Ou et. al.

A Non-Diazo Approach to Functionalized (2-Furyl)-2-pyrrolidines through a Cascade Reaction of Enynal-Derived Zinc Carbenoids with β-Arylaminoketones

Chenxin Ou, Bidhan Ghosh, and Indrajeet Sharma*

Department of Chemistry and Biochemistry, Institute of Natural Products Applications and Research Technologies University of Oklahoma,

SLSRC, 101 Stephenson Parkway, Norman, Oklahoma-73019 (USA)

Supplementary Information

A.	Materials and Methods	S2
В.	General Procedure 1 for the Synthesis of Enynals (1)	S3
C.	General Procedure 2 for the Synthesis of Beta-Arylaminoketones (2)	S7
D.	General Procedure 4 for the Synthesis of Furyl Pyrrolidines (3 & 5)	S11
E.	Synthesis of Insertion Product 4a	S17
F.	Crystal Structure Data of 3b	S18
G.	¹ H-NMR and ¹³ C-NMR Spectra for New Compounds	S36

A. MATERIALS AND METHODS

Reagents

Reagents and solvents were obtained from Sigma-Aldrich (<u>www.sigma-aldrich.com</u>), Chem-Impex (<u>www.chemimpex.com</u>) or Acros Organics (<u>www.fishersci.com</u>) and used without further purification unless otherwise indicated. Dry solvents (acetonitrile) were obtained from Acros Organics (<u>www.fishersci.com</u>), and dichloromethane was distilled over CaH₂ under N₂ unless otherwise indicated. THF purchased from Sigma-Aldrich was distilled over Na metal with benzophenone indicator. Chlorobenzene was obtained from Sigma-Aldrich.

Reactions

All reactions were performed in flame-dried glassware under positive N_2 pressure with magnetic stirring unless otherwise noted. Liquid reagents and solutions were transferred thru rubber septa via syringes flushed with N_2 prior to use.

Chromatography

TLC was performed on 0.25 mm E. Merck silica gel 60 F254 plates and visualized under UV light (254 nm) or by staining with potassium permanganate (KMnO₄), cerium ammonium molybdenate (CAM), phosphomolybdic acid (PMA), and ninhydrin. Silica flash chromatography was performed on Sorbtech 230–400 mesh silica gel 60.

Analytical Instrumentation

NMR spectra were recorded on a Varian VNMRS 300, 400, 500 and 600 MHz NMR spectrometer in CDCl₃ unless otherwise indicated. Chemical shifts are expressed in ppm relative to solvent signals: CDCl₃ (¹H, 7.26 ppm, ¹³C, 77.16 ppm), CD₃OD(¹H, 3.34 ppm, ¹³C, 49.00 ppm); coupling constants are expressed in Hz. NMR spectra were processed using Mnova (www.mestrelab.com/software/mnova-nmr). Mass spectra were obtained at the OU Analytical Core Facility on an Agilent 6538 High-Mass-Resolution QTOF Mass Spectrometer and an Agilent 1290 UPLC.

Nomenclature

N.B.: Atom numbers shown in chemical structures herein correspond to IUPAC nomenclature, which was used to name each compound.

B. General Procedure 1 for the Synthesis of Enynals (1b-1f)

Methyl 3-(2-(1,3-dioxolan-2-yl)cyclohex-1-en-1-yl)propiolate was synthesized following the reported procedure.¹ To a suspension of Na₂CO₃ (1.2 mmol, 2 equiv.) in DMF (2 ml) was added methyl 3-(2-(1,3-dioxolan-2-yl)cyclohex-1-en-1-yl)propiolate (0.6 mmol, 1 equiv.) and alcohol (6 mmol, 10 equiv.). The mixture was heated at 60 °C overnight. The reaction was separated by ether and water. The aqueous phase was extracted with ether twice. The combined organic phase was washed with brine and dried over Na₂SO₄. After solvent being removed, the remaining oil was dissolved in THF (3 ml). To this solution, HCl (35%, 0.8 ml) and water (2.2 ml) was added. The reaction was stirred at 0 °C for 1.5 h. After completion, the reaction was extracted with EtOAc, washed with water, brine and dried over Na₂SO₄. The organic layer was concentrated and purified by column chromatography eluting with 1:20 ethyl acetate:hexanes gradient to 1:5 ethyl acetate:hexanes to furnish pure enynals **1b-1f**.

Methyl 3-(2-formylcyclohex-1-en-1-yl)propiolate (1a). Synthesized following the reported procedure. (450 mg, 62% yield.) Characterization data was in accordance with previous reports.¹

Ethyl 3-(2-formylcyclohex-1-en-1-yl)propiolate (1b). Synthesized using general procedure 1. (75mg, 61% yield.) Characterization data was in accordance with previous reports.²

Y. Kato, K. Miki, F. Nishino, K. Ohe and S. Uemura, Doyle–Kirmse Reaction of Allylic Sulfides with Diazoalkane-Free (2-Furyl)carbenoid Transfer, Org. Lett., 2003, 5, 2619-2621. DOI: 10.1021/ol034731q

C. Sämann, M. A. Schade, S. Yamada and P. Knochel, Functionalized Alkenylzinc Reagents Bearing Carbonyl Groups: Preparation by Direct Metal Insertion and Reaction with Electrophiles, *Angew. Chem. Int. Ed.*, 2013, **52**, 9495-9499. DOI: 10.1002/anie.201302058

Benzyl 3-(2-formylcyclohex-1-en-1-yl)propiolate (1c). Synthesized following the reported procedure. (64 mg, 40% yield.) Characterization data was in accordance with previous reports.³

Allyl 3-(2-formylcyclohex-1-en-1-yl)propiolate (1d). Synthesized using general procedure 1. (61 mg, 45% yield). Characterization data was in accordance with previous reports.²

2-Hydroxyethyl 3-(2-formylcyclohex-1-en-1-yl)propiolate (1e). Synthesized using general procedure 1. Yellow oil, (64 mg, 48% yield). **TLC**: R_f 0.52 (ethyl acetate/hexanes = 3: 2). ¹**H NMR** (CDCl₃, 400 MHz) δ 10.15 (s, 1H), 4.36 (s, 0H), 3.90 (s, 0H), 2.46 (d, J = 2.6 Hz, 3H), 2.38 – 2.22 (m, 4H), 1.78 – 1.64 (m, 10H). ¹³**C NMR** (CDCl₃, 125 MHz): δ 191.69, 191.66, 153.51, 148.14, 135.77, 87.96, 82.93, 67.75, 60.80, 31.33, 22.46, 21.66, 20.71. **HRMS** (ESI) *m/z* calcd for C₁₂H₁₄O₄Na ([M+Na]⁺) 245.0790; found 245.0789.

 C. Sämann, M. A. Schade, S. Yamada and P. Knochel, Functionalized Alkenylzinc Reagents Bearing Carbonyl Groups: Preparation by Direct Metal Insertion and Reaction with Electrophiles, *Angew. Chem. Int. Ed.*, 2013, **52**, 9495-9499. DOI: 10.1002/anie.201302058

K. Hong, J. Shu, S. Dong, Z. Zhang, Y. He, M. Liu, J. Huang, W. Hu and X. Xu, Asymmetric Three-Component Reaction of Enynal with Alcohol and Imine as An Expeditious Track to Afford Chiral α-Furyl-β-amino Carboxylate Derivatives, ACS Catal., 2022, 12, 14185-14193. DOI: 10.1021/acscatal.2c04022

2-Butyne-1,4-diol 3-(2-formylcyclohex-1-en-1-yl)propiolate (1f). Synthesized using general procedure 1. Yellow oil, (38mg, 26%). **TLC**: R_f 0.69 (ethyl acetate/hexanes = 3: 2). ¹H **NMR** (CDCl₃, 400 MHz) δ 10.15 (s, 1H), 4.85 (t, J = 1.9 Hz, 2H), 4.33 (dt, J = 6.2, 1.8 Hz, 2H), 2.45 (dq, J = 6.1, 2.7 Hz, 2H), 2.31 (dq, J = 5.9, 2.7 Hz, 2H), 1.76 – 1.61 (m, 4H).¹³C **NMR** (CDCl₃, 100 MHz δ 191.64, 152.66, 148.46, 135.60, 87.48, 86.24, 83.41, 78.72, 53.95, 51.18, 31.27, 22.48, 21.67, 20.71. **HRMS** (ESI) *m/z* calcd for C₁₄H₁₄O₄Na ([M+Na]⁺) 269.0790; found 269.0778.

2-ethynylcyclohex-1-ene-1-carbaldehyde (1g). Synthesized following the reported procedure. (3.7 g, 70% yield.) Characterization data was in accordance with previous reports.¹

2-(3-oxo-3-phenylprop-1-yn-1-yl)cyclohex-1-ene-1-carbaldehyde (1h). Synthesized following the reported procedure. (450 mg, 75% yield.) Characterization data was in accordance with previous reports. ¹

Y. Kato, K. Miki, F. Nishino, K. Ohe and S. Uemura, Doyle–Kirmse Reaction of Allylic Sulfides with Diazoalkane-Free (2-Furyl)carbenoid Transfer, Org. Lett., 2003, 5, 2619-2621. DOI: 10.1021/ol034731q

3-(2-formylcyclohex-1-en-1-yl)-N,N-dimethylpropiolamide (1i). 2-(2-ethynylcyclohex-1-en-1-yl)-1,3-dioxolane was synthesized following the reported procedure.¹ To 2-(2-ethynylcyclohex-1-en-1-yl)-1,3-dioxolane (200 mg, 1.1 mmol) in THF was added *n*-butyl Lithium (1.1 mmol) at -20 °C. After 20 min, the mixture was warmed to RT. Then CO2 was bubbled into the solution for 2 h. Solution was washed by EtOAc. The aqueous layer was acidified by phosphoric acid and extracted by EtOAc. The organic layer was dried over Na₂SO₄. After solvent being removed, the remaining oil was dissolved in acetonitrile. CDI (1 mmol) was added at 40 °C and stirred for 2 h. Then the mixture was cooled to RT and added with dimethylamine (2 mmol) in THF solution and stirred for overnight. The reaction mixture was filtered through silica plug. After solvent being removed, the remaining oil was dissolved in THF (3 ml). To this solution, HCl (35%, 0.8 ml) and water (2.2 ml) was added. The reaction was stirred at 0 $^{\circ}$ for 1.5 h. After completion, the reaction was extracted with EtOAc, washed with water, brine and dried over Na_2SO_4 . The organic layer was concentrated and purified by column chromatography eluting with 1:5 ethyl acetate:hexanes to furnish pure enynal 1h. Yellow oil (45 mg, overall 20% yield after 3 steps) TLC: R_f 0.12 (ethyl acetate/hexanes = 2: 3). ¹**H NMR** (CDCl₃, 400 MHz) δ 10.16 (s, 1H), 3.22 (s, 3H), 3.02 (s, 3H), 2.47 (dq, J = 6.0, 2.8 Hz, 2H), 2.30 (dt, J = 6.0, 3.0 Hz, 2H), 1.80 – 1.61 (m, 4H). ¹³C NMR (CDCl₃, 100 MHz) & 191.85, 153.97, 146.08, 137.17, 89.76, 86.54, 38.45, 34.39, 31.75, 22.35, 21.79, 20.86. **MS** (ESI) m/z calcd for C₁₂H₁₆NO₂ ([M+H]⁺) 206.1; found 206.1.

 Y. Kato, K. Miki, F. Nishino, K. Ohe and S. Uemura, Doyle-Kirmse Reaction of Allylic Sulfides with Diazoalkane-Free (2-Furyl)carbenoid Transfer, Org. Lett., 2003, 5, 2619-2621. DOI: 10.1021/ol034731q

C. General Procedure 2 for the Synthesis of Beta-Arylaminoketones (2)

Aminoketones (2). Aminoketones were synthesized following a modified literature procedure.⁴ Methyl vinyl ketone (1.2 mmol, 1.2 equiv.) and substituted aniline (1 mmol, 1 equiv.) were mixed in an eppendorf tube for overnight sonication. The product was directly purified by column chromatography, eluting with 1:9 ethyl acetate:hexanes gradient to 3:7 ethyl acetate:hexanes to furnish pure aminoketones **2a-2j**.

4-(Phenylamino)butan-2-one (2a). Synthesized using general procedure 2. (99 mg, 66% yield). Characterization data was in accordance with previous reports. ⁵

4-((4-Bromophenyl)amino)butan-2-one (2b). Synthesized using general procedure 2. (110 mg, 45% yield). Characterization data was in accordance with previous reports. ⁶

4-((4-Chlorophenyl)amino)butan-2-one (2c). Synthesized using general procedure 2. (110 mg, 45% yield.) Characterization data was in accordance with previous reports.⁷

- 6. C. B. Phippen, J. K. Beattie and C. S. McErlean, "On-water" conjugate additions of anilines, *Chem. Commun.*, 2010, **46**, 8234-8236. DOI: 10.1039/C0CC02502J (
- K. De, J. Legros, B. Crousse and D. Bonnet-Delpon, Solvent-promoted and-controlled aza-Michael reaction with aromatic amines, *J. Org. Chem.*, 2009, 74, 6260-6265. DOI: 10.1021/jo9012699

R. Jiang, D.-H. Li, J. Jiang, X.-P. Xu, T. Chen and S.-J. Ji, Green, efficient and practical Michael addition of arylamines to α,β-unsaturated ketones, *Tetrahedron*, 2011, **67**, 3631-3637.DOI: 10.1016/j.tet.2011.03.082

^{5.} R. N. Monrad and R. Madsen, Ruthenium-catalysed synthesis of 2-and 3-substituted quinolines from anilines and 1, 3-diols, *Org. Biomol. Chem.*, 2011, **9**, 610-615. DOI: 10.1039/C0OB00676A

4-((4-Bromo-2-fluorophenyl)amino)butan-2-one(2d). Synthesized using general procedure 2. Yellow oil (123 mg, 53% yield). **TLC**: R_f 0.53 (ethyl acetate/hexanes = 1:1). ¹**H NMR** (CDCl₃, 400 MHz) δ 7.16 – 7.06 (m, 2H), 6.56 (t, J = 8.7 Hz, 1H), 4.19 (s, 1H), 3.41 (t, J = 6.2 Hz, 2H), 2.76 (t, J = 6.2 Hz, 2H), 2.18 (s, 3H). ¹³**C NMR** (CDCl₃, 100 MHz) δ 207.52, 151.47 (d, J = 243.5 Hz), 135.58 (d, J = 11.5 Hz), 127.54 (d, J = 3.5 Hz), 118.16 (d, J = 21.9 Hz), 113.01 (d, J = 3.8 Hz), 107.38 (d, J = 8.8 Hz).42.52, 38.01, 30.50. **HRMS** (ESI) We were unable to obtain accurate HRMS data for this compound.

4-((4-Nitrophenyl)amino)butan-2-one (2e). Synthesized following the reported procedure. (61 mg, 29% yield). Characterization data was in accordance with previous reports.⁸

4-((3-(Trifluoromethyl)phenyl)amino)butan-2-one (2f). Synthesized using general procedure 2. (140 mg, 61% yield). Characterization data was in accordance with previous reports. ⁹

3-((3-Oxobutyl)amino)benzonitrile (2g). Synthesized using general procedure 2. Yellow solid (110 mg 46% yield). **TLC**: R_f 0.20 (ethyl acetate/hexanes = 3:7). ¹**H NMR** (CDCl₃, 400 MHz) δ 7.20 (tq, J = 6.5, 2.1 Hz, 1H), 6.99 – 6.90 (m, 1H), 6.77 (qd, J = 2.8, 1.4 Hz, 2H), 4.32 (s, 1H), 3.38 (ddt, J = 8.0, 6.0, 2.4 Hz, 2H), 2.79 – 2.70 (m, 2H), 2.18 (s, 3H). ¹³**C NMR** (CDCl₃, 100 MHz) δ 207.84, 148.05, 130.02, 120.86, 119.53, 117.53, 114.82, 112.92, 42.13, 37.91, 30.40. **HRMS** (ESI) *m/z* calcd for C₁₁H₁₂N₂ONa ([M+Na]⁺) 211.0847; found 211.0847.

 C. Miao, L. Jiang, L. Ren, Q. Xue, F. Yan, W. Shi, X. Li, J. Sheng and S. Kai, Iodine-catalyzed coupling of β-hydroxyketones with aromatic amines to form β-aminoketones and Benzo[h]quinolones, *Tetrahedron*, 2019, **75**, 2215-2228. DOI: 10.1016/j.tet.2019.02.041

L. Ouyang, J. Huang, J. Li, C. Qi, W. Wu and H. Jiang, Palladium-catalyzed oxidative amination of homoallylic alcohols: sequentially installing carbonyl and amino groups along an alkyl chain, *Chem. Commun.*, 2017, 53, 10422-10425. DOI: 10.1039/C7CC06077G

4-[[4-(1,1-Dimethylethyl)phenyl]amino]butan-2-one (2h). Synthesized using general procedure 2. (149 mg, 68% yield). Characterization data was in accordance with previous reports.⁹

4-((4-((Tert-butyldimethylsilyl)oxy)phenyl)amino)butan-2-one (2i). Synthesized using general procedure 2. Yellow solid (153 mg 45% yield). **TLC**: R_f 0.20 (ethyl acetate/hexanes = 3:7). ¹**H NMR** (CDCl₃, 500 MHz) 6.77 – 6.67 (m, 2H), 6.53 (dt, J = 12.7, 5.3 Hz, 2H), 3.35 (tt, J = 6.2, 1.2 Hz, 2H), 2.74 (q, J = 6.5 Hz, 2H), 2.17 (s, 3H), 0.96 (s, 9H), 0.15 (s, 6H). ¹³**C NMR** (CDCl₃, 125 MHz) δ δ 208.40, 147.94, 142.13, 120.86, 114.62, 42.83, 39.67, 30.47, 25.89, 18.32, -4.33. **HRMS** (ESI) *m/z* calcd C₁₆H₂₈NO₂Si ([M+H]⁺) 294.1889; found 294.1893.

4-(Naphthalen-1-ylamino)butan-2-one (2j). Synthesized using general procedure 2. (105 mg, 49% yield). Characterization data was in accordance with previous reports.⁴

1-phenyl-3-(phenylamino)propan-1-one (2k)). Synthesized following the reported procedure. (112 mg, 43% yield). Characterization data was in accordance with previous reports.¹⁰

- R. Jiang, D.-H. Li, J. Jiang, X.-P. Xu, T. Chen and S.-J. Ji, Green, efficient and practical Michael addition of arylamines to α,β-unsaturated ketones, *Tetrahedron*, 2011, **67**, 3631-3637.DOI: 10.1016/j.tet.2011.03.082
- C. Miao, L. Jiang, L. Ren, Q. Xue, F. Yan, W. Shi, X. Li, J. Sheng and S. Kai, Iodine-catalyzed coupling of β-hydroxyketones with aromatic amines to form β-aminoketones and Benzo[h]quinolones, *Tetrahedron*, 2019, **75**, 2215-2228. DOI: 10.1016/j.tet.2019.02.041
- M. Barbero, S. Cadamuro and S. Dughera, O-Benzenedisulfonimide as a reusable Brønsted acid catalyst for hetero-Michael reactions, *Synth. Commun.*, 2013, **43**, 758-767. DOI: 10.1080/00397911.2011.614834

1-phenyl-4-(phenylamino)butan-2-one (2l). Synthesized using general procedure 2. Yellow oil (110 mg, 48% yield). **TLC**: R_f 0.53 (ethyl acetate/hexanes = 1: 4). ¹H **NMR** (CDCl₃, 400 MHz) δ 7.38 – 7.27 (m, 3H), 7.17 (ddd, J = 13.8, 7.1, 1.8 Hz, 4H), 6.70 (t, J = 7.4 Hz, 1H), 6.55 (d, J = 8.1 Hz, 2H), 3.91 (s, 1H), 3.70 (s, 2H), 3.38 (t, J = 6.1 Hz, 2H), 2.76 (t, J = 6.1 Hz, 2H). ¹³C **NMR** (CDCl₃, 100 MHz), δ 207.96, 147.70, 133.89, 129.56, 129.42, 128.96, 127.32, 117.75, 113.13, 50.67, 41.03, 38.59. **MS** (ESI) *m/z* calcd for C₁₆H₁₈NO ([M+H]⁺) 240.1; found 240.1.

D. General Procedure 3 for the Synthesis of Furyl Pyrrolidines (3 & 5)

To a 5.0 mL RB flask equipped with a magnetic stir bar was added $ZnCl_2$ (10 µmol, 0.2 equiv.). A solution of amino ketone (50 µmol, 1 equiv.) in chlorobenzene (1 ml) was added. Lastly, the enynal (85 µmol, 1.7 equiv.) in chlorobenzene (0.5 ml) was added via syringe pump over 4 h at 60 °C. Reaction was monitored by TLC. After completion, the reaction mixture was directly purified by column chromatography 1:9 ethyl acetate:hexanes gradient to 1:4 ethyl acetate:hexanes to Furyl Pyrrolidines **3a-3j** and **5a-5e**.

Methyl 3-hydroxy-3-methyl-1-phenyl-2-(4,5,6,7-tetrahydroisobenzofuran-1-yl)pyrrolidine-2-carboxylate (3a). Synthesized using general procedure 3. Yellow solid. (75% NMR yield using 1,3,5-trimethoxybenzene as reference.) TLC: R_f 0.33 (ethyl acetate/hexanes = 3:7). ¹H NMR (CDCl₃,400 MHz): δ 7.18 (s, 1H), 7.12 (dd, J = 8.6, 7.2 Hz, 2H), 6.69 (t, J = 7.3 Hz, 1H), 6.49 (d, J = 8.1 Hz, 2H), 3.71 (m, 4H), 3.67 – 3.55 (m, 1H), 2.66 (s, 1H), 2.48 (q, J = 6.5, 6.1 Hz, 2H), 2.38 – 1.92 (m, 4H), 1.72 – 1.40 (m, 4H), 1.12 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz δ 171.14, 146.91, 143.66, 136.74, 128.66, 122.57, 120.23, 117.18, 113.38, 86.03, 77.36, 52.44, 48.09, 37.16, 24.17, 23.57, 22.82, 21.90, 20.48. HRMS (ESI) *m/z* calcd for C₂₁H₂₅NO₄Na ([M+Na]⁺) 378.1682; found 378.1673.

Methyl 1-(4-bromophenyl)-3-hydroxy-3-methyl-2-(4,5,6,7-tetrahydroisobenzofuran-1-yl)pyrrolidine-2-carboxylate (3b). Synthesized using general procedure 3. Yellow solid. (84% NMR yield using 1,3,5-trimethoxybenzene as reference.) TLC: R_f 0.45 (ethyl acetate/hexanes = 2:3). ¹H NMR (CDCl₃, 400 MHz): 7.22 – 7.13 (m, 3H), 6.35 (d, J = 9.1 Hz, 2H), 3.72 (d, J = 1.3 Hz, 4H), 3.54 (td, J = 8.6, 4.1 Hz, 1H), 2.62 (s, 1H), 2.47 (d, J = 5.9 Hz, 2H), 2.23 (ddt, J = 12.8, 9.6, 4.5 Hz, 2H), 2.16 – 1.99 (m, 2H), 1.66 – 1.42 (m, 4H), 1.14 (d, J = 1.4 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 170.54, 145.92, 143.05, 136.87, 131.28, 122.65, 120.27, 115.04, 109.24, 86.10, 77.36, 52.49, 48.18, 37.20, 24.07, 23.53, 22.76, 21.93, 20.43.HRMS (ESI) *m/z* calcd for C₂₁H₂₅BrNO₄ ([M+H]⁺) 434.0967; found 434.0971.

Methyl 1-(4-chlorophenyl)-3-hydroxy-3-methyl-2-(4,5,6,7-tetrahydroisobenzofuran-1-yl)pyrrolidine-2-carboxylate (3c). Synthesized using general procedure 3. Colourless oil. (62% NMR yield using 1,3,5-trimethoxybenzene as reference.) TLC: R_f 0.39 (ethyl acetate/hexanes = 3:7). ¹H NMR (CDCl₃, 400 MHz): δ 7.17 (s, 1H), 7.13 – 6.97 (m, 2H), 6.52 – 6.31 (m, 2H), 3.72 (m, 4H), 3.55 (td, J = 8.6, 4.1 Hz, 1H), 2.58 (s, 1H), 2.48 (d, J = 5.7 Hz, 2H), 2.31 – 2.03 (m, 4H), 1.74 – 1.41 (m, 4H), 1.14 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 170.66, 145.53, 143.16, 136.88, 128.46, 122.67, 121.99, 120.29, 114.53, 86.11, 77.36, 52.50, 48.27, 37.21, 24.12, 23.54, 22.78, 21.93, 20.44. HRMS (ESI) *m/z* calcd for C₂₁H₂₅ClNO₄ ([M+H]⁺) 390.14723; found 390.1455.

Methyl 1-(4-bromo-2-fluorophenyl)-3-hydroxy-3-methyl-2-(4,5,6,7-tetrahydroisobenzofuran-1yl)pyrrolidine-2-carboxylate (3d). Synthesized using general procedure 3. Colourless oil. (80% NMR yield using 1,3,5-trimethoxybenzene as reference.) TLC: R_f 0.38 (ethyl acetate/hexanes = 2:3). ¹H NMR (CDCl₃, 500 MHz): δ 7.16 (s, 1H), 7.09 (dd, J = 13.1, 2.3 Hz, 1H), 6.95 (dd, J = 8.8, 2.3 Hz, 1H), 6.38 (t, J = 9.1 Hz, 1H), 3.89 (ddt, J = 11.4, 7.9, 3.9 Hz, 1H), 3.74 (s, 3H), 3.68 (tt, J = 8.7, 4.2 Hz, 1H), 2.60 (s, 1H), 2.56 – 2.47 (m, 2H), 2.29 – 2.16 (m, 2H), 2.19 – 2.04 (m, 2H), 1.69 – 1.50 (m, 4H), 1.19 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz) δ 170.40, 143.95, 137.80, 136.45, 126.80, 126.78, 122.59, 119.69, 119.49, 84.99, 77.26, 52.37, 50.17, 50.10, 36.89, 23.63, 23.43, 22.63, 20.30. HRMS (ESI) *m/z* calcd for C₂₁H₂₃BrFNO₄Na ([M+Na]⁺) 474.0692; found 474.0696.

Methyl 3-hydroxy-3-methyl-1-(4-nitrophenyl)-2-(4,5,6,7-tetrahydroisobenzofuran-1-yl)pyrrolidine-2-carboxylate (3e). Synthesized using general procedure 3. Colourless oil. (81% NMR yield using 1,3,5-trimethoxybenzene as reference.) TLC: R_f 0.34 (ethyl acetate/hexanes = 2:3). ¹H NMR (CDCl₃, 400 MHz) : δ 8.01 (d, 2H), 7.15 (s, 1H), 6.44 (d, J = 8.9 Hz, 2H), 3.87 (dt, J = 9.5, 8.2 Hz, 1H), 3.76 (s, 3H), 3.74 - 3.55 (m, 1H), 2.62 - 2.35 (m, 2H), 2.31 - 2.08 (m, 4H), 1.59 - 1.49 (m, 4H), 1.24 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 169.07, 151.98, 141.78, 138.42, 138.10, 137.16, 125.32, 122.88, 112.70, 86.22, 77.36, 52.73, 48.53, 37.32, 23.94, 23.47, 22.66, 22.16, 20.36. HRMS (ESI) *m/z* calcd for C₂₁H₂₅N₂O₆ ([M+H]⁺) 401.1713; found 401.1720.

Methyl 3-hydroxy-3-methyl-2-(4,5,6,7-tetrahydroisobenzofuran-1-yl)-1-(3-(trifluoromethyl)phenyl)pyrrolidine-2-carboxylate (3f). Synthesized using general procedure 3. Colourless oil. (72% NMR yield using 1,3,5-trimethoxybenzene as reference.) TLC: R_f 0.45 (ethyl acetate/hexanes = 2:3). ¹H NMR (CDCl₃, 400 MHz): δ 7.22 – 7.08 (m, 2H), 6.91 (d, J = 7.6 Hz, 1H), 6.71 (t, J = 2.0 Hz, 1H), 6.59 (dd, J = 8.4, 2.5 Hz, 1H), 3.80 (q, J = 8.2 Hz, 1H), 3.73 (s, 3H), 3.61 (dt, J = 9.2, 6.0 Hz, 1H), 2.58 (s, 1H), 2.54 – 2.39 (m, 2H), 2.35 – 2.19 (m, 3H), 2.12 (s, 1H), 1.70 – 1.45 (m, 4H), 1.20 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 170.20, 146.95, 142.66, 136.86, 130.72 (q, J = 31.5 Hz), 128.78, 124.59 (d, J = 272.4 Hz), 122.61, 120.52, 116.61, 113.55, 109.98, 86.09, 77.36, 52.48, 48.24, 37.30, 23.91, 23.50, 22.75, 22.16, 20.42. HRMS (ESI) *m/z* calcd for C₂₂H₂₅F₃NO₄ ([M+H]⁺) 424.17358; found 424.1721.

Methyl 1-(3-cyanophenyl)-3-hydroxy-3-methyl-2-(4,5,6,7-tetrahydroisobenzofuran-1-yl)pyrrolidine-2-carboxylate (3g). Synthesized using general procedure 3. Colourless oil. (71% NMR yield using 1,3,5-trimethoxybenzene as reference.) TLC: R_f 0.29 (ethyl acetate/hexanes = 2:3). ¹H NMR (CDCl₃, 400 MHz): δ 7.15 (t, J = 8.0 Hz, 2H), 6.95 (d, J = 7.5 Hz, 1H), 6.70 (s, 1H), 6.64 (dd, J = 8.5, 2.3 Hz, 1H), 3.75 (s, 4H), 3.57 (dt, J = 9.2, 5.9 Hz, 1H), 2.55 – 2.40 (m, 3H), 2.33 – 2.15 (m, 3H), 2.13 – 2.00 (m, 1H), 1.69 – 1.49 (m, 4H), 1.20 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 169.80, 147.02, 142.21, 137.06, 129.14, 122.74, 120.52, 120.47, 119.91, 117.82, 116.38, 112.23, 86.15, 77.36, 52.61, 48.13, 42.01, 37.28, 23.89, 23.49, 22.72, 22.16, 20.36. HRMS (ESI) *m/z* calcd for C₂₂H₂₅N₂O₄ ([M+H]⁺) 381.1815; found 381.1800.

Methyl 1-(4-(tert-butyl)phenyl)-3-hydroxy-3-methyl-2-(4,5,6,7-tetrahydroisobenzofuran-1-yl)pyrrolidine-2-carboxylate (3h). Synthesized using general procedure 3. Colourless oil. (52% NMR yield using 1,3,5-trimethoxybenzene as reference.) TLC: R_f 0.50 (ethyl acetate/hexanes = 2:3). ¹H NMR (CDCl₃, 400 MHz): δ 7.22 – 6.99 (m, 3H), 6.50 – 6.29 (m, 2H), 3.73 (s, 4H), 3.58 (dt, J = 8.7, 4.4 Hz, 1H), 2.74 (s, 1H), 2.48 (q, J = 6.1, 5.5 Hz, 2H), 2.26 (dt, J = 14.1, 5.5 Hz, 2H), 2.17 – 2.00 (m, 2H), 1.64 – 1.47 (m, 4H), 1.24 (s, 9H), 1.11 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 171.32, 144.39, 143.84, 139.61, 136.56, 125.38, 122.49, 120.24, 113.08, 85.97, 77.36, 52.42, 48.08, 37.26, 33.87, 31.74, 31.63, 24.04, 23.58, 22.87, 22.00, 20.49. HRMS (ESI) *m/z* calcd for C₂₅H₂₈N₂O₄ ([M+H]⁺) 406.20185; found 406.2009.

Methyl 1-(4-((tert-butyldimethylsilyl)oxy)phenyl)-3-hydroxy-3-methyl-2-(4,5,6,7-tetrahydroisobenzofuran-1-yl)pyrrolidine-2-carboxylate (3i). Synthesized using general procedure 3. Colourless oil. (50% NMR yield using 1,3,5-trimethoxybenzene as reference.) TLC: R_f 0.45 (ethyl acetate/hexanes = 2:3). ¹H NMR (CDCl₃, 400 MHz): δ 7.19 (s, 1H), 6.63 (d, J = 8.7 Hz, 2H), 6.37 (d, J = 8.5 Hz, 2H), 3.70 (m, 4H), 3.57 – 3.51 (m, 1H), 2.68 (s, 1H), 2.52 – 2.39 (m, 2H), 2.36 – 2.25 (m, 1H), 2.23 – 2.12 (m, 1H), 2.11 – 2.01 (m, 1H), 2.01 – 1.89 (m, 1H), 1.63-1.38 (m, 4H), 1.10 (s, 3H), 0.95 (s, 9H), 0.12 (s, 6H). ¹³C NMR (CDCl₃, 100 MHz) δ 171.52, 147.14, 144.00, 141.68, 136.68, 122.51, 120.26, 120.14, 114.44, 85.93, 77.36, 52.32, 48.51, 37.24, 25.89, 24.27, 23.54, 22.85, 21.80, 20.49, 18.34, -4.30. HRMS (ESI) m/z calcd for C₂₇H₄₀N₂O₅Si ([M+H]⁺) 486.2676; found 486.2694.

Methyl 3-hydroxy-3-methyl-1-(naphthalen-1-yl)-2-(4,5,6,7-tetrahydroisobenzofuran-1-yl)pyrrolidine-2-carboxylate (3j). Synthesized using general procedure 3. Gray solid. (76% NMR yield using 1,3,5-trimethoxybenzene as reference.) **TLC**: R_f 0.39 (ethyl acetate/hexanes = 2:3). ¹H NMR (CDCl₃, 400 MHz):): δ 8.42 (d, J = 8.4 Hz, 1H), 7.78 (d, J = 8.1 Hz, 1H), 7.60 (d, J = 8.2 Hz, 1H), 7.47 (dt, J = 23.6, 6.8 Hz, 2H), 7.25 (d, J = 6.3 Hz, 1H), 7.17 (t, J = 7.8 Hz, 1H), 6.19 (d, J = 7.5 Hz, 1H), 3.78 – 3.70 (m, 1H), 3.49 (s, 3H), 3.36 – 3.27 (m, 2H), 2.75 (ddd, J = 13.3, 10.4, 6.2 Hz, 1H), 2.57 (q, J = 7.3, 6.5 Hz, 1H), 2.25 (ddd, J = 13.0, 8.7, 4.0 Hz, 1H), 2.08 (ddd, J = 16.3, 8.9, 5.3 Hz, 1H), 1.71 (dt, J = 16.0, 5.5 Hz, 1H), 1.66 – 1.52 (m, 3H), 1.50 (s, 3H), 1.38 – 1.23 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz) δ 170.54, 144.09, 137.95, 136.59, 126.94, 126.92, 122.73, 119.83, 119.63, 85.13, 77.40, 52.51, 50.31, 50.24, 37.04, 23.78, 23.58, 22.77, 21.77, 20.45. **HRMS** (ESI) *m/z* calcd for C₂₇H₃₀NO₄ ([M+H]⁺) 432.2169; found 432.2181.

methyl (2R,3S)-3-hydroxy-1,3-diphenyl-2-(4,5,6,7-tetrahydroisobenzofuran-1-yl)pyrrolidine-2carboxylate (3k). Synthesized using general procedure 3. Yellow solid. (32% NMR yield using 1,3,5trimethoxybenzene as reference.) TLC: Rf 0.35 (ethyl acetate/hexanes = 1:4). ¹H NMR (CDCl₃, 600 MHz) δ 7.25 – 7.18 (m, 3H), 7.17 – 7.11 (m, 4H), 6.86 (s, 1H), 6.72 (t, J = 7.4 Hz, 1H), 6.53 (d, J = 7.6 Hz, 2H), 4.04 (q, J = 8.3 Hz, 1H), 3.90 (d, J = 2.4 Hz, 1H), 3.82 (td, J = 8.8, 2.6 Hz, 1H), 3.74 (s, 3H), 2.70 (dt, J = 12.7, 8.8 Hz, 1H), 2.39 – 2.32 (m, 2H), 2.27 (ddd, J = 12.7, 7.2, 2.4 Hz, 1H), 2.20 – 2.07 (m, 1H), 1.47 – 1.31 (m, 4H), 1.23 – 1.16 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 171.19, 146.88, 142.22, 140.14, 136.39, 128.83, 127.71, 127.54, 126.24, 122.55, 121.88, 117.60, 113.64, 88.08, 78.10, 77.48, 77.16, 76.84, 52.68, 48.67, 36.21, 23.64, 22.75, 22.15, 20.49. **MS** (ESI) *m/z* calcd for $C_{26}H_{18}NO_4$ ([M+H]⁺) 418.2; found 418.0.

methyl (2R,3R)-3-benzyl-3-hydroxy-1-phenyl-2-(4,5,6,7-tetrahydroisobenzofuran-1-yl)pyrrolidine-2-carboxylate (3l). Synthesized using general procedure 3. Colourless oil. (40% NMR yield using 1,3,5-trimethoxybenzene as reference.) TLC: Rf 0.35 (ethyl acetate/hexanes = 1:4). ¹H NMR (CDCl₃, 400 MHz) δ 7.27 (q, J = 6.8 Hz, 3H), 7.23 – 7.17 (m, 3H), 7.12 (t, J = 7.7 Hz, 2H), 6.69 (t, J = 7.2 Hz, 1H), 6.48 (d, J = 8.1 Hz, 2H), 3.74 (s, 3H), δ 3.69 (t, J = 8.1 Hz, 1H), 3.63 (dt, J = 8.8, 4.3 Hz, 1H), 2.95 (d, J = 13.8 Hz, 1H), 2.58 – 2.41 (m, 2H), 2.41 – 2.30 (m, 3H), 2.24 – 2.11 (m, 2H), 1.89 (ddd, J = 11.9, 7.1, 3.6 Hz, 1H), 1.62 (q, J = 9.7, 8.1 Hz, 1H), 1.55 (m, 4H). ¹³C NMR (CDCl₃, 100 MHz) δ 170.50, 146.71, 143.06, 136.99, 130.65, 129.56, 128.57, 128.40, 126.89, 122.74, 120.87, 117.06, 113.42, 87.69, 77.36, 52.40, 47.95, 41.85, 34.62, 23.63, 22.82, 22.21, 20.51. MS (ESI) *m/z* calcd for C₂₇H₃₀NO₄ ([M+H]⁺) 432.2; found 432.0.

Ethyl 3-hydroxy-3-methyl-1-phenyl-2-(4,5,6,7-tetrahydroisobenzofuran-1-yl)pyrrolidine-2-carboxylate (5a). Synthesized using general procedure 3. Colourless oil. (51% NMR yield using 1,3,5-trimethoxybenzene as reference.) **TLC**: R_f 0.45 (ethyl acetate/hexanes = 2:3). ¹**H NMR** (CDCl₃, 400 MHz): δ 7.18 (s, 1H), 7.11 (t, J = 2.3 Hz, 2H), 6.68 (t, J = 7.3 Hz, 1H), 6.51 (d, J = 8.9 Hz, 1H), 4.30 – 4.04 (m, 2H), 3.80 – 3.67 (m, 1H), 3.59 (td, J = 8.6, 4.5 Hz, 1H), 2.72 (s, 1H), 2.51 – 2.41 (m, 3H), 2.28 (ddd, J = 12.1, 7.6, 4.5 Hz, 2H), 2.17 – 1.98 (m, 2H), 1.48 (d, J = 5.3 Hz, 4H), 1.17 – 1.08 (m, 6H). ¹³**C NMR** (CDCl₃, 100 MHz) δ 170.49, 147.02, 143.87, 136.71, 128.54, 122.53, 120.17, 117.15, 113.53, 85.94, 76.64, 61.59, 48.08, 37.22, 24.26, 23.59, 22.85, 21.94, 20.49, 14.14. **HRMS** (ESI) *m/z* calcd for C₂₂H₂₈NO₄ ([M+H]⁺) 370.20185; found 370.2009.

Benzyl 3-hydroxy-3-methyl-1-phenyl-2-(4,5,6,7-tetrahydroisobenzofuran-1-yl)pyrrolidine-2-carboxylate (5b). Synthesized using general procedure 3. Gray sold. (51% NMR yield using 1,3,5-trimethoxybenzene as reference.) **TLC**: R_f 0.52 (ethyl acetate/hexanes = 2:3). ¹**H** NMR (CDCl₃, 600 MHz): δ 7.25 – 7.19 (m, 4H), 7.10 (t, J = 7.9 Hz, 2H), 7.06 (d, J = 6.5 Hz, 2H), 6.70 (t, J = 7.2 Hz, 1H), 6.51 (d, J = 8.0 Hz, 2H), 5.19 (d, J = 12.5 Hz, 1H), 5.10 (d, J = 12.6 Hz, 1H), 3.78 – 3.67 (m, 1H), 3.64 – 3.56 (m, 1H), 2.55 (s, 1H), 2.47 (dq, J = 16.7, 9.0, 8.0 Hz, 2H), 2.22 (d, J = 18.3 Hz, 2H), 2.11 – 1.94 (m, 2H), 1.67 – 1.34 (m, 4H), 1.12 (s, 3H). ¹³**C** NMR (CDCl₃, 150 MHz) δ 170.36, 147.03, 143.76, 136.80, 135.54, 128.71, 128.44, 128.21, 128.07, 122.59, 120.19, 117.26, 113.51, 86.17, 67.24, 48.08, 37.22, 24.31, 23.56, 22.83, 21.87, 20.49. **HRMS** (ESI) *m/z* calcd for $C_{27}H_{30}NO_4$ ([M+H]⁺) 432.2169; found 432.2181.

Allyl 3-hydroxy-3-methyl-1-phenyl-2-(4,5,6,7-tetrahydroisobenzofuran-1-yl)pyrrolidine-2-carboxylate (5c). Synthesized using general procedure 3. Colourless oil. (51% NMR yield using 1,3,5-trimethoxybenzene as reference.) TLC: R_f 0.50 (ethyl acetate/hexanes = 3:7). ¹H NMR (CDCl₃, 400 MHz): δ 7.18 (s, 1H), 7.11 (t, J = 2.3 Hz, 2H), 6.68 (t, J = 7.3 Hz, 1H), 6.51 (d, J = 8.9 Hz, 1H), 4.30 – 4.04 (m, 2H), 3.80 – 3.67 (m, 1H), 3.59 (td, J = 8.6, 4.5 Hz, 1H), 2.72 (s, 1H), 2.51 – 2.41 (m, 3H), 2.28 (ddd, J = 12.1, 7.6, 4.5 Hz, 2H), 2.17 – 1.98 (m, 2H), 1.48 (d, J = 5.3 Hz, 4H), 1.17 – 1.08 (m, 6H). ¹³C NMR (CDCl₃, 100 MHz) δ 170.49, 147.02, 143.87, 136.71, 128.54, 122.53, 120.17, 117.15, 113.53, 85.94, 76.64, 61.59, 48.08, 37.22, 24.26, 23.59, 22.85, 21.94, 20.49, 14.14. HRMS (ESI) *m/z* calcd for C₂₂H₂₈NO4 ([M+H]⁺) 370.20185; found 370.2009.

2-Hydroxyethyl 3-hydroxy-3-methyl-1-phenyl-2-(4,5,6,7-tetrahydroisobenzofuran-1-yl)pyrrolidine-2-carboxylate (5d). Synthesized using general procedure 3. Colourless oil. (45% NMR yield using 1,3,5-trimethoxybenzene as reference.) **TLC**: R_f 0.12 (ethyl acetate/hexanes = 2:3). ¹**H NMR** (CD₃OD, 400 MHz): δ 7.17 (s, 1H), 7.01 (t, J = 7.8 Hz, 2H), 6.58 (t, J = 7.2 Hz, 1H), 6.41 (d, J = 8.1 Hz, 2H), 4.27 – 4.09 (m, 2H), 3.74 (q, J = 8.0, 7.5 Hz, 1H), 3.68 – 3.49 (m, 3H), 2.44 (d, J = 5.6 Hz, 2H), 2.30 – 2.04 (m, 4H), 1.51 (d, J = 41.6 Hz, 4H), 1.11 (s, 3H). ¹³**C NMR** (CD₃OD, 100 MHz) δ 171.07, 148.15, 145.16, 137.60, 129.19, 123.71, 120.87, 117.52, 114.23, 87.08, 78.43, 67.05, 60.68, 48.67, 38.85, 24.66, 24.35, 23.96, 23.24, 21.33. **HRMS** (ESI) *m/z* calcd for C₂₂H₂₈NO₅ ([M+H]⁺) 386.1968; found 386.1978.

4-Hydroxybut-2-yn-1-yl 3-hydroxy-3-methyl-1-phenyl-2-(4,5,6,7-tetrahydroisobenzofuran-1-yl)pyrrolidine-2-carboxylate (5e). Synthesized using general procedure 3. Colourless oil. (36% NMR yield using 1,3,5-trimethoxybenzene as reference.) **TLC**: R_f 0.15 (ethyl acetate/hexanes = 2:3) ¹**H** NMR (CDCl₃, 400 MHz): δ 7.19 (s, 1H), 7.13 (dd, J = 8.6, 7.2 Hz, 2H), 6.70 (dd, J = 8.0, 6.8 Hz, 1H), 6.57 – 6.43 (m, 2H), 4.76 (dt, J = 6.6, 1.9 Hz, 2H), 4.19 (s, 2H), 3.76 (q, J = 8.0 Hz, 1H), 3.62 (td, J = 8.6, 4.9 Hz, 1H), 2.65 (s, 1H), 2.59 – 2.45 (m, 2H), 2.37 – 2.22 (m, 2H), 2.17 – 2.00 (m, 2H), 1.78 – 1.66 (m, 4H), 1.55 – 1.46 (m, 3H), 1.11 (s, 3H). ¹³**C** NMR (CDCl₃, 100 MHz)): δ 169.96, 146.90, 143.40, 136.85, 128.65, 122.60, 120.36, 117.24, 113.62, 86.34, 85.21, 79.75, 77.36, 52.91, 51.13, 48.19, 37.12, 24.43, 23.54, 22.81, 21.91, 20.46. **HRMS** (ESI) *m/z* calcd for C₂₄H₂₈NO₅ ([M+H]⁺) 410.19677; found 410.1977.

E. Synthesis of Insertion Product (4a)

To a vial was added 4-(phenylamino)butan-2-one (50 µmol, 1 equiv.), the methyl 3-(2-formylcyclohex-1-en-1-yl)propiolate (85 µmol, 1.7 equiv.) and Rh₂(OAc)₄ (2.5 µmol, 0.05 equiv.). The reaction mixture was stirred for overnight at RT. The product was purified by flash chromatography 1:20 ethyl acetate:hexanes gradient to 1:9 ethyl acetate:hexanes to furnish insertion product (**4**) . Colourless oil. (23% NMR yield using 1,3,5-trimethoxybenzene as reference.) **TLC**: R_f 0.67 (ethyl acetate/hexanes = 3:7). ¹**H NMR** (CDCl₃, 400 MHz):): δ 7.23 (d, J = 7.4 Hz, 2H), 7.14 (s, 1H), 6.79 (t, J = 7.3 Hz, 1H), 6.75 – 6.67 (m, 2H), 5.46 (s, 1H), 3.77 (s, 3H), 3.62 (dd, J = 15.3, 10.0, 5.1 Hz), 3.55 – 3.43 (m, 1H), 2.76 (dd, J = 15.7, 10.1, 5.4 Hz), 2.62 – 2.18 (m, 5H), 2.05 (s, 3H), 1.77 – 1.49 (m, 4H). ¹³**C NMR** (CDCl₃, 100 MHz)): δ 208.47, 171.02, 147.40, 141.72, 137.44, 129.58, 122.80, 121.66, 118.34, 113.63, 77.36, 59.23, 52.69, 42.19, 41.98, 30.47, 23.06, 23.01, 20.34, 20.21. **HRMS** (ESI) *m/z* calcd for C₂₁H₂₅NO₄Na ([M+Na]⁺) 378.1682; found 378.1675.

X-Ray Diffraction Data for 3b

CCDC 2285842

Formula: C21 H24 Br N O4

Table 1.Crystal data and structure refinement for **3b**.

Empirical formula	C21 H24 Br N O4	
Formula weight	434.32	
Crystal system	monoclinic	
Space group	<i>P</i> 21/ <i>c</i>	000
Unit cell dimensions	a = 8.1671(2) Å	= 90°
	b = 26.8544(6) Å	= 91.4034(8)°
	c = 18.1446(5) Å	= 90°
Volume	3978.33(17) Å ³	
Z, Z'	8, 1	
Density (calculated)	1.450 Mg/m ³	
Wavelength	0.71073 Å	
Temperature	100(2) K	
<i>F</i> (000)	1792	
Absorption coefficient	2.093 mm ⁻¹	
Absorption correction	semi-empirical from equivaler	nts
Max. and min. transmission	0.7454 and 0.6379	
Theta range for data collection	2.246 to 26.389°	
Reflections collected	69735	
Independent reflections	8148 [R(int) = 0.0610]	
Data / restraints / parameters	8148 / 36 / 507 $wR(F^2 \text{ all }$	
data)	wR2 = 0.1041	
R(F obsd data)	R1 = 0.0393	
Goodness-of-fit on F^2	1.003	
Observed data $[I > 2 (I)]$	5833	
Largest and mean shift / s.u	. 0.002 and 0.000	
Largest diff. peak and hole	$0.543 \text{ and } -0.613 \text{ e/Å}^3$	

 $wR2 = \{ [w(F_0^2 - F_c^2)^2] / [w(F_0^2)^2] \}^{1/2}$ R1 = ||F_0| - |F_c|| / |F_0|

	x	У	Z	U(eq)
Br(1A)	-0.20072(5)	0.73275(2)	0.91177(2)	0.06589(12)
O(1A)	0.4714(3)	0.60791(7)	0.59708(13)	0.0530(6)
O(2A)	0.1154(3)	0.64398(7)	0.61266(12)	0.0526(5)
O(3A)	0.2479(3)	0.67554(8)	0.51713(11)	0.0535(5)
O(4A)	0.3690(3)	0.76246(7)	0.55788(12)	0.0537(5)
N(1A)	0.3570(3)	0.67458(8)	0.71279(12)	0.0376(5)
C(1A)	0.2296(3)	0.68843(9)	0.75639(15)	0.0352(6)
C(2A)	0.0965(3)	0.71787(10)	0.73104(16)	0.0395(6)
C(3A)	-0.0279(4)	0.73077(10)	0.77677(17)	0.0430(7)
C(4A)	-0.0254(4)	0.71553(11)	0.84940(17)	0.0461(7)
C(5A)	0.1036(4)	0.68725(11)	0.87622(17)	0.0495(7)
C(6A)	0.2281(4)	0.67369(10)	0.83064(16)	0.0437(7)
C(7A)	0.3745(3)	0.68717(9)	0.63498(15)	0.0363(6)
C(8A)	0.5321(3)	0.65678(10)	0.61392(16)	0.0423(7)
C(9A)	0.6300(3)	0.65615(11)	0.68590(17)	0.0456(7)
C(10A)	0.5025(3)	0.64937(10)	0.74392(16)	0.0424(7)
C(11A)	0.6256(4)	0.67715(14)	0.5499(2)	0.0645(9)
C(12A)	0.2292(4)	0.66624(10)	0.58817(15)	0.0398(6)
C(13A)	0.1185(5)	0.65863(15)	0.4670(2)	0.0725(11)
C(14A)	0.3958(3)	0.74302(9)	0.62713(16)	0.0391(6)
C(15A)	0.4395(3)	0.77985(10)	0.67507(17)	0.0408(6)
C(16A)	0.4820(4)	0.78036(10)	0.75610(18)	0.0507(8)
C(17A)	0.5696(7)	0.82765(11)	0.7783(3)	0.0685(15)
C(17')	0.472(4)	0.82937(14)	0.7953(5)	0.068(2)
C(18A)	0.4937(6)	0.87382(12)	0.7468(3)	0.0858(13)
C(19A)	0.4771(5)	0.87526(11)	0.6649(2)	0.0660(10)
C(20A)	0.4390(4)	0.82517(10)	0.6329(2)	0.0504(8)
C(21A)	0.3976(5)	0.81248(11)	0.5636(2)	0.0629(10)
Br(1B)	0.34468(5)	0.56025(2)	0.96800(2)	0.06148(12)
O(1B)	1.0232(3)	0.54237(9)	0.60044(13)	0.0642(7)
O(2B)	0.9273(2)	0.40272(6)	0.69898(10)	0.0418(5)
O(3B)	0.6744(3)	0.52911(8)	0.64606(12)	0.0603(6)
O(4B)	0.7736(2)	0.45871(7)	0.60203(10)	0.0457(5)
N(1B)	0.9059(3)	0.53376(8)	0.75829(13)	0.0401(5)
C(1B)	0.7758(3)	0.54029(9)	0.80394(15)	0.0369(6)
C(2B)	0.6469(3)	0.50581(9)	0.80690(15)	0.0382(6)

Table 2.Atomic coordinates and equivalent isotropic displacement parameters for **3b**.U(eq)is defined as one third of the trace of the orthogonalized U_{ij} tensor.U(eq)

C(3B)	0.5214(3)	0.51195(9)	0.85516(15)	0.0395(6)
C(4B)	0.5192(4)	0.55282(10)	0.90139(15)	0.0426(7)
C(5B)	0.6428(4)	0.58764(10)	0.89939(16)	0.0457(7)
C(6B)	0.7693(4)	0.58147(10)	0.85126(16)	0.0443(7)
C(7B)	0.9202(3)	0.49438(9)	0.70352(14)	0.0345(6)
C(8B)	1.0767(4)	0.51038(12)	0.65900(17)	0.0491(7)
C(9B)	1.1738(4)	0.53904(13)	0.71772(18)	0.0563(9)
C(10B)	1.0487(4)	0.56680(11)	0.76099(18)	0.0523(8)
C(11B)	1.1688(4)	0.46812(14)	0.6241(2)	0.0696(10)
C(12B)	0.9430(3)	0.44469(9)	0.74181(14)	0.0332(6)
C(13B)	0.9908(3)	0.43176(9)	0.81158(15)	0.0350(6)
C(14B)	1.0218(4)	0.46200(11)	0.88012(16)	0.0474(7)
C(15B)	1.1080(4)	0.43155(12)	0.94026(17)	0.0560(8)
C(16B)	1.0351(5)	0.38053(13)	0.94869(19)	0.0622(9)
C(17B)	1.0487(4)	0.34846(11)	0.88010(17)	0.0503(8)
C(18B)	1.0028(3)	0.37834(10)	0.81257(16)	0.0399(6)
C(19B)	0.9636(4)	0.36303(10)	0.74388(18)	0.0470(7)
C(20B)	0.7740(3)	0.49645(9)	0.64812(15)	0.0364(6)
C(21B)	0.6484(4)	0.45903(15)	0.54463(19)	0.0698(11)

Br(1A)-C(4A)1.904(3)C(16A)-H(16A)0.9900O(1A)-C(8A)1.433(3)C(16A)-H(16B)0.9900O(1A)-H(1A)0.78(4)C(16A)-H(16F)0.9900O(2A)-C(12A)1.200(3)C(16A)-H(16F)0.9900O(3A)-C(12A)1.325(3)C(17A)-C(18A)1.494(4)O(3A)-C(13A)1.451(4)C(17A)-H(17B)0.9900O(4A)-C(1A)1.373(3)C(17)-C(18A)1.496(5)O(4A)-C(1A)1.373(3)C(17)-H(17F)0.9900O(4A)-C(1A)1.374(4)C(17A)-H(17B)0.9900O(1A)-C(1A)1.462(3)C(18A)-H(18A)0.9900O(1A)-C(1A)1.468(3)C(18A)-H(18B)0.9900C(1A)-C(6A)1.405(4)C(18A)-H(18B)0.9900C(2A)-H(2A)0.9500C(18A)-H(18D)0.9900C(2A)-H(2A)0.9500C(18A)-H(18D)0.9900C(2A)-H(2A)0.9500C(19A)-H(19B)0.9900C(3A)-C(5A)1.375(4)C(20A)-C(21A)1.337(4)C(5A)-H(5A)0.9500C(19A)-H(19B)0.9500C(7A)-C(1A)1.517(3)O(1B)-C(8B)1.427(4)C(7A)-C(1A)1.517(3)O(1B)-C(2B)1.376(2)C(7A)-C(1A)1.517(3)O(1B)-C(2B)1.376(2)C(7A)-C(1A)1.515(4)O(2B)-C(12B)1.376(2)C(7A)-C(1A)1.515(4)O(2B)-C(12B)1.376(2)C(7A)-C(1A)1.515(4)O(2B)-C(12B)1.376(2)C(7A)-C(1A)1.515(4)O(2B)-C(1B)1.376(2)C(7A)-C(1A)1.510(4) <t< th=""><th></th><th></th><th></th><th></th></t<>				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Br(1A)-C(4A)	1.904(3)	C(16A)-H(16A)	0.9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(1A)-C(8A)	1.433(3)	C(16A)-H(16B)	0.9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(1A)-H(1A)	0.78(4)	C(16A)-H(16E)	0.9900
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(2A)-C(12A)	1.200(3)	C(16A)-H(16F)	0.9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(3A)-C(12A)	1.325(3)	C(17A)-C(18A)	1.494(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(3A)-C(13A)	1.451(4)	C(17A)-H(17A)	0.9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(4A)-C(21A)	1.367(4)	C(17A)-H(17B)	0.9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(4A)-C(14A)	1.373(3)	C(17')-C(18A)	1.496(5)
	N(1A)-C(1A)	1.374(4)	C(17')-H(17E)	0.9900
N(1A)-C(10A) $1.468(3)$ C(18A)-C(19A) $1.489(6)$ C(1A)-C(6A) $1.405(4)$ C(18A)-H(18A) 0.9900 C(1A)-C(2A) $1.412(4)$ C(18A)-H(18B) 0.9900 C(2A)-C(3A) $1.372(4)$ C(18A)-H(18D) 0.9900 C(2A)-H(2A) 0.9500 C(18A)-H(18D) 0.9900 C(3A)-C(4A) $1.379(4)$ C(19A)-C(20A) $1.495(4)$ C(3A)-H(3A) 0.9500 C(19A)-H(19B) 0.9900 C(4A)-C(5A) $1.378(4)$ C(19A)-H(19B) 0.9900 C(5A)-C(6A) $1.375(4)$ C(20A)-C(21A) $1.337(5)$ C(5A)-H(5A) 0.9500 C(21A)-H(21A) 0.9500 C(5A)-H(5A) 0.9500 Br(1B)-C(4B) $1.902(3)$ C(7A)-C(14A) $1.517(3)$ O(1B)-C(4B) $1.427(4)$ C(7A)-C(12A) $1.548(4)$ O(1B)-H(1B) $0.76(4)$ C(7A)-C(12A) $1.579(4)$ O(2B)-C(19B) $1.370(3)$ C(8A)-C(1A) $1.509(4)$ O(2B)-C(20B) $1.373(3)$ C(8A)-C(1A) $1.517(4)$ O(3B)-C(20B) $1.314(3)$ C(9A)-H(9AA) 0.9900 N(1B)-C(1B) $1.375(4)$ C(10A)-H(10A) 0.9900 N(1B)-C(1B) $1.442(3)$ C(10A)-H(10A) 0.9900 N(1B)-C(1B) $1.442(3)$ C(1A)-H(1A) 0.9800 C(1B)-C(2B) $1.442(3)$ C(1A)-H(1B) 0.9900 N(1B)-C(1B) $1.442(3)$ C(1A)-H(1B) 0.9900 N(1B)-C(1B) $1.458(3)$ C(11A)-H(11B) 0.9800 C(1B)-C(2B) $1.442(3)$ C(11A)-H(11B) 0.9800	N(1A)-C(7A)	1.462(3)	C(17')-H(17F)	0.9900
C(1A)-C(6A) $1.405(4)$ $C(18A)-H(18A)$ 0.9900 $C(1A)-C(2A)$ $1.412(4)$ $C(18A)-H(18B)$ 0.9900 $C(2A)-C(3A)$ $1.372(4)$ $C(18A)-H(18C)$ 0.9900 $C(2A)-C(3A)$ $1.372(4)$ $C(18A)-H(18C)$ 0.9900 $C(2A)-H(2A)$ 0.9500 $C(18A)-H(18D)$ 0.9900 $C(2A)-H(2A)$ 0.9500 $C(19A)-H(19A)$ 0.9900 $C(3A)-C(4A)$ $1.379(4)$ $C(19A)-H(19A)$ 0.9900 $C(4A)-C(5A)$ $1.378(4)$ $C(19A)-H(19B)$ 0.9900 $C(5A)-C(6A)$ $1.375(4)$ $C(20A)-C(21A)$ $1.337(5)$ $C(5A)-H(5A)$ 0.9500 $Br(1B)-C(4B)$ $1.902(2)$ $C(7A)-C(14A)$ $1.517(3)$ $O(1B)-C(4B)$ $1.902(2)$ $C(7A)-C(12A)$ $1.548(4)$ $O(1B)-H(1B)$ $0.76(4)$ $C(7A)-C(12A)$ $1.548(4)$ $O(1B)-H(1B)$ $0.76(4)$ $C(7A)-C(1A)$ $1.510(4)$ $O(2B)-C(12B)$ $1.373(3)$ $C(18A)-C(1A)$ $1.509(4)$ $O(2B)-C(12B)$ $1.374(2)$ $C(9A)-H(9AA)$ 0.9900 $N(1B)-C(1B)$ $1.342(2)$ $C(10A)-H(10A)$ 0.9900 $N(1B)-C(1B)$ $1.442(2)$ $C(10A)-H(10A)$ 0.9900 $N(1B)-C(1B)$ $1.442(2)$ $C(11A)-H(11A)$ 0.9800 $C(1B)-C(2B)$ $1.404(4)$ $C(11A)-H(11A)$ 0.9800 $C(1B)-C(2B)$ $1.404(4)$ $C(11A)-H(11B)$ 0.9800 $C(1B)-C(2B)$ $1.374(4)$ $C(11A)-H(11B)$ 0.9800 $C(1B)-C(2B)$ $1.402(4)$ $C(11A)-H(11B)$ $0.$	N(1A)-C(10A)	1.468(3)	C(18A)-C(19A)	1.489(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1A)-C(6A)	1.405(4)	C(18A)-H(18A)	0.9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1A)-C(2A)	1.412(4)	C(18A)-H(18B)	0.9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2A)-C(3A)	1.372(4)	C(18A)-H(18C)	0.9900
C(3A)-C(4A) $1.379(4)$ $C(19A)-C(20A)$ $1.495(4)$ $C(3A)-H(3A)$ 0.9500 $C(19A)-H(19A)$ 0.9900 $C(4A)-C(5A)$ $1.378(4)$ $C(19A)-H(19B)$ 0.9900 $C(5A)-C(6A)$ $1.375(4)$ $C(20A)-C(21A)$ $1.337(5)$ $C(5A)-H(5A)$ 0.9500 $C(21A)-H(21A)$ 0.9500 $C(5A)-H(5A)$ 0.9500 $C(21A)-H(21A)$ 0.9500 $C(5A)-H(6A)$ 0.9500 $Br(1B)-C(4B)$ $1.902(3)$ $C(7A)-C(14A)$ $1.517(3)$ $O(1B)-C(8B)$ $1.427(4)$ $C(7A)-C(12A)$ $1.548(4)$ $O(1B)-H(1B)$ $0.76(4)$ $C(7A)-C(12A)$ $1.548(4)$ $O(1B)-H(1B)$ $0.76(4)$ $C(7A)-C(8A)$ $1.579(4)$ $O(2B)-C(12B)$ $1.370(3)$ $C(8A)-C(11A)$ $1.509(4)$ $O(2B)-C(12B)$ $1.373(3)$ $C(8A)-C(9A)$ $1.515(4)$ $O(3B)-C(20B)$ $1.196(3)$ $C(9A)-H(9AA)$ 0.9900 $N(1B)-C(1B)$ $1.375(4)$ $C(10A)-H(10A)$ 0.9900 $N(1B)-C(1B)$ $1.442(3)$ $C(10A)-H(10B)$ 0.9900 $N(1B)-C(1B)$ $1.458(3)$ $C(11A)-H(11B)$ 0.9900 $N(1B)-C(1B)$ $1.445(3)$ $C(11A)-H(11B)$ 0.9800 $C(1B)-C(2B)$ $1.404(4)$ $C(11A)-H(11B)$ 0.9800 $C(2B)-H(2B)$ 0.9500 $C(11A)-H(11B)$ 0.9800 $C(2B)-H(2B)$ 0.9500 $C(11A)-H(11B)$ 0.9800 $C(2B)-H(2B)$ 0.9500 $C(11A)-H(11B)$ 0.9800 $C(2B)-H(2B)$ 0.9500 $C(11A)-H(11B)$ 0.9800 </td <td>C(2A)-H(2A)</td> <td>0.9500</td> <td>C(18A)-H(18D)</td> <td>0.9900</td>	C(2A)-H(2A)	0.9500	C(18A)-H(18D)	0.9900
C(3A)-H(3A)0.9500 $C(19A)$ -H(19A)0.9900 $C(4A)$ -C(5A)1.378(4) $C(19A)$ -H(19B)0.9900 $C(5A)$ -C(6A)1.375(4) $C(20A)$ -C(21A)1.337(5) $C(5A)$ -H(5A)0.9500 $C(21A)$ -H(21A)0.9500 $C(6A)$ -H(6A)0.9500 $Br(1B)$ -C(4B)1.902(5) $C(7A)$ -C(14A)1.517(3) $O(1B)$ -C(8B)1.427(4) $C(7A)$ -C(12A)1.548(4) $O(1B)$ -H(1B)0.76(4) $C(7A)$ -C(12A)1.548(4) $O(1B)$ -H(1B)0.76(4) $C(7A)$ -C(1A)1.509(4) $O(2B)$ -C(12B)1.370(5) $C(8A)$ -C(1A)1.509(4) $O(2B)$ -C(12B)1.373(5) $C(8A)$ -C(1A)1.510(4) $O(4B)$ -C(20B)1.196(5) $C(9A)$ -C(10A)1.510(4) $O(4B)$ -C(20B)1.314(5) $C(10A)$ -H(10A)0.9900 $N(1B)$ -C(1B)1.375(4) $C(10A)$ -H(1A)0.9900 $N(1B)$ -C(1B)1.458(5) $C(10A)$ -H(1A)0.9900 $N(1B)$ -C(1B)1.458(5) $C(11A)$ -H(1A)0.9800 $C(1B)$ -C(2B)1.404(4) $C(11A)$ -H(11B)0.9800 $C(2B)$ -H(2B)0.9500 $C(11A)$ -H(11B)0.9800 $C(2B)$ -H(2B)0.9500 $C(13A)$ -H(13B)0.9800 $C(3B)$ -C(4B)1.382(4) $C(13A)$ -H(13C)0.9800 $C(3B)$ -H(3B)0.9500 $C(13A)$ -H(13C)0.9800 $C(3B)$ -H(3B)0.9500 $C(13A)$ -H(13B)0.9800 $C(3B)$ -H(3B)0.9500 $C(13A)$ -H(13B)0.9800 $C(3B)$ -H(3B)0.9500 $C(13A)$ -H(13B)0.9800	C(3A)-C(4A)	1.379(4)	C(19A)-C(20A)	1.495(4)
C(4A)-C(5A) $1.378(4)$ $C(19A)-H(19B)$ 0.9900 $C(5A)-C(6A)$ $1.375(4)$ $C(20A)-C(21A)$ $1.337(5)$ $C(5A)-H(5A)$ 0.9500 $C(21A)-H(21A)$ 0.9500 $C(6A)-H(6A)$ 0.9500 $Br(1B)-C(4B)$ $1.902(5)$ $C(7A)-C(14A)$ $1.517(3)$ $O(1B)-C(8B)$ $1.427(4)$ $C(7A)-C(12A)$ $1.548(4)$ $O(1B)-H(1B)$ $0.76(4)$ $C(7A)-C(12A)$ $1.548(4)$ $O(2B)-C(19B)$ $1.370(5)$ $C(7A)-C(8A)$ $1.579(4)$ $O(2B)-C(12B)$ $1.373(5)$ $C(8A)-C(11A)$ $1.509(4)$ $O(2B)-C(12B)$ $1.373(5)$ $C(8A)-C(10A)$ $1.515(4)$ $O(3B)-C(20B)$ $1.196(5)$ $C(9A)-C(10A)$ $1.510(4)$ $O(4B)-C(20B)$ $1.314(5)$ $C(9A)-H(9AA)$ 0.9900 $N(1B)-C(1B)$ $1.375(4)$ $C(10A)-H(10A)$ 0.9900 $N(1B)-C(1B)$ $1.458(5)$ $C(10A)-H(10B)$ 0.9900 $N(1B)-C(1B)$ $1.458(5)$ $C(11A)-H(11B)$ 0.9800 $C(1B)-C(2B)$ $1.404(4)$ $C(11A)-H(11B)$ 0.9800 $C(1B)-C(2B)$ $1.404(4)$ $C(11A)-H(11B)$ 0.9800 $C(2B)-H(2B)$ 0.9500 $C(13A)-H(13A)$ 0.9800 $C(2B)-H(2B)$ 0.9500 $C(13A)-H(13B)$ 0.9800 $C(3B)-H(3B)$ 0.9500 $C(13A)-H(13C)$ 0.9800 $C(3B)-H(3B)$ 0.9500 $C(14A)-C(15A)$ $1.359(4)$ $C(4B)-C(5B)$ $1.379(4)$ $C(14A)-C(15A)$ $1.359(4)$ $C(5B)-C(6B)$ $1.379(4)$ $C(15A)-C(20A)$ <td< td=""><td>C(3A)-H(3A)</td><td>0.9500</td><td>C(19A)-H(19A)</td><td>0.9900</td></td<>	C(3A)-H(3A)	0.9500	C(19A)-H(19A)	0.9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4A)-C(5A)	1.378(4)	C(19A)-H(19B)	0.9900
$\begin{array}{ccccc} C(5A)-H(5A) & 0.9500 & C(21A)-H(21A) & 0.9500 \\ C(6A)-H(6A) & 0.9500 & Br(1B)-C(4B) & 1.902(3) \\ C(7A)-C(14A) & 1.517(3) & O(1B)-C(8B) & 1.427(4) \\ C(7A)-C(12A) & 1.548(4) & O(1B)-H(1B) & 0.76(4) \\ C(7A)-C(12A) & 1.579(4) & O(2B)-C(19B) & 1.370(3) \\ C(8A)-C(11A) & 1.509(4) & O(2B)-C(12B) & 1.373(3) \\ C(8A)-C(9A) & 1.515(4) & O(3B)-C(20B) & 1.196(3) \\ C(9A)-C(10A) & 1.510(4) & O(4B)-C(20B) & 1.314(3) \\ C(9A)-H(9AA) & 0.9900 & O(4B)-C(21B) & 1.342(3) \\ C(10A)-H(10A) & 0.9900 & N(1B)-C(1B) & 1.375(4) \\ C(10A)-H(10B) & 0.9900 & N(1B)-C(1B) & 1.458(3) \\ C(10A)-H(10B) & 0.9900 & N(1B)-C(1B) & 1.458(3) \\ C(11A)-H(11A) & 0.9800 & C(1B)-C(6B) & 1.402(4) \\ C(11A)-H(11B) & 0.9800 & C(1B)-C(2B) & 1.404(4) \\ C(11A)-H(11B) & 0.9800 & C(2B)-C(3B) & 1.374(4) \\ C(13A)-H(13A) & 0.9800 & C(2B)-H(2B) & 0.9500 \\ C(13A)-H(13B) & 0.9800 & C(3B)-C(4B) & 1.382(4) \\ C(13A)-H(13C) & 0.9800 & C(3B)-C(4B) & 1.382(4) \\ C(15A)-C(20A) & 1.438(4) & C(4B)-C(5B) & 1.377(4) \\ C(15A)-C(20A) & 1.438(4) & C(5B)-C(6B) & 1.377(4) \\ C(15A)-C(20A) & 1.502(4) & C(5B)-C(6B) & 1.379(4) \\ C(15A)-C(15A) & 1.502(4) & C(5B)-C(6B) & 1.379(4) \\ C(15A)-C(15A) & 1.502(4) & C(5B)-C(6B) & 1.502(4) \\ C(15B)-C(15B) & C(5B)-C(6B) & 1.502(4) \\$	C(5A)-C(6A)	1.375(4)	C(20A)-C(21A)	1.337(5)
C(6A)-H(6A)0.9500Br(1B)-C(4B)1.902(3) $C(7A)$ -C(14A)1.517(3)O(1B)-C(8B)1.427(4) $C(7A)$ -C(12A)1.548(4)O(1B)-H(1B)0.76(4) $C(7A)$ -C(12A)1.579(4)O(2B)-C(19B)1.370(3) $C(8A)$ -C(11A)1.509(4)O(2B)-C(12B)1.373(3) $C(8A)$ -C(1A)1.515(4)O(3B)-C(20B)1.196(3) $C(9A)$ -C(10A)1.510(4)O(4B)-C(20B)1.314(3) $C(9A)$ -H(9AA)0.9900O(4B)-C(21B)1.442(3) $C(9A)$ -H(9AB)0.9900N(1B)-C(1B)1.375(4) $C(10A)$ -H(10A)0.9900N(1B)-C(1B)1.458(3) $C(10A)$ -H(10B)0.9900N(1B)-C(10B)1.465(3) $C(11A)$ -H(11A)0.9800C(1B)-C(6B)1.402(4) $C(11A)$ -H(11B)0.9800C(2B)-C(3B)1.374(4) $C(13A)$ -H(13A)0.9800C(2B)-C(3B)1.374(4) $C(13A)$ -H(13B)0.9800C(3B)-C(4B)1.382(4) $C(15A)$ -C(20A)1.438(4)C(5B)-C(6B)1.379(4) $C(15A)$ -C(20A)1.438(4)C(5B)-C(6B)1.379(4)	C(5A)-H(5A)	0.9500	C(21A)-H(21A)	0.9500
C(7A)-C(14A) $1.517(3)$ $O(1B)-C(8B)$ $1.427(4)$ $C(7A)-C(12A)$ $1.548(4)$ $O(1B)-H(1B)$ $0.76(4)$ $C(7A)-C(8A)$ $1.579(4)$ $O(2B)-C(19B)$ $1.370(2)$ $C(8A)-C(11A)$ $1.509(4)$ $O(2B)-C(12B)$ $1.373(2)$ $C(8A)-C(9A)$ $1.515(4)$ $O(3B)-C(20B)$ $1.196(2)$ $C(9A)-C(10A)$ $1.510(4)$ $O(4B)-C(20B)$ $1.314(2)$ $C(9A)-H(9AA)$ 0.9900 $O(4B)-C(21B)$ $1.442(2)$ $C(9A)-H(9AB)$ 0.9900 $N(1B)-C(1B)$ $1.375(4)$ $C(10A)-H(10A)$ 0.9900 $N(1B)-C(1B)$ $1.458(2)$ $C(10A)-H(10B)$ 0.9900 $N(1B)-C(10B)$ $1.465(2)$ $C(11A)-H(11B)$ 0.9800 $C(1B)-C(2B)$ $1.402(4)$ $C(11A)-H(11B)$ 0.9800 $C(2B)-C(3B)$ $1.374(4)$ $C(11A)-H(11C)$ 0.9800 $C(2B)-H(2B)$ 0.9500 $C(13A)-H(13A)$ 0.9800 $C(3B)-C(4B)$ $1.382(4)$ $C(13A)-H(13C)$ 0.9800 $C(3B)-H(3B)$ 0.9500 $C(14A)-C(15A)$ $1.359(4)$ $C(4B)-C(5B)$ $1.379(4)$ $C(15A)-C(20A)$ $1.438(4)$ $C(5B)-C(6B)$ $1.379(4)$ $C(15A)-C(20A)$ $1.438(4)$ $C(5B)-C(6B)$ $1.379(4)$	C(6A)-H(6A)	0.9500	Br(1B)-C(4B)	1.902(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(7A)-C(14A)	1.517(3)	O(1B)-C(8B)	1.427(4)
C(7A)-C(8A) $1.579(4)$ $O(2B)-C(19B)$ $1.370(3)$ $C(8A)-C(11A)$ $1.509(4)$ $O(2B)-C(12B)$ $1.373(3)$ $C(8A)-C(9A)$ $1.515(4)$ $O(3B)-C(20B)$ $1.196(3)$ $C(9A)-C(10A)$ $1.510(4)$ $O(4B)-C(20B)$ $1.314(3)$ $C(9A)-H(9AA)$ 0.9900 $O(4B)-C(21B)$ $1.442(3)$ $C(9A)-H(9AB)$ 0.9900 $N(1B)-C(1B)$ $1.375(4)$ $C(10A)-H(10A)$ 0.9900 $N(1B)-C(1B)$ $1.458(3)$ $C(10A)-H(10B)$ 0.9900 $N(1B)-C(10B)$ $1.465(3)$ $C(11A)-H(11A)$ 0.9800 $C(1B)-C(6B)$ $1.402(4)$ $C(11A)-H(11B)$ 0.9800 $C(2B)-C(3B)$ $1.374(4)$ $C(13A)-H(13A)$ 0.9800 $C(2B)-H(2B)$ 0.9500 $C(13A)-H(13B)$ 0.9800 $C(3B)-C(4B)$ $1.382(4)$ $C(14A)-C(15A)$ $1.359(4)$ $C(4B)-C(5B)$ $1.377(4)$ $C(15A)-C(20A)$ $1.438(4)$ $C(5B)-C(6B)$ $1.379(4)$	C(7A)-C(12A)	1.548(4)	O(1B)-H(1B)	0.76(4)
C(8A)-C(11A) $1.509(4)$ $O(2B)-C(12B)$ $1.373(2)$ $C(8A)-C(9A)$ $1.515(4)$ $O(3B)-C(20B)$ $1.196(2)$ $C(9A)-C(10A)$ $1.510(4)$ $O(4B)-C(20B)$ $1.314(2)$ $C(9A)-H(9AA)$ 0.9900 $O(4B)-C(21B)$ $1.442(2)$ $C(9A)-H(9AB)$ 0.9900 $N(1B)-C(1B)$ $1.375(4)$ $C(10A)-H(10A)$ 0.9900 $N(1B)-C(1B)$ $1.458(2)$ $C(10A)-H(10B)$ 0.9900 $N(1B)-C(10B)$ $1.465(2)$ $C(10A)-H(10B)$ 0.9900 $N(1B)-C(10B)$ $1.465(2)$ $C(11A)-H(11A)$ 0.9800 $C(1B)-C(2B)$ $1.402(4)$ $C(11A)-H(11B)$ 0.9800 $C(2B)-C(3B)$ $1.374(4)$ $C(13A)-H(13A)$ 0.9800 $C(2B)-H(2B)$ 0.9500 $C(13A)-H(13A)$ 0.9800 $C(3B)-C(4B)$ $1.382(4)$ $C(13A)-H(13C)$ 0.9800 $C(3B)-H(3B)$ 0.9500 $C(14A)-C(15A)$ $1.359(4)$ $C(4B)-C(5B)$ $1.377(4)$ $C(15A)-C(20A)$ $1.438(4)$ $C(5B)-C(6B)$ $1.379(4)$ $C(15A)-C(16A)$ $1.502(4)$ $C(5B)-H(5B)$ 0.9500	C(7A)-C(8A)	1.579(4)	O(2B)-C(19B)	1.370(3)
C(8A)-C(9A) $1.515(4)$ $O(3B)-C(20B)$ $1.196(3)$ $C(9A)-C(10A)$ $1.510(4)$ $O(4B)-C(20B)$ $1.314(3)$ $C(9A)-H(9AA)$ 0.9900 $O(4B)-C(21B)$ $1.442(3)$ $C(9A)-H(9AB)$ 0.9900 $N(1B)-C(1B)$ $1.375(4)$ $C(10A)-H(10A)$ 0.9900 $N(1B)-C(7B)$ $1.458(3)$ $C(10A)-H(10B)$ 0.9900 $N(1B)-C(7B)$ $1.458(3)$ $C(10A)-H(10B)$ 0.9900 $N(1B)-C(7B)$ $1.458(3)$ $C(10A)-H(10B)$ 0.9900 $N(1B)-C(7B)$ $1.458(3)$ $C(10A)-H(10B)$ 0.9900 $C(1B)-C(6B)$ $1.402(4)$ $C(11A)-H(11A)$ 0.9800 $C(1B)-C(2B)$ $1.404(4)$ $C(11A)-H(11C)$ 0.9800 $C(2B)-C(3B)$ $1.374(4)$ $C(13A)-H(13A)$ 0.9800 $C(3B)-C(4B)$ $1.382(4)$ $C(13A)-H(13C)$ 0.9800 $C(3B)-H(3B)$ 0.9500 $C(14A)-C(15A)$ $1.359(4)$ $C(4B)-C(5B)$ $1.377(4)$ $C(15A)-C(20A)$ $1.438(4)$ $C(5B)-C(6B)$ $1.379(4)$ $C(15A)-C(16A)$ $1.502(4)$ $C(5B)-C(6B)$ 0.9500	C(8A)-C(11A)	1.509(4)	O(2B)-C(12B)	1.373(3)
C(9A)-C(10A) $1.510(4)$ $O(4B)-C(20B)$ $1.314(2)$ $C(9A)-H(9AA)$ 0.9900 $O(4B)-C(21B)$ $1.442(3)$ $C(9A)-H(9AB)$ 0.9900 $N(1B)-C(1B)$ $1.375(4)$ $C(10A)-H(10A)$ 0.9900 $N(1B)-C(7B)$ $1.458(3)$ $C(10A)-H(10B)$ 0.9900 $N(1B)-C(7B)$ $1.458(3)$ $C(10A)-H(10B)$ 0.9900 $N(1B)-C(10B)$ $1.465(3)$ $C(10A)-H(10B)$ 0.9800 $C(1B)-C(2B)$ $1.402(4)$ $C(11A)-H(11A)$ 0.9800 $C(1B)-C(2B)$ $1.404(4)$ $C(11A)-H(11C)$ 0.9800 $C(2B)-C(3B)$ $1.374(4)$ $C(13A)-H(13A)$ 0.9800 $C(2B)-H(2B)$ 0.9500 $C(13A)-H(13B)$ 0.9800 $C(3B)-H(3B)$ 0.9500 $C(13A)-H(13C)$ 0.9800 $C(3B)-H(3B)$ 0.9500 $C(14A)-C(15A)$ $1.359(4)$ $C(4B)-C(5B)$ $1.377(4)$ $C(15A)-C(20A)$ $1.438(4)$ $C(5B)-C(6B)$ $1.379(4)$ $C(15A)-C(16A)$ $1.502(4)$ $C(5B)-H(5B)$ 0.9500	C(8A)-C(9A)	1.515(4)	O(3B)-C(20B)	1.196(3)
C(9A)-H(9AA)0.9900 $O(4B)$ - $C(21B)$ 1.442(3) $C(9A)$ -H(9AB)0.9900 $N(1B)$ - $C(1B)$ 1.375(4) $C(10A)$ -H(10A)0.9900 $N(1B)$ - $C(7B)$ 1.458(3) $C(10A)$ -H(10B)0.9900 $N(1B)$ - $C(10B)$ 1.465(3) $C(10A)$ -H(10B)0.9900 $N(1B)$ - $C(10B)$ 1.465(3) $C(11A)$ -H(11A)0.9800 $C(1B)$ - $C(6B)$ 1.402(4) $C(11A)$ -H(11B)0.9800 $C(2B)$ - $C(2B)$ 1.404(4) $C(11A)$ -H(11C)0.9800 $C(2B)$ - $C(3B)$ 1.374(4) $C(13A)$ -H(13A)0.9800 $C(2B)$ - $H(2B)$ 0.9500 $C(13A)$ -H(13B)0.9800 $C(3B)$ - $H(3B)$ 0.9500 $C(13A)$ -H(13C)0.9800 $C(3B)$ - $H(3B)$ 0.9500 $C(14A)$ - $C(15A)$ 1.359(4) $C(4B)$ - $C(5B)$ 1.377(4) $C(15A)$ - $C(20A)$ 1.438(4) $C(5B)$ - $C(6B)$ 1.379(4) $C(15A)$ - $C(20A)$ 1.438(4) $C(5B)$ - $C(6B)$ 1.379(4)	C(9A)-C(10A)	1.510(4)	O(4B)-C(20B)	1.314(3)
C(9A)-H(9AB) 0.9900 $N(1B)-C(1B)$ $1.375(4)$ $C(10A)-H(10A)$ 0.9900 $N(1B)-C(7B)$ $1.458(3)$ $C(10A)-H(10B)$ 0.9900 $N(1B)-C(10B)$ $1.465(3)$ $C(10A)-H(10B)$ 0.9900 $N(1B)-C(10B)$ $1.465(3)$ $C(11A)-H(11A)$ 0.9800 $C(1B)-C(6B)$ $1.402(4)$ $C(11A)-H(11B)$ 0.9800 $C(1B)-C(2B)$ $1.404(4)$ $C(11A)-H(11C)$ 0.9800 $C(2B)-C(3B)$ $1.374(4)$ $C(13A)-H(13A)$ 0.9800 $C(2B)-H(2B)$ 0.9500 $C(13A)-H(13B)$ 0.9800 $C(3B)-C(4B)$ $1.382(4)$ $C(13A)-H(13C)$ 0.9800 $C(3B)-H(3B)$ 0.9500 $C(14A)-C(15A)$ $1.359(4)$ $C(4B)-C(5B)$ $1.377(4)$ $C(15A)-C(20A)$ $1.438(4)$ $C(5B)-C(6B)$ $1.379(4)$ $C(15A)-C(16A)$ $1.502(4)$ $C(5B)-H(5B)$ 0.9500	C(9A)-H(9AA)	0.9900	O(4B)-C(21B)	1.442(3)
C(10A)-H(10A)0.9900N(1B)-C(7B)1.458(3) $C(10A)$ -H(10B)0.9900N(1B)-C(10B)1.465(3) $C(10A)$ -H(10B)0.9800C(1B)-C(6B)1.402(4) $C(11A)$ -H(11B)0.9800C(1B)-C(2B)1.404(4) $C(11A)$ -H(11C)0.9800C(2B)-C(3B)1.374(4) $C(13A)$ -H(13A)0.9800C(2B)-H(2B)0.9500 $C(13A)$ -H(13B)0.9800C(3B)-C(4B)1.382(4) $C(14A)$ -C(15A)1.359(4)C(4B)-C(5B)1.377(4) $C(15A)$ -C(20A)1.438(4)C(5B)-C(6B)1.379(4) $C(15A)$ -C(16A)1.502(4)C(5B)-H(5B)0.9500	C(9A)-H(9AB)	0.9900	N(1B)-C(1B)	1.375(4)
C(10A)-H(10B)0.9900N(1B)-C(10B)1.465(3) $C(11A)$ -H(11A)0.9800C(1B)-C(6B)1.402(4) $C(11A)$ -H(11B)0.9800C(1B)-C(2B)1.404(4) $C(11A)$ -H(11C)0.9800C(2B)-C(3B)1.374(4) $C(13A)$ -H(13A)0.9800C(2B)-H(2B)0.9500 $C(13A)$ -H(13B)0.9800C(3B)-C(4B)1.382(4) $C(13A)$ -H(13C)0.9800C(3B)-H(3B)0.9500 $C(14A)$ -C(15A)1.359(4)C(4B)-C(5B)1.377(4) $C(15A)$ -C(20A)1.438(4)C(5B)-C(6B)1.379(4) $C(15A)$ -C(16A)1.502(4)C(5B)-H(5B)0.9500	C(10A)-H(10A)	0.9900	N(1B)-C(7B)	1.458(3)
C(11A)-H(11A)0.9800 $C(1B)$ -C(6B)1.402(4) $C(11A)$ -H(11B)0.9800 $C(1B)$ -C(2B)1.404(4) $C(11A)$ -H(11C)0.9800 $C(2B)$ -C(3B)1.374(4) $C(13A)$ -H(13A)0.9800 $C(2B)$ -H(2B)0.9500 $C(13A)$ -H(13B)0.9800 $C(3B)$ -C(4B)1.382(4) $C(13A)$ -H(13C)0.9800 $C(3B)$ -H(3B)0.9500 $C(14A)$ -C(15A)1.359(4) $C(4B)$ -C(5B)1.377(4) $C(15A)$ -C(20A)1.438(4) $C(5B)$ -C(6B)1.379(4) $C(15A)$ -C(16A)1.502(4) $C(5B)$ -H(5B)0.9500	C(10A)-H(10B)	0.9900	N(1B)-C(10B)	1.465(3)
C(11A)-H(11B)0.9800 $C(1B)$ -C(2B)1.404(4) $C(11A)$ -H(11C)0.9800 $C(2B)$ -C(3B)1.374(4) $C(13A)$ -H(13A)0.9800 $C(2B)$ -H(2B)0.9500 $C(13A)$ -H(13B)0.9800 $C(3B)$ -C(4B)1.382(4) $C(13A)$ -H(13C)0.9800 $C(3B)$ -H(3B)0.9500 $C(14A)$ -C(15A)1.359(4) $C(4B)$ -C(5B)1.377(4) $C(15A)$ -C(20A)1.438(4) $C(5B)$ -C(6B)1.379(4) $C(15A)$ -C(16A)1.502(4) $C(5B)$ -H(5B)0.9500	C(11A)-H(11A)	0.9800	C(1B)-C(6B)	1.402(4)
C(11A)-H(11C)0.9800 $C(2B)$ -C(3B)1.374(4) $C(13A)$ -H(13A)0.9800 $C(2B)$ -H(2B)0.9500 $C(13A)$ -H(13B)0.9800 $C(3B)$ -C(4B)1.382(4) $C(13A)$ -H(13C)0.9800 $C(3B)$ -H(3B)0.9500 $C(14A)$ -C(15A)1.359(4) $C(4B)$ -C(5B)1.377(4) $C(15A)$ -C(20A)1.438(4) $C(5B)$ -C(6B)1.379(4) $C(15A)$ -C(16A)1.502(4) $C(5B)$ -H(5B)0.9500	C(11A)-H(11B)	0.9800	C(1B)-C(2B)	1.404(4)
C(13A)-H(13A)0.9800 $C(2B)$ -H(2B)0.9500 $C(13A)$ -H(13B)0.9800 $C(3B)$ -C(4B)1.382(4) $C(13A)$ -H(13C)0.9800 $C(3B)$ -H(3B)0.9500 $C(14A)$ -C(15A)1.359(4) $C(4B)$ -C(5B)1.377(4) $C(15A)$ -C(20A)1.438(4) $C(5B)$ -C(6B)1.379(4) $C(15A)$ -C(16A)1.502(4) $C(5B)$ -H(5B)0.9500	C(11A)-H(11C)	0.9800	C(2B)-C(3B)	1.374(4)
C(13A)-H(13B)0.9800 $C(3B)-C(4B)$ 1.382(4) $C(13A)-H(13C)$ 0.9800 $C(3B)-H(3B)$ 0.9500 $C(14A)-C(15A)$ 1.359(4) $C(4B)-C(5B)$ 1.377(4) $C(15A)-C(20A)$ 1.438(4) $C(5B)-C(6B)$ 1.379(4) $C(15A)-C(15A)-C(15A)$ 1.502(4) $C(5B)-H(5B)$ 0.9500	C(13A)-H(13A)	0.9800	C(2B)-H(2B)	0.9500
C(13A)-H(13C)0.9800 $C(3B)$ -H(3B)0.9500 $C(14A)$ -C(15A)1.359(4) $C(4B)$ -C(5B)1.377(4) $C(15A)$ -C(20A)1.438(4) $C(5B)$ -C(6B)1.379(4) $C(15A)$ -C(16A)1.502(4) $C(5B)$ -H(5B)0.9500	C(13A)-H(13B)	0.9800	C(3B)-C(4B)	1.382(4)
C(14A)-C(15A) $1.359(4)$ $C(4B)-C(5B)$ $1.377(4)$ $C(15A)-C(20A)$ $1.438(4)$ $C(5B)-C(6B)$ $1.379(4)$ $C(15A)-C(16A)$ $1.502(4)$ $C(5B)-H(5B)$ 0.9500	C(13A)-H(13C)	0.9800	C(3B)-H(3B)	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14A)-C(15A)	1.359(4)	C(4B)-C(5B)	1.377(4)
C(15A) - C(16A) = 1.502(A) = C(5R) - H(5R) = 0.0500	C(15A)-C(20A)	1.438(4)	C(5B)-C(6B)	1.379(4)
$(1013)^{-1}(1013)$ $(1.002(7)$ $(0.00)^{-1}(0.00)$ $(0.000)^{-1}(0.00)$	C(15A)-C(16A)	1.502(4)	C(5B)-H(5B)	0.9500

Table 3.Bond lengths [Å] and angles [°] for **3b**.

C(16A)-C(17')	1.499(5)	C(6B)-H(6B)	0.9500
C(16A)-C(17A)	1.507(4)	C(7B)-C(12B)	1.514(3)
C(7B)-C(20B)	1 543(4)	C(14B)-H(14A)	0 9900
C(7B)-C(8B)	1.5 (3)	C(14B)-H(14B)	0.9900
C(8B)-C(11B)	1.510(5)	C(15B)-C(16B)	1 503(5)
C(8B)-C(9B)	1 521(4)	C(15B)-H(15A)	0.9900
C(9B)-C(10B)	1.502(5)	C(15B)-H(15B)	0.9900
C(9B)-H(9BA)	0.9900	C(16B)-C(17B)	1.520(5)
C(9B)-H(9BB)	0.9900	C(16B)-H(16C)	0.9900
C(10B)-H(10C)	0.9900	C(16B)-H(16D)	0.9900
C(10B)-H(10D)	0.9900	C(17B)-C(18B)	1.505(4)
C(11B)-H(11D)	0.9800	C(17B)-H(17C)	0.9900
C(11B)-H(11E)	0.9800	C(17B)-H(17D)	0.9900
C(11B)-H(11F)	0.9800	C(18B)-C(19B)	1.344(4)
C(12B)-C(13B)	1.361(4)	C(19B)-H(19C)	0.9500
C(13B)-C(18B)	1.438(4)	C(21B)-H(21B)	0.9800
C(13B)-C(14B)	1.502(4)	C(21B)-H(21C)	0.9800
C(14B)-C(15B)	1.522(4)	C(21B)-H(21D)	0.9800
$O(0, \Lambda)$ $O(1, \Lambda)$ $H(1, \Lambda)$	10((2)	C(1AA) $C(7A)$ $C(2A)$	112 1/2)
C(8A)-O(1A)-H(1A)	100(3)	C(14A)-C(7A)-C(8A)	113.1(2)
C(12A)-O(3A)-C(13A)	116.8(3)	C(12A)-C(7A)-C(8A)	107.3(2)
C(21A)-O(4A)-C(14A)	106.3(2)	O(1A)- $C(8A)$ - $C(11A)$	110.3(3)
C(1A)-N(1A)-C(7A)	125.9(2)	O(1A)-C(8A)-C(9A)	110.3(2)
C(1A)-N(1A)-C(10A)	121.4(2)	C(11A)- $C(8A)$ - $C(9A)$	113./(3)
C(/A)-N(IA)-C(I0A)	112.4(2)	O(1A)-C(8A)-C(7A)	104.2(2)
N(1A)-C(1A)-C(6A)	120.0(2)	$C(\Pi A) - C(8A) - C(7A)$	115.5(2)
N(1A)-C(1A)-C(2A)	123.3(2)	C(9A) - C(8A) - C(7A)	102.3(2)
C(0A)-C(1A)-C(2A)	110.3(3) 121.2(2)	C(10A) - C(9A) - C(8A)	104.1(2)
C(3A)-C(2A)-C(1A)	121.3(3)	C(10A)-C(9A)-H(9AA)	110.9
$C(3A)-C(2A)-\Pi(2A)$ C(1A) C(2A) H(2A)	119.5	$C(0A) - C(9A) - \Pi(9AA)$	110.9
$C(1A)-C(2A)-\Pi(2A)$	119.5	$C(10A)-C(9A)-\Pi(9AB)$	110.9
C(2A)-C(3A)-C(4A) C(2A) C(2A) U(2A)	120.0(3)	$C(0A)-C(0A)-\Pi(0AB)$	102.0
$C(2A)-C(3A)-\Pi(3A)$ $C(4A) C(3A) \Pi(3A)$	119.7	H(9AA)-C(9A)-H(9AD) N(1A) C(10A) C(0A)	108.9
$C(4A)-C(3A)-\Pi(3A)$ C(5A) C(4A) C(3A)	119.7	N(1A) - C(10A) - C(9A) N(1A) - C(10A) + H(10A)	104.0(2)
C(5A)-C(4A)-C(5A)	119.0(3) 120.2(2)	C(0A) C(10A) H(10A)	111.0
C(3A)-C(4A)-BI(1A) C(3A) C(4A) Br(1A)	120.2(2) 120.1(2)	N(1A) C(10A) H(10B)	111.0
C(5A) - C(4A) - DI(1A) C(6A) C(5A) C(4A)	120.1(2) 120.2(3)	C(0A) C(10A) H(10B)	111.0
C(6A)-C(5A)-H(5A)	110.2(3)	H(10A) - C(10A) - H(10B)	109.0
C(4A)-C(5A)-H(5A)	119.9	C(8A)-C(11A)-H(11A)	109.5
C(5A)-C(6A)-C(1A)	121 7(3)	C(8A)-C(11A)-H(11R)	109.5
C(5A)-C(6A)-H(6A)	119.1	H(11A)-C(11A)-H(11B)	109.5
C(1A)-C(6A)-H(6A)	119.1	C(8A)-C(11A)-H(11C)	109.5
N(1A)-C(7A)-C(14A)	109.5(2)	H(11A)-C(11A)-H(11C)	109.5

N(1A)-C(7A)-C(12A)	110.7(2)	H(11B)-C(11A)-H(11C)	109.5
C(14A)-C(7A)-C(12A)	113.3(2)	O(2A)-C(12A)-O(3A)	124.3(3)
N(1A)-C(7A)-C(8A)	102.3(2)	O(2A)-C(12A)-C(7A)	124.6(3)
O(3A)-C(12A)-C(7A)	111.1(2)	C(17')-C(18A)-H(18C)	105.6
O(3A)-C(13A)-H(13A)	109.5	C(19A)-C(18A)-H(18D)	105.6
O(3A)-C(13A)-H(13B)	109.5	C(17')-C(18A)-H(18D)	105.6
H(13A)-C(13A)-H(13B)	109.5	H(18C)-C(18A)-H(18D)	106.1
O(3A)-C(13A)-H(13C)	109.5	C(18A)-C(19A)-C(20A)	112.2(3)
H(13A)-C(13A)-H(13C)	109.5	C(18A)-C(19A)-H(19A)	109.2
H(13B)-C(13A)-H(13C)	109.5	C(20A)-C(19A)-H(19A)	109.2
C(15A)-C(14A)-O(4A)	110.0(2)	C(18A)-C(19A)-H(19B)	109.2
C(15A)-C(14A)-C(7A)	133.5(3)	C(20A)-C(19A)-H(19B)	109.2
O(4A)-C(14A)-C(7A)	116.5(2)	H(19A)-C(19A)-H(19B)	107.9
C(14A)-C(15A)-C(20A)	106.1(3)	C(21A)-C(20A)-C(15A)	106.4(3)
C(14A)-C(15A)-C(16A)	133.1(2)	C(21A)-C(20A)-C(19A)	129.8(3)
C(20A)-C(15A)-C(16A)	120.7(3)	C(15A)-C(20A)-C(19A)	123.8(3)
C(17')-C(16A)-C(15A)	117.3(6)	C(20A)-C(21A)-O(4A)	111.2(3)
C(15A)-C(16A)-C(17A)	111.4(3)	C(20A)-C(21A)-H(21A)	124.4
C(15A)-C(16A)-H(16A)	109.3	O(4A)-C(21A)-H(21A)	124.4
C(17A)-C(16A)-H(16A)	109.3	C(8B)-O(1B)-H(1B)	108(3)
C(15A)-C(16A)-H(16B)	109.3	C(19B)-O(2B)-C(12B)	106.6(2)
C(17A)-C(16A)-H(16B)	109.3	C(20B)-O(4B)-C(21B)	116.5(2)
H(16A)-C(16A)-H(16B)	108.0	C(1B)-N(1B)-C(7B)	125.4(2)
C(17')-C(16A)-H(16E)	108.0	C(1B)-N(1B)-C(10B)	121.9(2)
C(15A)-C(16A)-H(16E)	108.0	C(7B)-N(1B)-C(10B)	112.6(2)
C(17')-C(16A)-H(16F)	108.0	N(1B)-C(1B)-C(6B)	120.7(3)
C(15A)-C(16A)-H(16F)	108.0	N(1B)-C(1B)-C(2B)	122.0(2)
H(16E)-C(16A)-H(16F)	107.2	C(6B)-C(1B)-C(2B)	117.2(3)
C(18A)-C(17A)-C(16A)	114.0(3)	C(3B)-C(2B)-C(1B)	121.1(2)
C(18A)-C(17A)-H(17A)	108.7	C(3B)-C(2B)-H(2B)	119.4
C(16A)-C(17A)-H(17A)	108.7	C(1B)-C(2B)-H(2B)	119.4
C(18A)-C(17A)-H(17B)	108.7	C(2B)-C(3B)-C(4B)	120.2(3)
C(16A)-C(17A)-H(17B)	108.7	C(2B)-C(3B)-H(3B)	119.9
H(17A)-C(17A)-H(17B)	107.6	C(4B)-C(3B)-H(3B)	119.9
C(18A)-C(17')-C(16A)	114.4(5)	C(5B)-C(4B)-C(3B)	120.2(3)
C(18A)-C(17')-H(17E)	108.7	C(5B)-C(4B)-Br(1B)	120.5(2)
C(16A)-C(17')-H(17E)	108.7	C(3B)-C(4B)-Br(1B)	119.3(2)
C(18A)-C(17')-H(17F)	108.7	C(4B)-C(5B)-C(6B)	119.7(3)
C(16A)-C(17')-H(17F)	108.7	C(4B)-C(5B)-H(5B)	120.1
H(17E)-C(17')-H(17F)	107.6	C(6B)-C(5B)-H(5B)	120.1
C(19A)-C(18A)-C(17A)	115.5(4)	C(5B)-C(6B)-C(1B)	121.5(3)
C(19A)-C(18A)-C(17')	126.8(5)	C(5B)-C(6B)-H(6B)	119.2
C(19A)-C(18A)-H(18A)	108.4	C(1B)-C(6B)-H(6B)	119.2
C(17A)-C(18A)-H(18A)	108.4	N(1B)-C(7B)-C(12B)	109.7(2)

N(1A)-C(7A)-C(12A)	110.7(2)	H(11B)-C(11A)-H(11C)	109.5
C(14A)-C(7A)-C(12A)	113.3(2)	O(2A)-C(12A)-O(3A)	124.3(3)
N(1A)-C(7A)-C(8A)	102.3(2)	O(2A)-C(12A)-C(7A)	124.6(3)
O(3A)-C(12A)-C(7A)	111.1(2)	C(17')-C(18A)-H(18C)	105.6
O(3A)-C(13A)-H(13A)	109.5	C(19A)-C(18A)-H(18D)	105.6
O(3A)-C(13A)-H(13B)	109.5	C(17')-C(18A)-H(18D)	105.6
H(13A)-C(13A)-H(13B)	109.5	H(18C)-C(18A)-H(18D)	106.1
O(3A)-C(13A)-H(13C)	109.5	C(18A)-C(19A)-C(20A)	112.2(3)
H(13A)-C(13A)-H(13C)	109.5	C(18A)-C(19A)-H(19A)	109.2
H(13B)-C(13A)-H(13C)	109.5	C(20A)-C(19A)-H(19A)	109.2
C(15A)-C(14A)-O(4A)	110.0(2)	C(18A)-C(19A)-H(19B)	109.2
C(15A)-C(14A)-C(7A)	133.5(3)	C(20A)-C(19A)-H(19B)	109.2
O(4A)-C(14A)-C(7A)	116.5(2)	H(19A)-C(19A)-H(19B)	107.9
C(14A)-C(15A)-C(20A)	106.1(3)	C(21A)-C(20A)-C(15A)	106.4(3)
C(14A)-C(15A)-C(16A)	133.1(2)	C(21A)-C(20A)-C(19A)	129.8(3)
C(20A)-C(15A)-C(16A)	120.7(3)	C(15A)-C(20A)-C(19A)	123.8(3)
C(17')-C(16A)-C(15A)	117.3(6)	C(20A)-C(21A)-O(4A)	111.2(3)
C(15A)-C(16A)-C(17A)	111.4(3)	C(20A)-C(21A)-H(21A)	124.4
C(15A)-C(16A)-H(16A)	109.3	O(4A)-C(21A)-H(21A)	124.4
C(17A)-C(16A)-H(16A)	109.3	C(8B)-O(1B)-H(1B)	108(3)
C(15A)-C(16A)-H(16B)	109.3	C(19B)-O(2B)-C(12B)	106.6(2)
C(17A)-C(16A)-H(16B)	109.3	C(20B)-O(4B)-C(21B)	116.5(2)
H(16A)-C(16A)-H(16B)	108.0	C(1B)-N(1B)-C(7B)	125.4(2)
C(17')-C(16A)-H(16E)	108.0	C(1B)-N(1B)-C(10B)	121.9(2)
C(15A)-C(16A)-H(16E)	108.0	C(7B)-N(1B)-C(10B)	112.6(2)
C(17')-C(16A)-H(16F)	108.0	N(1B)-C(1B)-C(6B)	120.7(3)
C(15A)-C(16A)-H(16F)	108.0	N(1B)-C(1B)-C(2B)	122.0(2)
H(16E)-C(16A)-H(16F)	107.2	C(6B)-C(1B)-C(2B)	117.2(3)
C(18A)-C(17A)-C(16A)	114.0(3)	C(3B)-C(2B)-C(1B)	121.1(2)
C(18A)-C(17A)-H(17A)	108.7	C(3B)-C(2B)-H(2B)	119.4
C(16A)-C(17A)-H(17A)	108.7	C(1B)-C(2B)-H(2B)	119.4
C(18A)-C(17A)-H(17B)	108.7	C(2B)-C(3B)-C(4B)	120.2(3)
C(16A)-C(17A)-H(17B)	108.7	C(2B)-C(3B)-H(3B)	119.9
H(17A)-C(17A)-H(17B)	107.6	C(4B)-C(3B)-H(3B)	119.9
C(18A)-C(17')-C(16A)	114.4(5)	C(5B)-C(4B)-C(3B)	120.2(3)
C(18A)-C(17')-H(17E)	108.7	C(5B)-C(4B)-Br(1B)	120.5(2)
C(16A)-C(17')-H(17E)	108.7	C(3B)-C(4B)-Br(1B)	119.3(2)
C(18A)-C(17')-H(17F)	108.7	C(4B)-C(5B)-C(6B)	119.7(3)
C(16A)-C(17')-H(17F)	108.7	C(4B)-C(5B)-H(5B)	120.1
H(17E)-C(17')-H(17F)	107.6	C(6B)-C(5B)-H(5B)	120.1
C(19A)-C(18A)-C(17A)	115.5(4)	C(5B)-C(6B)-C(1B)	121.5(3)
C(19A)-C(18A)-C(17')	126.8(5)	C(5B)-C(6B)-H(6B)	119.2
C(19A)-C(18A)-H(18A)	108.4	C(1B)-C(6B)-H(6B)	119.2
C(17A)-C(18A)-H(18A)	108.4	N(1B)-C(7B)-C(12B)	109.7(2)

C(19A)-C(18A)-H(18B)	108.4	N(1B)-C(7B)-C(20B)	110.1(2)
C(17A)-C(18A)-H(18B)	108.4	C(12B)-C(7B)-C(20B)	114.5(2)
H(18A)-C(18A)-H(18B)	107.5	N(1B)-C(7B)-C(8B)	103.3(2)
C(19A)-C(18A)-H(18C)	105.6	C(12B)-C(7B)-C(8B)	112.4(2)
C(20B)-C(7B)-C(8B)	106.2(2)	C(15B)-C(14B)-H(14B)	109.3
O(1B)-C(8B)-C(11B)	106.7(3)	H(14A)-C(14B)-H(14B)	108.0
O(1B)-C(8B)-C(9B)	111.2(2)	C(16B)-C(15B)-C(14B)	112.7(3)
C(11B)-C(8B)-C(9B)	114.7(3)	C(16B)-C(15B)-H(15A)	109.1
O(1B)-C(8B)-C(7B)	107.8(2)	C(14B)-C(15B)-H(15A)	109.1
C(11B)-C(8B)-C(7B)	115.2(2)	C(16B)-C(15B)-H(15B)	109.1
C(9B)-C(8B)-C(7B)	101.1(2)	C(14B)-C(15B)-H(15B)	109.1
C(10B)-C(9B)-C(8B)	105.5(3)	H(15A)-C(15B)-H(15B)	107.8
C(10B)-C(9B)-H(9BA)	110.6	C(15B)-C(16B)-C(17B)	113.3(3)
C(8B)-C(9B)-H(9BA)	110.6	C(15B)-C(16B)-H(16C)	108.9
C(10B)-C(9B)-H(9BB)	110.6	C(17B)-C(16B)-H(16C)	108.9
C(8B)-C(9B)-H(9BB)	110.6	C(15B)-C(16B)-H(16D)	108.9
H(9BA)-C(9B)-H(9BB)	108.8	C(17B)-C(16B)-H(16D)	108.9
N(1B)-C(10B)-C(9B)	103.5(2)	H(16C)-C(16B)-H(16D)	107.7
N(1B)-C(10B)-H(10C)	111.1	C(18B)-C(17B)-C(16B)	110.1(2)
C(9B)-C(10B)-H(10C)	111.1	C(18B)-C(17B)-H(17C)	109.6
N(1B)-C(10B)-H(10D)	111.1	C(16B)-C(17B)-H(17C)	109.6
C(9B)-C(10B)-H(10D)	111.1	C(18B)-C(17B)-H(17D)	109.6
H(10C)-C(10B)-H(10D)	109.0	C(16B)-C(17B)-H(17D)	109.6
C(8B)-C(11B)-H(11D)	109.5	H(17C)-C(17B)-H(17D)	108.2
C(8B)-C(11B)-H(11E)	109.5	C(19B)-C(18B)-C(13B)	106.2(2)
H(11D)-C(11B)-H(11E)	109.5	C(19B)-C(18B)-C(17B)	129.9(3)
C(8B)-C(11B)-H(11F)	109.5	C(13B)-C(18B)-C(17B)	123.9(3)
H(11D)-C(11B)-H(11F)	109.5	C(18B)-C(19B)-O(2B)	110.9(2)
H(11E)-C(11B)-H(11F)	109.5	C(18B)-C(19B)-H(19C)	124.6
C(13B)-C(12B)-O(2B)	109.7(2)	O(2B)-C(19B)-H(19C)	124.6
C(13B)-C(12B)-C(7B)	132.9(2)	O(3B)-C(20B)-O(4B)	123.7(3)
O(2B)-C(12B)-C(7B)	117.1(2)	O(3B)-C(20B)-C(7B)	124.2(3)
C(12B)-C(13B)-C(18B)	106.5(2)	O(4B)-C(20B)-C(7B)	112.1(2)
C(12B)-C(13B)-C(14B)	132.2(2)	O(4B)-C(21B)-H(21B)	109.5
C(18B)-C(13B)-C(14B)	121.3(2)	O(4B)-C(21B)-H(21C)	109.5
C(13B)-C(14B)-C(15B)	111.6(2)	H(21B)-C(21B)-H(21C)	109.5
C(13B)-C(14B)-H(14A)	109.3	O(4B)-C(21B)-H(21D)	109.5
C(15B)-C(14B)-H(14A)	109.3	H(21B)-C(21B)-H(21D)	109.5
C(13B)-C(14B)-H(14B)	109.3	H(21C)-C(21B)-H(21D)	109.5

The

Table 4. Anisotropic displacement parameters ($Å^2x \ 10^3$) for **3b**. anisotropic displacement factor exponent takes the form:

-2	2 [h ² a* ²	U11	$+ + 2 h k a^* b^* U_{12}$]
----	---	-----	------------------------------

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Br(1A)	66(1)	66(1)	66(1)	-5(1)	15(1)	-1(1)
O(1A)	59(1)	32(1)	67(2)	-7(1)	-23(1)	12(1)
O(2A)	57(1)	41(1)	59(1)	4(1)	-14(1)	-13(1)
O(3A)	63(1)	56(1)	40(1)	0(1)	-12(1)	6(1)
O(4A)	77(2)	34(1)	50(1)	14(1)	-3(1)	3(1)
N(1A)	43(1)	31(1)	38(1)	8(1)	-10(1)	2(1)
C(1A)	42(2)	24(1)	39(2)	4(1)	-9(1)	-6(1)
C(2A)	45(2)	31(1)	42(2)	6(1)	-9(1)	-4(1)
C(3A)	44(2)	31(1)	54(2)	1(1)	-5(1)	-5(1)
C(4A)	50(2)	37(2)	52(2)	-1(1)	5(1)	-10(1)
C(5A)	61(2)	44(2)	43(2)	8(1)	-3(2)	-10(2)
C(6A)	49(2)	38(2)	44(2)	10(1)	-8(1)	-3(1)
C(7A)	43(2)	27(1)	39(2)	5(1)	-6(1)	1(1)
C(8A)	45(2)	31(1)	50(2)	1(1)	-5(1)	4(1)
C(9A)	40(2)	40(2)	56(2)	0(1)	-13(1)	2(1)
C(10A)	43(2)	34(1)	49(2)	5(1)	-16(1)	3(1)
C(11A)	59(2)	71(2)	65(2)	7(2)	13(2)	11(2)
C(12A)	50(2)	29(1)	40(2)	2(1)	-10(1)	9(1)
C(13A)	80(3)	82(3)	53(2)	-12(2)	-33(2)	16(2)
C(14A)	46(2)	28(1)	43(2)	9(1)	0(1)	3(1)
C(15A)	38(2)	28(1)	56(2)	4(1)	3(1)	-2(1)
C(16A)	53(2)	38(2)	61(2)	-5(1)	-5(2)	-8(1)
C(17A)	65(3)	46(2)	93(3)	-11(2)	-16(3)	-11(2)
C(17')	64(5)	47(3)	92(4)	-15(3)	-14(4)	-9(4)
C(18A)	97(3)	36(2)	123(3)	-14(2)	-24(3)	-7(2)
C(19A)	62(2)	30(2)	107(3)	0(2)	12(2)	-1(2)
C(20A)	48(2)	28(1)	76(2)	9(2)	9(2)	1(1)
C(21A)	84(3)	32(2)	73(3)	20(2)	7(2)	4(2)
Br(1B)	81(1)	51(1)	52(1)	-11(1)	10(1)	8(1)
O(1B)	89(2)	54(1)	49(1)	20(1)	-13(1)	-26(1)
O(2B)	51(1)	31(1)	43(1)	2(1)	-10(1)	4(1)
O(3B)	75(2)	46(1)	59(1)	-5(1)	-24(1)	27(1)
O(4B)	50(1)	46(1)	40(1)	-7(1)	-15(1)	12(1)
N(1B)	46(1)	28(1)	46(1)	1(1)	-7(1)	-10(1)
C(1B)	48(2)	24(1)	38(2)	3(1)	-14(1)	0(1)

Supplementary Information

C(2B)	46(2)	24(1)	44(2)	-4(1)	-7(1)	1(1)
C(3B)	47(2)	27(1)	44(2)	-1(1)	-9(1)	1(1)
C(4B)	56(2)	35(2)	36(2)	-1(1)	-7(1)	10(1)
C(5B)	71(2)	26(1)	39(2)	-5(1)	-17(2)	5(1)
C(6B)	62(2)	25(1)	45(2)	-1(1)	-18(2)	-4(1)
C(7B)	38(1)	28(1)	38(2)	5(1)	-5(1)	-4(1)
C(8B)	47(2)	50(2)	50(2)	15(1)	-3(1)	-12(1)
C(9B)	46(2)	64(2)	58(2)	21(2)	-9(2)	-21(2)
C(10B)	59(2)	44(2)	53(2)	10(1)	-16(2)	-24(2)
C(11B)	53(2)	77(3)	80(3)	10(2)	24(2)	-3(2)
C(12B)	33(1)	28(1)	39(2)	1(1)	-4(1)	-1(1)
C(13B)	34(1)	32(1)	39(2)	9(1)	-1(1)	0(1)
C(14B)	57(2)	47(2)	38(2)	4(1)	-9(1)	1(1)
C(15B)	69(2)	60(2)	39(2)	10(2)	-10(2)	6(2)
C(16B)	67(2)	69(2)	51(2)	26(2)	-1(2)	2(2)
C(17B)	48(2)	45(2)	57(2)	22(2)	-3(1)	5(1)
C(18B)	35(1)	37(1)	48(2)	11(1)	-1(1)	3(1)
C(19B)	50(2)	29(1)	62(2)	7(1)	-7(2)	5(1)
C(20B)	40(2)	30(1)	39(2)	7(1)	-3(1)	3(1)
C(21B)	68(2)	89(3)	51(2)	-17(2)	-30(2)	22(2)

	X	У	Z	U(eq)
		-		
H(1A)	0.540(4)	0.5894(13)	0.610(2)	0.064
H(2A)	0.093028	0.728979	0.681315	0.047
H(3A)	-0.116604	0.750367	0.758260	0.052
H(5A)	0.106573	0.677071	0.926382	0.059
H(6A)	0.315462	0.653833	0.849889	0.052
H(9AA)	0.709340	0.628273	0.686994	0.055
H(9AB)	0.690123	0.687831	0.693312	0.055
H(10A)	0.480303	0.613614	0.752435	0.051
H(10B)	0.538358	0.664899	0.791099	0.051
H(11A)	0.554801	0.677106	0.505480	0.097
H(11B)	0.721869	0.656281	0.541637	0.097
H(11C)	0.660814	0.711281	0.560918	0.097
H(13A)	0.018998	0.678046	0.475085	0.109
H(13B)	0.096442	0.623302	0.475917	0.109
H(13C)	0.152760	0.663113	0.415998	0.109
H(16A)	0.552703	0.751420	0.768300	0.061
H(16B)	0.380459	0.777231	0.784438	0.061
H(16E)	0.408165	0.756738	0.780797	0.061
H(16F)	0.594934	0.767446	0.762767	0.061
H(17A)	0.571815	0.830196	0.832704	0.082
H(17B)	0.684414	0.825586	0.762218	0.082
H(17E)	0.364814	0.831775	0.818953	0.082
H(17F)	0.558007	0.830182	0.834905	0.082
H(18A)	0.383467	0.877755	0.767562	0.103
H(18B)	0.560339	0.902734	0.763203	0.103
H(18C)	0.416208	0.899139	0.764843	0.103
H(18D)	0.604776	0.886706	0.758687	0.103
H(19A)	0.580436	0.887731	0.644288	0.079
H(19B)	0.388692	0.898804	0.650487	0.079
H(21A)	0.389173	0.835249	0.523667	0.076
H(1B)	1.032(5)	0.5693(15)	0.614(2)	0.077
H(2B)	0.646393	0.477760	0.774987	0.046
H(3B)	0.435897	0.488012	0.856753	0.047
H(5B)	0.640914	0.615800	0.931052	0.055
H(6B)	0.853969	0.605686	0.850148	0.053
H(9BA)	1.236849	0.515921	0.750046	0.068
H(9BB)	1.250864	0.562490	0.694718	0.068

Table 5.Hydrogen coordinates and isotropic displacement parameters for **3b**.

H(10C)	1.087738	0.572295	0.812429	0.063
H(10D)	1.022812	0.599384	0.737989	0.063
H(11D)	1.098841	0.452223	0.586268	0.104
H(11E)	1.199670	0.443596	0.661928	0.104
H(11F)	1.267740	0.481108	0.601371	0.104
H(14A)	0.916246	0.474400	0.898511	0.057
H(14B)	1.090174	0.491200	0.868093	0.057
H(15A)	1.225203	0.428187	0.928475	0.067
H(15B)	1.101373	0.449560	0.987696	0.067
H(16C)	0.918001	0.383989	0.960688	0.075
H(16D)	1.090995	0.363435	0.990573	0.075
H(17C)	1.162404	0.336109	0.876205	0.060
H(17D)	0.975151	0.319319	0.883749	0.060
H(19C)	0.961294	0.329211	0.728517	0.056
H(21B)	0.673919	0.433870	0.507512	0.105
H(21C)	0.644055	0.491976	0.521424	0.105
H(21D)	0.542115	0.451469	0.565917	0.105

Table 6. Torsion angles $[^{\circ}]$ for **3b**.

C(7A)-N(1A)-C(1A)-C(6A)	180.0(2)
C(10A)-N(1A)-C(1A)-C(6A)	-7.1(4)
C(7A)-N(1A)-C(1A)-C(2A)	-0.8(4)
C(10A)-N(1A)-C(1A)-C(2A)	172.2(2)
N(1A)-C(1A)-C(2A)-C(3A)	-179.9(2)
C(6A)-C(1A)-C(2A)-C(3A)	-0.7(4)
C(1A)-C(2A)-C(3A)-C(4A)	0.6(4)
C(2A)-C(3A)-C(4A)-C(5A)	0.2(4)
C(2A)-C(3A)-C(4A)-Br(1A)	-178.9(2)
C(3A)-C(4A)-C(5A)-C(6A)	-0.9(4)
Br(1A)-C(4A)-C(5A)-C(6A)	178.3(2)
C(4A)-C(5A)-C(6A)-C(1A)	0.8(4)
N(1A)-C(1A)-C(6A)-C(5A)	179.3(3)
C(2A)-C(1A)-C(6A)-C(5A)	0.0(4)
C(1A)-N(1A)-C(7A)-C(14A)	65.3(3)
C(10A)-N(1A)-C(7A)-C(14A)	-108.2(2)
C(1A)-N(1A)-C(7A)-C(12A)	-60.3(3)
C(10A)-N(1A)-C(7A)-C(12A)	126.2(2)
C(1A)-N(1A)-C(7A)-C(8A)	-174.5(2)
C(10A)-N(1A)-C(7A)-C(8A)	12.1(3)
N(1A)-C(7A)-C(8A)-O(1A)	84.0(2)
C(14A)-C(7A)-C(8A)-O(1A)	-158.4(2)
C(12A)-C(7A)-C(8A)-O(1A)	-32.7(3)
N(1A)-C(7A)-C(8A)-C(11A)	-154.9(3)
C(14A)-C(7A)-C(8A)-C(11A)	-37.3(3)
C(12A)-C(7A)-C(8A)-C(11A)	88.4(3)
N(1A)-C(7A)-C(8A)-C(9A)	-30.9(3)
C(14A)-C(7A)-C(8A)-C(9A)	86.8(3)
C(12A)-C(7A)-C(8A)-C(9A)	-147.5(2)
O(1A)-C(8A)-C(9A)-C(10A)	-71.6(3)
C(11A)-C(8A)-C(9A)-C(10A)	164.0(3)
C(7A)-C(8A)-C(9A)-C(10A)	38.8(3)
C(1A)-N(1A)-C(10A)-C(9A)	-162.1(2)
C(7A)-N(1A)-C(10A)-C(9A)	11.7(3)
C(8A)-C(9A)-C(10A)-N(1A)	-31.7(3)
C(13A)-O(3A)-C(12A)-O(2A)	1.9(4)
C(13A)-O(3A)-C(12A)-C(7A)	-179.0(2)
N(1A)-C(7A)-C(12A)-O(2A)	2.0(4)
C(14A)-C(7A)-C(12A)-O(2A)	-121.5(3)
C(8A)-C(7A)-C(12A)-O(2A)	113.0(3)
N(1A)-C(7A)-C(12A)-O(3A)	-177.2(2)
C(14A)-C(7A)-C(12A)-O(3A)	59.4(3)

C(8A)-C(7A)-C(12A)-O(3A)	-66.2(3)
C(21A)-O(4A)-C(14A)-C(15A)	0.2(3)
C(21A)-O(4A)-C(14A)-C(7A)	-179.0(3)
N(1A)-C(7A)-C(14A)-C(15A)	18.4(4)
C(12A)-C(7A)-C(14A)-C(15A)	142.5(3)
C(8A)-C(7A)-C(14A)-C(15A)	-95.0(4)
N(1A)-C(7A)-C(14A)-O(4A)	-162.7(2)
C(12A)-C(7A)-C(14A)-O(4A)	-38.5(3)
C(8A)-C(7A)-C(14A)-O(4A)	83.9(3)
O(4A)-C(14A)-C(15A)-C(20A)	0.3(3)
C(7A)-C(14A)-C(15A)-C(20A)	179.3(3)
O(4A)-C(14A)-C(15A)-C(16A)	179.8(3)
C(7A)-C(14A)-C(15A)-C(16A)	-1.2(6)
C(14A)-C(15A)-C(16A)-C(17')	-161.0(12)
C(20A)-C(15A)-C(16A)-C(17')	18.4(12)
C(14A)-C(15A)-C(16A)-C(17A)	162.9(4)
C(20A)-C(15A)-C(16A)-C(17A)	-17.6(5)
C(15A)-C(16A)-C(17A)-C(18A)	45.2(6)
C(15A)-C(16A)-C(17')-C(18A)	-25(2)
C(16A)-C(17A)-C(18A)-C(19A)	-56.9(7)
C(16A)-C(17')-C(18A)-C(19A)	18(3)
C(17A)-C(18A)-C(19A)-C(20A)	35.6(5)
C(17')-C(18A)-C(19A)-C(20A)	-1.5(14)
C(14A)-C(15A)-C(20A)-C(21A)	-0.7(4)
C(16A)-C(15A)-C(20A)-C(21A)	179.7(3)
C(14A)-C(15A)-C(20A)-C(19A)	178.7(3)
C(16A)-C(15A)-C(20A)-C(19A)	-0.9(5)
C(18A)-C(19A)-C(20A)-C(21A)	171.6(4)
C(18A)-C(19A)-C(20A)-C(15A)	-7.6(5)
C(15A)-C(20A)-C(21A)-O(4A)	0.8(4)
C(19A)-C(20A)-C(21A)-O(4A)	-178.5(3)
C(14A)-O(4A)-C(21A)-C(20A)	-0.7(4)
C(7B)-N(1B)-C(1B)-C(6B)	-175.6(2)
C(10B)-N(1B)-C(1B)-C(6B)	5.0(4)
C(7B)-N(1B)-C(1B)-C(2B)	6.2(4)
C(10B)-N(1B)-C(1B)-C(2B)	-173.2(3)
N(1B)-C(1B)-C(2B)-C(3B)	177.2(2)
C(6B)-C(1B)-C(2B)-C(3B)	-1.1(4)
C(1B)-C(2B)-C(3B)-C(4B)	0.7(4)
C(2B)-C(3B)-C(4B)-C(5B)	0.0(4)
C(2B)-C(3B)-C(4B)-Br(1B)	-179.7(2)
C(3B)-C(4B)-C(5B)-C(6B)	-0.3(4)
Br(1B)-C(4B)-C(5B)-C(6B)	179.4(2)
C(4B)-C(5B)-C(6B)-C(1B)	-0.1(4)
N(1B)-C(1B)-C(6B)-C(5B)	-177.5(3)

C(2B)-C(1B)-C(6B)-C(5B)	0.8(4)
C(1B)-N(1B)-C(7B)-C(12B)	-69.3(3)
C(10B)-N(1B)-C(7B)-C(12B)	110.2(2)
C(1B)-N(1B)-C(7B)-C(20B)	57.7(3)
C(10B)-N(1B)-C(7B)-C(20B)	-122.9(2)
C(1B)-N(1B)-C(7B)-C(8B)	170.7(2)
C(10B)-N(1B)-C(7B)-C(8B)	-9.8(3)
N(1B)-C(7B)-C(8B)-O(1B)	-88.3(3)
C(12B)-C(7B)-C(8B)-O(1B)	153.5(2)
C(20B)-C(7B)-C(8B)-O(1B)	27.6(3)
N(1B)-C(7B)-C(8B)-C(11B)	152.7(3)
C(12B)-C(7B)-C(8B)-C(11B)	34.6(4)
C(20B)-C(7B)-C(8B)-C(11B)	-91.4(3)
N(1B)-C(7B)-C(8B)-C(9B)	28.5(3)
C(12B)-C(7B)-C(8B)-C(9B)	-89.7(3)
C(20B)-C(7B)-C(8B)-C(9B)	144.4(2)
O(1B)-C(8B)-C(9B)-C(10B)	76.7(3)
C(11B)-C(8B)-C(9B)-C(10B)	-162.1(3)
C(7B)-C(8B)-C(9B)-C(10B)	-37.5(3)
C(1B)-N(1B)-C(10B)-C(9B)	166.1(2)
C(7B)-N(1B)-C(10B)-C(9B)	-13.4(3)
C(8B)-C(9B)-C(10B)-N(1B)	32.2(3)
C(19B)-O(2B)-C(12B)-C(13B)	1.1(3)
C(19B)-O(2B)-C(12B)-C(7B)	176.0(2)
N(1B)-C(7B)-C(12B)-C(13B)	-18.6(4)
C(20B)-C(7B)-C(12B)-C(13B)	-143.1(3)
C(8B)-C(7B)-C(12B)-C(13B)	95.7(3)
N(1B)-C(7B)-C(12B)-O(2B)	167.9(2)
C(20B)-C(7B)-C(12B)-O(2B)	43.5(3)
C(8B)-C(7B)-C(12B)-O(2B)	-77.8(3)
O(2B)-C(12B)-C(13B)-C(18B)	-1.1(3)
C(7B)-C(12B)-C(13B)-C(18B)	-174.9(3)
O(2B)-C(12B)-C(13B)-C(14B)	-178.3(3)
C(7B)-C(12B)-C(13B)-C(14B)	7.9(5)
C(12B)-C(13B)-C(14B)-C(15B)	-167.9(3)
C(18B)-C(13B)-C(14B)-C(15B)	15.3(4)
C(13B)-C(14B)-C(15B)-C(16B)	-44.7(4)
C(14B)-C(15B)-C(16B)-C(17B)	62.4(4)
C(15B)-C(16B)-C(17B)-C(18B)	-44.7(4)
C(12B)-C(13B)-C(18B)-C(19B)	0.7(3)
C(14B)-C(13B)-C(18B)-C(19B)	178.3(3)
C(12B)-C(13B)-C(18B)-C(17B)	-178.5(3)
C(14B)-C(13B)-C(18B)-C(17B)	-1.0(4)
C(16B)-C(17B)-C(18B)-C(19B)	-163.9(3)
C(16B)-C(17B)-C(18B)-C(13B)	15.2(4)

C(13B)-C(18B)-C(19B)-O(2B)	0.0(3)
C(17B)-C(18B)-C(19B)-O(2B)	179.1(3)
C(12B)-O(2B)-C(19B)-C(18B)	-0.6(3)
C(21B)-O(4B)-C(20B)-O(3B)	2.7(4)
C(21B)-O(4B)-C(20B)-C(7B)	-175.7(3)
N(1B)-C(7B)-C(20B)-O(3B)	7.7(4)
C(12B)-C(7B)-C(20B)-O(3B)	132.0(3)
C(8B)-C(7B)-C(20B)-O(3B)	-103.4(3)
N(1B)-C(7B)-C(20B)-O(4B)	-173.9(2)
C(12B)-C(7B)-C(20B)-O(4B)	-49.6(3)
C(8B)-C(7B)-C(20B)-O(4B)	75.0(3)

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1A)-H(1A)O(3B)	0.78(4)	2.05(4)	2.819(3)	166(4)
C(11A)-H(11A)O(3A)	0.98	2.52	3.127(4)	119.9
C(21A)-H(21A)Br(1B)#1	0.95	3.00	3.853(3)	149.9
O(1B)-H(1B)O(2A)#2	0.76(4)	2.12(4)	2.838(3)	157(4)
C(21B)-H(21B)O(1A)#3	0.98	2.48	3.268(4)	137.0

Table 7. Hydrogen bonds for **3b** [Å and °].

Symmetry transformations used to generate equivalent atoms: #1 x, -y+3/2, z-1/2#2 x+1, y, z#3 -x+1, -y+1, -z+1

- (a) Data Collection: APEX3 (2018) Bruker Inc., Madison, Wisconsin, USA. (b) Data Reduction: SAINT (2016) Bruker Inc., Madison, Wisconsin, USA.
- 12. L. Krause, R. Herbst-Irmer, G. M. Sheldrick, and D. Stalke (2015). J. Appl. Cryst., 48, 3-10.
- 13. (a) G. M. Sheldrick (2015). *Acta Cryst.*, *A71*, 3-8. (b) G. M. Sheldrick (2015). *Acta Cryst.*, *C71*,

