \backslash @$

3b

1 \1 \GINC-A01R08N05\SP\RM06\def2TZVPP\C15H14O1 \ACJSGGHI7X\05-May-2023\0
\#p scrf=(iefpcm, smd,solvent=Acetonitrile) M06 def2tzvpp
3-3
0,1\C, $0,-1.476874,-1.047987,-0.673833 \backslash C, 0,-1.389201,0.084933,0.149364 \backslash C, 0,-2$ $.57948,0.615516,0.65914 \backslash C, 0,-3.812469,0.039471,0.355234 \backslash C, 0,-3.882088$, $-1.08118,-0.466481 \backslash \mathrm{C}, 0,-2.7053,-1.623521,-0.980878 \backslash \mathrm{H}, 0,-0.558295,-1.49$ $1155,-1.075335 \backslash \mathrm{H}, 0,-2.553502,1.493135,1.310868 \backslash \mathrm{H}, 0,-4.727657,0.472456$, $0.770337 \backslash \mathrm{H}, 0,-2.744153,-2.507869,-1.62399 \backslash \mathrm{C}, 0,-0.039324,0.708216,0.419$ $28 \backslash C, 0,1.135755,-0.255448,0.494511 \backslash C, 0,1.822352,0.32278,-0.565229 \backslash C, 0$, $1.637236,-1.337682,1.201591 \backslash C, 0,3.07985,-0.107261,-0.961635 \backslash C, 0,2.9029$ $44,-1.788148,0.807368 \backslash H, 0,1.097378,-1.816611,2.024322 \backslash C, 0,3.609386,-1$. $184001,-0.240977 \backslash \mathrm{H}, 0,3.636957,0.351752,-1.783207 \backslash \mathrm{H}, 0,3.360993,-2.63196$ $5,1.333014 \backslash \mathrm{H}, 0,4.598767,-1.572057,-0.502357 \backslash \mathrm{C}, 0,0.706272,1.279692,-0.8$ $88111 \backslash 0,0,1.058016,2.622915,-0.915063 \backslash \mathrm{H}, 0,0.297977,3.13599,-1.211371 \backslash \mathrm{H}$ $, 0,0.148046,0.981325,-1.801221 \backslash \mathrm{C}, 0,-0.027837,1.730505,1.539879 \backslash \mathrm{H}, 0,-0$. $664396,2.599917,1.303234 \backslash \mathrm{H}, 0,-0.386234,1.289755,2.484863 \backslash \mathrm{H}, 0,0.991744$, $2.111274,1.698654 \backslash \mathrm{H}, 0,-4.849085,-1.534572,-0.702639 \backslash \backslash$ Version=ES64L-G16 RevC. $01 \backslash$ State $=1-A \backslash H F=-654.9777681 \backslash R M S D=5.248 e-09 \backslash$ Dipole $=-0.6020119,0.0$ 146908,-0.203206\Quadrupole=0.7468128, 0.3364833,-1.0832961,-5.5915777, $-0.8709648,-0.5463649 \backslash \mathrm{PG}=\mathrm{C01}[\mathrm{X}(\mathrm{C} 15 \mathrm{H} 1401)] \backslash \backslash @$

1ae

$1 \backslash 1 \backslash G I N C-A 06 R 04 N 08 \backslash S P \backslash R M 06 \backslash d e f 2 T Z V P P \backslash C 19 H 2201 \backslash A C J S G G H I 7 X \backslash 20-A p r-2023 \backslash 0$
\#p scrf=(iefpcm,smd,solvent=Acetonitrile) M06 def2tzvpp
1
0,1\C,0, $1.835182,0.306781,-0.90498 \backslash C, 0,1.840681,0.655518,0.455081 \backslash C, 0,3.067367$ $, 0.621689,1.136517 \backslash C, 0,4.235391,0.228577,0.493318 \backslash C, 0,4.208632,-0.1363$ $36,-0.852137 \backslash C, 0,3.00344,-0.092337,-1.548385 \backslash H, 0,0.895612,0.345024,-1$. $465867 \backslash \mathrm{H}, 0,3.109458,0.931355,2.185096 \backslash \mathrm{H}, 0,5.17975,0.217409,1.045522 \backslash \mathrm{H}$, $0,2.970679,-0.366769,-2.606889 \backslash C, 0,0.582801,1.034856,1.145141 \backslash C, 0,-0.5$ $24713,1.584796,0.308103 \backslash C, 0,-1.761994,0.932087,0.138445 \backslash C, 0,-0.308849$, $2.816211,-0.322838 \backslash C, 0,-2.743248,1.543872,-0.648217 \backslash C, 0,-1.29476,3.416$ $104,-1.097837 \backslash \mathrm{H}, 0,0.660963,3.30843,-0.189357 \backslash \mathrm{C}, 0,-2.519099,2.773961,-1$ $.258422 \backslash \mathrm{H}, 0,-3.699569,1.031577,-0.770996 \backslash \mathrm{H}, 0,-1.106308,4.383069,-1.573$ $113 \backslash \mathrm{H}, 0,-3.306636,3.231237,-1.864796 \backslash \mathrm{C}, 0,0.431243,0.928275,2.474981 \backslash \mathrm{C}$, $0,-2.0339,-0.439294,0.72022 \backslash 0,0,-3.409253,-0.716638,0.588338 \backslash \mathrm{H}, 0,-3.59$ $1006,-1.544243,1.043913 \backslash \mathrm{H}, 0,-0.493034,1.257457,2.960096 \backslash \mathrm{H}, 0,5.128212,-$ $0.442881,-1.358812 \backslash C, 0,-1.189371,-1.506763,0.030015 \backslash \mathrm{H}, 0,-1.362375,-1.4$ $22411,-1.059981 \backslash \mathrm{H}, 0,-0.120539,-1.280876,0.198217 \backslash \mathrm{H}, 0,1.211275,0.512611$ $, 3.120083 \backslash C, 0,-1.475721,-2.921239,0.507812 \backslash H, 0,-2.466653,-3.246173,0.1$ $32597 \backslash \mathrm{H}, 0,-1.545561,-2.924744,1.6143 \backslash \mathrm{C}, 0,-0.423866,-3.93407,0.07542 \backslash \mathrm{H}$, $0,0.536839,-3.683697,0.564347 \backslash \mathrm{H}, 0,-0.703952,-4.930679,0.461072 \backslash \mathrm{C}, 0,-0$. $22247,-4.003611,-1.427424 \backslash \mathrm{H}, 0,0.455218,-4.824561,-1.708845 \backslash \mathrm{H}, 0,-1.1794$ $95,-4.167832,-1.953146 \backslash \mathrm{H}, 0,0.215328,-3.07249,-1.824904 \backslash \mathrm{H}, 0,-1.754663,-$ $0.432185,1.795874 \backslash \backslash$ Version=ES64L-G16RevC. $01 \backslash$ State $=1-A \backslash H F=-812.1761886 \backslash$ RMSD=2.532e-09\Dipole=0.5582958,-0.7465115,0.3859963\Quadrupole=-0.296 $0604,-1.1493477,1.4454081,3.0067173,-0.183406,-2.9030182 \backslash \mathrm{PG}=\mathrm{C0} 1 \quad[\mathrm{X}(\mathrm{C} 19$ H2201)]
@

Int-1ae

1 \1 \GINC-A06R04N08\SP\UM06\def2TZVPP\C19H22O1 (3) \ACJSGGHI7X\20-Apr-202 $3 \backslash 0 \backslash \ \# p$ scrf=(iefpcm,smd,solvent=Acetonitrile) M06 def2tzvpp
int1
0, $3 \backslash C, 0,2.427092,0.022444,-0.971995 \backslash C, 0,2.093337,-0.118586,0.399362 \backslash C, 0$,
$2.979438,-0.878293,1.204052 \backslash C, 0,4.139486,-1.428607,0.681126 \backslash C, 0,4.4543$ $51,-1.263011,-0.669713 \backslash \mathrm{C}, 0,3.583789,-0.540536,-1.489827 \backslash \mathrm{H}, 0,1.745161,0$ $.561527,-1.636061 \backslash \mathrm{H}, 0,2.740068,-1.018069,2.264065 \backslash \mathrm{H}, 0,4.809271,-1.9976$ $3,1.332934 \backslash H, 0,3.808625,-0.423286,-2.554268 \backslash C, 0,0.874159,0.411215,0.95$ $9505 \backslash \mathrm{C}, 0,0.104913,1.47175,0.291966 \backslash \mathrm{C}, 0,-1.312213,1.481581,0.219447 \backslash \mathrm{C}, 0$ $, 0.803335,2.568882,-0.252184 \backslash C, 0,-1.959745,2.559939,-0.383732 \backslash C, 0,0.14$ $3453,3.6362,-0.846267 \backslash \mathrm{H}, 0,1.894429,2.587267,-0.169118 \backslash \mathrm{C}, 0,-1.247009,3$. $632283,-0.914362 \backslash \mathrm{H}, 0,-3.050345,2.542947,-0.431797 \backslash \mathrm{H}, 0,0.717738,4.47782$,-1. $244483 \backslash \mathrm{H}, 0,-1.781486,4.466603,-1.377969 \backslash \mathrm{C}, 0,0.44624,-0.070077,2.27$ $8145 \backslash \mathrm{C}, 0,-2.133033,0.315531,0.714378 \backslash 0,0,-3.496701,0.665862,0.677454 \backslash \mathrm{H}$ $, 0,-3.997638,-0.041049,1.095444 \backslash \mathrm{H}, 0,0.697984,0.487398,3.190667 \backslash \mathrm{H}, 0,5.3$ $66265,-1.703014,-1.083118 \backslash \mathrm{C}, 0,-1.874838,-0.943036,-0.11275 \backslash \mathrm{H}, 0,-2.1704$ $58,-0.712956,-1.153622 \backslash \mathrm{H}, 0,-0.787784,-1.153263,-0.138206 \backslash \mathrm{H}, 0,0.035839$, $-1.079498,2.41875 \backslash C, 0,-2.61377,-2.167472,0.403316 \backslash \mathrm{H}, 0,-3.705714,-2.028$ $046,0.269093 \backslash \mathrm{H}, 0,-2.446658,-2.252859,1.496102 \backslash \mathrm{C}, 0,-2.202967,-3.470278$, $-0.268491 \backslash \mathrm{H}, 0,-1.127363,-3.648585,-0.077811 \backslash \mathrm{H}, 0,-2.733902,-4.307782,0$. $218433 \backslash \mathrm{C}, 0,-2.469322,-3.499115,-1.762297 \backslash \mathrm{H}, 0,-2.246131,-4.486187,-2.19$ $6178 \backslash H, 0,-3.526868,-3.271603,-1.982912 \backslash H, 0,-1.856203,-2.761045,-2.3048$ $28 \backslash H, 0,-1.831394,0.10953,1.767183 \backslash \backslash$ Version=ES64L-G16RevC.01 \State=3-A \backslash $H F=-812.0951292 \backslash S 2=2.035738 \backslash S 2-1=0 . \backslash S 2 A=2.000772 \backslash R M S D=8.593 e-09 \backslash$ Dipole $=0.120643,-0.9373114,0.4547608 \backslash$ Quadrupole=1.3771684,-2.2635031,0.88633 $47,3.2906246,-2.6115138,-4.8141817 \backslash \mathrm{PG}=\mathrm{C01}[\mathrm{X}(\mathrm{C} 19 \mathrm{H} 2201)] \backslash \backslash @$

Ts-1ae

$1 \backslash 1 \backslash G I N C-A 01 R 08 N 02 \backslash S P \backslash U M 06 \backslash d e f 2 T Z V P P \backslash C 19 H 2201$ (3) \ACJSGGHI7X\20-Apr-202 $3 \backslash 0 \backslash \backslash \#$ scrf=(iefpcm,smd, solvent=Acetonitrile) M06 def2tzvpp
ts1
0,3 $\backslash C, 0,2.643654,-0.233877,-1.011667 \backslash C, 0,2.177579,-0.390072,0.316593 \backslash C, 0$, $2.958933,-1.191293,1.182851 \backslash C, 0,4.146869,-1.769257,0.758616 \backslash C, 0,4.5928$ $38,-1.589346,-0.552007 \backslash \mathrm{C}, 0,3.826575,-0.82363,-1.433514 \backslash \mathrm{H}, 0,2.040033,0$. $332875,-1.726619 \backslash \mathrm{H}, 0,2.624331,-1.334281,2.215353 \backslash \mathrm{H}, 0,4.73622,-2.368724$
$, 1.459129 \backslash \mathrm{H}, 0,4.152503,-0.694792,-2.470166 \backslash \mathrm{C}, 0,0.926857,0.178209,0.772$ $654 \backslash C, 0,0.326029,1.356935,0.17069 \backslash C, 0,-1.082182,1.559669,0.23363 \backslash C, 0,1$ $.107371,2.390647,-0.395061 \backslash C, 0,-1.645915,2.751955,-0.219013 \backslash C, 0,0.5311$ $94,3.56313,-0.858794 \backslash H, 0,2.195688,2.282429,-0.414335 \backslash C, 0,-0.850873,3.7$ 51823,-0.771052\H,0,-2.729197,2.87844,-0.137099\H,0,1.16765,4.350852,$1.272771 \backslash H, 0,-1.305508,4.679656,-1.130095 \backslash C, 0,0.231502,-0.426766,1.932$ $256 \backslash \mathrm{C}, 0,-1.939289,0.46469,0.754685 \backslash 0,0,-3.093504,0.957769,1.336446 \backslash \mathrm{H}, 0$ $,-3.690484,0.22181,1.513982 \backslash \mathrm{H}, 0,-1.121801,-0.05385,1.604373 \backslash \mathrm{H}, 0,5.5260$ $33,-2.050653,-0.88743 \backslash C, 0,-2.175158,-0.67757,-0.215448 \backslash H, 0,-2.731014,-$ $0.277722,-1.08739 \backslash H, 0,-1.193001,-1.010082,-0.602804 \backslash H, 0,0.227489,-1.52$ $474,1.998719 \backslash C, 0,-2.907352,-1.864356,0.394985 \backslash \mathrm{H}, 0,-3.955297,-1.584208$, $0.633047 \backslash H, 0,-2.4302,-2.119877,1.360906 \backslash \mathrm{C}, 0,-2.935914,-3.098661,-0.495$ $864 \backslash \mathrm{H}, 0,-1.896038,-3.428801,-0.680244 \backslash \mathrm{H}, 0,-3.416472,-3.925942,0.055941$ $\backslash C, 0,-3.649576,-2.886516,-1.818254 \backslash H, 0,-3.727415,-3.822861,-2.392144 \backslash H$ $, 0,-4.675142,-2.508476,-1.662308 \backslash H, 0,-3.126039,-2.157731,-2.45852 \backslash \mathrm{H}, 0$, $0.376827,0.060252,2.91118 \backslash \backslash$ Version=ES64L-G16RevC.01 \backslash State=3-A $\backslash H F=-812$. $0799214 \backslash S 2=2.03387 \backslash S 2-1=0 . \backslash S 2 A=2.000727 \backslash R M S D=2.313 e-09 \backslash$ Dipole=-0.45281 ,-0.9657201,-0.074947\Quadrupole=4.5229354,-2.505937,-2.0169984,2.6331 815,-1.9224132,-5.4399683\PG=C01 [X(C19H22O1)]
@

Int-2ae

$1 \backslash 1 \backslash G I N C-A 06 R 04 N 08 \backslash S P \backslash U M 06 \backslash d e f 2 T Z V P P \backslash C 19 H 2201$ (3) \ACJSGGHI7X\20-Apr-202 $3 \backslash 0 \backslash \backslash \# p$ scrf=(iefpcm,smd,solvent=Acetonitrile) M06 def2tzvpp
int2
0, $3 \backslash C, 0,1.167451,1.934498,-0.9726 \backslash C, 0,1.255512,1.336154,0.313385 \backslash C, 0,2.5$ $39269,1.294768,0.920138 \backslash C, 0,3.652067,1.82484,0.284033 \backslash C, 0,3.538772,2.4$ $10444,-0.979439 \backslash C, 0,2.286469,2.456953,-1.600265 \backslash \mathrm{H}, 0,0.193661,1.973886$, $-1.471163 \backslash \mathrm{H}, 0,2.655395,0.849714,1.912709 \backslash \mathrm{H}, 0,4.626418,1.784408,0.78070$ $7 \backslash H, 0,2.186146,2.908609,-2.591955 \backslash C, 0,0.108127,0.767224,0.946714 \backslash C, 0,-$ $1.255132,0.951297,0.393012 \backslash C, 0,-2.034409,-0.118906,-0.164739 \backslash C, 0,-1.83$ $525,2.211737,0.536327 \backslash C, 0,-3.393747,0.164135,-0.486999 \backslash C, 0,-3.159951,2$
$.470475,0.179639 \backslash \mathrm{H}, 0,-1.218514,3.012902,0.960078 \backslash \mathrm{C}, 0,-3.938254,1.42428$ $2,-0.322038 \backslash \mathrm{H}, 0,-4.00255,-0.642085,-0.901453 \backslash \mathrm{H}, 0,-3.57924,3.472685,0.3$ $03788 \backslash \mathrm{H}, 0,-4.982816,1.599334,-0.59747 \backslash \mathrm{C}, 0,0.217057,0.063894,2.261288 \backslash \mathrm{C}$ $, 0,-1.53962,-1.424883,-0.426967 \backslash 0,0,-2.474204,-2.350647,-0.780221 \backslash \mathrm{H}, 0$, $-2.031845,-3.148753,-1.090745 \backslash \mathrm{H}, 0,-0.721743,-0.455102,2.510187 \backslash \mathrm{H}, 0,4.4$ $19195,2.826987,-1.47685 \backslash C, 0,-0.129519,-1.899172,-0.48479 \backslash \mathrm{H}, 0,0.058724$, $-2.262386,-1.519041 \backslash \mathrm{H}, 0,0.56949,-1.060321,-0.347128 \backslash \mathrm{H}, 0,1.036898,-0.67$ $8263,2.282282 \backslash C, 0,0.208408,-3.015329,0.507731 \backslash H, 0,-0.386343,-3.923344$, $0.280713 \backslash \mathrm{H}, 0,-0.113528,-2.700076,1.516511 \backslash \mathrm{C}, 0,1.686339,-3.376453,0.528$ $074 \backslash \mathrm{H}, 0,2.269513,-2.477969,0.811332 \backslash \mathrm{H}, 0,1.86252,-4.112102,1.332935 \backslash \mathrm{C}, 0$ $, 2.20785,-3.926928,-0.786775 \backslash \mathrm{H}, 0,3.25263,-4.263303,-0.70059 \backslash \mathrm{H}, 0,1.6100$ $3,-4.7929,-1.121752 \backslash \mathrm{H}, 0,2.179401,-3.174834,-1.592359 \backslash \mathrm{H}, 0,0.421554,0.77$ 3909,3.086663
Version=ES64L-G16RevC.01 \State=3-A $\backslash H F=-812.127374 \backslash S 2=2$. $05823 \backslash S 2-1=0 . \backslash S 2 A=2.002117 \backslash \operatorname{RMSD}=4.784 e-09 \backslash$ Dipole=0.8206807,-1.1920668, $0.023684 \backslash$ Quadrupole $=-3.9737212,4.4967179,-0.5229968,0.1286613,2.451882$ 5,1.0547201 \PG=C01 [X(C19H22O1)]
@

Int-3ae

$1 \backslash 1 \backslash G I N C-A 06 R 05 N 04 \backslash S P \backslash R M 06 \backslash d e f 2 T Z V P P \backslash C 19 H 2201 \backslash A C J S G G H I 7 X \backslash 20-A p r-2023 \backslash 0$ $\backslash \backslash \# p$ scrf=(iefpcm, smd, solvent=Acetonitrile) M06 def2tzvpp
int3
0,1\C $, 0,-2.408007,0.799282,-1.060288 \backslash C, 0,-2.113884,0.466493,0.271806 \backslash C, 0,-3$ $.107654,0.690289,1.236652 \backslash C, 0,-4.350918,1.205512,0.881794 \backslash C, 0,-4.62740$ $6,1.524369,-0.446427 \backslash \mathrm{C}, 0,-3.648429,1.319562,-1.416836 \backslash \mathrm{H}, 0,-1.636135,0$. $64726,-1.823153 \backslash \mathrm{H}, 0,-2.910501,0.433229,2.282789 \backslash \mathrm{H}, 0,-5.114068,1.356491$ $, 1.651294 \backslash \mathrm{H}, 0,-3.850022,1.573874,-2.461826 \backslash \mathrm{C}, 0,-0.772104,-0.049794,0.6$ $35641 \backslash \mathrm{C}, 0,-0.251069,-1.174242,0.038784 \backslash \mathrm{C}, 0,1.153067,-1.622048,0.170275$ $\backslash C, 0,-1.122671,-2.119772,-0.648247 \backslash C, 0,1.391576,-3.05677,0.220126 \backslash C, 0$, $-0.790696,-3.429472,-0.758834 \backslash \mathrm{H}, 0,-2.116746,-1.787889,-0.959355 \backslash \mathrm{C}, 0,0$. $459888,-3.92435,-0.239986 \backslash \mathrm{H}, 0,2.370355,-3.410187,0.553231 \backslash \mathrm{H}, 0,-1.50378$ $6,-4.132559,-1.200267 \backslash \mathrm{H}, 0,0.661727,-4.999424,-0.250289 \backslash \mathrm{C}, 0,-0.080231,0$ $.707372,1.725048 \backslash C, 0,2.235193,-0.791025,0.050562 \backslash 0,0,3.469177,-1.33870$
$2,0.186253 \backslash \mathrm{H}, 0,4.141118,-0.673013,0.002844 \backslash \mathrm{H}, 0,-0.77187,0.878611,2.568$ $004 \backslash \mathrm{H}, 0,0.800012,0.167751,2.107169 \backslash \mathrm{H}, 0,-5.602906,1.934062,-0.723893 \backslash \mathrm{C}$, $0,2.241483,0.638458,-0.379619 \backslash \mathrm{H}, 0,2.730304,0.661432,-1.376659 \backslash \mathrm{H}, 0,1.21$ 0473,0.990167,-0.541136\н, 0,0.247954,1.715894,1.408381\С, 0,2.994356,1. 587033, 0.554758\H, 0, 4.071463,1.320101, 0.578368\H, 0, 2. 636643,1.445023,1 $.589327 \backslash C, 0,2.870793,3.052337,0.163341 \backslash H, 0,1.805945,3.349664,0.217813 \backslash$ H, $0,3.388224,3.665713,0.922041 \backslash C, 0,3.421959,3.37465,-1.213522 \backslash \mathrm{H}, 0,3.40$ $5165,4.456966,-1.413865 \backslash$ н $, 0,4.468951,3.038021,-1.313593 \backslash$ н, $0,2.842792,2$.891121,-2.017422
Version=ES64L-G16RevC.01\State=1-A\HF=-812.1479859\} RMSD=4.589e-09\Dipole=0.9958096,1.4627865,-0.0895557\Quadrupole=9.2577 $205,-6.9633844,-2.2943361,3.03555,-0.2975995,0.6968731 \backslash \mathrm{PG}=\mathrm{C01}$ [X(C19H2 201)]
@

Int-2ae'

$1 \backslash 1 \backslash G I N C-A 04 R 05 N 04 \backslash S P \backslash U M 06 \backslash d e f 2 T Z V P P \backslash C 19 H 2201$ (3) \ACJSGGHI7X\27-Apr-202 $3 \backslash 0 \backslash \backslash \# p$ scrf=(iefpcm,smd,solvent=Acetonitrile) M06 def2tzvpp
int2
0, $3 \backslash C, 0,2.33025,-0.434324,-1.195487 \backslash C, 0,2.42199,-0.394246,0.221255 \backslash C, 0,3$ $.414855,-1.208844,0.826597 \backslash C, 0,4.258923,-2.001313,0.063125 \backslash C, 0,4.14907$ $6,-2.023184,-1.329647 \backslash \mathrm{C}, 0,3.174995,-1.233281,-1.948741 \backslash \mathrm{H}, 0,1.568103,0$. $173926,-1.693136 \backslash$ н, $0,3.525669,-1.206924,1.914875 \backslash$ н, $0,5.018488,-2.61347$ $9,0.559551 \backslash \mathrm{H}, 0,3.07533,-1.245689,-3.038641 \backslash \mathrm{C}, 0,1.539569,0.412833,0.999$ $992 \backslash C, 0,0.618848,1.377163,0.351722 \backslash C, 0,-0.795593,1.151159,0.231933 \backslash C, 0$,1.154897,2.580524,-0.103916\C,0,-1.577851,2.199792,-0.334108\C,0,0.36 $6306,3.587815,-0.663765 \backslash \mathrm{H}, 0,2.237468,2.724847,-0.008995 \backslash$ С, $0,-1.012416$, $3.38485,-0.767596 \backslash \mathrm{H}, 0,-2.65637,2.060089,-0.452625 \backslash \mathrm{H}, 0,0.823031,4.51801$ $4,-1.012508 \backslash \mathrm{H}, 0,-1.652234,4.158763,-1.202206 \backslash \mathrm{C}, 0,1.550268,0.361301,2.4$ $9261 \backslash C, 0,-1.420359,-0.057177,0.626808 \backslash 0,0,-0.632438,-1.108639,0.969496$ $\backslash \mathrm{H}, 0,-1.1856,-1.83638,1.277102 \backslash \mathrm{H}, 0,0.686633,0.90068,2.911267 \backslash \mathrm{H}, 0,4.816$ $446,-2.650258,-1.927807 \backslash C, 0,-2.881651,-0.339138,0.544809 \backslash \mathrm{H}, 0,-3.150719$ $,-0.999604,1.394952 \backslash \mathrm{H}, 0,-3.471999,0.580481,0.698857 \backslash \mathrm{H}, 0,1.514816,-0.67$
$6873,2.867963 \backslash C, 0,-3.292889,-1.002775,-0.773056 \backslash \mathrm{H}, 0,-2.704249,-1.93251$ $4,-0.902674 \backslash \mathrm{H}, 0,-2.985461,-0.34195,-1.603696 \backslash \mathrm{C}, 0,-4.778541,-1.312502,-$ $0.876781 \backslash \mathrm{H}, 0,-5.352103,-0.371751,-0.769963 \backslash \mathrm{H}, 0,-4.994162,-1.674005,-1$. $897757 \backslash$ C, $0,-5.27144,-2.331902,0.134354 \backslash \mathrm{H}, 0,-6.327454,-2.594225,-0.0335$ $72 \backslash \mathrm{H}, 0,-4.687278,-3.266845,0.073583 \backslash \mathrm{H}, 0,-5.195821,-1.963335,1.171012 \backslash \mathrm{H}$ $, 0,2.461544,0.825635,2.917814 \backslash \backslash$ Version=ES64L-G16RevC. $01 \backslash$ State=3-A\HF=$812.1271199 \backslash$ S2 $=2.059817 \backslash$ S2-1=0. \backslash S2A $=2.002239 \backslash$ RMSD=5.315e-09\Dipole=-1. $4630714,-0.7559608,0.5279495 \backslash Q u a d r u p o l e=3.0018264,-1.9995978,-1.002228$ $6,0.8572898,0.6700958,-3.1270448 \backslash \mathrm{PG}=\mathrm{C} 01[\mathrm{X}(\mathrm{C} 19 \mathrm{H} 22 \mathrm{O})]$ $\backslash \backslash$

Int-3ae'

1 \1 \GINC-A03R06N05\SP\RM06\def2TZVPP\C19H2201 \ACJSGGHI7X\27-Apr-2023\0 $\backslash \backslash \# p$ scrf=(iefpcm,smd,solvent=Acetonitrile) M06 def2tzvpp
int3
0,1\C $, 0,-3.050875,-0.51685,1.248196 \backslash C, 0,-2.774998,-0.463552,-0.127279 \backslash C, 0,-$ $3.858652,-0.528625,-1.016043 \backslash C, 0,-5.166523,-0.623,-0.549941 \backslash C, 0,-5.422$ $739,-0.669244,0.819161 \backslash \mathrm{C}, 0,-4.357723,-0.617131,1.716511 \backslash \mathrm{H}, 0,-2.213076$, $-0.488031,1.953084 \backslash \mathrm{H}, 0,-3.672483,-0.480504,-2.094226 \backslash \mathrm{H}, 0,-5.99514,-0.6$ $57292,-1.263811 \backslash \mathrm{H}, 0,-4.545664,-0.66237,2.793602 \backslash \mathrm{C}, 0,-1.377208,-0.38832$ $2,-0.615516 \backslash C, 0,-0.536257,0.626827,-0.22562 \backslash C, 0,0.918575,0.646611,-0.5$ $05259 \backslash C, 0,-1.063062,1.849183,0.364831 \backslash C, 0,1.526075,1.949827,-0.732749 \backslash$ $\mathrm{C}, 0,-0.384413,3.020901,0.298861 \backslash \mathrm{H}, 0,-2.080662,1.838929,0.764526 \backslash \mathrm{C}, 0,0$. $906148,3.087076,-0.337819 \backslash H, 0,2.525903,2.008126,-1.173921 \backslash H, 0,-0.84308$ $1,3.937862,0.680887 \backslash \mathrm{H}, 0,1.389302,4.057485,-0.484332 \backslash \mathrm{C}, 0,-0.978639,-1.4$ $53549,-1.582319 \backslash C, 0,1.725938,-0.445352,-0.331575 \backslash 0,0,1.203756,-1.61475$ $8,0.106405 \backslash \mathrm{H}, 0,1.916816,-2.243638,0.265661 \backslash \mathrm{H}, 0,-1.811692,-1.689481,-2$. $264476 \backslash \mathrm{H}, 0,-0.104116,-1.157904,-2.183766 \backslash \mathrm{H}, 0,-6.450254,-0.748549,1.185$ $943 \backslash C, 0,3.214961,-0.447844,-0.483872 \backslash H, 0,3.511326,-1.428354,-0.907357 \backslash$ $H, 0,3.542654,0.299648,-1.224406 \backslash \mathrm{H}, 0,-0.711746,-2.394077,-1.068222 \backslash \mathrm{C}, 0$, $3.940453,-0.204775,0.840544 \backslash H, 0,3.610258,-0.959568,1.582365 \backslash H, 0,3.6045$ $46,0.768642,1.240648 \backslash \mathrm{C}, 0,5.457224,-0.228783,0.72842 \backslash \mathrm{H}, 0,5.777692,0.546$
$971,0.006994 \backslash \mathrm{H}, 0,5.887694,0.076043,1.698497 \backslash \mathrm{C}, 0,6.028719,-1.575372,0.3$ $2297 \backslash \mathrm{H}, 0,7.129509,-1.572344,0.340956 \backslash \mathrm{H}, 0,5.69209,-2.37333,1.007928 \backslash \mathrm{H}, 0$, 5.728051,-1.868367,-0.696829
Version=ES64L-G16RevC.01 \State=1-A $\backslash \mathrm{HF}=-$ $812.1494082 \backslash \operatorname{RMSD}=4.896 e-09 \backslash$ Dipole=1.6405847,-0.9598534,-0.0137092\Quad rupole=9.0694208,-4.6950634,-4.3743575,-3.3635694,-1.0406927,0.5107026 $\backslash \mathrm{PG}=\mathrm{C01}[\mathrm{X}(\mathrm{C} 19 \mathrm{H} 2201)] \backslash \backslash @$

Ts-2ae

$1 \backslash 1 \backslash G I N C-A 06 R 05 N 04 \backslash S P \backslash R M 06 \backslash d e f 2 T Z V P P \backslash C 19 H 2201 \backslash A C J S G G H I 7 X \backslash 20-A p r-2023 \backslash 0$ $\backslash \backslash \# p$ scrf=(iefpcm, smd, solvent=Acetonitrile) M06 def2tzvpp
ts2
0,1\C, $0,-2.575512,-0.441713,1.248822 \backslash C, 0,-2.526379,-0.444149,-0.160838 \backslash C, 0,-$ $3.68333,-0.872872,-0.836637 \backslash C, 0,-4.831902,-1.248368,-0.143953 \backslash C, 0,-4.8$ $6483,-1.214186,1.247081 \backslash \mathrm{C}, 0,-3.722511,-0.809414,1.93939 \backslash \mathrm{H}, 0,-1.67747,-$ $0.162037,1.810706 \backslash \mathrm{H}, 0,-3.6944,-0.908455,-1.929322 \backslash \mathrm{H}, 0,-5.715157,-1.570$ $79,-0.704188 \backslash \mathrm{H}, 0,-3.721269,-0.795634,3.033808 \backslash \mathrm{C}, 0,-1.282475,-0.090977$, $-0.869756 \backslash C, 0,-0.469907,0.995386,-0.397039 \backslash C, 0,0.962097,1.007204,-0.62$ $8446 \backslash C, 0,-1.000046,2.092954,0.340746 \backslash C, 0,1.714268,2.183848,-0.327316 \backslash C$ $, 0,-0.240416,3.197729,0.635 \backslash \mathrm{H}, 0,-2.066466,2.086655,0.583595 \backslash \mathrm{C}, 0,1.1289$ $75,3.264207,0.274032 \backslash H, 0,2.780384,2.216015,-0.569954 \backslash \mathrm{H}, 0,-0.711016,4.0$ $57725,1.121743 \backslash \mathrm{H}, 0,1.710363,4.165358,0.485395 \backslash \mathrm{C}, 0,-1.245508,-0.369691$, $-2.364283 \backslash C, 0,1.615594,-0.241307,-0.785281 \backslash 0,0,0.945777,-1.328802,-0.9$ $34188 \backslash \mathrm{H}, 0,-0.116927,-1.057905,-0.739072 \backslash \mathrm{H}, 0,-2.070991,0.157735,-2.8774$ $8 \backslash \mathrm{H}, 0,-0.313224,-0.012107,-2.824293 \backslash \mathrm{H}, 0,-5.767089,-1.510765,1.789444 \backslash \mathrm{C}$ $, 0,3.083841,-0.436932,-0.58404 \backslash \mathrm{H}, 0,3.382645,-1.298001,-1.204722 \backslash \mathrm{H}, 0,3$. $655337,0.436275,-0.940085 \backslash H, 0,-1.346638,-1.443038,-2.604319 \backslash \mathrm{C}, 0,3.4119$ $63,-0.712339,0.884315 \backslash \mathrm{H}, 0,2.823842,-1.590915,1.211116 \backslash \mathrm{H}, 0,3.057067,0.1$ $38682,1.493748 \backslash C, 0,4.891379,-0.95189,1.145743 \backslash \mathrm{H}, 0,5.464164,-0.055003,0$ $.840813 \backslash \mathrm{H}, 0,5.042538,-1.040216,2.236167 \backslash \mathrm{C}, 0,5.452992,-2.181582,0.45598$ $1 \backslash H, 0,6.497399,-2.369479,0.749266 \backslash H, 0,4.869597,-3.082532,0.712452 \backslash H, 0$, $5.441348,-2.086624,-0.642451 \backslash$ Version=ES64L-G16RevC.01 \backslash State=1-A $\backslash \mathrm{HF}=-8$
$12.1401318 \backslash \mathrm{RMSD}=5.090 \mathrm{e}-09 \backslash$ Dipole $=1.6191664,0.7558516,0.1218337 \backslash$ Quadrup ole=4.4951744,-3.3204001,-1.1747744,1.7214986,-0.0475373,1.3803387\PG= C01 [X(C19H22O1)]
@

Ts-3ae

$1 \backslash 1 \backslash G I N C-A 06 R 04 N 08 \backslash S P \backslash R M 06 \backslash d e f 2 T Z V P P \backslash C 19 H 2201 \backslash A C J S G G H I 7 X \backslash 20-A p r-2023 \backslash 0$
\#p scrf=(iefpcm,smd,solvent=Acetonitrile) M06 def2tzvpp
ts3
0,1\C, $0,-1.281701,-1.516472,-0.947028 \backslash C, 0,-1.011159,-1.273428,0.420154 \backslash C, 0,-$ $2.081091,-1.459098,1.324589 \backslash C, 0,-3.3364,-1.865992,0.887743 \backslash C, 0,-3.5742$ $81,-2.110083,-0.464311 \backslash C, 0,-2.533082,-1.935388,-1.377924 \backslash \mathrm{H}, 0,-0.485566$ $,-1.359011,-1.682927 \backslash \mathrm{H}, 0,-1.924215,-1.283079,2.392196 \backslash \mathrm{H}, 0,-4.142324,-1$ $.999522,1.616122 \backslash \mathrm{H}, 0,-2.703959,-2.117514,-2.443472 \backslash \mathrm{C}, 0,0.282293,-0.771$ $056,0.850416 \backslash C, 0,1.44946,-0.876857,0.004102 \backslash C, 0,2.187704,0.328248,0.03$ $8322 \backslash C, 0,1.983508,-1.980383,-0.691665 \backslash C, 0,3.56457,0.352975,-0.267801 \backslash C$ $, 0,3.304338,-1.917331,-1.103474 \backslash \mathrm{H}, 0,1.40742,-2.905161,-0.802982 \backslash \mathrm{C}, 0,4$. $102994,-0.776434,-0.854234 \backslash \mathrm{H}, 0,4.159703,1.258371,-0.114786 \backslash \mathrm{H}, 0,3.76114$ $4,-2.788941,-1.582703 \backslash H, 0,5.154134,-0.784306,-1.158034 \backslash \mathrm{C}, 0,0.494041,-0$ $.537583,2.326029 \backslash C, 0,1.331662,1.417584,0.37759 \backslash 0,0,1.853715,2.363743,1$ $.176699 \backslash \mathrm{H}, 0,1.308924,3.163217,1.152256 \backslash \mathrm{H}, 0,0.336508,-1.475933,2.89633 \backslash$ $H, 0,1.518149,-0.199871,2.539805 \backslash \mathrm{H}, 0,-4.562994,-2.430478,-0.804664 \backslash \mathrm{C}, 0$, $0.125134,1.827106,-0.404539 \backslash \mathrm{H}, 0,0.448442,2.656271,-1.077135 \backslash \mathrm{H}, 0,-0.180$ $301,1.003214,-1.067501 \backslash \mathrm{H}, 0,-0.195362,0.207523,2.765408 \backslash \mathrm{C}, 0,-1.070082,2$ $.290963,0.425275 \backslash \mathrm{H}, 0,-0.853272,3.266278,0.91079 \backslash \mathrm{H}, 0,-1.230062,1.568088$ $, 1.244104 \backslash C, 0,-2.351869,2.416718,-0.385345 \backslash H, 0,-2.618794,1.414334,-0.7$ $72719 \backslash \mathrm{H}, 0,-3.173987,2.699325,0.295763 \backslash \mathrm{C}, 0,-2.270292,3.412244,-1.527766$ $\backslash \mathrm{H}, 0,-3.243669,3.538309,-2.026663 \backslash \mathrm{H}, 0,-1.95209,4.407917,-1.170773 \backslash \mathrm{H}, 0$, $-1.55205,3.09663,-2.302807 \backslash \backslash$ Version=ES64L-G16RevC.01 \backslash State=1-A $\backslash H F=-812$ $.1238881 \backslash \mathrm{RMSD}=6.713 \mathrm{e}-09 \backslash$ Dipole=-0.2676375,1.6008299,-0.1584702\Quadrup ole=-2.2848997,4.4126323,-2.1277326,0.9249189,-2.4212397,3.0707421 \PG= C01 [X(C19H22O1)]
@

Ts-3ae'

$1 \backslash 1 \backslash G I N C-B 2146 \backslash S P \backslash R M 06 \backslash d e f 2 T Z V P P \backslash C 19 H 2201 \backslash R O O T \backslash 25-J u l-2023 \backslash 0 \backslash \backslash \# p$ scrf= (iefpcm,smd, solvent=Acetonitrile) M06 def2tzvpp
ts3
0,1\C,0,-1.12197 $3,-2.136535,0.904223 \backslash C, 0,0.056355,-1.403647,0.643071 \backslash C, 0,1.061947,-2.0$ $7602,-0.096658 \backslash C, 0,0.870409,-3.363657,-0.582081 \backslash C, 0,-0.319499,-4.05335$ $1,-0.340613 \backslash C, 0,-1.30601,-3.426689,0.416762 \backslash \mathrm{H}, 0,-1.9236,-1.67634,1.490$ $738 \backslash \mathrm{H}, 0,2.030593,-1.58691,-0.250681 \backslash \mathrm{H}, 0,1.679675,-3.849757,-1.137201 \backslash \mathrm{H}$ $, 0,-2.242411,-3.95022,0.63451 \backslash C, 0,0.2336,-0.056505,1.19172 \backslash C, 0,1.33169$ $6,0.767659,0.770923 \backslash C, 0,1.341811,0.912895,-0.63415 \backslash C, 0,2.397391,1.3176$ $73,1.514411 \backslash C, 0,2.52497,1.228805,-1.330595 \backslash C, 0,3.522656,1.739415,0.827$ $764 \backslash \mathrm{H}, 0,2.38387,1.311236,2.609581 \backslash \mathrm{C}, 0,3.608313,1.652449,-0.581834 \backslash \mathrm{H}, 0$, $2.555441,1.233965,-2.42572 \backslash \mathrm{H}, 0,4.388061,2.107742,1.387451 \backslash \mathrm{H}, 0,4.528202$ $, 1.968751,-1.082199 \backslash C, 0,-0.514152,0.295472,2.44098 \backslash C, 0,0.029848,0.6954$ $76,-1.165788 \backslash \mathrm{H}, 0,-1.559584,0.590143,2.219359 \backslash \mathrm{H}, 0,-0.575226,-0.539875,3$ $.161599 \backslash \mathrm{H}, 0,-0.464608,-5.068093,-0.72062 \backslash \mathrm{C}, 0,-1.143366,1.572886,-0.886$ $41 \backslash \mathrm{H}, 0,-0.941334,2.15229,0.028311 \backslash \mathrm{H}, 0,-1.186267,2.314854,-1.716989 \backslash \mathrm{H}, 0$ $,-0.057621,1.163141,2.944086 \backslash \mathrm{C}, 0,-2.485865,0.856104,-0.827274 \backslash \mathrm{H}, 0,-2.4$ $6586,0.113395,-0.008053 \backslash \mathrm{H}, 0,-2.61114,0.271347,-1.754571 \backslash \mathrm{C}, 0,-3.665559$, $1.799013,-0.643758 \backslash \mathrm{H}, 0,-3.649361,2.562407,-1.445605 \backslash \mathrm{H}, 0,-4.601692,1.23$ $3228,-0.79553 \backslash C, 0,-3.705576,2.478148,0.713323 \backslash H, 0,-3.735493,1.732559,1$ $.527523 \backslash \mathrm{H}, 0,-2.823056,3.116509,0.88798 \backslash \mathrm{H}, 0,-4.593284,3.120255,0.824735$ $\backslash 0,0,-0.125596,-0.048537,-2.262376 \backslash \mathrm{H}, 0,0.567477,-0.729884,-2.283787 \backslash \backslash \mathrm{~V}$ ersion=ES64L-G16RevA. $03 \backslash$ State=1-A $\backslash H F=-812.1233682 \backslash R M S D=5.544 \mathrm{e}-09 \backslash \mathrm{Dipol}$ $e=0.0870087,0.8088174,-0.3915484 \backslash$ Quadrupole=3.5397944,-4.4041144,0.864 $32,0.4886119,-3.8842012,2.7806762 \backslash \mathrm{PG}=\mathrm{C01}[\mathrm{X}(\mathrm{C} 19 \mathrm{H} 22 \mathrm{O})] \backslash \backslash @$

Ts-4

1 \1 \GINC-A01R03N03\SP\UM06\def2TZVPP\C19H2201(3) \ACJSGGHI7X\27-Apr-202 $3 \backslash 0 \backslash \ \# p$ scrf=(iefpcm,smd, solvent=Acetonitrile) M06 def2tzvpp
ts2
0,3 \C, 0, -0. $820594,-1.544977,-1.014996 \backslash C, 0,-0.711134,-1.479339,0.401151 \backslash C$,
$0,-1.8555,-1.858813,1.153401 \backslash C, 0,-3.024706,-2.266167,0.529563 \backslash C, 0,-3.1$ $07678,-2.319161,-0.864793 \backslash C, 0,-1.993617,-1.956901,-1.628148 \backslash \mathrm{H}, 0,0.0390$ $37,-1.25672,-1.628648 \backslash H, 0,-1.816207,-1.831067,2.246181 \backslash H, 0,-3.888362,-$ $2.551752,1.137966 \backslash \mathrm{H}, 0,-2.045321,-1.995155,-2.720599 \backslash \mathrm{C}, 0,0.476163,-1.00$ $489,1.038718 \backslash C, 0,1.673668,-0.672541,0.231968 \backslash C, 0,2.001083,0.672972,-0$. $052276 \backslash C, 0,2.484201,-1.695719,-0.274463 \backslash C, 0,3.13308,0.941579,-0.831199$ $\backslash C, 0,3.609968,-1.407979,-1.04203 \backslash \mathrm{H}, 0,2.212379,-2.736002,-0.06249 \backslash \mathrm{C}, 0,3$ $.936828,-0.08409,-1.322389 \backslash H, 0,3.374511,1.987004,-1.051486 \backslash \mathrm{H}, 0,4.23134$ $2,-2.222855,-1.425364 \backslash \mathrm{H}, 0,4.81762,0.151141,-1.926953 \backslash \mathrm{C}, 0,0.564329,-0.8$ $55656,2.522978 \backslash C, 0,1.131924,1.780372,0.397661 \backslash 0,0,1.270264,2.119635,1$. $718733 \backslash \mathrm{H}, 0,0.596397,2.770099,1.950256 \backslash \mathrm{H}, 0,1.474018,-0.309881,2.809522 \backslash$ $H, 0,-4.031943,-2.641984,-1.352157 \backslash \mathrm{C}, 0,-0.107955,2.18439,-0.327419 \backslash \mathrm{H}, 0$, $-0.049869,3.24081,-0.672711 \backslash H, 0,-0.16872,1.580641,-1.252622 \backslash H, 0,-0.296$ $536,-0.303358,2.942071 \backslash \mathrm{C}, 0,-1.401318,1.998605,0.479592 \backslash \mathrm{H}, 0,-1.503175,2$ $.814043,1.226077 \backslash \mathrm{H}, 0,-1.332389,1.059515,1.056787 \backslash \mathrm{C}, 0,-2.655774,1.95681$ $2,-0.379511 \backslash H, 0,-2.590674,1.076694,-1.049041 \backslash H, 0,-3.526909,1.763839,0$. $272437 \backslash \mathrm{C}, 0,-2.89385,3.215518,-1.193035 \backslash \mathrm{H}, 0,-3.853497,3.17731,-1.731865$ $\backslash H, 0,-2.913464,4.111524,-0.5476 \backslash \mathrm{H}, 0,-2.1067,3.375014,-1.948689 \backslash \mathrm{H}, 0,0.5$ 81641,-1.840037,3.030419
Version=ES64L-G16RevC.01 \State=3-A\HF=-812.1 $076093 \backslash S 2=2.036706 \backslash S 2-1=0 . \backslash S 2 A=2.000714 \backslash R M S D=5.879 e-09 \backslash$ Dipole=-0.61584 $04,0.344268,0.0236101 \backslash Q u a d r u p o l e=-1.1321345,0.6673362,0.4647983,-1.948$ 6437,-5.1509569,0.8596968\PG=C01 [X(C19H22O1)]
@

Ts-5

$1 \backslash 1 \backslash G I N C-A 04 R 05 N 04 \backslash S P \backslash R M 06 \backslash d e f 2 T Z V P P \backslash C 19 H 2201 \backslash A C J S G G H I 7 X \backslash 27-A p r-2023 \backslash 0$ $\ \backslash \# p$ scrf=(iefpcm,smd,solvent=Acetonitrile) M06 def2tzvpp
ts4
0,1\C, $0,3.139286,-0.651178,-1.188069 \backslash C, 0,2.366791,-0.747871,-0.019405 \backslash C, 0,2$. $975107,-1.303695,1.117305 \backslash C, 0,4.300442,-1.727802,1.094906 \backslash C, 0,5.054316$ $,-1.612855,-0.071896 \backslash \mathrm{C}, 0,4.465917,-1.073803,-1.214245 \backslash \mathrm{H}, 0,2.677126,-0$. $243793,-2.094125 \backslash \mathrm{H}, 0,2.391411,-1.387867,2.04106 \backslash \mathrm{H}, 0,4.751936,-2.14654$,
$1.999732 \backslash \mathrm{H}, 0,5.043474,-0.989223,-2.140127 \backslash \mathrm{C}, 0,0.936731,-0.35138,0.0105$ $95 \backslash C, 0,0.522126,0.96433,-0.175444 \backslash C, 0,-0.879674,1.413433,-0.095099 \backslash C, 0$,1.494894,1.999774,-0.45623\C,0,-1.0622,2.824556,0.132054\C,0,1.206377 $, 3.329659,-0.430267 \backslash \mathrm{H}, 0,2.51826,1.687986,-0.672894 \backslash \mathrm{C}, 0,-0.101863,3.770$ $794,-0.100079 \backslash H, 0,-2.073163,3.16356,0.392193 \backslash H, 0,1.994104,4.058147,-0$. $646405 \backslash \mathrm{H}, 0,-0.343306,4.836101,-0.055714 \backslash \mathrm{C}, 0,-0.020863,-1.45925,0.26044$ $5 \backslash C, 0,-1.979918,0.710776,0.498374 \backslash 0,0,-2.099385,0.781524,1.825021 \backslash \mathrm{H}, 0$, $-2.96884,0.462506,2.118879 \backslash H, 0,0.480745,-2.348644,0.672366 \backslash H, 0,-0.8118$ $67,-1.144763,0.969317 \backslash \mathrm{H}, 0,6.096366,-1.945262,-0.091612 \backslash \mathrm{C}, 0,-2.875972,-$ $0.198464,-0.25875 \backslash \mathrm{H}, 0,-3.591306,0.434561,-0.826226 \backslash \mathrm{H}, 0,-2.255299,-0.64$ $6495,-1.063961 \backslash \mathrm{H}, 0,-0.561714,-1.798614,-0.651166 \backslash \mathrm{C}, 0,-3.630942,-1.2649$ $4,0.520995 \backslash \mathrm{H}, 0,-4.361837,-0.787724,1.208208 \backslash \mathrm{H}, 0,-2.920517,-1.820743,1$. $160955 \backslash \mathrm{C}, 0,-4.37799,-2.25008,-0.368117 \backslash \mathrm{H}, 0,-3.64258,-2.772188,-1.00923$ $7 \backslash \mathrm{H}, 0,-4.822927,-3.033455,0.269957 \backslash \mathrm{C}, 0,-5.458239,-1.618357,-1.226417 \backslash \mathrm{H}$ $, 0,-6.032083,-2.378934,-1.777552 \backslash H, 0,-6.17527,-1.047482,-0.610904 \backslash H, 0$, $-5.043601,-0.92522,-1.976845 \backslash \backslash$ Version=ES64L-G16RevC.01 \backslash State=1-A $\backslash H F=-8$ $12.0869639 \backslash \mathrm{RMSD}=6.283 \mathrm{e}-09 \backslash$ Dipole=$=-3.2111566,-1.0589904,0.5560642 \backslash$ Quadr upole=13.3669958,-9.1047513,-4.2622445,0.4944209,-5.8718353,-1.5180145 $\backslash \mathrm{PG}=\mathrm{C01}[\mathrm{X}(\mathrm{C} 19 \mathrm{H} 2201)] \backslash \backslash @$

$2 a e$

$1 \backslash 1 \backslash G I N C-A 06 R 03 N 06 \backslash S P \backslash R M 06 \backslash d e f 2 T Z V P P \backslash C 19 H 2201 \backslash A C J S G G H I 7 X \backslash 20-A p r-2023 \backslash 0$
\#p scrf=(iefpcm,smd,solvent=Acetonitrile) M06 def2tzvpp
2
0,1\C,0, $-2.498644,-1.027074,1.176125 \backslash C, 0,-2.55757,-0.686141,-0.182326 \backslash C, 0,-3.8$ $13316,-0.62546,-0.790725 \backslash C, 0,-4.975014,-0.892271,-0.063591 \backslash C, 0,-4.9001$ $2,-1.226346,1.284292 \backslash \mathrm{C}, 0,-3.651704,-1.294009,1.90411 \backslash \mathrm{H}, 0,-1.518673,-1$. $078893,1.665931 \backslash \mathrm{H}, 0,-3.897381,-0.367301,-1.850441 \backslash \mathrm{H}, 0,-5.947998,-0.838$ $724,-0.561392 \backslash \mathrm{H}, 0,-3.578549,-1.560262,2.962877 \backslash \mathrm{C}, 0,-1.260111,-0.408608$ $,-0.914384 \backslash C, 0,-0.571191,0.834773,-0.372209 \backslash C, 0,0.824982,0.942602,-0.1$ $64893 \backslash C, 0,-1.366981,1.951612,-0.088471 \backslash C, 0,1.348792,2.144862,0.341527 \backslash$
$C, 0,-0.828802,3.143491,0.379893 \backslash \mathrm{H}, 0,-2.449428,1.87299,-0.237023 \backslash \mathrm{C}, 0,0$. $542122,3.242674,0.602549 \backslash H, 0,2.423975,2.232669,0.51637 \backslash H, 0,-1.48466,3$. $995988,0.579251 \backslash \mathrm{H}, 0,0.981159,4.170694,0.978619 \backslash \mathrm{C}, 0,-1.399401,-0.291364$ $,-2.427117 \backslash C, 0,1.769916,-0.175372,-0.480023 \backslash 0,0,1.491561,-1.045928,-1$. $28047 \backslash \mathrm{H}, 0,-0.601036,-1.27047,-0.723523 \backslash \mathrm{H}, 0,-1.993473,0.594061,-2.71266$ $1 \backslash H, 0,-0.403439,-0.19469,-2.883065 \backslash H, 0,-5.810722,-1.4368,1.852614 \backslash C, 0$, $3.107791,-0.200322,0.230255 \backslash \mathrm{H}, 0,3.692245,0.671213,-0.122196 \backslash \mathrm{H}, 0,2.9493$ $03,-0.015467,1.310687 \backslash \mathrm{H}, 0,-1.882752,-1.1845,-2.855115 \backslash \mathrm{C}, 0,3.883055,-1$. $48406,0.004399 \backslash \mathrm{H}, 0,4.082246,-1.598738,-1.076613 \backslash \mathrm{H}, 0,3.237596,-2.340166$ $, 0.266864 \backslash \mathrm{C}, 0,5.185914,-1.554937,0.786875 \backslash \mathrm{H}, 0,4.968096,-1.482931,1.870$ $097 \backslash \mathrm{H}, 0,5.629293,-2.556034,0.642986 \backslash \mathrm{C}, 0,6.201567,-0.495493,0.398036 \backslash \mathrm{H}$, $0,7.162733,-0.641612,0.91514 \backslash \mathrm{H}, 0,6.403373,-0.518038,-0.687007 \backslash \mathrm{H}, 0,5.85$ $7888,0.523091,0.645429 \backslash \backslash$ Version=ES64L-G16RevC.01 \backslash State $=1-A \backslash H F=-812.202$ $0188 \backslash \mathrm{RMSD}=8.616 \mathrm{e}-09 \backslash$ Dipole$=0.3679855,1.0830318,0.8277685 \backslash$ Quadrupole=6. $1165976,-2.3361761,-3.7804215,1.7250045,3.8880326,-1.6041 \backslash \mathrm{PG}=\mathrm{C} 01 \quad[\mathrm{X}(\mathrm{C} 1$ 9H22O1)]
@

3

1 \1 \GINC-A04R06N02 \SP\RM06\def2TZVPP\C19H2201 \ACJSGGHI7X\20-Apr-2023\0 $\ \backslash \# p$ scrf=(iefpcm, smd, solvent=Acetonitrile) M06 def 2 tzvpp $\backslash \backslash 3 \backslash \backslash 0,1 \backslash C, 0$, $1.757269,1.608839,1.09782 \backslash C, 0,0.633799,1.279898,0.326305 \backslash C, 0,0.657578$, $1.629717,-1.031283 \backslash C, 0,1.76034,2.264344,-1.598218 \backslash C, 0,2.872402,2.57099$ $6,-0.817956 \backslash \mathrm{C}, 0,2.863887,2.240385,0.535036 \backslash \mathrm{H}, 0,1.775007,1.369475,2.165$ $408 \backslash \mathrm{H}, 0,-0.210212,1.399577,-1.658837 \backslash \mathrm{H}, 0,1.746327,2.525361,-2.660686 \backslash \mathrm{H}$ $, 0,3.725545,2.482709,1.164365 \backslash C, 0,-0.555968,0.557582,0.922658 \backslash C, 0,-1.8$ $40736,0.618921,0.112771 \backslash C, 0,-1.956609,-0.754655,-0.034305 \backslash C, 0,-2.78577$ $3,1.498083,-0.396762 \backslash C, 0,-3.031782,-1.351555,-0.674966 \backslash C, 0,-3.87413,0$. $912416,-1.054689 \backslash H, 0,-2.703696,2.585349,-0.298435 \backslash C, 0,-3.996628,-0.476$ $921,-1.187759 \backslash \mathrm{H}, 0,-3.136698,-2.435443,-0.780601 \backslash \mathrm{H}, 0,-4.656176,1.552687$ $,-1.47498 \backslash \mathrm{H}, 0,-4.870889,-0.882118,-1.706712 \backslash \mathrm{C}, 0,-0.782606,0.891676,2.3$
$88788 \backslash C, 0,-0.656222,-1.058666,0.668819 \backslash 0,0,-0.860986,-1.824206,1.8224 \backslash$ H, 0,-0.00395,-2.013041,2.223217\H,0,-0.849364,1.982468,2.53673\H,0,-1. $712099,0.4288,2.749812 \backslash \mathrm{H}, 0,3.738421,3.071944,-1.259998 \backslash \mathrm{C}, 0,0.426728,-1$ $.661611,-0.209063 \backslash H, 0,0.037869,-2.61662,-0.610449 \backslash H, 0,0.58724,-1.00588$ $3,-1.083225 \backslash \mathrm{H}, 0,0.032555,0.511326,3.027958 \backslash \mathrm{C}, 0,1.747833,-1.887493,0.52$ $0673 \backslash$ н, $0,1.690044,-2.81869,1.120177 \backslash$ н, $0,1.916888,-1.064029,1.241278 \backslash$ C, $0,2.951003,-1.971204,-0.407012 \backslash \mathrm{H}, 0,3.05451,-1.003446,-0.935045 \backslash \mathrm{H}, 0,3.8$ $68151,-2.079355,0.199162 \backslash C, 0,2.865369,-3.105174,-1.411446 \backslash \mathrm{H}, 0,3.778318$ $,-3.179072,-2.022628 \backslash \mathrm{H}, 0,2.725968,-4.076593,-0.905417 \backslash \mathrm{H}, 0,2.019606,-2$. 975223,-2.106772
Version=ES64L-G16RevC.01\State=1-A $\backslash H F=-812.165864 \backslash$ RM $S D=4.086 e-09 \backslash$ Dipole=0.795331,0.0094218,-0.0918741 \Quadrupole=1.0741753 $,-1.0659844,-0.008191,-1.4738655,6.1898066,-0.517029 \backslash \mathrm{PG}=\mathrm{C01}$ [X(C19H22O 1) $] \backslash \backslash @$

3'

$1 \backslash 1 \backslash G I N C-B 2157 \backslash S P \backslash R M 06 \backslash d e f 2 T Z V P P \backslash C 19 H 2201 \backslash R O O T \backslash 24-J u l-2023 \backslash 0 \backslash \backslash \# p$ scrf= (iefpcm,smd,solvent=Acetonitrile) M06 def2tzvpp
3
0,1\C,0,1.287301,-$2.207865,-0.018985 \backslash C, 0,1.489476,-0.845473,0.235979 \backslash C, 0,2.797433,-0.358$ $968,0.229708 \backslash C, 0,3.877062,-1.208541,-0.014673 \backslash C, 0,3.662701,-2.559932,-$ $0.263273 \backslash C, 0,2.359015,-3.056566,-0.268436 \backslash \mathrm{H}, 0,0.26654,-2.604561,-0.040$ $808 \backslash \mathrm{H}, 0,2.979883,0.70473,0.411541 \backslash \mathrm{H}, 0,4.894186,-0.805081,-0.012907 \backslash \mathrm{H}, 0$ $, 2.176581,-4.115919,-0.472752 \backslash C, 0,0.305535,0.038613,0.556564 \backslash C, 0,0.534$ 831,1.539307,0.474581\C,0,-0.340551,1.725551,-0.584841\C,0,1.175511,2. $601452,1.096341 \backslash C, 0,-0.623698,2.978075,-1.10812 \backslash C, 0,0.913669,3.872066$, $0.568053 \backslash \mathrm{H}, 0,1.849998,2.4761,1.950155 \backslash \mathrm{C}, 0,0.038604,4.056647,-0.50887 \backslash \mathrm{H}$ $, 0,-1.322367,3.140209,-1.93584 \backslash$ н, $0,1.399373,4.748155,1.009026 \backslash \mathrm{H}, 0,-0.1$ 35669,5.071154,-0.880563\C,0,-0.306407,-0.371951,1.89279\C,0,-0.704081 $, 0.254266,-0.679432 \backslash$ н, $0,0.442026,-0.22254,2.689466 \backslash$ н, $0,-1.187341,0.238$ $946,2.149701 \backslash \mathrm{H}, 0,4.507814,-3.2269,-0.457494 \backslash \mathrm{C}, 0,-2.179914,-0.04255,-0$. $464922 \backslash \mathrm{H}, 0,-2.516569,0.457897,0.4597 \backslash \mathrm{H}, 0,-2.73882,0.464235,-1.281112 \backslash \mathrm{H}$
$, 0,-0.596163,-1.434658,1.915059 \backslash \mathrm{C}, 0,-2.541681,-1.51867,-0.461119 \backslash \mathrm{H}, 0,-$ $1.956524,-2.041929,0.319715 \backslash \mathrm{H}, 0,-2.21572,-1.961954,-1.417797 \backslash \mathrm{C}, 0,-4.02$ $1826,-1.788412,-0.23125 \backslash \mathrm{H}, 0,-4.614547,-1.261838,-1.004155 \backslash \mathrm{H}, 0,-4.21779$ $,-2.863497,-0.391658 \backslash \mathrm{C}, 0,-4.508494,-1.389705,1.150929 \backslash \mathrm{H}, 0,-5.555952,-1$ $.685846,1.317919 \backslash \mathrm{H}, 0,-3.900181,-1.869315,1.938169 \backslash \mathrm{H}, 0,-4.453269,-0.300$ $708,1.315376 \backslash 0,0,-0.215838,-0.398065,-1.824313 \backslash \mathrm{H}, 0,-0.6657,-0.026234,-$ $2.592383 \backslash \backslash$ Version=ES64L-G16RevA. $03 \backslash$ State=1-A $\backslash H F=-812.1642831 \backslash$ RMSD $=4.58$ $5 e-09 \backslash$ Dipole $=-0.8670917,0.4403069,-0.0278347 \backslash$ Quadrupole=0.1276343,2.14 $34009,-2.2710352,1.0554737,4.8442982,-0.8001218 \backslash \mathrm{PG}=\mathrm{C} 01 \quad[\mathrm{X}(\mathrm{C} 19 \mathrm{H} 22 \mathrm{O})] \backslash \backslash$ @

9. References

1 C. Han, X. Feng and H. Du, Asymmetric Halocyclizations of 2-Vinylbenzyl Alcohols with Chiral FLPs, Org. Lett., 2021, 23, 7325-7329.

2 X. Fan, R. Liu, Y. Wei and M. Shi, Rh-Catalyzed Intramolecular Decarbonylative Cyclization of Ortho -Formyl Group Tethered Alkylidenecyclopropanes (ACPs) for the Construction of 2Methylindenes, Org. Chem. Front., 2019, 6, 2667-2671.

3 R. Alabaster, I. Cottrell, D. Hands, G. Humphrey, D. Kennedy and S. Wright, Synthesis of 6-(3-Aryl-2-propenyl)-2,3-dihydro-5-hydroxybenzofuran Derivatives by Cross Coupling Reactions, Synthesis, 1989, 8, 598-603.

4 J. Liu, T. Hao, L. Qian, M. Shi and Y. Wei, Construction of Benzocyclobutenes Enabled by Visible-Light-Induced Triplet Biradical Atom Transfer of Olefins, Angew. Chem. Int. Ed., 2022, 61, e202204515. DOI: $10.1002 /$ anie. 202204515.

5 R. F. Salikov, K. P. Trainov, A. A. Levina, I. K. Belousova, M. G. Medvedev and Y. V. Tomilov, Synthesis of Branched Tryptamines via the Domino Cloke-Stevens/Grandberg Rearrangement, J. Org. Chem., 2017, 82, 790-795.

6 T. M. Ha, Q. Wang and J. Zhu, Copper-Catalysed Cyanoalkylative Cycloetherification of Alkenes to 1,3-Dihydroisobenzofurans: Development and Application to the Synthesis of Citalopram, Chem. Соттип., 2016, 52, 11100-11103.

7 H. Konishi, T. Ueda, T. Muto and K. Manabe, Remarkable Improvement Achieved by Imidazole Derivatives in Ruthenium-Catalyzed Hydroesterification of Alkenes Using Formates, Org. Lett., 2012, 14, 4722-4725.

8 C. Hauguel, C. Tran, O. Provot, J. Bignon, V. Gandon and A. Hamze, Water-Facilitated Nitromethane-Mediated Cyclization of 2-(Phenylvinyl)Benzhydrols: Access to 1,3-Diphenyl-1H-indenes with Antitumor Activity, Adv. Synth. Catal., 2022, 364, 3004-3015

9 Q. Liu, Y. Chen, X. Zhang, K. N. Houk, Y. Liang and A. B. Smith, Type II Anion Relay Chemistry: Conformational Constraints To Achieve Effective [1,5]-Vinyl Brook Rearrangements, J. Am. Chem. Soc., 2017, 139, 8710-8717.

10 D. Parmar and M. Rueping, Mild and Metal-Free Oxy- and Amino-Fluorination for the Synthesis of Fluorinated Heterocycles, Chem. Commun., 2014, 50, 13928-13931.

11 Y. Huang, G. H. Chan and S. Chiba, Amide-Directed C-H Sodiation by a Sodium Hydride/Iodide Composite, Angew. Chem. Int. Ed., 2017, 56, 6544-6547.

12 W. Xu, J. H. Pek and N. Yoshikai, Imine-Directed Olefin Hydroarylation under Grignard-Free Conditions, Adv. Synth. Catal., 2016, 358, 2564-2568.

13 H. Sugiura, D. Sakai, H. Otani, K. Teranishi, Y. Takahira, R. Amemiya and M. Yamaguchi, Synthesis and Structure of Optically Active 1,12-Diethyl- and 1,12Diisopropylbenzo[c]Phenanthrenes: An Isopropyl Group Can Be Smaller than a Methyl Group, Chem. Lett., 2007, 36, 72-73.

14 T. Takahashi, M. Yoshimura, H. Suzuka, T. Maegawa, Y. Sawama, Y. Monguchi and H. Sajiki, Chemoselective Hydrogenation Using Molecular Sieves-Supported Pd Catalysts: Pd/MS3A and Pd/MS5A, Tetrahedron, 2012, 68, 8293-8299.

15 B. A. Suslick and T. D. Tilley, Olefin Hydroarylation Catalyzed by a Single-Component Cobalt(-I) Complex, Org. Lett., 2021, 23, 1495-1499.

16 W. Xu and N. Yoshikai, Cobalt-Catalyzed, N-H Imine-Directed Hydroarylation of Styrenes, Org. Lett., 2018, 20, 1392-1395.

17 G. E. M. Crisenza, N. G. McCreanor and J. F. Bower, Branch-Selective, Iridium-Catalyzed Hydroarylation of Monosubstituted Alkenes via a Cooperative Destabilization Strategy, J. Am. Chem. Soc., 2014, 136, 10258-10261.

18 Grimme, xtb 6.0; Mulliken Center for Theoretical Chemistry, University of Bonn, 2019; available upon request via e-mail to xtb@thch.uni-bonn.de.

[^0]:

[^1]:

[^2]: $\begin{array}{lllllllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

[^3]:

[^4]:

[^5]:

[^6]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl} & (\mathrm{ppm})\end{array}$

[^7]:

[^8]:

[^9]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ & & & & & & & & & & & \text { fl } \\ \text { (ppm) }\end{array}$

[^10]:

[^11]:

