Supporting Information

Boron-, Carbon-, and Silicon-Bridged 1,12-Dihydroxy-Perylene Bisimides with Tuned Structural and Optical Properties

Oliver Nagler,^a Kazutaka Shoyama,^{a,b} Olga Anhalt,^a Matthias Stolte,^{a,b} Rajeev K. Dubey,^b Zengqi Xie^c and Frank Würthner^{*,a,b}

^a Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany

^b Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany

^c State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), 510640 Guangzhou, China

*E-mail: wuerthner@uni-wuerzburg.de

Table of Contents

1. Materials and Methods	
2. Synthesis and Characterization	S4
3. Crystallographic Data	S22
4. Optical Properties	S27
5. Electrochemical Properties	S29
6. NMR Spectra	S31
7. HR-MS Spectra	S49
8. Supporting References	S67

1. Materials and Methods

Chemicals: All reagents were purchased from commercial suppliers (TCI, Sigma Aldrich, BLDPharm, Merck) and used as received, unless otherwise stated. Reagent grade solvents were distilled prior to use. Column chromatography was performed on silica (silica gel, particle size 40- $63 \mu m$).

Characterization: ¹H-, ¹³C-NMR spectra were recorded on a Bruker Avance III HD 400 or Bruker Avance III HD 600 spectrometer and were calibrated to the residual solvent signals. Coupling constant (*J*) values are given in Hz. Abbreviations which were used to designate multiplicities are: s = singlet, br s = broad singlet, d = doublet, t = triplet, sept = septet, m = multiplet.

High resolution mass spectra were obtained by matrix-assisted laser desorption/ionization (MALDI) on a Bruker Daltonics UltrafleXtreme spectrometer. *trans*-2-[3-(4-*tert*-Butylphenyl)-2-methyl-2-propenylidene]-malononitrile (DCTB) was used as matrix.

Melting points were measured with an Olympus BX41 polarization microscope connected to a TP84 Linkam scientific temperature regulator.

Spectroscopy: UV-vis spectra were recorded on a Jasco V-770 UV-vis spectrometer equipped with a PAC-743R Peltier for temperature control. Fluorescence measurements were carried out on a FLS980-D2D2-ST0 spectrometer from Edinburgh Instruments. Spectra were corrected against the photomultiplier sensitivity and the lamp intensity. Fluorescence quantum yields in solution were calculated by the optical dilution method ($A \le 0.05$) relative to N,N'-bis(2,6-diisopropylphenyl)perylene-3,4:9,10-bis(dicarboximide) ($\Phi_{fl} = 100\%$ in chloroform) or N,N-bis(2,6-diisopropylphenyl)-1,6,7,12-tetraphenoxyperylene-3,4:9,10-bis(dicarboximide) ($\Phi_{fl} = 96\%$ in chloroform).^[S1,S2] Absolute quantum yields of the materials were measured using a Hamamatsu Ulbricht sphere A9924-01 with Xe lamp and Hamamatsu photonic multi-channel analyser C10027. Fluorescence lifetimes were determined with EPL picosecond pulsed diode lasers ($\lambda_{ex} = 505.8$ and 479.7 nm) for time correlated single photon counting. All spectroscopic measurements were performed with spectroscopic grade solvents from ACROS Organics or Merck. Conventional quartz cells (light path 10 mm) were used.

Single-crystal X-ray analysis: The single crystal of **Naphtho-PBI-(O-C-O)** was obtained by slow evaporation of its dichloromethane solution. The single crystal of **Spiro-PBI-Borate** was obtained by layering *n*-hexane over a solution of the compound in dichloromethane. The single crystals of remaining compounds were obtained by slow diffusion of methanol vapours into their dichloromethane solutions.

X-ray crystallographic analysis for Octyne-PBI-(O-C-O) (CCDC-No.: 2284409), Naphtho-PBI-(O-C-O) (CCDC-No.: 2284414), Ph-PBI-(O-Si-O) (CCDC-No.: 2284413) and Octyne-PBI-(O-Si-O)

(CCDC-No.: 2284411) was done on a Bruker D8 Quest Kappa diffractometer with a Photon II CPAD area detector using $Cu_{K\alpha}$ radiation.

Single crystal X-ray diffraction data for **Br-PBI-(O-C-O)** (CCDC-No.: 2284408), **Ph-PBI-(O-C-O)** (CCDC-No.: 2284416), **PhO-PBI-(O-C-O)** (CCDC-No.: 2284415), **Br-PBI-(O-Si-O)** (CCDC-No.: 2284410) and **Spiro-PBI-Borate** (CCDC-No.: 2284412) were collected at the P11 beamline at DESY. The diffraction data were indexed, integrated, and scaled using the XDS program package.^[S3] The structures were solved using SHELXT,^[S4] expanded with Fourier techniques and refined using the SHELX software package.^[S5] Hydrogen atoms were assigned idealized positions and were included in the calculation of structure factors. All non-hydrogen atoms in the major disorder part of main residues were refined anisotropically. Disorders in the side-chains and solvent molecules were modelled with constraints and restraints using standard SHELX commands such as EADP, DFIX, FLAT, SAME, SADI, DELU, SIMU, CHIV, ISOR, and RIGU. Verification of crystal structures with the checkcif routine implemented in PLATON^[S6] generated two level A alerts for **Ph-PBI-(O-C-O)**, which were caused by weak reflections originating from large unit cell. No level A alerts were found by the same routine for other structures.

2. Synthesis and Characterization

The preparation of literature known **PBI a**, **PBI b**, **PBI c** was adopted from reported reaction conditions with 3-pentylamine (a), 4-heptylamine (b) and cyclohexylamine (c) in imidazole at 120 °C in yields between 67-91%.^[S7,S8,S9] Synthesis of compounds **PBA-(OH)**₂, **PBI-(OH)**₂ **c**, **PBI-(O-C-O)**, **Br-PBI-(O-C-O)**, **PBI-(O-C-O)-Br**, **PBI-(O-C-O)-Br**₂, and **PBI-(O-Si-O) a** was previously described.^[S10,S11]

N,N'-Di(pentan-3-yl)-1,12-dihydroxyperylene-3,4:9,10-bis(dicarboximide) [PBI-(OH)₂ a]

Route A: PBI a (500 mg, 0.94 mmol) was dissolved in concentrated H_2SO_4 (7.5 mL) in a roundbottom flask and boric acid (250 mg, 4.05 mmol) was added. The mixture was diluted with water (1.5 ml) and cooled to 0 °C. Subsequently, manganese dioxide (550 mg, 6.31 mmol) was slowly added, and the reaction mixture was stirred for 24 h at room temperature. Afterwards water (40 mL) and Na₂SO₃ (500 mg, 3.97 mmol) were added, and the reaction mixture refluxed for 1 h on a heating block. The precipitate was filtered after cooling to room temperature, washed with water and dried. The product was purified by column chromatography (silica, DCM/MeOH 5 %) **Yield:** 502 mg (0.89 mmol, 95%) of a dark purple solid.

Route B: This procedure was previously described.^[S10]

¹**H-NMR** (400 MHz, CDCl₃/CD₃OD, 295 K): δ = 8.52-8.46 (m, 4H), 8.25 (s, 2H), 4.99-4.91 (m, 2H), 2.21-2.09 (m, 4H), 1.88-1.77 (m, 4H), 0.81 ppm (t, *J* = 7.47 Hz, 12H).

¹³**C-NMR** (151 MHz, CDCl₃/CD₃OD, 295 K): *δ* = 165.1, 164.1, 153.0, 133.7, 129.0, 128.7, 124.9, 124.5, 123.6, 122.8, 122.3, 119.2, 57.7, 24.9, 11.1 ppm.

HRMS: (MALDI-TOF, negative mode, DCTB): m/z calcd for C₃₄H₂₉N₂O₆ [M–H]⁻: 561.2031; found: 561.2024.

N,N'-Di(heptan-4-yl)-1,12-dihydroxyperylene-3,4:9,10-bis(dicarboximide) [PBI-(OH)₂ b]

Route A: PBI b (553 mg, 0.94 mmol) was dissolved in concentrated H_2SO_4 (7.5 mL) in a roundbottom flask and boric acid (250 mg, 4.05 mmol) was added. The mixture was diluted with water (1.5 ml) and cooled to 0 °C. Subsequently, manganese dioxide (550 mg, 6.31 mmol) was slowly added, and the reaction mixture was stirred for 25 h at room temperature. Afterwards, water (40 mL) and Na₂SO₃ (500 mg, 3.97 mmol) were added, and the mixture was refluxed for 1 h on a heating block. The precipitate was filtered after cooling to room temperature, washed with water and dried. The product was purified by column chromatography (silica, DCM/MeOH 5 %).

Yield: 489 mg (0.81 mmol, 84%) of a purple solid.

¹**H-NMR** (400 MHz, CDCl₃/CD₃OD, 295 K): δ = 8.50 (br s, 4H), 8.26 (s, 2H), 5.19-5.11 (m, 2H), 2.23-2.14 (m, 4H), 1.79-1.70 (m, 4H), 1.34-1.23 (m, 8H), 0.85 ppm (t, *J* = 7.35 Hz, 12H).

¹³**C-NMR** (151 MHz, CDCl₃/CD₃OD, 295 K): *δ* = 165.3, 165.0, 164.3, 164.0, 153.1, 133.8, 129.1, 128.9, 128.3, 125.4, 124.5, 124.0, 123.3, 122.8, 122.0, 119.3, 54.2, 34.5, 20.1, 13.9 ppm.

HRMS: (MALDI-TOF, negative mode, DCTB): m/z calcd for C₃₈H₃₇N₂O₆ [M–H]⁻: 617.2657; found: 617.2665.

N,N'-Di(2,6-diisopropylphenyl)-1,12-dihydroxyperylene-3,4:9,10-bis(dicarboximide) [PBI-(OH)₂ d]

Route B: PBA-(OH) $_2^{[S10]}$ (500 mg, 1.18 mmol) was suspended in molten imidazole (5 g) in a roundbottom flask and 2,6-diisopropylphenylamine (2.22 mL, 11.8 mmol) was added dropwise. The reaction mixture was stirred for 22 h at 130 °C on a heating block. The mixture was acidified with hydrochloric acid and extracted with DCM until the water phase was colorless. The solvent was dried over Na₂SO₄ and removed under reduced pressure. The crude product was purified by column chromatography (silica, DCM/MeOH 5%). Finally, it was precipitated with *n*-hexane from DCM/MeOH solution and washed with *n*-hexane.

Yield: 602 mg (0.81 mmol, 69%) of a purple solid.

¹**H-NMR** (400 MHz, CD₂Cl₂/MeOD, 295 K): *δ* = 8.73-8.65 (m, 4H), 8.42 (s, 2H), 7.51 (t, *J* = 7.81 Hz, 2H), 7.36 (d, *J* = 7.72 Hz, 4H), 2.75 (sept, *J* = 6.85 Hz, 4H), 1.14 ppm (d, *J* = 6.92 Hz, 24H).

¹³**C-NMR** (101 MHz, CD₂Cl₂/MeOD, 295 K): δ = 164.6, 164.4, 154.3, 146.4, 134.7, 131.4, 129.94, 129.86, 129.3, 125.9, 125.4, 124.5, 123.7, 123.5, 122.5, 120.3, 29.5, 24.0 ppm.

HRMS: (MALDI-TOF, negative mode, DCTB): m/z calcd for C₄₈H₄₂N₂O₆ [M–H]⁻: 741.2970; found: 741.2937.

N,N'-Di(*n*-dodecyl)-1,12-dihydroxyperylene-3,4:9,10-bis(dicarboximide) [PBI-(OH)₂ e]

Route B: PBA-(OH) $_2^{[S10]}$ (1.00 g, 2.36 mmol) was suspended in molten imidazole (20 g) in a roundbottom flask and *n*-dodecylamine (2.22 mL, 11.8 mmol) was added dropwise. The reaction mixture was stirred for 19 h at 130 °C on a heating block. Thereafter, the mixture was acidified with hydrochloric acid, filtered, and washed with water until neutral. The crude product was purified by column chromatography (silica, DCM/MeOH 10%). Finally, the product was precipitated with *n*hexane from a DCM/MeOH solution and washed with *n*-hexane.

Yield: 982 mg (1.29 mmol, 55%) of a purple solid.

¹**H-NMR** (400 MHz, CDCl₃/MeOD, 295 K): $\delta = 8.39-8.34$ (m, 4H), 8.17 (s, 2H), 4.04 (t, J = 7.55 Hz, 4H), 1.65-1.58 (m, 4H), 1.34-1.12 (m, 36H), 0.73 ppm (t, J = 6.80 Hz, 6H).

¹³**C-NMR** (101 MHz, CDCl₃/MeOD, 295 K): *δ* = 163.9, 163.5, 152.9, 133.6, 128.8, 128.4, 124.7, 124.0, 123.2, 122.7, 121.9, 119.1, 40.6, 31.8, 29.53, 29.51, 29.50, 29.45, 29.3, 29.2, 28.0, 27.0, 22.5, 13.9 ppm.

HRMS: (MALDI-TOF, negative mode, DCTB): m/z calcd for C₄₈H₅₇N₂O₆ [M–H]⁻: 757.4222; found: 757.4199.

N,N'-Di(n-butyl)-1,12-dihydroxyperylene-3,4:9,10-bis(dicarboximide) [PBI-(OH)₂ f]

Route B: PBA-(OH) $_2^{[S10]}$ (1.00 g, 2.36 mmol) was suspended in water (20 mL) in a round-bottom flask and *n*-butylamine (932 µL, 9.43 mmol) was added dropwise. The reaction mixture was stirred for 18 h at 80 °C on a heating block. The mixture was made acidic with hydrochloric acid, filtered, and washed with water until neutral. The dry solid was purified by column chromatography (silica, DCM/MeOH 10%). Finally, the product was suspended in DCM and filtered.

Yield: 841 mg (1.57 mmol, 67%) of a purple solid.

¹**H-NMR** (400 MHz, CDCl₃/MeOD, 295 K): $\delta = 8.35-8.27$ (m, 4H), 8.11 (s, 2H), 4.05 (t, J = 7.63 Hz, 4H), 1.66-1.58 (m, 4H), 1.41-1.32 (m, 4H), 0.90 ppm (t, J = 7.37 Hz, 6H).

¹³**C-NMR** (101 MHz, CDCl₃/MeOD, 295 K): δ = 163.8, 163.4, 153.2, 133.2, 128.5, 128.0, 124.8, 123.7, 122.8, 122.4, 121.6, 119.0, 40.3, 30.0, 20.3, 13.7 ppm.

HRMS: (MALDI-TOF, negative mode, DCTB): m/z calcd for C₃₂H₂₅N₂O₆ [M–H]⁻: 533.1718; found: 533.1710.

Spiro-PBI-(O-C-O)

Br-PBI-(O-C-O)^[S10] (150 mg, 186 μ mol), Pd(OAc)₂ (4.2 mg, 18.6 μ mol), KHCO₃ (149 mg, 1.49 mmol), KOAc (164 mg, 1.68 mmol) were set under nitrogen in a Schlenk tube followed by the addition of CH₂Br₂ (91.0 μ L, 1.30 mmol), *i*PrOH (28.7 μ L, 372 μ mol) and 1,4-dioxane (5 mL). The mixture was stirred for 19 h at 75 °C on a heating block. Thereafter, water was added, and the precipitate was filtered, washed with water until neutral, and dried. The crude product was purified by column chromatography (silica, DCM/cyclohexane, 7:3).

Yield: 21 mg (14.4 µmol, 15%) of red solid.

¹**H-NMR** (400 MHz, CD₂Cl₂, 295 K): δ = 8.75 (s, 4H), 7.92 (s, 4H), 7.74-7.72 (m, 8H), 7.37-7.28 (m, 12H), 4.97 (br s, 4H), 2.14 (br s, 8H), 1.83-1.80 (m, 8H), 0.83 ppm (t, *J* = 7.44 Hz, 24H).

¹³**C-NMR** (101 MHz, CD₂Cl₂, 295 K): δ = 165.7, 164.4, 163.2, 155.9, 141.5, 140.6, 139.8, 129.3, 129.1, 127.9, 127.2, 126.3, 125.3, 125.0, 124.0, 121.9, 106.6, 74,5 58.0, 25.3, 11.4 ppm.

HRMS: (MALDI-TOF, negative mode, DCTB): m/z calcd for C₉₅H₇₂N₄O₁₂ [M]⁻: 1460.5152; found: 1460.5147.

m.p.: >400 °C.

PBI-(O-C-O)-Br

The synthetic procedure was previously described.^[S10]

Optical Properties: (Absorption, Chloroform, $c = 20 \ \mu\text{M}$): $\lambda_{\text{max,s}} = 540 \ \text{nm}, \ \varepsilon_{\text{max,s}} = 66000 \ \text{M}^{-1} \ \text{cm}^{-1}$ (Emission, Chloroform, $A \le 0.05$): $\lambda_{\text{em,s}} = 552 \ \text{nm}, \ \Delta \tilde{v}_{\text{stokes}} = 400 \ \text{cm}^{-1}, \ \boldsymbol{\Phi}_{\text{fl,s}} = 100 \pm 3\%, \ \tau_{\text{fl,s}} = 5.06 \ \text{ns}$

PBI-(O-C-O)-Bpin

PBI-(O-C-O)-Br^[S10] (100 mg, 124 μ mol), bis(pinacolato)diboron (47.3 mg, 186 μ mol), Pd(dppf)Cl₂ (4.5 mg, 6.2 μ mol) and KOAc (41.7 mg, 424 μ mol) were set under nitrogen in a Schlenk tube and dissolved in degassed anhydrous 1,4-dioxane (20 mL). The mixture was stirred for 45 h at 100 °C. After cooling, the solvent was removed under reduced pressure and the resultant crude product was purified by column chromatography (silica, DCM).

Yield: 45 mg (52.8 µmol, 43%) of a red solid.

¹**H-NMR** (400 MHz, CD₂Cl₂, 295 K): δ = 8.70 (s, 2H), 8.64 (d, *J* = 8.21 Hz, 2H), 8.57 (d, *J* = 8.07 Hz, 2H), 7.67-7.64 (m, 2H), 7.61-7.57 (m, 4H), 7.32-7.23 (m, 3H), 5.08-5.00 (m, 2H), 2.30-2.19 (m, 4H), 1.99-1.89 (m, 4H), 1.22 (s, 12H), 0.93 ppm (t, *J* = 7.45 Hz, 12H).

¹³**C-NMR** (101 MHz, CD₂Cl₂, 295 K): δ = 164.0, 154.5, 142.9, 140.8, 135.1, 134.1, 129.6, 129.1, 128.9, 128.4, 128.2, 126.7, 126.3, 126.1, 124.5, 123.5, 123.2, 122.0, 106.4, 84.3, 58.1, 25.3, 24.9, 11.6 ppm.

HRMS: (MALDI-TOF, negative mode, DCTB): m/z calcd for C₅₃H₄₉BN₂O₈ [M]⁻: 852.3587; found: 852.3592.

m.p.: 273-274 °C.

Optical Properties: (Absorption, Chloroform, $c = 20 \ \mu\text{M}$): $\lambda_{\text{max,s}} = 542 \ \text{nm}, \ \varepsilon_{\text{max,s}} = 64000 \ \text{M}^{-1} \ \text{cm}^{-1}$ (Emission, Chloroform, $A \le 0.05$): $\lambda_{\text{em,s}} = 555 \ \text{nm}, \ \Delta \tilde{v}_{\text{Stokes}} = 400 \ \text{cm}^{-1}, \ \Phi_{\text{fl,s}} = 99 \pm 2\%, \ \tau_{\text{fl,s}} = 5.18 \ \text{ns}$

PBI-(O-C-O)-Ar₂

PBI-(O-C-O)-Br2^[S10] (30.0 mg, 33.9 μ mol), *p*-hexylphenylbronic acid pinacol ester (22.5 mg, 78.0 μ mol), 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (SPhos) (2.8 mg, 6.8 μ mol), [Pd₂(dba)₃]*CHCl₃ (1.8 mg, 1.7 μ mol) and Cs₂CO₃ (33.2 mg, 102 μ mol) were taken in a Schlenk tube and set under nitrogen. Subsequently, degassed toluene (2 mL) and water (1 mL) were added, and the mixture was stirred for 22 h at 100 °C on a heating block. Thereafter, more water was added, and the product was extracted with DCM. The organic layers were collected, dried over Na₂SO₄, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography (silica, DCM).

Yield: 34 mg (32.4 µmol, 96%) of red crystalline solid.

¹**H-NMR** (400 MHz, CD₂Cl₂, 295 K): $\delta = 8.59$ (s, 2H), 8.43 (d, J = 8.08 Hz, 2H), 8.35 (d, J = 8.24 Hz, 2H), 7.61 (d, J = 8.45 Hz , 4H), 7.46 (d, J = 8.49 Hz, 4H), 7.38 (d, J = 8.12 Hz 4H), 7.17 (d, J = 8.16 Hz 4H), 5.09-5.01 (m, 2H), 2.58 (t, J = 7.62 Hz, 4H), 2.33-2.21 (m, 4H), 2.05-1.95 (m, 4H), 1.61-1.54 (m, 4H), 1.35-1.26 (m, 12H), 0.98 (t, J = 7.44 Hz, 12H), 0.88-0.85 ppm (m, 6H).

¹³**C-NMR** (101 MHz, CD₂Cl₂, 295 K): δ = 164.4, 163.7, 154.4, 143.2, 141.7, 139.3, 137.4, 133.9, 129.5, 129.2, 128.4, 128.2 127.24, 127.20, 127.1, 126.2, 124.5, 123.5, 123.0, 121.9, 106.0, 58.1, 35.9, 32.1, 31.8, 29.4, 25.4, 23.0, 14.2, 11.7 ppm.

HRMS: (MALDI-TOF, negative mode, DCTB): m/z calcd for C₇₁H₇₀N₂O₆ [M]⁻: 1046.5239; found: 1046.5278.

m.p.: 168-170 °C.

N,N'-Di(pent-3-yl)-6-(4-*tert*-butylphenyl)-1,12-(14,14-di-phenyl-dioxepin)perylene-3,4:9,10-bis(dicarboximide) [Ph-PBI-(O-C-O)]

Br-PBI-(O-C-O)^[S10] (30.0 mg, 37.2 µmol), 4-*tert*-butylphenylbronic acid (9.9 mg, 55.9 µmol), 2dicyclohexylphosphino-2',6'-dimethoxybiphenyl (SPhos) (3.1 mg, 7.4 µmol), $[Pd_2(dba)_3]$ *CHCl₃ (1.9 mg, 1.9 µmol) and Cs₂CO₃ (36.4 mg, 111 µmol) were taken in a Schlenk tube. The mixture was set under nitrogen, dissolved in degassed toluene (1 mL) and water (0.5 mL), and stirred for 17 h at 100 °C on a heating block. Subsequently, water was added and the product extracted with DCM. The organic layers were collected, dried over Na₂SO₄, filtered, and evaporated under reduced pressure. The resultant crude product was purified by column chromatography (silica, DCM) and, finally, crystallized with MeOH from a DCM solution.

Yield: 32 mg (37.2 µmol, 100%) of red crystalline solid.

¹**H-NMR** (400 MHz, CD₂Cl₂, 295 K): δ = 8.48 (s, 1H), 8.43 (s, 1H), 8.42 (s, 1H), 7.98 (d, *J* = 8.24 Hz, 1H), 7.89 (d, *J* = 8.29 Hz, 1H), 7.69-7.66 (m, 4H), 7.51-7.48 (m, 2H), 7.38-7.29 (m, 8H), 5.04-4.93 (m, 2H), 2.27-2.13 (m, 4H), 1.87-1.83 (m, 4H), 1.39 (s, 9H), 0.92-0.86 ppm (m, 12H).

¹³**C-NMR** (101 MHz, CD₂Cl₂, 295 K): δ = 164.3, 154.3, 154.1, 152.2, 141.7, 140.9, 140.2, 134.7, 134.1, 132.2, 130.4, 130.0, 129.6, 129.3, 128.9, 128.7, 128.3, 127.7, 127.4, 126.9, 125.7, 125.3, 125.2, 124.4, 123.9, 123.4, 122.4, 114.9, 58.0, 57.9, 35.0, 31.5, 25.3, 11.53, 11.51 ppm.

HRMS: (MALDI-TOF, negative, DCTB): m/z calcd for C₅₇H₅₀N₂O₆ [M]⁻: 858.3674; found: 858.3669.

m.p.: 251-252 °C.

N,N'-Di(pent-3-yl)-6-(4-*tert*-butylphenoxy)-1,12-(14,14-di-phenyl-dioxepin)perylene-3,4:9,10-bis(dicarboximide) [PhO-PBI-(O-C-O)]

4-*tert*-Butylphenol (10.6 mg, 37.2 μ mol), 18-Crown-6 (76.8 mg, 290 μ mol) and K₂CO₃ (20.1 mg, 145 μ mol) were set under nitrogen in a Schlenk tube, dissolved in dry toluene (4 mL), and stirred for 20 min at room temperature. Thereafter, **Br-PBI-(O-C-O)**^[S10] (30.0 mg, 37.2 μ mol) was added and the mixture was stirred for 4 h at 90 °C on a heating block. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (silica, DCM). Finally, the product was crystallized with MeOH from a DCM solution.

Yield: 29 mg (33.1 µmol, 89%) of red crystalline solid.

¹**H-NMR** (400 MHz, CD₂Cl₂, 295 K): *δ* = 9.51 (d, *J* =8.37 Hz, 1H), 8.50 (d, *J* = 8.36 Hz, 1H) 8.39 (s, 1H), 8.30 (s, 1H), 8.15 (s, 1H), 7.70-7.68 (m, 4H), 7.50-7.46 (m, 2H), 7.38-7.32 (m, 6H), 7.11-7.07 (m, 2H), 5.03-4.89 (m, 2H), 2.25-2.09 (m, 4H), 1.94-1.81 (m, 4H), 1.35 (s, 9H), 0.90-0.84 ppm (m, 12H).

¹³**C-NMR** (101 MHz, CD₂Cl₂, 295 K): δ = 164.1, 156.5, 154.5, 153.6, 153.0, 148.6, 140.8, 133.1, 130.7, 130.3, 129.3, 129.0, 128.9, 128.5, 127.8, 127.6, 127.0, 126.0, 125.5, 125.3, 124.1, 123.3, 122.6, 122.4, 119.6, 117.9, 58.1, 57.9, 34.8, 31.6, 25.34, 25.31, 11.52, 11.50 ppm.

HRMS: (MALDI-TOF, negative mode, DCTB): m/z calcd for C₅₇H₅₀N₂O₇ [M]⁻: 874.3624; found: 874.3651.

m.p.: 215-216 °C.

N,N'-Di(pent-3-yl)-6-(1-octynyl)-1,12-(14,14-di-phenyl-dioxepin)perylene-3,4:9,10-bis(dicarboximide) [Octyne-PBI-(O-C-O)]

Br-PBI-(O-C-O)^[S10] (50.0 mg, 62.1 μ mol), [PdCl₂(PPh₃)₂] (1.74 mg, 2.5 μ mol), CuI (236 μ g, 1.3 μ mol) were set under nitrogen in a Schlenk tube followed by the addition of degassed THF (2.5 mL), (*i*-Pr)₂NH (1.3 mL) and 1-octyne (11.0 μ L, 74.5 μ mol). Thereafter, the Schlenk tube was sealed by a rubber septum and the mixture was stirred for 17 h at 80 °C on a heating block. The solvent was removed under reduced pressure and the crude product purified by column chromatography (silica, DCM/cyclohexane, 6:4). Finally, the product was crystallized with MeOH from a DCM solution.

Yield: 48 mg (58.0 µmol, 93%) of dark red crystalline solid.

¹**H-NMR** (400 MHz, CD₂Cl₂, 295 K): $\delta = 10.11$ (d, J = 8.22 Hz, 1H), 8.62 (s, 1H), 8.55 (d, J = 8.22 Hz, 1H), 8.45 (s, 1H), 8.40 (s, 1H), 7.65-7.63 (m, 4H), 7.33-7.27 (m, 6H), 5.05-4.96 (m, 2H), 2.64 (t, J = 7.14 Hz, 2H), 2.27-2.17 (m, 4H), 1.97-1.89 (m, 4H), 1.77-1.72 (m, 2H), 1.57-1.52 (m, 2H), 1.41-1.34 (m, 4H), 0.93-0.89 ppm (m, 15H).

¹³**C-NMR** (101 MHz, CD₂Cl₂, 295 K): δ = 163.9, 154.4, 154.2, 140.7, 137.2, 133.9, 133.8, 129.3, 129.1, 128.83, 128.76, 127.7, 127.1, 126.9, 125.6, 124.92, 124.85, 124.5, 123.8, 123.4, 122.2, 121.2, 114.8, 101.3, 82.6, 58.1, 58.0, 31.8, 29.3, 28.7, 25.34, 25.30, 23.0, 20.5, 14.3, 11.5 ppm.

HRMS: (MALDI-TOF, negative mode, DCTB): m/z calcd for C₅₅H₅₀N₂O₆ [M]⁻: 834.3674; found: 834.3688.

m.p.: 230-232 °C.

N,N'-Di(pent-3-yl)-6,7-naphtho-1,12-(14,14-di-phenyl-dioxepin)perylene-3,4:9,10-bis(dicarboximide) [Naphtho-PBI-(O-C-O)]

Br-PBI-(O-C-O)^[S10] (10.0 mg, 12.4 μ mol), Pd(dba)₂ (1.8 mg, 3.1 μ mol), tri(*o*-tolyl)-phosphine (1.3 mg, 4.3 μ mol) and CsF (5.7 mg, 37.2 μ mol) were set under nitrogen in a Schlenk tube, and dissolved in dry toluene (2 mL) and acetonitrile (0.2 mL). 2-(Trimethylsilyl)phenyl trifluoromethanesulfonate (6.20 μ L, 24.8 μ mol) was added and the mixture stirred for 18 h at 100 °C on a heating block. The solvent was removed under reduced pressure and the resultant crude product was purified by column chromatography (silica, DCM). Finally, the product was crystallized from a DCM solution.

Yield: 8 mg (9.99 µmol, 80%) of orange crystalline solid.

¹**H-NMR** (400 MHz, CD₂Cl₂, 295 K): δ = 9.72 (s, 2H), 9.02-9.00 (m, 2H) 8.83 (s, 2H), 8.05-8.01 (m, 2H), 7.61-7.58 (m, 4H), 7.22-7.12 (m, 6H), 5.20-5.12 (m, 2H), 2.42-2.31 (m, 4H), 2.16-2.06 (m, 4H), 1.06 ppm (t, *J* = 7.45 Hz, 12H).

¹³C-NMR (101 MHz, CD₂Cl₂, 295 K): δ = 164.1, 154.3, 140.7, 129.2, 129.04, 128.98, 128.7, 127.9, 127.0, 126.5, 126.0, 125.8, 124.6, 124.3, 123.5, 123.0, 122.6, 122.2, 106.3, 58.3, 25.4, 11.8 ppm.
HRMS: (MALDI-TOF, negative mode, DCTB): m/z calcd for C₅₃H₄₀N₂O₆ [M]⁻: 800.2892; found: 800.2869.

N,N'-Di(hept-4-yl)-1,12-(14,14-di-*tert*-butyl-dioxosilan)perylene-3,4:9,10-bis(dicarboximide) [PBI-(O-Si-O) b]

PBI-(OH)₂ **b** (50.0 mg, 80.8 µmol) was dissolved in dry DMF (40 mL) and di*-tert*-butylsilylbis(trifluoromethanesulfonate) (79.0 µL, 242 µmol) was added dropwise. Afterwards, Et₃N (33.6 µL, 242 µmol) was added and the reaction mixture was stirred for 6 h at room temperature. The solvent was removed under reduced pressure and the resulted crude product was purified by column chromatography (silica, DCM). Finally, the product was crystalized with MeOH from a DCM solution. **Yield:** 46 mg (60.6 µmol, 75%) of orange crystals.

¹**H-NMR** (400 MHz, CDCl₃, 295 K): δ = 8.60-8.56 (m, 4H), 8.39 (s, 2H), 5.25-5.19 (m, 2H), 2.31-2.22 (m, 4H), 1.87-1.79 (m, 4H), 1.41-1.27 (m, 8H), 1.23 (s, 18H), 0.93 ppm (t, *J* = 7.32 Hz, 12H). ¹³**C-NMR** (101 MHz, CDCl₃, 295 K): δ = 165.1, 164.4, 164.1, 163.4, 154.6, 134.0, 129.7, 129.4, 129.1, 128.5, 125.4, 124.5, 123.8, 123.3, 123.0, 122.6, 122.2, 54.3, 34.6, 28.0, 22.0, 20.3, 14.2 ppm. **HRMS:** (MALDI-TOF, positive mode, DCTB): m/z calcd for C₄₆H₅₄N₂O₆Si [M]⁺: 758.3746; found: 758.3746.

m.p.: 283-285 °C

N,N'-Di(cyclohexyl)-1,12-(14,14-di-*tert*-butyl-dioxosilan)perylene-3,4:9,10-bis(dicarboximide) [PBI-(O-Si-O) c]

PBI-(OH)₂ $c^{[S10]}$ (50.0 mg, 85.2 µmol) was dissolved in dry DMF (40 mL) and di-*tert*-butylsilylbis(trifluoromethanesulfonate) (41.7 µL, 128 µmol) was added dropwise. Afterwards Et₃N (17.7 µL, 128 µmol) was added and the reaction mixture was stirred for 4 h at room temperature. The solvent was removed under reduced pressure, and the resulted crude product was purified by column chromatography (silica, DCM). Finally, the product was crystalized with MeOH from a DCM solution. **Yield:** 46 mg (63.3 µmol, 74%) of red crystals.

¹**H-NMR** (400 MHz, CDCl₃, 295 K): δ = 8.61-8.53 (m, 4H), 8.36 (s, 2H), 5.09-5.01 (m, 2H), 2.63-2.52 (m, 4H), 1.94-1.90 (m, 4H), 1.80-1.73 (m, 6H), 1.52-1.32 (m, 6H), 1.22 ppm (s, 18H).

¹³C-NMR (101 MHz, CDCl₃, 295 K): δ = 164.3, 163.7, 154.6, 133.9, 129.35, 129.26, 128.5, 125.2, 124.5, 123.2, 123.0, 122.2, 54.2, 29.3, 28.0, 26.7, 25.6, 22.0 ppm.

HRMS: (MALDI-TOF, negative mode, DCTB): m/z calcd for C₄₄H₄₆N₂O₆Si [M]⁻: 726.3130; found: 726.3122.

N,*N*'-Di(pent-3-yl)-6-bromo-1,12-(14,14-di-*tert*-butyl-dioxosilan)perylene-3,4:9,10-bis(dicarboximide) [Br-PBI-(O-Si-O)]

PBI-(O-Si-O) $a^{[S11]}$ (270 mg, 384 µmol) was dissolved in DCM (100 mL) in a round-bottom flask and Br₂ (1.97 mL, 38.4 mmol) was added. The reaction was refluxed for 19 h on a heating block. Thereafter, the excess bromine was quenched with aqueous Na₂SO₃ solution. The organic layer was separated, dried over Na₂SO₄, filtered, and evaporated under reduced pressure. The obtained crude product was purified by column chromatography (silica, DCM). Finally, the product was crystallized with MeOH from a DCM solution.

Yield: 279 mg (357 µmol, 93%) of orange crystals.

¹**H-NMR** (400 MHz, CDCl₃, 295 K): $\delta = 9.38$ (d, J = 8.16 Hz, 1H), 8.84 (s, 1H), 8.60 (d, J = 8.17 Hz, 1H), 8.39 (s, 1H) 8.38 (s, 1H), 5.10-5.00 (m, 2H), 2.32-2.19 (m, 4H), 2.00-1.89 (m, 4H), 1.20 (s, 18H), 0.95-0.90 ppm (m, 12H).

¹³**C-NMR** (101 MHz, CDCl₃, 295 K): *δ* = 163.7, 154.7, 154.6, 136.3, 133.1, 132.4, 131.7, 130.4, 128.1, 124.4, 124.0, 123.7, 123.5, 122.9, 122.3, 121.7, 121.1, 120.6, 58.1, 57.9, 28.0, 25.2, 25.1, 22.0, 11.51, 11.48 ppm.

HRMS: (MALDI-TOF, negative mode, DCTB): m/z calcd for $C_{42}H_{45}BrN_2O_6Si$ [M]⁻: 780.2236; found: 780.2236.

m.p.: 291-292 °C.

N,*N*'-Di(pent-3-yl)-6-(4-*tert*-butylphenyl)-1,12-(14,14-di-*tert*-butyl-dioxosilan)perylene-3,4:9,10-bis(dicarboximide) [Ph-PBI-(O-Si-O)]

Br-PBI-(O-Si-O) (30.0 mg, 38.4 μ mol), 4-*tert*-butylphenylbronic acid (10.3 mg, 57.6 μ mol), 2dicyclohexylphosphino-2',6'-dimethoxybiphenyl (SPhos) (3.2 mg, 7.7 μ mol), [Pd₂(dba)₃]*CHCl₃ (2.0 mg, 1.9 μ mol) and Cs₂CO₃ (37.5 mg, 115 μ mol) were taken in a Schlenk tube and set under nitrogen. Subsequently, degassed toluene (1 mL) and water (0.5 mL) were added. The mixture was stirred for 17 h at 100 °C on a heating block. After cooling, more water was added, and the product was extracted with DCM. The organic layers were collected, dried over Na₂SO₄, filtered, and evaporated under reduced pressure. The resultant crude product was purified by column chromatography (silica, DCM) and, finally, the product was crystallized with MeOH from a DCM solution.

Yield: 32 mg (37.8 µmol, 99%) of orange/red crystals.

¹**H-NMR** (400 MHz, CD₂Cl₂, 295 K): *δ* = 8.50 (s, 1H), 8.36 (s, 1H), 8.35 (s, 1H), 7.97 (d, *J* = 8.17 Hz, 1H), 7.82 (d, *J* = 8.16 Hz, 1H), 7.49-746 (m, 2H), 7.39-7.37 (m, 2H), 5.06-4.95 (m, 2H), 2.29-2.14 (m, 4H), 1.97-1.83 (m, 4H), 1.38 (s, 9H), 1.23 (s, 18H), 0.93-0.87 ppm (m, 12H).

¹³**C-NMR** (101 MHz, CD₂Cl₂, 295 K): δ = 164.6, 154.8, 154.5, 152.0, 141.5, 140.2, 133.9, 133.8, 132.1, 131.5, 131.0, 130.0, 129.1, 128.1, 127.6, 127.2, 125.0, 124.4, 124.2, 122.7, 122.3, 122.2, 57.9, 57.8, 35.0, 31.5, 28.0, 25.4, 22.1, 11.5 ppm.

HRMS: (MALDI-TOF, negative mode, DCTB): m/z calcd for C₅₂H₅₈N₂O₆Si [M]⁻: 834.4070; found: 834.4065.

m.p.: 325-326 °C.

N,*N*'-Di(pent-3-yl)-6-(1-octynyl)-1,12-(14,14-di-*tert*-butyl-dioxosilan)perylene-3,4:9,10-bis(dicarboximide) [Octyne-PBI-(O-Si-O)]

Br-PBI-(O-Si-O) (50.0 mg, 64.0 μ mol), [PdCl₂(PPh₃)₂] (2.6 mg, 1.8 μ mol), CuI (244 μ g, 1.3 μ mol) were set under nitrogen in a Schlenk tube followed by the addition of degassed THF (2.5 mL), (*i*-Pr)₂ NH (1.25 mL) and 1-octyne (11.3 μ L, 76.7 μ mol). The mixture was stirred for 17 h at 80 °C on a heating block. The solvent was removed under reduced pressure and the crude product purified by column chromatography (silica, DCM/cyclohexane, 6:4). Finally, the product was crystallized with MeOH from a DCM solution.

Yield: 45 mg (55.5 μ mol, 87%) of red crystals.

¹**H-NMR** (400 MHz, CDCl₃, 295 K): *δ* = 9.85 (d, *J* = 8.17 Hz, 1H), 8.68 (s, 1H), 8.58 (d, *J* = 8.20 Hz, 1H), 8.39 (s, 1H) 8.35 (s, 1H), 5.11-5.01 (m, 2H), 2.59 (t, *J* = 7.09 Hz, 2H), 2.33-2.20 (m, 4H), 2.00-1.89 (m, 4H), 1.76-1.68 (m, 2H), 1.56-1.49 (m, 2H), 1.39-1.34 (m, 4H), 1.21 (s, 18H), 0.95-0.89 ppm (m, 15H).

¹³**C-NMR** (101 MHz, CDCl₃, 295 K): *δ* = 163.9, 154.6, 154.5, 136.3, 134.0, 133.4, 130.3, 130.1, 128.4, 127.7, 126.8, 124.6, 123.9, 123.5, 122.8, 122.2, 121.7, 121.1, 99.1, 82.1, 57.9, 57.8, 31.5, 29.0, 28.4, 28.0, 25.2, 25.1, 22.7, 22.0, 20.3, 14.2, 11.49, 11.48 ppm.

HRMS: (MALDI-TOF, neg, DCTB): m/z calcd for C₅₀H₅₈N₂O₆Si [M]⁻: 810.4070; found: 810.4080. **m.p.:** 252-253 °C.

Tetrabutylammonium bis[[*N*,*N*'-di(pentan-3-yl)perylene-3,4:9,10-bis(dicarboximide)]-1,12diolato-*O*,*O*'] borate [Spiro-PBI-Borate]

PBI-(OH)₂ **a** (235 mg, 418 μ mol) was dissolved in anhydrous DMF (20 mL) in a round-bottom flask. Boronic acid (12.5 mg, 202 μ mol) and 55 % w/w aqueous tetrabutylammonium hydroxide (108 μ L, 105 mg, 222 μ mol) were added, and the reaction mixture was refluxed for 23 h. After cooling to room temperature, the solvent was removed under reduced pressure and the product was purified by column chromatography (silica, 0-2% MeOH/DCM).

Yield: 145 mg (105 µmol, 52%) of a dark purple crystalline solid.

¹**H-NMR** (400 MHz, CDCl₃, 295 K): δ = 8.58-8.52 (m, 8H), 8.13 (s, 4H), 5.05-4.98 (m, 4H), 3.13-3.09 (m, 8H), 2.26-2.19 (m, 8H), 1.93-1.83 (m, 8H), 1.53-1.45 (m, 8H), 1.22-1.13 (m, 8H), 0.88 (t, *J* = 7.45 Hz, 24H), 0.73 ppm (t, *J* = 7.33 Hz, 12H).

¹³**C-NMR** (101 MHz, CDCl₃, 295 K): *δ* = 165.2, 164.6, 134.2, 129.8, 129.5, 129.3, 128.3, 125.0, 123.5, 122.7, 122.2, 122.0, 59.0, 57.4, 25.1, 24.0, 13.5, 11.5 ppm.

HRMS: (MALDI-TOF, negative mode, DCTB): m/z calcd for C₆₈H₅₆BN₄O₁₂ [M]⁻: 1131.3993; found: 1131.4034.

m.p.: 353-355 °C.

3. Crystallographic Data

Figure S1. Top view (top) and view along the *N*,*N*' axis with twist angles of the perylene bay region (bottom) determined by single-crystal X-ray analysis: Solid-state molecular structure of a) **Br-PBI**-(**O-C-O**), b) **Ph-PBI-(O-C-O)**, c) **PhO-PBI-(O-C-O)**, d) **Br-PBI-(O-Si-O)** and e) **Ph-PBI-(O-Si-O)**. Hydrogen atoms, disorder and solvent molecules are omitted for clarity.

Figure S2. Single-crystal structure of **Spiro-PBI-Borate** with center-to-plane distances to the two closest neighboring perylene molecules. Hydrogen atoms, disorder and solvent molecules are omitted for clarity. The imide substituents as well as the counter anion are displayed in wireframe

	Ph-PBI-(O-C-O)	Octyne-PBI-(O-C-O)	Naphtho-PBI-(O-C-O)		
CCDC number	2284416	2284409	2284414		
Formula	C59.47H52.94Cl1.50N2O7.72	C55.85H53.38N2O6.85	$C_{54.50}H_{43}Cl_3N_2O_6$		
Formula weight / g mol ⁻¹	972.31	862.07	928.26		
Crystal size	$0.100 \times 0.030 \times 0.030 \text{ mm}$	$0.239 \times 0.052 \times 0.012$	$0.134 \times 0.077 \times 0.040 \text{ mm}$		
Temperature / K	100	100	100		
Wavelength / Å	0.61992	1.54178	1.54178		
Crystal system	Monoclinic	Triclinic	Triclinic		
Space group	P21	$P\overline{1}$	$P\overline{1}$		
<i>a</i> / Å	12.357(16)	10.6796(18)	11.041(2)		
b / Å	35.92(4)	13.079(3)	13.644(2)		
c / Å	22.557(17)	17.512(4)	14.896(3)		
lpha / °	90	94.295(7)	77.583(10)		
eta / °	90.90(2)	104.201(9)	81.405(16)		
γ/°	90	109.667(13)	78.256(13)		
V / Å ³	10011(19)	2198.0(8)	2132.5(7)		
Z value	8	2	2		
$ ho_{ m cal}$ / g cm $^{-3}$	1.290	1.303	1.446		
<i>F</i> (000)	4088.2	914.4	966		
Number of reflections measured	186667	49686	50137		
Number of unique reflections	48016	8637	8384		
Measured range of θ/\circ	0.787 to 28.147	3.646 to 72.565	3.056 to 72.187		
Completeness	0.927	0.999	0.999		
$R_{ m int}$	0.1926	0.0571	0.0340		
T_{\min}, T_{\max}	0.996, 0.997	0.958, 0.992	0.800. 0.908		
Goodness of fit for F ²	0.913	1.086	1.046		
Final R_1 indices $[I > 2\sigma(I)]$ (R_{obs}, wR_{all})	0.0971, 0.2529	0.0719, 0.1796	0.0464, 0.1259		
R indices [all data] (R_{obs} , w R_{all})	0.2672, 0.3595	0.0851, 0.1888 0.0530, 0.1333			
Largest diff peak and hole / e $Å^{-3}$	0.411 and -0.242	0.499 and -0.310 0.740 and -0.539			

Table S1. Crystallographic data of compounds Ph-PBI-(O-C-O), Octyne-PBI-(O-C-O) and Naphtho-PBI-(O-C-O).

	Ph-PBI-(O-Si-O) Octyne-PBI-(O-Si-O) Spiro-PBI-Be				
CCDC number	2284413	2284411 2284412			
Formula	$C_{52}H_{58}N_2O_6Si$	$C_{50}H_{58}N_2O_6Si$	$C_{177}H_{203}B_2N_{10}O_{24}$		
Formula weight / g mol-1	835.09	811.07	2876.12		
Crystal size	$0.196 \times 0.170 \times 0.112 \text{ mm}$	$5 \times 0.170 \times 0.112 \text{ mm}$ $0.375 \times 0.055 \times 0.010$ $0.200 \times 0.0010 \text{ mm}$			
Temperature / K	100	100 100 100			
Wavelength / Å	1.54178	1.54178 1.54178			
Crystal system	Triclinic	Monoclinic	Monoclinic		
Space group	$P\overline{1}$	P21/n	$P2_{1}/n$		
<i>a</i> / Å	11.9749(11)	8.5675(11)	22.679(6)		
b / Å	13.6186(14)	19.478(2)	17.614(7)		
c / Å	15.4930(17)	25.774(4)	38.697(6)		
lpha / °	70.251(5)	90	90		
eta / °	84.855(6)	94.281(8)	97.286(3)		
γ / °	66.898(7)	90	90		
$V/ m \AA^3$	2184.6(4)	4289.1(10)	15333(8)		
Z value	2	4	4		
$ ho_{ m cal}$ / g cm ⁻³	1.270	1.256	1.246		
<i>F</i> (000)	892	1736	6148		
Number of reflections measured	51470	51470 71179			
Number of unique reflections	8608	8453	44240		
Measured range of θ/\circ	3.034 to 72.302	2.846 to 72.214	0.863 to 28.034		
Completeness	1.000	1.000	0.99		
$R_{ m int}$	0.0256	0.0588	0.0311		
T_{\min}, T_{\max}	0.838, 0.904 0.942, 0.991		0.996. 0.997		
Goodness of fit for F^2	1.046	1.017	1.035		
Final R_1 indices $[I > 2\sigma(I)]$ (R_{obs}, wR_{all})	0.0442, 0.1245	0.0416, 0.1034	0.0663, 0.1910		
R indices [all data] (R _{obs} , wR _{all})	0.0477, 0.1286	0.0529, 0.1103	0.0839, 0.2096		
Largest diff peak and hole / e $\mathring{A}^{\!-\!3}$	0.733 and -0.273	0.330 and -0.269	0.762 and -0.607		

Table S2. Crystallographic data of compounds Ph-PBI-(O-Si-O), Octyne-PBI-(O-Si-O) and Spiro-PBI-Borate.

	Br-PBI-(O-C-O)	Br-PBI-(O-Si-O)		
CCDC number	2284408 2284415		2284410	
Formula	C47H37BrN2O6	$C_{115}H_{104}N_4O_{15}$	C42H45BrN2O6Si	
Formula weight / g mol ⁻¹	805.69	1782.02	781.82	
Crystal size	$0.100 \times 0.010 \times 0.010 \text{ mm}$	$0.050 \times 0.050 \times 0.010$	$0.100 \times 0.100 \times 0.020 \text{ mm}$	
Temperature / K	100	100	100	
Wavelength / Å	0.61992	0.61991	0.61991	
Crystal system	Triclinic	Monoclinic	Monoclinic	
Space group	$P\overline{1}$	P2/c	P21/c	
<i>a</i> / Å	10.362(2)	16.611(12)	24.199(8)	
b / Å	13.619(2)	11.948(10)	8.476(5)	
c / Å	14.5990(18)	24.039(14)	19.773(6)	
lpha / °	99.833(3)	90	90	
eta / °	107.846(5)	99.361(5)	112.407(8)	
γ / °	107.722(9)	90	90	
V / Å ³	1787.0(5)	4707(6)	3749(3)	
Z value	2	2	4	
$ ho_{ m cal}$ / g cm ⁻³	1.497	1.257	1.385	
<i>F</i> (000)	832	1884	1632.1	
Number of reflections measured	9464	9464 85730		
Number of unique reflections	9464	13166	10691	
Measured range of θ / \circ	1.336 to 27.916	1.084 to 28.015	0.794 to 27.848	
Completeness	0.960	0.989	0.990	
$R_{ m int}$	0.0744	0.0722	0.0535	
T_{\min}, T_{\max}	0.990, 0.992	0.997, 0.999	0.921.0.984	
Goodness of fit for F^2	1.086	0.987	1.054	
Final R_1 indices $[I > 2\sigma(I)]$ (R_{obs}, wR_{all})	0.0768, 0.2605	0.0854, 0.2754	0.0767, 0.2481	
R indices [all data] (R _{obs} , wR _{all})	0.0803, 0.2651	0.1916, 0.3687	0.1048, 0.2749	
Largest diff peak and hole / $e~\ensuremath{\mathring{A}}^{-3}$	1.387 and -0.824	0.172 and -0.255 0.325 and -0.81		

Table S3. Crystallographic data of compounds Br-PBI-(O-C-O), PhO-PBI-(O-C-O) and Br-PBI-(O-Si-O).

4. Optical Properties

Figure S3. UV-vis absorption spectra (red, solid line, $c = 20 \ \mu\text{M}$) and normalized fluorescence spectra (red, dashed line) of oxygen–carbon–oxygen- and oxygen–silicon–oxygen-bridged PBI derivatives in chloroform at 295 K. Normalized powder emission spectra (grey, solid line) of selected compounds are displayed as well.

Figure S4. Fluorescence decay (grey symbols) and their respective mono-/bi-exponential fit (red line) of oxygen–carbon–oxygen- and oxygen–silicon–oxygen-bridged PBI derivatives in chloroform at 295 K.

5. Electrochemical Properties

Figure S5. Cyclic voltammograms of a) **Ph-PBI-(O-C-O)**, b) **PhO-PBI-(O-C-O)**, c) **Octyne-PBI-(O-C-O)**, d) **Naphtho-PBI-(O-C-O)**, e) **Spiro-PBI-(O-C-O)** and f) **Spiro-PBI-Borate** in CH₂Cl₂ solution ($c = 3 \times 10^{-4}$ M). The measurements were performed under argon atmosphere at room temperature using TBAHFP as electrolyte (scan rate: 100 mVs⁻¹) and calibrated with the internal standard Fc/Fc⁺.

Figure S6. DPV curves of **Ph-PBI-(O-C-O)** (blue), **PhO-PBI-(O-C-O)** (red), **Octyne-PBI-(O-C-O)** (orange), **Naphtho-PBI-(O-C-O)** (green), **Spiro-PBI-(O-C-O)** (dark yellow) and **Spiro-PBI-Borate** (purple) in CH₂Cl₂ solution ($c = 3 \times 10^{-4}$ M). The measurements were performed under argon atmosphere at room temperature using TBAHFP as electrolyte and calibrated with the internal standard Fc/Fc⁺.

Table S4. Electrochemical Properties of oxygen-carbon-oxygen derivatives and Spiro-PBI-Borate.^a

Compound	<i>E</i> 1red	E _{2red}	E3red	E4red	E _{1ox}	E _{20x}	E _{3ox}	E _{LUMO} [eV] ^b	E _{НОМО} [eV] ^c	$E_{g(CV)}$ [eV] ^d
PBI-(O-C-O) ^[S10]	-1.16	-1.28	-	-	+1.11	-	-	-3.99	-6.26	2.27
PBI-(O-Si-O)[S11]	-1.23	-1.41	-	-	+1.06	-	-	-3.92	-6.21	2.29
Ph-PBI-(O-C-O)	-1.11	-1.28	-	-	+1.02	+1.13	-	-4.04	-6.17	2.13
PhO-PBI-(O-C-O)	-1.14	-1.34	-	-	+1.03	-	-	-4.01	-6.18	2.17
Octyne-PBI-(O-C-O)	-1.10	-1.29	-	-	+1.09	-	-	-4.05	-6.24	2.19
Naphtho-PBI-(O-C-O)	-1.26	-1.40	-	-	+1.15	-	-	-3.89	-6.30	2.41
Spiro-PBI-(O-C-O)	-1.08	-1.13	-1.30	-1.40	+1.15	+1.28	-	-4.07	-6.30	2.23
Spiro-PBI-Borate	-1.26	-1.33	-1.54	-1.65	+0.57	+0.87	+1.14	-3.89	-5.72	1.83

^{*a*}The redox potentials (V vs Fc/Fc⁺) obtained by DPV in DCM (c = 0.3 mM) using TBAHFP as electrolyte. ^{*b*}The LUMO levels were estimated from $E_{\text{LUMO}} = -(E_{\text{Ired}} + 5.15\text{eV})$.^[S12] ^{*c*}Estimated from $E_{\text{HOMO}} = -(E_{\text{Iox}} + 5.15\text{eV})$.^{*d*}Electrochemical band gap $E_{\text{g}} = E_{\text{LUMO}} - E_{\text{HOMO}}$.

6. NMR Spectra

Figure S7. ¹H-NMR (400 MHz) of compound PBI-(OH)₂ a in CDCl₃/CD₃OD at 295 K.

Figure S8. ¹³C-NMR (151 MHz) of compound PBI-(OH)₂ a in CDCl₃/CD₃OD at 295 K.

Figure S9. ¹H-NMR (400 MHz) of compound PBI-(OH)₂ b in CDCl₃/CD₃OD at 295 K.

Figure S10. ¹³C-NMR (151 MHz) of compound PBI-(OH)₂ b in CDCl₃/CD₃OD at 295 K.

Figure S11. ¹H-NMR (400 MHz) of compound PBI-(OH)₂ d in CD₂Cl₂/CD₃OD at 295 K.

Figure S12. ¹³C-NMR (101 MHz) of compound PBI-(OH)₂ d in CD₂Cl₂/CD₃OD at 295 K.

Figure S13. ¹H-NMR (400 MHz) of compound PBI-(OH)₂ e CDCl₃/CD₃OD at 295 K.

Figure S14. ¹³C-NMR (101 MHz) of compound PBI-(OH)₂ e in CDCl₃/CD₃OD at 295 K.

Figure S15. ¹H-NMR (400 MHz) of compound PBI-(OH)₂ f in CDCl₃/CD₃OD at 295 K.

Figure S16. ¹³C-NMR (101 MHz) of compound PBI-(OH)₂ f in CDCl₃/CD₃OD at 295 K.

Figure 17. ¹H-NMR (400 MHz) of compound Spiro-PBI-(O-C-O) in CD₂Cl₂ at 295 K.

Figure S18. ¹³C-NMR (101 MHz) of compound Spiro-PBI-(O-C-O) in CD₂Cl₂ at 295 K.

Figure S19. ¹H-NMR (400 MHz) of compound PBI-(O-C-O)-Bpin in CD₂Cl₂ at 295 K.

Figure S20. ¹³C-NMR (101 MHz) of compound PBI-(O-C-O)-Bpin in CD₂Cl₂ at 295 K.

Figure S21. ¹H-NMR (400 MHz) of compound PBI-(O-C-O)-Ar₂ in CD₂Cl₂ at 295 K.

Figure S22. ¹³C-NMR (101 MHz) of compound PBI-(O-C-O)-Ar₂ in CD₂Cl₂ at 295 K.

Figure S23. ¹H-NMR (400 MHz) of compound Ph-PBI-(O-C-O) in CD₂Cl₂ at 295 K.

Figure S24. ¹³C-NMR (101 MHz) of compound Ph-PBI-(O-C-O) in CD₂Cl₂ at 295 K.

Figure S25. ¹H-NMR (400 MHz) of compound PhO-PBI-(O-C-O) in CD₂Cl₂ at 295 K.

Figure S26. ¹³C-NMR (101 MHz) of compound PhO-PBI-(O-C-O) in CD₂Cl₂ at 295 K.

Figure S27. ¹H-NMR (400 MHz) of compound Octyne-PBI-(O-C-O) in CD₂Cl₂ at 295 K.

Figure S28. ¹³C-NMR (101 MHz) of compound Octyne-PBI-(O-C-O) in CD₂Cl₂ at 295 K.

Figure S30. ¹³C-NMR (101 MHz) of compound Naphtho-PBI-(O-C-O) in CD₂Cl₂ at 295 K.

Figure 31. ¹H-NMR (400 MHz) of compound PBI-(O-Si-O) b in CDCl₃ at 295 K.

Figure 32. ¹³C-NMR (101 MHz) of compound PBI-(O-Si-O) b in CDCl₃ at 295 K.

Figure 33. ¹H-NMR (400 MHz) of compound PBI-(O-Si-O) c in CDCl₃ at 295 K.

Figure 34. ¹³C-NMR (101 MHz) of compound PBI-(O-Si-O) c in CDCl₃ at 295 K.

Figure S35. ¹H-NMR (400 MHz) of compound Br-PBI-(O-Si-O) in CDCl₃ at 295 K.

Figure S36. ¹³C-NMR (101 MHz) of compound Br-PBI-(O-Si-O) in CDCl₃ at 295 K.

Figure S37. ¹H-NMR (400 MHz) of compound Ph-PBI-(O-Si-O) in CD₂Cl₂ at 295 K.

Figure S38. ¹³C-NMR (101 MHz) of compound Ph-PBI-(O-Si-O) in CD₂Cl₂ at 295 K.

Figure S40. ¹³C-NMR (101 MHz) of compound Octyne-PBI-(O-Si-O) in CDCl₃ at 295 K.

Figure S41. ¹H-NMR (400 MHz) of compound Spiro-PBI-Borate in CDCl₃ at 295 K.

Figure S42. ¹³C-NMR (101 MHz) of compound Spiro-PBI-Borate in CDCl₃ at 295 K.

7. HR-MS Spectra

Figure S43. HRMS of compound PBI-(OH)₂ a (MALDI-TOF, negative mode, DCTB).

Figure S44. HRMS of compound PBI-(OH)₂ b (MALDI-TOF, negative mode, DCTB).

Figure S45. HRMS of compound PBI-(OH)₂ d (MALDI-TOF, negative mode, DCTB).

Figure S46. HRMS of compound PBI-(OH)₂ e (MALDI-TOF, negative mode, DCTB).

Figure S47. HRMS of compound PBI-(OH)₂ f (MALDI-TOF, negative mode, DCTB).

Figure S48. HRMS of compound Spiro-PBI-(O-C-O) (MALDI-TOF, negative mode, DCTB).

Figure S49. HRMS of compound PBI-(O-C-O)-Bpin (MALDI-TOF, negative mode, DCTB).

Figure S50. HRMS of compound PBI-(O-C-O)-Ar₂ (MALDI-TOF, negative mode, DCTB).

Figure S51. HRMS of compound Ph-PBI-(O-C-O) (MALDI-TOF, negative mode, DCTB).

Figure S52. HRMS of compound PhO-PBI-(O-C-O) (MALDI-TOF, negative mode, DCTB).

Figure S53. HRMS of compound Octyne-PBI-(O-C-O) (MALDI-TOF, negative mode, DCTB).

Figure S54. HRMS of compound Naphtho-PBI-(O-C-O) (MALDI-TOF, negative mode, DCTB).

Figure S55. HRMS of compound PBI-(O-Si-O) b (MALDI-TOF, positive mode, DCTB).

Figure S56. HRMS of compound PBI-(O-Si-O) c (MALDI-TOF, negative mode, DCTB).

Figure S57. HRMS of compound Br-PBI-(O-Si-O) (MALDI-TOF, negative mode, DCTB).

Figure S58. HRMS of compound Ph-PBI-(O-Si-O) (MALDI-TOF, negative mode, DCTB).

Figure S59. HRMS of compound Octyne-PBI-(O-Si-O) (MALDI-TOF, negative mode, DCTB).

Figure S60. HRMS of compound Spiro-PBI-Borate (MALDI-TOF, negative mode, DCTB).

8. Supporting References

- [S1] G. Seybold and G. Wagenblast, New perylene and violanthrone dyestuffs for fluorescent collectors, *Dyes Pigm.*, 1989, **11**, 303-317.
- [S2] R. Renner, M. Stolte, J. Heitmüller, T. Brixner, C. Lambert and F. Würthner, Substituentdependent absorption and fluorescence properties of perylene bisimide radical anions and dianions, *Mater. Horiz.*, 2022, 9, 350-359.
- [S3] W. Kabsch, XDS, Acta Crystallogr. D, 2010, 66, 125–132.
- [S4] G. M. Sheldrick, SHELXT Integrated space-group and crystal-structure determination, *Acta Crystallogr. A*, 2015, **71**, 3-8.
- [S5] G. M. Sheldrick, Crystal structure refinement with SHELXL, *Acta Crystallogr. C*, 2015, **71**, 3-8.
- [S6] A. L. Spek, Single-crystal structure validation with the program PLATON, J. Appl. Crystallogr., 2003, 36, 7-13.
- [S7] R. Matthews, J. Swisher, K. H. Hutchins and E. B. Pentzer, Perylene Diimide Bearing Different Trialkyl Silyl Ethers: Impact of Asymmetric Functionalization on Self-Assembly into Nanostructures, *Chem. Mater.*, 2018, **30**, 3571-3577.
- [S8] S. Demmig and H. Langhals, Leichtlösliche, lichtechte Perylen-Fluoreszenzfarbstoffe, *Chem. Ber.*, 1988, **121**, 225-230.
- [S9] Y. Che, X. Yang, K. Balakrishnan, J. Zuo and L. Zang, Highly Polarized and Self-Waveguided Emission from Single-Crystalline Organic Nanobelts, *Chem. Mater.*, 2009, 21, 2930-2934.
- [S10] O. Nagler, A.-M. Krause, K. Shoyama, M. Stolte, R. K. Dubey, L. Liu, Z. Xie and F. Würthner, Yellow Light-Emitting Highly Soluble Perylene Bisimide Dyes by Acetalization of Bay-Hydroxy Groups, Org. Lett., 2022, 24, 6839-6844.
- [S11] F. Brust, O. Nagler, K. Shoyama, M. Stolte and F. Würthner, Organic Light-Emitting Diodes Based on Silandiol-Bay-Bridged Perylene Bisimides, *Adv. Opt. Mater.*, 2023, **11**, 2202676.
- [S12] C. M. Cardona, W. Li, A. E. Kaifer, D. Stockdale and G. C. Bazan, Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications, *Adv. Mater.*, 2011, 23, 2367-2371.