Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supporting Information

NHC-catalyzed base assisted C-C bond cleavage of cyclopropenone: an approach towards synthesis of azetidinone and benzoxazepines

Tanmayee Nanda, ^{a,b} Asish Dharmedra Shukla, ^{a,b} Shubham Kumar Dhal, ^{a,b} Muhammed Fastheem, ^{a,b} and Ponneri C. Ravikumar^{*a,b}

 ^aSchool of chemical sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatani, Odisha 752050.
 ^bHomi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai, 400094, India *E-mail: pcr@niser.ac.in*

Table of Contents

1.	General information	S2			
2.	Experimental procedure	S3			
	(a) General Procedure for <i>N</i> -Protection of Aminophenol 1				
	(b) General Procedure for the Synthesis of Cyclopropenones 2 (Method A)				
	(c) General Procedure for the synthesis of four membered 2-azetidinone derivative	es 3 .			
	(d) General Procedure for synthesis of seven membered benzoxazepine derivative	5.			
	(e) General Procedure for 1 mmol scale synthesis of 2-azetidinone derivatives 3aa	ł.			
3. (ntrol and mechanistic experiments	S5			
	(a) Procedure for reaction without ligand				
(b) Procedure for reaction with base and without catalyst for prolonged time					
(c) The role of hydroxy group					
	(d) Reaction to ascertain the Intermediacy of β -lactam				
	(e) Reaction to ascertain the Intermediacy of acyl azolium				
4.	sperimental data (${}^{1}H$, ${}^{13}C{}^{1}H$ }, and ${}^{19}F$ NMR)S1	1			
5.	ppies of NMR data (1 H, 13 C{ 1 H}, and 19 F NMR)S2	8			
6.	ystallographic data	1			
7.	eferences	9			

1. General Information:¹

Reactions were performed using borosil schlenk tube vial under N₂ atmosphere. Column chromatography was done by using 100-200 & 230-400 mesh size silica gel of Acme Chemicals. A gradient elution was performed by using distilled petroleum ether and ethyl acetate. TLC plates detected under UV light at 254 nm. ¹H NMR and ¹³C NMR were recorded on Bruker AV 400, 700 MHz spectrometer using CDCl₃ and DMSO-*d*₆ as NMR solvents. The residual CHCl₃ and DMSO-*H*₆ for ¹H NMR ($\delta = 7.26$ ppm and 2.54 ppm respectively) were used as reference. The deuterated solvent signal for ¹³C NMR ($\delta = 77.36$ ppm 40.45 ppm) is used as reference.² Multiplicity (s = single, d = doublet, t = triplet, q = quartet, m = multiplet, dd = double doublet), integration, and coupling constants (*J*) in hertz (Hz). HRMS signal analysis was performed using micro TOF Q-II mass spectrometer. X-ray analysis was conducted using Rigaku Smartlab X-ray diffractometer at SCS, NISER. Reagents and starting materials were purchased from Sigma Aldrich, Alfa Aesar, TCI, Avra, Spectrochem and other commercially available sources and used without further purification unless otherwise noted.

Abbreviations:

TEMPO = 2,2,6,6-Tetramethylpiperidine 1-oxyl, BHT = Butylated hydroxytoluene, TLC = Thin layer chromatography, EtOAc = Ethyl acetate, DCM = Dichloromethane, MeOH = Methanol, IPr·HCl = 1,3-Bis(2,6-diisopropylphenyl) imidazole-2-ylidene, AlCl₃ = Aluminium chloride, NaHCO₃ = Sodium bicarbonate, Na₂SO₄ = Sodium sulphate, DMF = Dimethyl formamide.

2. General procedures:

(a) General Procedure for *N*-Protection of Aminophenol 1:³

To an oven dried seal tube charged with a stir bar, sodium bicarbonate (0.95 mmol, 1.05 equiv) was added under nitrogen atmosphere and vaccum was applied. *Ortho*-aminophenol (0.91 mmol, 1 equiv) followed by dimethylformamide (1.51 ml, 0.6 M) were added under nitrogen atmosphere. The resulting solution was kept under ice bath followed by dropwise addition of halo alkanes (1.09 mmol, 1.2 equiv) where R'= (Methyl, ethyl, etc) and X = (I, and Br). The mixture was allowed to stir for 12 h at room temperature. After completion of the reaction (monitored by TLC), the organic phase was washed thrice with DCM, dried over anhydrous Na₂SO₄, filtered, and evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel using EtOAc /hexane as eluent to provide the desired product. The product **1** was directly used for the next step.

(b) General Procedure for the Synthesis of Cyclopropenones 2:⁴

To a suspension of tetra chloro-cyclopropene **1**, (0.64 mmol, 1 equiv) and anhydrous AlCl₃ (1.35 mmol, 1.05 equiv) in CH₂Cl₂ (0.06M, 10 mL) was added dropwise a solution of benzene (1.28 mmol, 2equiv) in CH₂Cl₂ (1.2 M, 1 mL) at -78 °C. The mixture was stirred for 2 h, warmed to room temperature, and stirred for another 2 h. After completion of the reaction as monitored by TLC analysis, the resulting mixture was quenched with water, diluted with CH₂Cl₂, and washed with water (2 × 50 mL) and brine (2 × 50 mL). The organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to yield the

crude residue as an orange oil. The crude residue was then purified by flash column chromatography on silica gel (20% EtOAc in hexanes) to afford diaryl cyclopropenone **2**, (175 mg, 85% yield) as a white solid.

(c) General Procedure for the synthesis of four membered 2-azetidinone derivatives 3:

To an oven dried seal tube charged with a stir bar, *o*-aminophenol **1** (0.1 mmol, 1 equiv), diphenylcyclopropenone **2** (0.2 mmol, 2.00 equiv), IPr.HCl (0.005 mmol, 0.05 equiv), were added under nitrogen atmosphere and vacuum was applied. Dichloromethane (1 mL, 0.1 M) was added under nitrogen atmosphere and seal tube was sealed. Potassium fluoride (0.15 mmol, 1.5 equiv) was added inside the glove box and the reaction mixture was stirred (700 rpm) in a preheated aluminium block at **100 °C for 12 h**. After completion of the reaction (monitored by TLC), solvent was evaporated under reduced pressure, and the crude was purified by column chromatography to get a (**3,4-diphenylazetidin-2-one**) **3** as a product.

(d) General Procedure for synthesis of seven membered benzoxazepine derivative 5:

To an oven dried seal tube charged with a stir bar, *o*-aminophenol **4** (0.1 mmol, 1 equiv), diphenylcyclopropenone **2** (0.2 mmol, 2.00 equiv), IPr.HCl (0.005 mmol, 0.05 equiv), were added under nitrogen atmosphere and vacuum was applied. Dichloromethane (1 mL, 0.1 M) was added under nitrogen atmosphere and seal tube was sealed. Potassium fluoride (0.15 mmol, 1.5 equiv) was added inside the glove box and the reaction mixture was stirred (700 rpm) in a preheated aluminium block at **100 °C for 12 h**. After completion of the reaction

(monitored by TLC), the solvent was evaporated under reduced pressure, and the crude was purified by column chromatography using EtOAc/hexane as eluent to get corresponding seven membered benzoxazepine derivative (**4,5-dihydrobenzo[b][1,4] oxazepin-2(3H)-one**) **5** as a product.

(e) General Procedure for 1 mmol scale synthesis of 2-azetidinone derivatives 3aa:

To an oven dried seal tube charged with a stir bar, *o*-aminophenol **1a** (1 mmol, 1equiv), diphenylcyclopropenone **2a** (2 mmol, 2.0 equiv), ligand (0.05 mmol, 0.05 equiv), were added under nitrogen atmosphere and vacuum was applied. Dichloromethane (1 mL, 0.1 M) was added under nitrogen atmosphere and seal tube was sealed. Potassium fluoride (0.15 mmol, 1.5 equiv) was added inside the glove box and the reaction mixture was stirred (700 rpm) in a preheated aluminium block at **100 °C for 12 h**. After completion of the reaction (monitored by TLC), with the addition of the silica gel in EtOAc to the residue, the solvent was evaporated under reduced pressure, and the crude was purified by column chromatography to get a **3aa** (160 mg, 51%) as a product.

3. Control and mechanistic experiments:

(a) Procedure for reaction without catalyst:

To an oven dried seal tube charged with a stir bar, *o*-aminophenol **1a** (0.1 mmol, 1 equiv), diphenylcyclopropenone **2a** (0.2 mmol, 2.00 equiv), were added under nitrogen atmosphere and vacuum was applied. Dichloromethane (1 mL, 0.1 M) was added under nitrogen atmosphere atmosphere and seal tube was sealed. Potassium fluoride (0.15 mmol, 1.5 equiv) was added

inside the glove box and the reaction mixture was stirred (700 rpm) in a preheated aluminium block at **100 °C for 12 h**. After completion of the reaction (monitored by TLC), the crude was filtered through short silica bed and washed with EtOAc. The residue was evaporated under reduced pressure. The crude NMR was recorded and 15% of yield of the **3aa** along with complex reaction mixture was observed.

(b) Procedure for reaction with base and without catalyst for prolonged time:

To an oven dried seal tube charged with a stir bar, *o*-aminophenol **1a** (0.1 mmol, 1 equiv), diphenylcyclopropenone **2a** (0.2 mmol, 2.00 equiv), ligand (5 mol%, 0.05 equiv), were added under nitrogen atmosphere and vacuum was applied. Dichloromethane (1 mL, 0.1 M) was added under nitrogen atmosphere and seal tube was sealed. Potassium fluoride (0.15 mmol, 1.5 equiv) was added inside the glove box and the reaction mixture was stirred (700 rpm) in a

preheated aluminium block at **100** °C **for 24 h**. After completion of the reaction (monitored by TLC) the crude was filtered through short silica bed and washed with EtOAc. The residue was evaporated under reduced pressure. The crude NMR was recorded. The desired product **3aa** was not observed.

(a) To an oven dried seal tube charged with a stir bar, *o*-amino anisole **1aa** (0.1 mmol, 1 equiv), diphenylcyclopropenone **2a** (0.2 mmol, 2.00 equiv), IPr.HCl (5 mol %, 0.05 equiv), was added under nitrogen atmosphere and vacuum was applied. Dichloromethane (1 mL, 0.1 M) was added under nitrogen atmosphere and seal tube was sealed. Potassium fluoride (0.15 mmol, 1.5 equiv) was added inside the glove box and the reaction mixture was stirred (700 rpm) in a preheated aluminium block at **100 °C for 12 h**. After completion of the reaction (monitored)

by TLC), the crude was filtered and residue was evaporated under reduced pressure. The crude NMR was recorded and the product **3aaa** was not detected.

(b) To an oven dried seal tube charged with a stir bar, aniline 6 (0.1 mmol, 1 equiv), diphenylcyclopropenone 2a (0.2 mmol, 2.00 equiv), IPr.HCl (5 mol%, 0.05 equiv), was added under nitrogen atmosphere and vacuum was applied. Dichloromethane (1 mL, 0.1 M) was added under nitrogen atmosphere. Dichloromethane (1 mL, 0.1 M) was added under nitrogen atmosphere and seal tube was sealed. Potassium fluoride (0.15 mmol, 1.5 equiv) was added inside the glove box and the reaction mixture was stirred (700 rpm) in a preheated aluminium block at 100 °C for 12 h. After completion of the reaction (monitored by TLC), the crude was filtered and residue was evaporated under reduced pressure. The crude NMR was recorded and the product 6aa was detected.

(c) To an oven dried seal tube charged with a stir bar, p-hydroxy aniline 7 (0.1 mmol, 1 equiv), diphenylcyclopropenone 2a (0.2 mmol, 2.00 equiv), IPr.HCl (5 mol%, 0.05 equiv), was added under nitrogen atmosphere and vacuum was applied. Dichloromethane (1 mL, 0.1 M) was added under nitrogen atmosphere. Dichloromethane (1 mL, 0.1 M) was added under nitrogen atmosphere and seal tube was sealed. Potassium fluoride (0.15 mmol, 1.5 equiv) was added inside the glove box and the reaction mixture was stirred (700 rpm) in a preheated aluminium block at 100 °C for 12 h. After completion of the reaction (monitored by TLC), the crude was filtered and residue was evaporated under reduced pressure. The crude NMR was recorded and the product 7aa was not detected.

(d) Reaction to ascertain the intermediacy of β -lactam:

To an oven dried seal tube charged with a stir bar, (3S,4R)-1-(2-hydroxyphenyl)-3,4diphenylazetidin-2-one **3aa** (0.1 mmol, 1 equiv), IPr.HCl (5 mol%, 0.05 equiv), was added under nitrogen atmosphere and vacuum was applied. Dichloromethane (1mL, 0.1 M) was added under nitrogen atmosphere. Dichloromethane (1 mL, 0.1 M) was added under nitrogen atmosphere and seal tube was sealed. Potassium fluoride (0.15 mmol, 1.5 equiv) was added inside the glove box and the reaction mixture was stirred (700 rpm) in a preheated aluminium block at **100 °C for 12 h**. After completion of the reaction (monitored by TLC), the crude was filtered and residue was evaporated under reduced pressure. The crude NMR was recorded and the product **5aa-1** was not detected.

(e) Reaction to ascertain the intermediacy Acyl azolium:

(a) To an oven dried seal tube charged with a stir bar, aniline 6 (0.1 mmol, 1 equiv), diphenylcyclopropenone 2a (0.2 mmol, 2.00 equiv), was added under nitrogen atmosphere and vacuum was applied. Dichloromethane (1 mL, 0.1 M) was added under nitrogen atmosphere. Dichloromethane (1 mL, 0.1 M) was added under nitrogen atmosphere and seal tube was sealed. Potassium fluoride (0.15 mmol, 1.5 equiv) was added inside the glove box and the reaction mixture was stirred (700 rpm) in a preheated aluminium block at 100 °C for 12 h. After completion of the reaction (monitored by TLC), the crude was filtered and residue was evaporated under reduced pressure. The crude NMR was recorded and the product 6aa was not detected.

(b) To an oven dried seal tube charged with a stir bar, acetyl acetone 8 (0.1 mmol, 1 equiv), diphenylcyclopropenone 2a (0.2 mmol, 2.00 equiv), IPr.HCl (5 mol%, 0.05 equiv), was added under nitrogen atmosphere and vacuum was applied. Dichloromethane (1 mL, 0.1 M) was added under nitrogen atmosphere. Dichloromethane (1 mL, 0.1 M) was added under nitrogen atmosphere and seal tube was sealed. Potassium fluoride (0.15 mmol, 1.5 equiv) was added inside the glove box and the reaction mixture was stirred (700 rpm) in a preheated aluminium block at 100 °C for 12 h. After completion of the reaction (monitored by TLC), with the addition of the silica gel in EtOAc to the residue, the solvent was evaporated under reduced pressure, and the crude was purified by column chromatography to get a 8aa (18 mg, 59%) as a product.

4. Experimental characterization data for products:

(**3S,4R)-1-(2-hydroxyphenyl)-3,4-diphenylazetidin-2-one** (**3aa**): was prepared according to general procedure (2c). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving (24 mg) 75% yield.

Physical State: colorless liquid.R_f-value: 0.4 (10% EtOAc/hexane)

¹**H NMR (400 MHz, CDCl₃)** δ 9.77 (s, 1H), 7.43 – 7.33 (m, 10H), 7.04 – 7.03 (m, 2H), 6.67-6.62 (m, 1H), 6.51 (d, *J* = 8.4 Hz, 1H), 5.03 (d, *J* = 2.4 Hz, 1H), 4.25 (d, *J* = 2.4 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 167.5, 148.2, 136.5, 134.1, 129.8, 129.5, 129.4, 128.6, 127.7, 127.2, 126.2, 125.4, 120.0, 119.5, 118.2, 64.0, 62.1.

IR (KBr, cm⁻¹): 3417, 2961, 1712, 1496, 1146.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{21}H_{18}NO_2$: 316.1338; Found: 316.1353.

(3S,4R)-1-(2-hydroxy-5-methylphenyl)-3,4-diphenylazetidin-2one (3ba): was prepared according to general procedure (2c). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving (17 mg) 52% yield.

Physical State: yellow solid.

R_f-value: 0.4 (10% EtOAc/hexane), mp: 163 °C

¹**H NMR (CDCl₃, 400 MHz):** δ 9.44 (s, 1H), 7.41 – 7.33 (m, 10 H), 6.93 (d, *J* = 8.4 Hz, 1H), 6.85 (d, *J* = 8.4 Hz, 1H), 6.32 (s, 1H), 5.03 (d, *J* = 1.6 Hz, 1H), 4.24 (d, *J* = 1.6 Hz, 1H), 2.07 (s, 3H).

¹³C NMR (CDCl₃, 175 MHz): δ 167.5, 146.0, 136.7, 134.2, 129.7, 129.5, 129.3, 128.6 (2C), 127.9, 127.7, 126.2, 125.1, 119.3, 118.6, 63.9, 62.2, 20.7.

IR (KBr, cm⁻¹): 3439, 1710, 1640.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₂₀NO₂: 330.1494; Found: 330.1509.

(3S,4R)-1-(5-chloro-2-hydroxyphenyl)-3,4-diphenylazetidin-2-one (3ca): was prepared according to general procedure (2c). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving (19 mg) 54% yield.

Physical State: brown solid.

R_f-value: 0.4 (10% EtOAc/hexane), mp: 120 °C

¹**H NMR (CDCl₃, 400 MHz):** δ 9.70 (s, 1H), 7.44-7.36 (m, 8H), 7.33 (d, *J* = 7.0 Hz, 2H), 6.99 (dd, *J* = 7.0 Hz, 2.1Hz, 1H), 6.95 (d, *J* = 9.1 Hz, 1H), 6.47 (d, *J* = 2.1 Hz, 1H), 5.01 (d, *J* = 2.1 Hz, 1H), 4.27 (d, *J* = 2.1 Hz, 1H).

¹³C NMR (CDCl₃, 175 MHz): δ 167.8, 147.0, 135.9, 133.8, 129.9 (2C), 129.6, 128.7, 127.6, 127.0, 126.4, 126.2, 124.8, 120.6, 118.0, 64.1, 62.3.

IR (KBr, cm⁻¹): 3443, 2920, 1712, 1692, 1494.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₁₇NO₂Cl: 350.0948; Found: 350.0963.

(3S,4R)-1-(5-bromo-2-hydroxyphenyl)-3,4-diphenylazetidin-2one (3da): was prepared according to general procedure (2c). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving (26 mg) 66% yield.

Physical State: Orange solid

R_f-value: 0.4 (10% EtOAc/hexane), mp: 140 °C

¹**H NMR (CDCl₃, 700 MHz):** δ 9.72 (s, 1H), 7.45-7.36 (m, 8H), 7.33 (d, *J* = 7.0 Hz, 2H), 7.26 (dd, *J* = 8.4 Hz, 2.1 Hz, 1H), 6.90 (d, *J* = 9.1 Hz, 1H), 6.61 (d, *J* = 2.1 Hz, 1H), 5.02 (d, *J* = 2.1 Hz, 1H), 4.28 (d, *J* = 2.1 Hz, 1H).

¹³C NMR (CDCl₃, 175 MHz): δ 167.9, 147.6, 135.9, 133.7, 130.0, 129.9, 129.6 (2C),

 $128.7,\,127.6,\,126.8,\,126.2,\,121.1,\,120.9,\,111.7,\,64.1,\,62.3.$

IR (KBr, cm⁻¹): 3442, 1712, 1632, 1493, 1146.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₁₇NO₂Br: 394.0443; Found: 394.0456.

(3S,4R)-1-(2-hydroxy-4-methylphenyl)-3,4-diphenylazetidin-2one (3ea): was prepared according to general procedure (2c). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving (18 mg) 55% yield.

Physical State: yellow solid.

R_f-value: 0.3 (10% EtOAc/hexane), mp: 215 °C

¹**H NMR (CDCl₃, 400 MHz):** δ 9.75 (s, 1H), 7.42 – 7.33 (m, 10 H), 6.85 (s, 1H), 6.45 (d, J = 8.0 Hz, 1H), 6.38 (d, J = 8.0 Hz, 1H), 5.00 (d, J = 1.6 Hz, 1H), 4.23 (d, J = 1.2 Hz, 1H), 2.23 (s, 3H).

¹³C NMR (CDCl₃, 175 MHz): δ 167.1, 148.0, 137.5, 136.7, 134.3, 129.7, 129.5, 129.3, 128.6, 127.7, 126.2, 123.0, 120.7, 119.9, 64.0, 62.1, 21.1.

IR (KBr, cm⁻¹): 3450, 1703, 1657.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₂₂H₂₀NO₂: 330.1494; Found: 330.1524.

(Methyl 3-hydroxy-4-((3S,4R)-2-oxo-3,4-diphenylazetidin-1-yl benzoate) (3fa): was prepared according to general procedure (2c). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving (14 mg) 38% yield.

Physical State: colorless liquid

R_f-value: 0.3 (10% EtOAc/hexane)

¹H NMR (CDCl₃, 700 MHz): δ 9.90 (s, 1H), 7.68 (d, J = 1.6 Hz, 1H), 7.42 – 7.32 (m, 11H), 6.52 (d, J = 8.0 Hz, 1H), 5.07 (d, J = 2.4 Hz, 1H), 4.30 (d, J = 2.4 Hz, 1H), 3.85 (s, 3H).
¹³C NMR (CDCl₃, 175 MHz): δ 168.0, 166.6, 148.0, 136.1, 133.7, 129.9 (2C), 129.6, 129.2, 128.8 (2C), 127.6, 126.2, 121.7, 120.7, 117.9, 64.2, 62.2, 52.4.
IR (KBr, cm⁻¹): 3448, 2923, 1711, 1653, 1456, 1223.

HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₃H₁₉NO₄Na: 396.1212; Found: 396.1190.

(3S,4R)-1-(2-hydroxyphenyl)-3,4-di-o-tolylazetidin-2-one (3ac): was prepared according to general procedure (2c). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving (19 mg) 55% yield.

Physical State: yellow solid

R_f-value: 0.3 (10% EtOAc/hexane), mp: 141 °C

¹**H NMR (CDCl₃, 400 MHz):** δ. 9.84 (s, 1H), 7.41 – 7.39 (m, 1H), 7.30 (d, *J* = 7.7 Hz, 2H), 7.25 – 7.23 (m, 2H), 7.20 (d, *J* = 7.7 Hz, 3H), 7.04 – 7.01 (m, 2H), 6.64 – 6.62 (m, 1H), 6.49 (d, *J* = 7.7 Hz, 1H), 4.87 (d, *J* = 2.8 Hz, 1H), 4.44 (d, *J* = 2.1 Hz, 1H), 2.35 (s, 3H), 2.12 (s, 3H).

¹³C NMR (CDCl₃, 175 MHz): δ 168.0, 148.4, 139.4, 137.0, 133.8, 133.1, 131.0, 130.4, 128.5, 127.2, 127.0 (2C), 126.9, 126.4, 125.5, 120.0, 119.4 (2C), 118.2, 63.9, 60.1, 21.5, 20.2.

IR (KBr, cm⁻¹): 3443, 1634.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₂₂NO₂: 344.1651; Found: 344.1666.

(3S,4R)-1-(2-hydroxyphenyl)-3,4-bis(3nitrophenyl)azetidin-2-one (3af): was prepared according to general procedure (2c). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving (20 mg) 50% yield.

Physical State: yellow solid

R*f***-value:** 0.6 (30% EtOAc/hexane), **mp:** 90 °C

¹**H NMR (CDCl₃, 700 MHz):** δ . 9.18 (s, 1H), 8.28 – 8.26 (m, 3H), 8.22 (t, *J* = 2.1 Hz, 1H), 7.76 – 7.72 (m, 2H), 7.67-7.64 (m, 2H), 7.11 (dt, *J* = 8.4 Hz, 1.4 Hz, 1H), 7.07 (dd, *J* = 8.4 Hz, 1.4 Hz, 1H), 6.72-6.70 (m, 1H), 6.51 (dd, J = 7.7 Hz, 1.4 Hz, 1H), 5.23 (d, *J* = 2.1 Hz, 1H), 4.41 (d, *J* = 2.8 Hz, 1H).

¹³C NMR (CDCl₃, 175 MHz): δ 165.3, 149.3, 148.3, 138.2, 135.2, 133.7, 131.8, 131.4, 130.9, 128.1 (2C), 124.8, 124.5, 124.1, 122.9, 121.8, 120.5, 120.0, 118.1, 62.6, 61.5.
IR (KBr, cm⁻¹): 3087, 1717.

HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₁H₁₅N₃O₆Na: 428.0858; Found: 428.0878.

dihydrobenzo[b][1,4]oxazepin-2(3H)-one (5ea'): was prepared according to general procedure (2d). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving (13 mg) 40% yield.

(3R,4R)-5-methyl-3,4-diphenyl-4,5-

Physical State: brown solid

R_{*f*}**-value:** 0.6 (10% EtOAc/hexane), **mp:** 202 °C

¹**H NMR (CDCl₃, 400 MHz):** δ 7.34 – 7.26 (m, 4H), 7.25 – 7.16 (m, 3H), 7.14 – 7.06 (m, 5H), 6.85 (d, *J* = 8.0 Hz, 2H), 4.49 (d, *J* = 6.0 Hz, 1H), 4.20 (d, *J* = 6.0 Hz, 1H), 2.62 (s, 3H).

¹³C NMR (CDCl₃, 175 MHz): δ 168.4, 146.5, 141.2, 137.3, 133.7, 131.0, 129.3, 128.9, 128.3, 127.9, 127.8, 126.9, 123.6, 120.4, 120.3, 78.8, 50.7, 39.1.

IR (KBr, cm⁻¹): 3447, 2962, 1764, 1494, 1127

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₂₀NO₂: 330.1494; Found: 330.1483.

(3S,4R)-5-methyl-3,4-diphenyl-4,5dihydrobenzo[b][1,4]oxazepin-2(3H)-one (5ea): was prepared according to general procedure (2d). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving (15 mg) 46% yield.

Physical State: colorless liquid

R_f-value: 0.5 (10% EtOAc/hexane)

¹H NMR (CDCl₃, 400 MHz): δ 7.22-7.11 (m, 11H), 6.90 (d, J = 8.0 Hz, 1H), 6.80 (d, J = 7.2 Hz, 2H), 4.80 (d, J = 11.6 Hz, 1H), 4.26 (d, J = 11.6 Hz, 1H), 2.60 (s, 3H).
¹³C NMR (CDCl₃, 175 MHz): δ 170.3, 147.0, 138.1, 136.4, 134.5, 130.1, 128.5. 128.4 (2C), 127.9,127.8, 126.1, 124.6, 123.2, 119.8, 77.1, 54.1, 39.2.

IR (KBr, cm⁻¹): 3438, 1762, 1492, 1133.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{22}H_{20}NO_2$: 330.1494; Found: 330.1505.

(3R,4R)-5-ethyl-3,4-diphenyl-4,5-

dihydrobenzo[b][1,4]oxazepin-2(3H)-one) (5fa'): was prepared according to general procedure (2d). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving (13 mg) 38% yield.

Physical State: yellow solid

R_f-value: 0.5 (10% EtOAc/hexane), mp: 132 °C

¹**H NMR (CDCl₃, 700 MHz):** *δ* 7.35-7.38 (m, 3H), 7.20-7.06 (m, 9H), 6.85 (d, *J* = 7.6 Hz, 2H), 4.47 (d, *J* = 5.6 Hz, 1H), 4.38 (d, *J* = 6.0 Hz, 1H), 3.20-3.11 (m, 1H), 2.98-2.91 (m, 1H), 0.97 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (CDCl₃, 175 MHz): δ 168.6, 147.5, 138.5, 137.6, 133.8, 131.1, 129.4, 128.8, 128.3, 127.9, 127.7, 126.6, 123.5, 121.2, 120.7, 77.5, 50.6, 43.4, 12.7.

IR (KBr, cm⁻¹): 3447, 2923, 1766, 1494, 1124.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₂₂NO₂: 344.1651; Found: 344.1635.

(3S,4R)-5-ethyl-3,4-diphenyl-4,5-dihydrobenzo[b][1,4]oxazepin-2(3H)-one (5fa): was prepared according to general procedure (2d). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving (17 mg) 50% yield.

Physical State: colorless liquid

R_f-value: 0.6 (10% EtOAc/hexane)

¹**H NMR (CDCl₃, 400 MHz):** δ 7.25-7.24 (m, 1H), 7.22-7.19 (m, 4H), 7.16-7.09 (m, 6H), 6.89-6.87 (m, 1H), 6.80 (d, *J* = 7.0 Hz, 2H), 4.91 (d, *J* = 11.9 Hz, 1H), 4.25 (d, *J* = 11.2 Hz, 1H), 2.95-2.88 (m, 1H), 2.87-2.82 (m, 1H), 1.11 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (CDCl₃, 175 MHz): δ 170.5, 148.0 136.8, 136.5, 134.6, 130.1, 128.4 (2C), 128.3, 127.9 (2C), 125.8, 124.8, 124.6, 119.9, 75.2, 54.1, 45.1, 13.1.

IR (KBr, cm⁻¹): 3439, 1765, 1491, 1158.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₂₂NO₂: 344.1651; Found: 344.1673.

(3S,4R)-3,4-diphenyl-5-propyl-4,5dihydrobenzo[b][1,4]oxazepin-2(3H)-one (5ga): was prepared according to general procedure (2d). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving (15 mg) 42% yield.

Physical State: yellow liquid R_f-value: 0.5 (10% EtOAc/hexane)

¹**H NMR (CDCl₃, 700 MHz):** δ 7.24 (d, *J* = 2.1 Hz, 1H), 7.21-7.18 (m, 4H), 7.16 -7.10 (m, 6H), 6.90 (d, *J* = 7.7 Hz, 1H), 6.80 (d, *J* = 7.0 Hz, 2H) 4.86 (d, *J* = 11.2 Hz, 1H), 4.26 (d, *J* = 11.2 Hz, 1H), 2.88-2.84 (m, 1H), 2.77-2.73(m, 1H), 1.54-1.48 (m, 2H), 0.87 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (CDCl₃, 175 MHz): δ 170.5, 148.0,136.8, 136.6, 134.6, 130.1, 128.4 (2C), 128.3, 127.9 (2C), 125.8, 124.8, 124.6, 119.9, 75.4, 54.1, 52.5, 20.5, 11.7.

IR (KBr, cm⁻¹): 3447, 2961, 1767, 1492, 1123.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₂₄NO₂: 358.1807; Found: 358.1801.

(3S,4R)-5-pentyl-3,4-diphenyl-4,5dihydrobenzo[b][1,4]oxazepin-2(3H)-one (5ha): was prepared according to general procedure (2d). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving (28 mg) 73% yield.

Physical State: brown liquid

R_f-value: 0.5 (10% EtOAc/hexane)

¹H NMR (CDCl₃, 400 MHz): δ 7.24-7.23 (m, 1H), 7.21 – 7.09 (m, 10H), 6.91-6.88 (m, 1H), 6.80 (d, J = 6.4 Hz, 2H), 4.86 (d, J = 11.6 Hz, 1H), 4.25 (d, J = 11.6 Hz, 1H), 2.90-2.83 (m, 1H), 2.80-2.73 (m, 1H), 1.52-1.46 (m, 2H), 1.27-1.25 (m, 4H), 0.85 (t, J = 6.8 Hz, 3H). ¹³C NMR (CDCl₃, 175 MHz): δ 170.4, 148.0, 136.9, 136.5, 134.6, 130.1, 128.4 (2C), 128.3, 127.9 (2C), 125.8, 124.8, 124.6, 119.9, 75.4, 54.1, 50.7, 29.3, 26.9, 22.6, 14.3. IR (KBr, cm⁻¹): 3437, 2953, 1765, 1491, 1126.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{26}H_{28}NO_2$: 386.2120; Found: 386.2092.

dihydrobenzo[b][1,4]oxazepin-2(3H)-one (5ia'): was prepared according to general procedure (2d). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving (26 mg) 76% yield.

(3R,4R)-5,8-dimethyl-3,4-diphenyl-4,5-

Physical State: white solid

R_f-value: 0.4 (10% EtOAc/hexane), mp: 160 °C

¹**H NMR** (**CDCl**₃, **700 MHz**): δ 7.32 (t, J = 7.0 Hz, 1H), 7.26-7.24 (m, 2H), 7.14 (t, J = 7.0 Hz, 1H), 7.11-7.05 (m, 6H), 6.99 (s, 1H), 6.84 (d, J = 7.7 Hz, 2H), 4.46 (d, J = 6.3 Hz, 1H), 4.15 (d, J = 6.3 Hz, 1H), 2.58 (s, 3H), 2.37 (s, 3H). ¹³**C NMR** (**CDCl**₃, **175 MHz**): δ 168.7, 146.3, 138.6, 137.4, 133.8 (2C), 131.0, 129.3, 128.8, 128.3, 127.8, 127.7, 127.2, 120.7, 120.1, 79.1, 50.8, 39.2, 20.9. **IR** (KBr, cm⁻¹): 3448, 2960, 1764, 1509, 1124.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₂₃H₂₂NO₂: 344.1651; Found: 344.1639.

(3S,4R)-5,8-dimethyl-3,4-diphenyl-4,5-

dihydrobenzo[b][1,4]oxazepin-2(3H)-one (5ia): was prepared according to general procedure (2d). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving (4 mg) 12% yield.

Physical State: orange liquid.

 \mathbf{R}_{f} -value: 0.3 (10% EtOAc/hexane)

¹**H NMR (CDCl₃, 700 MHz):** *δ* 7.20 (d, *J* = 7.7 Hz, 2H), 7.16-7.10 (m, 6H), 7.04 (s, 1H), 7.01 (d, *J* = 7.7 Hz, 1H), 6.81 (d, *J* = 7.7 Hz, 2H), 6.76 (d, *J* = 7.7 Hz, 1H), 4.76 (d, *J* = 11.2 Hz, 1H), 4.25 (d, *J* = 11.2 Hz, 1H), 2.57 (s, 3H), 2.40 (s, 3H).

¹³C NMR (CDCl₃, 175 MHz): δ 170.6, 146.7, 136.4, 135.3, 134.7 (2C), 130.1, 128.4 (3C), 127.9 (2C), 126.6, 122.9, 120.2, 77.2, 54.2, 39.2, 21.1.

IR (KBr, cm⁻¹): 3438, 1761, 1633.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₂₃H₂₂NO₂: 344.1651; Found: 344.1662.

dihydrobenzo[b][1,4]oxazepin-2(3H)-one (5ja'): was prepared according to general procedure (2d). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving (21 mg) 61% yield.

(3R,4R)-5,7-dimethyl-3,4-diphenyl-4,5-

Physical State: white solid

R_f-value: 0.5 (10% EtOAc/hexane), mp: 208 °C

¹**H NMR** (**CDCl**₃, **700 MHz**): δ 7.32 (t, J = 7.0 Hz, 1H), 7.27-7.24 (m, 2H), 7.15 (t, J = 7.7 Hz, 1H), 7.09-7.05 (m, 5H), 7.01 (s, 1H), 6.90 (d, J = 7.7 Hz, 1H), 6.85 (d, J = 7.7 Hz, 2H), 4.49 (d, J = 5.6 Hz, 1H), 4.17 (d, J = 5.6 Hz, 1H), 2.60 (s, 3H), 2.41 (s, 3H). ¹³**C NMR** (**CDCl**₃, **175 MHz**): δ 168.7, 144.2, 140.8, 137.4, 136.6, 133.8, 131.0, 129.3, 128.9, 128.3, 127.9, 127.7, 123.9, 120.9, 120.0, 78.8, 50.6, 39.1, 21.6. **IR** (KBr, cm⁻¹): 3438, 2959, 1764, 1502, 1127.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₂₂NO₂: 344.1651; Found: 344.1656.

(3S,4R)-5,7-dimethyl-3,4-diphenyl-4,5dihydrobenzo[b][1,4]oxazepin-2(3H)-one (5ja): was prepared according to general procedure (2d). The crude reaction mixture was purified by column chromatography using silica gel (100-200

mesh size) giving (7 mg) 20% yield.

Physical State: colorless liquid

R*_f***-value:** 0.4 (10% EtOAc/hexane)

¹**H NMR (CDCl₃, 700 MHz):** δ 7.18 (d, J = 7.7 Hz, 2H), 7.16-7.13 (m, 7H), 6.97 (d, J = 8.4 Hz, 1H), 6.81 (d, J = 7.0 Hz, 2H), 6.67 (s, 1H), 4.78 (d, J = 11.9 Hz, 1H), 4.26 (d, J = 11.2 Hz, 1H), 2.58 (s, 3H), 2.35 (s, 3H).

¹³C NMR (CDCl₃, 175 MHz): δ 170.6, 144.7, 137.8, 136.6, 135.9, 134.6, 130.1, 128.4 (2C), 128.3, 127.9, 127.8, 125.0, 123.6, 119.4, 77.0, 54.1, 39.2, 21.5, 6.3.

IR (KBr, cm⁻¹): 3443, 2923, 1763, 1498, 1132.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₂₂NO₂: 344.1651; Found: 344.1649.

(3R,4R)-7-chloro-5-methyl-3,4-diphenyl-4,5dihydrobenzo[b][1,4]oxazepin-2(3H)-one (5ka'): was prepared according to general procedure (2d). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving (8 mg) 22% yield.

Physical State: orange liquid

R_f-value: 0.6 (10% EtOAc/hexane)

¹**H NMR (CDCl₃, 400 MHz):** *δ* 7.36-7.33 (m, 1H), 7.28 (d, *J* = 8.0 Hz, 1H), 7.18-7.16 (m, 2H), 7.12-7.06 (m, 7H), 6.87-6.85 (m, 2H), 4.47 (d, *J* = 5.6 Hz, 1H), 4.21 (d, *J* = 6.0 Hz, 1H), 2.61 (s, 3H).

¹³C NMR (CDCl₃, 175 MHz): δ 167.8, 144.8, 142.2, 136.8, 133.3, 132.0, 131.0, 129.3, 129.1, 128.4, 128.1, 127.9, 123.1, 121.4, 120.6, 78.4, 50.5, 39.1.

IR (KBr, cm⁻¹): 3438, 1770, 1633, 1491, 1122.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₁₉NO₂Cl: 364.1104; Found: 364.1114.

(3S,4R)-7-chloro-5-methyl-3,4-diphenyl-4,5dihydrobenzo[b][1,4]oxazepin-2(3H)-one (5ka): was prepared according to general procedure (2d). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving (10 mg) 27% yield.

Physical State: colorless liquid

R_f-value: 0.5 (10% EtOAc/hexane)

¹**H NMR (CDCl₃, 400 MHz):** δ 7.19-7.13 (m, 10H), 6.85 (d, *J* = 2.1 Hz, 1H), 6.81 (d, *J* = 6.3 Hz, 2H), 4.79 (d, *J* = 11.9 Hz, 1H), 4.24 (d, *J*=11.9Hz, 1H), 2.58 (s, 3H).

¹³C NMR (CDCl₃, 175 MHz): δ 169.7, 145.5, 139.4, 136.1, 134.1, 131.3, 130.0, 128.7 (2C), 128.5, 128.1, 127.6, 124.4, 123.2, 120.8, 77.0, 53.9, 39.3.

IR (KBr, cm⁻¹): 3438, 2922, 1767, 1635, 1488, 1128.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₁₉NO₂Cl: 364.1104; Found: 364.1120.

(3R,4R)-7-bromo-5-methyl-3,4diphenyl-4,5-dihydrobenzo[b][1,4]oxazepin-2(3H)-one (5la'): was prepared according to general procedure (2d). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving (14 mg) 34% yield.

Physical State: white solid.

R_f-value: 0.6 (10% EtOAc/hexane), mp: 235 °C

¹**H NMR (CDCl₃, 400 MHz):** *δ* 7.36-7.31 (m, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.24 – 7.21 (m, 1H), 7.19-7.16 (m, 1H), 7.11-7.04 (m, 5H), 6.87-6.84 (m, 2H), 4.47 (d, *J* = 5.6 Hz, 1H), 4.21 (d, *J* = 5.6 Hz, 1H), 2.61 (s, 3H).

¹³C NMR (CDCl₃, 175 MHz): δ 167.7, 145.4, 142.5, 136.8, 133.3, 131.0, 129.3, 129.1, 128.4, 128.1, 127.9, 126.2, 123.5, 121.8, 119.6, 78.4, 50.5, 39.1.

IR (KBr, cm⁻¹): 3439, 1767, 1633, 1489, 1122.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₁₉NO₂Br: 408.0599; Found: 408.0616.

(3S,4R)-7-bromo-5-methyl-3,4-diphenyl-4,5dihydrobenzo[b][1,4]oxazepin-2(3H)-one (5la): was prepared according to general procedure (2d). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving (7 mg) 17% yield.

Physical State: orange liquid.

R_f-value: 0.5 (10% EtOAc/hexane)

¹**H NMR (CDCl₃, 400 MHz):** *δ* 7.30 (d, *J* = 8.4 Hz, 1H), 7.18-7.13 (m, 8H), 7.10 (d, *J* = 8.4 Hz, 1H), 6.99 (s, 1H), 6.81 (d, *J* = 7.0 Hz, 2H), 4.79 (d, *J* = 11.2 Hz, 1H), 4.23 (d, *J* = 11.2 Hz, 1H), 2.58 (s, 3H).

¹³C NMR (CDCl₃, 175 MHz): δ 169.7, 146.0, 139.6, 136.0, 134.1, 130.0, 128.7 (2C), 128.5, 128.1, 127.6, 127.4, 126.1, 121.2, 118.8, 77.0, 54.0, 39.3.

IR (KBr, cm⁻¹): 3438, 1766, 1633, 1485, 1129.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₁₉NO₂Br: 408.0599; Found: 408.0576.

(3R,4R)-5-ethyl-7-methyl-3,4-diphenyl-4,5dihydrobenzo[b][1,4]oxazepin-2(3H)-one (5ma'): was prepared according to general procedure (2d). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving (20 mg) 56% yield.

Physical State: yellow solid

R_f-value: 0.5 (10% EtOAc/hexane), mp: 172 °C

¹**H NMR** (**CDCl**₃, **400 MHz**): δ 7.34-7.30 (m, 1H), 7.26-7.23 (m, 2H), 7.17-7.04 (m, 7H), 7.00 (d, J = 2.0 Hz, 1H), 6.85-6.83 (m, 2H), 4.43 (d, J = 6.0 Hz, 1H), 4.33 (d, J = 6.0 Hz, 1H), 3.15-3.06 (m, 1H), 2.93-2.84 (m, 1H), 2.37 (s, 3H), 0.95 (t, J = 6.8 Hz, 3H). ¹³**C NMR** (**CDCl**₃, **175 MHz**): δ 168.8, 147.4, 137.7, 135.8, 133.9, 133.7, 131.0, 129.4, 128.7, 128.2, 127.8, 127.7, 127.0, 121.1, 121.0, 77.7, 50.7, 43.3, 20.9, 12.8. **IR** (KBr, cm⁻¹): 3438, 2971, 1765, 1501, 1124.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₂₄NO₂: 358.1807; Found: 358.1803.

(3S,4R)-5-ethyl-7-methyl-3,4-diphenyl-4,5dihydrobenzo[b][1,4]oxazepin-2(3H)-one (5ma): was prepared according to general procedure (2.2). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving (4 mg) 11% yield.

Physical State: colorless liquid

R_f-value: 0.4 (10% EtOAc/hexane)

¹**H NMR (CDCl₃, 400 MHz):** δ 7.21-7.05 (m, 9H), 7.02-6.99 (m, 1H), 6.81 (dd, J = 8.0 Hz, 1.6 HZ, 2H), 6.75 (d, J = 8.0 Hz, 1H), 4.87 (d, J = 11.6 Hz, 1H), 4.24 (d, J = 11.6 Hz, 1H), 2.91-2.77 (m, 2H), 2.41 (s, 3H), 1.08 (t, J = 7.2 Hz, 3H).

¹³C NMR (CDCl₃, 175 MHz): δ 170.8, 147.7, 136.5, 134.9, 134.8, 133.8, 131.0, 130.1, 128.4
(2C), 128.3, 127.9 (2C), 126.4, 124.1, 120.3, 75.3, 54.2, 45.0, 21.2, 13.1.
IR (KBr, cm⁻¹): 3439, 1761, 1634, 1498, 1128.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₂₄NO₂: 358.1807; Found: 358.1808.

(3R,4R)-5-ethyl-8-methyl-3,4-diphenyl-4,5-

dihydrobenzo[b][1,4]oxazepin-2(3H)-one (5na'): was prepared according to general procedure (2d). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving (16 mg) 45% yield.

Physical State: orange liquid.R_f-value: 0.4 (10% EtOAc/hexane)

¹**H NMR (CDCl₃, 400 MHz):** δ . 7.34-7.30 (m, 1H), 7.27-7.23 (m, 2H), 7.18-7.13 (m, 1H), 7.09-7.02 (m, 6H), 6.89 (dd, J = 8.0 Hz, 1.6 Hz, 1H), 6.86-6.84 (m, 2H), 4.47 (d, J = 5.6 Hz, 1H), 4.36 (d, J = 5.6 Hz, 1H), 3.18-3.09 (m, 1H), 2.96-2.87 (m, 1H), 2.42 (s, 3H), 0.97 (t, J = 7.2 Hz, 3H).

¹³C NMR (CDCl₃, 175 MHz): δ 168.9, 145.2, 138.1, 137.7, 136.3, 133.9, 131.1, 129.4, 128.8, 128.2, 127.8, 128.7, 123.9, 121.7, 120.3, 77.3, 50.5, 43.3, 21.7, 12.7.

IR (KBr, cm⁻¹): 3450, 2972, 1764, 1508, 1123.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₂₄NO₂: 358.1807; Found: 358.1818.

(3S,4R)-5-ethyl-8-methyl-3,4-diphenyl-4,5dihydrobenzo[b][1,4]oxazepin-2(3H)-one (5na): was prepared according to general procedure (2d). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving (4 mg) 11% yield.

Physical State: orange liquid.

R_f-value: 0.3 (10% EtOAc/hexane)

¹**H NMR (CDCl₃, 400 MHz):** δ 7.18-7.11 (m, 9H), 6.99-6.97 (m, 1H), 6.82-6.80 (m, 2H), 6.68 (d, *J* = 1.6 Hz, 1H), 4.89 (d, *J* = 11.6 Hz, 1H), 4.25 (d, *J* = 11.6 Hz, 1H), 2.92-2.77 (m, 2H), 2.35 (s, 3H), 1.11 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (CDCl₃, 175 MHz): δ 170.8, 145.6, 136.6, 136.4, 135.6, 134.7, 130.1, 128.4 (2C), 128.3, 127.9(2C), 125.2, 124.8, 119.5, 75.0, 54.0, 45.0, 21.5, 13.1.
IR (KBr, cm⁻¹): 3451, 2923, 1763, 1506, 1126.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₂₄NO₂: 358.1807; Found: 358.1818.

dihydrobenzo[b][1,4]oxazepin-2(3H)-one (50a'): was prepared according to general procedure (2d). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving (9 mg) 24% yield.

(3R,4R)-7-methyl-3,4-diphenyl-5-propyl-4,5-

Physical State: yellow liquid **R**_f**-value:** 0.5 (10% EtOAc/hexane)

¹**H NMR (CDCl₃, 400 MHz):** δ 7.34-7.30 (m, 1H), 7.27-7.23 (m, 1H), 7.15 (t, *J* = 7.6 Hz, 1H), 7.09-7.04 (m, 6H), 7.00 (s, 1H), 6.90 (d, *J* = 8.4 Hz, 1H), 6.83 (d, *J* = 7.6 Hz, 2H), 4.45 (d, *J* = 5.6 Hz, 1H), 4.30 (d, *J* = 5.6 Hz, 1H), 3.11-3.05 (m, 1H), 2.75-2.68 (m, 1H), 2.42 (s, 3H), 1.44-1.39 (m, 2H), 0.71 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (CDCl₃, 175 MHz): δ 169.0, 145.3, 138.1, 137.7, 136.2, 134.0, 131.1, 129.6, 128.8, 128.2, 127.8, 127.7, 124.0, 121.9, 120.3, 77.7, 50.6, 50.5, 21.7, 20.2, 11.7.

IR (KBr, cm⁻¹): 3442, 2961, 1766, 1499, 1123.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₂₆NO₂: 372.1964; Found: 372.1951.

(3S,4R)-7-methyl-3,4-diphenyl-5-propyl-4,5dihydrobenzo[b][1,4]oxazepin-2(3H)-one (5oa): was prepared according to general procedure (2d). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving (17 mg) 46% yield.

Physical State: yellow liquid **R**_f**-value:** 0.4 (10% EtOAc/hexane)

¹**H NMR (CDCl₃, 400 MHz):** δ 7.20-7.18 (m, 2H), 7.15-7.11 (m, 7H), 6.98 (d, J = 8.4 Hz, 1H), 6.82 (d, J = 6.8 Hz, 2H), 6.69 (s, 1H), 4.84 (d, J = 11.6 Hz, 1H), 4.25 (d, J = 11.6 Hz, 1H), 2.88-2.81 (m, 1H), 2.75-2.69 (m, 1H), 2.34 (s, 3H), 1.53-1.48 (m, 2H), 0.87 (t, J = 7.2 Hz, 3H).

¹³C NMR (CDCl₃, 175 MHz): δ 170.7, 145.7, 136.7, 136.5, 135.6, 134.7, 130.1, 128.4, 128.2
(2C), 127.9 (2C), 125.2, 125.0, 119.5, 75.1, 54.0, 52.4, 21.5, 20.6, 11.7.
IR (KBr, cm⁻¹): 3443, 2960, 1763, 1498, 1129.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₂₆NO₂: 372.1964; Found: 372.1951.

(3R,4R)-8-methyl-3,4-diphenyl-5-propyl-4,5dihydrobenzo[b][1,4]oxazepin-2(3H)-one (5pa'): was prepared according to general procedure (2d). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving (10 mg) 27% yield.

Physical State: yellow liquid **R_f-value:** 0.5 (10% EtOAc/hexane)

¹**H NMR** (**CDCl**₃, **400 MHz**): δ 7.32 (t, J = 7.2 Hz, 1H), 7.25-7.22 (m, 2H), 7.14-7.03 (m, 7H), 7.01 (s, 1H), 6.82 (d, J = 8.0 Hz, 2H), 4.42 (d, J = 6.0 Hz, 1H), 4.28 (d, J = 6.0 Hz, 1H), 3.09-3.03 (m, 1H), 2.74-2.66 (m, 1H), 2.37 (s, 3H), 1.42-1.37 (m, 2H), 0.70 (t, J = 7.2 Hz, 3H).

¹³C NMR (CDCl₃, 175 MHz): δ 169.0, 1475, 137.7, 135.8, 133.9 (2C), 131.0, 129.6, 128.7, 128.1, 127.8, 127.7, 127.0, 121.2, 121.1, 78.1, 50.7, 50.5, 21.0, 20.3, 11.6.
IR (KBr, cm⁻¹): 3451, 2962, 1765, 1507, 1122.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₂₆NO₂: 372.1964; Found: 372.1977.

(3S,4R)-8-methyl-3,4-diphenyl-5-propyl-4,5-

dihydrobenzo[b][1,4]oxazepin-2(3H)-one (5pa): was prepared according to general procedure (2d). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving (20 mg) 54% yield.

Physical State: orange liquid

R_{*f*}**-value:** 0.4 (10% EtOAc/hexane)

¹**H NMR (CDCl₃, 400 MHz):** δ 7.21-7.10 (m, 8H), 7.05 (s, 1H), 7.00 (d, J = 8.0 Hz, 1H), 6.81 (d, J = 6.0 Hz, 2H), 6.77 (d, J = 8.4 Hz, 1H), 4.83 (d, J = 11.6 Hz, 1H), 4.25 (d, J = 11.6 Hz, 1H), 2.85-2.79 (m, 1H), 2.75-2.68 (m, 1H), 2.41 (s, 3H), 1.52-1.47 (m, 2H), 0.86 (t, J = 7.2 Hz, 3H).

¹³C NMR (CDCl₃, 175 MHz): δ 170.7, 147.8, 136.6, 134.9, 134.8, 133.9, 130.1, 128.4 (2C), 128.2, 127.9 (2C), 126.4, 124.3, 120.3, 75.5, 54.2, 52.4, 21.2, 20.5, 11.7.

IR (KBr, cm⁻¹): 3451, 2961, 1765, 1505, 1127.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₂₆NO₂: 372.1964; Found: 372.1949.

(3S,4R)-7-methyl-5-pentyl-3,4-diphenyl-4,5dihydrobenzo[b][1,4]oxazepin-2(3H)-one (5qa): was prepared according to general procedure (2d). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving (16 mg) 40% yield.

Physical State: yellow liquid

R*_f***-value:** 0.4 (10% EtOAc/hexane)

¹**H** NMR (CDCl₃, 400 MHz): δ 7.20-7.11 (m, 9H), 6.98 (d, J = 8.4 Hz, 1H), 6.81 (d, J = 7.6 Hz, 2H), 6.69 (s, 1H), 4.84 (d, J = 11.6 Hz, 1H), 4.25 (d, J = 11.6 Hz, 1H), 2.89-2.82 (m, 1H), 2.77-2.70 (m, 1H), 2.34 (s, 3H), 1.52-1.49 (m, 2H), 1.27 (m, 4H), 0.85 (t, J = 6.8 Hz, 3H). ¹³C NMR (CDCl₃, 175 MHz): δ 170.7, 145.7, 136.7, 135.6, 134.8, 130.1, 128.4 (2C), 128.2, 127.9 (2C), 125.2, 124.9, 119.5, 75.1, 54.0, 50.6, 29.3, 26.9, 22.6, 21.5, 14.3. IR (KBr, cm⁻¹): 3444, 2954, 1764, 1498, 1128.

HRMS (**ESI**) **m/z:** [M+H]⁺ Calcd for C₂₇H₃₀NO₂: 400.2277; Found: 400.2287.

(3S,4R)-5-methyl-3,4-bis(3-nitrophenyl)-4,5dihydrobenzo[b][1,4]oxazepin-2(3H)-one (5ef+5ef'): was prepared according to general procedure (2d). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving (22 mg) 52% yield.

Physical State: yellow solid

R*f***-value:** 0.5 (30% EtOAc/hexane); **mp:** 160 °C

¹H NMR (CDCl₃, 700 MHz): δ 8.09-8.05 (m, 3H), 7.73-7.72 (m, 1H), 7.62 (d, J = 7.7 Hz, 1H), 7.41 (t, J = 8.4 Hz, 1H), 7.38 (t, J = 7.7 Hz, 1H), 7.31-7.28 (m, 3H), 7.16 (d, J = 7.7 Hz, 1H), 6.93-6.92 (m, 1H), 4.93 (d, J = 11.9 Hz, 1H), 4.39 (d, J = 11.9 Hz, 1H), 2.66 (s, 3H). ¹³C NMR (CDCl₃, 175 MHz): δ 168.4, 148.5, 148.4, 146.6, 138.0, 137.0, 136.2, 135.9, 133.5, 130.1, 129.8, 129.1, 126.9, 125.8, 125.1, 124.0, 123.6, 123.2, 122.3, 120.3, 77.9, 76.0, 53.6, 49.9, 39.4, 34.3.

IR (KBr, cm⁻¹): 2937, 1760, 1526, 1348.

HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₁₇N₃O₆Na: 442.1015; Found: 442.1014.

5-acetyl-6-methyl-2,3-diphenyl-2,3-dihydro-4H-pyran-4-one (**8aa**): was prepared according to general procedure (3eb). The crude reaction mixture was purified by column chromatography using silica gel (100-200 mesh size) giving (18 mg) 59% yield.

Physical State: white solid

R*f***-value:** 0.5 (10% EtOAc/hexane); **mp:** 118 °C

¹**H NMR (CDCl₃, 400 MHz):** δ 7.39-7.36 (m, 5H), 7.26-7.22 (m, 5H), 3.03 (d, *J* = 15.2 Hz, 1H), 2.81 (d, *J* = 14.8 Hz, 1H), 2.23 (s, 3H), 1.63 (s, 3H).

¹³C NMR (CDCl₃, 100 MHz): δ 204.8, 171.3, 164.4, 132.4, 129.8, 129.6, 129.5, 129.3, 128.8, 128.5, 128.4, 127.7, 85.7, 49.2, 32.4, 25.1.

IR (KBr, cm⁻¹): 2918, 1742.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₉O₃: 307.1334; Found: 307.1315.

5. Copies of ¹H NMR and ¹³C NMR spectra:

6. Crystallographic data:

X-ray data of (3S,4R)-1-(2-hydroxy-4-methylphenyl)-3,4-diphenylazetidin-2-one (3ea): Crystals of the compound (3S,4R)-1-(2-hydroxy-4-methylphenyl)-3,4-diphenylazetidin-2-one (**3ea**) were obtained after slow evaporation of EtOAc. Crystals suited for single crystal X-Ray diffraction measurements were mounted on a glass fiber. Geometry and intensity data were collected with a Rigaku Smartlab X-ray diffractometer equipped with graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å, multilayer optics). Temperature was controlled using an Oxford Cryostream 700 instrument. Intensities were integrated with SAINT and SMART software packages and corrected for absorption with SADABS. The structure was solved by direct methods and refined on F2 with SHELXL-97 using Olex-2 software.

Datablock pcr_as_140_auto - ellipsoid plot

Table S1. Crystal data and structure refinement for (3S,4R)-1-(2-hydroxy-4-methylphenyl)-3,4-diphenylazetidin-2-one (3ea):

Identification code	PCR_AS_140_auto
Empirical formula	$C_{22}H_{19}NO_2$
Formula weight	329.38
Temperature/K	100.01(10)
Crystal system	orthorhombic
Space group	$P2_12_12_1$
a/Å	8.0510(3)
b/Å	12.5184(6)
c/Å	16.9921(7)
a/°	90
β/°	90
$\gamma^{/\circ}$	90
Volume/Å ³	1712.56(13)
Z	4
$\rho_{calc}g/cm^3$	1.278
μ/mm^{-1}	0.082
F(000)	696.0
Crystal size/mm ³	0.2 imes 0.1 imes 0.1
Radiation	Mo K α ($\lambda = 0.71073$)
2Θ range for data collection/°	6.938 to 60.936
Index ranges	$-11 \le h \le 10, -17 \le k \le 16, -18 \le l \le 24$
Reflections collected	11357
Independent reflections	3736 [$R_{int} = 0.0393$, $R_{sigma} = 0.0417$]
Data/restraints/parameters	3736/0/228
Goodness-of-fit on F ²	1.035
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0406, wR_2 = 0.1026$
Final R indexes [all data]	$R_1 = 0.0478, wR_2 = 0.1056$
Largest diff. peak/hole / e Å ⁻³	0.30/-0.18
Flack parameter	-0.1(7)

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) pcr_as_140_auto

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: pcr_as_140_auto

Bond precision:	C-C = 0.0030 A	Wavelength	-0.71073
Cell:	a=8.0510(3) alpha=90	b=12.5184(6) beta=90	c=16.9921(7) gamma=90
Temperature:	100 K		
	Calculated	Reported	
Volume	1712.56(13)	1712.56(1	3)
Space group	P 21 21 21	P 21 21 2	1
Hall group	P 2ac 2ab	P 2ac 2ab)
Moiety formula	C22 H19 N O2	C22 H19 N	02
Sum formula	C22 H19 N O2	C22 H19 N	02
Mr	329.38	329.38	
Dx,g cm=3	1.278	1.278	
Z	4	4	
Mu (mm-1)	0.082	0.082	
F000	696.0	696.0	
F000'	696.30		
h,k,lmax	11,17,24	11,17,24	
Nref	5205[2949]	3736	
Tmin, Tmax	0.990,0.992	0.929,1.0	00
Tmin'	0.984		
Correction metho AbsCorr = MULTI-	od= # Reported T Lim SCAN	hits: Tmin=0.929 Tm	max=1.000
Data completenes	s= 1.27/0.72	Theta(max) = 30.46	8
R(reflections)=	0.0406(3322)		wR2(reflections)=
S = 1.035	Npar= 22	8	0.1000(5/50)

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level C STRVA01_ALERT_4_C Flack test results are meaningless. From the CIF: _refine_ls_abs_structure_Flack -0.100 From the CIF: _refine_ls_abs_structure_Flack_su 0.700 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 Note C22 H19 N O2 PLAT910_ALERT_3_C Missing # of FCF Reflection(s) Below Theta(Min). 7 Note PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.600 2 Report 59 % PLAT915_ALERT_3_C No Flack x Check Done: Low Friedel Pair Coverage Alert level G PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms 1 Report PLAT032_ALERT_4_G Std. Uncertainty on Flack Parameter Value High . 0.700 Report

 PLAT791_ALERT_4_G Model has Chirality at C2
 (Sohnke SpGr)
 S Verify

 PLAT791_ALERT_4_G Model has Chirality at C9
 (Sohnke SpGr)
 R Verify

 PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L=
 0.600
 530 Note

 PLAT916_ALERT_2_G Hooft y and Flack x Parameter Values Differ by
 0.20 Check

 PLAT941_ALERT_3_G Average HKL Measurement Multiplicity
 4.7 Low

 PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.
 10 Info

O ALERT level A = Most likely a serious problem - resolve or explain O ALERT level B = A potentially serious problem, consider carefully 5 ALERT level C = Check. Ensure it is not caused by an omission or oversight 8 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 6 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check X-ray data of (3S,4R)-5-ethyl-3,4-diphenyl-4,5-dihydrobenzo[b][1,4]oxazepin-2(3H)-Crystals the compound (3S,4R)-5-ethyl-3,4-diphenyl-4,5one (5fa): of dihydrobenzo[b][1,4]oxazepin-2(3H)-one (5fa) were obtained after slow evaporation of EtOAc. Crystals suited for single crystal X-Ray diffraction measurements were mounted on a glass fiber. Geometry and intensity data were collected with a Rigaku Smartlab X-ray diffractometer equipped with graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å, multilayer optics). Temperature was controlled using an Oxford Cryostream 700 instrument. Intensities were integrated with SAINT and SMART software packages and corrected for absorption with SADABS. The structure was solved by direct methods and refined on F2 with SHELXL-97 using Olex-2 software.

lock as-124-a_auto - ellipsoid plot

Table S2. Crystal data and structure refinement for (3S,4R)-5-ethyl-3,4-diphenyl-4,5-dihydrobenzo[b][1,4]oxazepin-2(3H)-one (5fa):

T 1 1 (2) 1	
Identification code	AS-124-A_auto
Empirical formula	$C_{23}H_{21}NO_2$
Formula weight	343.41
Temperature/K	100.00(10)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	12.1816(4)
b/Å	8.6211(3)
c/Å	17.1645(6)
$\alpha/^{\circ}$	90
β/°	96.736(3)
γ^{\prime}	90
Volume/Å ³	1790.15(11)
Z	4
$\rho_{calc}g/cm^3$	1.274
μ/mm^{-1}	0.081
F(000)	728.0
Crystal size/mm ³	0.2 imes 0.1 imes 0.1
Radiation	Mo Ka ($\lambda = 0.71073$)
29 range for data collection/°	6.736 to 61.014
Index ranges	$-16 \le h \le 14, -11 \le k \le 11, -22 \le l \le 23$
Reflections collected	20789
Independent reflections	4460 [$R_{int} = 0.0379$, $R_{sigma} = 0.0287$]
Data/restraints/parameters	4460/0/236
Goodness-of-fit on F ²	1.071
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0377, wR_2 = 0.0938$
Final R indexes [all data]	$R_1 = 0.0436, wR_2 = 0.0969$
Largest diff. peak/hole / e \dot{A}^{-3}	0.35/-0.20

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) as-124-a_auto

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: as-124-a_auto

Bond precision:	C-C = 0.0015 A	Wavelength	=0.71073
Cell:	a=12.1816(4) alpha=90	b=8.6211(3) beta=96.736(3)	c=17.1645(6)
Temperature:	100 K	2000 201720(2)	gunane ye
	Calculated	Reported	
Volume	1790.15(11)	1790.15(1	1)
Space group	P 21/c	P 1 21/c	1
Hall group	-P 2ybc	-P 2ybc	
Moiety formula	C23 H21 N O2	C23 H21 N	02
Sum formula	C23 H21 N O2	C23 H21 N	02
Mr	343.41	343.41	
Dx,g cm-3	1.274	1.274	
Z	4	4	
Mu (mm-1)	0.081	0.081	
F000	728.0	728.0	
F000'	728.31		
h,k,lmax	17,12,24	16,11,23	
Nref	5477	4460	
Tmin, Tmax	0.990,0.992	0.786,1.0	00
Tmin'	0.984		
Correction metho AbsCorr = MULTI-	d= # Reported T Li SCAN	mits: Tmin=0.786 Tm	ax=1.000
Data completenes	s= 0.814	Theta(max) = 30.50	7
R(reflections)=	0.0377(3880)		wR2(reflections)= 0.0969(4460)
S = 1.071	Npar= 23	36	

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level C PLAT910_ALERT_3_C Missing # of FCF Reflection(s) Below Theta(Min). 9 Note

 Alert level G

 PLAT793_ALERT_4_G Model has Chirality at C2
 (Centro SPGR)
 S Verify

 PLAT793_ALERT_4_G Model has Chirality at C9
 (Centro SPGR)
 S Verify

 PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600
 931 Note

 PLAT941_ALERT_3_G Average HKL Measurement Multiplicity
 4.7 Low

 PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.
 21 Info

 PLAT992_ALERT_5_G Repd & Actual _reflns_number_gt Values Differ by
 3 Check

0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 1 ALERT level C = Check. Ensure it is not caused by an omission or oversight 6 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

7. Reference:

- (a) Similar information was reported in Banjare, S. K.; Nanda, T.; Ravikumar, P. C. Cobalt-Catalyzed Regioselective Direct C-4 Alkenylation of 3-Acetylindole with Michael Acceptors Using a Weakly Coordinating Functional Group. *Org. Lett.* 2019, 21, 8138–8143.
- (2) Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. NMR chemical shifts of common laboratory solvents as trace impurities. *J. Org. Chem.* **1997**, *62*, 7512.
- (3) Matralis, A. N.; Katselou, M. G.; Nikitakis, A.; Kourounakis, A. P. Novel Benzoxazine and Benzothiazine Derivatives as Multifunctional Antihyperlipidemic Agents. J. Med. Chem. 2011, 54, 5583–5591.
- (4) Nanda, T.; Biswal, P.; Pati, B. V.; Banjare, S. K.; Ravikumar, P. C. PalladiumCatalyzed C-C Bond Activation of Cyclopropenone: Modular Access to Trisubstituted α,β -Unsaturated Esters and Amides. *J. Org. Chem.* **2021**, *86*, 2682–2695.