Bisguanidinium-Catalysed Formation of Oxygen-Containing Quaternary

Stereogenic Carbon Centres

Xu Ban,* Changxing Chen, Kha Tuan Khoa, Chao Wang, Zhiyong Jiang, and Choon-Hong Tan* Supporting Information

Contents

1. General information	2
2. Reaction condition optimizations	3
3. Procedures for the preparation of tertiary bromides	12
4. Procedures for the preparation of hydroxylamines	13
5. Procedure for the coupling of bromides with hydroxylamines	16
6. Procedure for the coupling of Bromides with phenol	16
7. Procedure for the synthesis of Bicalutamid	17
8. Procedure for the synthesis of fabrate	19
9. Characterization of the substrates and products	20
10. Characterization of the products	26
11. Determination of the Absolute Configuration by X-ray Crystallography	
13. HPLC charts	101
14. References	133

1. General information

THF were distilled over sodium/benzophenone under N2 atmosphere. Toluene, Acetonitrile and Dichloromethane were distilled over CaH₂ under N₂ atmosphere. Commercially available materials and other solvents purchased from commercial suppliers were used as received. ¹H and ¹³C NMR spectra were recorded on Bruker AV-300 (300 MHz), Bruker Avance III 400 (400MHz) (100 MHz) and JEOL ECA400 NMR spectrometer. Chemical shifts are recorded as δ in units of parts per million (ppm). High resolution mass spectra (HRMS) were obtained on the Q-Tof Premier mass spectrometer (Waters Corporation). HRMS were reported in units of mass of charge ratio (m/z). Enantiomeric excess values were determined by HPLC analysis on Shimadzu LC-20AT and LC-2010CHT HPLC workstations. Optical rotations were measured in CHCl₃ using a 1 mL cell with a 1 cm path length on a Jasco P-1030 polarimeter with a sodium lamp of wavelength 589 nm and reported as follows: [a]TD (c = g/100 mL, solvent). X-ray crystallography analysis was performed on Bruker X8 APEX X-ray diffractionmeter. Flash chromatography separations were performed on Merck 60 (0.040 - 0.063mm) mesh silica gel. Analytical thin-layer chromatography (TLC) was performed on Merck 60 F254 silica gel plates. Visualization was performed using a UV lamp or potassium permanganate stain. Experiments involving moisture and/or air sensitive components were performed under a positive pressure of nitrogen in ovendried glassware equipped with a rubber septum inlet. All compounds synthesized were stored in a -30 °C freezer.

2. Reaction condition optimizations

Table S1 Screening of O-nucleophiles (alkyl oxide salts)

Entry	O-nucleophiles	PTC	Result
1	MeONa	BG1	Mess reaction
2	EtONa	BG1	Mess reaction
3	tBuOK	BG1	Mess reaction
4	AcONa	BG1	Mess reaction
5	TsOK	BG1	No product
6	PhthOK	PN1	62% yield 8% ee

 Table S2 Screening of O-nucleophiles (N-hydroxyphthalimide with an inorganic

base)

Entry	O-nucleophiles	Base	РТС	Result
1	О ПО	K ₂ CO ₃	PN1	68% yield 12% ee
2	O H H O H	K ₂ CO ₃	PN1	59% yield
	~			10% ee
3	ОНН	K ₂ CO ₃	PN1	11% ee
4	O N O H	K ₂ CO ₃	PN1	55% yield 8% ee
5	O N-OH	K ₂ CO ₃	PN1	52% yield
	0 0			13% ee
6	O N O H	K ₂ CO ₃	PN1	62% yield 10% ee
7	F O O OH	K ₂ CO ₃	PN1	42% yield
	Н			/ 70 88

8	O O O O O O O O O O O O O O O O O O O	K ₂ CO ₃	PN1	30% yield 12% ee
9	S O N OH	K ₂ CO ₃	PN1	48% yield 11% ee
10	N_OH	K ₂ CO ₃	PN3	62% yield 0 ee
11	N OH	K ₂ CO ₃	PN3	70% yield 0 ee
12	O N N H O H	K ₂ CO ₃	PN3	21% yield 10% ee
13	O N H	K ₂ CO ₃	PN3	30% yield 9% ee
14	O N H H	K ₂ CO ₃	PN3	57% yield 6% ee
15	O N H O H	K ₂ CO ₃	PN3	54% yield 15% ee
16	O N O H	K ₂ CO ₃	PN3	68% yield 13% ee
17	O S Ph	K ₂ CO ₃	PN3	70% yield

				15% ee
18	O N OH	K ₂ CO ₃	PN3	No desired product
19	O N ^O H	K ₂ CO ₃	PN3	70% yield 13% ee
20	O N Bn	K ₂ CO ₃	PN3	78% yield 15% ee

Table S3 Optimizations of Phenols as O-nucleophiles

Entry	1	Ar	Base	РТС	Result
1	19	A.r. 1	KaCOa	RC3	Elimination
1	14	AIT	K2003	103	product
2	1i	Ar-1	K ₂ CO ₃	BG3	85% yield
	5				62% ee
3	1j	Ar-1	K ₃ PO ₄	BG3	83% yield
	-				59% ee
4	1j	Ar-1	Cs2CO3	BG3	88% yield
	-			DGJ	70% ee
5ª	1j	Ar-1	-	BG3	90% yield
	5	<u>,</u>			72% ee
6	1i	Ar-1	KOH(aq)	BG3	91% yield
-	5				73% ee

7 ^b	1j	Ar-1	KOH(aq)	BG3	82% yield
					<i>J</i> 070 CC
8 ^b	1j	Ar-2	KOH(aq)	BG3	90% yield
					82% ee
0.h	1.		WOW()	DC2	88% yield
y,	IJ	Ar-3	KOH(aq)	BG3	89% ee
					52% yield
10 ⁶	1j	Ar-4	KOH(aq)	BG3	13% ee
					Trace
11 ^b	1j	Ar-5	KOH(aq)	BG3	-
					77% yield
12 ^b	1j	Ar-6	KOH(aq)	BG3	15% ee
					Protonation
13 ^b	1j	Ar-7	KOH(aq)	BG3	product
					Protonation
14 ^{<i>b</i>}	1j	Ar-8	KOH(aq)	BG3	product

^{a.} Used potassium 4-methoxyphenolate as nucleophile, no base. ^{b.} Reactions were performed at -60°C

Entry	R1	Base	РТС	Solvent	Τ	Result
1	Me	Na ₂ CO ₃	PN3	Toluene	-20°C	No reaction
2	Me	K ₂ CO ₃	PN3	Toluene	-20°C	75% yield 6% ee
3	Me	K ₃ PO ₄	PN3	Toluene	-20°C	trace
4	Me	Cs ₂ CO ₃	PN3	Toluene	-20°C	80% yield 7% ee
5	Me	KOH(aq)	PN3	Toluene	-20°C	82% yield 5% ee
6	Me	Cs ₂ CO ₃	PN1	Toluene	-20°C	78% yield 17% ee
7	Me	Cs ₂ CO ₃	BG1	Toluene	-20°C	88% yield 21% ee
8	Me	Cs ₂ CO ₃	BG2	Toluene	-20°C	85% yield 24% ee
9	Me	Cs ₂ CO ₃	BG3	Toluene	-20°C	91% yield

Table S4 Optimization of reaction conditions

31% ee

10	Me	Cs ₂ CO ₃	BG3	EA	-20°C	95% yield 30% ee
11	Me	Cs ₂ CO ₃	BG3	DCM	-20°C	87% yield 27% ee
12	Me	Cs ₂ CO ₃	BG3	Hexane	-20°C	trace
13	Me	Cs ₂ CO ₃	BG3	Et ₂ O	-20°C	89% yield 62% ee
14	Me	Cs ₂ CO ₃	BG3	TBME	-20°C	93% yield 65% ee
15	Et	Cs ₂ CO ₃	BG3	TBME	-20°C	91% yield 71% ee
16	<i>i</i> Pr	Cs ₂ CO ₃	BG3	TBME	-20°C	80% yield 77% ee
17	<i>t</i> Bu	Cs ₂ CO ₃	BG3	TBME	-20°C	82% yield 62% ee
18	Bn	Cs ₂ CO ₃	BG3	TBME	-20°C	75% yield 71% ee
19	<i>i</i> Pr	Cs ₂ CO ₃	BG3	TBME	-40°C	85% yield

10

						90% ee
20	iPr	Cs ₂ CO ₃	BG3	TBME	-60°C	78% yield 77% ee

3. Procedures for the preparation of tertiary bromides ^[1]

Method A

NC COOR¹⁺ R²·X $\xrightarrow{K_2CO_3}$ R² $\xrightarrow{K_2CO_3, NBS}$ R² Br MeCN, rt NC COOR¹ MECN, rt NC COOR¹ MECN, rt NC COOR¹ R¹: Me, Et, *i*Pr, *t*Bu, Bn R²-X: Me-I, Et-Br, *n*Bu-Br, CH₃(CH₂)₃-Br, CH₂=CHCH₂-Br, CH₂=CH(CH₂)₃-Br, CH₂=CH(CH₂)₄-Br, NC(CH₂)₅-Br, CH₂=CH(CH₂)₄-Br, NC(CH₂)₅-Br, Br Br

Step 1: Potassium carbonate (1.2 equiv.) was added to a solution of cyanoester (3 equiv.) in MeCN (20 mL). After stirring for 30 min, R²-X (1.0 equiv.) was added to the mixture dropwise. The mixture was stirred at rt for 4 h, TLC monitored the reaction (KMnO₄ as the indicator) until the starting material was totally consumed. Brine (15mL) was added to the mixture and then extracted with EA (3 X 20 mL), The combined organic layer was dried by Na₂SO₄, Solvent was removed under reduced pressure and the alkylated cyanoester was obtained by flash chromatography.

Step 2: To the mixture of NBS (1.8 equiv.) and K₂CO₃ (1.5 equiv.) in MeCN (20 mL) was added the alkylated cyanoester dropwise. After stirring for 2 h, TLC monitored the process (KMnO₄ as the indicator). Brine (15mL) was added to the mixture and then extracted with EA (3 X 20 mL), The combined organic layer was dried by Na₂SO₄, Solvent was removed under reduced pressure, the residue was purified by flash chromatography to get the brominated cyanoester, which is very unstable, should be kept in -20 °C fridge.

Method B

Step 1: To a mixture of cyanoester (1.0 equiv.) and aldehyde (1.1 equiv.) in DCM (20 mL) was added piperidine (0.1 equiv.) dropwise. After stirring for 3-4 h, TLC monitored the reaction (KMnO₄ as the indicator) until the starting material was totally consumed. Solvent was removed under vacuum. The obtained residue was taken into 40 mL Et₂O, stand in refrigerator for 2 hrs. Then solid was precipitated, filtered and dried to give the olefin.

Step 2: NaBH₄ (0.25 equiv.) was added in portions to a stirred solution of the olefin (1 equiv.) in EtOH/EA (1:1, 20 mL) at room temperature. After stirring for 30 min, TLC analysis showed the complete consumption of the olefin, the reaction mixture was quenched by water, washed with EA (3 X 20 mL), The combined organic layer was dried by Na₂SO₄, Solvent was removed under reduced pressure and the alkylated cyanoester was obtained by flash chromatography.

Step 3: To the mixture of NBS (1.8 equiv.) and K₂CO₃ (1.5 equiv.) in MeCN (20 mL) was added the alkylated cyanoester dropwise. After stirring for 2 h, TLC monitored the process (KMnO₄ as the indicator). Brine (15mL) was added to the mixture and then extracted with EA (3 X 20 mL), The combined organic layer was dried by Na₂SO₄, Solvent was removed under reduced pressure, the residue was purified by flash chromatography to get the brominated cyanoester, which is very unstable, should be kept in -20 °Cfridge.

4. Procedures for the preparation of hydroxylamines^[2]

1. The synthesis of N-benzyl-N-hydroxybenzamide

Step 1: Aldehyde (50 mmol), hydroxylamine hydrochloride (6 g, 100 mmol), and sodium acetate trihydrate (13.6 g, 100 mmol) were placed in a mixture of methanol (250 ml) and water (50 ml), and stirred at ambient temperature for about 3 h. Upon the completion of reaction, the solvent was removed under reduced pressure and the resulting residue was dissolved in ethyl acetate (50 ml), and then washed with water. The organic layer was dried over anhydrous Na₂SO₄ and the solvent was evaporated in vacuum. Then purification by flash chromatography can give the oxime as a white solid^[2].

Step 2: To a stirring solution of benzaldehyde oxime (4.85 g, 40 mmol, 1.0 equiv) in MeOH (60 mL) containing an altered pH strip were added solid NaBH₃CN (5.53 g, 88 mmol, 2.2 equiv) and aqueous HCl (2.0 M, about 50 mL) over 15 min in such a way that the pH of the solution stayed within 2–3 during the duration of the addition. The reaction mixture was allowed to stir for an additional 3.5 h, and then was quenched with the addition of aqueous 15% NaOH (until pH = 10). MeOH was removed *in vacuo*. The remaining aqueous solution was extracted with CH₂Cl₂ (3 × 100 mL). The organic layers were combined, washed with brine (100 mL), dried over Na₂SO₄, and filtered. The filtrate was concentrated *in vacuo*. The crude residue was dissolved in Et₂O (75 mL) and gaseous HCl was piped into the solution generating a white precipitate. The precipitate was collected, and then washed with Et₂O and then hexanes to give *N*-benzylhydroxylamine hydrochloride as a white powder^[3a,3b].

Step 3: To a stirring suspension of *N*-benzylhydroxylamine hydrochloride (20 mmol, 1.0 equiv) and NaHCO₃ (40 mmol, 2.0 equiv) in THF/H₂O (22 mL 10:1) under N₂ was added benzoyl chloride (22 mmol, 1.1 equiv) dropwise over 15 min. The reaction

mixture was allowed to stir for 15 h, and was then diluted with H₂O (20 mL). The mixture was extracted with CH_2Cl_2 (3 × 10 mL). The organic layers were combined, washed with brine (10 mL), dried over Na₂SO₄, and filtered. The filtrate was concentrated *in vacuo*. Hexanes was added to the residue. The resulting white precipitate was collected and washed with hexanes to give hydroxylamine as a white solid^[3a,3c,3d].

2. The synthesis of N-hydroxy-N-phenylbenzamide

Step 1: To a solution of nitrobenzene (10 mmol, 1.0 equiv), and NH₄Cl (11 mmol, 1.1 equiv) in THF (40 mL) and H₂O (20 mL) was added Zn (20 mmol, 2.0 equiv) at 0 °C. The reaction mixture was stirred at 0 °C for 1 h, then filtered through a short pad of Celite and extracted with Et₂O. The combined organic layers were washed with brine, dried with Na₂SO₄, and solvent was evaporated. Recrystallization from hexane/DCM afforded *N*-phenylhydroxylamine (676 mg, 62%)^{[4][5]}.

$$\begin{array}{c} \underset{N}{\overset{H}{\longrightarrow}} & \underset{Cl}{\overset{O}{\longrightarrow}} & \underset{Et_2O}{\overset{O}{\longrightarrow}} & \underset{Ph}{\overset{O}{\longrightarrow}} & \underset{Ph}{\overset{Ph}{\longrightarrow}} & \underset{Ph}{\overset{Ph}{\longrightarrow} & \underset{Ph}{\overset{Ph}{\longrightarrow}} & \underset{Ph}{\overset{Ph}{\longrightarrow}} & \underset{Ph}{\overset{Ph}{\longrightarrow}} & \underset{Ph}{\overset{Ph}{\longrightarrow}} & \underset{Ph}{\overset{Ph}{\longrightarrow}} & \underset{Ph}{\overset{Ph}{\longrightarrow} & \underset{Ph}{\overset{Ph}{\longrightarrow}} & \underset{Ph}{\overset{Ph}{\longrightarrow}} & \underset{Ph}{\overset{Ph}{\longrightarrow}} & \underset{Ph}{\overset{Ph}{\longrightarrow}} & \underset{Ph}{\overset{Ph}{\longrightarrow}} & \underset{Ph}{\overset{Ph}{\longrightarrow} & \underset{Ph}{\overset{Ph}{\longrightarrow}} & \underset{Ph}{\overset{Ph}{\longrightarrow} & \underset{Ph}{\overset{Ph}{\longrightarrow}} & \underset{Ph}{\overset{Ph}{\longrightarrow}} & \underset{Ph}{\overset{Ph}{\overset{Ph}{\longrightarrow}} & \underset{Ph}{\overset{Ph}{\overset{Ph}{\longrightarrow}} & \underset{Ph}{\overset{Ph}{\overset{Ph}{\longrightarrow}} & \underset{Ph}{\overset{Ph}{\overset{Ph}{\longrightarrow}} & \underset{Ph}{\overset{Ph}$$

Step 2: To a solution of *N*-phenylhydroxylamine (10 mmol, 1.0 equiv) in ether (15 mL) was added saturated aqueous solution (10 mL) of sodium bicarbonate. After cooling to 0 °C, benzoyl chloride (11 mmol, 1.1 equiv) was added dropwise to the solution. Then, the solution was stirred for 1 hour with allowing the solution to room temperature. The reaction was quenched by saturated aqueous ammonium chloride. After the mixture was extracted with ether, the organic layer was washed by brine and dried over sodium sulfate. After the solvent was removed in vacuo, the crude product was purified by recrystallization (Hexane/DCM) to obtain N-hydroxy-N-phenylbenzamide (1.8 g, 85%)^{[4][5]}.

5. Procedure for the coupling of bromides with hydroxylamines

A solution of bromide **1** (1.0 equiv.), hydroxylamine **2** (1.2 equiv.) and PTC (5 mol%) in corresponding solvent (2 mL) was cooled to -40 °C, and then base (1.2 equiv.) was added in one portion. The mixture was stirred at -40 °C for 12 h. After the starting material reacted completely, NH₄Cl was employed to quench the reaction, Et₂O was used to extract the crude product, then purification by short silica gel column to give the desired product **4**.

6. Procedure for the coupling of Bromides with phenol

A solution of bromide 1 (1.0 equiv.), phenol 5 (1.2 equiv.) and PTC (5 mol%) in corresponding solvent (2 mL) was cooled to -60 °C, and then base (1.2 equiv.) was added in one portion. The mixture was stirred at -60 °C for 48 h. After the starting material reacted completely, NH₄Cl was employed to quench the reaction, Et₂O was used to extract the crude product, then purification by short silica gel column to give the desired product **6**.

7. Procedure for the synthesis of Bicalutamid^[6]

Step 1: To the solution of **4t** in MeOH was added NaBH4 (2.0 equiv.) by portions, and this mixture was stirred at room temperature for 2 hours, TLC monitored the process. Water was added to the reaction mixture and then washed with Et₂O. The organic layer was separated, concentrated for silica gel column to affored the primary alcohol **7** as a colorless oil.

Step 2: Dissolve the primary alcohol 7 into DCM, and adding Bn_2SnO (0.1 equiv.), TsCl (1.2 equiv.), and TEA (2.0 equiv.) by sequence, then stirred at room temperature for 2 hours. TLC monitored the process, after the completion of this reaction, DCM was added to dilute and then washed using water. The organic layer was separated and concentrated for silica gel column to afford the desired product 7-Ts as a colorless oil.

To a solution of **7-Ts** in DMF was added the 4-fluorobenzenethiol (2.0 equiv.), and adding NaH (2.5 equiv.) by portions at room temperature, then heat to 50 °C for overnight. After the completion of the reaction, water was added, Et_2O was employed to extract the mixture and then purification by silica gel column to afford the desired product **8** as a colorless oil.

Step 3: Dissolve **8** into aceton, and added Na_2CO_3 (2.0 equiv.), and then 36% aq. H_2O_2 (10 equiv.) was added, this mixture was stirred overnight. TLC monitored the process, after the completion of the reaction, aceton was removed under depressed pressure, and Et₂O was employed to extract the product. After concentration, the crude amide

was purified by silica gel column to afford the amide 8-amide.

Dissolved the amide into con. HCl, and heated to 50 °C overnight. Adding water to the reaction mixture, and DCM for extraction. The DCM layer was separated and concentrated to afford the crude free carboxylic acid **9**.

Step 4: To a solution of crude carboxylic acid **9** in dry DCM was added 4-amino-2-(trifluoromethyl)benzonitrile (1.2 equiv.), and then DCC (2.0 equiv.), DMAP (0.1 equiv.). The mixture was stirred under the protection of N_2 for 4 hours. After the completion of the reaction, the solid was removed away by simply filtration, the organic layer was concentrated for column to afforded the product **10**.

Step 5: Activated zinc (10 equiv) was added to a solution of **10** (1.0 equiv) in THF, acetic acid (0.5 mL) and H_2O (0.5 mL). The reaction mixture was then warm to 60 °C, and stirred for 15 min. Activated zinc (10 equiv) was added to the reaction mixture every 15 min three times. The reaction mixture was quenched with saturated aqueous NaHCO₃ (2 mL) at room temperature. The resulting mixture was extracted with EtOAc (2x 5 mL). The combined organic extracts were washed with brine (2 mL), dried over Na₂SO₄, and concentrated. The residue was purified by silica gel column chromatography.

Activated zinc was prepared as follows. A mixture of zinc powder (25 g) and 3% aqueous HCl (100 mL) was sonicated for 10 min at room temperature. The mixture was filtrated through glass filter, washed with water (2x 100 mL), ethanol (2x 50 mL) and Et_2O (2x 50 mL). The resulting zinc powder was dried under reduced pressure for 2 h.

8. Procedure for the synthesis of fabrate ^[7]

Step 1: A solution of bromide (1.0 equiv.), phenol (1.2 equiv.) and PTC (5 mol%) in TBME (2 mL) was cooled to -60 °C, and then Cs_2CO_3 (1.2 equiv.) was added in one portion. The mixture was stirred at -60 °C for 3 days. After the starting material reacted completely, aq. NH₄Cl was employed to quench the reaction, Et₂O was used to extract the crude product, then purification by short silica gel column to give the desired product **6**l.

Step 2: To the solution of **6I** in MeOH was added NaBH4 (2.0 equiv.) by portions, and this mixture was stirred at room temperature for 2 hours, TLC monitored the process. Water was added to the reaction mixture and then washed with Et₂O. The organic layer was separated, concentrated for silica gel column to affored the primary alcohol **11** as a colorless oil.

Step 3: Dissolve the primary alcohol **11** into DCM, and adding Bn₂SnO (0.1 equiv.), MsCl (1.2 equiv.), and TEA (2.0 equiv.) by sequence, then stirred at room temperature for 2 hours. TLC monitored the process, after the completion of this reaction, DCM was added to dilute and then washed using water. The organic layer was separated and concentrated for silica gel column to afford the desired product **11-Ms** as a colorless oil.

Step 4: To a solution of the protected alcohol **11-Ms** in dry THF was added LAH (2.0 equiv.), the mixture was reflused under the protection of N_2 for overnight. After the completion of the reaction, the temperature was cooled down to room temperature, *Sat.* NH₄Cl was added to quench LAH, Et₂O was added, and washed with water, the organic

layer was separated and concentrated for column to afforded the product 12 as a colorless oil.

Step 5: Dissolve the **12** into aceton, and added Na₂CO₃ (2.0 equiv.), and then 36% aq. H_2O_2 (10 equiv.) was added, this mixture was stirred overnight. TLC monitored the process, after the completion of the reaction, aceton was removed under depressed pressure, and Et₂O was employed to extract the product. After concentration, the crude amide was used directly without further purification. Dissolved the amide into con. HCl, and heated to 50 °C overnight. Adding water to the reaction mixture, and DCM for extraction. The DCM layer was separated and concentrated to afford the crude free carboxylic acid. Dissolve the carboxylic acid into MeOH, to this mixture was added 1 ml *con*. H₂SO₄ by dropwise, and stirred at rt overnight. Adding water to the reaction mixture, and Et₂O was employed to extract the desired product, and further purification using silica gel column to afford **13** as a colorless oil.

9. Characterization of the substrates and products

Methyl 2-bromo-2-cyano-3-phenylpropanoate (1a): method A; colorless oil; 87% yield; TLC (Hexane:Et₂O, 90:10 v/v): $R_f = 0.20$; ¹H NMR (400 MHz, Chloroformd): δ 7.41 – 7.31 (m, 5H), 3.85 (s, 3H), 3.73 (d, J = 13.8 Hz, 1H), 3.52 (d, J = 13.8 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-d): δ 164.6, 132.8, 130.5, 129.0, 128.8, 115.5, 54.9, 45.7, 42.4; HRMS (ESI) calcd for C₁₁H₁₁NO₂Br m/z [M+H]⁺ : 267.9968; found: 267.9967.

Ethyl 2-bromo-2-cyano-3-phenylpropanoate (1b): method B; colorless oil; 76% yield; TLC (Hexane:Et₂O, 90:10 v/v): $R_f = 0.31$; ¹H NMR (400 MHz, CDCl₃) δ 7.38 (s, 5H), 4.53 – 4.17 (m, 2H), 3.75 (d, J = 13.8 Hz, 1H), 3.55 (d, J = 13.8 Hz, 1H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.94, 132.81, 130.42, 128.73, 115.48, 64.43, 45.55, 42.68, 30.89, 13.66. HRMS (ESI) calcd for C₁₂H₁₃BrNO₂ m/z [M+H]⁺:282.0124; found:282.0124.

*Iso*propyl 2-cyano-2-iodo-3-phenylpropanoate (1c): method B; colorless oil; 87% yield; TLC (Hexane:Et₂O, 90:10 v/v): $R_f = 0.35$; ¹H NMR (400 MHz, CDCl₃) δ 7.37 (s, 5H), 5.09 (dt, J = 12.5, 6.3 Hz, 1H), 3.75 (d, J = 13.9 Hz, 1H), 3.55 (d, J = 13.9 Hz, 1H), 3.50 (q, J = 7.0 Hz, 1H), 1.33 (d, J = 6.3 Hz, 3H), 1.25 – 1.22 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.24, 134.82, 134.18, 130.13, 129.02, 128.77, 128.48, 127.83, 117.73, 72.59, 65.86, 46.76, 43.40, 21.20, 20.81, 15.79, 15.29. HRMS (ESI) calcd for $C_{13}H_{15}BrNO_2 m/z$ [M+H]⁺: 296.0281; found:296.0280.

Ph NC CO₂*t*Bu

tert-Butyl 2-bromo-2-cyano-3-phenylpropanoate (1d): method B A; colorless oil; 90% yield; TLC (Hexane:Et₂O, 90:10 v/v): $R_f = 0.35$; ¹H NMR (400 MHz, CDCl₃) δ 7.38 (t, J = 2.1 Hz, 5H), 3.72 (d, J = 13.8 Hz, 1H), 3.50 (d, J = 13.8 Hz, 1H), 1.50 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 162.55, 133.05, 130.49, 128.63, 115.81, 86.23, 45.46, 43.96, 27.44. HRMS (ESI) calcd for C₁₄H₁₇BrNO₂ m/z [M+H]⁺ :310.0437; found:310.0445.

isopropyl 2-bromo-2-cyano-3-(4-fluorophenyl)propanoate (1e) colorless oil; 66% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 – 7.31 (m, 2H), 7.03 (t, J = 8.6 Hz, 2H), 5.13 – 5.03 (m, 1H), 3.68 (d, J = 14.0 Hz, 1H), 3.48 (d, J = 14.0 Hz, 1H), 1.32 (d, J = 6.3 Hz, 2H), 1.22 (d, J = 6.3 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 164.21, 163.36, 161.74, 132.38, 132.29, 128.72, 115.96, 115.74, 73.20, 44.64, 42.92, 21.33, 21.18. ¹⁹F NMR (376 MHz, CHLOROFORM-*D*) δ -112.84. HRMS (ESI) calcd for C₁₃H₁₄BrFNO₂ m/z [M+H]⁺: 314.0192; found: 314.0159.

isopropyl 2-bromo-3-(4-bromophenyl)-2-cyanopropanoate: yellow oil; 69% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 (d, J = 8.3 Hz, 2H), 7.24 (d, J = 8.3 Hz, 2H), 5.14 – 5.03 (m, 1H), 3.66 (d, J = 13.9 Hz, 1H), 3.46 (d, J = 14.0 Hz, 1H), 1.33 (d, J = 6.3 Hz, 3H), 1.24 (d, J = 6.3 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 163.28, 132.21, 132.21, 132.04, 132.04, 131.86, 123.10, 115.40, 73.30, 44.73, 42.54, 21.34, 21.17. HRMS (ESI) calcd for C₁₃H₁₄Br₂NO₂ m/z [M+H]⁺: 373.9391; found: 373.9429.

isopropyl 2-bromo-2-cyano-3-(2-iodophenyl)propanoate(1g): yellow oil; 80% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (d, *J* = 7.9 Hz, 1H), 7.48 – 7.41 (m, 1H), 7.33 (t, *J* = 7.6 Hz, 1H), 7.05 – 6.99 (m, 1H), 5.22 – 5.06 (m, 1H), 3.87 (d, *J* = 1.3 Hz, 2H), 1.34 - 1.28 (m, 6H). ¹³C NMR (100 MHz, Chloroform- *d*) δ 163.49, 136.54, 130.17, 130.14, 128.69, 115.36, 102.69, 100.01, 73.41, 48.18, 42.46, 21.37, 21.18. HRMS (ESI) calcd for C₁₃H₁₄BrINO₂ m/z [M+H]⁺: 421.9253; found: 421.9270.

isopropyl 2-bromo-2-cyano-3-(4-nitrophenyl)propanoate (1h): white solid; 87% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.23 (d, J = 9.4 Hz, 1H), 7.58 (d, J = 9.1 Hz, 1H), 5.18 – 5.07 (m, 1H), 3.80 (d, J = 13.8 Hz, 1H), 3.61 (d, J = 13.9 Hz, 1H), 1.35 (d, J = 6.5 Hz, 1H), 1.28 (d, J = 5.3 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 163.03, 139.91, 139.91, 131.70, 131.70, 123.96, 123.95, 115.07, 73.68, 44.57, 41.85, 21.37, 21.13. HRMS (ESI) calcd for C₁₃H₁₄BrN₂O₄ *m*/*z* [M+H]⁺: 341.0137; found: 341.0119.

isopropyl 2-bromo-2-cyano-3-(4-methoxyphenyl)propanoate (1i): white solid; 90% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.27 (d, *J* = 8.8 Hz, 2H), 6.87 (d, *J* = 8.8 Hz, 2H), 5.16 – 4.99 (m, 1H), 3.80 (s, 3H), 3.66 (d, *J* = 13.8 Hz, 1H), 3.44 (d, *J* = 13.9 Hz, 1H), 1.32 (d, *J* = 6.3 Hz, 3H), 1.22 (d, *J* = 6.2 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 163.54, 159.88, 131.72, 131.72, 124.96, 115.74, 114.22, 114.21, 72.98, 55.34, 44.84, 43.34, 21.33, 21.21. HRMS (ESI) calcd for C₁₄H₁₇BrNO₃ *m/z* [M+H]⁺: 326.0392; found: 326.0384.

isopropyl 2-bromo-2-cyano-3-(o-tolyl)propanoate (1j): yellow oil; 78% yield; ¹H NMR (300 MHz, Chloroform-*d*) δ 7.32 (d, J = 7.4 Hz, 1H), 7.28 – 7.12 (m, 3H), 5.19 – 5.03 (m, 1H), 3.79 – 3.60 (m, 2H), 2.45 (s, 3H), 1.32 (d, J = 6.2 Hz, 3H), 1.24 (d, J = 6.3 Hz, 3H). ¹³C NMR (75 MHz, Chloroform-*d*) δ 163.77, 137.68, 131.69, 131.20, 130.13, 128.54, 128.54, 126.25, 73.12, 43.00, 41.63, 21.25, 21.13, 20.05. HRMS (ESI) calcd for C₁₄H₁₇BrNO₂ m/z [M+H]⁺: 310.0443; found: 310.0458.

isopropyl 2-bromo-2-cyano-3-(thiophen-2-yl)propanoate (1k): yellow oil; 86% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.28 (dd, J = 5.2, 1.3 Hz, 1H), 7.11 – 7.08 (m, 1H), 6.99 (dd, J = 5.2, 3.5 Hz, 1H), 5.17 – 5.06 (m, 1H), 3.95 (d, J = 14.0 Hz, 1H), 3.72 (d, J = 14.1 Hz, 1H), 1.34 (d, J = 6.3 Hz, 3H), 1.27 (d, J = 6.3 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 163.30, 133.94, 129.46, 127.36, 126.74, 100.00, 73.29, 42.31, 40.07, 21.33, 21.20. HRMS (ESI) calcd for C₁₁H₁₃BrNO₂S *m/z* [M+H]⁺: 301.9850; found: 301.9863.

isopropyl 2-bromo-2-cyano-3-(naphthalen-2-yl)propanoate (11): yellow oil; 86% yield; ¹H NMR (300 MHz, Chloroform-*d*) δ 7.92 – 7.80 (m, 4H), 7.59 – 7.45 (m, 3H), 5.17 – 5.06 (m, 1H), 3.93 (d, *J* = 13.8 Hz, 1H), 3.71 (d, *J* = 13.8 Hz, 1H), 1.35 (d, *J* = 6.3 Hz, 3H), 1.20 (d, *J* = 6.2 Hz, 3H). ¹³C NMR (75 MHz, Chloroform-*d*) δ 163.44, 133.23, 133.10, 130.34, 129.96, 128.53, 128.01, 127.75, 127.71, 126.58, 126.47, 115.62, 73.07, 45.60, 43.00, 21.21, 21.13. HRMS (ESI) calcd for C₁₇H₁₇BrNO₂ *m/z* [M+H]⁺: 346.0443; found: 346.0429.

isopropyl 2-bromo-2-cyano-4-phenylbutanoate (1m): yellow oil; 82% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.35 – 7.29 (m, 2H), 7.25 – 7.18 (m, 3H), 5.18 – 5.06 (m, 1H), 3.03 – 2.92 (m, 1H), 2.86 – 2.74 (m, 1H), 2.69 – 2.49 (m, 2H), 1.37 – 1.34 (m, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 163.48, 138.64, 128.84, 128.84, 128.57, 128.57, 126.90, 115.67, 42.78, 41.63, 32.67, 31.00, 21.39, 21.23. HRMS (ESI) calcd for C₁₄H₁₇BrNO₂ *m/z* [M+H]⁺: 310.0443; found: 310.0446.

isopropyl 2-bromo-2-cyano-5-phenylpentanoate (1n): yellow oil; 79% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 – 7.27 (m, 2H), 7.25 – 7.21 (m, 1H), 7.21 – 7.16 (m, 2H), 5.18 – 5.06 (m, 1H), 2.73 (t, *J* = 7.5 Hz, 2H), 2.40 – 2.22 (m, 2H), 2.07 – 1.94 (m, 1H), 1.89 – 1.75 (m, 1H), 1.36 – 1.30 (m, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 163.51, 140.40, 128.58, 128.58, 128.32, 128.32, 126.33, 115.69, 72.79, 64.24, 39.27, 34.80, 27.77, 21.29, 21.10. HRMS (ESI) calcd for C₁₅H₁₉BrNO₂ *m/z* [M+H]⁺: 324.0599; found: 324.0626.

isopropyl 2-bromo-2-cyanopropanoate (10): yellow oil; 88% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 5.42 – 4.91 (m, 1H), 2.19 (s, 3H), 1.36 (dd, *J* = 6.3, 3.1 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 163.84, 116.63, 72.85, 37.10, 27.87, 21.26, 21.06. HRMS (ESI) calcd for C₇H₁₁BrNO₂ *m/z* [M+H]⁺: 219.9973; found: 219.9985.

CO₂iPr

isopropyl 2-bromo-2-cyanobutanoate (1p): colorless oil; 90% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 5.21 – 5.07 (m, 1H), 2.41 – 2.23 (m, 2H), 1.34 (d, *J* = 6.3 Hz, 6H), 1.18 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 163.53, 115.57, 72.69, 44.56, 33.66, 21.30, 21.13, 10.58. HRMS (ESI) calcd for C₈H₁₃BrNO₂ *m/z* [M+H]⁺: 234.0130; found: 234.0172.

isopropyl 2-bromo-2-cyano-5-methylhexanoate (1q): colorless oil; 80% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 5.16 – 5.09 (m, 1H), 5.08 (s, 1H), 2.41 – 2.15 (m, 4H), 1.68 (s, 3H), 1.63 (s, 3H), 1.34 (d, J = 6.3 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 163.58, 115.76, 72.65, 43.48, 38.06, 34.97, 27.71, 22.25, 21.29, 21.15, 21.12. HRMS (ESI) calcd for C₁₁H₁₉BrNO₂ m/z [M+H]⁺: 276.0559; found: 276.0597.

isopropyl 2-bromo-2-cyanopent-4-enoate (1r): colorless oil; 92% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 5.86 – 5.74 (m, 1H), 5.37 (d, J = 1.2 Hz, 1H), 5.35 – 5.31 (m, 1H), 5.17 – 5.06 (m, 1H), 3.12 – 3.03 (m, 1H), 3.01 – 2.92 (m, 1H), 1.33 (d, J = 6.3 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 163.12, 129.40, 122.79, 115.35, 72.95, 72.86, 43.86, 21.31, 21.13. HRMS (ESI) calcd for C₉H₁₃BrNO₂ *m/z* [M+H]⁺: 246.0130; found: 246.0139.

isopropyl 2-bromo-2-cyano-4-methylpent-4-enoate (1s): colorless oil; 75% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 5.17 – 5.08 (m, 1H), 5.08 – 5.04 (m, 1H), 4.97 (d, *J* = 5.2 Hz, 1H), 3.19 (dd, *J* = 14.0, 5.8 Hz, 1H), 2.96 (dd, *J* = 14.0, 5.7 Hz, 1H), 1.86 (d, *J* = 5.3 Hz, 3H), 1.38 – 1.30 (m, 6H). ¹³C NMR (100 MHz, Chloroform-d) δ 163.68, 138.40, 117.95, 117.94, 116.03, 73.00, 47.28, 41.45, 23.19, 21.37. HRMS (ESI) calcd for C₁₀H₁₅BrNO₂ m/z [M+H]⁺: 260.0286; found: 260.0312

isopropyl 2-bromo-2-cyanohept-6-enoate (1t) colorless oil; 74% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 5.83 – 5.71 (m, 1H), 5.17 – 5.10 (m, 1H), 5.10 – 5.01 (m, 2H), 2.37 – 2.21 (m, 2H), 2.20 – 2.13 (m, 2H), 1.83 – 1.71 (m, 1H), 1.64 – 1.51 (m, 1H), 1.35 (dd, J = 6.3, 1.3 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 163.56, 136.77, 116.04, 115.73, 72.77, 39.22, 32.61, 25.39, 21.31, 21.16, 21.13. HRMS (ESI) calcd for C₁₁H₁₇BrNO₂ *m/z* [M+H]⁺: 274.0437; found: 247.0430.

isopropyl 2-bromo-2-cyanooct-7-enoate (1u): colorless oil; 70% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 6.00 – 5.61 (m, 1H), 5.22 – 5.07 (m, 1H), 5.07 – 4.93 (m, 2H), 2.45 – 2.18 (m, 2H), 2.19 – 1.98 (m, 2H), 1.80 – 1.60 (m, 1H), 1.56 – 1.42 (m, 3H), 1.34 (dd, J = 6.3, 1.0 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 163.60, 137.76, 115.75, 115.19, 72.73, 43.19, 39.74, 33.13, 27.97, 25.66, 21.30, 21.13. HRMS (ESI) calcd for C₁₂H₁₉BrNO₂ m/z [M+H]⁺: 288.0599; found: 288.0620.

isopropyl 2-bromo-2-cyanohexanoate (1v): colorless oil; 85% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 5.20 – 5.08 (m, 1H), 2.38 – 2.19 (m, 2H), 1.70 – 1.58 (m, 1H), 1.50 – 1.39 (m, 3H), 1.35 (dd, J = 6.3, 1.3 Hz, 6H), 0.95 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 163.66, 115.81, 72.69, 43.31, 39.65, 28.31, 21.99, 21.31, 21.13, 13.64. HRMS (ESI) calcd for C₁₀H₁₇BrNO₂ m/z [M+H]⁺: 262.0443; found: 262.0428.

10. Characterization of the products

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyano-3-phenylpropanoate (4g): colorless oil; 85% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.64 – 7.59 (m, 2H), 7.49 (t, *J* = 7.4 Hz, 1H), 7.41 (dd, *J* = 8.3, 6.7 Hz, 2H), 7.31 – 7.21 (m, 8H), 7.09 (dd, *J* = 6.6, 3.0 Hz, 2H), 5.03 – 4.92 (m, 1H), 4.89 – 4.76 (m, 2H), 3.40 – 3.24 (m, 2H), 1.22 (d, *J* = 6.3 Hz, 3H), 1.12 (d, *J* = 6.3 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.77, 164.12, 134.96, 133.84, 131.77, 131.77, 131.45, 131.45, 130.77, 130.77, 128.67, 128.63, 128.62, 128.59, 128.22, 128.14, 128.14, 115.28, 100.00, 84.20, 72.34, 57.08, 42.21, 21.56, 21.56, 21.39. HRMS (ESI) calcd for C₂₇H₂₇N₂O₄ *m/z* [M+H]⁺: 443.1971; found: 443.1980. [*a*] p^{22} = -22.6 (c 0.97, CHCl₃); HPLC analysis: Chiralcel IB (Hex/IPA = 95/5, 1.0 mL/min, 254 nm, 22°C), 8.3 (major), 9.9 min, 90% ee.

isopropyl

(R)-2-((N-benzylbenzamido)oxy)-2-cyano-3-(4-

fluorophenyl)propanoate (4i): colorless oil; 75% yield; ¹H NMR (400 MHz, Chloroform-d) δ 7.65 – 7.59 (m, 2H), 7.54 – 7.47 (m, 1H), 7.46 – 7.39 (m, 2H), 7.32 – 7.26 (m, 3H), 7.20 (dd, J = 8.3, 5.3 Hz, 2H), 7.08 (dd, J = 5.9, 2.9 Hz, 2H), 6.95 (t, J = 8.7 Hz, 2H), 5.06 – 4.95 (m, 1H), 4.89 – 4.74 (m, 2H), 3.40 – 3.22 (m, 2H), 1.24 (d, J = 6.3 Hz, 3H), 1.17 (d, J = 6.3 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 173.81, 164.01, 134.84, 133.72, 132.51, 132.42, 131.84, 128.68, 128.68, 128.64, 128.63, 128.63, 128.48, 128.48, 128.17, 128.17, 127.30, 127.27, 115.64, 115.43, 115.18, 83.91, 72.47, 57.18, 41.32, 21.55, 21.45. ¹⁹F NMR (376 MHz, CHLOROFORM-D) δ - 112.96. HRMS (ESI) calcd for C₂₇H₂₆FN₂O₄ m/z [M+H]+: 461.1877; found: 461.1877. [*a*] p^{22} = -4.9 (c 0.92, CHCl3); HPLC analysis: Chiralcel IE (Hex/IPA = 70/30, 1.0 mL/min, 254 nm, 22°C), 9.9 (major), 20.9 min, 92% ee.

isopropyl (R)-2-((N-benzylbenzamido)oxy)-3-(4-bromophenyl)-2cyanopropanoate (4j): yellow oil; 82% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.64 – 7.58 (m, 2H), 7.54 – 7.47 (m, 1H), 7.45 – 7.41 (m, 2H), 7.41 – 7.36 (m, 3H), 7.30 – 7.27 (m, 2H), 7.13 – 7.07 (m, 2H), 7.07 – 7.02 (m, 2H), 5.08 – 4.95 (m, 1H), 4.90 – 4.73 (m, 2H), 3.33 (d, *J* = 14.0 Hz, 1H), 3.24 (d, *J* = 14.0 Hz, 1H), 1.24 (d, *J* = 6.3 Hz, 3H), 1.18 (d, *J* = 6.3 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.83, 163.92, 134.77, 133.68, 132.44, 131.85, 131.74, 130.54, 128.70, 128.70, 128.68, 128.64, 128.64, 128.62, 128.62, 128.46, 128.46, 128.18, 128.17, 122.49, 115.12, 83.55, 72.58, 57.22, 41.47, 21.55, 21.47. HRMS (ESI) calcd for C₂₇H₂₆BrN₂O₄ *m/z* [M+H]⁺: 521.1076; found: 521.1075. $[a]_{p^{22}}$ -6.0 (c 1.05, CHCl₃); HPLC analysis: Chiralcel IE (Hex/IPA = 70/30, 1.0 mL/min, 254 nm, 22°C), 10.8 (major), 25.7 min, 89% ee.

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyano-3-(2-iodophenyl)propanoate (4k): colorless oil; 75% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 (d, *J* = 8.0 Hz, 1H), 7.65 – 7.58 (m, 2H), 7.48 (t, *J* = 7.4 Hz, 1H), 7.40 (t, *J* = 7.6 Hz, 3H), 7.34 – 7.27 (m, 2H), 7.20 (t, *J* = 7.6 Hz, 1H), 7.15 – 7.07 (m, 3H), 6.96 (t, *J* = 7.7 Hz, 1H), 5.13 – 5.01 (m, 1H), 4.85 (q, *J* = 15.8 Hz, 2H), 3.65 (d, *J* = 14.8 Hz, 1H), 3.55 (d, *J* = 14.7 Hz, 1H), 1.25 (t, *J* = 6.9 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.89, 163.98, 140.11, 135.03, 135.03, 133.75, 131.76, 131.42, 129.74, 128.68, 128.68, 128.65, 128.64, 128.51, 128.51, 128.40, 128.40, 128.11, 128.11, 114.85, 102.67, 83.27, 72.69, 57.22, 45.55, 21.53, 21.47. HRMS (ESI) calcd for C₂₇H₂₆IN₂O₄ *m/z* [M+H]⁺: 569.0937; found: 569.0933. [*a*]_{*D*²²= -3.4 (c 0.73, CHCl₃); HPLC analysis: Chiralcel IC (Hex/IPA = 88/12, 1.0 mL/min, 254 nm, 22°C), 13.7 (major), 15.1 min, 82% ee.}

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyano-3-(4-nitrophenyl)propanoate (4l): colorless oil; 77% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.10 – 8.05 (m, 2H), 7.64 – 7.59 (m, 2H), 7.54 – 7.47 (m, 1H), 7.45 – 7.35 (m, 4H), 7.29 – 7.24 (m, 3H), 7.00 (dd, *J* = 7.7, 1.7 Hz, 2H), 5.09 – 5.01 (m, 1H), 4.86 (d, *J* = 15.8 Hz, 1H), 4.73 (d, *J* = 15.9 Hz, 1H), 3.51 (d, *J* = 13.9 Hz, 1H), 3.37 (d, *J* = 14.0 Hz, 1H), 1.23 (dd, *J* = 9.6, 6.3 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.94, 163.63, 147.84, 139.06, 134.57, 133.46, 132.06, 131.84, 131.84, 130.28, 128.81, 128.70, 128.69, 128.59, 128.29, 128.27, 124.15, 123.61, 114.86, 82.85, 72.93, 57.47, 41.54, 41.54, 28.59, 21.54, 21.53. HRMS (ESI) calcd for C₂₈H₂₉N₂O₅ *m*/*z* [M+H]⁺: 488.1822; found: 488.1819. [*a*] p^{22} = -2.3 (c 1.29, CHCl₃); HPLC analysis: Chiralcel IE (Hex/IPA = 70/30, 1.0 mL/min, 254 nm, 22°C), 12.8 (major), 28.7 min, 87% ee.

isopropyl

```
(R)-2-((N-benzylbenzamido)oxy)-2-cyano-3-(4-
```

methoxyphenyl)propanoate (4m): colorless oil; 78% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.63 – 7.57 (m, 2H), 7.52 – 7.45 (m, 1H), 7.44 – 7.37 (m, 2H), 7.31 – 7.24 (m, 3H), 7.18 – 7.06 (m, 4H), 6.83 – 6.75 (m, 2H), 5.03 – 4.94 (m, 1H), 4.88 – 4.76 (m, 2H), 3.78 (s, 3H), 3.32 – 3.19 (m, 2H), 1.23 (d, *J* = 6.3 Hz, 3H), 1.14 (d, *J* = 6.3 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.72, 164.20, 159.55, 134.99, 134.99, 133.85, 131.86, 131.86, 131.72, 128.66, 128.65, 128.61, 128.61, 128.60, 128.56, 128.56, 128.11, 123.35, 115.36, 114.00, 100.01, 84.38, 72.27, 57.01, 55.32, 41.44, 21.58, 21.45. HRMS (ESI) calcd for C₂₈H₂₉N₂O₅ *m/z* [M+H]⁺: 473.2076;

found: 473.2082. $[a]_{D^{22}}$ = -24.3 (c 0.29, CHCl₃); HPLC analysis: Chiralcel IE (Hex/IPA = 70/30, 1.0 mL/min, 254 nm, 22°C), 16.7 (major), 39.6 min, 88% ee.

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyano-3-(o-tolyl)propanoate (4n): colorless oil; 76% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 – 7.64 (m, 2H), 7.59 – 7.51 (m, 1H), 7.50 – 7.42 (m, 2H), 7.36 – 7.29 (m, 3H), 7.29 – 7.22 (m, 2H), 7.21 – 7.15 (m, 2H), 7.12 – 7.06 (m, 2H), 5.15 – 5.05 (m, 1H), 4.93 – 4.75 (m, 2H), 3.53 (d, *J* = 14.4 Hz, 1H), 3.35 (d, *J* = 14.4 Hz, 1H), 2.28 (s, 3H), 1.28 (dd, *J* = 15.5, 6.3 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.61, 164.46, 138.18, 134.96, 133.84, 131.57, 130.97, 130.81, 130.22, 128.60, 128.60, 128.50, 128.50, 128.48, 128.48, 128.45, 128.45, 128.05, 127.96, 125.92, 115.27, 84.08, 72.30, 56.96, 38.54, 21.45, 21.32, 19.83. HRMS (ESI) calcd for C₂₈H₂₉N₂O₄ *m*/*z* [M+H]⁺: 457.2127; found: 457.2134. [*a*] p^{22} = -7.0 (c 0.46, CHCl₃); HPLC analysis: Chiralcel IE (Hex/IPA = 90/10, 1.0 mL/min, 254 nm, 22°C), 21.3 (major), 31.3 min, 84% ee.

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyano-3-(thiophen-2-yl)propanoate (40): yellow oil; 75% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.64 – 7.58 (m, 2H), 7.54 – 7.46 (m, 1H), 7.42 (t, *J* = 7.5 Hz, 2H), 7.30 – 7.26 (m, 3H), 7.23 (dd, *J* = 5.0, 1.1 Hz, 1H), 7.12 (dd, *J* = 6.5, 3.4 Hz, 2H), 7.00 – 6.92 (m, 2H), 5.07 – 4.99 (m, 1H), 4.88 (s, 2H), 3.57 (s, 2H), 1.25 (d, *J* = 6.3 Hz, 3H), 1.20 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.74, 163.73, 134.94, 133.76, 132.19, 131.78, 129.29, 128.67, 128.65, 128.64, 128.64, 128.63, 128.54, 128.53, 128.48, 128.15, 127.21, 126.31, 115.16, 83.78, 72.61, 57.18, 36.49, 21.55, 21.44. HRMS (ESI) calcd for C₂₅H₂₅N₂O₄S *m*/*z* [M+H]⁺: 449.1535; found: 449.1530. [*a*]*p*²²= -13.1 (c 0.29, CHCl₃); HPLC analysis: Chiralcel IE (Hex/IPA = 70/30, 1.0 mL/min, 190 nm, 22°C), 14.1 (major), 38.7 min, 90% ee.

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyano-3-(naphthalen-2-yl)propanoate (4p): colorless oil; 74% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.84 – 7.79 (m, 1H), 7.77 – 7.68 (m, 3H), 7.63 – 7.58 (m, 2H), 7.51 – 7.44 (m, 3H), 7.41 – 7.34 (m, 3H), 7.24 – 7.17 (m, 3H), 7.05 – 7.00 (m, 2H), 5.03 – 4.94 (m, 1H), 4.88 – 4.74 (m, 2H), 3.50 (q, *J* = 13.9 Hz, 2H), 1.21 (d, *J* = 6.3 Hz, 3H), 1.09 (d, *J* = 6.3 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.82, 164.16, 134.89, 133.82, 133.26, 133.00, 131.75, 130.12, 128.97, 128.66, 128.66, 128.62, 128.61, 128.58,

128.57, 128.55, 128.53, 128.28, 128.26, 128.09, 128.02, 127.70, 126.37, 126.30, 115.32, 84.06, 72.43, 57.09, 42.31, 21.55, 21.39. HRMS (ESI) calcd for $C_{31}H_{29}N_2O_4$ *m/z* [M+H]⁺: 493.2127; found: 493.2130. [*a*] $_{D}^{22}$ = -25.4 (c 1.09, CHCl₃); HPLC analysis: Chiralcel IE (Hex/IPA = 80/20, 1.0 mL/min, 254 nm, 22°C), 23.5 (major), 55.9 min, 82% ee.

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyano-4-phenylbutanoate (4q): colorless oil; 77% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 – 7.59 (m, 2H), 7.54 – 7.47 (m, 1H), 7.47 – 7.39 (m, 2H), 7.33 – 7.24 (m, 5H), 7.24 – 7.17 (m, 3H), 7.17 – 7.08 (m, 2H), 5.12 – 5.01 (m, 1H), 4.96 (d, *J* = 5.1 Hz, 2H), 2.87 – 2.60 (m, 2H), 2.41 – 2.22 (m, 2H), 1.30 (d, *J* = 6.3 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.92, 164.45, 139.28, 134.99, 133.84, 131.65, 128.63, 128.63, 128.60, 128.60, 128.59, 128.56, 128.56, 128.51, 128.51, 128.38, 128.38, 128.13, 128.13, 126.57, 115.23, 83.45, 72.32, 57.04, 38.04, 29.92, 21.51, 21.48. HRMS (ESI) calcd for C₂₈H₂₉N₂O₄ *m*/*z* [M+H]⁺: 457.2127; found: 457.2137. [*a*]*p*²²= -10.5 (c 1.03, CHCl₃); HPLC analysis: Chiralcel IE (Hex/IPA = 90/10, 1.0 mL/min, 254 nm, 22°C), 18.6 (major), 22.6 min, 88% ee.

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyano-5-phenylpentanoate (4r): colorless oil; 88% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.62 – 7.56 (m, 2H), 7.50 – 7.43 (m, 1H), 7.43 – 7.36 (m, 2H), 7.30 – 7.23 (m, 5H), 7.23 – 7.14 (m, 3H), 7.13 – 7.06 (m, 2H), 5.10 – 4.99 (m, 1H), 4.99 – 4.85 (m, 2H), 2.61 (t, *J* = 7.5 Hz, 2H), 2.10 – 1.95 (m, 2H), 1.89 – 1.65 (m, 2H), 1.26 (d, *J* = 6.3 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.95, 164.62, 140.74, 135.09, 133.89, 131.68, 128.65, 128.65, 128.65, 128.58, 128.58, 128.58, 128.56, 128.56, 128.55, 128.54, 128.44, 128.44, 128.16, 126.24, 115.42, 83.80, 72.25, 56.99, 35.79, 35.05, 25.27, 21.55, 21.55. HRMS (ESI) calcd for C₂₉H₃₁N₂O₄ *m*/*z* [M+H]⁺: 471.2284; found: 471.2281. [*a*]_{*D*}²²= -1.8 (c 1.47, CHCl₃); HPLC analysis: Chiralcel IC (Hex/IPA = 85/15, 1.0 mL/min, 254 nm, 22°C), 11.3 (major), 12.7 min, 90% ee.

Me ↓ CO₂iPr

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyanopropanoate (4s): colorless oil; 82% yield; ¹H NMR (300 MHz, Chloroform-*d*) δ 7.70 – 7.64 (m, 2H), 7.59 – 7.51 (m, 1H), 7.47 (dd, J = 8.2, 6.5 Hz, 2H), 7.33 (dd, J = 5.1, 1.9 Hz, 3H), 7.25 (dd, J = 6.9, 2.9 Hz, 2H), 5.14 – 5.06 (m, 1H), 5.04 – 4.90 (m, 2H), 1.80 (s, 3H), 1.33 (dd, J = 6.3, 4.1 Hz, 6H). ¹³C NMR (75 MHz, Chloroform-*d*) δ 173.79, 164.59, 135.01, 133.77, 131.64, 128.65, 128.65, 128.58, 128.58, 128.53, 128.53, 128.49, 128.49, 128.10, 116.02, 79.52, 72.26, 56.80, 23.10, 21.45, 21.41. HRMS (ESI) calcd for C₂₁H₂₃N₂O₄ *m/z* [M+H]⁺:

367.1658; found: 367.1673. $[a]_{D^{22}}$ -5.4 (c 0.42, CHCl₃); HPLC analysis: Chiralcel IC (Hex/IPA = 90/10, 1.0 mL/min, 254 nm, 22°C), 16.8 (major), 18.4 min, 83% ee.

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyanobutanoate (4t): colorless oil; 96% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.62 (dd, *J* = 7.2, 1.7 Hz, 2H), 7.54 – 7.47 (m, 1H), 7.42 (t, *J* = 7.4 Hz, 2H), 7.33 – 7.25 (m, 3H), 7.24 – 7.16 (m, 2H), 5.14 – 5.02 (m, 1H), 5.01 – 4.85 (m, 2H), 2.08 (q, *J* = 7.4 Hz, 2H), 1.30 (dd, *J* = 6.3, 2.3 Hz, 6H), 1.04 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.90, 164.66, 135.12, 135.12, 133.94, 131.66, 131.66, 128.69, 128.68, 128.68, 128.64, 128.57, 128.57, 128.14, 115.37, 84.70, 72.15, 56.94, 30.10, 21.58, 21.56, 8.18. HRMS (ESI) calcd for C₂₂H₂₅N₂O₄ *m/z* [M+H]⁺: 381.1814; found: 381.1819. [*a*]*p*²²= -1.8 (c 1.2, CHCl₃); HPLC analysis: Chiralcel IC (Hex/IPA = 85/15, 1.0 mL/min, 254 nm, 22°C), 10.9 (major), 12.7 min, 92% ee.

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyano-5-methylhexanoate (4u): colorless oil; 90% yield; ¹H NMR (300 MHz, Chloroform-*d*) δ 7.68 – 7.62 (m, 2H), 7.53 (d, *J* = 7.2 Hz, 1H), 7.46 (dd, *J* = 8.2, 6.5 Hz, 2H), 7.33 (dd, *J* = 5.3, 1.9 Hz, 3H), 7.24 (dd, *J* = 6.9, 2.8 Hz, 2H), 5.16 – 5.06 (m, 1H), 5.06 – 4.89 (m, 2H), 2.04 (dd, *J* = 9.5, 7.5 Hz, 2H), 1.58 – 1.51 (m, 1H), 1.44 – 1.37 (m, 1H), 1.33 (dd, *J* = 6.3, 2.1 Hz, 6H), 1.29 – 1.19 (m, 1H), 0.89 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (75 MHz, Chloroform-*d*) δ 173.75, 164.65, 135.13, 133.97, 131.49, 128.59, 128.59, 128.54, 128.54, 128.50, 128.50, 128.45, 128.44, 128.03, 115.42, 84.17, 72.04, 56.78, 34.45, 32.27, 27.73, 22.19, 22.14, 21.50, 21.46. HRMS (ESI) calcd for C₂₅H₃₁N₂O₄ *m/z* [M+H]⁺: 423.2284; found: 423.2296. [*a*] p^{22} = -4.3 (c 2.37, CHCl₃); HPLC analysis: Chiralcel IE (Hex/IPA = 90/10, 1.0 mL/min, 254 nm, 22°C), 15.3 (major), 21.3 min, 92% ee.

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyanopent-4-enoate (4v): colorless oil; 94% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.65 – 7.59 (m, 2H), 7.55 – 7.48 (m, 1H), 7.47 – 7.40 (m, 2H), 7.32 – 7.25 (m, 3H), 7.23 – 7.17 (m, 2H), 5.78 – 5.64 (m, 1H), 5.26 (d, *J* = 14.0 Hz, 2H), 5.11 – 5.02 (m, 1H), 5.00 – 4.86 (m, 2H), 2.82 – 2.75 (m, 2H), 1.28 (d, *J* = 6.3 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.82, 164.04, 135.00, 133.83, 131.72, 128.69, 128.68, 128.64, 128.64, 128.61, 128.61, 128.19, 128.16, 122.31, 99.99, 83.28, 72.36, 57.04, 40.66, 21.59, 21.59. HRMS (ESI) calcd for C₂₃H₂₅N₂O₄ *m*/*z* [M+H]⁺: 393.1814; found: 393.1875. [*a*]*p*²² = -0.7 (c 1.18, CHCl₃); HPLC analysis: Chiralcel IC (Hex/IPA = 85/15, 1.0 mL/min, 254 nm, 22°C), 10.4 (major), 11.6 min, 92% ee.

$$\bigvee_{\substack{(1,1)\\ (1$$

isopropyl 2-((N-benzylbenzamido)oxy)-2-cyano-4-methylpent-4-enoate (4w): colorless oil; 78% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.65 – 7.59 (m, 2H), 7.53 – 7.47 (m, 1H), 7.42 (t, *J* = 7.4 Hz, 2H), 7.30 – 7.25 (m, 3H), 7.23 – 7.16 (m, 2H), 5.13 – 5.02 (m, 1H), 4.99 (d, *J* = 3.6 Hz, 1H), 4.94 (d, *J* = 9.1 Hz, 1H), 4.90 (d, *J* = 2.6 Hz, 1H), 2.75 (d, *J* = 4.6 Hz, 2H), 1.77 (s, 3H), 1.30 (dd, *J* = 6.4, 2.7 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.94, 164.31, 137.08, 135.13, 133.87, 131.73, 128.71, 128.71, 128.63, 128.62, 128.59, 128.59, 128.50, 128.50, 128.12, 117.98, 115.53, 99.96, 83.46, 72.35, 44.03, 23.42, 21.63, 21.56. HRMS (ESI) calcd for C₂₄H₂₆N₂O₄ *m/z* [M+H]⁺: 407.1971; found: 407.2003. [*a*]*p*²²= -5.6 (c 0.62, CHCl₃); HPLC analysis: Chiralcel IC (Hex/IPA = 85/15, 1.0 mL/min, 254 nm, 22°C), 9.3 (major), 10.3 min, 94% ee.

isopropyl (**R**)-2-((**N**-benzylbenzamido)oxy)-2-cyanohept-6-enoate (4x): colorless oil; 92% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.64 – 7.58 (m, 2H), 7.54 – 7.47 (m, 1H), 7.46 – 7.39 (m, 2H), 7.33 – 7.27 (m, 3H), 7.23 – 7.17 (m, 2H), 5.78 – 5.63 (m, 1H), 5.11 – 5.04 (m, 1H), 5.03 – 4.98 (m, 1H), 4.98 – 4.94 (m, 2H), 4.93 – 4.86 (m, 2H), 2.08 – 1.99 (m, 4H), 1.58 – 1.39 (m, 1H), 1.29 (dd, *J* = 6.2, 1.4 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.95, 164.71, 137.07, 135.10, 135.10, 133.91, 131.68, 128.68, 128.67, 128.64, 128.58, 128.56, 128.56, 128.15, 115.86, 115.45, 100.01, 83.88, 72.22, 56.98, 35.76, 32.90, 22.85, 21.58, 21.54. HRMS (ESI) calcd for C₂₅H₂₉N₂O₄ *m/z* [M+H]⁺: 421.2127; found: 421.2133. [*a*]_{*D*}²²= -1.6 (c 1.46, CHCl₃); HPLC analysis: Chiralcel IC (Hex/IPA = 85/15, 1.0 mL/min, 254 nm, 22°C), 9.4 (major), 10.7 min, 86% ee.

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyanooct-7-enoate (4y): colorless oil; 89% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.64 – 7.58 (m, 2H), 7.50 (t, *J* = 7.4 Hz, 1H), 7.43 (s, 1H), 7.32 – 7.26 (m, 4H), 7.20 (dd, *J* = 6.8, 2.5 Hz, 2H), 5.80 – 5.67 (m, 1H), 5.13 – 5.03 (m, 1H), 5.02 – 4.98 (m, 1H), 4.98 – 4.93 (m, 2H), 4.91 (s, 1H), 2.12 – 1.94 (m, 4H), 1.56 – 1.33 (m, 4H), 1.29 (d, *J* = 6.1 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 173.92, 164.71, 138.05, 135.11, 133.94, 131.66, 128.68, 128.68, 128.68, 128.68, 128.64, 128.64, 128.58, 128.58, 128.58, 128.15, 115.49, 115.09, 83.93, 72.19, 56.95, 36.23, 33.23, 28.28, 23.11, 21.58, 21.54. HRMS (ESI) calcd for C₂₆H₃₁N₂O₄ *m/z* [M+H]⁺: 435.2284; found: 435.2295. [*a*]*p*²²= -1.8 (c 1.26, CHCl₃); HPLC analysis: Chiralcel IC (Hex/IPA = 85/15, 1.0 mL/min, 254 nm, 22°C), 9.2 (major), 10.4 min, 92% ee.

isopropyl (R)-2-cyano-2-(4-methoxyphenoxy)-4-phenylbutanoate (6a): colorless oil; 82% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 – 7.28 (m, 2H), 7.28 – 7.20 (m, 3H), 7.12 – 6.99 (m, 2H), 6.89 – 6.78 (m, 2H), 5.15 – 5.01 (m, 1H), 3.78 (s, 3H), 3.14 – 2.98 (m, 1H), 2.98 – 2.83 (m, 1H), 2.62 – 2.37 (m, 2H), 1.27 (d, *J* = 6.3 Hz, 3H), 1.22 (d, *J* = 6.3 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.52, 156.40, 148.74, 139.53, 128.79, 128.79, 128.59, 128.59, 126.69, 119.98, 119.98, 116.07, 114.63, 114.62, 79.37, 72.06, 55.69, 40.60, 30.19, 21.56, 21.48. HRMS (ESI) calcd for C₂₁H₂₄NO₄ *m*/*z* [M+H]⁺: 354.1705; found: 354.1619. [*a*]*p*²²= +2.5 (c 1.15, CHCl₃); HPLC analysis: Chiralcel IG3 (Hex/IPA = 98/2, 1.0 mL/min, 254 nm, 22°C), 17.0, 17.8 (major) min, 90% ee.

isopropyl (R)-2-cyano-2-(4-methoxyphenoxy)pent-4-enoate (6b): colorless oil; 80% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.06 – 7.02 (m, 2H), 6.83 – 6.79 (m, 2H), 5.99 – 5.82 (m, 1H), 5.37 – 5.33 (m, 1H), 5.32 – 5.30 (m, 1H), 5.13 – 5.01 (m, 1H), 3.76 (s, 3H), 3.04 – 2.85 (m, 2H), 1.25 (d, *J* = 6.3 Hz, 3H), 1.22 (d, *J* = 6.3 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.05, 156.45, 148.64, 128.58, 122.13, 120.22, 120.21, 115.95, 114.60, 114.60, 79.38, 71.98, 55.67, 43.21, 43.21, 21.54. HRMS (ESI) calcd for C₁₆H₂₀NO₄ *m*/*z* [M+H]⁺: 290.1392; found: 290.1425. [*a*]*p*²²= +7.7 (c 0.35, CHCl₃); HPLC analysis: Chiralcel IG3 (Hex/IPA = 98/2, 1.0 mL/min, 254 nm, 22°C), 10.9 (major), 11.9 min, 84% ee.

isopropyl (**R**)-2-cyano-2-(4-methoxyphenoxy)hept-6-enoate (6c): colorless oil; 79% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.03 (d, J = 9.1 Hz, 2H), 6.82 (d, J = 9.2 Hz, 2H), 5.87 – 5.72 (m, 1H), 5.15 – 5.06 (m, 2H), 5.06 – 5.00 (m, 1H), 3.77 (s, 3H), 2.34 – 2.08 (m, 4H), 1.91 – 1.76 (m, 1H), 1.74 – 1.60 (m, 1H), 1.24 (dd, J = 17.6, 6.3 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.57, 156.26, 148.73, 137.16, 119.86, 116.15, 115.77, 114.51, 114.51, 79.60, 71.75, 55.59, 38.21, 32.90, 22.89, 22.89, 21.47, 21.39. HRMS (ESI) calcd for C₁₈H₂₄NO₄ m/z [M+H]⁺: 318.1705; found: 318.1702. [*a*] p^{22} = +13.2 (c 0.50, CHCl₃); HPLC analysis: Chiralcel IG3 (Hex/IPA = 90/10, 1.0 mL/min, 254 nm, 22°C), 5.6 (major), 6.0 min, 88% ee.

isopropyl (R)-2-cyano-2-(4-methoxyphenoxy)oct-7-enoate (6d): colorless oil; 78% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.09 – 6.99 (m, 2H), 6.88 – 6.78 (m, 2H),

5.89 – 5.72 (m, 1H), 5.14 – 5.03 (m, 2H), 5.03 – 4.94 (m, 1H), 3.77 (s, 3H), 2.30 – 2.03 (m, 4H), 1.82 – 1.65 (m, 1H), 1.63 – 1.57 (m, 1H), 1.56 – 1.45 (m, 2H), 1.26 (d, J = 6.2 Hz, 3H), 1.22 (d, J = 6.3 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.60, 156.25, 148.72, 138.03, 119.86, 116.19, 115.03, 114.51, 114.51, 79.65, 71.72, 55.59, 38.68, 33.28, 28.27, 28.27, 23.12, 21.47, 21.38. HRMS (ESI) calcd for C₁₉H₂₆NO4 *m/z* [M+H]⁺: 332.1862; found: 332.1874. [*a*] p^{22} = +10.4 (c 0.24, CHCl₃); HPLC analysis: Chiralcel IG3 (Hex/IPA = 98/2, 1.0 mL/min, 254 nm, 22°C), 10.8 (major), 11.8 min, 86% ee.

isopropyl (R)-2-cyano-2-(4-methoxyphenoxy)hexanoate (6e): colorless oil; 75% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.04 (d, J = 9.1 Hz, 2H), 6.82 (d, J = 9.2 Hz, 2H), 5.16 – 5.03 (m, 1H), 3.77 (s, 3H), 2.30 – 2.10 (m, 2H), 1.79 – 1.63 (m, 1H), 1.54 – 1.49 (m, 1H), 1.43 (q, J = 7.1 Hz, 2H), 1.26 (d, J = 6.3 Hz, 3H), 1.22 (d, J = 6.3 Hz, 3H), 0.96 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.66, 156.24, 119.89, 116.24, 114.51, 114.51, 79.75, 71.66, 55.59, 55.59, 38.58, 25.73, 25.73, 22.22, 21.46, 21.38, 13.72. HRMS (ESI) calcd for C₁₇H₂₄NO₄ *m/z* [M+H]⁺: 306.1705; found: 306.1714. [*a*] p^{22} = +2.4 (c 0.75, CHCl₃); HPLC analysis: Chiralcel IG3 (Hex/IPA = 98/2, 1.0 mL/min, 254 nm, 22°C), 9.2 (major), 10.4 min, 86% ee.

isopropyl (R)-2-cyano-2-(4-methoxyphenoxy)propanoate (6f): colorless oil; 78% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.05 (d, *J* = 9.1 Hz, 2H), 6.83 (d, *J* = 9.1 Hz, 2H), 5.20 – 5.01 (m, 1H), 3.78 (s, 3H), 1.96 (s, 3H), 1.27 (d, *J* = 6.3 Hz, 3H), 1.23 (d, *J* = 6.3 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.78, 156.43, 148.42, 120.33, 116.85, 114.53, 114.53, 75.64, 71.84, 55.59, 55.59, 25.69, 21.41, 21.32. HRMS (ESI) calcd for C₁₄H₁₈NO₄ *m/z* [M+H]⁺: 264.1236; found: 264.1294. [*a*]_{*D*}²²= +3.1 (c 1.02, CHCl₃); HPLC analysis: Chiralcel OJH (Hex/IPA = 98/2, 1.0 mL/min, 254 nm, 22°C), 25.4, 32.8 (major) min, 80% ee.

isopropyl (R)-2-cyano-4-phenyl-2-(p-tolyloxy)butanoate (6g): colorless oil; 88% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 – 7.28 (m, 2H), 7.25 – 7.16 (m, 4H), 6.94 – 6.83 (m, 3H), 5.14 – 5.06 (m, 1H), 3.14 – 3.01 (m, 1H), 2.98 – 2.85 (m, 1H), 2.61 – 2.40 (m, 2H), 2.34 (s, 3H), 1.28 (d, *J* = 2.6 Hz, 3H), 1.19 (d, *J* = 6.1 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.52, 154.89, 139.91, 139.52, 129.36, 129.36, 128.80, 128.80, 128.59, 128.59, 126.69, 124.67, 118.15, 114.07, 77.70, 72.10, 40.81, 30.18, 21.54, 21.54, 21.39. HRMS (ESI) calcd for C₂₁H₂₄NO₃ *m/z* [M+H]⁺: 338.1756;

found: 338.1792. $[a]_{D}^{22} = +0.4$ (c 0.68, CHCl₃); HPLC analysis: Chiralcel OJH (Hex/IPA = 95/5, 1.0 mL/min, 210 nm, 22°C), 10.5, 18.4 (major) min, 89% ee.

isopropyl (R)-2-cyano-2-(p-tolyloxy)hexanoate (6h): colorless oil; 87% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.17 (t, J = 7.7 Hz, 1H), 6.89 (d, J = 7.5 Hz, 1H), 6.87 – 6.81 (m, 2H), 5.15 – 5.07 (m, 1H), 2.32 (s, 3H), 2.29 – 2.13 (m, 2H), 1.80 – 1.66 (m, 1H), 1.63 – 1.55 (m, 1H), 1.48 – 1.40 (m, 2H), 1.29 (d, J = 6.3 Hz, 3H), 1.20 (d, J = 6.4 Hz, 3H), 0.97 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.78, 154.96, 139.82, 129.30, 129.30, 124.49, 124.49, 118.07, 114.01, 114.01, 78.09, 71.82, 38.88, 25.79, 22.31, 21.40, 13.85. HRMS (ESI) calcd for C₁₇H₂₄NO₃ *m/z* [M+H]⁺: 290.1756; found: 290.1775. [*a*] p^{22} = +67.1 (c 0.12, CHCl₃); HPLC analysis: Chiralcel OJH (Hex/IPA = 95/5, 1.0 mL/min, 215 nm, 22°C), 6.0, 12.9 (major) min, 89% ee.

isopropyl (**R**)-2-cyano-2-(**p**-tolyloxy)hept-6-enoate (6i): colorless oil; 83% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.17 (t, J = 7.7 Hz, 1H), 6.92 – 6.87 (m, 1H), 6.86 – 6.80 (m, 2H), 5.88 – 5.72 (m, 1H), 5.15 – 5.07 (m, 1H), 5.07 – 5.00 (m, 2H), 2.32 (s, 3H), 2.27 – 2.15 (m, 4H), 1.92 – 1.80 (m, 1H), 1.75 – 1.64 (m, 1H), 1.29 (d, J = 6.3 Hz, 3H), 1.19 (d, J = 6.2 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.69, 154.93, 139.84, 137.26, 129.31, 124.53, 118.06, 115.90, 114.00, 100.00, 77.96, 71.91, 38.49, 32.97, 30.28, 22.94, 21.53, 21.40. HRMS (ESI) calcd for C₁₈H₂₄NO₃ *m/z* [M+H]⁺: 302.1756; found: 302.1754. [*a*] p^{22} = +2.2 (c 0.50, CHCl₃); HPLC analysis: Chiralcel OJH (Hex/IPA = 95/5, 1.0 mL/min, 210 nm, 22°C), 7.1, 15.3 (major) min, 86% ee.

isopropyl (R)-2-cyano-2-(p-tolyloxy)oct-7-enoate (6j): colorless oil; 78% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.18 (t, J = 7.8 Hz, 1H), 6.89 (d, J = 7.5 Hz, 1H), 6.87 – 6.81 (m, 2H), 5.87 – 5.74 (m, 1H), 5.15 – 5.07 (m, 1H), 5.07 – 4.95 (m, 2H), 2.32 (s, 3H), 2.28 – 2.16 (m, 2H), 2.12 (q, J = 7.0 Hz, 2H), 1.82 – 1.70 (m, 1H), 1.66 – 1.59 (m, 1H), 1.54 – 1.48 (m, 2H), 1.29 (d, J = 1.4 Hz, 3H), 1.20 (d, J = 1.4 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.71, 154.93, 139.83, 138.14, 129.30, 124.52, 118.08, 116.15, 115.14, 114.01, 100.00, 78.01, 71.87, 38.98, 33.38, 28.34, 23.19, 21.53, 21.39. HRMS (ESI) calcd for C₁₉H₂₆NO₃ *m/z* [M+H]⁺: 316.1913; found: 316.1902. [*a*] p^{22} = +1.5 (c 0.56, CHCl₃); HPLC analysis: Chiralcel OJH (Hex/IPA = 95/5, 1.0 mL/min, 210 nm, 22°C), 6.5, 13.4 (major) min, 89% ee.

isopropyl (R)-2-cyano-2-(p-tolyloxy)butanoate (6k): colorless oil; 80% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.17 (t, *J* = 7.7 Hz, 1H), 6.88 (d, *J* = 7.7 Hz, 1H), 6.86 – 6.80 (m, 2H), 5.15 – 5.07 (m, 1H), 2.31 (s, 3H), 2.30 – 2.18 (m, 2H), 1.33 – 1.23 (m, 6H), 1.20 (d, *J* = 31.9 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.60, 155.01, 129.64, 129.64, 123.73, 123.73, 117.32, 117.32, 116.00, 78.78, 71.89, 32.83, 21.54, 21.39, 8.19. HRMS (ESI) calcd for C₁₅H₂₀NO₄ *m/z* [M+H]⁺: 262.1443; found: 262.1412. [*a*]*p*²²= +2.9 (c 1.04, CHCl₃); HPLC analysis: Chiralcel OJH (Hex/IPA = 95/5, 1.0 mL/min, 210 nm, 22°C), 8.8, 21.4 (major) min, 86% ee.

(**R**)-**N**-benzyl-N-((2-cyano-1-hydroxypropan-2-yl)oxy)benzamide (7): colorless oil; 80% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 – 7.62 (m, 2H), 7.61 – 7.54 (m, 1H), 7.53 – 7.46 (m, 2H), 7.34 – 7.29 (m, 3H), 7.11 (dt, *J* = 6.1, 3.4 Hz, 2H), 5.01 (q, *J* = 16.0 Hz, 2H), 4.70 – 4.41 (m, 1H), 3.94 (dd, *J* = 12.9, 3.5 Hz, 1H), 3.60 (dd, *J* = 12.9, 11.0 Hz, 1H), 1.72 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 175.90, 134.66, 133.29, 132.10, 129.40, 128.95, 128.78, 128.74, 128.68, 128.32, 128.22, 128.10, 128.07, 128.02, 118.46, 77.46, 77.14, 76.82, 66.66, 56.78, 20.39. HRMS (ESI) calcd for C₁₈H₁₉N₂O₃ *m/z* [M+H]⁺: 311.1390; found: 311.1382.

Bn N Ph Me O NC OTs

(**R**)-2-((**N**-benzylbenzamido)oxy)-2-cyanopropyl 4-methylbenzenesulfonate (7-**Ts**): colorless oil; 80% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 – 7.72 (m, 2H), 7.61 – 7.54 (m, 2H), 7.54 – 7.48 (m, 1H), 7.44 (dd, *J* = 8.1, 6.8 Hz, 2H), 7.34 (d, *J* = 8.2 Hz, 2H), 7.30 (dp, *J* = 6.6, 2.0 Hz, 3H), 7.15 (dd, *J* = 6.6, 2.9 Hz, 2H), 4.97 (d, *J* = 16.0 Hz, 1H), 4.88 (d, *J* = 15.7 Hz, 1H), 4.15 (d, *J* = 10.3 Hz, 1H), 4.09 (d, *J* = 10.4 Hz, 1H), 2.47 (s, 3H), 1.60 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.03, 173.76, 135.53, 133.84, 131.79, 131.13, 131.04, 128.88, 128.60, 128.29, 128.20, 127.96, 116.45, 116.22, 86.21, 77.35, 77.04, 76.72, 62.93, 58.72, 30.94, 22.15. HRMS (ESI) calcd for C₂₅H₂₅N₂O₅S *m/z* [M+H]⁺: 465.1479; found: 465.1456.

(R) - N - benzyl - N - ((2 - cyano - 1 - ((4 - fluor ophenyl) thio) propan - 2 - yl) oxy) benzamide

(8): colorless oil; 80% yield; ¹¹H NMR (400 MHz, Chloroform-*d*) δ 7.61 – 7.52 (m, 2H), 7.52 – 7.45 (m, 1H), 7.45 – 7.34 (m, 4H), 7.33 – 7.22 (m, 3H), 7.23 – 7.09 (m, 2H), 7.05 – 6.88 (m, 2H), 5.01 (d, *J* = 13.5 Hz, 2H), 3.27 (d, *J* = 14.2 Hz, 1H), 3.14 (d, *J* = 14.2 Hz, 1H), 1.62 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.35, 163.75, 161.28, 135.20, 134.26, 134.18, 133.86, 131.70, 130.09, 130.05, 128.63, 128.60, 128.52, 128.43, 128.10, 118.94, 116.43, 116.21, 80.65, 77.38, 77.07, 76.75, 56.80, 43.94, 29.71, 23.64. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -113.32, -113.34.HRMS (ESI) calcd for C₂₄H₂₂FN₂O₂S *m*/z [M+H]⁺: 421.1381.; found: 421.1389.

(**R**)-**N**-((1-amino-3-((4-fluorophenyl)sulfonyl)-2-methyl-1-oxopropan-2-yl)oxy)-**N**-benzylbenzamide (8-amide): colorless oil; 80% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.70 (s, 1H), 8.03 – 7.87 (m, 2H), 7.63 – 7.57 (m, 2H), 7.57 – 7.52 (m, 1H), 7.52 – 7.41 (m, 2H), 7.36 – 7.30 (m, 3H), 7.25 (dd, J = 7.3, 2.3 Hz, 2H), 7.23 – 7.17 (m, 2H), 5.68 – 5.46 (m, 1H), 5.19 (d, J = 16.1 Hz, 1H), 4.90 (d, J = 16.1 Hz, 1H), 4.07 (d, J = 14.6 Hz, 1H), 3.54 (d, J = 14.6 Hz, 1H), 2.19 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.03, 173.76, 135.53, 133.84, 131.79, 131.13, 131.04, 128.88, 128.60, 128.29, 128.20, 127.96, 116.45, 116.22, 86.21, 77.36, 77.04, 76.72, 62.94, 58.71, 22.16. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -108.78, -108.80. HRMS (ESI) calcd for C₂₄H₂₄FN₂O₅S *m*/z [M+H]⁺: 471.1384; found: 471.1399.

(**R**)-**N**-(4-cyano-3-(trifluoromethyl)phenyl)-3-((4-fluorophenyl)sulfonyl)-2hydroxy-2-methylpropanamide ((**R**)-Bicalutamide): white solid; 78% yield; M.P.: 176-178 °C ¹H NMR (400 MHz, DMSO-d6): δ 10.35 (s, 1H), 8.43 (s, 1H), 8.20 (d, J = 8.5 Hz, 1H), 8.06 (d, J = 8.5 Hz, 1H), 7.94–7.90 (t, 2H), 7.36–7.30 (m, 2H), 6.39 (s, 1H), 3.95 (d, J = 14.7 Hz, 1H), 3.71 (d, J = 14.7 Hz, 1H), 1.41 (s, 3H). ¹³C NMR (100 MHz, DMSOd6): δ 173.9, 165.6, 164.1, 143.2, 137.2, 137.2, 136.3, 131.9, 131.6, 131.4, 131.2, 125.3, 123.4, 122.9, 122.8, 121.6, 119.8, 117.6, 116.1, 115.9, 115.8, 102.0, 73.1, 63.5, 27.2. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -62.50, -102.82, -103.40. HRMS (ESI) calcd for C₁₈H₁₅F₄N2O₄S *m*/*z* [M+H]⁺: 431.0683; found: 431.0672. [*a*]_{*p*}²²= +7.9 (c 1.04, CHCl₃); HPLC analysis: Chiralcel OJH (Hex/IPA = 75/25, 1.0 mL/min, 210 nm, 22°C), 16.6 (major), 19.9 min, 82% ee.

isopropyl (R)-2-(4-bromophenoxy)-2-cyanobutanoate (61): colorless oil; 65% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 – 7.32 (m, 2H), 7.02 – 6.82 (m, 2H), 5.23 – 4.97 (m, 1H), 2.39 – 2.07 (m, 2H), 1.29 (d, *J* = 6.3 Hz, 3H), 1.23 – 1.20 (m, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.14, 154.03, 132.51, 119.17, 116.42, 115.58, 78.83, 77.36, 77.04, 76.73, 72.13, 32.70, 21.48, 21.37, 8.09. HRMS (ESI) calcd for C₁₄H₁₇BrNO₃ *m/z* [M+H]⁺: 326.0386; found: 326.0389. [*a*]*p*²²= +2.2 (c 0.94, CHCl₃); HPLC analysis: Chiralcel IG3 (Hex/IPA = 99/1, 1.0 mL/min, 215 nm, 22°C), 15.0, 16.1 (major) min, 84% ee.

(**R**)-2-(4-bromophenoxy)-2-(hydroxymethyl)butanenitrile (11): colorless oil; 87% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.56 – 7.39 (m, 2H), 7.24 – 6.91 (m, 2H), 3.92 (q, *J* = 12.0 Hz, 2H), 2.02 (q, *J* = 7.5 Hz, 2H), 1.12 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 153.05, 132.74, 123.50, 118.01, 80.95, 77.39, 77.07, 76.76, 64.92, 27.18, 8.18. HRMS (ESI) calcd for C₁₁H₁₃BrNO₂ *m*/*z* [M+H]⁺: 270.0124; found: 270.0118.

(**R**)-2-(4-bromophenoxy)-2-cyanobutyl methanesulfonate (11-Ms): colorless oil; 90% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.70 – 7.37 (m, 2H), 7.18 – 6.92 (m, 2H), 2.14 (dd, *J* = 13.9, 7.3 Hz, 1H), 2.08 – 1.87 (m, 1H), 1.72 (s, 3H), 1.32 – 1.18 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.85, 149.20, 132.72, 122.84, 119.80, 119.29, 117.21, 77.36, 77.05, 76.73, 44.83, 31.81, 29.71, 22.89, 9.76. HRMS (ESI) calcd for C₁₂H₁₅BrNO₄S *m*/*z* [M+H]⁺: 347.9900; found: 347.9912.

Br

(**R**)-2-(4-bromophenoxy)-2-methylbutanenitrile (12): colorless oil; 77% yield; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.62 – 7.43 (m, 2H), 7.11 – 6.95 (m, 2H), 2.14 (dd, J = 13.9, 7.3 Hz, 1H), 1.97 (dd, J = 13.8, 7.5 Hz, 1H), 1.72 (s, 3H), 1.19 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) 149.20, 132.72, 122.84, 119.80, 119.29, 77.36, 77.05, 76.73, 44.83, 31.81, 29.71, 22.89, 9.76. HRMS (ESI) calcd for C₁₁H₁₃BrNO *m/z* [M+H]⁺: 254.0175; found: 254.0165.

(**R**)-2-(4-bromophenoxy)-2-methylbutanoic acid (13): colorless pelle; ¹H NMR (400 MHz, Chloroform-*d*) δ 11.9 (b, 1H), δ 7.64 – 7.50 (m, 2H), 7.12 – 6.93 (m, 2H), 2.05 (q, *J* = 7.6 Hz, 2H), 1.57 (s, 3H), 0.95 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) 171.54, 149.60, 133.40, 132.57, 123.39, 123.13, 119.10, 55.43, 51.64, 29.66, 22.43, 9.77. HRMS (ESI) calcd for C₁₁H₁₄BrO₃ *m*/*z* [M+H]⁺: 273.0121; found: 273.0110.

(**R**)-2-(4-bromophenoxy)-2-cyanobutyl methanesulfonate (13-Me): colorless oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.65 – 7.37 (m, 2H), 7.06 – 6.78 (m, 2H), 3.79 (s, 3H), 2.03 (q, *J* = 7.6 Hz, 2H), 1.53 (s, 3H), 0.97 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) 170.61, 149.68, 132.50, 132.47, 123.39, 123.13, 119.10, 77.38, 77.06, 76.74, 54.43, 52.64, 28.66, 19.43, 8.77. HRMS (ESI) calcd for C₁₂H₁₆BrO₃ *m/z* [M+H]⁺: 287.0277; found: 287.0270. [*a*] p^{22} = +4.2 (c 0.34, CHCl₃); HPLC analysis: Chiralcel OJH (Hex/IPA = 99/1, 1.0 mL/min, 210 nm, 22°C), 12.1, 23.5 (major) min, 82% ee.

11. Determination of the Absolute Configuration by X-ray Crystallography

Figure 10.1 X-ray Crystallography of modified 4r (CDCC 2044133)

Figure 10.2 X-ray Crystallography of hydrolysis of 6f (CCDC 2059577)

12. NMR spectra

39

Ethyl 2-bromo-2-cyano-3-phenylpropanoate (1b)

Isopropyl 2-cyano-2-bromo-3-phenylpropanoate (1c)

tert-Butyl 2-bromo-2-cyano-3-phenylpropanoate (1d)

Isopropyl 2-bromo-2-cyano-3-(4-fluorophenyl)propanoate (1e)

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	R 8 8 8 12 11 12 11	

100 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -28 -2

5, 12 5, 09 5, 07 5, 06 -1.561.341.251.251.237, 25 7, 148 7, 148 7, 25 7, 25 7, 25 7, 25 7, 25 7, 25 0.00
Image: constraint of the state of 8.0 7.5 9.0 8.5 - 163.28 <132.04 - 133.66 77. 42 77. 10 73. 30 73. 30 $<_{21.17}^{21.34}$ 170 160 150 140 130 120 110 100 90 f1 (ppm) 0 190 180 80 70 60 50 40 30 20 10

Isopropyl 2-bromo-3-(4-bromophenyl)-2-cyanopropanoate (1f)

Isopropyl 2-bromo-2-cyano-3-(4-nitrophenyl)propanoate (1h)

46

Isopropyl 2-bromo-2-cyano-3-(4-methoxyphenyl)propanoate (1i)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

Isopropyl 2-bromo-2-cyano-3-(o-tolyl)propanoate (1j)

Isopropyl 2-bromo-2-cyano-4-phenylbutanoate (1m)

Isopropyl 2-bromo-2-cyano-5-phenylpentanoate (1n)

Isopropyl 2-bromo-2-cyanopropanoate (10)

Isopropyl 2-bromo-2-cyanobutanoate (1p)

isopropyl 2-bromo-2-cyanopent-4-enoate (1r)

Isopropyl 2-bromo-2-cyano-4-methylpent-4-enoate (1s)

Isopropyl 2-bromo-2-cyanohept-6-enoate (1t)

Isopropyl 2-bromo-2-cyanooct-7-enoate (1u)

Isopropyl 2-bromo-2-cyanohexanoate (1v)

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyano-3-phenylpropanoate (4g)

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyano-3-(4fluorophenyl)propanoate (4i)

-20

-40 -60 -80 -100 -120 -140 -160 -180 -2

100 180 160 140 120 100 80 60 40 20 0

isopropyl (R)-2-((N-benzylbenzamido)oxy)-3-(4-bromophenyl)-2cyanopropanoate (4j)

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyano-3-(2-iodophenyl)propanoate (4k)

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyano-3-(4-nitrophenyl)propanoate (4l)

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyano-3-(4methoxyphenyl)propanoate (4m)

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyano-3-(o-tolyl)propanoate (4n)

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyano-3-(thiophen-2-yl)propanoate (40)

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyano-3-(naphthalen-2yl)propanoate (4p)

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyano-4-phenylbutanoate (4q)

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyanopropanoate (4s)

$is opropyl\ (R) - 2 - ((N-benzyl benzamido) oxy) - 2 - cyano - 5 - methyl hexanoate\ (4u)$

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyanopent-4-enoate (4v)

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyanohept-6-enoate (4x)					
7, 62 7, 62 7, 60 7, 48 7, 48 7, 48 7, 48 7, 20	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 06 1 99 1 99	1.59	$<_{1.29}^{1.31}$	0.0

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyanooct-7-enoate (4y)

isopropyl (R)-2-cyano-2-(4-methoxyphenoxy)pent-4-enoate (6b)

isopropyl (R)-2-cyano-2-(4-methoxyphenoxy)hept-6-enoate (6c)

isopropyl (R)-2-cyano-2-(4-methoxyphenoxy)oct-7-enoate (6d)

isopropyl (R)-2-cyano-2-(4-methoxyphenoxy)hexanoate (6e)

isopropyl (R)-2-cyano-2-(4-methoxyphenoxy)propanoate (6f)

isopropyl (R)-2-cyano-4-phenyl-2-(p-tolyloxy)butanoate (6g)

isopropyl (R)-2-cyano-2-(p-tolyloxy)hexanoate (6h)

isopropyl (R)-2-cyano-2-(p-tolyloxy)oct-7-enoate (6j)

isopropyl (R)-2-cyano-2-(p-tolyloxy)butanoate (6k)

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

(R)-N-benzyl-N-((2-cyano-1-((4-fluorophenyl)thio)propan-2-yl)oxy)benzamide

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

(R)-N-(4-cyano-3-(trifluoromethyl)phenyl)-3-((4-fluorophenyl)sulfonyl)-2hydroxy-2-methylpropanamide ((R)-Bicalutamide)

isopropyl (R)-2-(4-bromophenoxy)-2-cyanobutanoate (6l)

(R)-2-(4-bromophenoxy)-2-(hydroxymethyl)butanenitrile (11)

(R)-2-(4-bromophenoxy)-2-cyanobutyl methanesulfonate (11-Ms)

(R)-2-(4-bromophenoxy)-2-methylbutanenitrile (12)

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyano-3-phenylpropanoate (4g)

Detector A Channel 2 254nm			
Peak#	Ret. Time	Area	Area%
1	8.319	9392012	94.746
2	9.866	520871	5.254
Total		9912882	100.000

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyano-3-(4fluorophenyl)propanoate (4i)

Delector A Channel 2 234nm			
Peak#	Ret. Time	Area	Area%
1	9.938	4309654	95.639
2	20.986	196534	4.361
Total		4506187	100.000

isopropyl (R)-2-((N-benzylbenzamido)oxy)-3-(4-bromophenyl)-2cyanopropanoate (4j)

 Peak# Ret. Time
 Area
 Area%

 1
 10.838
 3699048
 94.512

 2
 25.759
 214793
 5.488

 Total
 3913841
 100.000

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyano-3-(2-iodophenyl)propanoate (4k)

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyano-3-(4-nitrophenyl)propanoate (4l)

Detector A Channel 2 254nm

Peak#	Ret. Time	Area	Area%
1	12.814	14370542	93.320
2	28.703	1028676	6.680
Total		15399219	100.000

mV Detector A Channel 2 254nm 750 500-250 16.495 38.608 0 25 30 20 35 40 15 min
 Detector A Channel 2 254nm

 Peak# Ret. Time
 Area

 1
 16.495
 2781329
 Area% 49.050 2 38.608 2889034 50.950 Total 5670363 100.000 mV 150 Detector A Channel 2 254nm 16.716 100 50-39.561 0-20 35 25 30 40 15 min

Detector A Channel 2 Peak# Ret. Time

i ouiu	rtot. mno	711004	/ 104/0
1	16.716	4253771	93.961
2	39.561	273372	6.039
Total		4527143	100.000

<u>254nm</u> Area

Area%

 $is opropyl\ (R) - 2 - ((N-benzylbenzamido) oxy) - 2 - cyano - 3 - (o-tolyl) propanoate\ (4n)$

 Detector A Channel 2 254nm

 Peak# Ret. Time
 Area
 Area%

 1
 21.318
 6172005
 91.791

 2
 31.303
 551949
 8.209

 Total
 6723953
 100.000

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyano-3-(thiophen-2-yl)propanoate (40)

	14.138	3407936	94.777
2	38.755	187810	5.223
Total		3595746	100.000
isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyano-3-(naphthalen-2-yl)propanoate (4p)

Detector A Channel 2 254nm

Peak#	Ret. Time	Area	Area%
1	23.469	19625602	91.234
2	55.976	1885575	8.766
Total		21511177	100.000

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyano-4-phenylbutanoate (4q)

Delect	Delector A Channel 2 2341111				
Peak#	Ret. Time	Area	Area%		
1	18.649	12794043	94.114		
2	22.653	800172	5.886		
Total		13594215	100.000		

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyano-5-phenylpentanoate (4r)

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyanobutanoate (4t)

Detector A Channel 2 254nm				
Peak#	Ret. Time	Area	Area%	
1	11.151	1605123	49.995	
2	13.052	1605475	50.005	

Peak#	Ret. Time	Area	Area%
1	10.921	5192102	96.214
2	12.765	204292	3.786
Total		5396395	100.000

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyano-5-methylhexanoate (4u)

 Detector A Channel 2 254nm

 Peak# Ret. Time
 Area
 Area%

 1
 15.301
 13199608
 95.731

 2
 21.287
 588618
 4.269

 Total
 13788226
 100.000

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyanopent-4-enoate (4v)

isopropyl 2-((N-benzylbenzamido)oxy)-2-cyano-4-methylpent-4-enoate (4w)

Delector A Channel 2 234nm				
Peak# Ret. Time	Area Area%			
1 9.423	7125249 92.961			
2 10.694	539558 7.039			
Total	7664808 100.000			

isopropyl (R)-2-((N-benzylbenzamido)oxy)-2-cyanooct-7-enoate (4y)

Peak#	Ret. Time	Area	Area%
1	9.164	3640851	95.750
2	10.393	161605	4.250
Total		3802456	100.000

Peak#	Ret. Time	Area	Area%
1	17.040	172519	5.043
2	17.810	3248118	94.957
Total		3420637	100.000

isopropyl (R)-2-cyano-2-(4-methoxyphenoxy)hept-6-enoate (6c)

l	2	6.003	58619	6.251
	Total		937775	100.000
5				

isopropyl (R)-2-cyano-2-(4-methoxyphenoxy)oct-7-enoate (6d)

2	11.761	127791	/.31/
Total		1746395	100.000

isopropyl (R)-2-cyano-2-(4-methoxyphenoxy)hexanoate (6e)

isopropyl (R)-2-cyano-2-(4-methoxyphenoxy)propanoate (6f)

isopropyl (R)-2-cyano-4-phenyl-2-(p-tolyloxy)butanoate (6g)

isopropyl (R)-2-cyano-2-(p-tolyloxy)hexanoate (6h)

62037 1059060 5.982 12.945 2 1121097 100.000 Total

Detector A Channel 2 254nm

Peak#	Ret. Time	Area	Area%
1	7.063	859566	7.146
2	15.328	11168278	92.854
Total		12027843	100

isopropyl (R)-2-cyano-2-(p-tolyloxy)oct-7-enoate (6j)

Detector A channel 2 204mm				
Peak#	Ret. Time	Area	Area%	
1	6.528	4783409	5.717	
2	13.382	78884007	94.283	
Total		83667416	100	

isopropyl (R)-2-cyano-2-(p-tolyloxy)butanoate (6k)

Peak#	Ret. Time	Area	Area%
1	8.809	7348775	49.768
2	21.33	7417383	50.232
Total		14766157	100

Detector A Channel 2 254nm

Peak#	Ret. Time	Area	Area%
1	8.801	1401468	7.341
2	21.408	17690278	92.659
Total		19091745	100

Detector A Channel 2 254nm								
Peak#	Ret. Time	Area	Area%					
1	14.980	312938	8.051					
2	16.111	3574139	91.949					
Total		3887076	100.000					

Detector A Channel 2 230nm

Реак#	Ret. Time	Area	Area%
1	12.147	568539	9.242
2	23.516	5583045	90.758
Total		6151584	100.000

-1000																									
5	;	1	1	1	1	10	I	1	I	1	15	1	I	I	I	20	I	I	1	 25	I	1	I	3 mi	0 n

Detector A Channel 1 210nm									
Peak#	Ret. Time	Area	Area%						
1	16.626	32658952	90.379						
2	19.960	3476752	9.621						
Total		36135704	100.000						

14. References

- [1] X. Zhang, J. Ren, A. M. Tan, D. Tan, R. Lee, C. H. Tan Science. 2019, 363, 400.
- [2] K D. Parghi, J R. Satam, R V. Jayaram. Green Chem. Lett. Rev. 2011, 4, 143.
- [3] a) G X. Ortiz, Jr., B N. Hemric, and Q Wang Org. Lett. 2017, 19, 1314; b) H O. House, L F. Lee J. Org. Chem. 1976, 41, 863; c) S Pagoti, D Dutta, J. Dash Adv. Synth. Catal. 2013, 355, 3532; d) G Cecere, C. M König, J. L Alleva, D. W. C MacMillan J. Am. Chem. Soc. 2013, 135, 11521.
- [4] A. Porzelle, M. D. Woodrow, N. C. O. Tomkinson Org. Lett. 2010, 12, 812.
- [5] I Nakamura, M Owada, T Jo, M Terada Org. Lett. 2017, 19, 2194.
- [6]. a) I Colomer, R C Barcelos, K E. Christensen, T J. Donohoe Org. Lett. 2016, 18, 5880; b) Y. Li, A. Studer Angew. Chem. Int. Ed. 2012, 51, 8221.
- [7]. a) G. Pochetti, N. Mitro, A. Lavecchia, M. Crestani, F. Loiodice, *J. Med. Chem.* 2010, 53, 4354; b) L. Porcelli, F. Gilardi, A. Laghezza, L. Piemontese, M. Crestani, F. Loiodice, *J. Med. Chem.* 2012, 55, 37.