Electronic Supplementary Information

Organo-catalyzed C2,3–H Aminochalcogenation of Indoles with Secondary (Aliphatic) Amines

Xiaoxiang Zhang,[‡] Chenrui Liu,[‡] Yingying Zhang, Fang Shen, Wanxing Wei, Zhuan Zhang and Taoyuan Liang*

Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.

[‡]These authors contributed equally to this work.

*E-mail: taoyuanliang@gxu.edu.cn

TABLE OF CONTENTS

1.	General information.	S3
2.	Substrates preparation.	S4-S5
3.	Optimization of reaction conditions.	S6-S8
4.	Typical procedure for the synthesis of 3aa and 4aa.	S8
5.	Control experiments.	S8-S11
6.	Synthetic utility.	S11
7.	Single crystal X-ray diffraction of 50.	S12-S17
8.	References.	S17
9.	Analytical data of the obtained compounds.	S17-S45
10.	NMR spectra of the obtained compounds.	S46-S114

MATERIALS AND METHODS

1. General information.

All air- and moisture-insensitive reactions were carried out under an ambient atmosphere and monitored by thin-layer chromatography (TLC). Concentration under reduced pressure was performed by rotary evaporation at 50–60 °C at an appropriate pressure. Purified compounds were further dried under vacuum $(10^{-6}-10^{-3} \text{ bar})$. Yields refer to purified and spectroscopically pure compounds, unless otherwise stated.

Solvents

All solvents were purchased from Greagent (Shanghai Titansci incorporated company) and used without further purification and used as received.

Chromatography

Thin layer chromatography (TLC) (Qingdao Jiyida silica gel reagent factory GF254) was performed using EMD TLC plates pre-coated with 250 μ m thickness silica gel 60 F254 plates and visualized by fluorescence quenching under UV light and I₂ stain. Column chromatography was performed on silica gel (200-300 mesh).

Spectroscopy and Instruments

NMR spectra were recorded on Bruker-600 spectrometer operating at (600 MHz, 565 MHz and 151 MHz) for 1H, 19F and 13C acquisitions, respectively. Chemical shifts are reported in ppm with the solvent residual peak as the internal standard. For ¹H-NMR: CDCl₃, 7.26; For ¹³C-NMR: CDCl₃, 77.16; ¹⁹F-NMR spectra were referenced using a unified chemical shift scale based on the 1H resonance of tetramethylsilane (1% v/v solution in the respective solvent). Data is reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, sext = sextet, sept = septet, m = multiplet, bs = broad singlet; coupling constants in Hz; integration.

Instrument

All reactions were heated by metal sand bath (WATTCAS, LAB-500, https://www.wattcas.com).

EXPERIMENTAL DATA

2. Substrates preparation.

(1) General Procedure for the preparation of N-substituted indole derivatives (1a-1n)¹:

Procedure for 4-chloro-1-methyl-1*H***-indole (1k):** To a suspended solution of NaH (0.55 g, 65% dispersion in mineral oil, 15.0 mmol) in DMF (5.0 mL), 4-chloro-1*H*-indole (1.51 g, 10.0 mmol) in DMF (5.0 mL) was added dropwise at 0 °C. The heterogeneous mixture was stirred at 0 °C for 15 min and 1 h at room temperature. The mixture was then cooled to 0 °C, treated with iodomethane (0.83 mL, 13.0 mmol), and allowed to warm to room temperature. After 30 min, the reaction mixture was cooled to 0 °C, quenched with saturated NH₄Cl (20.0 mL), and extracted with ether (3 × 20.0 mL). The organic layers were combined, washed with brine, dried over anhydrous Na₂SO₄ and concentrated in vacuo. The resulting oil was purified by column chromatography on silica gel (petroleum ether) afforded **1k** as a yellow oil. Similarly, the other *N*-substituted indole derivatives were prepared from their corresponding indoles and halides.

NMR Spectroscopy (1k):

¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.26–7.22 (m, 1H), 7.22–7.17 (m, 2H), 7.09 (d, *J* = 3.2 Hz, 1H), 6.65 (d, *J* = 3.2 Hz, 1H), 3.77 (s, 3H), known compound.

(2) General Procedure for the preparation of diselenoether derivatives (2a-2n)²:

Procedure for 1,2-diphenyldiselane (2a): To a stirred solution of Se metal (2.0 mmol) and iodobenzene (1.0 mmol) in dry DMSO (2.0 mL) was added CuO nanoparticles (10.0 mol%) followed by KOH (2.0 equiv) under argon atmosphere at 90 °C. The progress of the reaction was monitored by TLC. After the reaction

was complete, the reaction mixture was allowed to cool to room temperature and it was then quenched with water and extracted with EtOAc. The combined organic layers were dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure, and the residue was purified by flash chromatography on a silica gel column chromatography (Pet Ether) to give the pure diselenides.

NMR Spectroscopy (2a):

¹H-NMR (600 MHz, Chloroform-*d*) δ 7.81–7.52 (m, 4H), 7.36–7.24 (m, 6H), known compound. **Scheme S1**. **Scope of indoles**.

Scheme S2. Scope of diselenides and disulfides.

3. Optimization of reaction conditions.

Table S1. Screening the oxidant of reaction.^a

8 () 1a	$\frac{H}{2} + H + H$	(Ph-Se I ₂ (100 mol%), Ox 1,4-dioxane, 3a	2) 2a xidant (1.0 equiv) 12 h, 80 °C	Ph Se N N N
Entry	[I]	Oxidant	Solvent	Yield (%) ^b
1	I ₂	02	1,4-dioxane	45
2	I_2	DDQ	1,4-dioxane	21
3	I_2	$K_2S_2O_8$	1,4-dioxane	12
4	I_2	DTBP	1,4-dioxane	72
5	I_2	TBHP	1,4-dioxane	92
6	I ₂	CuI + O ₂	1,4-dioxane	95
7	I_2	$CuCl + O_2$	1,4-dioxane	89
8	I_2	$CuBr + O_2$	1,4-dioxane	92
10	I_2	$CuCl_2 + O_2$	1,4-dioxane	83
11	I_2	$CuBr_2 + O_2$	1,4-dioxane	94
12	I_2	$Cu(OTf)_2 + O_2$	1,4-dioxane	70

^{*a*}Reaction conditions, unless specified otherwise: **1a** (0.40 mmol), **2a** (0.20 mmol) and **3a** (0.80 mmol), **oxidant** (1.0 eq.) or **copper salts** (20 mol%), I₂ (100 mol%), 1,4-dioxane (3.0 mL) were stirred at 80 °C for 12 h. ^{*b*}Isolated yield.

Table S2. Screening the solvent of reaction.^a

8 1a	$\frac{H}{N} = \frac{3}{2}$	(Ph-S <u>I₂ (100 mol%)</u> <u>Solvent</u> , 12 3a	se <mark>}2a</mark> , Cul (20 mol%) 2 h, O ₂ , 80 °C ►	Ph Se N N N
Entry	[1]	Oxidant	Solvent	Yield (%) ^b
1	I ₂	$CuI + O_2$	MeCN	89
2	I ₂	$CuI + O_2$	DCE	82
3	I ₂	$CuI + O_2$	DMF	trace
4	I ₂	$CuI + O_2$	DMSO	60
5	I_2	$CuI + O_2$	Toluene	77

^{*a*}Reaction conditions, unless specified otherwise: ^{*a*}Reaction conditions, unless specified otherwise: **1a** (0.40 mmol), **2a** (0.20 mmol) and **3a** (0.80 mmol), CuI (20 mol%), I₂ (100 mol%), **solvent** (3.0 mL) were stirred at 80 °C under O₂ for 12 h. ^{*b*}Isolated yield.

Table S3. Screening the iodized salts of reaction.^a

^aReaction conditions, unless specified otherwise: ^aReaction conditions, unless specified otherwise: **1a** (0.40 mmol), **2a** (0.20 mmol) and **3a** (0.80 mmol), CuI (20 mol%), **iodized salts** (200 mol%), 1,4-dioxane (3.0 mL) were stirred at 80 °C under O₂ for 12 h. ^bIsolated yield.

Table S4. Screening the amount of I₂ of reaction.^a

^aReaction conditions, unless specified otherwise: ^aReaction conditions, unless specified otherwise: **1a** (0.40 mmol), **2a** (0.20 mmol) and **3a** (0.80 mmol), CuI (20 mol%), I₂ (**X** mol%), 1,4-dioxane (3.0 mL) were stirred at 80 °C under O₂ for 12 h. ^bIsolated yield.

Table S5. Screening the reaction temperature of reaction.^a

2	I_2	100	$CuI + O_2$	1,4-dioxane	92

^{*a*}Reaction conditions, unless specified otherwise: ^{*a*}Reaction conditions, unless specified otherwise: **1a** (0.40 mmol), **2a** (0.20 mmol) and **3a** (0.80 mmol), CuI (20 mol%), I₂ (100 mol%), I₄-dioxane (3.0 mL) were stirred at **T** °C under O₂ for 12 h. ^{*b*}Isolated yield.

Table S6. Screening the reaction time of reaction.^a

^{*a*}Reaction conditions, unless specified otherwise: ^{*a*}Reaction conditions, unless specified otherwise: **1a** (0.40 mmol), **2a** (0.20 mmol) and **3a** (0.80 mmol), CuI (20 mol%), I₂ (100 mol%), 1,4-dioxane (3.0 mL) were stirred at 80 °C under O₂ for **t** h. ^{*b*}Isolated yield.

4. Typical procedure for the synthesis of 4

(1) Typical procedure for the synthesis of 4:

The mixture of **1a** (52.4 mg, 0.40 mmol), **2a** (62.6 mg, 0.20 mmol) and **3a** (54.5 mg, 0.80 mmol), CuI (20 mol%), I₂ (100 mol%), 1,4-dioxane (3 mL) were stirred at 80 °C under O₂ for 12 h. The resulting mixture was concentrated by removing the solvent under vacuum, and the residue was purified by preparative TLC on silica gel by using petroleum ether/ethyl acetate (10:1) as the eluent to give **4** as a white solid (134.2 mg, 95% yield).

5. Control experiments.

(1) Under the standard condition, the free radical trapping reagent 2,2,6,6-tetramethyl-1-piperidinyloxy (**TEMPO**, 3.0 equivalents) was introducing to this reaction. Then, the crude reaction mixture was analyzed by TLC, and only yields trace amounts of product **4**.

(2) The mixture of **1a** (52.4 mg, 0.40 mmol), **2a** (62.6 mg, 0.20 mmol) and **3a** (54.5 mg, 0.80 mmol), CuI (20 mol%), I₂ (100 mol%), 1,4-dioxane (3 mL) were stirred at 80 °C under O₂ for 6 h. The resulting mixture was concentrated by removing the solvent under vacuum, and the residue was purified by preparative TLC on silica gel by using petroleum ether/ethyl acetate (10:1) as the eluent to give **1a-1** (9.5 mg, 12% yield), **1a-2** (67.7 mg, 59% yield) and **4** (19.8 mg, 14% yield), respectively.

(3)Under the standard condition, the reaction of **1a-1** (78.8 mg, 0.40 mmol) and 1,2-diphenyldiselane **2a** (62.6 mg, 0.20 mmol) were carried. Then, the reaction mixture was purified by preparative TLC on silica eluting with petroleum ether/ethyl acetate (10:1) to give product **4** as white solid (35.3 mg, 25% yield).

(4) Under the standard condition, the reaction of 1a-2 (114.8 mg, 0.40 mmol) and pyrazo 3a (54.4 mg, 0.80 mmol) were carried and 2a (26.2 mg, 20 mol%) was introducing to this reaction. Then, the reaction mixture was purified by preparative TLC on silica eluting with petroleum ether/ethyl acetate (10:1) to give product 4 as white solid (104.5 mg, 74% yield).

(5) Under the standard condition of the absence of I_2 , the reaction of **1a-2** (114.8 mg, 0.40 mmol) and pyrazo **3a** (54.4 mg, 0.80 mmol) were carried and **2a** (26.2 mg, 20 mol%) was introducing to this reaction. Then, the crude reaction mixture was analyzed by TLC, the unobserved product **4**.

(6) Under the standard condition of the absence of I_2 ., the reaction of **1a-2** (114.8 mg, 0.40 mmol) and pyrazo **3a** (54.4 mg, 0.80 mmol) were carried and **PhSeBr** (18.8 mg, 20 mol%) was introducing to this reaction. Then, the reaction mixture was purified by preparative TLC on silica eluting with petroleum ether/ethyl acetate (10:1) to give product **4** as white solid (66.4 mg, 47% yield).

(7) Under the standard condition of the absence of I_2 and CuI, the reaction of **1a-2** (114.8 mg, 0.40 mmol) and pyrazo **3a** (54.4 mg, 0.80 mmol) were carried and **PhSeBr** (18.8 mg, 20 mol%) was introducing to this reaction. Then, the reaction mixture was purified by preparative TLC on silica eluting with petroleum ether/ethyl acetate (10:1) to give product **4** as white solid (19.8 mg, 14% yield).

(8) Under the standard condition of the absence of I_2 ., the reaction of **1a-2** (114.8 mg, 0.40 mmol) and pyrazo **3a** (54.4 mg, 0.80 mmol) were carried, **PhSeBr** (18.8 mg, 20 mol%) and 2,2,6,6-tetramethyl-1-piperidinyloxy (**TEMPO**, 3.0 equivalents) were introducing to this reaction. Then, the reaction mixture was purified by preparative TLC on silica eluting with petroleum ether/ethyl acetate (10:1) to give product **4** as white solid (62.1 mg, 44% yield).

(1) The mixture of 1i (1.57 g, 10.0 mmol), 2p (1.23 g, 5.0 mmol) and 3f (1.38 g, 20.0 mmol), TBHP (6.0 equiv.), I_2 (150 mol%), 1,4-dioxane (75 mL) were stirred at 80 °C under air for 16 h. The resulting mixture was concentrated by removing the solvent under vacuum, and the residue was purified by using petroleum ether/ethyl acetate (10:1) as the eluent to give 69 as a brown solid (3.01 g, 87% yield).

7. Single crystal X-ray diffraction

(1) Single crystal X-ray diffraction of 50.

White block-like single crystals of **50** were grown by layering a dichlormethane solution with *n*-hexane at ambient temperature. X-Ray diffraction data of one these crystals were collected on a R-AXIS SPIDER diffractometer. The measurements were performed with Mo-K α radiation ($\lambda = 0.71073$ Å). Data were collected at 293(2) K, using the ω - and φ - scans to a maximum θ value of 25.242°. The data were refined by full-matrix least-squares techniques on F² with SHELXTL-2014. And the structures were solved by direct methods SHELXS-2014. All the non-hydrogen atoms were refined anisotropically. The hydrogen atoms were included at geometrically idealized positions. And an ORTEP representation of the structure is shown below.

Figure S1. ORTEP drawing of 50 with the numbering scheme.

50				
$C_{24}H_{29}N_3O_2S$				
423.56				
293(2) K				
Monoclinic				
$P2_1/n$				
a = 8.7303(9) Å	$\alpha = 90^{\circ}$.			
b = 18.2774(19) Å	$\beta = 100.470(10)^{\circ}.$			
c = 14.2998(14) Å	$\gamma = 90^{\circ}.$			
2243.8(4) Å ³				
	50 $C_{24}H_{29}N_{3}O_{2}S$ 423.56 293(2) K Monoclinic $P2_{1}/n$ a = 8.7303(9) Å b = 18.2774(19) Å c = 14.2998(14) Å 2243.8(4) Å ³			

Table S7. Crystal data and structure refinement for 50

Z	4
F(000)	904.0
Crystal size	0.20x 0.15 x 0.10 mm ³
2^{Θ} range for data collection	6.768 to 58.48
Index ranges	$-10 \le h \le 11, -24 \le k \le 24, -19 \le l \le 17$
Reflections collected	10860
Independent reflections	5155 [R(int) = 0.0465, R(sigma) = 0.0877]
Data / restraints / parameters	5155/0/275
Goodness-of-fit on F ²	1.055
Final R indices $[I \ge 2^{\sigma}(I)]$	R1 = 0.0768, wR2 = 0.1385
Final R indices (all data)	R1 = 0.1409, wR2 = 0.1671
Largest diff. peak and hole	0.26/-0.26 e.Å ⁻³

Table S8. Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for **50**. U(eq) is defined as 1/3 of of the trace of the orthogonalised U^{ij} tensor.

Atom	x	У	Z	U(eq)
S1	10564.4(9)	2915.9(5)	6163.4(5)	48.1(3)
02	2091(2)	3880.3(11)	4136.8(13)	48.1(5)
N1	8185(3)	3874.7(12)	7930.3(15)	38.3(6)
N2	6867(3)	3447.9(12)	6428.7(16)	36.4(6)
01	2626(3)	2699.0(13)	3850.7(17)	72.1(8)
N3	4187(3)	3348.4(13)	4993.6(17)	44.5(6)
C2	8253(3)	3529.4(14)	7075.6(18)	32.3(6)
С9	9657(3)	3874.8(14)	8482.2(18)	36.0(7)
C3	9775(3)	3319.3(15)	7074.3(19)	35.0(7)
C4	10670(3)	3533.8(15)	7970.4(19)	36.2(7)
C19	10768(3)	1985.2(17)	6510(2)	39.7(7)
C14	2924(3)	3258.8(17)	4296(2)	41.3(7)
C5	12242(4)	3455.3(17)	8385(2)	48.4(8)
C18	663(3)	3922.1(17)	3404(2)	44.8(8)
C11	4403(4)	3977.5(16)	5637(2)	48.9(8)
C12	6718(3)	2856.2(16)	5737(2)	47.3(8)
C8	10166(4)	4142.0(16)	9401(2)	49.1(8)
C24	10211(4)	1698.1(17)	7278(2)	48.8(8)
C10	6116(3)	4113.7(16)	5984(2)	45.5(8)
C20	11522(4)	1525(2)	5970(2)	56.4(9)
C7	11721(4)	4054.4(18)	9789(2)	57.7(9)
C6	12741(4)	3719.7(19)	9289(2)	58.7(9)

C13	5028(4)	2696.3(16)	5381(2)	54.3(9)
C1	6778(4)	4012.0(18)	8303(2)	54.6(9)
C21	11696(4)	796(2)	6186(3)	74.3(12)
C22	11140(4)	509(2)	6941(3)	72.0(11)
C23	10402(4)	957.6(19)	7489(3)	63.4(10)
C16	-479(4)	3344(2)	3520(3)	86.9(14)
C17	24(5)	4666(2)	3594(4)	107.8(17)
C15	1108(5)	3913(3)	2442(2)	116(2)

Table S9. Anisotropic Displacement Parameters (Å²×10³) for **50**. The Anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

Atom	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
S1	43.7(5)	58.7(6)	43.1(4)	4.7(4)	11.0(4)	6.0(4)
02	39.4(12)	42.9(13)	52.6(12)	1.6(10)	-16.3(10)	-1.5(10)
N1	35.8(14)	34.8(14)	42.5(13)	-3.6(11)	1.8(11)	6.4(11)
N2	32.1(13)	27.6(13)	44.1(13)	-2.1(11)	-7.1(11)	3.9(10)
01	60.7(16)	56.2(16)	84.5(17)	-30.4(14)	-26.7(13)	7.6(13)
N3	35.6(14)	34.6(14)	54.9(15)	-5.3(12)	-14.2(12)	2.2(11)
C2	32.1(16)	24.9(15)	36.8(14)	4.1(12)	-2.0(12)	2.4(12)
С9	42.1(18)	24.4(15)	37.2(15)	2.9(13)	-4.3(13)	-3.9(13)
C3	31.8(16)	31.9(16)	38.7(15)	2.4(13)	-0.5(13)	3.6(13)
C4	37.1(17)	27.7(15)	40.8(15)	4.5(13)	-0.7(13)	0.9(13)
C19	21.5(14)	51.1(19)	43.9(15)	-10.7(15)	-0.8(12)	1.2(14)
C14	32.6(17)	42.0(19)	46.0(17)	-1.3(15)	-1.5(14)	0.7(14)
C5	36.4(17)	46(2)	57.0(19)	6.4(16)	-6.2(15)	0.9(15)
C18	33.8(17)	52(2)	42.6(16)	5.8(15)	-8.9(13)	-2.0(15)
C11	42.7(19)	34.2(18)	61.3(19)	-6.7(15)	-13.2(15)	5.7(14)
C12	40.9(18)	36.7(18)	58.0(18)	-9.1(15)	-8.0(15)	9.8(15)
C8	63(2)	34.1(18)	46.1(17)	-4.7(15)	-0.3(16)	-3.7(16)
C24	37.9(18)	44(2)	65(2)	-8.9(16)	12.6(16)	0.9(15)
C10	40.2(18)	30.0(16)	57.9(18)	-0.7(14)	-13.8(15)	2.4(14)
C20	35.9(19)	73(3)	58(2)	-25.2(19)	4.0(16)	1.3(18)
C7	69(3)	49(2)	43.9(18)	5.0(16)	-17.9(18)	-13.4(19)
C6	44(2)	56(2)	65(2)	12.4(19)	-21.5(18)	-8.3(17)
C13	47(2)	32.7(18)	72(2)	-8.9(16)	-17.6(17)	3.6(15)
C1	45(2)	60(2)	58.4(19)	-1.9(17)	8.9(16)	12.0(17)
C21	43(2)	64(3)	112(3)	-44(3)	3(2)	2(2)
C22	42(2)	39(2)	129(3)	-12(2)	0(2)	-1.0(17)
C23	48(2)	46(2)	96(3)	2(2)	14(2)	-6.9(18)

C16	39(2)	97(3)	114(3)	42(3)	-14(2)	-18(2)
C17	75(3)	71(3)	150(4)	-18(3)	-53(3)	19(2)
C15	67(3)	226(6)	52(2)	29(3)	-1(2)	19(3)

Table S10. Bond Lengths for 50.

Atom Atom		Length/Å	Atom Atom		Length/Å
S1	C3	1.744(3)	C3	C4	1.429(4)
S1	C19	1.772(3)	C4	C5	1.399(4)
02	C14	1.346(3)	C19	C24	1.384(4)
02	C18	1.477(3)	C19	C20	1.387(4)
N1	C2	1.386(3)	C5	C6	1.375(4)
N1	C9	1.380(3)	C18	C16	1.482(4)
N1	C1	1.447(3)	C18	C17	1.513(5)
N2	C2	1.391(3)	C18	C15	1.497(4)
N2	C12	1.455(3)	C11	C10	1.508(4)
N2	C10	1.471(3)	C12	C13	1.499(4)
01	C14	1.208(3)	C8	C7	1.379(4)
N3	C14	1.356(3)	C24	C23	1.390(4)
N3	C11	1.463(3)	C20	C21	1.369(5)
N3	C13	1.456(4)	C7	C6	1.382(5)
C2	C3	1.384(4)	C21	C22	1.366(5)
С9	C4	1.394(4)	C22	C23	1.373(5)
C9	C8	1.396(4)			

Table S11. Bond Angles for 50.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C3	S1	C19	103.31(13)	C24	C19	C20	118.9(3)
C14	02	C18	121.6(2)	C20	C19	S1	117.4(2)
C2	N1	C1	125.3(2)	02	C14	N3	111.4(3)
C9	N1	C2	108.7(2)	01	C14	02	124.6(3)
C9	N1	C1	123.6(2)	01	C14	N3	123.9(3)
C2	N2	C12	119.4(2)	C6	C5	C4	118.7(3)
C2	N2	C10	117.7(2)	02	C18	C16	112.4(3)
C12	N2	C10	110.1(2)	02	C18	C17	102.2(2)
C14	N3	C11	123.5(2)	02	C18	C15	109.0(3)
C14	N3	C13	117.9(2)	C16	C18	C17	110.1(3)
C13	N3	C11	113.9(2)	C16	C18	C15	112.8(3)
N1	C2	N2	117.7(2)	C15	C18	C17	109.9(4)
C3	C2	N1	108.8(2)	N3	C11	C10	110.1(2)
C3	C2	N2	133.5(2)	N2	C12	C13	109.7(2)

N1	С9	C4	108.3(2)	C7	C8	С9	117.4(3)
N1	C9	C8	130.0(3)	C19	C24	C23	119.7(3)
C4	C9	C8	121.8(3)	N2	C10	C11	110.1(2)
C2	C3	S1	128.9(2)	C21	C20	C19	120.6(3)
C2	C3	C4	106.9(2)	C8	C7	C6	121.5(3)
C4	C3	S1	124.0(2)	C5	C6	C7	121.2(3)
С9	C4	C3	107.3(2)	N3	C13	C12	111.5(2)
C9	C4	C5	119.4(3)	C22	C21	C20	120.8(4)
C5	C4	C3	133.3(3)	C21	C22	C23	119.5(4)
C24	C19	S1	123.7(2)	C22	C23	C24	120.6(3)

Table S12. Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for **50**.

Atom	x	У	z	U(eq)
Н5	12935	3229	8055	58
H11A	3896	3885	6175	59
H11B	3930	4408	5306	59
H12A	7233	2422	6030	57
H12B	7214	2995	5209	57
H8	9484	4370	9738	59
H24	9710	1999	7653	59
H10A	6603	4257	5454	55
H10B	6249	4510	6443	55
H20	11912	1712	5456	68
H7	12092	4224	10401	69
H6	13784	3672	9569	70
H13A	4934	2323	4892	65
H13B	4565	2508	5900	65
H1A	6648	4530	8373	82
H1B	6853	3779	8911	82
H1C	5899	3819	7871	82
H21	12198	493	5815	89
H22	11260	13	7082	86
H23	10028	764	8005	76
H16A	-81	2876	3373	130
H16B	-1445	3438	3097	130
H16C	-649	3342	4164	130
H17A	-263	4668	4211	162
H17B	-876	4771	3119	162
H17C	805	5032	3572	162
H15A	1925	4262	2426	174

H15B	219	4040	1969	174
H15C	1464	3433	2313	174

9. Reference.

 S. K. Banjare, T. Nanda, B. V. Pati, G. K. D. Dutta, J. Adhikari and P. C. Ravikumar, Breaking the Trend: Insight into Unforeseen Reactivity of Alkynes in Cobalt-Catalyzed Weak Chelation-Assisted Regioselective C(4)–H Functionalization of 3-Pivaloyl Indole, *ACS Catal.*, 2021, **11**, 11579–11587.

2. D. Singh, A. M. Deobald, L. R. S. Camargo, G. Tabarelli, O. E. D. Rodrigues, A. L. Braga, An Efficient One-Pot Synthesis of Symmetrical Diselenides or Ditellurides from Halides with CuO Nanopowder/Se0 or Te0/Base, *Org. Lett.*, 2010, **12**, 3288–3291.

10. Analytic data of the obtained compounds.

(1) 1-methyl-3-(phenylselanyl)-2-(1*H*-pyrazol-1-yl)-1*H*-indole (4)

White solid (134.1 mg, 95%), m.p.: 97-98 °C; ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.92 (d, *J* = 1.7 Hz, 1H), 7.81 (d, *J* = 7.9 Hz, 1H), 7.74 (d, *J* = 2.4 Hz, 1H), 7.48 (d, *J* = 8.1 Hz, 1H), 7.45 (t, *J* = 7.0 Hz, 1H), 7.33 (t, *J* = 6.8 Hz, 1H), 7.31–7.28 (m, 2H), 7.22–7.17 (m, 3H), 6.52–6.49 (m, 1H), 3.78 (s, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 142.30, 139.21, 135.74, 133.67, 133.41, 129.25, 128.98, 126.01, 123.86, 121.57, 121.20, 110.10, 106.75, 92.49, 30.64. **HRMS (ESI):** Calcd. for C₁₈H₁₅N₃Se [M+H]⁺: 354.0504; found: 354.0494.

(2) 1-ethyl-3-(phenylselanyl)-2-(1*H*-pyrazol-1-yl)-1*H*-indole (5)

Yellow liquid (130.7 mg, 89%), ¹H-NMR (600 MHz, Chloroform-*d*) δ 7.88 (d, *J* = 1.9 Hz, 1H), 7.77 (d, *J* = 7.9 Hz, 1H), 7.69 (d, *J* = 2.5 Hz, 1H), 7.50 (d, *J* = 8.3 Hz, 1H), 7.44–7.40 (m, 1H), 7.29 (t, *J* = 7.5 Hz, 1H), 7.26 (d, *J* = 6.9 Hz, 2H), 7.20– .14 (m, 3H), 6.49 (t, *J* = 2.2 Hz, 1H), 4.23 (q, *J* = 7.2 Hz, 2H), 1.40 (t, *J* = 7.2 Hz, 3H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 142.19, 138.60, 134.64, 133.63, 133.38, 129.19, 129.13, 128.95, 125.93, 123.74, 121.38, 121.33, 110.18, 106.66, 92.83, 39.18, 15.32. HRMS (ESI): Calcd. for C₁₉H₁₇N₃Se [M+H]⁺: 368.0660; found: 368.0652.

(3) 1-phenyl-3-(phenylselanyl)-2-(1*H*-pyrazol-1-yl)-1*H*-indole (6)

Yellow liquid (74.7 mg, 45%), ¹H-NMR (600 MHz, Chloroform-*d*) δ 7.84 (d, J = 7.4 Hz, 1H), 7.66 (d, J = 1.9 Hz, 1H), 7.62 (d, J = 2.5 Hz, 1H), 7.46 (t, J = 7.4 Hz, 2H), 7.44–7.37 (m, 5H), 7.36–7.33 (m, 3H), 7.22 (dt, J = 13.2, 6.9 Hz, 3H), 6.36 (t, J = 2.2 Hz, 1H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 141.75, 138.67, 136.28, 136.16, 133.42, 132.64, 129.74, 129.44, 129.26, 128.87, 128.16, 126.84, 126.27, 124.50, 122.20, 121.38, 111.23, 106.82, 96.22. HRMS (ESI): Calcd. for C₂₃H₁₇N₃Se [M+H]⁺: 416.0660; found: 416.0651.

(4) 1-benzyl-3-(phenylselanyl)-2-(1*H*-pyrazol-1-yl)-1*H*-indole (7)

Red solid (99.5 mg, 58%), m.p.: 149-150 °C; ¹H-NMR (600 MHz, Chloroform-*d*) δ 7.87 (d, *J* = 1.8 Hz, 1H), 7.79 (d, *J* = 7.5 Hz, 1H), 7.56 (d, *J* = 2.5 Hz, 1H), 7.43 (d, *J* = 8.3 Hz, 1H), 7.37 (t, *J* = 7.7 Hz, 1H), 7.31–7.26 (m, 6H), 7.21–7.16 (m, 3H), 7.06 (d, *J* = 5.9 Hz, 2H), 6.42 (t, *J* = 2.2 Hz, 1H), 5.47 (s, 2H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 142.32, 139.01, 136.92, 135.42, 133.77, 129.25, 129.14, 129.02, 128.74, 127.64, 126.75, 126.03, 124.09, 121.69, 121.33, 110.85, 106.80, 93.71, 47.64. HRMS (ESI): Calcd. for C₂₄H₁₉N₃Se [M+H]⁺:430.0808; found: 430.0817.

(5) 3-(phenylselanyl)-2-(1*H*-pyrazol-1-yl)-1*H*-indole (9)

Red liquid (105.8 mg, 78%), ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 10.96 (s, 1H), 8.83 (d, J = 2.6 Hz, 1H), 7.86 (d, J = 1.7 Hz, 1H), 7.76 (d, J = 7.6 Hz, 1H), 7.38 (d, J = 8.0 Hz, 1H), 7.32–7.28 (m, 3H), 7.27–7.24 (m, 1H), 7.23–7.18 (m, 3H), 6.54–6.52 (m, 1H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 141.18, 138.01, 133.44, 132.96, 131.17, 130.36, 129.45, 128.31, 126.05, 123.26, 121.47, 120.41, 111.32, 108.05, 83.12. **HRMS (ESI):** Calcd. for C₁₇H₁₃N₃Se [M+H]⁺:440.0347; found: 440.0340.

(6) 1,4-dimethyl-3-(phenylselanyl)-2-(1*H*-pyrazol-1-yl)-1*H*-indole (10)

Brown solid (142.4 mg, 97% yield); m.p.: 150-151 °C; ¹H-NMR (600 MHz, Chloroform-*d*) δ 7.88 (d, J = 1.9 Hz, 1H), 7.63 (d, J = 2.5 Hz, 1H), 7.34–7.29 (m, 2H), 7.23 (dd, J = 8.4, 1.4 Hz, 2H), 7.21–7.18 (m, 2H), 7.16–7.13 (m, 1H), 7.03 (d, J = 6.9 Hz, 1H), 6.48–6.46 (m, 1H), 3.70 (s, 3H), 2.80 (s, 3H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 142.17, 139.80, 135.96, 135.69, 133.83, 132.89, 129.28, 128.11, 126.23, 125.62, 123.53, 123.30, 107.98, 106.54, 91.99, 30.52, 19.20. HRMS (ESI): Calcd. for C₁₉H₁₇N₃Se [M+H]⁺: 368.0652; found: 368.0660.

(7) 1,6-dimethyl-3-(phenylselanyl)-2-(1*H*-pyrazol-1-yl)-1*H*-indole (11)

Brown solid (107.2 mg, 73% yield), m.p.: 136-137 °C; ¹H-NMR (600 MHz, Chloroform-*d*) δ 7.88 (d, J = 1.9 Hz, 1H), 7.69 (d, J = 1.8 Hz, 1H), 7.64 (d, J = 8.1 Hz, 1H), 7.27–7.25 (m, 3H), 7.20–7.16 (m, 2H), 7.16–7.13 (m, 2H), 6.49–6.47 (m, 1H), 3.73 (s, 3H), 2.59 (s, 3H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 142.18, 138.62, 136.04, 133.86, 133.66, 133.52, 129.20, 128.88, 126.76, 125.90, 123.31, 120.83, 110.00, 106.62, 92.34, 30.48, 22.11. HRMS (ESI): Calcd. for C₁₉H₁₇N₃Se [M+H]⁺: 368.0652; found: 368.0660.

(8) 1-(phenylselanyl)-2-(1*H*-pyrazol-1-yl)-5,6-dihydro-4*H*-pyrrolo[3,2,1-*ij*]quinoline (12)

Yellow liquid (91.0 mg, 60% yield); ¹H-NMR (600 MHz, Chloroform-*d*) δ 7.85 (d, *J* = 1.8 Hz, 1H), 7.80 (d, *J* = 2.5 Hz, 1H), 7.53 (d, *J* = 8.0 Hz, 1H), 7.28–7.25 (m, 2H), 7.20–7.14 (m, 4H), 7.11 (d, *J* = 7.2 Hz, 1H), 6.46 (t, *J* = 2.2 Hz, 1H), 4.27–4.25 (m, 2H), 3.08 (t, *J* = 6.1 Hz, 2H), 2.30 (p, *J* = 6.0 Hz, 2H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 141.98, 137.74, 133.67, 133.14, 132.65, 129.19, 128.78, 127.50, 125.85, 122.46, 121.45, 120.56, 118.22, 106.58, 90.05, 43.27, 24.70, 22.72. HRMS (ESI): Calcd. for C₂₀H₁₇N₃Se [M+H]⁺: 380.0660; found: 380.0650.

(9) 5-methoxy-1-methyl-3-(phenylselanyl)-2-(1*H*-pyrazol-1-yl)-1*H*-indole (13)

Yellow solid (104.2 mg, 68% yield), m.p.: 106-107 °C; ¹H-NMR (600 MHz, Chloroform-*d*) δ 7.86 (d, J = 1.3 Hz, 1H), 7.67 (d, J = 2.5 Hz, 1H), 7.34 (d, J = 8.9 Hz, 1H), 7.25–7.22 (m, 2H), 7.20–7.16 (m, 3H), 7.14 (t, J = 7.1 Hz, 1H), 7.05 (d, J = 6.4 Hz, 1H), 6.48–6.45 (m, 1H), 3.86 (s, 3H), 3.72 (s, 3H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 155.54, 142.14, 139.27, 133.52, 133.45, 130.63, 129.62, 129.18, 128.74, 125.87, 114.29, 111.03, 106.61, 102.24, 91.92, 55.85, 30.67. HRMS (ESI): Calcd. for C₁₉H₁₇N₃OSe [M+H]⁺: 384.0610; found: 384.0602.

(10) 6-fluoro-1-methyl-3-(phenylselanyl)-2-(1H-pyrazol-1-yl)-1H-indole (14)

Yellow solid (130.6 mg, 88% yield), m.p.: 111-112 °C; ¹H-NMR (600 MHz, Chloroform-*d*) δ 7.87 (d, J = 1.8 Hz, 1H), 7.69 (d, J = 2.5 Hz, 1H), 7.65 (dd, J = 8.7, 5.3 Hz, 1H), 7.22 (d, J = 6.5 Hz, 2H), 7.19–7.11 (m, 4H), 7.04–7.00 (m, 1H), 6.48 (t, J = 2.2 Hz, 1H), 3.69 (s, 3H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 160.88 (d, J = 120.8 Hz), 142.34, 139.35 (d, J = 3.0 Hz), 135.63 (d, J = 12.1 Hz), 133.56, 132.96, 129.23, 129.03, 126.11, 125.19, 122.34 (d, J = 10.6 Hz), 110.31 (d, J = 24.2 Hz), 106.76, 96.59 (d, J = 25.7 Hz), 92.84, 30.74. ¹⁹F-NMR (565 MHz, Chloroform-*d*) δ -116.96. HRMS (ESI): Calcd. for C₁₈H₁₄FN₃Se [M+H]⁺: 372.0410; found: 372.0400.

(11) 4-chloro-1-methyl-3-(phenylselanyl)-2-(1*H*-pyrazol-1-yl)-1*H*-indole (15)

Yellow solid (137.8 mg, 89% yield), m.p.: 163-164 °C; ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.86 (s, 1H), 7.65 (d, *J* = 2.5 Hz, 1H), 7.36 (d, *J* = 8.1 Hz, 1H), 7.30–7.27 (m, 1H), 7.24 (td, *J* = 7.7, 1.3 Hz, 3H), 7.18 (t, *J* = 7.4 Hz, 2H), 7.14 (t, *J* = 7.2 Hz, 1H), 6.47 (t, *J* = 2.2 Hz, 1H), 3.70 (s, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 142.39, 140.57, 136.86, 135.04, 133.93, 129.09, 128.95, 127.88, 125.85, 124.45, 123.83, 122.95, 108.92, 106.73, 92.12, 30.82. **HRMS (ESI):** Calcd. for C₁₈H₁₄ClN₃Se [M+H]⁺: 388.0114; found: 388.0104.

(12) 5-bromo-1-methyl-3-(phenylselanyl)-2-(1H-pyrazol-1-yl)-1H-indole (16)

Brown solid (151.4 mg, 88% yield), m.p.: 109-110 °C; ¹H-NMR (600 MHz, Chloroform-*d*) δ 7.87 (d, *J* = 2.0 Hz, 1H), 7.86 (d, *J* = 1.3 Hz, 1H), 7.70 (d, *J* = 2.5 Hz, 1H), 7.46 (d, *J* = 6.8 Hz, 1H), 7.30 (d, *J* = 8.6 Hz, 1H), 7.21–7.14 (m, 5H), 6.48 (d, *J* = 1.8 Hz, 1H), 3.73 (s, 3H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 142.44, 139.97, 134.34, 133.55, 132.88, 130.71, 129.30, 128.95, 126.78, 126.18, 123.60, 114.90, 111.65, 106.89, 91.90, 30.85. **HRMS (ESI):** Calcd. for C₁₈H₁₄BrN₃Se [M+H]⁺: 431.9609; found: 431.9597.

(13) methyl 1-methyl-3-(phenylselanyl)-2-(1*H*-pyrazol-1-yl)-1*H*-indole-7-carboxylate (17)

White solid (103.6 mg, 63% yield), m.p.: 131-132 °C; ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.91 (d, J = 7.3 Hz, 1H), 7.88 (d, J = 1.8 Hz, 1H), 7.81 (d, J = 6.9 Hz, 1H), 7.67 (d, J = 2.5 Hz, 1H), 7.26 (t, J = 7.7 Hz, 1H), 7.22–7.18 (m, 2H), 7.18–7.12 (m, 3H), 6.49 (t, J = 2.1 Hz, 1H), 4.02 (s, 3H), 3.67 (s, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 167.66, 142.49, 141.05, 133.68, 133.35, 132.71, 130.78, 129.21, 129.11, 127.01, 126.13, 125.57, 120.58, 117.11, 106.95, 94.30, 52.39, 34.32. **HRMS** (ESI): Calcd. for C₂₀H₁₇N₃O₂Se [M+H]⁺: 412.0559; found: 412.0550.

(14) 1-methyl-3-(phenylselanyl)-2-(1*H*-pyrazol-1-yl)-1*H*-pyrrolo[2,3-b]pyridine (18)

Red solid (106.2 mg, 75% yield), m.p.: 118-119 °C; ¹H-NMR (600 MHz, Chloroform-*d*) δ 8.47 (d, *J* = 4.8 Hz, 1H), 7.97 (d, *J* = 7.8 Hz, 1H), 7.88 (s, 1H), 7.73 (d, *J* = 2.5 Hz, 1H), 7.20 (td, *J* = 4.6, 2.4 Hz, 3H), 7.16–7.14 (m, 3H), 6.49 (t, *J* = 2.2 Hz, 1H), 3.89 (s, 3H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 146.67, 144.89, 142.49, 139.60, 133.39, 132.72, 129.28, 129.22, 129.09, 126.24, 122.18, 117.78, 106.95, 90.51, 29.35. HRMS (ESI): Calcd. for C₁₇H₁₄N₄Se [M+H]⁺: 355.0456; found: 355.0448.

(15) 1-methyl-2-(1*H*-pyrazol-1-yl)-3-(*p*-tolylselanyl)-1*H*-indole (19)

Red solid (85.1 mg, 58% yield), m.p.: 149-150 °C; ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.89 (d, *J* = 1.9 Hz, 1H), 7.77 (d, *J* = 7.5 Hz, 1H), 7.72 (d, *J* = 2.4 Hz, 1H), 7.45 (d, *J* = 8.2 Hz, 1H), 7.41 (t, *J* = 7.2 Hz, 1H), 7.29 (t, *J* = 7.1 Hz, 1H), 7.17 (d, *J* = 8.1 Hz, 2H), 7.00 (d, *J* = 7.9 Hz, 2H), 6.50 (t, *J* = 2.2 Hz, 1H), 3.76 (s, 3H), 2.29 (s, 3H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 142.21, 138.99, 135.85, 135.67, 133.70, 130.00, 129.41, 129.35, 128.98, 123.74, 121.44, 121.20, 109.99, 106.65, 92.97, 30.55, 21.01. **HRMS (ESI):** Calcd. for C₁₉H₁₇N₃Se [M+H]⁺: 368.0660; found: 368.0652.

(16) 3-((4-methoxyphenyl)selanyl)-1-methyl-2-(1H-pyrazol-1-yl)-1H-indole (20)

Brown solid (64.3 mg, 42% yield), m.p.: 124-125 °C; ¹H-NMR (600 MHz, Chloroform-*d*) δ 7.90 (d, J = 1.9 Hz, 1H), 7.80 (d, J = 7.9 Hz, 1H), 7.74 (d, J = 2.5 Hz, 1H), 7.43 (d, J = 8.3 Hz, 1H), 7.40 (t, J = 6.9 Hz, 1H), 7.29 (t, J = 6.5 Hz, 1H), 7.24 (d, J = 8.7 Hz, 2H), 6.74 (d, J = 8.8 Hz, 2H), 6.52 (t, J = 2.2 Hz, 1H), 3.74 (s, 3H), 3.72 (s, 3H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 158.60, 142.17, 138.67, 135.56, 133.75, 131.74, 128.87, 123.68, 122.91, 121.36, 121.14, 114.90, 109.95, 106.62, 94.05, 55.26, 30.44. HRMS (ESI): Calcd. for C₁₉H₁₇N₃OSe [M+H]⁺: 384.0610; found: 384.0602.

(17) 3-((4-fluorophenyl)selanyl)-1-methyl-2-(1*H*-pyrazol-1-yl)-1*H*-indole (21)

Yellow liquid (106.8 mg, 72% yield), ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.88 (d, J = 1.8 Hz, 1H), 7.74 (d, J = 7.9 Hz, 1H), 7.70 (d, J = 2.5 Hz, 1H), 7.44 (d, J = 8.1 Hz, 1H), 7.41 (t, J = 7.2 Hz, 1H), 7.29 (t, J = 7.1 Hz, 1H), 7.22 (dd, J = 8.8, 5.3 Hz, 2H), 6.87 (t, J = 8.8 Hz, 2H), 6.51 (t, J = 2.2 Hz, 1H), 3.73 (s, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 161.74 (d, J = 244.6 Hz), 142.27, 138.93, 135.60, 133.61, 131.33 (d, J = 7.6 Hz), 128.68, 127.37 (d, J = 4.5 Hz), 123.86, 121.54, 120.98, 116.24 (d, J = 21.1 Hz), 110.06, 106.74, 93.24, 30.49. ¹⁹**F-NMR** (565 MHz, Chloroform-*d*) δ -116.46. **HRMS (ESI):** Calcd. for C₁₈H₁₄FN₃Se [M+H]⁺: 372.0410; found: 372.0401.

(18) 3-((4-chlorophenyl)selanyl)-1-methyl-2-(1*H*-pyrazol-1-yl)-1*H*-indole (22)

Red solid (126.9 mg, 82% yield), m.p.: 159-160 °C; ¹H-NMR (600 MHz, Chloroform-*d*) δ 7.88 (d, *J* = 1.3 Hz, 1H), 7.71 (d, *J* = 7.9 Hz, 1H), 7.68 (d, *J* = 2.5 Hz, 1H), 7.45 (d, *J* = 8.2 Hz, 1H), 7.41 (t, *J* = 7.2 Hz, 1H), 7.29 (d, *J* = 6.9 Hz, 1H), 7.15 (d, *J* = 8.6 Hz, 2H), 7.12 (d, *J* = 8.6 Hz, 2H), 6.51–6.48 (m, 1H), 3.75 (s, 3H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 142.33, 139.12, 135.65, 133.55, 132.00, 131.48, 130.31, 129.23, 128.64, 123.93, 121.64, 120.95, 110.11, 106.80, 92.35, 30.56. HRMS (ESI): Calcd. for C₁₈H₁₄ClN₃Se [M+H]⁺: 388.0114; found: 388.0104.

(19) 3-((4-bromophenyl)selanyl)-1-methyl-2-(1H-pyrazol-1-yl)-1H-indole (23)

Red solid (132.7 mg, 77% yield), m.p.: 167-168 °C; ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.88 (d, *J* = 1.9 Hz, 1H), 7.71 (d, *J* = 7.9 Hz, 1H), 7.69 (d, *J* = 2.5 Hz, 1H), 7.45 (d, *J* = 8.2 Hz, 1H), 7.42 (t, *J* = 7.2 Hz, 1H), 7.31–7.28 (m, 1H), 7.26 (d, *J* = 8.5 Hz, 2H), 7.09 (d, *J* = 8.5 Hz, 2H), 6.50 (t, *J* = 2.2 Hz, 1H), 3.75 (s, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 142.35, 139.17, 135.67, 133.56, 132.29, 132.14, 130.56, 128.64, 123.96, 121.67, 120.96, 119.92, 110.14, 106.83, 92.19, 30.59. **HRMS (ESI):** Calcd. for C₁₈H₁₄BrN₃Se [M+H]⁺: 431.9609; found: 431.9599.

(20) 4-((1-methyl-2-(1*H*-pyrazol-1-yl)-1*H*-indol-3-yl)selanyl)benzonitrile (24)

Gray solid (77.1 mg, 51% yield), m.p.: 140-141 °C; ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.85 (d, *J* = 1.8 Hz, 1H), 7.66 (d, *J* = 2.5 Hz, 1H), 7.63 (d, *J* = 7.9 Hz, 1H), 7.49–7.47 (m, 1H), 7.43 (t, *J* = 7.6 Hz, 1H), 7.38 (d, *J* = 8.5 Hz, 2H), 7.30–7.27 (m, 1H), 7.25 (d, *J* = 8.5 Hz, 2H), 6.49 (t, *J* = 2.2 Hz, 1H), 3.76 (s, 3H). ¹³C-**NMR** (151 MHz, Chloroform-*d*) δ 142.49, 141.43, 139.50, 135.74, 133.37, 132.35, 128.47, 128.35, 124.21, 121.93, 120.72, 118.91, 110.32, 109.09, 107.00, 90.75, 30.66. **HRMS (ESI):** Calcd. for C₁₉H₁₄N₄Se [M+H]⁺: 379.0456; found: 379.0446.

(21) 1-methyl-2-(1*H*-pyrazol-1-yl)-3-((4-(trifluoromethyl)phenyl)selanyl)-1*H*-indole (25)

Red solid (94.3 mg, 56% yield), m.p.: 106-107 °C; ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.88 (d, J = 2.1 Hz, 1H), 7.70–7.68 (m, 2H), 7.48 (d, J = 8.5 Hz, 1H), 7.44 (t, J = 7.3 Hz, 1H), 7.40 (d, J = 8.2 Hz, 2H), 7.32–7.29 (m, 3H), 6.50 (t, J = 2.1 Hz, 1H), 3.78 (s, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 142.42, 139.43, 138.90, 135.75, 133.45, 128.58, 128.38, 125.87 (d, J = 4.5 Hz), 125.83, 125.80, 124.09, 121.80, 120.88, 110.22, 106.90, 91.31, 30.62. ¹⁹**F-NMR** (565 MHz, Chloroform-*d*) δ -62.40. **HRMS (ESI):** Calcd. for C₁₉H₁₄F₃N₃Se [M+H]⁺: 422.0378; found: 422.0369.

(22) 3-((2-bromophenyl)selanyl)-1-methyl-2-(1H-pyrazol-1-yl)-1H-indole (26)

Red solid (146.2 mg, 85% yield), m.p.: 142-144 °C; ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.89–7.84 (m, 1H), 7.72–7.68 (m, 2H), 7.51–7.46 (m, 2H), 7.44 (t, *J* = 7.1 Hz, 1H), 7.29 (t, *J* = 7.3 Hz, 1H), 7.02–6.97 (m, 2H), 6.81 (d, *J* = 9.5 Hz, 1H), 6.49–6.46 (m, 1H), 3.80 (s, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 142.42, 139.77, 136.29, 135.95, 133.50, 132.68, 128.75, 128.72, 128.05, 126.88, 124.07, 121.92, 121.80, 121.11, 110.25, 106.99, 91.85, 30.82. **HRMS (ESI):** Calcd. for C₁₈H₁₄BrN₃Se [M+H]⁺: 431.9609; found: 431.9597.

(23) 1-methyl-2-(1*H*-pyrazol-1-yl)-3-(*m*-tolylselanyl)-1*H*-indole (27)

Yellow liquid (55.8 mg, 38% yield), ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.87 (d, *J* = 1.9 Hz, 1H), 7.75 (d, *J* = 7.9 Hz, 1H), 7.71 (d, *J* = 2.4 Hz, 1H), 7.45 (d, *J* = 8.3 Hz, 1H), 7.42–7.39 (m, 1H), 7.28 (t, *J* = 7.4 Hz, 1H), 7.10 (s, 1H), 7.05 (t, *J* = 7.6 Hz, 1H), 6.99 (d, *J* = 7.9 Hz, 1H), 6.96–6.94 (m, 1H), 6.48 (t, *J* = 2.2 Hz, 1H), 3.76 (s, 3H), 2.26 (s, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 142.20, 139.07, 138.90, 135.67, 133.64, 133.06, 129.54, 129.00, 126.88, 126.00, 123.72, 121.43, 121.20, 109.97, 106.63, 92.44, 30.59, 21.35. **HRMS (ESI):** Calcd. for C₁₉H₁₇N₃Se [M+H]⁺: 368.0660; found: 368.0652.

(24) 3-((3-fluorophenyl)selanyl)-1-methyl-2-(1H-pyrazol-1-yl)-1H-indole (28)

Yellow liquid (120.2 mg, 81% yield), ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.88 (d, J = 1.9 Hz, 1H), 7.72 (d, J = 7.9 Hz, 1H), 7.68 (d, J = 2.5 Hz, 1H), 7.46 (d, J = 8.2 Hz, 1H), 7.42 (t, J = 7.1 Hz, 1H), 7.31–7.28 (m, 1H), 7.13 (td, J = 8.0, 5.8 Hz, 1H), 7.01 (d, J = 8.1 Hz, 1H), 6.92 (d, J = 9.0 Hz, 1H), 6.85–6.80 (m, 1H), 6.50–6.48 (m, 1H), 3.77 (s, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 163.09 (d, J = 249.2 Hz), 142.34, 139.28, 135.70, 135.54 (d, J = 6.0 Hz), 133.50, 130.32 (d, J = 9.1 Hz), 128.72, 124.30 (d, J = 3.0 Hz), 123.96, 121.69, 120.95, 115.65 (d, J = 22.7 Hz), 112.92 (d, J = 21.1 Hz), 110.15, 106.81, 91.82, 30.61. ¹⁹**F-NMR** (565 MHz, Chloroform-d) δ -111.97. **HRMS (ESI):** Calcd. for C₁₈H₁₄FN₃Se [M+H]⁺: 372.0410; found: 372.0400.

(25) 3-((1-methyl-2-(1*H*-pyrazol-1-yl)-1*H*-indol-3-yl)selanyl)benzonitrile (29)

Yellow liquid (84.7 mg, 56% yield), ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.87 (d, J = 1.3 Hz, 1H), 7.71– 7.63 (m, 2H), 7.47 (d, J = 8.3 Hz, 1H), 7.46–7.41 (m, 3H), 7.39 (d, J = 7.7 Hz, 1H), 7.29 (t, J = 7.7 Hz, 1H), 7.22 (t, J = 7.8 Hz, 1H), 6.54–6.47 (m, 1H), 3.76 (s, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 142.44, 139.39, 135.70, 135.32, 133.39, 133.07, 131.71, 129.55, 129.51, 128.37, 124.18, 121.90, 120.67, 118.39, 113.22, 110.36, 106.99, 91.26, 30.63. **HRMS (ESI):** Calcd. for C₁₉H₁₄N₄Se [M+H]⁺: 379.0456; found: 379.0447.

(26) 1-methyl-2-(1H-pyrazol-1-yl)-3-(pyridin-2-ylselanyl)-1H-indole (30)

Yellow solid (46.7 mg, 33% yield), m.p.: 125-126 °C; ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 8.39 (d, *J* = 5.9 Hz, 1H), 7.84 (d, *J* = 1.8 Hz, 1H), 7.81 (d, *J* = 2.4 Hz, 1H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.46 (d, *J* = 8.3 Hz, 1H), 7.41 (t, *J* = 7.4 Hz, 1H), 7.32–7.29 (m, 1H), 7.28 (d, *J* = 7.5 Hz, 1H), 6.97 (ddd, *J* = 7.4, 4.9, 1.1 Hz, 1H), 6.91 (d, *J* = 8.1 Hz, 1H), 6.46 (t, *J* = 2.2 Hz, 1H), 3.77 (s, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 158.84, 149.79, 142.33, 139.38, 136.74, 135.81, 133.67, 128.64, 123.90, 122.95, 121.61, 121.06, 120.21, 110.11, 106.81, 91.72, 30.65. **HRMS (ESI):** Calcd. for C₁₇H₁₄N₄Se [M+H]⁺: 355.0456; found: 355.0448.

(27) 1-methyl-2-(3-methyl-1*H*-pyrazol-1-yl)-3-(phenylselanyl)-1*H*-indole (31)

Yellow liquid (130.7 mg, 89% yield), ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.71 (d, *J* = 8.3 Hz, 1H), 7.56 (d, *J* = 2.4 Hz, 1H), 7.43 (d, *J* = 8.2 Hz, 1H), 7.39 (t, *J* = 7.6 Hz, 1H), 7.27 (d, *J* = 7.4 Hz, 1H), 7.24–7.21 (m, 2H), 7.18–7.12 (m, 3H), 6.25 (d, *J* = 2.4 Hz, 1H), 3.78 (s, 3H), 2.42 (s, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 151.64, 139.39, 135.69, 134.32, 133.53, 129.13, 128.95, 128.80, 125.81, 123.62, 121.37, 121.05, 109.93, 106.68, 92.02, 30.60, 13.80. **HRMS (ESI):** Calcd. for C₁₉H₁₇N₃Se [M+H]⁺: 368.0660; found: 368.0652.

(28) 2-(3,5-dimethyl-1*H*-pyrazol-1-yl)-1-methyl-3-(phenylselanyl)-1*H*-indole (32)

Yellow liquid (73.2 mg, 48% yield), ¹H-NMR (600 MHz, Chloroform-*d*) δ 7.70–7.65 (m, 1H), 7.40 (ddd, J = 13.9, 8.6, 7.4 Hz, 2H), 7.28–7.22 (m, 3H), 7.12 (t, J = 7.3 Hz, 3H), 6.04 (s, 1H), 3.56 (s, 3H), 2.33 (s, S28

3H), 2.05 (s, 3H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 150.78, 143.45, 137.47, 135.75, 132.56, 129.44, 128.93, 128.68, 125.84, 123.72, 121.20, 109.96, 106.04, 95.63, 29.85, 13.77, 11.35. HRMS (ESI): Calcd. for C₂₀H₁₉N₃Se [M+H]⁺: 382.0817; found: 382.0808.

(29) 4-(1-methyl-3-(phenylselanyl)-1*H*-indol-2-yl)morpholine (33)

Red liquid (92.3 mg, 62% yield), ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.60 (d, J = 7.9 Hz, 1H), 7.32 (d, J = 8.2 Hz, 1H), 7.28 (t, J = 6.9 Hz, 1H), 7.23–7.19 (m, 2H), 7.16 (dddd, J = 10.3, 7.6, 6.5, 1.3 Hz, 3H), 7.11 (t, J = 7.1 Hz, 1H), 3.84 (t, J = 4.6 Hz, 4H), 3.75 (s, 3H), 3.34 (s, 4H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 150.40, 135.11, 134.94, 130.36, 128.99, 127.98, 125.28, 122.06, 120.60, 119.55, 109.38, 87.09, 67.63, 51.77, 28.94. **HRMS (ESI):** Calcd. for C₁₉H₂₀N₂OSe [M+H]⁺: 373.0814; found: 373.0804.

(30) 2-(4-methoxypiperidin-1-yl)-1-methyl-3-(phenylselanyl)-1*H*-indole (34)

Red liquid (88.0 mg, 55% yield), ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.51 (d, *J* = 7.9 Hz, 1H), 7.27 (d, *J* = 9.0 Hz, 1H), 7.24 – 7.21 (m, 1H), 7.19 – 7.15 (m, 2H), 7.14 – 7.09 (m, 3H), 7.09 – 7.06 (m, 1H), 3.68 (s, 3H), 3.37 (s, 3H), 3.35 – 3.26 (m, 4H), 2.05 – 2.00 (m, 2H), 1.71 – 1.61 (m, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 151.60, 135.25, 134.98, 130.40, 128.95, 127.88, 125.15, 121.76, 120.42, 119.32, 109.26, 86.27, 55.66, 28.89. **HRMS (ESI):** Calcd. for C₂₁H₂₄N₂OSe [M+H]⁺: 401.1127; found: 401.1118.

(31) 1-methyl-2-(4-methylpiperazin-1-yl)-3-(phenylselanyl)-1H-indole (35)

Red liquid (72.4 mg, 47% yield), ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.43 (d, *J* = 7.8 Hz, 1H), 7.16 (d, *J* = 8.9 Hz, 1H), 7.14 – 7.10 (m, 1H), 7.10 – 7.03 (m, 2H), 7.03 – 6.97 (m, 3H), 6.97 – 6.93 (m, 1H), 3.58 (s, 3H), 3.23 (s, 4H), 2.42 (s, 4H), 2.23 (s, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 150.90, 135.31, 135.00, 130.50, 128.92, 127.94, 125.15, 121.85, 120.48, 119.43, 109.28, 86.79, 55.77, 51.25, 46.30, 28.98. **HRMS** (ESI): Calcd. for C₂₀H₂₃N₃Se [M+H]⁺: 386.1130; found: 386.1120.

(32) 1-methyl-2,3-bis(phenylselanyl)-1*H*-indole (36)

Colorless solid (151.7 mg, 86% yield), m.p.: 108-109 °C; ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.77 (d, *J* = 8.0 Hz, 1H), 7.43 (d, *J* = 8.2 Hz, 1H), 7.37 (t, *J* = 7.0 Hz, 1H), 7.32–7.30 (m, 2H), 7.27–7.22 (m, 3H), 7.21–7.17 (m, 3H), 7.17–7.13 (m, 3H), 3.90 (s, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 138.94, 133.79, 133.68, 131.62, 130.52, 130.15, 129.45, 129.42, 128.96, 126.80, 125.80, 123.64, 121.35, 120.97, 110.23, 109.04, 32.83. **HRMS (ESI):** Calcd. for C₂₁H₁₇NSe₂[M+H]⁺: 443.9764; found: 443.9754.

(33) 1-methyl-2,3-bis(p-tolylselanyl)-1H-indole (37)

Colorless solid (154.5 mg, 82% yield), m.p.: 114-115 °C; ¹H-NMR (600 MHz, Chloroform-*d*) δ 7.79 (d, *J* = 8.0 Hz, 1H), 7.42 (d, *J* = 8.2 Hz, 1H), 7.37 (t, *J* = 7.0 Hz, 1H), 7.28–7.24 (m, 3H), 7.19 (d, *J* = 8.2 Hz, 2H), 7.03 (d, *J* = 8.0 Hz, 2H), 7.00 (d, *J* = 8.0 Hz, 2H), 3.91 (s, 3H), 2.34 (s, 3H), 2.32 (s, 3H). ¹³C-NMR

(151 MHz, Chloroform-*d*) δ 138.91, 136.83, 135.64, 134.11, 130.63, 130.57, 130.25, 129.90, 129.87, 129.80, 127.84, 123.51, 121.35, 120.87, 110.19, 109.20, 32.82, 21.11, 21.08. HRMS (ESI): Calcd. for C₂₃H₂₁NSe₂ [M+H]⁺: 472.0076; found: 472.0067.

(34) 2,3-bis((4-fluorophenyl)selanyl)-1-methyl-1*H*-indole (38)

Yellow liquid (97.5 mg, 51% yield), ¹H-NMR (600 MHz, Chloroform-*d*) δ 7.79 (dt, J = 8.0, 1.0 Hz, 1H), 7.43 (dt, J = 8.4, 1.0 Hz, 1H), 7.39 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.32 – 7.22 (m, 5H), 6.94 – 6.85 (m, 4H), 3.92 (s, 3H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 162.74 (d, J = 65.9 Hz), 161.10 (d, J = 64.1 Hz), 138.81, 133.88, 132.50 (d, J = 7.8 Hz), 131.68 (d, J = 7.4 Hz), 130.34, 127.93 (d, J = 3.1 Hz), 125.83 (d, J = 3.3 Hz), 123.83, 121.16 (d, J = 3.7 Hz), 116.60 (d, J = 21.9 Hz), 116.13, 115.99, 110.34, 109.36, 32.79. ¹⁹F-NMR (565 MHz, Chloroform-*d*) δ -114.72, -116.63. HRMS (ESI): Calcd. for C₂₁H₁₅F₂NSe₂ [M+H]⁺: 479.9576; found: 479.9564.

(35) 2,3-bis((4-chlorophenyl)selanyl)-1-methyl-1*H*-indole (39)

White solid (122.4 mg, 60% yield), m.p.: 129-130 °C; ¹H-NMR (600 MHz, Chloroform-*d*) δ 7.70 (d, *J* = 8.0 Hz, 1H), 7.44–7.41 (m, 1H), 7.37 (t, *J* = 7.4 Hz, 1H), 7.24 (t, *J* = 7.4 Hz, 1H), 7.16–7.11 (m, 4H), 7.11–7.06 (m, 4H), 3.90 (s, 3H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 138.90, 133.12, 131.95, 131.79, 131.41, 130.73, 130.31, 129.65, 129.56, 129.04, 129.03, 123.98, 121.27, 121.18, 110.40, 108.99, 32.87. HRMS (ESI): Calcd. for C₂₁H₁₅Cl₂NSe₂ [M+H]⁺: 511.8985; found: 511.8968.

(36) N,N-diethyl-1-methyl-3-(phenylthio)-1H-indol-2-amine (40)

Yellow liquid (76.9 mg, 62% yield), ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.54 (dt, J = 7.8, 0.9 Hz, 1H), 7.35 (dt, J = 8.2, 0.9 Hz, 1H), 7.29 (d, J = 7.0 Hz, 1H), 7.19–7.15 (m, 3H), 7.11–7.08 (m, 2H), 7.06 (t, J = 7.3 Hz, 1H), 3.73 (s, 3H), 3.31 (q, J = 7.2 Hz, 4H), 1.01 (t, J = 7.2 Hz, 6H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 150.41, 139.79, 134.72, 129.52, 128.58, 125.24, 124.23, 121.73, 120.40, 118.55, 109.59, 92.88, 48.40, 28.92, 13.75. **HRMS (ESI):** Calcd. for C₁₉H₂₂N₂S [M+H]⁺: 311.1576; found: 311.1568.

(37) N,1-dimethyl-3-(phenylthio)-N-propyl-1H-indol-2-amine (41)

Yellow liquid (85.6 mg, 69% yield), ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.55 (dd, *J* = 7.8, 0.9 Hz, 1H), 7.32 (d, *J* = 8.2 Hz, 1H), 7.28–7.24 (m, 1H), 7.18 (dddt, *J* = 11.5, 7.1, 5.6, 3.1 Hz, 3H), 7.11 (d, *J* = 7.3 Hz, 2H), 7.06 (t, *J* = 7.3 Hz, 1H), 3.72 (s, 3H), 3.24–3.20 (m, 2H), 2.94 (s, 3H), 1.56–1.51 (m, 2H), 0.89–0.86 (m, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 152.51, 140.31, 134.66, 129.74, 128.62, 125.21, 124.25, 121.65, 120.45, 118.37, 109.34, 90.80, 57.87, 41.62, 29.09, 21.35, 11.46. **HRMS (ESI):** Calcd. for C₁₉H₂₂N₂S [M+H]⁺: 311.1576; found: 311.1568.

(38) N,1-dimethyl-N-pentyl-3-(phenylthio)-1H-indol-2-amine (42)

Yellow liquid (82.5 mg, 61% yield), ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.57 (d, *J* = 7.9 Hz, 1H), 7.34 (d, *J* = 8.1 Hz, 1H), 7.30–7.27 (m, 1H), 7.21–7.16 (m, 3H), 7.13 (s, 2H), 7.08 (t, *J* = 7.3 Hz, 1H), 3.73 (s, 3H), 3.28–3.24 (m, 2H), 2.95 (s, 3H), 1.54–1.49 (m, 2H), 1.30–1.23 (m, 4H), 0.89 (t, *J* = 7.0 Hz, 3H). ¹³**C**-**NMR** (151 MHz, Chloroform-*d*) δ 152.50, 140.35, 134.70, 129.81, 128.63, 125.24, 124.27, 121.66, 120.47, 118.39, 109.37, 90.82, 56.05, 41.76, 29.23, 29.11, 27.92, 22.54, 14.13. **HRMS (ESI):** Calcd. for C₂₁H₂₆N₂S [M+H]⁺: 339.1189; found: 339.1882.

(39) 3-(methyl(1-methyl-3-(phenylthio)-1*H*-indol-2-yl)amino)propanenitrile (43)

Brown liquid (46.2 mg, 36% yield), ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.59 (d, *J* = 7.8 Hz, 1H), 7.38 (d, *J* = 8.0 Hz, 1H), 7.32 (t, *J* = 7.8 Hz, 1H), 7.22–7.18 (m, 3H), 7.12–7.05 (m, 3H), 3.81 (s, 3H), 3.65 (t, *J* = 6.4 Hz, 2H), 2.92 (s, 3H), 2.46 (t, *J* = 6.4 Hz, 2H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 149.58, 139.47, 134.75, 129.32, 128.91, 125.28, 124.79, 122.50, 120.90, 118.71, 118.71, 109.88, 92.40, 51.07, 42.42, 29.15, 17.46. **HRMS (ESI):** Calcd. for C₁₉H₁₉N₃S [M+H]⁺: 322.1372; found: 322.1364.

(40) 1-methyl-3-(phenylthio)-2-(piperidin-1-yl)-1*H*-indole (44)

Yellow liquid (110.8 mg, 86% yield), ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.55 (d, *J* = 7.8 Hz, 1H), 7.32 (d, *J* = 8.0 Hz, 1H), 7.26 (t, *J* = 7.3 Hz, 1H), 7.20 (dd, *J* = 8.3, 7.2 Hz, 2H), 7.16 (t, *J* = 7.4 Hz, 1H), 7.12 (d, *J* = 7.8 Hz, 2H), 7.08 (t, *J* = 7.2 Hz, 1H), 3.72 (s, 3H), 3.32–3.29 (m, 4H), 1.71 (q, *J* = 5.6 Hz, 4H), 1.63 (q,

J = 5.9 Hz, 2H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 152.71, 140.85, 134.85, 129.78, 128.65, 125.08, 124.19, 121.58, 120.41, 118.35, 109.22, 89.30, 52.60, 29.03, 26.74, 24.18. HRMS (ESI): Calcd. for $C_{20}H_{22}N_2S$ [M+H]⁺: 323.1576; found: 323.1570.

(41) 1-methyl-2-(4-methylpiperidin-1-yl)-3-(phenylthio)-1*H*-indole (45)

Yellow solid (125.0 mg, 93% yield), m.p.: 135-136 °C; ¹H-NMR (600 MHz, Chloroform-*d*) δ 7.58 (d, J = 7.8 Hz, 1H), 7.33 (d, J = 8.1 Hz, 1H), 7.28 (t, J = 7.0 Hz, 1H), 7.24–7.20 (m, 2H), 7.18 (t, J = 7.0 Hz, 1H), 7.15 (d, J = 1.1 Hz, 2H), 7.09 (t, J = 7.3 Hz, 1H), 3.72 (s, 3H), 3.43 (t, J = 11.1 Hz, 2H), 3.25 (d, J = 12.1 Hz, 2H), 1.76 (d, J = 12.5 Hz, 2H), 1.61–1.57 (m, 1H), 1.43–1.38 (m, 2H), 1.06 (d, J = 6.6 Hz, 3H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 152.55, 140.89, 134.89, 129.84, 128.68, 125.13, 124.23, 121.61, 120.44, 118.35, 109.25, 89.42, 51.94, 35.15, 30.64, 29.07, 22.23. HRMS (ESI): Calcd. for C₂₁H₂₄N₂S [M+H]⁺: 337.1733; found: 337.1725.

(42) 2-(4-methoxypiperidin-1-yl)-1-methyl-3-(phenylthio)-1H-indole (46)

Yellow liquid (126.7 mg, 90% yield), ¹H-NMR (600 MHz, Chloroform-*d*) δ 7.56 (d, *J* = 8.1 Hz, 1H), 7.33 (d, *J* = 8.1 Hz, 1H), 7.29–7.27 (m, 1H), 7.23–7.19 (m, 2H), 7.19–7.15 (m, 1H), 7.14–7.11 (m, 2H), 7.08 (t, *J* = 7.3 Hz, 1H), 3.72 (s, 3H), 3.43 (s, 3H), 3.40–3.34 (m, 5H), 2.10–2.05 (m, 2H), 1.74–1.67 (m, 2H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 151.85, 140.61, 134.84, 129.66, 128.71, 125.09, 124.31, 121.82, 120.54, 118.44, 109.35, 89.89, 55.69, 32.02, 29.03. HRMS (ESI): Calcd. for C₂₁H₂₄N₂OS [M+H]⁺: 353.1682; found: 353.1674.

Yellow liquid (66.9 mg, 44% yield), ¹H-NMR (600 MHz, Chloroform-*d*) δ 7.53 (d, *J* = 7.8 Hz, 1H), 7.31 (d, *J* = 8.1 Hz, 1H), 7.26 (t, *J* = 7.5 Hz, 1H), 7.18 (t, *J* = 7.7 Hz, 2H), 7.14 (t, *J* = 7.4 Hz, 1H), 7.09–7.05 (m, 3H), 3.73 (s, 3H), 3.70 (s, 3H), 3.40 (t, *J* = 11.2 Hz, 2H), 3.26 (d, *J* = 12.3 Hz, 2H), 2.50–24.5 (m,1H), 2.02–1.98 (m, 2H), 1.90–1.84 (m, 2H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 175.55, 151.71, 140.52, 134.75, 129.56, 128.68, 125.09, 124.32, 121.86, 120.53, 118.47, 109.35, 90.23, 51.78, 51.09, 40.86, 29.10, 28.95. HRMS (ESI): Calcd. for C₂₂H₂₄N₂O₂S [M+H]⁺: 381.1631; found: 381.1622.

(44) tert-butyl (1-(1-methyl-3-(phenylthio)-1H-indol-2-yl)piperidin-3-yl)carbamate (48)

Purple solid (157.3 mg, 90% yield), m.p.: 138-139 °C; ¹H-NMR (600 MHz, Chloroform-*d*) δ 7.53 (d, *J* = 7.8 Hz, 1H), 7.31 (d, *J* = 8.1 Hz, 1H), 7.26 (t, *J* = 7.3 Hz, 1H), 7.20–7.17 (m, 2H), 7.15 (t, *J* = 7.4 Hz, 1H), 7.09–7.05 (m, 3H), 4.79 (s, 1H), 3.82 (s, 1H), 3.73 (s, 3H), 3.54 (d, *J* = 11.6 Hz, 1H), 3.25 (dtd, *J* = 28.5, 12.6, 10.8, 5.0 Hz, 2H), 3.08 (dd, *J* = 11.6, 7.7 Hz, 1H), 2.00–1.64 (m, 4H), 1.48 (s, 9H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 155.20, 151.23, 140.36, 134.72, 129.43, 128.71, 125.08, 124.35, 121.95, 120.55, 118.52, 109.39, 90.52, 79.41, 56.93, 51.86, 29.08, 28.44. HRMS (ESI): Calcd. for C₂₅H₃₁N₃O₂S [M+H]⁺: 438.2209; found: 438.2203.

(45) 1-methyl-2-(4-methylpiperazin-1-yl)-3-(phenylthio)-1*H*-indole (49)

Yellow solid (83.6 mg, 62% yield), m.p.: 140-141 °C; ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.57 (d, *J* = 7.8 Hz, 1H), 7.31 (d, *J* = 7.7 Hz, 1H), 7.28–7.25 (m, 1H), 7.17 (q, *J* = 7.5 Hz, 3H), 7.09–7.03 (m, 3H), 3.71 (s, 3H), 3.39 (s, 4H), 2.57 (s, 4H), 2.38 (s, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 151.23, 140.66, 134.81, 129.76, 128.65, 125.06, 124.25, 121.86, 120.57, 118.50, 109.32, 90.37, 55.76, 51.07, 46.36, 29.10. **HRMS (ESI):** Calcd. for C₂₀H₂₃N₃S [M+H]⁺: 338.1685; found: 338.1678.

(46) tert-butyl 4-(1-methyl-3-(phenylthio)-1H-indol-2-yl)piperazine-1-carboxylate (50)

Brown solid (138.7 mg, 82% yield), m.p.: 196-197 °C; ¹H-NMR (600 MHz, Chloroform-*d*) δ 7.55 (d, *J* = 7.8 Hz, 1H), 7.33 (d, *J* = 8.1 Hz, 1H), 7.30–7.27 (m, 1H), 7.21–7.15 (m, 3H), 7.07 (dd, *J* = 8.3, 7.0 Hz, 3H), 3.73 (s, 3H), 3.57 (s, 4H), 3.30 (s, 4H), 1.52 (s, 9H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 154.81, 150.86, 140.28, 134.79, 129.50, 128.77, 125.08, 124.46, 122.13, 120.71, 118.64, 109.49, 90.75, 79.97, 29.08, 28.49, 28.48. HRMS (ESI): Calcd. for C₂₄H₂₉N₃O₂S [M+H]⁺: 424.2053; found: 424.2043.

(47) 4-(1-methyl-3-(phenylthio)-1*H*-indol-2-yl)morpholine (51)

Yellow solid (101.1 mg, 78% yield), m.p.: 121-122 °C; ¹H-NMR (600 MHz, Chloroform-*d*) δ 7.59 (d, J = 7.8 Hz, 1H), 7.34 (d, J = 8.1 Hz, 1H), 7.31–7.28 (m, 1H), 7.22–7.17 (m, 3H), 7.12–7.07 (m, 3H), 3.86–3.84 (m, 4H), 3.75 (s, 3H), 3.36 (s, 4H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 150.67, 140.41, 134.77, 129.61, 128.74, 125.14, 124.43, 122.10, 120.71, 118.65, 109.46, 90.80, 67.59, 51.52, 29.07. HRMS (ESI): Calcd. for C₁₉H₂₀N₂OS [M+H]⁺: 325.1369; found: 325.1361.

(48) *N*-benzyl-*N*,1-dimethyl-3-(phenylthio)-1*H*-indol-2-amine (52)

Yellow solid (111.7 mg, 78% yield), m.p.: 92-93 °C; ¹H-NMR (600 MHz, Chloroform-*d*) δ 7.66 (d, *J* = 7.9 Hz, 1H), 7.48–7.39 (m, 5H), 7.39–7.34 (m, 2H), 7.31–7.25 (m, 3H), 7.24–7.22 (m, 3H), 7.15 (t, *J* = 7.2 Hz, 1H), 4.56 (s, 2H), 3.82 (s, 3H), 2.96 (s, 3H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 152.45, 140.28, 138.67, 134.77, 129.71, 128.82, 128.66, 128.51, 127.38, 125.38, 125.37, 124.49, 122.00, 120.67, 118.66, 109.56, 91.35, 60.26, 41.47, 29.33. HRMS (ESI): Calcd. for C₂₃H₂₂N₂S [M+H]⁺: 359.1576; found: 359.1569.

(49) N-(3-fluorobenzyl)-N,1-dimethyl-3-(phenylthio)-1H-indol-2-amine (53)

Brown solid (63.2 mg, 42% yield), m.p.: 95-97 °C; ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.56 (d, *J* = 7.8 Hz, 1H), 7.34 (d, *J* = 8.1 Hz, 1H), 7.31–7.27 (m, 2H), 7.22–7.16 (m, 3H), 7.13–7.07 (m, 5H), 7.00–6.95 (m, 1H), 4.49 (s, 2H), 3.78 (s, 3H), 2.87 (s, 3H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 163.02 (d, *J* = 246.1 Hz), 151.94, 141.42 (d, *J* = 6.0 Hz), 140.00, 134.65, 129.86 (d, *J* = 9.1 Hz), 129.54, 128.76, 125.28, 124.48, 124.06, 122.06, 120.66, 118.66, 115.18 (d, *J* = 21.1 Hz), 114.17 (d, *J* = 21.1 Hz), 109.51, 91.54, 59.57, 41.68, 29.24. ¹⁹F-NMR (565 MHz, Chloroform-*d*) δ -113.30. HRMS (ESI): Calcd. for C₂₃H₂₁FN₂S [M+H]⁺: 377.1482; found: 377.1472.

(50) N-(4-methoxybenzyl)-N,1-dimethyl-3-(phenylthio)-1H-indol-2-amine (54)

Colourless solid (97.8 mg, 63% yield), m.p.: 142-143 °C; ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.67–7.49 (m, 1H), 7.35 (d, *J* = 8.0 Hz, 1H), 7.31 (d, *J* = 7.1 Hz, 1H), 7.28 (d, *J* = 8.6 Hz, 2H), 7.25–7.18 (m, 3H), S37

7.16 (s, 2H), 7.10 (t, *J* = 7.3 Hz, 1H), 6.89 (d, *J* = 8.6 Hz, 2H), 4.43 (s, 2H), 3.85 (s, 3H), 3.76 (s, 3H), 2.89 (s, 3H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 158.89, 152.36, 140.23, 134.71, 130.63, 129.85, 129.65, 128.72, 125.30, 124.38, 121.87, 120.56, 118.56, 113.78, 109.48, 91.28, 59.56, 55.30, 41.28, 29.25. HRMS (ESI): Calcd. for C₂₄H₂₄N₂OS [M+H]⁺: 389.1682; found: 389.1673.

(51) 1-methyl-3-(phenylthio)-2-(1H-pyrazol-1-yl)-1H-indole (55)

Yellow solid (108.6 mg, 89% yield), m.p.: 112-114 °C; ¹H-NMR (600 MHz, Chloroform-*d*) δ 7.90 (d, *J* = 1.8 Hz, 1H), 7.76–7.73 (m, 2H), 7.48 (d, *J* = 8.3 Hz, 1H), 7.43 (t, *J* = 7.1 Hz, 1H), 7.31–7.28 (m, 1H), 7.23–7.20 (m, 2H), 7.16–7.13 (m, 2H), 7.11 (t, *J* = 7.3 Hz, 1H), 6.50–6.48 (m, 1H), 3.81 (s, 3H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 142.35, 139.05, 138.55, 135.35, 133.51, 128.95, 128.15, 126.04, 125.15, 123.84, 121.60, 120.21, 110.12, 106.87, 95.56, 30.72. HRMS (ESI): Calcd. for C₁₈H₁₅N₃S [M+H]⁺: 306.1059; found: 306.1052.

(52) 1-methyl-2-(3-methyl-1*H*-pyrazol-1-yl)-3-(phenylthio)-1*H*-indole (56)

Green liquid (94.4 mg, 74% yield), ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.69 (d, *J* = 7.9 Hz, 1H), 7.60 (d, *J* = 2.4 Hz, 1H), 7.45 (d, *J* = 8.3 Hz, 1H), 7.39 (t, *J* = 7.6 Hz, 1H), 7.25 (t, *J* = 7.5 Hz, 1H), 7.21–7.17 (m, 2H), 7.12–7.07 (m, 3H), 6.25 (d, *J* = 2.4 Hz, 1H), 3.81 (s, 3H), 2.42 (s, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 151.76, 139.30, 138.74, 135.33, 134.20, 128.88, 128.15, 125.90, 124.98, 123.64, 121.45, 120.09, 110.00, 106.88, 94.99, 30.73, 13.78. **HRMS (ESI):** Calcd. for C₁₉H₁₇N₃S [M+H]⁺: 320.1216; found: 320.1208.

(53) 2-(4-chloro-1*H*-pyrazol-1-yl)-1-methyl-3-(phenylthio)-1*H*-indole (57)

Yellow solid (93.6 mg, 69% yield), m.p.: 107-109 °C; ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.79 (s, 1H), 7.72 (d, J = 6.7 Hz, 2H), 7.47 (d, J = 8.4 Hz, 1H), 7.43 (t, J = 7.3 Hz, 1H), 7.28 (t, J = 7.2 Hz, 1H), 7.21 (t, J = 7.7 Hz, 2H), 7.13–7.10 (m, 3H), 3.79 (s, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 140.95, 138.04, 138.02, 135.30, 131.06, 129.01, 127.90, 126.19, 125.35, 124.16, 121.77, 120.36, 111.76, 110.17, 96.34, 30.69. **HRMS (ESI):** Calcd. for C₁₈H₁₄ClN₃S [M+H]⁺: 340.0669; found: 340.0663.

(54) ethyl 1-(1-methyl-3-(phenylthio)-1*H*-indol-2-yl)-1*H*-pyrazole-4-carboxylate (58)

Red solid (128.2 mg, 85% yield), m.p.: 123-124 °C; ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 8.24 (s, 1H), 8.21 (s, 1H), 7.73 (d, *J* = 7.9 Hz, 1H), 7.47 (d, *J* = 8.3 Hz, 1H), 7.43 (t, *J* = 7.1 Hz, 1H), 7.30–7.27 (m, 1H), 7.21–7.18 (m, 2H), 7.11 (d, *J* = 8.1 Hz, 3H), 4.35 (q, *J* = 7.1 Hz, 2H), 3.78 (s, 3H), 1.38 (t, *J* = 7.2 Hz, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 162.49, 143.21, 137.81, 137.68, 136.90, 135.33, 129.00, 127.87, 126.47, 125.49, 124.30, 121.83, 120.45, 116.44, 110.20, 97.05, 60.59, 30.74, 14.39. **HRMS (ESI):** Calcd. for C₂₁H₁₉N₃O₂S [M+H]⁺: 378.1271; found: 378.1262.

(55) 1-methyl-3-(phenylthio)-2-(1*H*-1,2,3-triazol-1-yl)-1*H*-indole (59)

White solid (94.3 mg, 77% yield), m.p.: 117-118 °C; ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.90 (d, *J* = 1.1 Hz, 1H), 7.86 (d, *J* = 1.1 Hz, 1H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.51 (d, *J* = 8.3 Hz, 1H), S39

7.46 (t, J = 7.5 Hz, 1H), 7.30 (t, J = 7.3 Hz, 1H), 7.19 (t, J = 7.7 Hz, 2H), 7.10 (dd, J = 17.0, 7.6 Hz, 3H), 3.80 (s, 3H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 137.58, 135.56, 134.90, 133.31, 129.08, 127.96, 127.41, 126.23, 125.55, 124.61, 122.04, 120.49, 110.38, 97.36, 30.89. HRMS (ESI): Calcd. for C₁₇H₁₄N₄S [M+H]⁺: 307.1588; found: 307.1579.

(56) 1-methyl-3-(phenylthio)-2-(1*H*-1,2,4-triazol-1-yl)-1*H*-indole (60)

White solid (104.0 mg, 85% yield), m.p.: 124-125 °C; ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 8.36 (s, 1H), 8.24 (s, 1H), 7.76 (d, *J* = 7.9 Hz, 1H), 7.49 (d, *J* = 8.2 Hz, 1H), 7.44 (t, *J* = 7.7 Hz, 1H), 7.32–7.29 (m, 1H), 7.19 (t, *J* = 7.7 Hz, 2H), 7.10 (q, *J* = 7.6 Hz, 3H), 3.80 (s, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 153.29, 146.57, 137.85, 135.54, 134.93, 129.10, 127.93, 126.20, 125.56, 124.54, 122.00, 120.52, 110.25, 97.50, 30.74. **HRMS (ESI):** Calcd. for C₁₇H₁₄N₄S [M+H]⁺: 307.1588; found: 307.1579.

(57) 1-(1-methyl-3-(phenylthio)-1*H*-indol-2-yl)-1*H*-benzo[*d*][1,2,3]triazole (61)

Pink solid (102.5 mg, 72% yield), m.p.: 147-148 °C; ¹H-NMR (600 MHz, Chloroform-*d*) δ 8.19 (d, J = 8.2 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.54 (d, J = 8.3 Hz, 1H), 7.51–7.45 (m, 3H), 7.35–7.32 (m, 2H), 7.16–7.12 (m, 2H), 7.11–7.06 (m, 3H), 3.64 (s, 3H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 145.27, 137.05, 136.00, 134.89, 133.40, 128.95, 128.84, 127.97, 126.93, 125.56, 124.74, 124.63, 121.88, 120.65, 120.28, 110.46, 110.43, 30.36. HRMS (ESI): Calcd. for C₂₁H₁₆N₄S [M+H]⁺: 357.1168; found: 357.1159.

(58) (1*R*,5*S*)-3-(1-methyl-3-(phenylthio)-1*H*-indol-2-yl)-1,2,3,4,5,6-hexahydro-8*H*-1,5methanopyrido[1,2-*a*][1,5]diazocin-8-one (62)

Yellow liquid (102.5 mg, 72% yield), ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.48 (d, J = 7.7 Hz, 1H), 7.34 (dd, J = 9.1, 6.8 Hz, 1H), 7.24–7.17 (m, 4H), 7.12–7.09 (m, 1H), 7.06 (dd, J = 18.1, 7.2 Hz, 3H), 6.55 (d, J = 9.1 Hz, 1H), 6.07 (d, J = 6.9 Hz, 1H), 4.30 (d, J = 15.6 Hz, 1H), 3.95 (dd, J = 15.6, 6.5 Hz, 1H), 3.90 (d, J = 11.7 Hz, 1H), 3.74 (d, J = 11.2 Hz, 1H), 3.19 (d, J = 11.7 Hz, 1H), 3.15 (s, 3H), 3.10–3.04 (m, 2H), 2.49 (ddd, J = 7.1, 4.9, 2.7 Hz, 1H), 2.01 (q, J = 3.4 Hz, 2H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 163.51, 151.01, 150.00, 139.93, 138.91, 134.52, 128.99, 128.81, 125.06, 124.52, 122.41, 120.68, 118.58, 116.94, 109.69, 105.14, 92.50, 59.39, 58.20, 50.00, 35.46, 28.04, 27.97, 25.40. HRMS (ESI): Calcd. for C₂₆H₂₅N₃OS [M+H]⁺: 428.1791; found: 428.1781.

(59) (*R*)-*N*,1-dimethyl-*N*-(3-phenyl-3-(*o*-tolyloxy)propyl)-3-(phenylthio)-1*H*-indol-2-amine(63)

Yellow liquid (167.3 mg, 85% yield), ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.58 (d, *J* = 7.7 Hz, 1H), 7.34 – 7.29 (m, 4H), 7.27 (td, *J* = 6.8, 1.6 Hz, 3H), 7.22 – 7.18 (m, 3H), 7.13 (dd, *J* = 14.8, 7.2 Hz, 3H), 7.09 (t, *J* = 7.3 Hz, 1H), 6.96 (td, *J* = 7.8, 1.8 Hz, 1H), 6.81 (t, *J* = 7.3 Hz, 1H), 6.54 (d, *J* = 7.8 Hz, 1H), 5.17 (dd, *J* = 8.8, 4.3 Hz, 1H), 3.65 (s, 3H), 3.55 (tdd, *J* = 12.8, 8.4, 5.8 Hz, 2H), 2.97 (s, 3H), 2.31 (s, 3H), 2.26 – 2.20 (m, 1H), 2.09 – 2.04 (m, 1H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 156.05, 151.73, 142.03, 140.22, 134.74, 130.67, 129.76, 128.79, 128.68, 127.55,

127.02, 126.60, 125.78, 125.31, 124.44, 121.90, 120.62, 120.30, 118.53, 112.73, 109.50, 91.28, 77.52, 52.35, 42.21, 37.56, 29.07, 16.64. **HRMS (ESI):** Calcd. for C₃₂H₃₂N₂OS [M+H]⁺: 493.2308; found: 493.2297.

(60) *N*,1-dimethyl-*N*-(3-phenyl-3-(4-(trifluoromethyl)phenoxy)propyl)-3-(phenylthio)-1*H*indol-2-amine (64)

Yellow liquid (152.9 mg, 70% yield), ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.53 (d, *J* = 7.8 Hz, 1H), 7.37 (d, *J* = 8.5 Hz, 2H), 7.30 (t, *J* = 7.3 Hz, 2H), 7.28–7.23 (m, 3H), 7.22–7.19 (m, 2H), 7.18–7.13 (m, 3H), 7.09 (dd, *J* = 8.5, 1.3 Hz, 2H), 7.05 (t, *J* = 7.3 Hz, 1H), 5.09 (dd, *J* = 8.8, 4.4 Hz, 1H), 3.63 (s, 3H), 3.49 (t, *J* = 7.2 Hz, 2H), 2.94 (s, 3H), 2.15 (ddd, *J* = 14.1, 7.0, 2.1 Hz, 1H), 2.04–2.00 (m, 1H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 160.43, 151.39, 140.87, 140.02, 134.62, 129.63, 128.78, 128.71, 127.84, 126.67 (d, *J* = 4.5 Hz), 125.68, 125.22, 124.40, 121.90, 120.61, 118.44, 115.60, 109.38, 78.13, 51.94, 42.26, 37.40, 29.07. ¹⁹**F-NMR** (565 MHz, Chloroform-*d*) δ -61.55. **HRMS (ESI):** Calcd. for C₃₂H₂₉F₃N₂OS [M+H]⁺: 547.2025; found: 547.2015.

(61) (S)-N,1-dimethyl-N-(3-(naphthalen-1-yloxy)-3-(thiophen-2-yl)propyl)-3-(phenylthio)1*H*-indol-2-amine (65)

Yellow liquid (149.5 mg, 70% yield), ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 8.31 (d, J = 7.8 Hz, 1H), 7.81 (d, J = 8.1 Hz, 1H), 7.60 – 7.56 (m, 1H), 7.54 – 7.48 (m, 2H), 7.41 (d, J = 8.2 Hz, 1H), 7.28 (d, J = 3.9 Hz, 2H), 7.24 – 7.20 (m, 2H), 7.17 (ddd, J = 15.4, 7.7, 3.1 Hz, 3H), 7.13 – 7.09 (m, 2H), 7.07 – 7.04 (m, 1H), 6.95 (d, J = 2.8 Hz, 1H), 6.93 (dd, J = 4.9, 3.6 Hz, 1H), 6.72 (d, J = 7.6 Hz, 1H), 5.63 (dd, J = 8.0, 5.2 Hz, 1H), 3.65 (s, 3H), 3.60 (t, J = 7.4 Hz, 2H), 2.97 (s, 3H), 2.52 – 2.46 (m, 1H), 2.26 – 2.21 (m, 1H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 153.36, 151.45, 145.03, 140.14, 134.72, 134.64, 129.77, 128.80, 127.56, 126.65, 126.39, 126.15, 125.71, 125.32, 124.79, 124.67, 124.47, 122.17, 121.95, 120.71, 120.67, 118.53, 109.52, 106.95, 91.41, 74.32, 52.05, 42.36, 37.61, 29.11. **HRMS (ESI):** Calcd. for C₃₃H₃₀N₂OS₂ [M+H]⁺: 533.1727; found: 533.1729.

(62) 2-((3*S*,4*R*)-3-((benzo[*d*][1,3]dioxol-5-yloxy)methyl)-4-(4-fluorophenyl)piperidin-1-yl)-1methyl-3-(phenylthio)-1*H*-indole (66)

Yellow liquid (187.9 mg, 83% yield), ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.65 (d, *J* = 7.8 Hz, 1H), 7.39 (d, *J* = 8.1 Hz, 1H), 7.34 (t, *J* = 7.3 Hz, 1H), 7.28–7.22 (m, 5H), 7.20–7.18 (m, 2H), 7.13 (d, *J* = 7.2 Hz, 1H), 7.09 (t, *J* = 8.7 Hz, 2H), 6.69 (d, *J* = 8.5 Hz, 1H), 6.35 (d, *J* = 2.5 Hz, 1H), 6.15 (d, *J* = 6.1 Hz, 1H), 5.94 (s, 2H), 3.82 (s, 3H), 3.73 (ddd, *J* = 12.3, 4.0, 1.7 Hz, 1H), 3.65 (ddd, *J* = 12.4, 8.3, 2.9 Hz, 2H), 3.54–3.49 (m, 2H), 3.41 (d, *J* = 12.1 Hz, 1H), 2.68–2.63 (m, 1H), 2.45 (dtt, *J* = 11.2, 7.8, 3.7 Hz, 1H), 2.06–1.99 (m, 1H), 1.95 (dd, *J* = 13.1, 3.6 Hz, 1H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 161.70 (d, *J* = 244.6 Hz), 154.31, 151.84, 148.23, 141.75, 140.75, 139.63 (d, *J* = 3.0 Hz), 134.92, 129.86, 128.90 (d, *J* = 7.6 Hz), 128.83, 125.26, 124.48, 121.92, 120.69, 118.52, 115.70, 115.56, 109.44, 107.91, 105.78, 101.18, 98.20, 89.88, 69.44, 55.70, 52.15, 44.22, 42.88, 35.38, 29.36. ¹⁹**F-NMR** (565 MHz, Chloroform-d) δ -116.00. **HRMS (ESI):** Calcd. for C₃₄H₃₁FN₂O₃S [M+H]⁺: 567.2112; found: 567.2101.

(63) N-(3-(10,11-dihydro-5H-dibenzo[a,d][7]annulen-5-ylidene)propyl)-N,1-dimethyl-3-

(phenylthio)-1*H*-indol-2-amine (67)

Yellow liquid (158.0 mg, 79% yield), ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.56 (d, *J* = 7.6 Hz, 1H), 7.32 (d, *J* = 8.0 Hz, 1H), 7.29 (dd, *J* = 6.9, 1.0 Hz, 1H), 7.24 (dd, *J* = 7.3, 1.6 Hz, 1H), 7.23 – 7.18 (m, 4H), 7.18 – 7.14 (m, 3H), 7.12 – 7.09 (m, 3H), 7.09 – 7.03 (m, 3H), 5.85 (t, *J* = 7.4 Hz, 1H), 3.66 (s, 3H), 3.44 – 3.28 (m, 4H), 3.04 – 2.94 (m, 1H), 2.89 (s, 3H), 2.83 – 2.70 (m, 1H), 2.36 (q, *J* = 8.2, 7.3 Hz, 2H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 152.04, 144.02, 141.33, 140.31, 140.00, 139.33, 137.14, 134.75, 130.09, 129.79, 129.04, 128.75, 128.61, 128.24, 128.13, 127.53, 127.17, 126.12, 125.84, 125.31, 124.41, 121.86, 120.61, 118.51, 109.47, 91.10, 55.82, 41.72, 33.85, 32.14, 29.18, 28.57. **HRMS (ESI):** Calcd. for C₃₄H₃₂N₂S [M+H]⁺: 501.2359; found: 501.2348.

(64) 8-chloro-11-(1-(1-methyl-3-(phenylthio)-1*H*-indol-2-yl)piperidin-4-ylidene)-6,11dihydro-5*H*-benzo[5,6]cyclohepta[1,2-*b*]pyridine (68)

Brown liquid (188.2 mg, 86% yield), ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 8.41 (d, *J* = 3.7 Hz, 1H), 7.48 (d, *J* = 7.7 Hz, 1H), 7.44 (d, *J* = 8.1 Hz, 1H), 7.28 (d, *J* = 8.1 Hz, 1H), 7.23 (t, *J* = 7.3 Hz, 1H), 7.17 (d, *J* = 7.9 Hz, 2H), 7.15–7.08 (m, 5H), 7.03 (dd, *J* = 19.1, 7.2 Hz, 3H), 3.72 (s, 3H), 3.46–3.37 (m, 2H), 3.29 (dt, *J* = 6.3, 3.5 Hz, 4H), 2.87–2.79 (m, 2H), 2.68–2.49 (m, 4H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 157.26, 151.47, 146.52, 140.51, 139.66, 137.85, 137.79, 137.64, 134.84, 133.77, 133.60, 132.87, 130.69, 129.04, 128.67, 126.11, 125.05, 124.29, 122.28, 121.80, 120.52,

118.41, 109.30, 89.74, 52.68, 52.60, 32.00, 31.82, 31.77, 31.51, 29.18. **HRMS (ESI):** Calcd. for C₃₄H₃₀ClN₃S [M+H]⁺: 546.1778; found: 546.1776.

(65) 1-methyl-3-(p-tolylthio)-2-(1H-1,2,4-triazol-1-yl)-1H-indole (69)

Brown solid (3.01 g, 87% yield), m.p.: 100-102 °C; ¹H-NMR (600 MHz, Chloroform-*d*) δ 8.47 (s, 1H), 8.21 (s, 1H), 7.58 (d, J = 8.4 Hz, 1H), 7.29 (d, J = 8.4 Hz, 1H), 7.02–6.99 (m, 5H), 4.22–4.19 (m, 2H), 2.97 (t, J = 6.2 Hz, 2H), 2.32–2.30 (m, 2H), 2.28 (s, 3H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 153.03, 146.06, 135.68, 135.40, 133.32, 132.84, 132.45, 131.47, 129.95, 126.60, 122.65, 121.94, 121.23, 96.63, 43.26, 29.87, 22.66, 20.93. HRMS (ESI): Calcd. for C₂₀H₁₈N₄S [M+H]⁺: 347.1332; found: 347.1325.

SPECTROSCOPIC DATA

- 11. NMR spectra of the obtained compounds.
- (1) ¹H-NMR (600 MHz, CDCl₃) spectrum of 4

(2) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 4

(3) ¹H-NMR (600 MHz, CDCl₃) spectrum of 5

7.28 7.27 7.27 7.27 7.27 7.27 7.28

(5) ¹H-NMR (600 MHz, CDCl₃) spectrum of 6

(7) ¹H-NMR (600 MHz, CDCl₃) spectrum of 7

(9) ¹H-NMR (600 MHz, CDCl₃) spectrum of 9

(13) ¹H-NMR (600 MHz, CDCl₃) spectrum of 11

(15) ¹H-NMR (600 MHz, CDCl₃) spectrum of 12

7.88 7.88 7.75

S54

S55

(23) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 15

(25) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 16

(27) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 17

(28) ¹H-NMR (600 MHz, CDCl₃) spectrum of 18

S60

-30.44

S63

S64

(39) ¹H-NMR (600 MHz, CDCl₃) spectrum of 23

(41) ¹H-NMR (600 MHz, CDCl₃) spectrum of 24

(45) ¹⁹F-NMR (565 MHz, CDCl₃) spectrum of 25

(47) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 26

(49) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 27

-99 -100 -101 -102 -103 -104 -105 -106 -107 -108 -109 -110 -111 -112 -113 -114 -115 -116 -117 -118 -119 -120 -121 -122 -123 -124 -125 -126 f1 (ppm)

90 80 f1 (ppm)

(55) ¹H-NMR (600 MHz, CDCl₃) spectrum of 30

(59) ¹H-NMR (600 MHz, CDCl₃) spectrum of 32

(63) ¹H-NMR (600 MHz, CDCl₃) spectrum of 34

(67) ¹H-NMR (600 MHz, CDCl₃) spectrum of 36

7.7.7 7.7.7 7.7.8 7.7.7 7.7.8 7.7.7 7.7.8 7.7.7 7.7.8 7.7.7 7.7.8 7.7.7 7.7.8 7.7.7 7.7.8 7.7.7 7.7.8 7.7.7 7.7.8 7.7.7 7.7.8 7.7.7 7.7.8 7.7.7 7.7.8 7.7.7 7.7.8 7.7.7 7.7.8 7.7.7 7.7.7 7.7.8 7.7.7 7.7.8 7.7.7.7 7.7.

(69) ¹H-NMR (600 MHz, CDCl₃) spectrum of 37

(71) ¹H-NMR (600 MHz, CDCl₃) spectrum of 38

(72) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 38

(73) ¹⁹F-NMR (565 MHz, CDCl₃) spectrum of 38

(74) ¹H-NMR (600 MHz, CDCl₃) spectrum of 39

(75) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 39

(87) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 45

(89) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 46

S91

(93) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 48

(109) ¹H-NMR (600 MHz, CDCl₃) spectrum of 56

(111) ¹H-NMR (600 MHz, CDCl₃) spectrum of 57

(113) ¹H-NMR (600 MHz, CDCl₃) spectrum of 58

(119) ¹H-NMR (600 MHz, CDCl₃) spectrum of 61

(121) ¹H-NMR (600 MHz, CDCl₃) spectrum of 62

(123) ¹H-NMR (600 MHz, CDCl₃) spectrum of 63

(125) ¹H-NMR (600 MHz, CDCl₃) spectrum of 64

(127) ¹⁹F-NMR (565 MHz, CDCl₃) spectrum of 64

(128) ¹H-NMR (600 MHz, CDCl₃) spectrum of 65

-56.5 -57.0 -57.5 -58.0 -58.5 -59.0 -59.5 -60.0 -60.5 -61.0 -61.5 -62.0 -62.5 -63.0 -63.5 -64.0 -64.5 -65.0 -65.5 -66.0 -66.5 -67.0 -67. f1 (ppm)

(129) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 65

5.0 4.5 f1 (ppm) 3.5

3.0

4.0

2.0

1.5

1. 0

0.5

2.5

7.5

9.5

9.0

8.5

8.0

7.0

6.5

6.0

5.5

32 -94 -96 -98 -100 -102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -14

(133) ¹H-NMR (600 MHz, CDCl₃) spectrum of 67

(134) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 67

(135) ¹H-NMR (600 MHz, CDCl₃) spectrum of 68

8.8.41 8.8.21 8.8.41 4.8.12

