Supporting Information

Photoinduced, Catalyst-Free Borylation of Alkenyl Triflates with

Lewis Base Complexes of Boranes

Zhi-Peng Ye,‡^a Si-Jia Yang,‡^a Zhi-Lin, Liu,^a Jie, Gao,^a Jian-Ping, Guan,^a Hong-Bin, Chen,^b Peng-Ju, Xia,^c Kai, Chen,^a Hao-Yue, Xiang,*^{a,d} Hua, Yang.*^a

^aCollege of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.

^bJiangxi Time Chemical Company, Ltd., Fuzhou 344800, P. R. China.

^cSchool of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.

^dSchool of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007 Henan, P. R. China.

E-mail: hyangchem@csu.edu.cn, xianghaoyue@csu.edu.cn

Contents

1. General Experimental Methods	3
2. Detailed optimization of reaction conditions	3
3. Mechanistic Studies.	1
3.1 Trapping Experiment	1
3.2 UV–Vis spectrum	5
3.3 Emission Quenching Experiments (Stern–Volmer Studies)	5
4. General Preparation Process	5
4.1 General procedure for the synthesis of compounds 1 and 2	5
4.2 General procedure for the synthesis of compounds 3 and 4	7
4.3 Scale-up reaction	7
4.4 Unsuccessful attempt	3
5. References)
6. Characterization Data of Compound10)
6.1. Characterization data of starting materials 1a-1e, 1g-1i, 1k10)
6.2. Characterization data of products 3 and 4 13	3
7. Copies of NMR Spectra	2
7.1. Starting materials 1a-1e, 1g-1i, 1k	2
7.2 Products 3 and 4)

1. General Experimental Methods.

Unless otherwise noted, all the reagents were purchased from commercial suppliers and used without further purification. ¹H NMR spectra were recorded at 400 MHz. The chemical shifts were recorded in ppm relative to tetramethylsilane and with the solvent resonance as the internal standard. Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constants (Hz), integration. ¹³C NMR data were collected at 100 MHz with complete proton decoupling. ¹⁹F NMR data were collected at 376 MHz with complete proton decoupling. UV–Vis spectra were recorded using a shimadzu UV-2600. Infrared spectra (IR) were measured by FT-IR apparatus. High resolution mass spectroscopy (HRMS) was recorded on TOF MS ES+ mass spectrometer and acetonitrile was used to dissolve the sample. Emission intensities were recorded using Perkin-Elemer LS 55 Fluorescence Spectrometer. Column chromatography was carried out on alkaline silica gel (200-300 mesh).

H	3 ^B , + N N + +	OTf	base	Ph H ₂ Ph N N
	1a	2a	solvent T, Ar, 36 h	3a
entry	solvent	T (°C)	Base (mmol)	yield (%)
1	DCM	30	DIPEA(0.05)	trace
2	DCM	30	DIPEA(0.2)	trace
3	DCM	30	DIPEA(0.6)	38
4	DCM	30	DIPEA(1.5)	10
6	MeCN	30	DIPEA(0.6)	trace
7	THF	30	DIPEA(0.6)	26
8	DCE	30	DIPEA(0.6)	31
9	Pentane	30	DIPEA(0.6)	37
10	EA	30	DIPEA(0.6)	10
11	1,4-dioxane	30	DIPEA(0.6)	33
12	PhMe	30	DIPEA(0.6)	30
14	DCM	10	DIPEA(0.6)	42
15	DCM	0	DIPEA(0.6)	45

2. Detailed optimization of reaction conditions^a

16	DCM	-10	DIPEA(0.6)	56
17	DCM	-30	DIPEA(0.6)	43
18	DCM	-10	DIPEA (0.9)	65
19	DCM	-10	DIPEA (1.2)	55
20	DCM	-10	K ₂ HPO ₄ (0.9)	trace
21	DCM	-10	TMEDA (0.9)	trace
22	DCM	-10	-	trace
23^{b}	DCM	-10	DIPEA(0.9)	trace
24 ^c	DCM	-10	DIPEA(0.9)	15

^aReaction conditions: 1a (0.2 mmol, 1.0 equiv.), 2a (1.2 mmol, 6.0 equiv.), solvent (2.0 mL), base, 30 W 450 nm blue LEDs, Ar, 36 h. ^bno Ar or light, ^c405 nm.

3. Mechanistic Studies.

3.1 Trapping Experiment

In order to ensure whether the putative radical was trapped by TEMPO, ESI-MS analysis of the crude reaction mixture was performed. The resulting mass spectrum clearly shows peaks corresponding to the adduct products between TEMPO radical and possible radical intermediates: **TEMPO** + **boron** radical: $C_{15}H_{31}BN_{3}O^{+}$ [M+H⁺] calcd 280.2555, found 280.2560, **TEMPO** + **CF₃** radical: $C_{10}H_{18}F_{3}NNaO^{+}$ [M+H⁺] calcd 248.1233, found 248.1246 (**Figure S1**).

Figure S1. Crude ESI-MS of the TEMPO trapping experiments described above

3.2 UV–Vis spectrum

The UV–Vis spectra of **2a**, feature a maximum absorption (λ_{max}) at 247nm (Figure S2).

Figure S2. Absorbance of 1×10⁻⁴ M solution of 1a, 2a, base in DCM

3.3 Emission Quenching Experiments (Stern–Volmer Studies)

All fluorescence measurements were recorded using a Hitachi FL-7000 Fluorometer. Quenching studies were conducted in DCM. All **2a** solutions (concentration of 100 μ M) were excited at 340 nm and the emission intensity was collected at 405 nm. Measurements using corresponding quencher **1a and 1a+base** was taken in triplicate at different concentrations (Figure S3).

Figure S3. The Stern-Volmer plot for quenching the fluorescence of 2a using the quencher 1a and 1a+base

4. General Preparation Process

4.1 General procedure for the synthesis of compounds 1 and 2

General procedure for the preparation of 1 : To a solution of imidazole (10 mmol, 1.0 equiv) in THF (1.0 M), was added sodium borohydride (15 mmol, 1.5 equiv.) and NaHCO₃ (3.0 equiv). Subsequently, H_2O (3.0 equiv.) was added to reaction mixtures. The reaction process was monitored by TCL until the reaction was completed. Thereafter, the reaction mixtures were filtered through sodium sulfate and celite, and then collected filtrate was dried over anhydrous sodium sulfate. The solvent was removed *in vacuo*, and then the residue was purified by column chromatography using PE/EA.^[1]

General procedure for the preparation of 2 : A solution of acetophenone (15 mmol) in dichloromethane (45 mL) was cooled to 0 °C. Then Na_2CO_3 (19.5 mmol) and trifluoromethanesulfonic anhydride (18 mmol) were successively added. The obtained mixture was slowly warmed to room temperature and the reaction process was monitored by TCL. Thereafter, the mixture was quenched via added water (30 mL). the organic layer was washed by brine solution (30 mL ×3). Collect the organic phase to dry over anhydrous Na_2SO_4 , which was removed under reduced pressure and then the residue was purified by column chromatography using PE/EA.^[2]

4.2 General procedure for the synthesis of compounds 3 and 4

1 (2.0 mmol, 24.8 mg), 2 (1.2 mmol, 302.4 mg), DIPEA (0.9 mmol, 116.3 mg) and CH_2Cl_2 (2.0 mL) were added to a 15 mL seal tube equipped with a stirring bar. The seal tube was evacuated and backfilled with Ar three times. The tube was screw-capped and stirred at -10 °C under irradiation of 30 W blue LEDs (distance app. 5 cm) for 36 h. Thereafter, the solvent was removed under reduced pressure and then the residue was further purified by flash chromatography using alkaline silica gel (EtOAc/PE = 1:6 to 1:3) to afford the desired products **3** and **4**.

4.3 Scale-up reaction

1a (2.00 mmol, 248 mg), 2a (12.00 mmol, 3024 mg), DIPEA (9.00 mmol, 1163 mg) and CH_2Cl_2 (20.0 mL) were added to a 120 mL seal tube equipped with a stirring bar. The seal tube was evacuated and backfilled with Ar three times. The tube was screw-capped and stirred at -10

°C under irradiation of 30 W blue LEDs (distance app. 5 cm) for 36 h. Thereafter, the solvent was removed under reduced pressure and then the residue was further purified by flash chromatography using alkaline silica gel (EtOAc/PE = 1:6 to 1:3) to afford the desired product **3a** in 48% yield (232.3 mg).

4.4 Unsuccessful attempt

5. References

- [1] (a) P. V. Ramachandran, H. J. Hamanna and R. Lina. Activation of sodium borohydride *via* carbonyl reduction for the synthesis of amine- and phosphine-boranes. *Dalton Trans.*, 2021, 50, 16770-16774. (b) P. V. Ramachandran, A. S. Kulkarni, Y. Zhao and J.-.G. Mei. Amine-boranes bearing borane-incompatiblefunctionalities: application to selective amineprotection and surface functionalization, *Chem. Commun.*, 2016, 52, 11885-11888.
- [2] (a) W, Dai, S, J. Geib, and D, P. Curran, Facile Synthesis of α-N-Heterocyclic Carbene-Boryl Ketones from N-Heterocyclic Carbene-Boranes and Alkenyl Triflates, J. Am. Chem. Soc. 2019, 141, 12355-12361. (b) X,-L. Su, H.-G. Huang and Y.-F. Yuan, Radical Desulfur-Fragmentation and Reconstruction of Enol Triflates: Facile Access to α-Trifluoromethyl Ketones, Angew. Chem. Int. Ed. 2017, 56, 1338-1341.

6. Characterization Data of Compound

6.1. Characterization data of starting materials 1a-1e, 1g-1i, 1k.

H₃B⁺, H₄, H₄

 $H_3B_{+}^{+}$ *I-ethylimidazoleborane* (1b).Colorless oil (yield 70%), the product was N_{-} purified by flash column chromatography (PE/EtOAc = 5:1 to 3:1) to afford1bthe desired product; $R_f = 0.4$ (pentane/EtOAc = 1/1); IR (neat) v 3133, 2301,1541, 1169, 1123, 829, 745, 640 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.07 (s, 1H),6.94 (t, J = 1.6 Hz, 1H), 4.05 (q, J = 7.2 Hz, 2H), 2.60 - 1.88 (m, 3H), 1.50 (t, J = 7.2 Hz, 3H); ¹¹BNMR (128 MHz, CDCl₃) δ -19.44 (q, J = 95.0 Hz); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 135.7,127.8, 119.4, 43.4, 15.7; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₅H₁₁BN₂Na⁺ 133.0907;Found 133.0917.

1-butylimidazoliumborane (1c). White solid (yield 85%), the product was purified by flash column chromatography (PE/EtOAc = 5:1 to 3:1) to afford the desired product; **m.p.** 37 - 39 °C; $R_f = 0.5$ (pentane/EtOAc = 1/1); **IR (neat)** v 3130, 2953, 2260, 1543, 1179, 1117,

854, 758, 646 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.75 (s, 1H), 7.06 (t, J = 1.6 Hz, 1H), 6.90 (t, J = 1.6 Hz, 1H), 3.97 (t, J = 7.2 Hz, 2H), 1.83 - 1.75 (m, 2H), 2.72 - 2.0 (m, 3H), 1.40 - 1.30 (m, 2H), 0.96 (t, J = 7.2 Hz, 3H); ¹¹B NMR (128 MHz, CDCl₃) δ -19.44 (q, J = 95.5 Hz); ¹³C{¹H}

NMR (100 MHz, CDCl₃) δ 136.1, 127.7, 119.7, 48.3, 32.4, 19.5, 13.4; HRMS (ESI-TOF) m/z: [M+Na]⁺Calcd for C₇H₁₅BN₂Na⁺ 161.1221; Found 161.1230.

¹H NMR (400 MHz, CDCl₃) δ 7.76 (s, 1H), 7.05 (t, J = 1.6 Hz, 1H), 6.92 (t, J = 1.6 Hz, 1H), 3.97 (t, J = 7.2 Hz, 2H), 2.72 - 1.94 (m, 3H), 1.83 - 1.76 (m, 2H), 1.33 - 1.26 (m, 6H), 0.92 - 0.86 (m, 3H); ¹¹B NMR (128 MHz, CDCl₃) δ -19.45 (q, J = 98.2 Hz); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 136.1, 127.6, 119.8, 48.6, 31.1, 30.4, 26.0, 22.3, 13.9; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₉H₁₉BN₂Na⁺ 189.1534; Found 189.1526.

1-Octylimidazolium borane (1e). Colorless oil (yield 84%), the product was purified by flash column chromatography (PE/EtOAc = 5:1 to 3:1) to afford the desired product; R_f = 0.4 (pentane/EtOAc = 1/1); **IR (neat)** v 2925, 2855, 2302, 2258,

1732, 1542, 1243, 1168, 1124, 1045, 823, 745 cm⁻¹; 1H NMR (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.02 (t, *J* = 1.2 Hz, 1H), 6.96 (t, *J* = 1.2 Hz, 1H), 3.99 (t, *J* = 7.2 Hz, 2H), 2.58 - 1.99 (m, 3H), 1.83 - 1.76 (m, 2H), 1.35 - 1.23 (m, 10H), 0.87 (t, *J* = 6.8 Hz, 3H); ¹¹B NMR (128 MHz, CDCl₃) δ -19.48 (q, *J* = 95.2 Hz); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 136.1, 127.4, 119.9, 48.5, 31.6, 30.5, 28.9, 28.8, 26.2, 22.5, 14.0; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C11H23BN2Na⁺ 217.1847; Found 217.1828.

3132, 2302, 1538, 1168, 1114, 939, 828, 744, 639 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.08 (t, *J* = 1.6 Hz, 1H), 6.92 (t, *J* = 1.6 Hz, 1H), 5.99 - 5.90 (m, 1H), 5.40 (d, *J* = 10.8 Hz,

1H), 5.31 (d, J = 17.2 Hz, 1H), 4.59 (d, J = 6.0 Hz, 2H), 2.50 - 1.85 (m, 3H); ¹¹B NMR (128 MHz, CDCl₃) δ -19.37 (q, J = 95.3 Hz); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 136.2, 130.7, 127.9, 120.9, 119.9, 50.8; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₆H₁₁BN₂Na⁺ 145.0907; Found 145.0918.

H₃B⁻⁺ H₃B⁻⁺ H₃B⁻⁺ H₃B⁻⁺ H₃B⁻⁺ H₃B⁻⁺ H₃B⁻⁺ H₁ H₁

4-Methoxypyridine borane (1i). White solid (yield 77%), the product was purified by flash column chromatography (PE/EtOAc = 5:1 to 3:1) to afford the desired product; **m.p.** 90 - 92 °C; $R_f = 0.4$ (pentane/EtOAc =

1/1); **IR (neat)** v 2360, 1626, 1510, 1298, 1163, 1096, 1010, 822 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.40 (d, J = 6.8 Hz, 2H), 6.93 - 6.91 (m, 2H), 3.95 (s, 3H), 2.91 - 2.07 (m, 3H); ¹¹B NMR (128 MHz, CDCl₃) δ -12.90 (q, J = 97.3 Hz); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.3, 149.0, 110.9, 56.2; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₆H₁₀BNNaO⁺ 146.0748; Found 146.0726.

2-amino-4-methylpyridine borane (1k). White solid (yield 81%), the product was purified by flash column chromatography (PE/EtOAc = 5:1 to 3:1) to afford the desired product; **m.p.** 104 - 106 °C; $R_f = 0.4$ (pentane/EtOAc =

1/1); IR (neat) v 3436, 3337, 2313, 1648, 1613, 1517, 1168, 1152, 888, 823 cm⁻

¹; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.38 (d, *J* = 9.2 Hz, 1H), 6.61 (d, *J* = 8.4 Hz, 1H), 5.47 (s, 2H), 2.56 - 1.76 (m, 6H); ¹¹B NMR (128 MHz, CDCl₃) δ -17.36 (q, *J* = 96.0 Hz); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 153.6, 144.4, 141.4, 122.3, 111.3, 17.2; HRMS (ESI-TOF) m/z:

6.2. Characterization data of products 3 and 4.

(2-phenyl-2-oxoethyl)(1-propyl-1H-imidazole)-dihydroborate (3a). Yellow oil (31.5 mg, 65%), the product was purified by flash column chromatography (PE/EtOAc = 3:1 to 2:1) to afford the desired product; $R_f = 0.7$ (pentane/EtOAc = 1/1); IR

(neat) v 3133, 2966, 2353, 1446, 1276, 1128, 1014, 695, 663 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.01 - 7.98 (m, 2H), 7.72 (t, J = 2.4 Hz, 1H), 7.46 - 7.42 (m, 1H), 7.40 - 7.39 (m, 2H), 7.04 (t, J = 1.6 Hz, 1H), 6.85 (t, J = 1.6 Hz, 1H), 3.87 (t, J = 7.2 Hz, 2H), 2.56 - 2.53 (m, 2H), 1.84 - 1.75 (m, J = 7.2 Hz, 2H), 0.92 (t, J = 7.6 Hz, 3H); ¹¹B NMR (128 MHz, CDCl₃) δ -12.08 (t, J = 101.9Hz); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 207.7, 138.3, 135.9, 131.5, 128.4, 127.9, 126.2, 119.6, 50.2, 37.5, 23.8, 10.9; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₄H₁₉BN₂NaO⁺ 265.1483; Found 265.1479.

(2-phenyl-2-oxoethyl)(1-ethyl-1H-imidazole)-dihydroborate

(3b). Colorless oil (18.2 mg, 40%), the product was purified by flash column chromatography (PE/EtOAc = 3:1 to 2:1) to afford

the desired product; $R_f = 0.5$ (pentane/EtOAc = 1/1); **IR (neat)** v 3135, 2922, 2331, 1644, 1446, 1276, 1126, 825, 665 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.02 - 8.00 (m, 2H), 7.78 (s, 1H), 7.48 - 7.43 (m, 1H), 7.42 - 7.36 (t, J = 8.0 Hz, 2H), 7.06 (s, 1H), 6.89 (t, J = 1.6 Hz, 1H), 3.99 (q, J = 7.2 Hz, 2H), 2.56 (s, 2H), 1.47 (t, J = 7.2 Hz, 3H); ¹¹B NMR (128 MHz, CDCl₃) δ -12.13 (t, J = 100.9 Hz); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 207.9, 138.3, 135.4, 131.4, 128.5, 127.9, 126.9, 119.1, 43.5, 37.6, 15.6; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₃H₁₇BN₂NaO⁺ 251.1326; Found 251.1330.

(2-phenyl-2-oxoethyl)(1-butyl-1H-imidazole)-

dihydroborate (3c). Colorless oil (23.6 mg, 46%), the product was purified by flash column chromatography

(PE/EtOAc = 3:1 to 2:1) to afford the desired product; $R_f = 0.6$ (pentane/EtOAc = 1/1); **IR (neat)** v 3134, 2930, 2332, 1644, 1275, 1126, 1091, 753, 661 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 7.2 Hz, 2H), 7.75 (s, 1H), 7.46 (t, J = 7.2 Hz, 1H), 7.39 (t, J = 7.2 Hz, 2H), 7.06 (s, 1H), 6.86 (s, 1H), 3.92 (t, J = 7.3 Hz, 2H), 2.56 (s, 2H), 1.80 - 1.73 (m, 2H), 1.38 - 1.29 (m, 2H), 0.96 (t, J = 7.3 Hz, 3H); ¹¹B NMR (128 MHz, CDCl₃) δ -12.52 (d, J = 97.9 Hz); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 207.8, 138.3, 135.8, 131.4, 128.5, 127.9, 126.8, 119.5, 48.4, 37.6, 32.3, 19.5, 13.4; HRMS (ESI-TOF) m/z: [M+K]⁺ Calcd for C₁₅H₂₁BKN₂O⁺ 295.1379; Found 295.1385.

(2-phenyl-2-oxoethyl)ethyl)(1-hexyl-1H-imidazole)-

dihydroborate (3d). Colorless oil (25.6 mg, 45%), the product was purified by flash column chromatography (PE/EtOAc = 3:1 to 2:1) to afford the desired product;

 R_f = 0.5 (pentane/EtOAc = 1/1); **IR (neat)** *v* 3133, 2929, 2350, 1636, 1446, 1277, 1084, 985, 755, 694 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 7.2 Hz, 2H), 7.73 (s, 1H), 7.45 (t, *J* = 7.1 Hz, 1H), 7.38 (t, *J* = 7.4 Hz, 2H), 7.04 (s, 1H), 6.86 (s, 1H), 3.89 (t, *J* = 7.2 Hz, 2H), 2.55 (s, 2H), 1.78 - 1.72 (m, *J* = 7.2 Hz, 2H), 1.29 - 1.26 (s, 6H), 0.89 (t, *J* = 7.2 Hz, 3H); ¹¹B NMR (128 MHz, CDCl₃) δ -12.14 (t, *J* = 93.4 Hz); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 207.7, 138.4, 135.8, 131.4, 128.5, 127.9, 126.7, 119.6, 48.6, 37.5, 31.1, 30.4, 26.0, 22.4, 13.9; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₇H₂₅BN₂NaO⁺ 307.1952; Found 307.1967.

(2-phenyl-2-oxoethyl)ethyl)(1-octyl-1H-

imidazole)-dihydroborate (3e). Colorless oil (26.9 mg, 43%), the product was purified by flash column chromatography (PE/EtOAc = 4:1 to 3:1) to afford

the desired product; $R_f = 0.6$ (pentane/EtOAc = 1/1); **IR (neat)** v 3133, 2925, 2327, 1647, 1541, 1446, 1274, 1092, 907, 756 cm⁻¹; ¹H NMR (400 MHz, CD₃CN) δ 7.90 - 7.88 (m, 2H), 7.81 (s, 1H), 7.48 - 7.44 (m, 1H), 7.40 - 7.36 (m, 2H), 7.06 (t, J = 1.6 Hz, 1H), 7.00 (t, J = 1.6 Hz, 1H), 3.92 (t, J = 7.2 Hz, 2H), 2.42 (t, J = 4.8 Hz, 2H), 1.74 - 1.67 (m, 2H), 1.32 - 1.22 (m, 10H), 0.876 (t, J = 6.8 Hz, 3H); ¹¹B NMR (128 MHz, CD₃CN) δ -12.10 (t, J = 100.4 Hz); ¹³C{¹H} NMR (100

MHz, CD₃CN) δ 206.4, 139.4, 137.1, 131.8, 128.6, 128.5, 126.3, 121.1, 48.7, 37.8, 32.1, 30.6, 29.4, 29.2, 26.4, 23.0, 14.0; **HRMS (ESI-TOF)** m/z: [M+Na]+ Calcd for C₁₉H₂₉BN₂NaO⁺ 335.2265; Found 335.2275.

(2-phenyl-2-oxoethyl)(1-benzyl-1H-imidazole)-dihydroborate (3f). Colorless oil (27.3 mg, 47%), the product was purified by flash column chromatography (PE/EtOAc = 3:1 to 2:1) to afford the desired product; $R_f = 0.6$ (pentane/EtOAc = 1/1); IR

(neat) v 3133, 2332, 1643, 1539, 1446, 1276, 1077, 915, 693 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.01 - 7.99 (m, 2H), 7.78 (s, 1H), 7.47 - 7.43 (m, 1H), 7.42 - 7.36 (m, 5H), 7.20 - 7.17 (m, 2H), 7.07 (t, J = 1.6 Hz, 1H), 6.84 (t, J = 1.6 Hz, 1H), 5.07 (s, 2H), 2.56 (t, J = 4.8 Hz, 2H); ¹¹B NMR (128 MHz, CDCl₃) δ -12.45 (t, J = 109.5 Hz); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 207.7, 138.3, 136.2, 133.6, 131.5, 129.4, 129.2, 128.5, 128.0, 127.9, 127.1, 119.9, 52.3, 37.7; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₈H₁₉BN₂NaO⁺ 313.1483; Found 313.1501.

(2-phenyl-2-oxoethyl)(1-allyl-1H-imidazole)-dihydroborate

(3g). Colorless oil (13.4 mg, 28%), the product was purified by flash column chromatography (PE/EtOAc = 3:1 to 2:1) to afford the desired product; $R_f = 0.7$ (pentane/EtOAc = 1/1); IR

(neat) v 3134, 2926, 2330, 1644, 1541, 1275, 1091, 1030, 755, 695, 638 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 7.6 Hz, 2H), 7.77 (s, 1H), 7.46 (t, J = 7.2 Hz, 1H), 7.39 (t, J = 7.4 Hz, 2H), 7.07 (s, 1H), 6.87 (s, 1H), 5.95 - 5.85 (m, 1H), 5.39 (d, J = 10.2 Hz, 1H), 5.34 (d, J = 16.9 Hz, 1H), 4.53 (d, J = 6.0 Hz, 2H), 2.56 (s, 2H); ¹¹B NMR (128 MHz, CDCl₃) δ -12.22 (t, J = 83.2 Hz); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 207.8, 138.3, 136.0, 131.5, 130.5, 128.5, 128.0, 126.9, 121.0, 119.7, 50.8, 37.5; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₄H₁₇BN₂NaO 263.1326; Found 263.1347.

(2-phenyl-2-oxoethyl)ethyl)(1-vinyl-1H-imidazole)-

dihydroborate (3h). Colorless oil (20.8 mg, 46%), the product

was purified by flash column chromatography (PE/EtOAc = 3:1 to 2:1) to afford the desired product; $R_f = 0.7$ (pentane/EtOAc = 1/1); **IR (neat)** v 3131, 2922, 2332, 1645, 1527, 1276, 1126, 1089, 756, 694 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.03 - 8.00 (m, 3H), 7.46 (t, *J* = 7.2 Hz, 1H), 7.40 (t, *J* = 7.6 Hz, 2H), 7.13 (d, *J* = 8.4 Hz, 2H), 6.83 (dd, *J* = 15.6, 8.6 Hz, 1H), 5.45 (dd, *J* = 15.6, 2.4Hz, 1H), 5.16 (dd, *J* = 8.8, 2.4 Hz, 1H), 2.57 (t, *J* = 4.8 Hz, 2H); ¹¹B NMR (128 MHz, CDCl₃) δ -11.96 (t, *J* = 103.5 Hz); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 207.9, 138.2, 134.8, 131.6, 128.5, 128.0, 127.6, 116.6, 106.3, 37.1; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₃H₁₅BN₂NaO⁺ 249.1170; Found 249.1148.

(2-phenyl-2-oxoethyl)(2-methoxypyridin)-dihydroborate (3i). Colorless oil (18.3 mg, 38%), the product was purified by flash column chromatography (PE/EtOAc = 3:1 to 2:1) to afford the desired product; $R_f = 0.6$ (pentane/EtOAc = 1/1);

IR (neat) v 2922, 2848, 2368, 1627, 1513, 1304, 1078, 834, 694 cm⁻¹; ¹H NMR (400 MHz, CD₃CN) δ 8.22 (d, J = 6.8 Hz, 2H), 7.88 (d, J = 7.2 Hz, 2H), 7.49 (t, J = 7.2 Hz, 1H), 7.40 (t, J = 8.0 Hz, 2H), 7.02 (d, J = 8.4 Hz, 2H), 3.93 (s, 3H), 2.48 (t, J = 8.0 Hz, 2H); ¹¹B NMR (128 MHz, CD₃CN) δ -6.32 (t, J = 101.7 Hz); ¹³C{¹H} NMR (100 MHz, CD₃CN) δ 205.9, 168.8, 149.1, 139.2, 132.0, 128.6, 111.9, 57.1, 38.4; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₄H₁₆BNNaO₂⁺ 264.1166; Found 264.1155.

(2-phenyl-2-oxoethyl)(4-N,N-dimethylpyridin)-dihydroborate (3j). White solid (23.4 mg, 46%), the product was purified by flash column chromatography (PE/EtOAc = 3:1 to 2:1) to afford the desired product; **m.p.** 90 - 92 °C; $R_f = 0.6$

(pentane/EtOAc = 1/1); **IR (neat)** v 2921, 2346, 1634, 1272, 1143, 1092, 810, 773, 699 cm⁻¹; ¹H **NMR (400 MHz, CDCl₃)** δ 8.01 (d, J = 7.2 Hz, 2H), 7.10 (d, J = 7.2 Hz, 2H), 7.46 (tt, J = 7.2, 1.2 Hz, 1H), 7.39 (t, J = 6.8, 2H), 6.47 (d, J = 7.6 Hz, 2H), 3.08 (s, 6H), 2.57 (t, J = 4.8 Hz, 2H); ¹¹B **NMR (128 MHz, CDCl₃)** δ -7.06 (t, J = 84.8 Hz); ¹³C{¹H} **NMR (100 MHz, CDCl₃)** δ 207.3, 155.0, 146.3, 138.4, 131.4, 128.6, 128.0, 106.4, 39.5, 38.7; **HRMS (ESI-TOF)** m/z: [2M+H]⁺ Calcd for $C_{30}H_{39}B_2N_4O_2^+$ 509.3254; Found 509.3268.

(2-phenyl-2-oxoethyl)(2-amino-5-methylpyridin)-dihydroborate (3k). White solid (19.2 mg, 40%), the product was purified by flash column chromatography (PE/EtOAc = 3:1 to 2:1) to afford the desired product; **m.p.** 106 - 108 °C; $R_f = 0.6$ (pentane/EtOAc = 1/1);

IR (neat) v 3412, 3157, 2922, 2390, 1647, 1519, 1280, 1147, 825, 687 cm⁻¹; ¹H NMR (400 MHz, CD₃CN) δ 7.91 - 7.88 (m, 2H), 7.55 (s, 1H), 7.50 (tt, *J* = 5.6, 1.6 Hz, 1H), 7.44 - 7.39 (m, 3H), 6.71 (d, *J* = 8.4 Hz, 1H), 6.01 (s, 2H), 2.46 (t, *J* = 5.2 Hz, 2H), 2.07 (s, 3H); ¹¹B NMR (128 MHz, CD₃CN) δ -10.44 (t, *J* = 99.6 Hz); ¹³C{¹H} NMR (100 MHz, CD₃CN) δ 206.4, 154.6, 143.7, 142.4, 139.2, 132.0, 128.6, 128.5, 122.3, 112.6, 34.6, 16.7; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₄H₁₇BN₂NaO⁺ 263.1326; Found 263.1348.

(1,3-dimethyl-1H-imidazol-3-ium-2-yl)(2-oxo-2-phenylethyl)-

dihydroborate (31). White solid (39.7 mg, 87%), the product was purified by flash column chromatography (PE/EtOAc = 3:1 to 2:1) to afford the desired product; $R_f = 0.6$ (pentane/EtOAc = 1/1); ¹H NMR

(400 MHz, CD₃CN) δ 7.87 (d, J = 7.2 Hz, 2H), 7.46 (t, J = 7.2 Hz, 1H), 7.38 (t, J = 7.6 Hz, 2H),
6.92 (s, 2H), 3.56 (s, 6H), 2.32 (s, 2H).^{2a}

(2-(4-bromophenyl)-2-oxoethyl)(1-propyl-1H-

imidazole)-dihydroborate (4a). White solid (33.3 mg, 52%), the product was purified by flash column chromatography (PE/EtOAc = 3:1 to 2:1) to afford the

desired product; **m.p.** 99 - 101 °C; R_f = 0.6 (pentane/EtOAc = 1/1); **IR (neat)** *v* 3390, 3189, 3120, 2917, 2849, 2359, 2328, 1643, 1277, 1134, 1085, 846, 654 cm⁻¹; ¹**H NMR (400 MHz, CD₃CN)** δ 7.80 - 7.70 (m, 3H), 7.50 (d, *J* = 8.8 Hz, 2H), 7.07 (t, *J* = 1.6 Hz, 1H), 7.00 (t, *J* = 2.0 Hz, 1H), 3.91 (t, *J* = 7.2 Hz, 2H), 2.39 (t, *J* = 4.8 Hz, 2H), 1.79 - 1.70 (m, 2H), 0.85 (t, *J* = 7.2 Hz, 3H); ¹¹**B NMR (128 MHz, CD₃CN)** δ -12.17 (t, *J* = 99.9 Hz); ¹³C{¹H} **NMR (100 MHz, CD₃CN)** δ 205.2,

138.3, 137.2, 131.6, 130.6, 126.3, 126.0, 121.2, 50.2, 37.9, 24.0, 10.5; **HRMS (ESI-TOF)** m/z: [M+Na]⁺ Calcd for C₁₄H₁₈BBrN₂NaO⁺ 343.0588; Found 343.0614.

(2-(4-Chlorophenylphenyl)-2-oxoethyl)(1-propyl-1Himidazole)-dihydroborate (4b). Colorless oil (35.3 mg, 64%), the product was purified by flash column chromatography (PE/EtOAc = 3:1 to 2:1) to afford the

desired product; $R_f = 0.6$ (pentane/EtOAc = 1/1); **IR (neat)** v 3133, 2966, 2352, 1646, 1272, 1087, 1011, 821, 744, 658 cm⁻¹; ¹H NMR (400 MHz, CD₃CN) δ 7.86 (d, J = 8.4 Hz, 2H), 7.81 (s, 1H), 7.38 (d, J = 8.4 Hz, 2H), 7.08 (t, J = 1.6 Hz, 1H), 7.00 (t, J = 1.6 Hz, 1H), 3.91 (t, J = 7.2 Hz, 2H), 2.41 (d, J = 5.2 Hz, 2H), 1.79 - 7.70 (m, 2H), 0.85 (t, J = 7.2 Hz, 3H); ¹¹B NMR (128 MHz, CD₃CN) δ -12.17 (t, J = 100.1 Hz); ¹³C{¹H} NMR (100 MHz, CD₃CN) δ 205.1, 137.9, 137.4, 137.2, 130.4, 128.6, 126.3, 121.1, 50.2, 38.0, 24.0, 10.5; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₄H₁₈BClN₂NaO⁺ 299.1093; Found 299.1105.

(2-(4-(methoxycarbonyl)phenyl)-2-oxoethyl)(1propyl-1H-imidazole)-dihydroborate (4c).
Yellow oil (8.4 mg, 14%), the product was

purified by flash column chromatography

(PE/EtOAc = 3:1 to 2:1) to afford the desired product; $R_f = 0.7$ (pentane/EtOAc = 1/1); IR (neat) v3342, 2958, 1719, 1677, 1435, 1278, 1111, 1014, 768, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 4H), 7.73 (t, J = 1.6 Hz, 1H), 7.06 (t, J = 1.6 Hz, 1H), 6.89 (t, J = 1.6 Hz, 1H), 3.93 (s, 3H), 3.91 (t, J = 7.2 Hz, 2H), 2.58 (t, J = 4.0 Hz, 2H), 1.87 - 1.78 (m, 2H), 0.95 (t, J = 7.6 Hz, 3H); ¹¹B NMR (128 MHz, CDCl₃) δ -12.28 (t, J = 106.0 Hz); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 206.9, 166.8, 141.9, 135.8, 132.3, 129.3, 128.4, 126.8, 119.6, 52.2, 50.3, 37.7, 23.8, 10.9; HRMS (ESI-TOF) m/z: [2M+H]⁺ Calcd for C₃₂H₄₃B₂N₄O₆⁺ 601.3363; Found 601.3381.

S18

21%), the product was purified by flash column chromatography (PE/EtOAc = 3:1 to 2:1) to afford the desired product; **m.p.** 49 - 51 °C; $R_f = 0.7$ (pentane/EtOAc = 1/1); **IR (neat)** v 3139, 2966, 2339, 2229, 1654, 1270, 1130, 1080, 825, 757, 659 cm⁻¹; ¹H NMR (400 MHz, CD₃CN) δ 7.99 (d, J = 8.4 Hz, 2H), 7.80 (s, 1H), 7.75 (d, J = 8.8 Hz, 2H), 7.09 (t, J = 1.6 Hz, 1H), 7.00 (t, J = 1.6 Hz, 1H), 3.92 (t, J = 7.2 Hz, 2H), 2.45 (t, J = 4.8 Hz, 2H), 1.80 - 1.71 (m, 2H), 0.86 (t, J = 7.2 Hz, 3H); ¹¹B NMR (128 MHz, CD₃CN) δ -12.36 (t, J = 101.4 Hz); ¹³C{¹H} NMR (100 MHz, CD₃CN) δ 204.9, 142.6, 137.2, 132.6, 129.1, 126.2, 121.2, 119.0, 114.7, 50.2, 38.1, 24.0, 10.5; HRMS (ESI-TOF) m/z: [M+H+CH₃CN]⁺ Calcd for C₁₇H₂₂BN₄O⁺ 309.1881; Found 309.1890.

(2-(4-(ethoxycarbonyl)-2-

oxoethyl)ethyl)dihydroborate)(1-propyl-1H-

imidazole)-dihydroborate (4e). Yellow oil (20.1 mg, 32%), the product was purified by flash column

chromatography (PE/EtOAc = 3:1 to 2:1) to afford the desired product; $R_f = 0.7$ (pentane/EtOAc = 1/1); **IR (neat)** *v* 3134, 2966, 2351, 1712, 1650, 1269, 1100, 1016, 764, 707 cm⁻¹; ¹H NMR (400 MHz, CD₃CN) δ 8.02 (d, *J* = 8.4 Hz, 2H), 7.97 (d, *J* = 8.4 Hz, 2H), 7.83 (s, 1H), 7.10 (s, 1H), 7.03 (s, 1H), 4.37 (q, *J* = 7.2 Hz, 2H), 3.93 (t, *J* = 7.2 Hz, 2H), 2.48 (s, 2H), 7.81 - 1.72 (m, 2H), 1.39 (t, *J* = 7.2 Hz, 3H), 0.87 (t, *J* = 7.2 Hz, 3H); ¹¹B NMR (128 MHz, CD₃CN) δ -12.24 (t, *J* = 93.3 Hz); ¹³C{¹H} NMR (100 MHz, CD₃CN) δ 205.8, 166.4, 142.9, 137.2, 133.2, 129.5, 128.6, 126.3, 121.2, 61.6, 50.2, 38.2, 24.0, 14.6, 10.5; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₇H₂₃BN₂NaO₃⁺ 337.1694; Found 337.1671.

(2-(4-(trifluoromethyl)phenyl)-2-oxoethyl)(1-propyl-

1H-imidazole)-dihydroborate (4f). Colorless oil (23.6 mg, 38%), the product was purified by flash column chromatography (PE/EtOAc = 3:1 to 2:1) to afford the

desired product; R_f = 0.6 (pentane/EtOAc = 1/1); **IR (neat)** *v* 3134, 2933, 2357, 1652, 1323, 1120, 1064, 1015, 830, 740, 663 cm⁻¹; ¹H NMR (400 MHz, CD₃CN) δ 7.98 (d, *J* = 8.4 Hz, 2H), 7.80 (s, 1H), 7.75 (d, *J* = 8.8 Hz, 2H), 7.09 (t, *J* = 1.6 Hz, 1H), 7.00 (t, *J* = 1.6 Hz, 1H), 3.92 (t, *J* = 7.2 Hz, 2H), 2.45 (t, *J* = 5.2 Hz, 2H), 1.80 - 1.71 (m, 2H), 0.86 (t, *J* = 7.6 Hz, 3H); ¹¹B NMR (128 MHz,

CDCl₃) δ -12.31 (t, J = 101.0 Hz); ¹³C{¹H} **NMR (100 MHz, CDCl₃)** δ 206.4, 141.0, 135.8, 132.8 (q, ²J_{C-F} = 32.2 Hz), 128.8, 126.8, 125.0 (q, ³J_{C-F} = 3.7 Hz), 124.0 (q, ¹J_{C-F} = 272.4 Hz), 119.7, 50.3, 37.9, 23.8, 10.9; **HRMS (ESI-TOF)** m/z: [M+Na]⁺ Calcd for C₁₅H₁₈BF₃N₂NaO⁺ 333.1356; Found 333.1384.

(2-(4-(bromo)phenyl)-2-oxoethyl)(1-propyl-1H-imidazole)dihydroborate (4g). White oil (30.1 mg, 47%), the product was purified by flash column chromatography (PE/EtOAc

= 3:1 to 2:1) to afford the desired product; $R_f = 0.6$ (pentane/EtOAc = 1/1); **IR (neat)** v 3135, 2963, 2352, 1650, 1280, 1257, 1127, 1080, 778, 742, 659 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.11 (t, J = 1.8 Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.72 (s, 1H), 7.59 - 7.56 (m, 1H), 7.29 - 7.26 (m, 1H), 7.06 (s, 1H), 6.89 (t, J = 1.5 Hz, 1H), 3.91 (t, J = 7.2 Hz, 2H), 2.52 (t, J = 4.7 Hz, 2H), 1.88 - 1.79 (m, 2H), 0.96 (t, J = 7.2 Hz, 3H); ¹¹B NMR (128 MHz, CDCl₃) δ -12.27 (d, J = 103.6 Hz); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 206.0, 140.1, 135.8, 134.3, 131.4, 129.6, 127.3, 126.8, 122.4, 119.7, 50.3, 37.7, 23.8, 10.9; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₄H₁₈BBrN₂NaO⁺ 343.0588; Found 343.0591.

(2-(3-(chlorophenyl)phenyl)-2-oxoethyl)(1-propyl-1Himidazole)-dihydroborate (4h). Yellow oil (20.4 mg, 37%), the product was purified by flash column chromatography (PE/EtOAc = 3:1 to 2:1) to afford the

desired product; $R_f = 0.6$ (pentane/EtOAc = 1/1); **IR (neat)** v 3134, 2965, 2353, 1650, 1280, 1258, 1128, 1092, 783, 744, 668 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (t, J = 1.6 Hz, 1H), 7.89 (d, J = 7.6 Hz, 1H), 7.73 (s, 1H), 7.43 (d, J = 8.4 Hz, 1H), 7.33 (t, J = 8.0 Hz, 1H), 7.06 (s, 1H), 6.89 (s, 1H), 3.91 (t, J = 7.2 Hz, 2H), 2.52 (d, J = 4.8 Hz, 2H), 1.88 - 1.79 (m, 2H), 0.96 (d, J = 7.2 Hz, 3H); ¹¹B NMR (128 MHz, CDCl₃) δ -12.25 (d, J = 109.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 206.1, 140.0, 135.8, 134.2, 131.3, 129.3, 128.5, 126.8, 119.6, 50.3, 37.7, 23.8, 10.9; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₄H₁₈BClN₂NaO⁺ 299.1093; Found 299.1118.

(2-(3-(methyl)phenyl)-2-oxoethyl)(1-propyl-1H-

imidazole)-dihydroborate (4i). White oil (16.0 mg, 31%), the product was purified by flash column chromatography (PE/EtOAc = 3:1 to 2:1) to afford the desired product; $R_f = 0.6$ (pentane/EtOAc = 1/1); **IR (neat)** v 3130.5, 2964.8, 2326.5, 1644.2, 1280.6, 1125.7, 1091.5, 787.3, 745.2, 703.8, 655.2 cm⁻¹; ¹H NMR (400 MHz, CD₃CN) δ 7.79 (s, 1H), 7.68 – 7.66 (m, 2H), 7.30 - 7.24 (m, 2H), 7.07 (t, J = 1.6 Hz, 1H), 7.00 (t, J = 1.6 Hz, 1H), 3.90 (t, J = 7.2 Hz, 2H), 2.34 (t, J = 4.8 Hz, 2H), 2.35 (s, 3H), 1.79 – 1.70 (m, 2H), 0.85 (t, J = 7.2 Hz, 3H). ¹¹B NMR (128) **MHz, CD₃CN**) δ -12.13 (t, J = 99.9 Hz). ¹³C NMR (100 MHz, CD₃CN) 206.7, 139.6, 138.2, 137.2, 132.5, 129.12, 128.5, 126.4, 125.9, 121.1, 50.2, 37.6, 24.0, 21.0, 10.6. HRMS (ESI-TOF) m/z: [M+K]⁺ Calcd for C₁₅H₂₁BKN₂O⁺ 295.1379; found:295.1402.

imidazole)-dihydroborate (4j). White solid (31.6 mg, 51%), the product was purified by flash column chromatography (PE/EtOAc = 3:1 to 2:1) to afford the desired product; **m.p.** 49 - 51 °C; $R_f = 0.6$ (pentane/EtOAc = 1/1); **IR** (neat) v 3122, 2971, 2920, 2360, 2329, 1642, 1281, 1133, 1085, 1029, 980, 801, 766, 679, 655 cm⁻¹; ¹H NMR (400 MHz, CD₃CN) δ 7.955 (d, J = 2.0 Hz, 1H), 7.80 (s, 1H), 7.77 (dd, J = 8.4, 2.0 Hz, 1H) 7.536 (d, J = 8.0 Hz, 1H), 7.09 (s, 1H), 7.01 (s, 1H), 3.91 (t, J = 7.1 Hz, 2H), 2.40 (s, 2H), 1.77 - 1.72 (m, 2H), 0.85 (t, J = 7.6 Hz, 3H); ¹¹B NMR (128 MHz, **CD₃CN**) δ -12.23 (t, J = 94.4 Hz); ¹³C{¹H} NMR (100 MHz, CD₃CN) δ 203.8, 139.3, 137.2, 135.3, 132.2, 130.8, 130.5, 128.4, 126.2, 121.2, 50.2, 37.8, 24.0, 10.5; HRMS (ESI-TOF) m/z: $[2M+Na]^+$ Calcd for C₂₈H₃₄B₂C₁₄N₄NaO₂⁺ 643.1514; Found 643.1503.

(2-(3,4-dichlorophenylphenyl)-2-oxoethyl)(1-propyl-1H-

7. Copies of NMR Spectra

7.1. Starting materials 1a-1e, 1g-1i, 1k.

Material 1a: ¹H NMR ¹¹B NMR and ¹³C NMR.

S23

Material 1b: ¹H NMR ¹¹B NMR and ¹³C NMR.

Material 1c: ¹H NMR ¹¹B NMR and ¹³C NMR.

90

80

70 60

50

40 30

20

10 0 f1 (ppm) -10

-20 -30

-40 -50

-60

-70

-80

-90

Material 1d: ¹H NMR ¹¹B NMR and ¹³C NMR.

Material 1h: ¹H NMR ¹¹B NMR and ¹³C NMR.

Material 1i: ¹H NMR ¹¹B NMR and ¹³C NMR.

-10 -20 -30 -40 -50

-60 -70 -80

-90

90 80 70 60 50 40 30 20 10 0 f1 (ppm)

7.2 Products 3 and 4

Product 3a: ¹H NMR ¹¹B NMR and ¹³C NMR.

0 f1 (ppm)

10

-10

-20 -30 -40

-50 -60 -70

90 80 70 60 50 40 30 20

Product 3c: ¹H NMR ¹¹B NMR and ¹³C NMR.

90

70

50

 $\frac{1}{40}$

30

20

80

10 0 f1 (ppm) -10

-20

-30

-40

-50

-60

-70

-80

-90

Product 3d: ¹H NMR ¹¹B NMR and ¹³C NMR.

15

10

5

0

-5

-10 f1 (ppm) -15

-20

-25

-30

-35

-40

-25

-20

-30

-40

-35

-45

-50

25

15

10

20

Product 3j: ¹H NMR ¹¹B NMR and ¹³C NMR.

Product 31: ¹H NMR

Product 4b: ¹H NMR ¹¹B NMR and ¹³C NMR.

Product 4d: ¹H NMR ¹¹B NMR and ¹³C NMR.

Product 4e: ¹H NMR ¹¹B NMR and ¹³C NMR.

Product 4f: ¹H NMR ¹¹B NMR and ¹³C NMR.

Product 4h: ¹H NMR ¹¹B NMR and ¹³C NMR.

Product 4i: ¹H NMR ¹¹B NMR and ¹³C NMR.

Product 4j: ¹H NMR ¹¹B NMR and ¹³C NMR.

