Supporting information

Difluorocarbene as a C-F source for the Construction of Fluorinated Thiazoles

Wen-Jie Pan,^{ab} Jiao Yu,^b Weiguo Cao,^a* Ji-Chang Xiao,^b*Jin-Hong Lin^{ab}*

^aDepartment of Chemistry, Innovative Drug Research Center, Shanghai University, 200444 Shanghai, China. Email: E-mail: <u>wgcao@staff.shu.edu.cn</u> (W. Cao); <u>jlin@sioc.ac.cn</u>, <u>jlin@shu.edu.cn</u> (J.-H. Lin) ^bKey Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China. jchxiao@sioc.ac.cn (J.-C. Xiao)

Table of Contents

1.	General InformationS2
2.	General procedure for the synthesis of the substratesS2
3.	Screening reaction conditions by using BrCF2CO2K instead of
	PDFA
4.	General procedure for the synthesis of Fluorinated
	Thiazoles
5.	Mechanistic Investigations
6.	References
7.	Copies of NMR Spectra

1. General Information

All reagents were commercially available and used without further purification unless indicated otherwise. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a Bruker 500 MHz spectrometer. NMR spectra were recorded on a Brüker Advance 600 (1H: 600 MHz, 19F NMR: 565 MHz, 13C: 150 MHz), Brüker Advance 500 (1H: 500 MHz, 13C: 125 MHz, 19F: 470 MHz) and JEOL ECZ 400MHz at ambient temperature. CDCl₃ was used as the NMR solvent. The chemical shifts for ¹H are given in ppm relative to tetramethylsilane (0.00) as a standard. The chemical shifts for ¹³C are given in ppm relative to CDCl₃ (77.0 ppm) as a standard. The chemical shifts for ¹⁹F NMR are given in ppm relative to trichlorofluoromethane (0.00) as a standard. ¹H, ¹³C and ¹⁹F multiplicities are reported as follows: singlet (s), doublet (d), triplet (t), quartet (q), doublet of doublets (dd), triplet of doublets (td), triplet of triplet (tt), multiplet (m), quint (quintet), septet (sept), sextet (sext) and broad resonance (br). High resolution mass spectrometry (HRMS) was performed on a Waters Premier GC-TOF MS instrument with electron impact ionization mode (EI), time-of-flight mass spectrometer field ionization mode (FI), or on a Thermo Scientific Q Exactive HF Orbitrap-FTMS instrument with electrospray ionization mode (ESI). Unless noted, all reagents were bought from commercial suppliers and used without further purification. Compounds 4 for the synthesis of substrate 1 were bought from commercial suppliers or synthesized according to reported literature.¹

2. General procedure for the synthesis of the substrates²

A solution of compound **4** (10 mmol) in a mixture of aqueous 50% NaOH and ethylene glycol (v/v = 1/1, 20 mL) was refluxed under a N₂ atmosphere until the starting material disappeared, as monitored by TLC (about 15 h). The mixture was then poured into ice water, acidified to pH = 3 with 3 M aqueous HCl, and extracted with CH₂Cl₂. The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated to remove the solvent. The residue was subjected to flash chromatography on silica using hexane/EtOAc (v/v = 2/1 to 1/1) as an eluent to give substrate **1**.

2-amino-4-fluorobenzenethiol (**1b**)²: yellow solid; 325.6 mg, 44% yield (5 mmol of **4b** was used).

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.04 (dd, J = 8.6, 6.5 Hz, 1H), 6.41 (dd, J = 10.6, 2.6 Hz, 1H), 6.29 (td, J = 8.5, 2.7 Hz, 1H), 4.49 (br, 2H). ¹⁹**F NMR** (470 MHz, Chloroform-*d*) δ -108.42 - -108.50 (m, 1F). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 165.39 (d, J = 248.4 Hz), 150.41 (d, J = 12.2 Hz), 138.86 (d, J = 10.6 Hz), 113.72 (d, J = 2.6 Hz), 105.45 (d, J = 22.2 Hz), 101.64 (d, J = 25.3 Hz).**GC-MS** (EI) m/z: [M]⁺ Calcd for C₆H₆FNS 143.0; Found 143.0.

2-amino-5-fluorobenzenethiol (1c)³: yellow solid; yield: 515 mg (36%). ¹H NMR (500 MHz, Chloroform-*d*) δ 6.95 – 6.88 (m, 2H), 6.66 (dd, J = 8.6, 4.8 Hz, 1H), 4.18 (br, 2H). ¹⁹F NMR (470 MHz, Chloroform-*d*) δ -126.26 (td, J = 8.3, 4.7 Hz, 1F). ¹³C NMR (125 MHz, Chloroform-*d*) δ 154.93 (d, J = 239.2 Hz), 144.92 (d, J = 2.0 Hz), 121.78 (d, J = 22.3 Hz), 118.96 (d, J = 7.3 Hz), 118.81 (d, J = 22.5 Hz), 116.08 (d, J = 7.4 Hz). **GC-MS** (EI) m/z: [M]⁺ Calcd for C₆H₆FNS 143.0; Found 143.0.

2-amino-4-chlorobenzenethiol (1d)²: yellow solid; yield: 206.7 mg (13%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.02 (d, *J* = 8.3 Hz, 1H), 6.71 (d, *J* = 2.2 Hz, 1H),

6.56 (dd, J = 8.2, 2.2 Hz, 1H), 4.42 (br, 2H).¹³**C** NMR (125 MHz, Chloroform-*d*) δ 149.47, 137.88, 137.66, 118.35, 116.64, 114.78. **GC-MS** (EI) m/z: [M]⁺ Calcd for C₆H₆ClNS 159.0; Found 159.0.

2-amino-5-chlorobenzenethiol (1e)⁴: yellow solid; yield: 397.5 mg (25%) ¹H NMR (500 MHz, Chloroform-*d*) δ 7.14 – 7.11 (m, 2H), 6.64 (dd, *J* = 8.1, 0.8 Hz, 1H), 4.31 (br, 2H).¹³C NMR (125 MHz, Chloroform-*d*) δ 147.19, 135.66, 131.71, 122.21, 119.39, 116.25. GC-MS (EI) m/z: [M]⁺ Calcd for C₆H₆ClNS 159.0; Found 159.0.

2-amino-4-bromobenzenethiol (1h)³: yellow solid; yield: 615.1 mg (30%) ¹H NMR (500 MHz, Chloroform-*d*) δ 6.96 (d, J = 8.2 Hz, 1H), 6.88 (d, J = 2.0 Hz, 1H), 6.71 (dd, J = 8.2, 2.1 Hz, 1H), 4.41 (br, 2H).¹³C NMR (125 MHz, Chloroform-*d*) δ 149.59, 137.96, 126.01, 121.25, 117.72, 117.21. GC-MS (EI) m/z: [M]⁺ Calcd for C₆H₆BrNS 204.9; Found 204.9.

2-amino-5-bromobenzenethiol (1i)⁴: yellow solid; yield: 491.7 mg (24%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.28-7.25 (m, 2H), 6.62 (d, *J* = 9.1 Hz, 1H), 4.35 (br, 2H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 147.61, 138.57, 134.52, 119.88, 116.65, 108.95. GC-MS (EI) m/z: [M]⁺ Calcd for C₆H₆BrNS 204.9; Found 204.9.

2-amino-4-fluoro-5-methylbenzenethiol (1j): yellow solid yellow solid (m.p. 110-111 °C); yield: 596.6 mg (38%)

¹**H NMR** (500 MHz, Chloroform-*d*) δ 6.88 (d, J = 8.5 Hz, 1H), 6.40 (d, J = 11.2 Hz, 1H), 4.31 (br, 2H), 2.04 (d, J = 1.8 Hz, 3H). ¹⁹**F NMR** (470 MHz, Chloroform-*d*) δ -112.25 - -112.38 (m). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 163.60 (d, J = 247.9 Hz), 148.28 (d, J = 11.8 Hz), 139.79 (d, J = 7.7 Hz), 114.50 (d, J = 18.6 Hz), 113.77 (d, J = 2.8 Hz), 101.74 (d, J = 26.2 Hz), 13.35 (d, J = 3.1 Hz). **HRMS** (FI) calcd. for C₇H₈FNS⁺ [(M)]⁺:157.0361, found: 157.0356.

2-amino-5-(trifluoromethoxy)benzenethiol (1k)⁵:yellow solid; yield: 480.7 mg (23%) ¹H NMR (600 MHz, Chloroform-*d*) δ 7.51 (d, J = 8.7 Hz, 1H), 7.47 (s, 1H), 7.18 (d, J = 8.5 Hz, 1H), 5.42 (br, 2H), 1.78 (br, 1H). ¹⁹F NMR (565 MHz, Chloroform-*d*) δ - 58.20 (s, 3F). ¹³C NMR (125 MHz, Chloroform-*d*) δ 147.44, 140.06 (q, J = 2.1 Hz), 128.97, 125.26, 120.97 (q, J = 255.9 Hz), 118.18, 115.57. GC-MS (EI) m/z: [M]⁺ Calcd for C₇H₆F₃NOS 209.0; Found 209.0.

2-amino-3-methylbenzenethiol (**11**)²: yellow solid; yield: 861.8 mg (62%) **¹H NMR** (500 MHz, Chloroform-*d*) δ 7.45 – 7.42 (m, 1H), 7.14 – 7.12 (m, 1H), 7.04 (t, *J* = 7.6 Hz, 1H), 5.31 (br, 2H), 2.56 (s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 146.98, 134.67, 132.61, 122.49, 118.52, 117.58, 18.08. **GC-MS** (EI) m/z: [M]⁺ Calcd for C₇H₉NS 139.0; Found 139.0.

2-amino-5-methylbenzenethiol (1m)⁶: yellow solid; yield: 834 mg, 40% yield (15 mmol of **4m** was used)

¹**H** NMR (500 MHz, Chloroform-*d*) δ 6.99-6.94 (m, 2H), 6.64 (d, *J* = 8.0 Hz, 1H), 4.18 (br, 2H), 2.13 (s, 3H), 1.56 (br, 1H). ¹³**C** NMR (125 MHz, Chloroform-*d*) δ 146.23, 137.06,132.34, 127.51, 118.94, 115.35, 20.08. **GC-MS** (EI) m/z: [M]⁺ Calcd for C₇H₉NS 139.0; Found 139.0.

2-amino-5-ethylbenzenethiol (1n)⁷: yellow solid; yield: 627.3 mg (41%) ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.00 (dd, *J* = 8.1, 2.2 Hz, 1H), 6.94 (d, *J* = 2.1 Hz, 1H), 6.66 (d, *J* = 8.1 Hz), 4.21 (br, 2H), 2.42 (q, *J* = 7.5 Hz, 2H), 1.09 (t, *J* = 7.6 Hz, 3H). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 146.40, 135.86, 134.16, 131.23, 118.73, 115.40, 27.62, 15.71. **GC-MS** (EI) m/z: [M]⁺ Calcd for C₈H₁₁NS 153.1; Found 153.0.

2-amino-5-isopropylbenzenethiol (10)⁷: yellow solid; yield: 417.5 mg (25%) ¹H NMR (500 MHz, Chloroform-*d*) δ 7.03 (dd, J = 8.1, 2.2 Hz, 1H), 7.01 (d, J = 2.2Hz, 1H), 6.67 (d, J = 8.1 Hz, 1H), 4.21 (br, 2H), 2.69 (sept, J = 6.9 Hz, 1H), 1.11 (d, J = 6.9 Hz, 6H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 146.45, 138.90, 134.39, 129.76, 118.52, 115.39, 32.91, 24.02. **GC-MS** (EI) m/z: [M]⁺ Calcd for C₉H₁₃NS 167.1; Found 167.0.

2-amino-5-(tert-butyl)benzenethiol $(1p)^8$: yellow solid; yield: 326.1 mg (18%) ¹H NMR (500 MHz, Chloroform-*d*) δ 7.19 – 7.16 (m, 2H), 6.66 (d, J = 6.7 Hz, 1H), 4.19 (br, 2H), 1.17 (s, 9H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 146.14, 141.33, 133.27, 128.75, 118.08, 115.17, 33.87, 31.36. GC-MS (EI) m/z: [M]⁺Calcd for C₁₀H₁₅NS 181.1; Found 181.1.

2-amino-5-(sec-butyl)benzenethiol (1q): yellow liquid; yield: 398.4 mg (22%) ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.03 (s, 1H), 6.97 (dd, *J* = 8.2, 2.2 Hz, 1H), 6.64 (d, *J* = 8.2 Hz, 1H), 4.18 (br, 2H), 2.38 (sext, *J* = 7.0 Hz, 1H), 1.51 – 1.40 (m, 2H), 1.11 (d, *J* = 6.9 Hz, 3H), 0.76 (t, *J* = 7.4 Hz, 3H). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 146.48, 137.81, 134.91, 130.24, 118.68, 115.37, 40.47, 31.17, 21.75, 12.21. **HRMS (FI)** calcd. for C₁₀H₁₅NS⁺ [(M)]⁺:181.0925, found: 181.0920.

2-amino-4,5-dimethylbenzenethiol (**1r**)⁹: yellow solid; yield: 489.6 mg (32%) **¹H NMR** (500 MHz, Chloroform-*d*) δ 6.93 (s, 1H), 6.54 (s, 1H), 3.97 (br, 2H), 2.17 (s, 3H), 2.05 (s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 146.57, 140.63, 137.50, 126.51, 116.72, 116.50, 19.86, 18.35. **GC-MS** (EI) m/z: [M]⁺ Calcd for C₈H₁₁NS 153.1; Found 153.0.

2-amino-3,5-dimethylbenzenethiol (1s)⁹: yellow solid; yield: 428.4 mg (28%) ¹H NMR (500 MHz, Chloroform-*d*) δ 6.90 (s, 1H), 6.86 (s, 1H), 4.17 (br, 2H), 2.15 (s, 3H), 2.13 (s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 144.51, 134.84, 133.54, 126.74, 122.55, 118.78, 20.04, 18.06. GC-MS (EI) m/z: [M]⁺ Calcd for C₈H₁₁NS 153.1; Found 153.0.

6-amino-2,3-dihydro-1H-indene-5-thiol (1t)⁹: yellow solid; yield: 214.6 mg (13%) ¹H NMR (500 MHz, Chloroform-*d*) δ 7.00 (s, 1H), 6.62 (s, 1H), 4.21 (br, 2H), 2.81 (t, J = 7.4 Hz, 2H), 2.71 (t, J = 7.3 Hz, 2H), 2.01 (quint, J = 7.4 Hz, 2H).¹³C NMR (125 MHz, Chloroform-*d*) δ 148.73, 147.19, 134.19, 132.28, 117.00, 111.19, 33.08, 31.71, 25.66. GC-MS (EI) m/z: [M]⁺ Calcd for C₉H₁₁NS 165.1; Found 165.0.

2-amino-5-methoxybenzenethiol (1u)²: yellow solid; yield: 465 mg, 20% yield (15 mmol of **4u** was used)

¹**H NMR** (500 MHz, Chloroform-*d*) δ 6.80 (dd, J = 8.7, 3.0 Hz, 1H), 6.71 – 6.64 (m, 2H), 4.06 (br, 2H), 3.60 (s, 3H). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 151.82, 142.62, 120.03, 119.36, 119.26, 116.67, 55.76. **GC-MS** (EI) m/z: [M]⁺ Calcd for C₇H₉NOS 155.0; Found 155.0.

2-amino-3-methoxybenzenethiol $(1v)^9$: yellow solid; yield: 697.5 mg (45%) ¹H NMR (500 MHz, Chloroform-*d*) δ 6.85 (dd, J = 7.9, 1.3 Hz, 1H), 6.77 (dd, J = 8.0, 1.3 Hz, 1H), 6.55 (t, J = 7.9 Hz, 1H), 4.49 (br, 2H), 3.85 (s, 3H).¹³C NMR (125 MHz, Chloroform-*d*) δ 146.97, 139.25, 128.11, 118.57, 116.71, 111.63, 55.77. GC-MS (EI) m/z: [M]⁺ Calcd for C₇H₉NOS 155.0; Found 155.0.

2-amino-4-methoxybenzenethiol $(1w)^9$: yellow solid; yield:356.5 mg (45%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.05 (d, J = 8.5 Hz, 1H), 6.24 (d, J = 2.6 Hz, 1H), 6.18 (dd, J = 8.5, 2.6 Hz, 1H), 4.37 (br, 2H), 3.76 (s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 162.74, 150.17, 138.57, 110.82, 104.77, 99.94, 55.23. GC-MS (EI) m/z: [M]⁺ Calcd for C₇H₉NOS 155.0; Found 155.0.

2-amino-5-ethoxybenzenethiol $(1x)^7$: yellow solid; yield: 743.6 mg (44%) ¹H NMR (500 MHz, Chloroform-*d*) δ 6.79 (dd, J = 8.7, 2.9 Hz, 1H), 6.72 (d, J = 2.9Hz, 1H), 6.66 (d, J = 8.7 Hz, 1H), 4.01 (br, 2H), 3.80 (q, J = 7.0 Hz, 2H), 1.31 (t, J =7.0 Hz, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 151.14, 142.58, 120.95, 119.93, 119.33, 116.63, 64.09, 14.88. **GC-MS** (EI) m/z: [M]⁺ Calcd for C₈H₁₁NOS 169.1; Found 169.0.

4-amino-[1,1'-biphenyl]-3-thiol (1y)¹⁰: yellow solid; yield: 241.6 mg (24%) ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.48 – 7.44 (m, 2H), 7.38 – 7.35 (m, 2H), 7.32 – 7.28 (m, 2H), 7.26 – 7.22 (m, 1H), 6.83 (d, *J* = 8.2 Hz, 1H), 4.47 (br, 2H).¹³**C NMR** (125 MHz, Chloroform-*d*) δ 147.94, 140.10, 135.29, 131.55, 130.48, 128.76, 126.56, 126.33, 119.18, 115.77. **GC-MS** (EI) m/z: [M]⁺ Calcd for C₁₂H₁₁NS 201.1; Found 201.0.

3. Screening reaction conditions by using BrCF₂CO₂K instead of PDFA

NH ₂ SH	+ BrCF ₂ CO ₂ k	([O], ba 60 m	ase, Temp. in, NMP	N C-F
1a	5			3a
Entry	Molar Ratio ^a	Temp. (°C)	Solv.	Yield $(\%)^b$
1	1:2.5:2:3	50	NMP	27
2	1:2.5:2:3	70	NMP	15
3	1:2.5:2:3	90	NMP	12
4	1:2.5:2:3	110	NMP	33
5	1:2.5:1:3	110	NMP	30
6	1:2.5:2:3	110	DMF	24
7	1:2.5:2:3	110	THF	18
8	1:2.5:2:3	110	1,4 dioxane	ND
9	1:2.5:2:3	110	DMSO	ND

10	1:2.5:2:3	110	toloune	ND
11	1:2:2:3	110	NMP	30
12	1:3:2:3	110	NMP	39
13	1:3:2:2	110	NMP	27
14	1:3:2:1	110	NMP	39
15	1:3:2:0	110	NMP	27

Reaction conditions: Substrate **1a** (0.2 mmol), BrCF₂CO₂K (**5**), NFSI, and NaH in a solvent (2 mL) under a N₂ atmosphere at the indicated temperature for 60 min. ND = not detected. ^{*a*}Molar ratio of **1a:5**:NFSI:NaH; ^{*b*}The yields were determined by ¹⁹F NMR analysis.

4. General procedure for the synthesis of fluorinated thiazoles

$$R \xrightarrow{II} \qquad + \qquad Ph_{3}P^{+}CF_{2}CO_{2}^{-} \qquad \xrightarrow{NFSI, NaH} \qquad R \xrightarrow{II} \qquad \xrightarrow{N} C-F$$

A sealed tube was charged with substrate **1** (0.5 mmol), $Ph_3P^+CF_2CO_2^-$ (2.5 equiv, 1.25 mmol, 445 mg), NFSI (2 equiv, 1.0 mmol, 315mg), NaH (60% purity, 3 equiv, 1.5 mmol, 60 mg) in NMP (5 mL) under a N₂ atmosphere at 90 °C for 60 min. When the reaction was completed, was quenched by slow addition of 1 mL of H₂O. Then the mixture was extracted with DCM. After removal of the solvent under vacuum, the residue was purified by flash chromatography on silica gel (using PE and EA as eluent) to obtain the final product **3**.

2-fluorobenzo[d]thiazole (**3a**)¹²: colorless liquid; yield: 49.7 mg (65%);¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.86 – 7.83 (m, 1H), 7.74 (d, *J* = 8.1 Hz, 1H), 7.49 (td, *J* = 7.8, 1.3 Hz, 1H), 7.41-7.37 (m, 1H). ¹⁹**F** NMR (375 MHz, Chloroform-*d*) δ -72.31 (s, 1F).¹³**C** NMR (101 MHz, Chloroform-*d*) δ 168.77 (d, *J* = 286.3 Hz), 146.28 (d, *J* = 18.3 Hz), 132.69, 126.91, 125.49 (d, *J* = 3.7 Hz), 122.91 (d, *J* = 2.7 Hz), 121.82. **HRMS**(EI) calcd. for C₇H₄FNS⁺ [(M)]⁺: 153.0048, found: 153.0053.

2,5-difluorobenzo[d]thiazole(3b): white solid (m.p.50-51°C); yield: 42.7 mg (50%);¹**H** NMR (500 MHz, Chloroform-*d*) δ 7.68 (ddd, J = 8.9, 5.1, 1.5 Hz, 1H), 7.55 (dd, J = 9.2, 2.6 Hz, 1H), 7.16 (td, J = 8.9, 2.5 Hz, 1H). ¹⁹**F** NMR (470 MHz, Chloroform-*d*) δ -68.94 (s, 1F), -113.65 – -113.76 (m, 1F).¹³**C** NMR (125 MHz, Chloroform-*d*) δ 170.27 (d, J = 287.6 Hz), 162.06 (d, J = 244.5 Hz), 147.14 (dd, J = 18.7, 12.2 Hz), 127.86 (dd, J = 2.6, 1.2 Hz), 122.74 (d, J = 9.7 Hz), 114.09 (dd, J = 24.7, 3.9 Hz), 109.82 (dd, J = 24.4, 2.8 Hz). **HRMS** (EI) calcd. for C₇H₃F₂NS⁺ [(M)]⁺: 170.9954, found: 170.9949.

2,6-difluorobenzo[d]thiazole(**3c**)¹¹: white solid; yield: 51.2 mg (60%);¹**H** NMR (500 MHz, Chloroform-*d*) δ 7.78 (ddd, J = 8.9, 4.7, 1.4 Hz, 1H), 7.45 – 7.42 (m, 1H)), 7.21 (tdd, J = 9.0, 2.8, 1.4 Hz, 1H). ¹⁹**F** NMR (470 MHz, Chloroform-*d*) δ -71.38 (d, J = 10.1 Hz, 1F), -114.59 – -114.69 (m, 1F). ¹³**C** NMR (125 MHz, Chloroform-*d*) δ 167.83 (dd, J = 286.8, 2.5 Hz), 160.32 (dd, J = 245.8, 4.0 Hz), 142.64 (dd, J = 18.7, 2.2 Hz), 133.40 (dd, J = 11.0, 4.1 Hz), 124.04 (dd, J = 9.2, 3.3 Hz), 115.40 (d, J = 24.3 Hz), 108.41 (d, J = 27.3 Hz). **HRMS** (EI) calcd. for C₇H₃F₂NS⁺ [(M)]⁺: 170.9954, found: 170.9949.

5-chloro-2-fluorobenzo[d]thiazole(3d): white solid (m.p. 47-48 °C); yield: 37.4 mg (40%); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.82 (d, J = 2.1 Hz, 1H), 7.64 (dd, J = 8.5, 1.4 Hz, 1H), 7.36 (dd, J = 8.6, 2.1 Hz, 1H). ¹⁹F NMR (470 MHz, Chloroform-*d*) δ -69.41(s, 1F). ¹³C NMR (125 MHz, Chloroform-*d*) δ 169.75 (d, J = 288.4 Hz), 147.03 (d, J = 18.6 Hz), 133.00, 130.78 (d, J = 4.1 Hz), 126.07 (d, J = 3.9 Hz), 122.97 (d, J = 2.9 Hz), 122.65. HRMS (ESI) calcd. for C₇H₄ClNS⁺ [(M+H)]⁺:187.9732, found: 187.9731.

6-chloro-2-fluorobenzo[d]thiazole(3e)¹¹: white solid; yield: 56.1 mg (60%); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.73 (d, J = 8.7 Hz, 1H), 7.70 (t, J = 1.8 Hz, 1H), 7.43 (dd, J = 8.7, 2.1 Hz, 1H). ¹⁹F NMR (470 MHz, Chloroform-*d*) δ -70.82(s, 1F). ¹³C NMR (125 MHz, Chloroform-*d*) δ 168.65 (d, J = 288.0 Hz), 144.73 (d, J = 18.5 Hz), 133.67 (d, J = 4.1 Hz), 131.25 (d, J = 4.1 Hz), 127.74, 123.79 (d, J = 3.2 Hz), 121.49. HRMS (ESI) calcd. for C₇H₄ClNS⁺ [(M+H)]⁺:187.9732, found: 187.9731.

5-bromo-2-fluorobenzo[d]thiazole(3h): white solid (m.p.78-79 °C); yield: 46.2mg (40%); ¹H NMR (500 MHz, Chloroform-*d*) δ 8.00 (d, J = 2.0 Hz, 1H), 7.61 (d, J = 8.7 Hz, 1H), 7.52 (dd, J = 8.5, 2.0 Hz, 1H). ¹⁹F NMR (470 MHz, Chloroform-*d*) δ -69.56(s, 1F). ¹³C NMR (125 MHz, Chloroform-*d*) δ 169.52 (d, J = 288.6 Hz), 147.29 (d, J = 18.6 Hz), 131.36 (d, J = 4.1 Hz), 128.73 (d, J = 4.0 Hz), 125.94 (d, J = 3.1 Hz), 122.94, 120.48. HRMS (ESI) calcd. for C₇H₄BrNS⁺ [(M+H)]⁺:231.9227, found: 231.9227.

6-bromo-2-fluorobenzo[d]thiazole(3i): white solid (m.p.70-71 °C); yield: 53.1 mg (46%);¹H NMR (500 MHz, Chloroform-*d*) δ 7.83 (s, 1H), 7.65 (d, J = 8.6 Hz, 1H), 7.55 (dd, J = 8.7, 2.0 Hz, 1H). ¹⁹F NMR (470 MHz, Chloroform-*d*) δ -70.85(s, 1F). ¹³C NMR (125 MHz, Chloroform-*d*) δ 168.69 (d, J = 288.2 Hz), 145.10 (d, J = 18.7 Hz), 134.10 (d, J = 4.3 Hz), 130.48, 124.38, 124.17 (d, J = 3.3 Hz), 118.66 (d, J = 3.9 Hz). HRMS (ESI) calcd. for C₇H₄BrNFS⁺ [(M+H)]⁺:231.9227, found: 231.9227.

2,5-difluoro-6-methylbenzo[d]thiazole(3j): colorless liquid; yield: 44.4 mg (48%);¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.50 (d, *J* = 7.0 Hz, 1H), 7.48 (d, *J* = 9.9 Hz, 1H), 2.38 (d, *J* = 2.2 Hz, 3H). ¹⁹**F NMR** (470 MHz, Chloroform-*d*) δ -70.88, -117.05 – -117.15 (m). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 169.42 (d, *J* = 286.9 Hz), 160.70 (d, *J* = 243.6 Hz), 145.09 (dd, *J* = 18.7, 12.4 Hz), 127.63 (dd, *J* = 3.9, 2.7 Hz), 124.09 (dd, *J* = 20.3, 3.9 Hz), 123.19 (d, *J* = 6.0 Hz), 109.13 (dd, *J* = 25.9, 2.7 Hz), 14.99 (d, *J* = 4.0 Hz). **HRMS** (EI) calcd. for C₈H₅NF₂S⁺[(M)]⁺:185.0111, found: 185.0105.

2-fluoro-6-(trifluoromethoxy)benzo[d]thiazole(3k): colorless liquid; yield: 59.2 mg (50%) ;¹H NMR (500 MHz, Chloroform-*d*) δ 7.85 (d, *J* = 8.9 Hz, 1H), 7.63 (s, 1H), 7.36 (dd, *J* = 8.8, 2.4, 1.1 Hz, 1H).¹⁹F NMR (470 MHz, Chloroform-*d*) δ -58.17 (s, 3F), -69.68 (s, 1F). ¹³C NMR (125 MHz, Chloroform-*d*) δ 168.91 (d, *J* = 288.1 Hz), 146.50 (q, *J* = 2.2 Hz), 144.83 (d, *J* = 18.7 Hz), 133.36 (d, *J* = 4.1 Hz), 123.93 (d, *J* = 3.2 Hz), 120.88, 120.46 (q, *J* = 257.8 Hz), 114.67. HRMS (EI) calcd. for C₈H₃F₄NOS⁺ [(M)]⁺:236.9871, found: 236.9866.

2-fluoro-4-methylbenzo[d]thiazole(3l): colorless liquid; yield: 52.6 mg (63%);¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.57 (td, J = 4.6, 0.9 Hz, 1H), 7.32 – 7.27 (m, 2H), 2.64 (s, 3H). ¹⁹**F NMR** (470 MHz, Chloroform-*d*) δ -72.99(s, 1F). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 167.81 (d, J = 285.1 Hz), 145.40 (d, J = 17.1 Hz), 132.87 (d, J = 3.2Hz), 132.49 (d, J = 4.5 Hz), 127.60, 125.42 (d, J = 4.0 Hz), 119.17, 18.03. **HRMS** (EI) calcd. for C₈H₆FNS⁺ [(M)]⁺: 167.0205, found: 167.0199.

2-fluoro-6-methylbenzo[d]thiazole(**3m**)¹²: colorless liquid; yield: 55.9 mg (67%); ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.73 (d, J = 8.3 Hz, 1H), 7.53 (s, 1H), 7.32 – 7.28 (m, 1H), 2.48 (s, 3H).¹⁹**F NMR** (470 MHz, Chloroform-*d*) δ -73.55(s, 1F). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 168.14 (d, J = 285.7 Hz), 144.15 (d, J = 18.3 Hz), 135.72 (d, J = 3.9 Hz), 132.75 (d, J = 4.4 Hz), 128.37, 122.50 (d, J = 3.0 Hz), 121.69, 21.62. **HRMS** (EI) calcd. for C₈H₆FNS⁺ [(M)]⁺: 167.0205, found: 167.0199.

6-ethyl-2-fluorobenzo[d]thiazole(3n): colorless liquid; yield: 58.8 mg (65%); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.73 (d, J = 8.3 Hz, 1H), 7.53 (s, 1H), 7.30 (dd, J = 8.4, 1.8 Hz, 1H), 2.75 (q, J = 7.6 Hz, 2H), 1.28 (t, J = 7.6 Hz, 3H). ¹⁹F NMR (470 MHz, Chloroform-*d*) δ -73.38(s, 1F). ¹³C NMR (125 MHz, Chloroform-*d*) δ 168.11 (d, J = 285.8 Hz), 144.23 (d, J = 18.3 Hz), 142.06 (d, J = 4.0 Hz), 132.72 (d, J = 4.4 Hz), 127.22, 122.53 (d, J = 2.9 Hz), 120.46, 28.95, 15.78. HRMS (ESI) calcd. for C₉H₉FNS ⁺ [(M+H)]⁺: 182.0435, found: 182.0435.

2-fluoro-6-isopropylbenzo[d]thiazole(3o)¹²**:** colorless liquid; yield: 66.3 mg (68%); ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.74 (d, *J* = 8.4 Hz, 1H), 7.56 (s, 1H), 7.34 (dd, *J* = 8.5, 1.8 Hz, 1H), 3.01 (sept, *J* = 6.9 Hz, 1H), 1.30 (d, *J* = 6.9 Hz, 6H). ¹⁹**F NMR** (470 MHz, Chloroform-*d*) δ -73.25(s, 1F). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 168.14 (d, *J* = 285.6 Hz), 146.74 (d, *J* = 4.1 Hz), 144.34 (d, *J* = 18.3 Hz), 132.75 (d, *J* = 4.6 Hz), 125.89, 122.56 (d, *J* = 2.8 Hz), 119.05, 34.30, 24.15. **HRMS** (ESI) calcd. for C₁₀H₁₁FNS⁺ [(M+H)]⁺:196.0591, found: 196.0598.

6-(tert-butyl)-2-fluorobenzo[d]thiazole(3p): colorless liquid; yield: 54.5 mg (52%); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.75 (d, J = 8.6 Hz, 1H), 7.72 (t, J = 1.6 Hz, 1H), 7.52 (dd, J = 8.6, 1.8 Hz, 1H), 1.37 (s, 9H). ¹⁹F NMR (470 MHz, Chloroform-*d*) δ -73.02(s, 1F).¹³C NMR (125 MHz, Chloroform-*d*) δ 168.30 (d, J = 285.9 Hz), 149.06 (d, J = 3.8 Hz), 143.99 (d, J = 18.2 Hz), 132.62 (d, J = 4.3 Hz), 124.84, 122.24 (d, J = 3.0 Hz), 118.05, 35.08, 31.49. **HRMS** (ESI) calcd for C₁₁H₁₃FNS⁺ [(M+H)]⁺:210.0748, found: 210.0750.

6-(sec-butyl)-2-fluorobenzo[d]thiazole(3q): colorless liquid; yield: 41.8 mg (40%); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.74 (d, J = 8.4 Hz, 1H), 7.52 (t, J = 1.7 Hz, 1H), 7.29 (dd, J = 8.4, 1.8 Hz, 1H), 2.70 (sext, J = 7.0 Hz, 1H), 1.67 – 1.58 (m, 2H), 1.27 (d, J = 7.0 Hz, 3H), 0.83 (t, J = 7.4 Hz, 3H). ¹⁹F NMR (470 MHz, Chloroform-*d*) δ -73.37(s, 1F). ¹³C NMR (125 MHz, Chloroform-*d*) δ 168.12 (d, J = 285.7 Hz), 145.55 (d, J = 3.9Hz), 144.39 (d, J = 18.3 Hz), 132.72 (d, J = 4.4 Hz), 126.33, 122.52 (d, J = 2.9 Hz), 119.75,41.85,31.32,22.04,12.20. **HRMS** (ESI) calcd for C₁₁H₁₃FNS⁺ [(M+H)]⁺:210.0748, found: 210.0750.

2-fluoro-5,6-dimethylbenzo[d]thiazole(3r): white solid (m.p. 217-218 °C); yield: 55.2 mg (61%);¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.59 (s, 1H), 7.46 (s, 1H), 2.36 (s, 3H), 2.35 (s, 3H).. ¹⁹**F NMR** (470 MHz, Chloroform-*d*) δ -73.99(s, 1F). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 168.16 (d, J = 285.4 Hz), 144.59 (d, J = 18.1 Hz), 136.12, 134.83 (d, J = 4.1 Hz), 129.78 (d, J = 4.2 Hz), 123.20 (d, J = 2.7 Hz), 121.77, 20.13, 20.06. **HRMS** (EI) calcd. for C₉H₈FNS⁺ [(M)]⁺:181.0361, found: 181.0356

2-fluoro-4,6-dimethylbenzo[d]thiazole(3s): colorless liquid; yield: 36.2 mg (40%); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.32 (s, 1H), 7.08 (s, 1H), 2.57 (s, 3H), 2.41 (s, 3H). ¹⁹F NMR (470 MHz, Chloroform-*d*) δ -74.18(s, 1F). ¹³C NMR (125 MHz, Chloroform-*d*) δ 167.13 (d, J = 284.6 Hz), 143.19 (d, J = 17.0 Hz), 135.47 (d, J = 4.0Hz), 132.48 (d, J = 4.5 Hz), 132.26 (d, J = 3.2 Hz), 129.08, 118.95, 21.48, 17.95. HRMS (EI) calcd. for C₉H₈FNS⁺ [(M)]⁺:181.0361, found: 181.0356.

2-fluoro-6,7-dihydro-5H-indeno[5,6-d]thiazole(3t): colorless liquid; yield: 55.9 mg (58%); ¹H NMR (500 MHz, Chloroform-*d*) δ 7.65 (s, 1H), 7.53 (s, 1H), 3.03-2.97 (m, 4H), 2.14 (quint, J = 7.4 Hz, 2H). ¹⁹F NMR (470 MHz, Chloroform-*d*) δ -73.16(s, 1F). ¹³C NMR (126 MHz, Chloroform-*d*) δ 167.90 (d, J = 285.3 Hz), 144.71 (d, J = 17.5 Hz), 143.99, 142.37 (d, J = 4.0 Hz), 130.20 (d, J = 4.5 Hz), 118.45 (d, J = 2.7 Hz), 116.94, 32.87, 32.82, 26.04. HRMS (EI) calcd. For C₁₀H₈NFS⁺[(M)]⁺:193.0361, found: 193.0356.

2-fluoro-6-methoxybenzo[d]thiazole(3u): white solid (m.p. 64-65 °C); yield: 52.5 mg (58%);¹**H** NMR (500 MHz, Chloroform-*d*) δ 7.69 (d, *J* = 8.9 Hz, 1H), 7.18 (dd, *J* = 2.7, 1.4 Hz, 2H), 7.04 (dd, *J* = 9.0, 2.5 Hz, 1H), 3.84 (s, 3H). ¹⁹**F** NMR (470 MHz, Chloroform-*d*) δ -74.36(s, 1F). ¹³**C** NMR (125 MHz, Chloroform-*d*) δ 166.61 (d, *J* = 285.0 Hz), 157.70 (d, *J* = 3.8 Hz), 140.08 (d, *J* = 18.3 Hz), 133.67 (d, *J* = 4.4 Hz), 123.43 (d, *J* = 2.9 Hz), 115.43, 105.09, 55.79. **HRMS (ESI)** calcd. for C₈H₇FNOS⁺ [(M+H)]⁺:184.0227, found: 184.0227.

2-fluoro-4-methoxybenzo[d]thiazole(3v): white solid (m.p. 45-46 °C); yield: 56.7 mg (62%);¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.34 – 7.28 (m, 2H), 6.92 (dd, *J* = 7.6, 1.5 Hz, 1H), 3.99 (s, 3H). ¹⁹**F NMR** (470 MHz, Chloroform-*d*) δ -73.22(s, 1F). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 167.44 (d, *J* = 286.9 Hz), 153.06 (d, *J* = 3.3 Hz), 135.82 (d, *J* = 17.4 Hz), 133.90 (d, *J* = 4.3 Hz), 126.41 (d, *J* = 3.8 Hz), 113.67, 107.93, 56.06. **HRMS (ESI)** calcd. for C₈H₇FNOS⁺ [(M+H)]⁺:184.0227, found: 184.0227.

2-fluoro-5-methoxybenzo[d]thiazole(3w): white solid (m.p. 50-51 °C); yield:45.7 mg (50%);¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.57 (dd, J = 8.8, 1.4 Hz, 1H), 7.34 (d, J = 2.6 Hz, 1H), 7.00 (dd, J = 8.9, 2.6 Hz, 1H), 3.86 (s, 3H).¹⁹**F NMR** (470 MHz, Chloroform-*d*) δ -73.22(s, 1F). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 169.74 (d, J = 286.2 Hz), 159.37, 147.32 (d, J = 18.2 Hz), 123.95 (d, J = 4.0 Hz), 122.18, 114.89 (d, J = 4.1 Hz), 106.33 (d, J = 2.3 Hz), 55.64. **HRMS (ESI)** calcd. for C₈H₇FNOS⁺ [(M+H)]⁺:184.0227, found: 184.0227.

6-ethoxy-2-fluorobenzo[d]thiazole(3x): white solid (m.p. 54-55 °C); yield: 59.1 mg (60%);¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.70 (d, J = 8.9 Hz, 1H), 7.18 (s, 1H), 7.04 (dd, J = 8.9, 2.6 Hz, 1H), 4.06 (q, J = 7.1 Hz, 2H), 1.44 (t, J = 7.0 Hz, 3H). ¹⁹**F NMR** (470 MHz, Chloroform-*d*) δ -74.42(s, 1F). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 165.54 (d, J = 285.1 Hz), 156.01 (d, J = 3.8 Hz), 138.96 (d, J = 18.4 Hz), 132.60 (d, J = 4.3 Hz), 122.39 (d, J = 3.0 Hz), 114.87, 104.73, 63.13, 13.75. **HRMS (EI)** calcd. for C₉H₈FNOS⁺ [(M)]⁺:197.0311, found: 197.0305.

2-fluoro-6-phenylbenzo[d]thiazole(3y): white solid (m.p. 105-106 °C); yield: 63.0 mg (55%);¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.91 (t, *J* = 1.5 Hz, 1H), 7.89 (dd, *J* = 8.4, 0.6 Hz, 1H), 7.70 (dd, *J* = 8.5, 1.7 Hz, 1H), 7.62-7.59 (m, 2H), 7.50 - 7.46 (m, 2H), 7.42 - 7.38 (m, 1H). ¹⁹**F NMR** (470 MHz, Chloroform-*d*) δ -71.47(s, 1F). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 168.70 (d, *J* = 286.9 Hz), 145.49 (d, *J* = 18.3 Hz), 140.27, 139.13 (d, *J* = 3.8 Hz), 133.37 (d, *J* = 4.2 Hz), 129.01, 127.73, 127.31, 126.43, 123.02 (d, *J* = 3.0 Hz), 120.17. **HRMS (ESI)** calcd. for C₁₃H₉FNS⁺ [(M+H)]⁺:230.0435, found: 230.0437.

5. Mechanistic Investigations

A sealed tube was charged with substrate **1a** (0.2 mmol), $Ph_3P^+CF_2CO_2^-$ (2.5 equiv, 0.5 mmol, 178 mg), NaH (60% purity, 3 equiv, 1.5 mmol, 24 mg) and NMP (2 mL) under a N₂ atmosphere. The resulting mixture was stirred at 90 °C for 60 min. PhCF₃ (0.2 mmol) was added to the reaction system as an internal standard for the calculation of the ¹⁹F NMR yield of **4a** (45%). The solution was diluted with CH₂Cl₂ and washed with water to remove the reaction solvent. The yield of **5a** was determined by ¹H NMR analysis of the residue (15%). Flash column chromatography ((using PE/EA = 50/1 ~ 30/1 as eluent) gave pure **4a** and **5a**. The purification of **4a** and **5a** is extremely difficult because they have very similar polarity. We tried our best and finally were successful to separate them from each other, but NMR yields rather than isolated yields would be suitable to convey the reaction results due to the loss during isolation.

SCF₂H

2-((difluoromethyl)thio)aniline (4a)¹³: colorless liquid; 45% ¹⁹F NMR yield; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.43 (d, J = 7.7 Hz, 1H), 7.25-7.21 (m, 1H), 6.78 – 6.71 (m, 2H), 6.72 (t, J = 57.2 Hz, 1H), 4.41 (br, 2H). ¹⁹F NMR (470 MHz, Chloroform-*d*) δ -91.01 (d, J = 57.3 Hz, 2F). **GC-MS** (EI) m/z: [M]⁺ Calcd for C₇H₇F₂NS 175.0; Found 175.1.

Benzo[d]thiazole (5a)¹⁴: colorless liquid; yield: 15% ¹H NMR yield; ¹H NMR (500 MHz, Chloroform-*d*) δ 9.00 (s, 1H), 8.15 (d, *J* = 8.2 Hz, 1H), 7.97 (d, *J* = 7.9 Hz, 1H), 7.54-7.51 (m, 1H), 7.45 (t, *J* = 7.6 Hz, 1H). **GC-MS** (EI) m/z: [M]⁺ Calcd for C₇H₅NS 135.0; Found 135.0.

5.2 The observation of D by HRMS

A sealed tube was charged with substrate **1a** (0.2 mmol), $Ph_3P^+CF_2CO_2^-$ (2.5 equiv, 0.5 mmol, 178 mg), NaH (60% purity, 3 equiv, 1.5 mmol, 24 mg) and NMP (2 mL) under a N₂ atmosphere. The resulting mixture was stirred at 90 °C for 20 min. The reaction mixture was analyzed by high resolution mass spectrometer (EI) mode. Intermediate **D** was detected. **HRMS (EI)** calcd. for $C_7H_6FNS^+$ [M]⁺: 155.0199, found: 155.0204.

6. References

- 1 R. V. Patel, P. K. Patel, P. Kumari, D. P. Rajani and K. H. Chikhalia, Eur. J. Med. Chem., 2012, 53, 41-51.
- 2 C. Yin, T. Yang, Y. Pan, J. Wen and X. Zhang, Org. Lett., 2020, 22, 920–923.
- 3 W.-C. Chang, A. T. Hu, J.-P. Duan, D. K. Rayabarapu and C.-H. Cheng, J. Organomet. Chem., 2004, 689, 4882–4888.
- 4 M. Kumar, K. Sharma, A. K. Fogla, K. Sharma and M. Rathore, Res. Chem. Intermed., 2013, 39, 2555–2564.
- 5 M. L. Calabrò, R. Caputo, R. Ettari, G. Puia, F. Ravazzini, M. Zappalà and N. Micale, *Med. Chem. Res.*, 2013, 22, 6089–6095.
- 6 X. Wu, H. Shen, Y. Zhang, C. Wang, Q. Li, C. Zhang, X. Zhuang, C. Li, Y. Shi, Y. Xing, Q. Xiang, J. Xu, D. Wu, J. Liu and Y. Xu, J. Med. Chem., 2021, 64, 8775–8797.
- 7 H. Yanagisawa, K. Fujimoto, Y. Shimoji, T. Kanazaki, K. Mizutari, H. Nishino, H. Shiga and H. Koike, *Chem. Pharm. Bull. (Tokyo)*, 1992, **40**, 2055–2061.
- 8 G. M. Fischer, M. Isomäki-Krondahl, I. Göttker-Schnetmann, E. Daltrozzo and A. Zumbusch, *Chem. Eur. J.*, 2009, **15**, 4857–4864.
- 9 M. Kajino, K. Mizuno, H. Tawada, Y. Shibouta, K. Nishikawa and K. Meguro, *Chem. Pharm. Bull. (Tokyo)*, 1991, 39, 2888–2895.
- 10 D. Xue, Q. Ge, X. Zhi, S. Song and L. Shao, Tetrahedron, 2022, 121, 132927.
- 11 M. Calafell, J. Elguero and A. Fruchier, Org. Magn. Reson., 1975, 7, 84-85.
- 12 M. Arisawa, S. Tanii, T. Tazawa and M. Yamaguchi, Chem. Commun., 2016, 52, 11390-11393.
- 13 N. B. Heine and A. Studer, Org. Lett., 2017, 19, 4150-4153.
- 14 J. K. Laha, M. K. Hunjan, T. Maity and A. Hazra, Adv. Synth. Catal., 2023, 365, 1238-1246.

Fig. 2¹⁹F NMR of 1b in CDCl₃

Fig.4 ¹H NMR of 1c in CDCl₃

Fig. 6¹³C NMR of 1c in CDCl₃

Fig. 8¹³C NMR of 1d in CDCl₃

Fig. 10¹³C NMR of 1e in CDCl₃

Fig. 12¹³C NMR of 1h in CDCl₃

Fig. 14¹³C NMR of 1i in CDCl₃

Fig.16¹⁹ NMR of 1j in CDCl₃

Fig. 18¹H NMR of 1k in CDCl₃

Fig. 20¹³C NMR of 1k in CDCl₃

Fig. 22 ¹³C NMR of 11 in CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Fig. 24 ¹³C NMR of 1m in CDCl₃

Fig. 26¹³C NMR of 1n in CDCl₃

Fig. 28¹³C NMR of 10 in CDCl₃

Fig. 30 ¹³C NMR of 1p in CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Fig. 32 ¹³C NMR of 1q in CDCl₃

Fig. 34 ¹³C NMR of 1r in CDCl₃

Fig. 36¹³C NMR of 1s in CDCl₃

Fig. 38¹³C NMR of 1t in CDCl₃

Fig. 40¹³C NMR of 1u in CDCl₃

Fig. 42 ¹³C NMR of 1v in CDCl₃

Fig. 44 ¹³C NMR of 1w in CDCl₃

Fig. 46¹³C NMR of 1x in CDCl₃

Fig. 48¹³C NMR of 1y in CDCl₃

Fig. 50¹⁹F NMR of 3a in CDCl₃

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 r1 (ppm)

Fig. 52 ¹H NMR of 3b in CDCl₃

Fig. 54 13 C NMR of 3b in CDCl₃

Fig. 56¹⁹F NMR of 3c in CDCl₃

Fig. 58 ¹H NMR of 3d in CDCl₃

Fig. 60¹³C NMR of 3d in CDCl₃

Fig. 62¹⁹F NMR of 3e in CDCl₃

Fig. 64 ¹H NMR of 3h in CDCl₃

Fig. 66¹³C NMR of 3h in CDCl₃

Fig. 68¹⁹F NMR of 3i in CDCl₃

Fig. 70¹H NMR of 3j in CDCl₃

Fig. 72¹³C NMR of 3j in CDCl₃

Fig. 74¹⁹F NMR of 3k in CDCl₃

Fig. 76¹H NMR of 3l in CDCl₃

Fig. 78¹³C NMR of 31 in CDCl₃

Fig. 80 ¹⁹F NMR of 3m in CDCl₃

Fig. 82 ¹H NMR of 3n in CDCl₃

Fig. 84 ¹³C NMR of 3n in CDCl₃

Fig. 86¹⁹F NMR of 30 in CDCl₃

Fig. 88 ¹H NMR of 3p in CDCl₃

Fig. 90¹³C NMR of 3p in CDCl₃

Fig. 92 ¹⁹F NMR of 3q in CDCl₃

Fig. 94 ¹H NMR of 3r in CDCl₃

Fig. 96¹³C NMR of 3r in CDCl₃

Fig. 97 ¹H NMR of 3s in CDCl₃

Fig. 98 ¹⁹F NMR of 3s in CDCl₃

Fig. 100 ¹H NMR of 3t in CDCl₃

Fig. 104 ¹⁹F NMR of 3u in CDCl₃

Fig. 106 ¹H NMR of 3v in CDCl₃

Fig. 108 ¹³C NMR of 3v in CDCl₃

Fig. 120 ¹⁹F NMR of 3w in CDCl₃

Fig. 122 ¹H NMR of 3x in CDCl₃

Fig. 126 19 F NMR of 3y in CDCl₃

Fig. 130 ¹H NMR of 5a in CDCl₃