Reductive thiolation and oxidative dehydroaromatization of cyclohexanones with primary amines and sodium sulfinates to access o-sulfanylanilines

Hui Wu,^a Lin Zhao,^a Wenting Wang,^a Yining Yu,^a Ge Wu,^{*a,b}

^aSchool of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

*E-mail: wuge@wmu.edu.cn

Table of Contents

(1) General considerations, experimental data	S2-S25	
(2) References for known compounds	26	
(2) ¹ H, ¹³ C and ¹⁹ F NMR spectra of products	S27-S71	

General Information

All other reagents were purchased from TCI, Sigma-Aldrich, Alfa Aesar, Acros, and Meryer and used without further purification. ¹H NMR (500 MHz), ¹³C NMR (125 MHz) and ¹⁹F NMR (470 MHz) spectra were recorded in CDCl₃ and DMSO-D6 solutions using a Burker AVANCE 500 spectrometer. High-resolution mass spectra were recorded on an ESI-Q-TOF mass spectrometer. Analysis of crude reaction mixture was done on the Varian 4000 GC/MS and 1200 LC. All reactions were conducted using standard Schlenk techniques. Column chromatography was performed using EM silica gel 60 (300–400 m).

General Experimental Procedures

General Procedure of thioamination of cyclic ketones with primary amines and sulfinates:

A 25 mL Schlenk tube equipped with a stir bar was charged with substituted cyclic ketones (0.2 mmol), primary amines (0.4 mmol), sulfinates (0.4 mmol), HI (0.6 mmol, 55-57 wt.% solution in H_2O), TBAI (0.6 mmol) and H_2O (2.0 mL). The tube was fitted with a rubber septum, and then it was evacuated and refilled with O_2 three times. The reaction mixture was stirred at 110 °C for 24 h. After cooling down, the reaction mixture was diluted with 10 mL of ethyl ether and H_2O , after the workup of extraction, dry with Na₂SO₄, and concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel to provide the corresponding product.

Gram-scale reaction:

A 250 mL Schlenk tube equipped with a stir bar was charged with substituted cyclohexanone (20 mmol), 4-chloroaniline (40 mmol), sodium benzene sulfinate (40 mmol), HI (60 mmol, 55-57 wt.% solution in H₂O), TBAI (60 mmol) and H₂O (200 mL). The tube was fitted with a rubber septum, and then it was evacuated and refilled with O₂ three times. The reaction mixture was stirred at 110 °C for 24 h. After cooling down, the reaction mixture was diluted with 100 mL of ethyl ether and H₂O, after the workup of extraction, dry with Na₂SO₄, and concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel to provide the corresponding product (**4c**, 80%).

Mechanistic Studies

A 25 mL Schlenk tube equipped with a stir bar was charged with cyclohexanone (0.2 mmol), aniline (0.4 mmol), HI (0.6 mmol, 55-57 wt.% solution in H₂O), TBAI (0.6 mmol) and H₂O (2.0 mL). The tube was fitted with a rubber septum, and then it was evacuated and refilled with O₂ three times. The reaction mixture was stirred at 110 $^{\circ}$ C for 24 h. After the reaction mixture was cooled to room temperature and the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), none of **8a** and **8b** were detected by GC-MS.

$$\begin{array}{c} O \\ HI (3.0 equiv) \\ + PhSO_2Na \end{array} \xrightarrow{TBAI (3.0 equiv)}{H_2O, O_2, 110 °C, 24 h} \end{array} \xrightarrow{O} SPh \\ + PhSSPh \\ 8d, trace \\ 8c, 69\% \end{array}$$

A 25 mL Schlenk tube equipped with a stir bar was charged with cyclohexanone (0.2 mmol), benzene sulfinic acid sodium salt (0.4 mmol), HI (0.6 mmol, 55-57 wt.% solution in H₂O), TBAI (0.6 mmol) and H₂O (2.0 mL). The tube was fitted with a rubber septum, and then it was evacuated and refilled with O₂ three times. The reaction mixture was stirred at 110 °C for 24 h. After the reaction mixture was cooled to room temperature and the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), α -thiolated product **8c** was isolated in 69% yield, and only a trace of disulfide **8d** was detected.

2-(phenylthio)cyclohexan-1-one

The NMR of **8c** is accorded with the known reference (A. F. Vaquer, A. Frongia, F. Secci and E. Tuveria, *RSC Adv.*, 2015, **5**, 96695.)

A 25 mL Schlenk tube equipped with a stir bar was charged with diphenylamine (0.2 mmol), benzene sulfinic acid sodium salt (0.4 mmol), HI (0.6 mmol, 55-57 wt.% solution in H₂O), TBAI (0.6 mmol) and H₂O (2.0 mL). The tube was fitted with a rubber septum, and then it was evacuated and refilled with O₂ three times. The reaction mixture was stirred at 110 °C for 24 h. After the reaction mixture was cooled to room temperature and the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), none of **4a** were detected by GC-MS.

A 25 mL Schlenk tube equipped with a stir bar was charged with N-phenylcyclohexanimine (0.2 mmol), benzene sulfinic acid sodium salt (0.4 mmol), HI (0.6 mmol, 55-57 wt.% solution in H₂O), TBAI (0.6 mmol) and H₂O (2.0 mL). The tube was fitted with a rubber septum, and then it was evacuated and refilled with O₂ three times. The reaction mixture was stirred at 110 °C for 24 h. After the reaction mixture was cooled to room temperature and the reaction was filtered through a

pad of Celite and diluted with ethyl acetate (10 mL), none of 4a were detected by GC-MS.

A 25 mL Schlenk tube equipped with a stir bar was charged with **8c** (0.2 mmol), aniline (0.4 mmol), HI (0.6 mmol, 55-57 wt.% solution in H₂O), TBAI (0.6 mmol) and H₂O (2.0 mL). The tube was fitted with a rubber septum, and then it was evacuated and refilled with O₂ three times. The reaction mixture was stirred at 110 °C for 24 h. After the reaction mixture was cooled to room temperature and the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), **4a** was isolated in 58%.

HI (3.0 equiv)
TBAI (3.0 equiv)

$$+$$
 PhNH₂ + PhSO₂Na $\xrightarrow{\text{TEMPO (1.0 equiv)}}{H_2O, O_2, 110 \,^{\circ}\text{C}, 24 \,\text{h}}$ (eq. 6)
4a, 0%

A 25 mL Schlenk tube equipped with a stir bar was charged with cyclohexanone (0.2 mmol), aniline (0.4 mmol), benzene sulfinic acid sodium salt (0.4 mmol), HI (0.6 mmol, 55-57 wt.% solution in H₂O), TBAI (0.6 mmol), TEMPO (0.2 mmol) and H₂O (2.0 mL). The tube was fitted with a rubber septum, and then it was evacuated and refilled with O₂ three times. The reaction mixture was stirred at 110 °C for 24 h. After the reaction mixture was cooled to room temperature and the reaction was filtered through a pad of Celite and diluted with ethyl acetate (10 mL), none of **4a** were detected by GC-MS.

After the reaction acetone iodization experiment

A 25 mL Schlenk tube equipped with a stir bar was charged with 1,1-diphenylethylene (0.2 mmol), benzene sulfinic acid sodium salt (0.4 mmol), HI (0.6 mmol, 55-57 wt.% solution in H₂O), TBAI (0.6 mmol) and H₂O (2.0 mL). The tube was fitted with a rubber septum, and then it was evacuated and refilled with O₂ three times. The reaction mixture was stirred at 110 °C for 24 h. After the reaction mixture was cooled to room temperature and the reaction was filtered through a

pad of Celite and diluted with ethyl acetate (10 mL), **8e** was isolated in 95%. These results indicate that a thiyl radical was involved during the reaction process. The resulting I_2 was confirmed by the acetone iodization experiment, which indicates sodium sulfinate could oxidize the HI to I_2 .

(2,2-diphenylvinyl)(phenyl)sulfane

The NMR of **8e** is accorded with the known reference (B.-W. Wang, K. Jiang, J.-X. Li, S.-H. Luo, Z.-Y. Wang and H.-F. Jiang, *Angew. Chem. Int. Ed.*, 2020, **59**, 2338.)

Characterization of Products in Details :

N-phenyl-2-(phenylthio)aniline^{1,2}

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (50.4 mg, 91% yield), Mp = 83-84°C. ¹H NMR (400 MHz, CDCl₃): δ 7.59 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.34-7.26(m, 7H), 7.20-7.17 (m, 3H), 7.14-7.12 (m, 2H), 6.90 (ddd, *J* = 8.3, 6.4, 2.3 Hz, 1H), 6.73 (brs, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 145.93, 141.77, 137.51, 136.59, 130.80, 129.40, 129.21, 127.06, 125.87, 122.78, 120.81, 120.03, 117.42, 114.55. HRMS (ESI): calcd for C₁₈H₁₆NS [M + H]⁺ 278.1003, found 278.1016.

N-(4-fluorophenyl)-2-(phenylthio)aniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (48.4 mg, 82% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.60 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.34-7.27 (m, 3H), 7.20-7.14 (m, 4H), 7.11-7.01 (m, 4H), 6.89 (td, *J* = 7.5, 1.4 Hz, 1H), 6.63 (brs, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 159.14 (d, *J* = 242.0 Hz), 146.73, 137.63, 136.58, 130.96, 130.93, 129.20, 126.89, 125.85, 123.76 (d, *J* = 7.9 Hz), 119.74, 116.65, 116.08 (d, *J* = 22.5 Hz), 113.76. ¹⁹F NMR (375 MHz, CDCl₃) δ -119.50 (1F); HRMS (ESI): calcd for C₁₈H₁₅NSF [M + H]⁺ 296.0909, found 296.0919.

N-(4-chlorophenyl)-2-(phenylthio)aniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (52.2 mg, 84% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 7.58 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.35-7.24 (m, 6H), 7.19-7.16 (m, 3H), 7.04 (d, *J* = 8.8 Hz, 2H), 6.92 (td, *J* = 7.4, 1.6 Hz, 1H), 6.65 (s, 1H). ¹³**C NMR** (100 MHz, CDCl₃): δ 145.37, 140.51, 137.43, 136.35, 130.78, 129.39, 129.24, 127.44, 127.15, 126.00, 121.68, 120.58, 118.13, 114.89. **HRMS** (ESI): calcd for C₁₈H₁₃NSCl [M - H]⁺ 310.0457, found 310.0456.

N-(4-bromophenyl)-2-(phenylthio)aniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (57.5 mg, 81% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 7.61 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.41 (d, *J* = 8.7 Hz, 2H), 7.36-7.28 (m, 4H), 7.22-7.19 (m, 3H), 7.00 (d, *J* = 8.7 Hz, 2H), 6.95 (td,

J = 7.3, 1.7 Hz, 1H), 6.67 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 145.15, 141.08, 137.42, 136.34, 132.34, 130.78, 129.29, 127.24, 126.07, 121.83, 120.78, 118.43, 115.13, 114.73. HRMS (ESI): calcd for C₁₈H₁₃NSBr [M - H]⁺ 353.9952, found 353.9963.

N-(4-methoxyphenyl)-2-(phenylthio)aniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (59.6 mg, 97% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.60 (dt, *J* = 7.7, 1.5 Hz, 1H), 7.32-7.28 (m, 3H), 7.23-7.17 (m, 3H), 7.11-7.06 (m, 3H), 6.94-6.90 (m, 2H), 6.84 (td, *J* = 7.4, 1.2 Hz, 1H), 6.61 (s, 1H), 3.85 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 156.46, 147.89, 137.73, 136.87, 134.42, 131.08, 129.19, 126.74, 125.71, 125.00, 118.88, 115.43, 114.75, 113.14, 55.61. HRMS (ESI): calcd for C₁₉H₁₈NOS [M + H]⁺ 308.1109, found 308.1122.

2-(phenylthio)-N-(4-(trifluoromethoxy)phenyl)aniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (61.4 mg, 85% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.60 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.37-7.26 (m, 4H), 7.20-7.15 (m, 5H), 7.12-7.09 (m, 2H), 6.94 (td, *J* = 7.3, 1.7 Hz, 1H), 6.69 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 145.28, 144.10, 140.72, 137.45, 136.32, 130.81, 129.27, 127.17, 126.04, 122.31, 121.22, 120.76, 120.63 (q, *J* = 255.0 Hz), 118.27, 114.99. ¹⁹F NMR (375 MHz, CDCl₃) δ -58.18 (3F); HRMS (ESI): calcd for C₁₉H₁₅NOF₃S [M + H]⁺ 362.0826, found 362.0833.

2-(phenylthio)-N-(4-((trifluoromethyl)thio)phenyl)aniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (65.6 mg, 87% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.62 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.55 (d, *J* = 8.6 Hz, 2H), 7.49 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.40 (td, *J* = 8.2, 7.8, 1.6 Hz, 1H), 7.31-7.27 (m, 2H), 7.23-7.20 (m, 3H), 7.11-7.06 (m, 3H), 7.04 (td, *J* = 7.5, 1.4 Hz, 1H), 6.76 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 145.19, 143.35, 138.08, 136.92, 135.93, 130.45, 129.74 (q, *J* = 307.0 Hz), 129.35, 127.80, 126.37, 122.26, 121.07, 118.37, 117.41, 114.91. ¹⁹F NMR (375 MHz, CDCl₃) δ -43.76 (3F); HRMS (ESI): calcd for C₁₉H₁₅NF₃S₂ [M + H]⁺ 378.0598, found 378.0611.

N-(4-phenoxyphenyl)-2-(phenylthio)aniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (69.4 mg, 94% yield), Mp = 88-89 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.58 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.38-7.34 (m, 2H), 7.32-7.26 (m, 3H), 7.22-7.16 (m, 4H), 7.14-7.09 (m, 3H), 7.04-6.99 (m, 4H), 6.87 (td, *J* = 7.5, 1.4 Hz, 1H), 6.66 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 157.87, 152.84, 146.76, 137.63, 137.18, 136.65, 130.95, 129.77, 129.19, 126.87, 125.79, 123.51, 122.99, 120.25, 119.58, 118.34, 116.50, 113.80. HRMS (ESI): calcd for C₂₄H₂₀NOS [M + H]⁺ 370.1266, found 370.1270.

1-(4-((2-(phenylthio)phenyl)amino)phenyl)ethan-1-one

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a

yellow liquid (55.5 mg, 87% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, J = 8.7 Hz, 2H), 7.58 (dd, J = 7.7, 1.6 Hz, 1H), 7.51 (dd, J = 8.2, 1.4 Hz, 1H), 7.39 (td, J = 8.3, 7.8, 1.6 Hz, 1H), 7.28-7.25 (m, 2H), 7.21-7.16 (m, 3H), 7.07-7.02 (m, 3H), 6.82 (s, 1H), 2.56 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 196.47, 147.05, 142.76, 136.66, 135.75, 130.46, 130.28, 130.24, 129.34, 127.98, 126.43, 122.68, 121.88, 118.17, 116.29, 26.25. HRMS (ESI): calcd for C₂₀H₁₈NOS [M + H]⁺ 320.1109, found 320.1122.

2-(phenylthio)-N-(4-(trifluoromethyl)phenyl)aniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (54.5 mg, 79% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.59 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.51 (d, *J* = 8.4 Hz, 2H), 7.45 (d, *J* = 7.9 Hz, 1H), 7.38 (t, *J* = 8.2 Hz, 1H), 7.30-7.25 (m, 2H), 7.20-7.18 (m, 3H), 7.12 (d, *J* = 8.4 Hz, 2H), 7.01 (t, *J* = 7.1 Hz, 1H), 6.76 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 145.51, 143.50, 136.94, 135.93, 130.45, 129.33, 127.75, 126.69 (q, *J* = 3.8 Hz), 126.34, 124.60 (q, *J* = 252.0 Hz), 123.09 (d, *J* = 15.3 Hz), 122.15, 120.87, 117.60, 117.13. ¹⁹F NMR (375 MHz, CDCl₃) δ -61.66 (3F); HRMS (ESI): calcd for C₁₉H₁₃NSF₃ [M - H]⁺ 344.0721, found 344.0730.

2-methyl-N-(2-(phenylthio)phenyl)aniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (52.4 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.63 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.33-7.28 (m, 5H), 7.25-7.16 (m, 4H), 7.07 (td, *J* = 7.4, 1.4 Hz, 1H), 6.99 (dd, *J* = 8.3, 1.3 Hz, 1H), 6.87 (td, *J* = 7.5, 1.3 Hz, 1H), 6.50 (s, 1H), 2.08 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 146.63,

139.62, 137.67, 136.61, 131.83, 131.09, 131.01, 129.20, 126.86, 126.80, 125.82, 124.04, 122.60, 119.10, 116.09, 113.71, 17.69. **HRMS** (ESI): calcd for $C_{19}H_{18}NS$ [M + H]⁺ 292.1160, found 292.1169.

2,4-dimethyl-N-(2-(phenylthio)phenyl)aniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (53.7 mg, 88% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.67 (d, *J* = 7.6 Hz, 1H), 7.35-7.31 (m, 3H), 7.28-7.26 (m, 2H), 7.24-7.18 (m, 2H), 7.11-7.06 (m, 2H), 6.91-6.85 (m, 2H), 6.49 (s, 1H), 2.40 (s, 3H), 2.09 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 147.49, 137.77, 136.89, 136.83, 134.26, 132.87, 131.86, 131.15, 129.22, 127.48, 126.88, 125.79, 124.15, 118.59, 115.36, 113.17, 21.01, 17.71. HRMS (ESI): calcd for C₂₀H₂₀NS [M + H]⁺ 306.1316, found 306.1318.

2-(phenylthio)-N-(4-(trifluoromethyl)benzyl)aniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (46.7 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.59-7.54 (m, 3H), 7.31-7.27 (m, 5H), 7.22-7.18 (m, 1H), 7.15-7.13 (m, 2H), 6.77 (td, *J* = 7.5, 1.2 Hz, 1H), 6.59 (dd, *J* = 8.2, 1.2 Hz, 1H), 5.49 (t, *J* = 6.0 Hz, 1H), 4.46 (d, *J* = 5.9 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 148.73, 143.35, 137.83, 136.77, 131.51, 129.09, 127.11, 126.63, 125.66, 125.57 (q, *J* = 3.8 Hz), 121.49(q, *J* = 280.0 Hz), 117.65, 114.42, 110.88, 47.13. ¹⁹F NMR (375 MHz, CDCl₃) δ -62.41 (3F); HRMS (ESI): calcd for C₂₀H₁₇NF₃S [M + H]⁺ 360.1034, found 360.1040.

N-(2-(phenylthio)phenyl)pyridin-3-amine

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (37.8 mg, 68% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.40 (d, *J* = 2.7 Hz, 1H), 8.26 (dd, *J* = 4.8, 1.4 Hz, 1H), 7.60 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.45 (ddd, *J* = 8.3, 2.8, 1.4 Hz, 1H), 7.35 (td, *J* = 7.7, 7.1, 1.5 Hz, 1H), 7.30-7.16 (m, 7H), 6.97 (td, *J* = 7.4, 1.5 Hz, 1H), 6.65 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 144.62, 143.49, 142.41, 138.58, 137.39, 136.08, 130.78, 129.29, 127.31, 126.37 (d, *J* = 41.9 Hz), 123.78, 121.29, 119.06, 115.08. HRMS (ESI): calcd for C₁₇H₁₅N₂S [M + H]⁺ 279.0956, found 279.0959.

N-(2-(phenylthio)phenyl)naphthalen-1-amine

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (58.9 mg, 90% yield), Mp = 92-93 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.88 (dd, *J* = 8.2, 1.3 Hz, 1H), 7.69-7.64 (m, 3H), 7.52-7.43 (m, 3H), 7.40-7.20 (m, 7H), 7.00-6.98 (m, 2H), 6.87 (td, *J* = 7.5, 1.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 147.44, 137.67, 137.26, 136.73, 134.78, 131.07, 129.39, 129.32, 128.46, 127.10, 126.26, 126.06, 125.95, 125.91, 124.76, 122.29, 119.74, 119.28, 116.20, 114.11. HRMS (ESI): calcd for C₂₂H₁₈NS [M + H]⁺ 328.1160, found 328.1158.

2,6-diisopropyl-N-(2-(phenylthio)phenyl)aniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (34.7 mg, 48% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.61 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.32-7.15 (m, 9H), 6.75 (td, *J* = 7.4, 1.3 Hz, 1H), 6.27-6.21 (m, 2H), 2.93 (p, *J* = 6.9 Hz, 2H), 1.09 (d, *J* = 6.9 Hz, 6H), 0.99 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 149.40, 147.79, 137.85, 137.02, 134.59, 131.35, 129.01, 127.63, 126.71, 125.62, 123.85, 117.34, 113.23, 111.71, 28.28, 24.39, 23.07. HRMS (ESI): calcd for C₂₄H₂₈NS [M + H]⁺ 362.1942, found 362.1950.

4-methyl-N-phenyl-2-(phenylthio)aniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (53.5 mg, 92% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.47(m, 1H), 7.36-7.30 (m, 5H), 7.26-7.19 (m, 4H), 7.15-7.13 (m, 2H), 7.05 (t, *J* = 7.3 Hz, 1H), 6.63 (s, 1H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 143.27, 142.49, 137.60, 136.82, 131.47, 129.89, 129.40, 129.24, 127.15, 125.86, 122.12, 119.85, 118.05, 115.52, 20.49. HRMS (ESI): calcd for C₁₉H₁₈NS [M + H]⁺ 292.1160, found 292.1167.

4-ethyl-N-phenyl-2-(phenylthio)aniline

5b

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (55.5 mg, 91% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.45 (d, *J* = 2.1 Hz, 0H), 7.34-7.26 (m, 5H), 7.22-7.15 (m, 4H), 7.12-7.09 (m, 2H), 7.01 (tt, *J* = 7.3, 1.2 Hz, 1H), 6.59 (s, 1H), 2.64 (q, *J* = 7.6 Hz, 2H), 1.28 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 143.44, 142.37, 136.79, 136.49, 136.35, 130.27, 129.34, 129.18, 126.95, 125.75, 122.10, 119.88, 117.71, 115.35, 27.92, 15.76. HRMS (ESI): calcd for C₂₀H₂₀NS [M + H]⁺ 306.1316, found 306.1321.

N-phenyl-2-(phenylthio)-4-propylaniline

5c

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (58.7 mg, 92% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.42 (d, *J* = 2.1 Hz, 1H), 7.32-7.25 (m, 5H), 7.19-7.14 (m, 4H), 7.11-7.09 (m, 2H), 7.03-6.99 (m, 1H), 6.59 (s, 1H), 2.56 (dd, *J* = 8.5, 6.7 Hz, 2H), 1.67 (h, *J* = 7.4 Hz, 2H), 0.99 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 143.45, 142.35, 137.13, 136.84, 134.79, 130.85, 129.34, 129.17, 126.92, 125.73, 122.10, 119.91, 117.55, 115.21, 37.04, 24.68, 13.82. HRMS (ESI): calcd for C₂₁H₂₂NS [M + H]⁺ 320.1473, found 320.1485.

4-(tert-butyl)-N-phenyl-2-(phenylthio)aniline

5d

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (49.9 mg, 75% yield). ¹H NMR (400 MHz, $CDCl_3$): δ 7.61 (d, J = 2.3 Hz, 1H),

7.39-7.26 (m, 6H), 7.19-7.15 (m, 3H), 7.11-7.09 (m, 2H), 7.03-6.99 (m, 1H), 6.58 (s, 1H), 1.35 (s, 9H).
¹³C NMR (100 MHz, CDCl₃): δ 143.29, 142.27, 136.86, 134.25, 129.31, 129.15, 127.82, 126.78, 125.67, 122.16, 120.04, 117.08, 114.81, 34.20, 31.45. HRMS (ESI): calcd for C₂₂H₂₄NS [M + H]⁺ 334.1629, found 334.1638.

N-phenyl-5-(phenylthio)benzo[b]thiophen-4-amine

5e

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (40.6 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.62 (d, *J* = 8.3 Hz, 1H), 7.56 (d, *J* = 8.3 Hz, 1H), 7.33-7.30 (m, 1H), 7.25-7.12 (m, 7H), 7.00 (d, *J* = 5.6 Hz, 1H), 6.97-6.93 (m, 1H), 6.83-6.81 (m, 2H), 6.72 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 144.53, 142.80, 140.25, 137.10, 133.26, 131.98, 129.17, 129.03, 127.72, 125.99, 125.57, 123.66, 121.42, 118.61, 118.35, 117.62. HRMS (ESI): calcd for C₂₀H₁₆NS₂ [M + H]⁺ 334.0724, found 334.0726.

N-phenyl-3-(phenylthio)-[1,1'-biphenyl]-4-amine

5f

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (62.1 mg, 88% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 7.89 (d, *J* = 2.3 Hz, 1H), 7.62-7.58 (m, 3H), 7.48-7.42 (m, 3H), 7.37-7.31 (m, 3H), 7.30-7.23 (m, 4H), 7.21-7.16 (m, 3H), 7.10-7.05 (m, 1H), 6.80 (s, 1H). ¹³**C NMR** (100 MHz, CDCl₃): δ 145.17, 141.57, 140.07, 136.44, 135.91, 132.88, 129.47, 129.41, 129.28, 128.90, 127.01, 126.84, 126.42, 125.95, 122.93, 120.92, 117.66, 114.67. **HRMS** (ESI): calcd for C₂₄H₂₀NS [M + H]⁺ 354.1316, found 354.1316.

ethyl 4-(phenylamino)-3-(phenylthio)benzoate

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (52.3 mg, 75% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.34 (d, *J* = 2.1 Hz, 1H), 8.00 (dd, *J* = 8.8, 2.1 Hz, 1H), 7.38 (t, *J* = 7.8 Hz, 2H), 7.31-7.14 (m, 10H), 4.39 (q, *J* = 7.1 Hz, 2H), 1.42 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 166.01, 150.11, 140.01, 139.78, 135.84, 132.89, 129.60, 129.33, 126.82, 126.11, 124.54, 122.77, 121.10, 115.60, 112.09, 60.71, 14.50. HRMS (ESI): calcd for C₂₁H₂₀NO₂S [M + H]⁺ 350.1215, found 350.1227.

N-(4-fluorophenyl)-4-methyl-2-(phenylthio)aniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (49.4 mg, 80% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.41 (s, 1H), 7.30-7.26 (m, 2H), 7.19-6.98 (m, 9H), 6.44 (s, 1H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 158.73 (d, *J* = 241.6 Hz), 144.06, 138.30, 137.71, 136.73, 131.59, 129.50, 129.18, 126.87, 125.77, 122.70 (d, *J* = 7.9 Hz), 117.03, 115.98 (d, *J* = 22.6 Hz), 114.52, 20.37. ¹⁹F NMR (375 MHz, CDCl₃) δ -120.53 (1F); HRMS (ESI): calcd for C₁₉H₁₇NSF [M + H]⁺ 310.1066, found 310.1073.

N-phenyl-2-(p-tolylthio)aniline³

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (52.4 mg, 90% yield), Mp = 40-41 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.54 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.34-7.27 (m, 4H), 7.14-7.09 (m, 6H), 7.06-7.02 (m, 1H), 6.88 (td, *J* = 7.3, 1.8 Hz, 2H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 145.48, 141.88, 136.96, 135.99, 132.66,

130.39, 130.01, 129.37, 127.72, 122.57, 120.55, 120.05, 118.54, 114.62, 21.01. **HRMS** (ESI): calcd for $C_{19}H_{18}NS$ [M + H]⁺ 292.1160, found 292.1168.

2-((4-methoxyphenyl)thio)-N-phenylaniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (58.3 mg, 95% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.48 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.34-7.30 (m, 3H), 7.28-7.22 (m, 3H), 7.13-7.11 (m, 2H), 7.06-7.01 (m, 1H), 6.89-6.84 (m, 3H), 6.65 (s, 1H), 3.81 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 158.81, 144.73, 142.09, 138.20, 135.83, 130.67, 129.81, 129.39, 126.31, 122.41, 120.65, 120.25, 115.06, 115.03, 55.43. HRMS (ESI): calcd for C₁₉H₁₈NOS [M + H]⁺ 308.1109, found 308.1096.

2-([1,1'-biphenyl]-4-ylthio)-N-phenylaniline

6c

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (64.3 mg, 91% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.64 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.60-7.58 (m, 2H), 7.54-7.51 (m, 2H), 7.49-7.45 (m, 2H), 7.40-7.32 (m, 5H), 7.30-7.27 (m, 2H), 7.18-7.16 (m, 2H), 7.09-7.05 (m, 1H), 6.93 (ddd, *J* = 8.3, 6.6, 2.1 Hz, 1H), 6.78 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 146.00, 141.77, 140.49, 138.93, 137.54, 135.72, 130.90, 129.44, 128.90, 127.91, 127.42, 127.39, 126.96, 122.84, 120.85, 120.11, 117.35, 114.64. HRMS (ESI): calcd for C₂₄H₂₀NS [M + H]⁺ 354.1316, found 354.1322.

N-phenyl-2-((4-(trifluoromethyl)phenyl)thio)aniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (60.0 mg, 87% yield), Mp = 73-74°C. ¹H NMR (400 MHz, CDCl₃): δ 7.62 (d, *J* = 7.7 Hz, 1H), 7.52 (d, *J* = 8.4 Hz, 2H), 7.40-7.34 (m, 4H), 7.24 (d, *J* = 8.3 Hz, 2H), 7.17 (d, *J* = 7.8 Hz, 2H), 7.10 (t, *J* = 7.4 Hz, 1H), 6.96-6.92 (m, 1H), 6.72 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 146.51, 142.21, 141.33, 138.11, 131.73, 129.53, 127.67 (q, *J* = 32.6 Hz), 126.04, 125.96 (q, *J* = 4.0 Hz), 124.22 (q, *J* = 270.0 Hz), 123.27, 121.21, 120.17, 114.94, 114.51. ¹⁹F NMR (375 MHz, CDCl₃) δ -62.32 (3F); HRMS (ESI): calcd for C₁₉H₁₅NSF₃ [M + H]⁺ 346.0877, found 346.0878.

N-phenyl-2-((4-(trifluoromethoxy)phenyl)thio)aniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (61.4 mg, 85% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.61 (d, *J* = 7.6 Hz, 1H), 7.38-7.34 (m, 4H), 7.23-7.14 (m, 6H), 7.10 (t, *J* = 7.4 Hz, 1H), 6.96-6.91 (m, 1H), 6.75 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 147.42, 146.14, 141.56, 137.67, 135.61, 131.28, 129.50, 128.07, 123.09, 121.90, 121.01, 120.55 (d, *J* = 258.5 Hz), 120.18, 116.70, 114.69. ¹⁹F NMR (375 MHz, CDCl₃) δ -57.94 (3F); HRMS (ESI): calcd for C₁₉H₁₅NOSF₃ [M + H]⁺ 362.0826, found 362.0823.

2-((4-fluorophenyl)thio)-N-phenylaniline

6f

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (49.6 mg, 84% yield). ¹**H NMR** (400 MHz, CDCl₃): δ 7.97 (d, *J* = 8.4 Hz, 1H), 7.58-7.52 (m, 2H), 7.34-7.30 (m, 4H), 7.20-7.11 (m, 3H), 7.07-7.03 (m, 1H), 7.01-6.96 (m, 2H), 6.90-6.86 (m, 1H), 6.68 (s, 1H). ¹³**C NMR** (100 MHz, CDCl₃): δ 143.63 (d, *J* = 386.2 Hz), 136.97, 131.04, 130.70, 129.42, 129.34, 129.15, 128.76, 122.86 (d, *J* = 10.4 Hz), 120.67, 120.14, 118.25, 116.32 (d, *J* = 22.1 Hz), 114.78. ¹⁹**F NMR** (375 MHz, CDCl₃) δ -116.37 (1F); **HRMS** (ESI): calcd for C₁₈H₁₅NSF [M + H]⁺ 296.0909, found 296.0915.

2-((2-chlorophenyl)thio)-N-phenylaniline

6g

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (51.0 mg, 82% yield), Mp = 94-95 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.61 (d, *J* = 7.3 Hz, 1H), 7.41-7.31 (m, 5H), 7.16 (d, *J* = 7.7 Hz, 2H), 7.12-7.05 (m, 3H), 6.95-6.91 (m, 1H), 6.82-6.80 (m, 1H), 6.72 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 146.61, 141.46, 138.16, 135.95, 131.54, 131.51, 129.71, 129.43, 127.37, 126.83, 126.47, 123.10, 121.21, 120.12, 115.30, 114.42. HRMS (ESI): calcd for C₁₈H₁₅NSCl [M + H]⁺ 312.0614, found 312.0623.

2-((3,5-dichlorophenyl)thio)-N-phenylaniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a

yellow liquid (60.7 mg, 88% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.59 (d, J = 7.6 Hz, 1H), 7.39-7.34 (m, 4H), 7.19-7.16 (m, 2H), 7.14-7.09 (m, 2H), 7.01-7.01 (m, 2H), 6.94 (t, J = 7.3 Hz, 1H), 6.63 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 146.43, 141.29, 140.75, 138.02, 135.55, 131.94, 129.54, 125.78, 124.17, 123.34, 121.28, 120.29, 114.83, 114.58. HRMS (ESI): calcd for C₁₈H₁₄NSCl₂ [M + H]⁺ 346.0224, found 346.0225.

N-phenyl-2-(thiophen-2-ylthio)aniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (37.4 mg, 66% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.47 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.37-7.27 (m, 4H), 7.24-7.20 (m, 2H), 7.17-7.14 (m, 2H), 7.08-7.00 (m, 2H), 6.87 (td, *J* = 7.5, 1.5 Hz, 1H), 6.61 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 143.72, 142.18, 134.13, 133.57, 132.62, 129.65, 129.45, 129.32, 127.71, 123.09, 122.32, 120.70, 119.91, 115.87. HRMS (ESI): calcd for C₁₆H₁₂NS₂ [M - H]⁺ 282.0411, found 282.0406.

2-(naphthalen-2-ylthio)-N-phenylaniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (59.5 mg, 91% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.82-7.76 (m, 2H), 7.72-7.69 (m, 1H), 7.65-7.61 (m, 2H), 7.50-7.43 (m, 2H), 7.40-7.29 (m, 5H), 7.15-7.12 (m, 2H), 7.06-7.02 (m, 1H), 6.95-6.91 (m, 1H), 6.77 (brs, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 145.95, 141.76, 137.43, 133.92, 131.82, 130.84, 129.40, 128.88, 127.81, 127.15, 126.68, 125.68, 125.50, 125.15, 122.78, 120.78, 120.15, 117.50, 114.73. HRMS (ESI): calcd for C₂₂H₁₈NS [M + H]⁺ 328.1160, found 328.1163.

2-(benzylthio)-N-phenylaniline

6k

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (57.1 mg, 98% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.44 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.38-7.20 (m, 9H), 7.13-7.05 (m, 3H), 6.82 (td, *J* = 7.3, 1.6 Hz, 1H), 6.77 (s, 1H), 3.99 (s, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 145.53, 142.18, 138.23, 136.74, 129.85, 129.39, 128.90, 128.55, 127.26, 122.23, 120.42, 119.97, 119.89, 114.42, 40.59. HRMS (ESI): calcd for C₁₉H₁₈NS [M + H]⁺ 292.1160, found 292.1167.

2-(ethylthio)-N-phenylaniline

61

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (43.5 mg, 95% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.60 (d, *J* = 7.6 Hz, 1H), 7.41 (q, *J* = 7.8 Hz, 3H), 7.28 (d, *J* = 8.1 Hz, 3H), 7.11 (t, *J* = 7.3 Hz, 1H), 6.95-6.91 (m, 2H), 2.89 (q, *J* = 7.3 Hz, 2H), 1.36 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 145.09, 142.46, 135.88, 129.55, 129.36, 122.23, 121.17, 120.04, 119.87, 114.70, 29.48, 15.00. HRMS (ESI): calcd for C₁₄H₁₆NS [M + H]⁺ 230.1003, found 230.1014.

N-(4-chlorophenyl)-2-(phenylsulfinyl)aniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (52.3 mg, 80% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.19 (s, 1H), 7.62 (dd, *J* = 7.7, 1.6 Hz, 2H), 7.58-7.55 (m, 2H), 7.42-7.33 (m, 4H), 7.21-7.15 (m, 3H), 6.96 (td, *J* = 7.5, 1.2 Hz, 1H), 6.85 (d, *J* = 8.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 145.26, 143.35, 139.85, 133.11,

130.41, 129.29, 129.14, 128.96, 127.44, 127.17, 124.63, 120.92, 119.55, 117.20. **HRMS** (ESI): calcd for $C_{18}H_{15}NOSCI [M + H]^+$ 328.0563, found 328.0571.

N-(4-chlorophenyl)-2-(phenylsulfonyl)aniline

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (63.1 mg, 92% yield), Mp = 74-75 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.03 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.97-7.92 (m, 3H), 7.59-7.55 (m, 1H), 7.49-7.45 (m, 2H), 7.38 (ddd, *J* = 8.6, 7.1, 1.7 Hz, 1H), 7.30-7.25 (m, 2H), 7.16 (dd, *J* = 8.4, 1.1 Hz, 1H), 7.02-6.96 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 143.55, 141.42, 139.18, 135.06, 133.36, 130.45, 129.65, 129.18, 128.55, 127.12, 125.45, 122.55, 119.83, 116.57. HRMS (ESI): calcd for C₁₈H₁₅NO₂SCl [M + H]⁺ 344.0512, found 344.0524.

ethyl 4-((2-(phenylthio)phenyl)amino)benzoate

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow liquid (56.5 mg, 81% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.97 (d, *J* = 8.8 Hz, 2H), 7.59 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.50 (dd, *J* = 8.2, 1.3 Hz, 1H), 7.39 (td, *J* = 8.2, 7.8, 1.6 Hz, 1H), 7.30-7.25 (m, 2H), 7.21-7.16 (m, 3H), 7.08-7.01 (m, 3H), 6.83 (s, 1H), 4.39 (q, *J* = 7.1 Hz, 2H), 1.42 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 166.42, 146.65, 143.19, 136.80, 135.90, 131.34, 130.37, 129.32, 127.84, 126.36, 122.95, 122.31, 121.26, 117.68, 116.63, 60.62, 14.48. HRMS (ESI): calcd for C₂₁H₂₀NO₂S [M + H]⁺ 350.1215, found 350.1226.

4-((2-(phenylthio)phenyl)amino)benzenesulfonamide

Following the general procedure, using (petroleum ether : EtOAc = 9 : 1) as the eluant afforded a yellow solid (49.1 mg, 69% yield), Mp = 120-121 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, *J* = 8.7 Hz, 2H), 7.57 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.46 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.38 (td, *J* = 8.2, 7.8, 1.6 Hz, 1H), 7.30-7.24 (m, 2H), 7.20-7.16 (m, 3H), 7.08-7.04 (m, 3H), 6.77 (s, 1H), 4.97 (s, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 146.88, 142.33, 136.49, 135.55, 133.06, 130.25, 129.39, 128.41, 128.16, 126.58, 123.15, 122.61, 118.56, 116.49. HRMS (ESI): calcd for C₁₈H₁₇N₂O₂S₂ [M + H]⁺ 357.0731, found 357.0740.

References:

1 M. Minoshima, K. Uchida, Y. Nakamura, T. Hosoya and S. Yoshida, Org. Lett., 2021, 23, 1868.

2 S. Yoshida, T. Yano, Y. Misawa, Y. Sugimura, K. Igawa, S. Shimizu, K. Tomooka and T. Hosoya, J. Am. Chem. Soc., 2015, 137, 14071.

3 M. Tang, L. Zhang, G. Mao, F. Xiao, W. Shao and G.-J. Deng, *Adv. Synth. Catal.*, 2022, **364**, 2205.

¹H, ¹³C and ¹⁹F NMR spectra of products

7.7.5.6 1.5.5

pdata/1

145.28 144.10 137.25 139.27 130.81 122.31 122.31 122.31 122.31 112.07 122.31 114.99

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 fl (ppm)

145.51 143.50 135.93 135.93 135.94 135.94 135.94 135.94 126.64 126.75 126.64 126.75 126.64 126.75 127.55 126.75 127.55 127.55 126.75 127.55 126.75 127.55 126.75 127.55 126.75 126.75 126.75 127.55 126.75 127.75 126.75 12

pdata/1

pdata/1

pdata/1

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 fl (ppm)

-2.33

1212日 1215日 1215日

147.42 146.14 146.14 135.61 131.56 131.56 131.58 131.28 131.28 131.28 131.28 131.28 131.28 131.28 131.28 131.28 121.90 12

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 fl (ppm)

¹H NMR (400 MHz, CDCl₃)

5.0 4.5 4.0 3.5 3.0 f1 (ppm) .0 9.5 9.0 8.5 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 8.0 6.0 5.5

wg1314-CDC13. 2. 1. 1r

146.88 146.88 135.49 135.49 133.05 135.05 155.05 15

