Electronic Supplementary Information

Directing-group-free Strategy for the Iodine-catalyzed Regioselective Dichalcogenation of Indoles, Understanding the Full Catalytic Cycles

Xiaoxiang Zhang,^a Chenrui Liu,^a Wenwei Pang,^b Xiaoting Gu,^a Wanxing Wei,^a Zhuan Zhang,^a Haiyan Chen^{b*} and Taoyuan Liang^{a*}

^aGuangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
 ^bMedical College of Guangxi University, Nanning, Guangxi 530004, People's Republic of China.

*E-mail: taoyuanliang@gxu.edu.cn (T.Y.L.), czyzsu@gxu.edu.cn (H.Y.C.).

TABLE OF CONTENTS

1.	General information.	S3
2.	Substrates preparation.	S4-S6
3.	Optimization of reaction conditions.	S7-S11
4.	Typical procedure for the synthesis of 3aa and 4aa.	S11
5.	Control experiments.	S11-S14
6.	Synthetic utility.	S14-S16
7.	Single crystal X-ray diffraction of 3aa, 4ka and 5.	S16-S30
8.	Computational Details.	S30-S71
9.	References.	S71-S72
10.	Analytical data of the obtained compounds.	S72-S96
11.	NMR spectra of the obtained compounds.	S97-S166

MATERIALS AND METHODS

1. General information.

All air- and moisture-insensitive reactions were carried out under an ambient atmosphere and monitored by thin-layer chromatography (TLC). Concentration under reduced pressure was performed by rotary evaporation at 50–60 °C at an appropriate pressure. Purified compounds were further dried under vacuum $(10^{-6}-10^{-3} \text{ bar})$. Yields refer to purified and spectroscopically pure compounds, unless otherwise stated.

Solvents

All solvents were purchased from Greagent (Shanghai Titansci incorporated company) and used without further purification and used as received.

Chromatography

Thin layer chromatography (TLC) (Qingdao Jiyida silica gel reagent factory GF254) was performed using EMD TLC plates pre-coated with 250 µm thickness silica gel 60 F254 plates and visualized by fluorescence quenching under UV light and I2 stain. Column chromatography was performed on silica gel (200-300 mesh).

Spectroscopy and Instruments

NMR spectra were recorded on Bruker-400/500/600 spectrometer operating at (600 MHz, 565 MHz and 151 MHz), (500 MHz, 471 MHz and 126 MHz), (400 MHz, 376 MHz and 101 MHz), for 1H, 19F and 13C acquisitions, respectively. Chemical shifts are reported in ppm with the solvent residual peak as the internal standard. For ¹H-NMR: CDCl₃, 7.26, For ¹³C-NMR: CDCl₃, 77.16, ¹⁹F-NMR spectra were referenced using a unified chemical shift scale based on the 1H resonance of tetramethylsilane (1% v/v solution in the respective solvent). Data is reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, sext = sextet, sept = septet, m = multiplet, bs = broad singlet, coupling constants in Hz, integration.

Instrument

All reactions were heated by metal sand bath (WATTCAS, LAB-500, https://www.wattcas.com).

EXPERIMENTAL DATA

2. Substrates preparation.

(1) General Procedure for the preparation of indoline derivatives (1a-1p)¹:

Procedure for indoline (1f): To a suspended solution of indole (1.33 g, 11.4 mmol) in HOAc (20.0 mL), NaBH₃CN (1.89 g, 35.0 mmol) was added dropwise at 0 °C. The heterogeneous mixture was stirred for 2 h at room temperature. Quenched with saturated NH₄Cl (20.0 mL), and extracted with ether (4×75.0 mL). The organic layers were combined, washed with brine, dried over anhydrous Na₂SO₄ and concentrated in vacuo. The resulting oil was purified by column chromatography on silica gel (petroleum ether) afforded **1f** as a yellow oil. Similarly, the other indolines derivatives were prepared from their corresponding indoles and halides.

NMR Spectroscopy (1f):

¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.20 (d, *J* = 7.3 Hz, 1H), 7.10 (t, *J* = 7.6 Hz, 1H), 6.79 (t, *J* = 7.4 Hz, 1H), 6.72 (d, *J* = 7.8 Hz, 1H), 3.60 (q, *J* = 8.4 Hz, 3H), 3.10 (t, *J* = 8.4 Hz, 2H), known compound.

(2) General Procedure for the preparation of disulfide derivatives (2a-2p)²:

Procedure for 1,2-bis(4-chlorophenyl)disulfane (2f): To a round bottle (50 mL) were added 4-chlorobenzenethiol (5.0 mmol), anhydrous potassium carbonate (0.69 g, 5.0 mmol), and MeCN (10 mL) sequentially, and the reaction was conducted at room temperature under air atmosphere for 1 hour. And the desired disulfides were obtained quantitatively, after filter and concentration.

NMR Spectroscopy (2f):

¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.43 (d, J = 8.6 Hz, 2H), 7.30 (d, J = 8.6 Hz, 2H), known compound.

(3) General Procedure for the preparation of diselenoether derivatives (2q-2v)³:

Procedure for 1,2-diphenyldiselane (2q): To a stirred solution of Se metal (2.0 mmol) and iodobenzene (1.0 mmol) in dry DMSO (2.0 mL) was added CuO nanoparticles (10.0 mol%) followed by KOH (2.0 equiv) under argon atmosphere at 90 °C. The progress of the reaction was monitored by TLC. After the reaction was complete, the reaction mixture was allowed to cool to room temperature and it was then quenched with water and extracted with EtOAc. The combined organic layers were dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure, and the residue was purified by flash chromatography on a silica gel column chromatography (Pet Ether) to give the pure diselenides.

NMR Spectroscopy (2q):

¹H-NMR (600 MHz, Chloroform-*d*) δ 7.81–7.52 (m, 4H), 7.36–7.24 (m, 6H), known compound.

Scheme S1. Scope of indolines.

Scheme S2. Scope of dichalconides.

3. Optimization of reaction conditions.

3.1. Optimization of reaction conditions A.

Table S1. Screening the solvent of reaction.^a

+	Ph、S ^{-S} 、Ph <mark>Solvent</mark> (3 mL), air,80°C, 5 h	Ph ^{-S} N
1a = 0.30 mmol	2a = 0.25 mmol	3aa
Entry	Solvent	Yield $(\%)^b$
1	1,4-dioxane	84
2	CH ₃ CN	18
3	Toluene	26
4	DCE	44
5	DMF	trace
6	DMSO	73
7	DMSO/1,4-dioxane (1/1)	71
8	DMSO/1,4-dioxane (1/2)	87
9	DMSO/1,4-dioxane (1/3)	79
10	DMSO/1,4-dioxane (1/4)	87
11	DMSO/1,4-dioxane (1/5)	94
12	DMSO/1,4-dioxane (2/1)	52

^{*a*}Reaction conditions A, unless specified otherwise: **1a** (0.30 mmol), **2a** (0.25 mmol) and I₂ (100 mol%), **solvent** (3.0 mL) were stirred at 80 °C under air for 5 h. ^{*b*}Isolated yield.

Table S2. Screening the temperature of reaction.^a

^{*a*}Reaction conditions A, unless specified otherwise: **1a** (0.30 mmol), **2a** (0.25 mmol) and I₂ (100 mol%), DMSO/1,4-dioxane (1/5, 3.0 mL) were stirred at **T** $^{\circ}$ **C** under air for 5 h. ^{*b*}Isolated yield.

Table S3. Screening the amount of I₂.^{*a*}

+	Ph_S ^S Ph $\frac{I_2 (X \text{ mol}\%)}{DMSO/1,4\text{-dioxane (1/5, 3 mL),}}$ air, 80 °C, 5 h	Ph ^{-S} N 333
1a = 0.30 mmol	Za = 0.25 mmol	Viold (%)
Entry	A (moi 76)	1 ieiu (70) [*]
1	50	47
2	80	75
3	100	94
4	120	88
5	150	86

^{*a*}Reaction conditions A, unless specified otherwise: **1a** (0.30 mmol), **2a** (0.25 mmol) and I₂ (**X** mol%), DMSO/1,4-dioxane (1/5, 3.0 mL) were stirred at 80 °C under air for 5 h. ^{*b*}Isolated yield.

Table S4. Screening the reaction time.^a

+	Ph_S ^S Ph DMSO/1,4-dioxane (1/5, 3.0 mL) air, 80 °C, Y h	Ph-S-Ph
1a = 0.30 mmol	2a = 0.25 mmol	3aa
Entry	Y (h)	Yield (%) ^b
1	3	62
2	5	94
3	8	72
4	10	77

^{*a*}Reaction conditions A, unless specified otherwise: **1a** (0.30 mmol), **2a** (0.25 mmol) and I₂ (100 mol%), DMSO/1,4-dioxane (1/5, 3.0 mL) were stirred at 80 °C under air for **Y** h. ^{*b*}Isolated yield.

Table S5. Screening the iodized salt.^a

+ N	Ph_s ^S Ph [] (100 mol%) DMSO/1,4-dioxane (1/5, 3 mL) air, 80 °C, 5 h	Ph-S-Ph
1a = 0.30 mmol	2a = 0.25 mmol	3aa
Entry	[I] (100 mol%)	Yield (%) ^b
1	NaI	31
2	KI	26
3	NH ₄ I	45

^{*a*}Reaction conditions A, unless specified otherwise: **1a** (0.30 mmol), **2a** (0.25 mmol) and **[1**] (100 mol%), DMSO/1,4-dioxane (1/5, 3.0 mL) were stirred at 80 °C under air for 5 h. ^{*b*}Isolated yield.

NIS

3.2. Optimization of reaction conditions B.

Table S6. Screening the oxidants^a

4

1a = 0.25 mmol	Ph_s_Ph [0], l ₂ (100 mol%) DMSO/1,4-dioxane (1/5, 3 mL) air, 80 °C, 5 h 2a = 0.25 mmol	S-Ph N S 4aa
Entry	Oxidant	Yield (%) ^b
1	$K_2S_2O_8$	12
2	ТВНР	0
3	DTBP	0
4	DDQ	36

^{*a*}Reaction conditions B, unless specified otherwise: **1a** (0.30 mmol), **2a** (0.50 mmol), I₂ (100 mol%), **oxidant** (2.0 equiv.) and DMSO/1,4-dioxane (1/5, 3.0 mL) were stirred at 80 °C under air for 5 h. ^{*b*}Isolated yield.

Table S7. Screening the amount of 2a.^a

+	Ph _S SPh	DDQ (2.0 equiv.), I ₂ (100 mol%) DMSO/1,4-dioxane (1/5, 3 mL) air, 80 °C, 5 h	S-Ph S-Ph S Ph
1a = 0.25 mmol	2a = X mmol		4aa
Entry		X (mmol)	Yield (%) ^b
1		0.30	43
2		0.40	57
3		0.5	64
4		0.6	55

^{*a*}Reaction conditions B, unless specified otherwise: **1a** (0.30 mmol), **2a** (X mmol), I₂ (100 mol%), DDQ (2.0 equiv.) and DMSO/1,4dioxane (1/5, 3.0 mL) were stirred at 80 °C under air for 5 h. ^{*b*}Isolated yield.

Table S8. Screening the amount of I₂.^{*a*}

Entry	X (mmol)	Yield (%) ^b
1	80	60
2	50	59
3	30	62
4	20	54

^{*a*}Reaction conditions B, unless specified otherwise: **1a** (0.30 mmol), **2a** (0.50 mmol), I_2 (**X** mol%), DDQ (2.0 equiv.) and DMSO/1,4dioxane (1/5, 3.0 mL) were stirred at 80 °C under air for 5 h. ^{*b*}Isolated yield.

_Ph

Table S9. Screening the reaction time.^a

+	Ph_s_Ph BDQ (2.0 equiv.), I ₂ (30 mol%) DMSO/1,4-dioxane (1/5, 3.0 mL) air, 80 °C, Y h	N Ph
1a = 0.25 mmol	2a = 0.50 mmol	4aa
Entry	Y (h)	Yield (%) ^b
1	10	77
2	15	85
3	20	91
4	24	88

^{*a*}Reaction conditions B, unless specified otherwise: **1a** (0.30 mmol), **2a** (0.50 mmol) I_2 (30 mol%), DDQ (2.0 equiv.) and DMSO/1,4dioxane (1/5, 3.0 mL) were stirred at 80 °C under air for **Y** h. ^{*b*}Isolated yield.

4. Typical procedure for the synthesis of 3aa and 4aa

(1) Typical procedure for the synthesis of 3aa:

Under air atmosphere, 1-methylindoline **1a** (40.0 mg, 0.30 mmol), 1,2-diphenyldisulfane **2a** (54.5 mg, 0.25 mmol), I₂ (63.3 mg, 0.25 mmol), DMSO (0.5 mL) and 1,4-dioxane (2.5 mL) were added successively to a Schlenk tube (50 mL) equipped with a magnetic stirrer bar, and the resulting reaction mixture was heated at 80 °C for 5 h. After cooling to room temperature, the resulting mixture was washed with 10% Na₂CO₃ aqueous solution, and then extracted with ethyl acetate, the combined organic layers were dried with anhydrous Na₂SO₄, and then concentrated by removing the solvent under vacuum. The residue was purified by column chromatography on silica gel, and eluting with petroleum ether/ethyl acetate (5/1, v/v) to give

the product **3aa** as a white solid (81.5 mg, 94% yield).

(2) Typical procedure for the synthesis of 4aa:

Under air atmosphere, 1-methylindoline **1a** (33.3 mg, 0.25 mmol), 1,2-diphenyldisulfane **2a** (109.0 mg, 0.50 mmol), I₂ (19.0 mg, 30 mol%), DDQ (113.5 mg, 0.50 mmol), DMSO (0.5 mL) and 1,4-dioxane (2.5 mL) were added successively to a Schlenk tube (50 mL) equipped with a magnetic stirrer bar, and the resulting reaction mixture was heated at 80 °C for 20 h. After cooling to room temperature, the resulting mixture was washed with 10% Na₂CO₃ aqueous solution, and then extracted with ethyl acetate, the combined organic layers were dried with anhydrous Na₂SO₄, and then concentrated by removing the solvent under vacuum. The residue was purified by column chromatography on silica gel, and eluting with petroleum ether/ethyl acetate (10/1, v/v) to give the product **4aa** as a white solid (79.4 mg, 91% yield).

5. Control experiments.

(1) 1-methyl-5-(phenylthio)indoline **1a-1** (60.3 mg, 0.25 mmol) and I₂ (100 mol%), 1,4-dioxane/DMSO (5/1, 3.0 mL) were stirred at 80 °C under air for 5 h. The reaction mixture was purified by preparative TLC on silica eluting with petroleum ether/dichloromethane (10:1) to give product **1a-2** (44.8 mg, 75% yield).

(2) Under the optimized reaction conditions A, the reaction of 1a-2 (59.7 mg, 0.25 mmol) and 2a (27.3 mg, 0.125 mmol) were carried. Then, the reaction mixture was purified by preparative TLC on silica eluting with petroleum ether/dichloromethane (10:1) to give product 3aa as white solid (75.5 mg, 87% yield).

(3) 1-methylindoline 1a (33.3 mg, 0.25 mmol) I_2 (30 mol%) and DDQ (113.5 mg, 0.50 mmol), 1,4dioxane/DMSO (5/1, 3.0 mL) were stirred at 80 °C under air for 20 h. The reaction mixture was purified by preparative TLC on silica eluting with petroleum ether/dichloromethane (10:1) to give product 1a-3 (32.1 mg, 98% yield).

(4) Under the optimized reaction conditions B, the reaction of **1a-3** (33.3 mg, 0.25 mmol) and **2a** (109.0 mg, 0.50 mmol) were carried. Then, the crude reaction mixture was analyzed by TLC in 2 hours and20 hours respectively. The reaction mixture (**2 h**) was purified by preparative TLC on silica eluting with petroleum ether/dichloromethane (10:1) to give product **1a-4** as white solid (28.1 mg, 47% yield) and **4aa** (trace). The reaction mixture (**2 h**) was purified by preparative TLC on silica eluting with petroleum ether/dichloromethane (10:1) to give product **1a-4** as white solid (28.1 mg, 47% yield) and **4aa** (trace). The reaction mixture (**20 h**) was purified by preparative TLC on silica eluting with petroleum ether/dichloromethane (10:1) to give product **4aa** as white solid (80.7 mg, 93% yield) and **1a-4** (trace).

(5) Conditions 1: Under the optimized reaction conditions B, the reaction of 1a-3 (33.3 mg, 0.25 mmol) and 1,2-bis(4-nitrophenyl)disulfane (154.0 mg, 0.50 mmol) were carried. Then, the reaction mixture was purified by preparative TLC on silica eluting with petroleum ether/dichloromethane (10:1) to give product 4 as white solid (47.6 mg, 67% yield).

Conditions 2: Under the optimized reaction conditions B, the reaction of **1a-3** (33.3 mg, 0.25 mmol) and dimethyl 2,2'-disulfanediyldibenzoate (167.0 mg, 0.50 mmol) were carried. Then, the reaction mixture was purified by preparative TLC on silica eluting with petroleum ether/dichloromethane (10:1) to give product **5** as white solid (60.1 mg, 81% yield).

$$1a-3 + (Ar-S) \xrightarrow{DDQ (2.0 equiv.), l_2 (30 mol\%)}_{DMSO/1,4-dioxane (1/5, 3.0 mL)} \xrightarrow{S-Ar}_{N} \xrightarrow{S-Ar}_{N} \xrightarrow{Ar}_{N} \xrightarrow{Ar}_{N$$

(6) Conditions 1: Under the standard condition A, two free radical trapping reagents, 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) and hydroxytoluene (BHT) was introducing to this reaction A. Then, the reaction mixture was purified by preparative TLC on silica eluting with petroleum ether/dichloromethane (10:1) to give product **3aa** as white solid (32.1 mg, 37% yield and trace products, respectively).

Conditions 2: Under the standard condition B, two free radical trapping reagents, 2,2,6,6-tetramethyl-1piperidinyloxy (**TEMPO**) and hydroxytoluene (**BHT**) was introducing to this reaction B. Then, the reaction mixture was purified by preparative TLC on silica eluting with petroleum ether/dichloromethane (10:1) to give product **4aa** as white solid (10.4 mg, 21% yield and trace products, respectively).

(7) Under the standard condition A/B, N_2 instead of air was used. The resulting mixture was concentrated by removing the solvent under vacuum, and the residue was purified by preparative TLC on silica gel by using petroleum ether/dichloromethane (10:1) as the eluent to give **3aa** as a white solid (78.1 mg, 90% yield) or **4aa** as a white solid (72.0 mg, 83% yield).

(8) Under the standard condition A/B of both N_2 atmosphere and the absence of DMSO. Then, the crude reaction mixture was analyzed by TLC, and **3aa** not observed. Another resulting mixture was concentrated by removing the solvent under vacuum, and the residue was purified by preparative TLC on silica gel by using petroleum ether/dichloromethane (10:1) as the eluent to give **4aa** as a white solid (13.9 mg, 16% yield).

(9) Under the standard condition A/B of both N₂ atmosphere and the absence of DMSO, two equivalents of I_2 were employed in this scenario. The resulting mixture was concentrated by removing the solvent under vacuum, and the residue was purified by preparative TLC on silica gel by using petroleum ether/dichloromethane (10:1) as the eluent to give **3aa** as a white solid (77.2 mg, 89% yield) or **4aa** as a white solid (68.5 mg, 79% yield).

6. Synthetic utility.

(1) To a solution of **3aa** (86.8 mg, 0.25 mmol) in DMA (3.0 mL) was added CF_3SO_2Na (3.0 equiv), $CuSO_4$ (10 mol%), TBHP (5.0 equiv) under N₂. After stirring at 85 °C for 1 h, the organic layer was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography using ethyl acetate /petroleum (1:10) as eluent to afford the pure product **6** as a white solid (71.6 mg, 69% yield).

(2) To a solution of **3aa** (86.8 mg, 0.25 mmol) in MeCN (3.0 mL) was added pyrazol (3.0 equiv), I_2 (1.0 equiv) under O_2 . After stirring at 80 °C for 12 h, the organic layer was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography using ethyl acetate /petroleum (1:10) as eluent to afford the pure product **7** as a white solid (43.4 mg, 42% yield).

(3) To a solution of **3aa** (86.8 mg, 0.25 mmol) in DMSO/1,4-dioxane (1/5, 3.0 mL) was added 1,2diphenyldisulfane (2.0 equiv), I_2 (1.0 equiv) under air. After stirring at 80 °C for 8 h, the organic layer was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography using ethyl acetate /petroleum (1:10) as eluent to afford the pure product **8** as a white solid (97.8 mg, 86% yield).

(4) To a solution of **3aa** (86.8 mg, 0.25 mmol) in DMF (2.0 mL) was added *N*-Bromosuccinimide (2.0 equiv) under air. After stirring at room temperature for 2 h, the organic layer was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography using ethyl acetate /petroleum (1:10) as eluent to afford the pure product **9** as a white solid (81.6 mg, 77% yield).

(5) To a solution of **3aa** (86.8 mg, 0.25 mmol) in DCE (3.0 mL) was added phenylboronic acid (2.0 equiv), $Cu(OAc)_2$ (1.0 equiv) and CF_3COOH (1.0 equiv) under air. After stirring at 80 °C for 13 h, the organic layer was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography using ethyl acetate /petroleum (1:10) as eluent to afford the pure product **10** as a white solid (45.5 mg, 43% yield).

7. Single crystal X-ray diffraction

(1) Single crystal X-ray diffraction of 3aa

White block-like single crystals of **3aa** were grown by layering a dichlormethane solution with *n*-hexane at ambient temperature. X-Ray diffraction data of one these crystals were collected on a R-AXIS SPIDER diffractometer. The measurements were performed with Mo-K α radiation ($\lambda = 0.71073$ Å). Data were collected at 293(2) K, using the ω - and φ - scans to a maximum θ value of 25.242°. The data were refined by full-matrix least-squares techniques on F² with SHELXTL-2014. And the structures were solved by direct methods SHELXS-2014. All the non-hydrogen atoms were refined anisotropically. The hydrogen atoms were included at geometrically idealized positions. And an ORTEP representation of the structure is shown below.

Figure S1. ORTEP drawing of 3aa with the numbering scheme.

Table 510. Crystal data and structure refineme	III 101 Jaa	
Identification code	3aa	
Empirical formula	$C_{21}H_{17}NS_2$	
Formula weight	347.48	
Temperature	293(2) K	
Crystal system	Monoclinic	
Space group	P2 ₁ /c	
Unit cell dimensions	a = 11.0377(12) Å	$\alpha = 90^{\circ}$.
	b = 20.8920(13) Å	$\beta = 111.387(12)^{\circ}.$
	c = 8.4833(8) Å	$\gamma = 90^{\circ}$.

Table S10. Crystal data and structure refinement for 3aa

Volume	1821.5(3) Å ³
Z	4
F(000)	728.0
Crystal size	0.20x 0.15 x 0.10 mm ³
2^{Θ} range for data collection	7.068 to 58.82
Index ranges	$-13 \le h \le 14, -26 \le k \le 28, -11 \le l \le 10$
Reflections collected	11884
Independent reflections	4287 [R(int) = 0.0344,R(sigma) = 0.0536]
Data / restraints / parameters	4287/0/219
Goodness-of-fit on F ²	1.058
Final R indices $[I \ge 2^{\sigma}(I)]$	R1 = 0.0653, wR2 = 0.1079
Final R indices (all data)	R1 = 0.1087, wR2 = 0.1244
Largest diff. peak and hole	0.21/-0.24 e.Å ⁻³

Table S11. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for **3aa**. U(eq) is defined as 1/3 of of the trace of the orthogonalised U^{ij} tensor.

S1 7862.1(8) 6547.2(3) S2 9939.9(8) 3975.7(4)	7445.6(9) 6164.3(12) 10517(3)	60.2(2) 76.3(3)
S2 9939.9(8) 3975.7(4)	6164.3(12) 10517(3)	76.3(3)
	10517(3)	
N1 7530(2) 5217.9(10)		55.6(6)
C9 8085(2) 4845.9(11)	9624(3)	45.6(6)
C4 8250(2) 5226.2(11)	8350(3)	42.3(6)
C3 7763(2) 5847.9(11)	8513(3)	47.3(6)
C16 8676(3) 3536.0(11)	4654(3)	49.4(6)
C5 8805(2) 4956.4(12)	7269(3)	48.4(6)
C10 6699(2) 6441.1(11)	5374(3)	48.3(6)
C2 7340(3) 5815.6(13)	9829(3)	55.4(7)
C11 5759(3) 5966.9(13)	4925(3)	57.6(7)
C15 6734(3) 6874.1(13)	4149(4)	62.1(8)
C6 9174(3) 4324.4(12)	7478(3)	54.9(7)
C17 9036(3) 3124.5(12)	3627(4)	61.8(8)
C8 8467(3) 4209.3(12)	9853(3)	56.1(7)
C21 7377(3) 3588.4(12)	4431(3)	57.2(7)
C7 9010(3) 3956.6(12)	8778(4)	61.0(8)
C18 8115(4) 2773.9(14)	2393(4)	72.8(10)
C20 6455(3) 3227.2(14)	3189(4)	67.5(8)
C12 4868(3) 5934.6(15)	3290(4)	67.9(8)
C14 5831(3) 6834.1(15)	2519(4)	71.7(9)

C19	6827(4)	2820.0(14)	2181(4)	74.0(9)
C1	7217(4)	5006.9(16)	11964(4)	82.3(10)
C13	4895(3)	6367.5(17)	2088(4)	75.2(9)

Table S12. Anisotropic Displacement Parameters (Å²×10³) for **3aa**. The Anisotropic displacement factorexponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
S1	65.8(5)	47.0(4)	62.3(4)	3.3(3)	16.6(4)	-5.2(3)
S2	53.9(5)	80.0(6)	97.5(6)	-39.2(5)	30.6(5)	-8.2(4)
N1	60.3(15)	64.6(14)	45.0(12)	3.8(10)	22.8(12)	1.9(12)
С9	41.6(15)	49.6(14)	36.6(13)	-0.4(11)	3.6(12)	-4.9(11)
C4	36.6(14)	47.8(14)	36.8(12)	-3.4(10)	6.6(12)	-3.6(11)
C3	46.4(16)	49.2(14)	43.7(14)	-0.4(11)	13.5(13)	-0.3(12)
C16	61.6(18)	39.1(13)	51.2(15)	0.2(11)	24.8(15)	0.5(12)
C5	44.4(15)	53.9(15)	43.4(13)	-6.9(11)	12.0(13)	-9.7(12)
C10	45.1(16)	47.4(14)	55.2(15)	7.6(12)	21.5(14)	11.0(12)
C2	54.7(18)	58.3(16)	53.2(16)	-2.8(13)	19.4(15)	7.2(13)
C11	54.0(19)	61.7(17)	58.0(17)	12.7(13)	21.4(16)	3.6(14)
C15	60(2)	55.5(16)	74(2)	17.2(14)	27.8(18)	8.3(14)
C6	46.6(17)	51.2(16)	59.5(17)	-16.5(13)	10.7(15)	-4.2(12)
C17	78(2)	51.7(16)	68.0(19)	-2.1(14)	40.5(19)	5.4(15)
C8	57.2(19)	53.3(16)	48.4(15)	4.0(12)	8.2(15)	-10.8(14)
C21	65(2)	52.2(16)	57.0(17)	-7.0(13)	24.7(16)	0.2(14)
C7	56.3(19)	41.6(14)	66.2(18)	-6.0(13)	-0.3(16)	0.0(13)
C18	117(3)	53.9(17)	58.5(18)	-10.8(14)	45(2)	-4.8(19)
C20	67(2)	70.2(19)	60.0(18)	-1.9(15)	17.1(17)	-10.9(16)
C12	56(2)	79(2)	62.5(19)	4.6(16)	13.9(17)	-2.2(16)
C14	74(2)	80(2)	63(2)	27.4(16)	26(2)	21.4(18)
C19	103(3)	64.7(19)	49.9(17)	-8.7(14)	23(2)	-22.8(19)
C1	99(3)	97(2)	62.4(19)	9.0(17)	44(2)	-7(2)
C13	65(2)	96(2)	56.8(18)	11.2(18)	12.2(17)	13.4(19)

Table S13. Bond Lengths for 3aa.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S1	C3	1.743(2)	C5	C6	1.374(3)
S1	C10	1.772(3)	C10	C11	1.384(4)
S2	C16	1.768(3)	C10	C15	1.389(3)
S2	C6	1.782(3)	C11	C12	1.379(4)
N1	C9	1.375(3)	C15	C14	1.381(4)

N1	C2	1.362(3)	C6	C7	1.408(4)
N1	C1	1.459(3)	C17	C18	1.375(4)
C9	C4	1.406(3)	C8	C7	1.367(4)
С9	C8	1.387(3)	C21	C20	1.390(4)
C4	C3	1.431(3)	C18	C19	1.369(4)
C4	C5	1.395(3)	C20	C19	1.371(4)
C3	C2	1.360(3)	C12	C13	1.371(4)
C16	C17	1.382(3)	C14	C13	1.369(4)
C16	C21	1.381(4)			

Table S14. Bond Angles for 3aa.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C3	S1	C10	104.50(12)	C11	C10	C15	118.9(3)
C16	S2	C6	103.68(12)	C15	C10	S1	116.9(2)
С9	N1	C1	125.6(2)	C3	C2	N1	110.6(2)
C2	N1	С9	108.2(2)	C12	C11	C10	120.0(2)
C2	N1	C1	126.2(2)	C14	C15	C10	120.2(3)
N1	C9	C4	108.2(2)	C5	C6	S2	119.8(2)
N1	C9	C8	129.7(2)	C5	C6	C7	120.6(2)
C8	C9	C4	122.1(2)	C7	C6	S2	119.5(2)
С9	C4	C3	106.3(2)	C18	C17	C16	120.6(3)
C5	C4	С9	119.2(2)	C7	C8	С9	117.5(2)
C5	C4	C3	134.5(2)	C16	C21	C20	119.8(3)
C4	C3	S1	127.86(18)	C8	C7	C6	121.6(2)
C2	C3	S1	125.0(2)	C19	C18	C17	120.4(3)
C2	C3	C4	106.7(2)	C19	C20	C21	120.5(3)
C17	C16	S2	116.6(2)	C13	C12	C11	121.0(3)
C21	C16	S2	124.3(2)	C13	C14	C15	120.6(3)
C21	C16	C17	119.1(3)	C18	C19	C20	119.6(3)
C6	C5	C4	118.9(2)	C14	C13	C12	119.3(3)
C11	C10	S 1	124.15(19)				

 Table S15. Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Ų×10³) for

 3aa.

Atom	x	у	Z	U(eq)
Н5	8924.61	5200.32	6419.97	58
H2	6971.89	6154.76	10207.49	67
H11	5727.44	5670.29	5727.01	69
H15	7367.64	7191.9	4427.11	74

H17	9909.69	3084.21	3771.82	74
H8	8357.88	3963.71	10705.98	67
H21	7118.47	3864.58	5109.57	69
H7	9277.74	3531.37	8907.52	73
H18	8367.34	2503.83	1696.68	87
H20	5580.65	3262.04	3041.25	81
H12	4239.54	5614.33	2996.8	82
H14	5857.75	7126.82	1706.92	86
H19	6208.21	2576.41	1358.42	89
H1A	6491.6	4717.6	11585.32	124
H1B	6996.66	5371.33	12494.75	124
H1C	7956.1	4792.99	12762.33	124
H13	4284.23	6344.55	991.85	90

(2) Single crystal X-ray diffraction of 4ka

White block-like single crystals of **4ka** were grown by layering a dichlormethane solution with *n*-hexane at ambient temperature. X-Ray diffraction data of one these crystals were collected on a R-AXIS SPIDER diffractometer. The measurements were performed with Mo-K α radiation ($\lambda = 0.71073$ Å). Data were collected at 296(2) K, using the ω - and φ - scans to a maximum θ value of 25.242°. The data were refined by full-matrix least-squares techniques on F² with SHELXTL-2014. And the structures were solved by direct methods SHELXS-2014. All the non-hydrogen atoms were refined anisotropically. The hydrogen atoms were included at geometrically idealized positions. And an ORTEP representation of the structure is shown below.

Figure S2. ORTEP drawing of 4ka with the numbering scheme.

Tuble Stor Crystal data and Stractare refinence	in ioi ina	
Identification code	4ka	
Empirical formula	$C_{20}H_{14}N_2O_2S_2\\$	
Formula weight	378.45	
Temperature	296(2) K	
Crystal system	Monoclinic	
Space group	P21/n1	
Unit cell dimensions	a = 13.2398(11) Å	$\alpha = 90^{\circ}$.
	b = 10.6639(9) Å	$\beta = 103.117(9)$ °.
	c = 13.3695(12) Å	$\gamma = 90^{\circ}.$
Volume	1838.4(3) Å ³	
Ζ	4	
F(000)	784	
Crystal size	0.18x 0.14 x 0.13mm ³	
2^{Θ} range for data collection	1.954 to 29.282	
Index ranges	-14<=h<=18, -14<=k<=13, -18	<=l<=10
Reflections collected	8828	
Independent reflections	4214 [R(int) = 0.0355]	
Data / restraints / parameters	4214 / 146 / 272	
Goodness-of-fit on F ²	1.044	
Final R indices $[I \ge 2^{\sigma}(I)]$	R1 = 0.0614, $wR2 = 0.1158$	

Table S16. Crystal data and structure refinement for 4ka

Final R indices (all data)	R1 = 0.1026, $wR2 = 0.1381$
Largest diff. peak and hole	0.248 and -0.271 e.Å ⁻³

Table S17. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for **4ka**. U(eq) is defined as 1/3 of of the trace of the orthogonalised U^{ij} tensor.

Atom	x	У	Z	U(eq)
S(1)	4661(1)	3807(1)	2243(1)	54(1)
S(2)	6885(1)	3679(1)	4156(1)	49(1)
O(1)	7850(2)	7431(3)	7166(2)	85(1)
O(2)	6885(2)	9067(3)	7113(2)	89(1)
N(1)	4535(2)	5998(2)	3305(2)	42(1)
N(2)	7081(2)	8051(3)	6768(2)	62(1)
C(1)	4005(2)	4692(3)	1169(2)	41(1)
C(2)	4396(2)	5780(3)	849(2)	55(1)
C(3)	3867(3)	6370(3)	-37(2)	67(1)
C(4)	2959(3)	5869(4)	-606(2)	73(1)
C(5)	2578(3)	4776(4)	-292(2)	73(1)
C(6)	3088(2)	4195(3)	594(2)	57(1)
C(7)	5086(2)	4941(2)	3188(2)	38(1)
C(8)	5965(2)	4885(2)	3963(2)	39(1)
C(9)	5961(2)	5969(2)	4588(2)	36(1)
C(10)	6635(2)	6428(3)	5469(2)	45(1)
C(11)	6379(2)	7550(3)	5854(2)	47(1)
C(12)	5495(2)	8240(3)	5413(2)	50(1)
C(13)	4823(2)	7805(3)	4546(2)	47(1)
C(14)	5058(2)	6664(3)	4145(2)	37(1)
C(15)	7938(2)	4351(3)	3726(2)	48(1)
C(16)	7924(2)	5494(3)	3260(2)	56(1)
C(17)	8755(7)	5914(11)	2877(7)	59(2)
C(17A)	8842(11)	6010(20)	3097(13)	58(3)
C(18)	9584(8)	5171(9)	2939(7)	82(2)
C(18A)	9771(13)	5423(14)	3380(13)	70(3)
C(19)	9573(6)	3977(8)	3311(9)	91(3)
C(19A)	9826(9)	4376(14)	3975(16)	83(4)
C(20)	8746(6)	3533(7)	3676(8)	75(2)

S22

C(2011) $0(10)$ $0(0)$	C(20A)) 8943(8)) 3878(14)	4215(14)	69(3)
------------------------	--------	-----------	------------	----------	-------

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
S(1)	70(1)	41(1)	45(1)	-4(1)	0(1)	-1(1)
S(2)	41(1)	41(1)	67(1)	12(1)	13(1)	8(1)
O(1)	57(1)	114(2)	69(2)	-12(2)	-17(1)	-22(2)
O(2)	94(2)	101(2)	72(2)	-42(2)	16(1)	-33(2)
N(1)	35(1)	49(1)	36(1)	-2(1)	-6(1)	8(1)
N(2)	57(2)	84(2)	47(2)	-16(2)	12(1)	-31(2)
C(1)	45(2)	44(2)	33(1)	-9(1)	8(1)	-1(1)
C(2)	59(2)	58(2)	47(2)	-4(2)	9(1)	-13(2)
C(3)	98(3)	56(2)	50(2)	4(2)	23(2)	-6(2)
C(4)	94(3)	75(3)	41(2)	-3(2)	-1(2)	19(2)
C(5)	69(2)	82(3)	56(2)	-7(2)	-10(2)	-8(2)
C(6)	60(2)	59(2)	50(2)	-7(2)	7(2)	-14(2)
C(7)	39(1)	40(2)	35(1)	-1(1)	7(1)	1(1)
C(8)	32(1)	42(2)	41(1)	4(1)	5(1)	6(1)
C(9)	30(1)	41(2)	35(1)	2(1)	3(1)	1(1)
C(10)	32(1)	60(2)	41(2)	4(1)	1(1)	-1(1)
C(11)	40(2)	60(2)	38(2)	-5(1)	6(1)	-17(1)
C(12)	56(2)	48(2)	48(2)	-10(2)	15(1)	-6(1)
C(13)	42(2)	49(2)	49(2)	-1(1)	5(1)	8(1)
C(14)	34(1)	42(2)	32(1)	2(1)	4(1)	2(1)
C(15)	45(2)	44(2)	60(2)	6(1)	19(1)	7(1)
C(16)	57(2)	51(2)	58(2)	8(2)	11(1)	-1(1)
C(17)	79(4)	54(4)	48(4)	2(3)	19(3)	-18(3)
C(17A)	63(6)	61(6)	51(6)	-1(5)	16(5)	-7(5)
C(18)	77(5)	91(5)	90(5)	13(4)	43(4)	-6(4)
C(18A)	57(5)	76(7)	85(8)	10(6)	29(6)	-3(5)
C(19)	74(4)	96(5)	118(6)	26(4)	57(4)	27(4)
C(19A)	52(5)	84(7)	116(8)	35(6)	24(6)	5(5)
C(20)	67(4)	64(4)	106(5)	25(4)	45(4)	24(3)
C(20A)	50(5)	62(6)	99(7)	34(6)	23(5)	6(4)

Table S18. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for **4ka**. The Anisotropic displacement factorexponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S(1)	C(1)	1.772(3)	C(11)	C(12)	1.395(4)
S(1)	C(7)	1.747(3)	C(12)	H(12)	0.9300
S(2)	C(8)	1.749(3)	C(12)	C(13)	1.373(3)
S(2)	C(15)	1.775(3)	C(13)	H(13)	0.9300
O(1)	N(2)	1.230(3)	C(13)	C(14)	1.393(4)
O(2)	N(2)	1.227(3)	C(15))	C(16)	1.368(4)
N(1)	H(1)	0.8600	C(15))	C(20)	1.393(6)
N(1)	C(7)	1.371(3)	C(15)	C(20A)	1.434(10)
N(1)	C(14)	1.375(3)	C(16)	H(16)	0.9300
N(2)	C(11)	1.459(3)	C(16)	H(16A)	0.9300
C(1)	C(2)	1.378(4)	C(16))	C(17)	1.389(8)
C(1)	C(6)	1.386(4)	C(16)	C(17A)	1.395(14)
C(2)	H(2)	0.9300	C(17)	H(17)	0.9300
C(2)	C(3)	1.383(4)	C(17)	C(18)	1.341(8)
C(3)	H(3)	0.9300	C(17A)	H(17A)	0.9300
C(3)	C(4)	1.377(5)	C(17A))	C(18A)	1.355(13)
C(4)	H(4)	0.9300	C(18))	H(18)	0.9300
C(4)	C(5)	1.373(5)	C(18)	C(19)	1.369(8)
C(5)	H(5)	0.9300	C(18A)	H(18A)	0.9300
C(5)	C(6)	1.372(4)	C(18A)	C(19A)	1.363(13)
C(6)	H(6)	0.9300	C(19	H(19)	0.9300
C(7)	C(8)	1.373(3)	C(19)	C(20)	1.379(7)
C(8)	C(9)	1.427(3)	C(19A))	H(19A)	0.9300
C(9)	C(10)	1.395(3)	C(19A)	C(20A)	1.388(12)
C(9)	C(14)	1.417(3)	C(20)	H(20)	0.9300
C(10)	H(10)	0.9300	C(20A)	H(20A)	0.9300
C(10)	C(11)	1.374(4)			

 Table S19. Bond Lengths for 4ka.

Table S20. Bond Angles for 4ka.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C(7)	S(1)	C(1)	103.63(12)	C(13)	C(12)	H(12)	120.0
C(8)	S(2)	C(15)	103.15(13)	C(12)	C(13)	H(13)	121.3
C(7)	N(1)	H(1)	125.2	C(12)	C(13)	C(14)	117.5(2)

C(7)	N(1)	C(14)	109.6(2)	C(14)	C(13)	H(13)	121.3
C(14)	N(1)	H(1)	125.2	N(1)	C(14)	C(9)	107.0(2)
O(1)	N(2)	C(11)	118.2(3)	N(1)	C(14)	C(13)	130.5(2)
O(2)	N(2)	O(1)	122.5(3)	C(13)	C(14)	C(9)	122.5(2)
O(2)	N(2)	C(11)	119.3(3)	C(16)	C(15)	S(2)	125.2(2)
C(2)	C(1)	S(1)	123.4(2)	C(16	C(15)	C(20)	117.9(4)
C(2)	C(1)	C(6)	119.6(3)	C(16)	C(15)	C(20A)	115.9(5)
C(6)	C(1)	S(1)	116.9(2)	C(20)	C(15)	S(2)	115.5(4)
C(1)	C(2)	H(2)	120.1	C(20A)	C(15)	S(2)	115.2(5)
C(1)	C(2)	C(3)	119.7(3)	C(15	C(16	H(16)	119.1
C(3)	C(2)	H(2)	120.1	C(15)	C(16)	H(16A)	120.0
C(2)	C(3)	(3)	119.8	C(15)	C(16)	C(17)	121.7(6)
C(4)	C(3)	C(2)	120.4(3)	C(15)	C(16)	C(17A)	120.0(10)
C(4)	C(3)	H(3)	119.8	C(17)	C(16)	H(16)	119.1
C(3)	C(4)	H(4)	120.1	C(17A)	C(16)	H(16A)	120.0
C(5)	C(4)	C(3)	119.7(3)	C(16)	C(17)	H(17)	120.3
C(5)	C(4)	H(4)	120.1	C(18)	C(17)	C(16)	119.5(9)
C(4)	C(5)	H(5)	119.8	C(18)	C(17)	H(17)	120.3
C(6)	C(5)	C(4)	120.3(3)	C(16))	C(17A)	H(17A)	118.6
C(6)	C(5)	H(5)	119.8	C(18A)	C(17A)	C(16)	122.9(18)
C(1)	C(6)	H(6)	119.9	C(18A)	C(17A)	H(17A)	118.6
C(5)	C(6)	C(1)	120.2(3)	C(17)	C(18)	H(18)	120.1
C(5)	C(6)	H(6)	119.9	C(17)	C(18)	C(19)	119.8(9)
N(1)	C(7)	S(1)	124.00(18)	C(19)	C(18)	H(18)	120.1
N(1)	C(7)	C(8)	109.4(2)	C(17A)	C(18A)	H(18A)	121.1
C(8)	C(7)	S(1)	126.5(2)	C(17A)	C(18A)	C(19A)	117.8(16)
C(7)	C(8)	S(2)	125.9(2)	C(19A)	C(18A)	H(18A)	121.1
C(7)	C(8)	C(9)	106.9(2)	C(18)	C(19)	H(19)	119.2
C(9)	C(8)	S(2)	127.15(18)	C(18)	C(19)	C(20)	121.5(7)
C(10)	C(9)	C(8)	133.8(2)	C(20)	C(19)	H(19)	119.2
C(10)	C(9)	C(14)	119.1(2)	C(18A)	C(19A)	H(19A)	119.6
C(14)	C(9)	C(8)	107.1(2)	C(18A)	C(19A	C(20A)	120.8(12)
C(9)	C(10)	H(10)	121.4	C(20A)	C(19A)	H(19A)	119.6
C(11)	C(10)	C(9)	117.2(2)	C(15)	C(20)	H(20)	120.6
C(11)	C(10)	H(10)	121.4	C(19)	C(20))	C(15)	118.8(6)

C(10)	C(11)	N(2)	118.0(3)	C(19) C(20) H(20)	120.6
C(10)	C(11)	C(12)	123.8(2)	C(15) C(20A) H(20A)	119.9
C(12)	C(11)	N(2)	118.3(3)	C(19A) C(20A) C(15)	120.2(10)
C(11)	C(12)	H(12)	120.0	C(19A) C(20A) H(20A)	119.9
C(13)	C(12)	C(11)	119.9(3)		

Table S21. Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for **4ka**.

Atom	x	У	z	U(eq)
H(1)	3951	6212	2913	51
H(2)	5014	6116	1227	66
H(3)	4126	7110	-250	80
H(4)	2604	6270	-1201	87
H(5)	1971	4428	-682	87
H(6)	2817	3465	811	69
H(10)	7232	5994	5782	54
H(12)	5360	8994	5708	60
H(13)	4233	8255	4237	57
H(16)	7343	6004	3197	67
H(16A)	7303	5928	3051	67
H(17)	8737	6705	2580	71
H(17A)	8815	6788	2779	69
H(18)	10164	5466	2730	98
H(18A)	10352	5726	3176	84
H(19)	10135	3452	3319	109
H(19A)	10464	3991	4223	100
H(20)	8728	2703	3886	90
H(20A)	9002	3235	4695	83

(3) Single crystal X-ray diffraction of 5.

White block-like single crystals of **5** were grown by layering a dichlormethane solution with *n*-hexane at ambient temperature. X-Ray diffraction data of one these crystals were collected on a R-AXIS SPIDER diffractometer. The measurements were performed with Mo-K α radiation ($\lambda = 0.71073$ Å). Data were collected at 293(2) K, using the ω - and φ - scans to a maximum θ value of 25.242°. The data were refined by full-matrix least-squares techniques on F² with SHELXTL-2014. And the structures were solved by direct

methods SHELXS-2014. All the non-hydrogen atoms were refined anisotropically. The hydrogen atoms were included at geometrically idealized positions. And an ORTEP representation of the structure is shown below.

Figure S3. ORTEP drawing of 5 with the numbering scheme.

Identification code	5		
Empirical formula	CHNO.S		
Eormula weight	207.36		
	297.30		
Temperature	293(2) K		
Crystal system	Monoclinic		
Space group	P2 ₁ /c		
Unit cell dimensions	a = 7.9527(7)) Å	$\alpha = 90^{\circ}.$	
	b = 13.3537(10) Å	$\beta = 98.396(7)$ °.	
	c = 13.9904(10) Å	$\gamma = 90^{\circ}$.	
Volume	1469.8(2) Å ³		
Ζ	4		
F(000)	624.0		
Crystal size	0.15x 0.12 x 0.10mm ³		
2^{Θ} range for data collection	4.238 to 58.778		
Index ranges	$-7 \le h \le 10, -18 \le k \le 16, -18 \le l \le 19$		
Reflections collected	7087		

Table S22. Crystal data and structure refinement for	5
---	---

S27

Independent reflections	3370 [Rint = 0.0377, Rsigma = 0.0655]
Data / restraints / parameters	3370/0/193
Goodness-of-fit on F ²	1.038
Final R indices $[I \ge 2^{\alpha}(I)]$	R1 = 0.0582, wR2 = 0.1122
Final R indices (all data)	R1 = 0.0955, wR2 = 0.1301
Largest diff. peak and hole	0.23/-0.22 e.Å ⁻³

Table S23. Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for **5**. U(eq) is defined as 1/3 of of the trace of the orthogonalised U^{ij} tensor.

Atom	x	У	z	U(eq)
S1	3009.4(8)	4525.3(5)	6995.1(4)	48.3(2)
02	1671(2)	3957.1(14)	9885.9(11)	64.3(5)
01	2771(3)	4945.8(15)	8871.7(12)	69.6(6)
N1	2780(2)	4627.6(15)	4183.1(13)	44.8(5)
C11	1216(3)	3509.4(17)	8252.3(15)	39.6(5)
C9	3795(3)	3791.4(18)	4336.4(15)	39.9(5)
C10	1615(3)	3580.0(17)	7309.0(15)	38.7(5)
C4	4022(3)	3573.5(18)	5330.6(15)	40.0(6)
C16	1971(3)	4213.4(19)	9009.8(16)	44.8(6)
C3	3066(3)	4308.5(18)	5769.4(15)	42.1(6)
C15	879(3)	2886.0(19)	6629.3(17)	48.8(6)
C8	4540(3)	3217.4(19)	3682.1(17)	49.4(6)
C2	2354(3)	4925.7(18)	5044.8(16)	45.2(6)
C12	93(3)	2771.5(19)	8468.5(19)	50.9(6)
C5	5025(3)	2757.4(19)	5666.1(18)	52.2(7)
C13	-643(3)	2109(2)	7778(2)	59.1(7)
C14	-228(3)	2165.9(19)	6861.7(19)	54.9(7)
C7	5508(3)	2415(2)	4046(2)	58.7(7)
C1	2293(3)	5120(2)	3256.5(17)	59.4(7)
C6	5751(3)	2187(2)	5025(2)	62.0(7)
C17	2436(4)	4590(2)	10666.1(18)	78.8(10)

Table S24. Anisotropic Displacement Parameters (Å $^2 \times 10^3$) for **5**. The Anisotropic displacement factorexponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
S1	57.3(4)	43.5(4)	45.9(4)	-7.0(3)	13.8(3)	-11.1(3)
02	84.9(13)	65.2(13)	44.9(9)	-0.5(10)	16.7(9)	-21.3(11)
01	107.5(16)	54.8(12)	48.8(10)	-7.7(10)	19.2(10)	-31.7(12)

N1	43.6(11)	46.1(12)	43.8(11)	0.6(10)	3.2(9)	2.1(10)
C11	36.9(12)	33.8(13)	48.5(13)	-0.3(11)	7.8(10)	3.8(11)
С9	34.6(12)	39.8(14)	45.2(12)	-3.6(11)	5.2(10)	-4.5(11)
C10	34.9(12)	33.4(12)	47.2(12)	-2.6(11)	3.9(10)	4.0(10)
C4	37.9(13)	39.0(13)	42.8(12)	-3.1(11)	5.4(10)	-4.3(11)
C16	50.5(15)	38.4(14)	47.5(14)	1.9(12)	13.6(11)	4.5(12)
C3	44.5(13)	40.5(14)	42.1(12)	-2.7(11)	9.4(10)	-3.7(12)
C15	47.4(14)	45.6(15)	53.1(14)	-8.0(12)	6.5(11)	0.6(12)
C8	45.5(14)	53.3(17)	49.7(13)	-7.4(13)	7.8(11)	-5.0(13)
C2	42.8(14)	40.3(14)	53.6(14)	-6.0(12)	11.0(11)	2.4(12)
C12	46.1(15)	46.4(15)	62.4(15)	5.5(13)	15.3(12)	-1.6(13)
C5	56.7(16)	45.8(15)	52.2(14)	3.4(13)	1.5(12)	4.3(13)
C13	48.8(16)	45.2(16)	85(2)	-0.3(15)	16.7(14)	-11.5(14)
C14	46.1(15)	42.6(15)	73.8(18)	-13.5(14)	1.1(13)	-6.8(13)
C7	48.2(15)	59.0(18)	71.0(18)	-19.0(16)	15.1(13)	3.3(14)
C1	60.8(17)	62.7(19)	51.5(14)	8.1(14)	-3.1(12)	7.7(15)
C6	56.2(17)	48.8(17)	79.5(19)	-3.1(16)	4.3(14)	12.1(14)
C17	114(3)	81(2)	43.1(14)	-9.3(16)	17.3(15)	-25(2)

 Table S25. Bond Lengths for 5.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S1	C10	1.777(2)	С9	C8	1.391(3)
S1	C3	1.746(2)	C10	C15	1.394(3)
02	C16	1.327(3)	C4	C3	1.433(3)
02	C17	1.443(3)	C4	C5	1.391(3)
01	C16	1.197(3)	C3	C2	1.364(3)
N1	С9	1.376(3)	C15	C14	1.375(3)
N1	C2	1.359(3)	C8	C7	1.374(3)
N1	C1	1.455(3)	C12	C13	1.375(3)
C11	C10	1.405(3)	C5	C6	1.367(3)
C11	C16	1.477(3)	C13	C14	1.372(3)
C11	C12	1.393(3)	C7	C6	1.388(4)
С9	C4	1.407(3)			

Table S26. Bond Angles for 5.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C3	S1	C10	103.39(11)	C5	C4	C3	134.9(2)
C16	02	C17	115.8(2)	02	C16	C11	112.9(2)
С9	N1	C1	125.4(2)	01	C16	02	122.1(2)
C2	N1	С9	108.43(19)	01	C16	C11	125.0(2)

C2	N1	C1	126.1(2)	C4	C3	S1	128.73(18)
C10	C11	C16	120.5(2)	C2	C3	S1	124.20(18)
C12	C11	C10	119.4(2)	C2	C3	C4	106.51(19)
C12	C11	C16	120.1(2)	C14	C15	C10	121.5(2)
N1	С9	C4	108.04(19)	C7	C8	С9	117.1(2)
N1	С9	C8	129.9(2)	N1	C2	C3	110.6(2)
C8	С9	C4	122.1(2)	C13	C12	C11	121.5(2)
C11	C10	S1	120.95(17)	C6	C5	C4	119.4(2)
C15	C10	S1	121.23(17)	C14	C13	C12	119.0(2)
C15	C10	C11	117.8(2)	C13	C14	C15	120.6(2)
С9	C4	C3	106.4(2)	C8	C7	C6	121.7(2)
C5	C4	С9	118.7(2)	C5	C6	C7	121.0(3)

Table S27. Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 5.

Atom	x	У	z	U(eq)
H15	1144.16	2910.77	6003.82	59
H8	4389.02	3370.55	3026.64	59
H2	1670.31	5474.51	5128.89	54
H12	-166.27	2725.42	9094.05	61
Н5	5199.19	2600.73	6320.8	63
H13	-1409.69	1630.19	7930.6	71
H14	-700.54	1712.87	6393.24	66
H7	6014.66	2012.65	3625.63	70
H1A	3273.95	5191.78	2935.37	89
H1B	1832.3	5769.14	3358.53	89
H1C	1452.04	4723.8	2864.03	89
H6	6417.74	1639.76	5247.74	74
H17A	1878.24	5229.25	10622.87	118
H17B	3619.83	4679.59	10621.91	118
H17C	2318.67	4281.71	11272.85	118

8. Computational Details.

All density functional theory (DFT) calculations with tightSCF and defgrid3 were carried out using ORCA 5.0.3 packges⁴⁻⁵. Geometry optimization of all intermediates and transition states were carried out at the (U)M06-2X⁶ level of theory using a basis set of def2-TZVP⁷ and the conductor-like polarizable continuum model (CPCM) solvent model⁸ accounting for the effect of mixed solvents (V_{DMSO} : $V_{1,4-dioxane} = 1 : 5$). Frequency analyses at 353.15 K were also performed at the same level of theory as geometry optimization to confirm whether optimized stationary points were either local minimum (no imaginary frequency) or transition state (only one imaginary frequency), as well as to evaluate zero-point vibrational

energies (ZPE) and thermal corrections. Shermo 2.3.4 was used to refine the thermodynamic data⁹. And the intrinsic reaction coordinates (IRC) were done to verified the transition state with the reactant and product. The 3D diagrams of molecules were generated using CYLview2.0¹⁰ andVMD 1.9.3¹¹. The Frontier Molecular Orbitals were generated using Multiwfn 3.7¹².

(1) The Hypothesized reaction mechanisms of indoline C5–H functionalization.

(a) Mechanism of Electrophilic Aromatic Substitution.

 Table S28. The thermodynamic data and the image frequency of transition states in electrophilic aromatic substitution.

Structure	Eele(a.u.)	E0(a.u.)	U(a.u.)	H(a.u.)	G(a.u.)	Image
						frequency
						(cm ⁻¹)
1a	-404.3027160	-404.1206424	-404.1093001	-404.1081817	-404.1611783	
PhSI	-927.4612116	-927.368249	-927.3583559	-927.3572375	-927.4103003	
PhS ⁺	-629.5445557	-629.453119	-629.4452929	-629.4441745	-629.4901595	
I-	-297.8119955	-297.8119955	-297.8103179	-297.8091996	-297.8324251	
1a-π ⁺	-1033.945477	-1033.666688	-1033.647168	-1033.646049	-1033.716184	
1a-σ ⁺	-1033.947344	-1033.670006	-1033.649237	-1033.648118	-1033.722211	
TSe1	-1033.900574	-1033.628414	-1033.607918	-1033.6068	-1033.68028	876.64i
1a-1	-1033.534133	-1033.269508	-1033.249468	-1033.248349	-1033.320712	

(b) Mechanism of Radical Addition .

Table S29. The thermodynamic data and the image frequency of transition states in radical addition.

Structure	Eele(a.u.)	E0(a.u.)	U(a.u.)	H(a.u.)	G(a.u.)	Image
						frequency
						(cm ⁻¹)
I ₂	-595.2566864	-595.2561743	-595.252695	-595.2515766	-595.2874058	
PhS [.]	-629.7866477	-629.6952811	-629.6877678	-629.6866494	-629.7319149	
ŀ	-297.6129165	-297.6129165	-297.611239	-297.6101206	-297.6341213	
1a-π [.]	-1034.098198	-1033.824164	-1033.802698	-1033.80158	-1033.878058	
1a-σ [.]	-1033.879139	-1033.825969	-1033.804513	-1033.803395	-1033.878058	
TSr1	-1331.751323	-1331.481603	-1331.458239	-1331.457121	-1331.53817	1029.70i
1a-1	-1033.534133	-1033.269508	-1033.249468	-1033.248349	-1033.320712	
HI	-298.226218	-298.226218	-298.226218	-298.226218	-298.226218	

(c) Mechanism of Nucleophilic Substitution.

Table S30. The thermodynamic data and the image frequency of transition states in nucleophilic dubstitution.

Structure	Eele(a.u.)	E0(a.u.)	U(a.u.)	H(a.u.)	G(a.u.)	Image
						frequency
						(cm ⁻¹)
1a-zw	-404.2990042	-404.117869	-404.1068372	-404.1057189	-404.1584638	
TSn1	-1331.75194	-1331.476097	-1331.452693	-1331.451574	-1331.533367	267.22i
1a-s	-1331.77739	-1331.499808	-1331.476109	-1331.47499	-1331.557556	
TSn2	-1331.751198	-1331.481586	-1331.45818	-1331.457062	-1331.538299	1030.75i
1a-1	-1033.534133	-1033.269508	-1033.249468	-1033.248349	-1033.320712	

(2) The Hypothesized reaction mechanisms of indoline oxidative dehydrogenation.

 Table S31. The thermodynamic data and the image frequency of transition states in oxidative dehydrogenation.

Structure	Eele(a.u.)	E0(a.u.)	U(a.u.)	H(a.u.)	G(a.u.)	Image
						frequency
						(cm ⁻¹)
TSr2a	-1628.778441	-1628.518167	-1628.492866	-1628.491747	-1628.578475	987.69i
1a-1-inta	-1032.882403	-1032.632047	-1032.611686	-1032.610568	-1032.684477	
TSr3a	-1330.568237	-1330.321578	-1330.29927	-1330.298151	-1330.377505	945.63i
TSr2b	-1331.114624	-1330.860167	-1330.838178	-1330.83706	-1330.916216	638.86i
1a-1-intb	-1032.88995	-1032.63981	-1032.619452	-1032.618333	-1032.692277	
TSr3b	-1032.890007	-1032.639853	-1032.619536	-1032.618417	-1032.692244	855.38i
1a-2	-1032.341024	-1032.099595	-1032.080136	-1032.079017	-1032.15035	

(3) The Hypothesized reaction mechanisms of indole C3–H functionalization.

(a) Mechanism of Electrophilic Aromatic Substitution.

 Table S32. The thermodynamic data and the image frequency of transition states in electrophilic aromatic substitution.

Structure	Eele(a.u.)	E0(a.u.)	U(a.u.)	H(a.u.)	G(a.u.)	Image
						frequency
						(cm ⁻¹)
1a-2	-1032.341024	-1032.099595	-1032.080136	-1032.079017	-1032.15035	
$1a-2\pi^+$	-1661.967838	-1661.631475	-1661.603261	-1661.602142	-1661.690832	
$1a-2\sigma^+$	-1661.983593	-1661.647006	-1661.618703	-1661.617584	-1661.707477	
TSe2	-1959.797572	-1959.468208	-1959.437174	-1959.436056	-1959.53278	918.03i
3aa	-1661.573882	-1661.249836	-1661.221655	-1661.220536	-1661.310018	

(b) Mechanism of Radical Addition.

Structure	Eele(a.u.)	E0(a.u.)	U(a.u.)	H(a.u.)	G(a.u.)	Image
						frequency
						(cm ⁻¹)
1a-2	-1032.341024	-1032.099595	-1032.080136	-1032.079017	-1032.15035	
1a-2π [.]	-1662.139654	-1661.805993	-1661.776629	-1661.775511	-1661.868418	
1a-2σ [.]	-1662.136829	-1661.803365	-1661.773863	-1661.772745	-1661.865632	
TSr4	-1959.795408	-1959.465795	-1959.434895	-1959.433777	-1959.529513	1004.19i
3 aa	-1661.573882	-1661.249836	-1661.221655	-1661.220536	-1661.310018	

Note: at the M06-2X/def2-TZVP level of theory with CPCM(mixed solvent).

(4) The free energy and Boltzmann distribution (P%) of the intermediate sigma complexes

at 4, 5, 6 and 7 positions of 1a.

C4-I 1033.8964 1033.6211 1033.6003 1033.59 1033.673 29.6 88 84 16 9197 124 24	8 0.00 3 0.00 0 0.00 2 0.00
C4-I 1033.8964 1033.6211 1033.6003 1033.59 1033.673 29.6 88 84 16 9197 124 124 124 1033.8965 1033.6213 1033.6004 1033.59 1033.673 29.3 C4-II 1033.8965 1033.6213 1033.6004 1033.59 1033.673 29.3 23 46 22 9304 418 20.1 20.1 C4-III 1033.8969 1033.6217 1033.6008 1033.59 1033.673 29.2 99 59 55 9737 758 20.1 99 59 55 9737 758 20.1 6 - - - - - - 87 28 58 934 567 29.11	8 0.00 3 0.00 0 0.00 2 0.00
88 84 16 9197 124 C4-II 1033.8965 1033.6213 1033.6004 1033.59 1033.673 29.3 23 46 22 9304 418 - - - - - C4-II 1033.8965 1033.6213 1033.6004 1033.59 1033.673 29.3 23 46 22 9304 418 -	3 0.00 0 0.00 2 0.00
C4-II 1033.8965 1033.6213 1033.6004 1033.59 1033.673 29.3 23 46 22 9304 418 29.3 C4-III 1033.8969 1033.6217 1033.6008 1033.59 1033.673 29.2 G4-III 1033.8969 1033.6217 1033.6008 1033.59 1033.673 29.2 99 59 55 9737 758 20.2 99 59 55 9737 758 - - - - - - K4-IV 1033.8964 1033.6214 1033.6004 1033.59 1033.673 29.12 87 28 58 934 567	3 0.00 0 0.00 2 0.00
C4-II 1033.8965 1033.6213 1033.6004 1033.59 1033.673 29.3 23 46 22 9304 418 -	3 0.00 0 0.00 2 0.00
23 46 22 9304 418 - - - - - C4-III 1033.8969 1033.6217 1033.6008 1033.59 1033.673 29.2 99 59 55 9737 758 - - - C4-IV 1033.8964 1033.6214 1033.6004 1033.59 1033.673 29.12 87 28 58 934 567	0.00 2 0.00
C4-III 1033.8969 1033.6217 1033.6008 1033.59 1033.673 29.2 99 59 55 9737 758 - <td>0 0.00 2 0.00</td>	0 0.00 2 0.00
C4-III 1033.8969 1033.6217 1033.6008 1033.59 1033.673 29.2 99 59 55 9737 758 - <td>0 0.00 2 0.00</td>	0 0.00 2 0.00
99 59 55 9737 758 -	2 0.00
C4-IV 1033.8964 1033.6214 1033.6004 1033.59 1033.673 29.1 87 28 58 934 567	2 0.00
C4-IV 1033.8964 1033.6214 1033.6004 1033.59 1033.673 29.1 87 28 58 934 567	2 0.00
87 28 58 934 567	
C5-I 1033.9473 1033.6700 1033.6492 1033.64 1033.722 0.00	43.01
44 06 37 8118 211	
C5-II 1033.9469 1033.6694 1033.6487 1033.64 1033.721 0.50	21.10
08 36 5 7632 594	
C5-III 1033.9469 1033.6694 1033.6487 1033.64 1033.721 0.57	19.06
15 3 48 763 541	
C5-IV 1033.9469 1033.6693 1033.6487 1033.64 1033.721 0.67	16.63
05 82 14 7595 46	
C6-I 1033.9013 1033.6263 1033.6054 1033.60 1033.678 26.0	8 0.00
27 39 82 4364 409	
C6-II 1033.9013 1033.6262 1033.6054 1033.60 1033.678 26.2	6 0.00
2 78 55 4337 263	
C6-III 1033.9013 1033.6263 1033.6054 1033.60 1033.678 26.0	5 0.00
31 57 89 4371 439	
C6-IV 1033 9013 1033 6262 1033 6054 1033 60 1033 678 26.2	5 0.00
2 82 6 4341 274	0.00
C7-I 1033 9404 1033 6631 1033 6425 1033 64 1033 715 4 61	0.06
86 94 26 1408 104	0.00

 Table S34. The thermodynamic data and Boltzmann distribution (P%) of the intermediate sigma complexes at 4, 5, 6 and 7 positions of 1a.
	1033.9404	1033.6632	1033.6425	1033.64	1033.715		
	58	09	2	1402	186		
	-	-	-	-	-		
C7-III	1033.9444	1033.6662	1033.6462	1033.64	1033.716	5.04	0.03
	07	95	41	5123	722		
	-	-	-	-	-		
C7-IV	1033.9444	1033.6663	1033.6462	1033.64	1033.716	4.90	0.04
	34	78	94	5176	849		

Note: at the M06-2X/def2-TZVP level of theory with CPCM (mixed solvent).

(5) The free energy and Boltzmann distribution (P%) of the intermediate sigma complexes at 2 and 3 positions of 1a-2.

Table S35. The thermodynamic data and Boltzmann distribution (P%) of the intermediate sigma complexes

Structures	Eele(a.u.)	ZPE(a.u.)	U(a.u.)	H(a.u.)	G(a.u.)	dG(kcal/mol)	Р%
	-	-	-	-	-		
C2-I	1661.9605	1661.6247	1661.5	1661.59	1661.68	13.61	0.00
	89	91	96193	5075	5783		
	-	-	-	-	-		
C2-II	1661.9606	1661.6249	1661.5	1661.59	1661.68	13.47	0.00
	08	44	96261	5143	6006		
	-	-	-	-	-		
C3-I	1661.9835	1661.6470	1661.6	1661.61	1661.70	0.00	52.14
	93	06	18703	7584	7477		
	-	-	-	-	-		
C2-II	1661.9836	1661.6469	1661.6	1661.61	1661.70	0.06	47.86
	46	89	18729	761	7381		

Note: at the M06-2X/def2-TZVP level of theory with CPCM (mixed solvent).

(6) All Opted Species Cartesian Coordinates.

 Table S36.
 The Cartesian Coordinates of 1a.

Ν	-7.818971	0.340639	-0.288220
С	-7.649563	0.807001	1.094137
С	-8.556976	-0.123710	1.909148
С	-10.867734	-1.031053	1.034157
С	-11.640141	-1.276061	-0.106385
С	-11.141222	-0.959676	-1.362340
С	-9.872605	-0.398537	-1.519939
С	-9.111237	-0.172845	-0.380565
С	-9.614308	-0.476707	0.892302
С	-7.344011	1.228704	-1.326099
Н	-6.601613	0.766772	1.388021
Н	-7.997959	1.846735	1.178317
Н	-8.011869	-1.021966	2.212458
Н	-8.951866	0.352732	2.804514
Н	-11.256151	-1.264947	2.018645
Н	-12.629392	-1.703522	-0.008772
Н	-11.748858	-1.141478	-2.240277
Н	-9.500853	-0.148706	-2.505132
Н	-6.310440	1.501458	-1.115796
Н	-7.373439	0.728568	-2.293349
Н	-7.945790	2.146500	-1.384526

Table S37. The Cartesian Coordinates of PhSI.

able 657. The Cartesian Coordinates of Fight.						
С	-9.410431	0.706111	-0.557058			
С	-9.505162	-1.387776	0.620943			
С	-10.892737	-1.372056	0.527559			
С	-11.539052	-0.318112	-0.107004			
С	-10.800648	0.725024	-0.648546			
S	-8.466179	1.993687	-1.318374			
Ι	-8.136145	3.503841	0.517452			
Н	-7.680131	-0.353088	0.144197			
Н	-9.002228	-2.209359	1.114305			
Н	-11.470924	-2.184029	0.949668			
Н	-12.618799	-0.306232	-0.180266			
Н	-11.294199	1.553117	-1.140996			

Table S38. The Cartesian Coordinates of PhS⁺.

С	-9.216134	1.048077	-0.277317
С	-8.666260	-0.255859	0.070213
С	-9.510048	-1.297623	0.345046
С	-10.907200	-1.085602	0.287387
С	-11.482994	0.162509	-0.045074
С	-10.662465	1.221456	-0.325621
S	-8.222366	2.301235	-0.611048

Н	-7.580502	-0.363384	0.101925
Н	-9.122434	-2.281292	0.608672
Н	-11.571652	-1.924036	0.511136
Н	-12.567162	0.268566	-0.075256
Н	-11.052883	2.205854	-0.590263

Table 539. The Carlesian C	coordinates of $1a-\pi^{+}$.		
Ν	-1.014333	0.807621	-1.214104
С	-0.184098	1.095982	0.033455
С	-0.483570	-0.034429	1.017881
С	-1.244608	-2.461952	0.390311
С	-1.767855	-3.262524	-0.616501
С	-2.049774	-2.739621	-1.878579
С	-1.815697	-1.400628	-2.158741
С	-1.286900	-0.634994	-1.137317
С	-1.001772	-1.121794	0.121377
С	-0.275600	1.203143	-2.453607
S	-2.569127	1.767468	-1.280006
С	-3.270913	1.373912	0.280113
С	-3.970261	0.178112	0.453951
С	-4.507011	-0.120027	1.696956
С	-4.367975	0.781023	2.747409
С	-3.696824	1.985046	2.564174
С	-3.140691	2.284317	1.330077
Н	-3.603146	2.687062	3.381991
Н	-4.794500	0.546758	3.714455
Н	-5.042101	-1.049058	1.842414
Н	-4.083343	-0.507743	-0.376640
Н	-2.607493	3.213537	1.173779
Н	-1.960764	-4.309147	-0.420430
Н	-2.457307	-3.380195	-2.648982
Н	-2.048875	-0.981539	-3.128833
Н	-1.030276	-2.871865	1.368929
Н	0.853709	1.057439	-0.292308
Н	-0.421190	2.097133	0.381262
Н	-1.233649	0.247557	1.758495
Н	0.421102	-0.330366	1.546520
Н	-0.009452	2.253531	-2.362153
Н	0.612674	0.579683	-2.519184
Н	-0.918481	1.046556	-3.316063

Table S	\$39	The	Cartesian	Coordinates	of $1a-\pi^+$
	557.	THC	Cartosian	Coordinates	$01 1a^{-n}$

Table S40. The Cartesian Coordinates of 1a	-σ ⁺ .
--	--------------------------

the outcolume coordinates of 1a v .									
С	-0.097076	0.778548	-0.359310						
С	0.194987	-0.656043	-0.600281						

С	1.420851	-1.192162	-0.527108
С	2.516318	-0.311041	-0.227964
С	2.313393	1.114358	-0.030692
С	1.090290	1.635231	-0.095704
Ν	3.770831	-0.614325	-0.098596
С	4.625274	0.550840	0.199232
С	3.658395	1.744863	0.222526
С	4.388750	-1.921829	-0.215893
S	-1.204682	0.910044	1.122394
С	-2.711990	0.249689	0.455031
С	-3.423149	0.954963	-0.514338
С	-4.613567	0.440928	-1.006484
С	-5.107504	-0.764714	-0.519201
С	-4.404878	-1.460484	0.455526
С	-3.201990	-0.959746	0.939154
Н	-0.678034	1.190616	-1.189573
Н	-0.657102	-1.287747	-0.825206
Н	1.584168	-2.247644	-0.687993
Н	0.917424	2.694883	0.052465
Н	5.385659	0.622060	-0.578037
Н	5.118610	0.372927	1.154659
Н	3.679101	2.257812	1.182030
Н	3.902605	2.467844	-0.553878
Н	3.634782	-2.689752	-0.348414
Н	5.067663	-1.912846	-1.068596
Н	4.958368	-2.115590	0.692536
Н	-3.045827	1.904054	-0.876011
Н	-5.162505	0.988238	-1.761903
Н	-6.041347	-1.158984	-0.898736
Н	-4.786481	-2.398863	0.836710
Н	-2.642203	-1.504187	1.689024

Table S41. The Cartesian Co	ordinates of TSe1.		
С	-9.343493	0.093323	0.888532
С	-8.734694	0.067060	-0.409730
С	-7.495569	-0.577408	-0.637268
С	-6.879792	-1.196369	0.432773
С	-7.504545	-1.210413	1.728333
С	-8.691614	-0.608606	1.957406
Ν	-5.718856	-1.864807	0.479644
С	-5.571955	-2.610100	1.733362
С	-6.602677	-1.958011	2.669936
С	-4.934410	-2.193947	-0.687154
S	-10.776788	1.015295	1.323295

_

С	-11.152451	1.879416	-0.180025
С	-10.561443	3.113503	-0.437256
С	-10.878607	3.790226	-1.606618
С	-11.782593	3.239018	-2.507702
С	-12.374517	2.010430	-2.242950
С	-12.062445	1.325854	-1.075700
Н	-9.628695	-0.801832	-0.094939
Н	-9.201676	0.634490	-1.205054
Н	-7.087202	-0.593477	-1.636520
Н	-9.154507	-0.619977	2.936516
Н	-4.550769	-2.524549	2.101089
Н	-5.792777	-3.667582	1.560986
Н	-7.142824	-2.680768	3.277289
Н	-6.123397	-1.243457	3.342043
Н	-3.936681	-2.487793	-0.367189
Н	-4.849780	-1.321873	-1.334652
Н	-5.385289	-3.016307	-1.251252
Н	-9.861317	3.535606	0.272375
Н	-10.422474	4.749978	-1.811340
Н	-12.029257	3.771428	-3.417276
Н	-13.081004	1.583432	-2.942649
Η	-12.518900	0.368419	-0.858200

Table S42. The Cartesian Coordinates of Ia-I.	Table S42	2. The	Cartesian	Coordinates	of 1a-1 .
---	-----------	--------	-----------	-------------	------------------

С	-9.763485	-1.113520	-0.822855
С	-10.178627	-0.169531	-1.764896
С	-9.437402	0.991457	-2.009417
С	-8.265816	1.196468	-1.273560
С	-7.832121	0.236047	-0.331658
С	-8.569537	-0.907866	-0.102107
S	-10.716006	-2.589035	-0.560804
Ν	-7.387947	2.256521	-1.319006
С	-6.131827	1.847137	-0.686107
С	-6.556323	0.745640	0.299178
С	-7.337891	3.152465	-2.446538
С	-11.716185	-2.177074	0.857228
С	-12.443262	-3.223961	1.441732
С	-13.256183	-2.977673	2.545953
С	-13.348895	-1.691332	3.081893
С	-12.624712	-0.652320	2.497917
С	-11.811049	-0.886696	1.388205
Н	-11.098888	-0.348698	-2.324400
Н	-9.773490	1.709352	-2.757913
Н	-8.237010	-1.652851	0.624289

Н	-5.439585	1.442562	-1.450620
Н	-5.641625	2.701440	-0.199831
Н	-6.772149	1.174324	1.291448
Н	-5.788988	-0.028516	0.427017
Н	-6.703956	4.013668	-2.196125
Н	-6.927582	2.665743	-3.352195
Н	-8.343827	3.528772	-2.676412
Н	-12.363961	-4.233722	1.031993
Н	-13.815240	-3.800522	2.995430
Н	-13.981820	-1.499989	3.949641
Н	-12.692367	0.357730	2.906543
H	-11.252043	-0.065922	0.935979

Table S43. The Cartesian Coordinates of I'.

Ι	0.668790	1.656051	0.000000

Table S44. The Cartesian Coordinates of PhS[•].

S	-0.862794	2.349388	-0.624735
С	-1.904084	1.037091	-0.275029
С	-1.377309	-0.228019	0.063235
С	-2.220842	-1.284814	0.343205
С	-3.602462	-1.105548	0.293048
С	-4.141692	0.136636	-0.038279
С	-3.305616	1.198989	-0.319930
Н	-0.302832	-0.352806	0.098577
Н	-1.809228	-2.251734	0.601336
Н	-4.260827	-1.936352	0.512577
Н	-5.215137	0.268622	-0.075171
Н	-3.710678	2.168647	-0.578834

Table S45. The Cartesian Coordinates of $1a-\pi$.

C -3.363684 -0.998653 -2.213155 C -3.362982 -2.092579 -1.356372 C -2.401214 -2.230766 -0.354035 C -1.442031 -1.235276 -0.228120 C -1.424272 -0.137251 -1.102596 C -2.382373 -0.011217 -2.085078 N -0.412266 -1.137218 0.701020 C 0.575943 -0.201728 0.148874				
C-3.362982-2.092579-1.356372C-2.401214-2.230766-0.354035C-1.442031-1.235276-0.228120C-1.424272-0.137251-1.102596C-2.382373-0.011217-2.085078N-0.412266-1.1372180.701020C0.575943-0.2017280.148874	С	-3.363684	-0.998653	-2.213155
C-2.401214-2.230766-0.354035C-1.442031-1.235276-0.228120C-1.424272-0.137251-1.102596C-2.382373-0.011217-2.085078N-0.412266-1.1372180.701020C0.575943-0.2017280.148874	С	-3.362982	-2.092579	-1.356372
C-1.442031-1.235276-0.228120C-1.424272-0.137251-1.102596C-2.382373-0.011217-2.085078N-0.412266-1.1372180.701020C0.575943-0.2017280.148874	С	-2.401214	-2.230766	-0.354035
C-1.424272-0.137251-1.102596C-2.382373-0.011217-2.085078N-0.412266-1.1372180.701020C0.575943-0.2017280.148874	С	-1.442031	-1.235276	-0.228120
C-2.382373-0.011217-2.085078N-0.412266-1.1372180.701020C0.575943-0.2017280.148874	С	-1.424272	-0.137251	-1.102596
N-0.412266-1.1372180.701020C0.575943-0.2017280.148874	С	-2.382373	-0.011217	-2.085078
C 0.575943 -0.201728 0.148874	Ν	-0.412266	-1.137218	0.701020
	С	0.575943	-0.201728	0.148874
C -0.258156 0.741805 -0.729484	С	-0.258156	0.741805	-0.729484
C 0.106186 -2.341406 1.310786	С	0.106186	-2.341406	1.310786

S	-5.653688	-0.492285	0.304366
Н	-4.119588	-0.915224	-2.983110
С	-4.517944	0.764939	0.575027
С	-4.566708	1.949606	-0.185986
С	-3.676256	2.977649	0.058556
С	-2.716280	2.843591	1.060141
С	-2.640405	1.671681	1.808791
С	-3.527627	0.638741	1.568218
Н	-4.119793	-2.859321	-1.468764
Н	-2.411601	-3.091428	0.301992
Н	-2.369475	0.838602	-2.757906
Н	1.112778	0.306127	0.949171
Н	1.302819	-0.752855	-0.464813
Н	0.296864	1.115310	-1.588441
Н	-0.605690	1.600516	-0.148929
Н	0.867053	-2.070860	2.042041
Н	-0.690081	-2.873895	1.829740
Н	0.555299	-3.014855	0.567621
Н	-5.317586	2.042054	-0.960347
Н	-3.726518	3.887160	-0.526098
Н	-2.021456	3.651669	1.252125
Н	-1.883975	1.566365	2.576013
Н	-3.475794	-0.277997	2.141754

Table S46. The Cartesian Coordinates of $1a-\sigma$.

Ν	-1.014333	0.807621	-1.214104
С	-0.184098	1.095982	0.033455
С	-0.483570	-0.034429	1.017881
С	-1.244608	-2.461952	0.390311
С	-1.767855	-3.262524	-0.616501
С	-2.049774	-2.739621	-1.878579
С	-1.815697	-1.400628	-2.158741
С	-1.286900	-0.634994	-1.137317
С	-1.001772	-1.121794	0.121377
С	-0.275600	1.203143	-2.453607
S	-2.569127	1.767468	-1.280006
С	-3.270913	1.373912	0.280113
С	-3.970261	0.178112	0.453951
С	-4.507011	-0.120027	1.696956
С	-4.367975	0.781023	2.747409
С	-3.696824	1.985046	2.564174
С	-3.140691	2.284317	1.330077
Н	-3.603146	2.687062	3.381991

Н	-4.794500	0.546758	3.714455
Н	-5.042101	-1.049058	1.842414
Н	-4.083343	-0.507743	-0.376640
Н	-2.607493	3.213537	1.173779
Н	-1.960764	-4.309147	-0.420430
Н	-2.457307	-3.380195	-2.648982
Н	-2.048875	-0.981539	-3.128833
Н	-1.030276	-2.871865	1.368929
Н	0.853709	1.057439	-0.292308
Н	-0.421190	2.097133	0.381262
Н	-1.233649	0.247557	1.758495
Н	0.421102	-0.330366	1.546520
Н	-0.009452	2.253531	-2.362153
Н	0.612674	0.579683	-2.519184
Н	-0.918481	1.046556	-3.316063

Table S47. The Cartesian Coordinates of TSr1.

С	-8.631010	0.681494	0.699452
С	-7.863254	0.597057	-0.479391
С	-6.898869	-0.384903	-0.636988
С	-6.609954	-1.214005	0.446956
С	-7.268755	-1.041850	1.682630
С	-8.242466	-0.097020	1.827899
Ν	-5.682139	-2.224189	0.531148
С	-5.992031	-3.027734	1.719801
С	-6.684281	-2.031178	2.660635
С	-5.223466	-2.913420	-0.653369
S	-9.617221	2.117955	1.057447
С	-10.710466	2.353160	-0.314368
С	-11.486869	3.513984	-0.246098
С	-12.398551	3.807529	-1.246575
С	-12.547933	2.953175	-2.334222
С	-11.772871	1.805318	-2.405097
С	-10.854893	1.499971	-1.405246
Н	-9.962190	-0.410127	0.327788
Н	-8.063473	1.282251	-1.292860
Н	-6.365525	-0.477555	-1.573740
Н	-8.772930	0.025225	2.764992
Н	-5.083704	-3.460946	2.135460
Н	-6.676065	-3.841918	1.445021
Н	-7.427957	-2.503030	3.299208
Η	-5.948984	-1.535036	3.299120
Н	-4.418625	-3.593402	-0.378006
Н	-4.834067	-2.199347	-1.377465

Н	-6.029930	-3.491616	-1.122559
Н	-11.374069	4.185847	0.597039
Н	-12.993324	4.709423	-1.175741
Н	-13.257714	3.183712	-3.117776
Н	-11.874799	1.132150	-3.247115
Н	-10.264614	0.599225	-1.487879

Table S48. The Cartesian Coordinates of HI.

Ι	-2.019822	0.940600	0.000000
Н	-3.636578	0.940600	0.000000
able S49. The Cartesian C	Coordinates of TSr2b		
Ν	6.144942	4.828152	-4.151069
С	4.978235	3.875472	-4.292643
С	5.590811	2.516505	-4.587870
С	8.045923	1.809188	-4.998615
С	9.361678	2.275504	-4.935780
С	9.675212	3.591577	-4.554056
С	8.661644	4.500565	-4.229737
С	7.333796	4.060077	-4.293192
С	7.020014	2.703331	-4.665909
С	6.061970	5.776570	-3.016790
С	12.813952	1.261826	-6.829650
С	13.547174	1.680196	-7.943845
С	12.988411	2.580933	-8.858229
С	11.690514	3.062842	-8.661601
С	10.943976	2.646057	-7.553641
С	11.515831	1.750991	-6.649326
S	10.650342	1.118646	-5.248686
Н	10.718408	3.911855	-4.508816
Н	8.900949	5.521037	-3.944598
Н	7.816661	0.783786	-5.290320
Н	5.055352	1.798556	-5.196268
Н	5.422443	1.715284	-3.330969
Н	13.256005	0.565489	-6.116721
Н	14.557850	1.304968	-8.098230
Н	13.564714	2.905382	-9.722514
H	11.255345	3.762585	-9,373553
H	9.930222	3.019824	-7.411419
Н	5,136355	6.370289	-3,107940
H	6.072544	5.291534	-2.026240
H	6.909455	6.482209	-3.064869
н	4.315005	3.870824	-3,404837
н	4 369271	4 232257	-5 155632
11	7.3072/1	7.232231	5.155052

I	4.983637	0.969812	-1.779832
Table S50. The Cartesian C	coordinates of TSr2a .		
N	5.898932	4.946883	-4.251580
С	5.285089	3.881079	-4.879032
С	6.309417	3.301287	-5.827563
С	8.882525	3.432236	-5.407851
С	9.854861	4.119269	-4.670990
С	9.500737	5.175026	-3.767511
С	8.208536	5.547797	-3.577829
С	7.231041	4.839536	-4.313551
С	7.574463	3.797560	-5.227176
С	5.189309	5.813664	-3.327998
С	12.004288	1.209384	-5.496812
С	12.203289	0.199817	-6.429747
С	12.089613	0.472913	-7.786141
С	11.778329	1.757377	-8.218970
С	11.590240	2.776071	-7.296738
С	11.698575	2.492077	-5.937914
S	11.542474	3.789779	-4.742741
Н	10.291222	5.673359	-3.220333
Н	7.942701	6.334486	-2.885533
Н	9.140579	2.621562	-6.076113
Н	6.160372	3.763356	-6.812956
Н	6.273357	2.219458	-5.952522
Н	12.083726	1.004730	-4.436956
Н	12.437759	-0.801268	-6.092658
Н	12.238893	-0.317894	-8.509778
Н	11.687946	1.968809	-9.276333
Н	11.360160	3.782403	-7.623858
Н	5.200785	5.330028	-2.345844
Н	5.688797	6.776675	-3.274408
Н	4.166751	5.929007	-3.673955
Н	5.321354	3.033511	-3.937504
Н	4.243691	4.021263	-5.146985
Ι	7.920635	-0.134415	-6.786270
I	6.287352	1.900479	-2.572951

Table S51. The Cartesian Coordinates of 1a-1-intb.

Ν	5.9818	5.2548	-4.7913
С	5.2548	4.0032	-5.1514
С	6.3036	3.0531	-5.5911
С	9.0099	3.1110	-5.0730
С	9.9782	3.7610	-4.3651

С	9.6271	5.0384	-3.5459
С	8.3650	5.5528	-3.5858
С	7.3276	4.8297	-4.4475
С	7.5900	3.6821	-5.0355
С	5.2713	6.0043	-3.7452
С	12.9729	1.1555	-5.9761
С	13.2197	0.5326	-7.1541
С	12.4986	0.9930	-8.4345
С	11.6171	2.0211	-8.3833
С	11.3366	2.7290	-7.0447
С	11.9712	2.3238	-5.9179
S	11.6471	3.1420	-4.3707
Н	10.3798	5.5167	-2.9545
Н	8.1113	6.4382	-3.0413
Н	9.2337	2.2241	-5.6282
Н	6.2883	2.9329	-6.6542
Н	6.1723	1.5785	-4.9141
Н	13.4740	0.8356	-5.0864
Н	13.9157	-0.2792	-7.1945
Н	12.6934	0.5012	-9.3646
Н	11.1160	2.3410	-9.2730
Н	10.6407	3.5407	-7.0043
Н	4.2953	6.2680	-4.0957
Н	5.1834	5.3970	-2.8686
Н	5.8180	6.8934	-3.5097
Н	4.4171	3.3899	-3.8964
Н	4.5522	4.2305	-5.9258
Ι	5.6842	-0.5096	-3.7105
I	3.3399	2.1710	-2.0502

Table S52. The Cartesian Coordinates of 1a-1-inta.

Ν	5.71657899	4.74702225	4.79089778
С	5.17091949	3.38338888	5.05006161
С	6.33758881	2.53082268	5.33322738
С	8.98730303	2.97241236	4.73690315
С	9.83521914	3.80972325	4.06688462
С	9.29893109	5.11690295	3.40773373
С	7.99001627	5.46401382	3.55183446
С	7.08828011	4.52926128	4.36299164
С	7.51346384	3.36458910	4.81152821
С	4.88037366	5.49460936	3.84009528
С	13.18352176	1.42164665	5.23598529
С	13.56763387	0.70857063	6.32132981
С	12.87281665	0.93324941	7.67816177

С	11.87360654	1.84028109	7.78473170
С	11.43655951	2.65064809	6.55062111
С	12.05376317	2.45762321	5.35997406
S	11.56068594	3.40179914	3.93683556
Н	9.96127243	5.74709686	2.84400858
Н	7.60740475	6.36520515	3.11940157
Н	9.33921835	2.06617607	5.18676674
Н	6.40125375	2.27530767	6.37008330
Н	6.25777703	0.98170533	4.31085530
Н	13.66530291	1.26555842	4.29233658
Н	14.35368831	-0.01060934	6.23588517
Н	13.17889794	0.37278346	8.53675945
Н	11.38890007	1.99313741	8.72600174
Н	10.64637124	3.36585163	6.63299560
Н	3.89395731	5.59980739	4.23975530
Н	4.83617173	4.96253285	2.91105017
Н	5.30452414	6.46567931	3.67526582
Н	4.29059522	2.65490122	3.59694950
Н	4.47811678	3.44854775	5.86402869
Ι	6.00037929	-0.61202354	3.13027295
Ι	3.32832253	1.86616887	2.03108471

Table S53. The Cartesian Coordinates of TSr3b.	Table S53.	The Cartesi	an Coordinates	of TSr3b .
--	------------	-------------	----------------	-------------------

ne curtesiun cool			
Ν	-8.086960	1.180902	2.894484
С	-6.736531	0.839008	2.744538
С	-6.667157	-0.264286	1.868278
С	-8.475267	-1.319529	0.358402
С	-9.806956	-1.232942	0.063456
С	-10.648690	-0.287155	0.727253
С	-10.173303	0.571750	1.674904
С	-8.803986	0.474110	2.004646
С	-7.949671	-0.459923	1.353086
С	-8.551177	2.340886	3.629787
S	-10.516887	-2.357390	-1.104260
С	-11.210644	-1.261718	-2.315206
С	-12.289881	-1.733444	-3.060441
С	-12.836746	-0.944952	-4.063265
С	-12.325413	0.322063	-4.316986
С	-11.253905	0.791827	-3.567323
С	-10.688348	0.003279	-2.574315
Н	-11.696911	-0.255911	0.456042
Н	-10.821812	1.288539	2.159831
Н	-7.832252	-2.021571	-0.156496
Н	-6.039673	1.092620	3.532553

Н	-6.401125	1.701927	1.773948
Н	-5.757796	-0.771917	1.586427
Н	-9.545942	2.144136	4.023493
Н	-8.578127	3.214317	2.974841
Н	-7.868491	2.525480	4.455541
Н	-12.701460	-2.713521	-2.851648
Н	-13.673172	-1.320206	-4.639159
Н	-12.759527	0.939349	-5.092575
Н	-10.846278	1.776335	-3.759123
Н	-9.842906	0.372309	-2.007320
I	-6.429635	3.203251	0.453550

Table S54. The Cartesian Coordinates of TSr3a.

N	5.765698	4.835941	5.141567
С	4.933244	3.853869	5.510342
С	5.547755	2.609653	5.356913
С	7.887052	2.085387	4.316156
С	9.031201	2.707866	3.844917
С	9.125177	4.110475	3.773728
С	8.081905	4.918209	4.180407
С	6.937152	4.281054	4.651047
С	6.817997	2.883381	4.720656
С	5.525021	6.263065	5.267314
С	12.685460	1.107142	4.650912
С	13.522113	0.998220	5.750940
С	13.104650	1.445911	6.999848
С	11.839892	2.000847	7.136351
С	10.990477	2.110015	6.041058
С	11.412975	1.663054	4.792783
S	10.410764	1.721331	3.328324
Н	10.038157	4.555581	3.400477
Н	8.156968	5.996876	4.137944
Н	7.835363	1.005956	4.380730
Н	6.094955	2.680470	6.775505
Н	5.039613	1.659503	5.409773
Н	13.017820	0.762295	3.678725
Н	14.506774	0.564690	5.629053
Н	13.760586	1.363325	7.856510
Н	11.501011	2.352544	8.102934
Н	10.005132	2.539486	6.168805
Н	5.594467	6.733700	4.287644
Н	6.264731	6.702517	5.935491
Н	4.529334	6.411484	5.675422
Н	3.966310	4.087203	5.930497

Ι	7.008297	2.777553	8.374779
Table S55. The Castorian Coord	lineter of to 2		
Table 555. The Cartesian Coord	0 151870	0.0((222	1 227204
C	-9.1518/0	-0.066232	-1.33/394
C	-7.937960	-0.225148	-0.635342
C	-7.718956	-1.322833	0.169108
C	-8.737248	-2.276506	0.250528
С	-9.958116	-2.142613	-0.452963
С	-10.158756	-1.010692	-1.252119
S	-9.375180	1.353354	-2.373530
Ν	-8.782991	-3.446144	0.954992
С	-9.991907	-4.051460	0.718620
С	-10.744286	-3.295077	-0.133830
С	-7.725671	-3.947272	1.807537
С	-9.715502	2.653083	-1.215905
С	-9.718779	3.954478	-1.721078
С	-10.002430	5.024529	-0.886282
С	-10.278110	4.812308	0.460297
С	-10.271300	3.517264	0.960543
С	-9.995150	2.436860	0.130397
Н	-7.173548	0.535218	-0.732297
Н	-6.788845	-1.441500	0.710338
Н	-11.085509	-0.869912	-1.794571
Н	-10.217499	-4.994652	1.191567
Н	-11.733548	-3.530369	-0.489544
Н	-7.534932	-3.252870	2.626447
Н	-8.034687	-4.905594	2.216844
Н	-6.808063	-4.082580	1.234300
Н	-9.495773	4.125818	-2.767693
Н	-10.001769	6.029078	-1.290309
Н	-10.494078	5.648687	1.112017
Н	-10.485384	3.338599	2.006911
Н	-9.999454	1.432176	0.532412

Table S56. The Cartesian Coor	dinates of $1a-2\pi^+$.
-------------------------------	--------------------------

	0010111111105 01 1a-2n.		
С	-5.831109	0.403568	-0.888843
С	-5.393026	0.566314	0.526307
С	-5.244001	-0.661348	1.329059
С	-5.172290	-1.829173	0.676170
С	-5.398796	-1.949137	-0.747373
С	-5.800172	-0.805602	-1.497288
Ν	-4.849396	-3.099589	1.150511
С	-4.852584	-3.933705	0.118681
С	-5.194776	-3.273161	-1.077385

С	-4.514200	-3.407914	2.531076
S	-6.184289	1.808962	-1.865479
С	-6.651685	3.037065	-0.670101
С	-5.794940	4.101572	-0.410438
С	-6.176789	5.083016	0.496199
С	-7.401936	4.994504	1.144216
С	-8.256390	3.929500	0.880021
С	-7.888927	2.953473	-0.034977
Н	-5.950009	1.336232	1.060500
Н	-5.091728	-0.562752	2.396819
Н	-6.067298	-0.914436	-2.541098
Н	-4.611570	-4.977352	0.263989
Н	-5.277259	-3.738825	-2.044863
Н	-5.359609	-3.168724	3.173874
Н	-4.287747	-4.467901	2.599840
Н	-3.645241	-2.823641	2.831563
Н	-4.837131	4.156791	-0.911364
Н	-5.512484	5.913215	0.697853
Н	-7.694352	5.757917	1.853604
Н	-9.214122	3.862874	1.379572
Н	-8.553367	2.127269	-0.255767
С	-2.750913	0.066730	-0.337758
С	-2.146129	-0.990423	0.343771
С	-1.459258	-1.966597	-0.362726
С	-1.369881	-1.886910	-1.748662
С	-1.958917	-0.827270	-2.428050
С	-2.650931	0.150364	-1.725829
S	-3.651195	1.297902	0.555371
Н	-2.220623	-1.043321	1.423304
Н	-0.991661	-2.786126	0.167691
Н	-0.833453	-2.649122	-2.299285
Н	-1.881839	-0.761273	-3.505483
Н	-3.118377	0.976934	-2.247221

Fable S57. The	Cartesian	Coordinates	of 1a-2σ ⁺	۰.
-----------------------	-----------	-------------	------------------------------	----

С	-8.679641	0.086889	-0.497405
С	-9.247143	-1.184374	-0.326500
С	-8.461450	-2.310452	-0.138902
С	-7.095376	-2.111859	-0.130732
С	-6.511536	-0.865955	-0.302073
С	-7.292840	0.256094	-0.484688
Ν	-6.055851	-3.071067	0.041761
С	-4.900541	-2.507834	-0.027138

С	-5.024942	-1.038645	-0.216705
С	-6.320916	-4.482631	0.297234
S	-9.820425	1.413178	-0.732243
С	-8.765023	2.838249	-0.763039
С	-8.406787	3.458570	0.431019
С	-7.588383	4.579592	0.405003
С	-7.134952	5.082797	-0.808957
С	-7.500415	4.466760	-1.999545
С	-8.316279	3.342665	-1.979963
S	-4.394328	-0.233232	1.312023
С	-2.649780	-0.508821	1.117870
С	-2.013054	-1.475078	1.891411
С	-0.641573	-1.659742	1.769019
С	0.087262	-0.887759	0.873720
С	-0.551357	0.076317	0.101197
С	-1.918740	0.273148	0.225752
Н	-10.325000	-1.288192	-0.337284
Н	-8.906730	-3.287207	-0.005162
Н	-6.840927	1.230836	-0.612253
Н	-3.983011	-3.070102	0.088475
Н	-4.463303	-0.668289	-1.074608
Н	-6.888011	-4.882590	-0.541097
Н	-5.373750	-5.002462	0.402271
Н	-6.907104	-4.560351	1.211221
Н	-8.766805	3.061411	1.371761
Н	-7.308679	5.061706	1.332754
Н	-6.498995	5.958514	-0.826657
Н	-7.151379	4.859963	-2.945566
Н	-8.604063	2.854859	-2.902579
Н	-2.589636	-2.075068	2.584188
Н	-0.145121	-2.408421	2.372570
Н	1.155435	-1.034527	0.778813
Н	0.017150	0.681808	-0.592613
Н	-2.421402	1.031402	-0.362252

Table S58. The Cartesian Coordinates of TSe2
--

-10.628868	1.878305	0.224813
-11.067448	2.454310	-0.982436
-10.229092	2.563412	-2.076431
-8.942827	2.057185	-1.936853
-8.488543	1.501442	-0.736352
-9.327518	1.420977	0.366204
-7.911371	1.967264	-2.871702
-6.861903	1.369155	-2.318398
	-10.628868 -11.067448 -10.229092 -8.942827 -8.488543 -9.327518 -7.911371 -6.861903	-10.628868 1.878305 -11.067448 2.454310 -10.229092 2.563412 -8.942827 2.057185 -8.488543 1.501442 -9.327518 1.420977 -7.911371 1.967264 -6.861903 1.369155

С	-7.099110	1.132846	-0.947533
С	-7.996289	2.481656	-4.229084
S	-6.161226	0.081173	0.101734
S	-11.806187	1.796057	1.548569
Н	-6.510592	2.428523	-0.527802
С	-7.116477	-1.415657	0.119903
С	-6.858688	-2.297022	1.170123
С	-7.532811	-3.507022	1.241040
С	-8.478820	-3.840934	0.278592
С	-8.740520	-2.956604	-0.759368
С	-8.059843	-1.747573	-0.847525
С	-11.223394	0.399730	2.477315
С	-11.093724	-0.851439	1.874208
С	-10.652358	-1.933146	2.619267
С	-10.359329	-1.779175	3.972006
С	-10.504745	-0.538073	4.573945
С	-10.928031	0.556652	3.826247
Н	-12.089746	2.802708	-1.058388
Н	-10.574727	3.002531	-3.003020
Н	-8.973180	0.990128	1.294582
Н	-5.954170	1.199224	-2.879328
Н	-7.071136	2.246743	-4.747123
Н	-8.836223	2.012646	-4.739207
Н	-8.141870	3.560550	-4.200877
Н	-6.133451	-2.032418	1.930669
Н	-7.325488	-4.184782	2.059504
Н	-9.012457	-4.780373	0.341573
Н	-9.476391	-3.205787	-1.513503
Н	-8.265578	-1.074172	-1.669949
Н	-11.327924	-0.970056	0.822945
Н	-10.541625	-2.899638	2.144518
Н	-10.018672	-2.627496	4.551780
Н	-10.276871	-0.411590	5.624530
Н	-11.020512	1.531980	4.286735
Ι	-5.895230	4.035575	0.165310

Table S59. The Cartesian Coordinates of 3aa.

С	-7.690496	-0.252270	-1.133020
С	-6.666571	-0.947981	-0.461813
С	-6.922434	-2.124839	0.217609
С	-8.239145	-2.580311	0.237275
С	-9.276503	-1.887067	-0.423110
С	-8.993240	-0.720637	-1.130251
Ν	-8.787283	-3.679714	0.851159

С	-10.132038	-3.686915	0.617456
С	-10.483583	-2.615962	-0.162728
С	-8.045796	-4.654591	1.625006
S	-12.078825	-2.222119	-0.741601
S	-7.250780	1.209061	-2.038678
С	-12.438542	-0.703829	0.110241
С	-11.747814	-0.279764	1.241897
С	-12.100806	0.913604	1.859678
С	-13.142524	1.686607	1.363091
С	-13.832925	1.258265	0.235093
С	-13.481828	0.072247	-0.394082
С	-8.447455	2.403535	-1.501859
С	-8.788834	3.410889	-2.402080
С	-9.675612	4.410755	-2.023991
С	-10.239628	4.404364	-0.754827
С	-9.900601	3.395648	0.140187
С	-9.002735	2.401952	-0.223550
Η	-5.661962	-0.545537	-0.477031
Н	-6.130066	-2.655695	0.729529
Η	-9.780239	-0.186541	-1.651023
Н	-10.754181	-4.467919	1.027166
Н	-7.557806	-4.171655	2.471861
Η	-8.739435	-5.406158	1.992456
Н	-7.290500	-5.135411	1.003053
Η	-10.937880	-0.877120	1.640337
Η	-11.553946	1.238050	2.736470
Н	-13.411043	2.616713	1.846944
Н	-14.644600	1.852856	-0.164830
Н	-14.013485	-0.250807	-1.281447
Η	-8.366771	3.405986	-3.399730
Н	-9.934967	5.187993	-2.731664
Н	-10.939693	5.177111	-0.464996
Н	-10.333193	3.381967	1.132649
Н	-8.739038	1.625239	0.483254

Table S60. The Cartesian Coordinates of C4-I
--

С	-1.402398	-0.646017	-0.808487
С	-1.289262	-2.003508	-0.711912
С	-0.031386	-2.615542	-0.588133
С	1.140473	-1.848549	-0.580653
С	1.053732	-0.470280	-0.666656
С	-0.221864	0.211689	-0.742252
Ν	2.448470	-2.260649	-0.523430

С	3.269988	-1.091754	-0.173363
С	2.425877	0.103703	-0.646199
С	2.804753	-3.541611	0.050145
S	-0.389934	0.924620	1.026035
С	-1.855329	1.899499	0.862571
С	-1.809472	3.111987	0.175831
С	-2.946338	3.902278	0.107779
С	-4.117474	3.492261	0.736548
С	-4.157814	2.287838	1.428318
С	-3.029052	1.482292	1.486387
Н	-2.370207	-0.167608	-0.881487
Н	-2.174688	-2.623655	-0.709411
Н	0.022761	-3.693295	-0.490184
Н	-0.229752	1.087837	-1.390809
Н	4.241419	-1.148093	-0.659210
Н	3.416956	-1.055284	0.912603
Н	2.508047	0.986969	-0.011308
Н	2.690048	0.407043	-1.666154
Н	2.257572	-4.340715	-0.447521
Н	3.868480	-3.709392	-0.107803
Н	2.595075	-3.575934	1.125900
Н	-0.888044	3.429902	-0.296584
Н	-2.915971	4.842425	-0.427155
Н	-5.001176	4.115367	0.687642
Н	-5.069162	1.971270	1.918325
Н	-3.051928	0.535304	2.010724

Table S61. The Cartesian Coordinates of C4-II.

able Sol. The Carle			
С	-1.500986	-0.803763	0.409797
С	-1.324681	-2.103569	0.030030
С	-0.043830	-2.678596	-0.000516
С	1.082909	-1.938052	0.378577
С	0.933964	-0.614819	0.755322
С	-0.358368	0.039252	0.752080
Ν	2.393766	-2.334863	0.468199
С	3.223491	-1.122776	0.545734
С	2.267042	-0.059820	1.112283
С	2.891130	-3.454823	-0.303187
S	-0.238622	1.141806	-0.807772
С	-1.744808	2.058621	-0.684669
С	-2.780599	1.802513	-1.580354
С	-3.933233	2.574030	-1.531160
С	-4.055535	3.581723	-0.582192
С	-3.022453	3.830275	0.315484

С	-1.861158	3.075086	0.262373
Н	-2.482866	-0.349119	0.415441
Н	-2.173422	-2.701175	-0.271879
Н	0.065020	-3.705313	-0.329444
Н	-0.513398	0.744513	1.568705
Н	3.561725	-0.841541	-0.458613
Н	4.093222	-1.294632	1.175784
Н	2.334659	0.004452	2.204678
Н	2.430406	0.943196	0.715781
Н	2.291363	-4.341936	-0.105454
Н	2.878590	-3.243027	-1.379007
Н	3.914526	-3.661676	0.004100
Н	-2.679340	1.005758	-2.306447
Н	-4.737344	2.383100	-2.229656
Н	-4.958580	4.177128	-0.542091
Н	-3.118170	4.618000	1.051152
Η	-1.044521	3.270248	0.946723

Table S62. The Cartesian Coordinates of C4-III.

_

esiun coord			
С	-0.895487	1.365581	-0.009063
С	-1.886378	1.435981	0.927919
С	-2.621535	0.295438	1.289216
С	-2.345645	-0.946336	0.704442
С	-1.384597	-1.034561	-0.288655
С	-0.553977	0.096555	-0.645551
Ν	-2.920556	-2.168720	0.948841
С	-2.596919	-3.047360	-0.184889
С	-1.304950	-2.442725	-0.760293
С	-4.243535	-2.267169	1.530155
S	1.069496	-0.343073	0.277991
С	2.133434	0.970195	-0.235054
С	2.683409	0.955976	-1.516102
С	3.568380	1.955594	-1.890736
С	3.912291	2.954908	-0.986694
С	3.368325	2.962365	0.292588
С	2.470874	1.974182	0.670632
Н	-0.315862	2.238329	-0.278995
Н	-2.114084	2.378055	1.406922
Н	-3.405311	0.386147	2.031737
Н	-0.268639	0.148063	-1.695417
Н	-2.478353	-4.075630	0.149046
Н	-3.402424	-3.004619	-0.927310
Н	-1.212412	-2.535317	-1.841223
Н	-0.412468	-2.901819	-0.312490

Н	-4.276195	-1.737544	2.481138
Н	-5.010510	-1.857660	0.862003
Н	-4.462471	-3.316580	1.718052
Н	2.419297	0.165193	-2.207452
Н	3.995690	1.950276	-2.884847
Н	4.607948	3.730389	-1.280548
Н	3.638170	3.740102	0.994876
Η	2.030691	1.975887	1.659863

 Table S63. The Cartesian Coordinates of C4-IV.

С	-0.463538	1.058249	1.115533
С	-1.713120	1.284931	1.617988
С	-2.666765	0.255711	1.672626
С	-2.351878	-1.035753	1.231916
С	-1.094954	-1.290917	0.711068
С	-0.095993	-0.250205	0.581690
Ν	-3.120841	-2.172548	1.251741
С	-2.489056	-3.154779	0.357380
С	-1.012533	-2.725490	0.326204
С	-4.567020	-2.097877	1.266735
S	-0.157938	0.095248	-1.301813
С	1.147062	1.272916	-1.481549
С	0.835557	2.600318	-1.768385
С	1.859194	3.510424	-1.990814
С	3.184413	3.099636	-1.909476
С	3.492321	1.775562	-1.615123
С	2.475330	0.856055	-1.408357
Η	0.266778	1.853897	1.050769
Η	-1.989157	2.271783	1.962393
Η	-3.657173	0.475499	2.053068
Η	0.928380	-0.573085	0.766825
Η	-2.632649	-4.164310	0.735835
Η	-2.933428	-3.083437	-0.642455
Η	-0.524222	-2.879856	-0.637028
Η	-0.421217	-3.254967	1.082423
Η	-4.903297	-1.491616	2.106443
Η	-4.959772	-1.673946	0.334866
Η	-4.965376	-3.102869	1.393106
Η	-0.200492	2.911243	-1.815779
Η	1.621134	4.540552	-2.221200
Η	3.981156	3.813050	-2.076381
Η	4.524836	1.457146	-1.555627
Н	2.705159	-0.180567	-1.194320

С	-4.055867	-0.356420	-0.477154
С	-4.166459	-1.831670	-0.616383
С	-3.120743	-2.664160	-0.550354
С	-1.816470	-2.088567	-0.348181
С	-1.629145	-0.654524	-0.236320
С	-2.675758	0.166044	-0.307905
Ν	-0.682892	-2.709448	-0.239610
С	0.457811	-1.800466	-0.015896
С	-0.157141	-0.392199	-0.043817
С	-0.438205	-4.138712	-0.293512
S	-5.093682	0.115575	0.985021
С	-5.201332	1.869387	0.728980
С	-4.576677	2.729763	1.627179
С	-4.693186	4.104783	1.461171
С	-5.417040	4.618457	0.393587
С	-6.035404	3.757223	-0.506983
С	-5.938014	2.384270	-0.336148
Н	-4.546372	0.115537	-1.334560
Н	-5.163919	-2.227357	-0.768332
Н	-3.246946	-3.732166	-0.650245
Н	-2.557405	1.240876	-0.225528
Н	1.189668	-1.972938	-0.804256
Н	0.909506	-2.057501	0.942330
Н	0.031230	0.145249	0.883420
Н	0.244569	0.198320	-0.865437
Н	-1.350384	-4.673629	-0.533645
Н	0.314433	-4.329978	-1.057709
Н	-0.057104	-4.465628	0.673958
Н	-4.002684	2.322223	2.449648
Н	-4.210789	4.772044	2.163696
Н	-5.502470	5.689474	0.262581
Н	-6.605166	4.155451	-1.336621
Н	-6.436163	1.710690	-1.023077

Table S64. The Cartesian Coordinates of C5-I.

Table S65. The Cartesian Coordinates of C5-II.

 С	-2.457643	-0.396415	0.197553		
С	-2.572258	-1.877161	0.149393		
С	-1.522437	-2.705160	0.204488		
С	-0.212522	-2.120771	0.332911		
С	-0.028884	-0.685017	0.429863		
С	-1.080475	0.130615	0.376531		
Ν	0.929401	-2.733814	0.380146		
С	2.075989	-1.815567	0.521613		

С	1.447557	-0.413672	0.567331
С	1.182955	-4.160790	0.308116
S	-3.176639	0.240193	-1.388659
С	-3.378894	1.953610	-0.968467
С	-4.337683	2.344191	-0.035327
С	-4.504087	3.688959	0.260527
С	-3.731071	4.647079	-0.387076
С	-2.784332	4.258005	-1.325203
С	-2.600047	2.910654	-1.612357
Η	-3.123022	-0.017646	0.979857
Н	-3.574051	-2.279612	0.054582
Η	-1.650367	-3.776930	0.164385
Η	-0.964474	1.206956	0.440481
Η	2.737911	-1.967742	-0.330658
Η	2.612401	-2.082495	1.431860
Η	1.668636	0.090006	1.506626
Η	1.809817	0.212059	-0.246104
Η	0.254855	-4.708734	0.189031
Η	1.839001	-4.352881	-0.540632
Η	1.684129	-4.471561	1.224584
Η	-4.952950	1.596926	0.451415
Η	-5.246786	3.990033	0.988035
Η	-3.869525	5.696401	-0.160608
Н	-2.181280	5.000875	-1.831088
Η	-1.854625	2.599508	-2.333147

Table S66. The Cartesian Coordinates of C5-III.

_

С	-3.895432	-0.381358	-0.391400
С	-4.001944	-1.861541	-0.467362
С	-2.948278	-2.685127	-0.419159
С	-1.639563	-2.095466	-0.304343
С	-1.458276	-0.657332	-0.246916
С	-2.512954	0.154224	-0.300195
Ν	-0.496349	-2.705038	-0.243097
С	0.649041	-1.781239	-0.131309
С	0.018457	-0.379639	-0.126029
С	-0.241277	-4.133239	-0.273487
S	-4.879881	0.145007	1.088662
С	-5.011147	1.885725	0.762432
С	-4.359121	2.787932	1.597759
С	-4.492417	4.153700	1.377286
С	-5.260668	4.616348	0.317321
С	-5.906693	3.713290	-0.520565
С	-5.792369	2.349614	-0.294513

Н	-4.422195	0.052898	-1.247366
Н	-5.002392	-2.268142	-0.558556
Н	-3.071252	-3.756750	-0.474392
Н	-2.398896	1.231970	-0.259892
Н	1.187440	-2.019206	0.785847
Н	1.309985	-1.958741	-0.979373
Н	0.376141	0.221206	-0.960052
Н	0.242670	0.153155	0.796243
Н	-1.167247	-4.684555	-0.393346
Н	0.428396	-4.346224	-1.106362
Н	0.245131	-4.420567	0.658546
Н	-3.751004	2.419739	2.414256
Н	-3.988558	4.853650	2.031226
Н	-5.359037	5.680170	0.143675
Н	-6.511008	4.071809	-1.343874
Н	-6.311403	1.643726	-0.931764

 Table S67. The Cartesian Coordinates of C5-IV.

ne curtesiun e			
С	-2.424862	-0.384261	0.271763
С	-2.541863	-1.865407	0.299713
С	-1.490425	-2.692300	0.339272
С	-0.175909	-2.105809	0.372884
С	0.013020	-0.667532	0.385542
С	-1.039907	0.147341	0.348403
Ν	0.966646	-2.719057	0.397527
С	2.119245	-1.798483	0.434784
С	1.494801	-0.394051	0.432359
С	1.215531	-4.148696	0.391468
S	-3.233749	0.179882	-1.298942
С	-3.405375	1.912133	-0.948221
С	-4.316940	2.351962	0.009963
С	-4.459753	3.709894	0.253433
С	-3.710143	4.631415	-0.470418
С	-2.810623	4.192974	-1.432778
С	-2.650186	2.832661	-1.668891
Н	-3.045495	0.032485	1.071402
Н	-3.547358	-2.269059	0.276233
Н	-1.620142	-3.764485	0.356320
Н	-0.920864	1.225251	0.352723
Н	2.698366	-2.016878	1.331739
Н	2.740843	-1.998746	-0.437659
Н	1.815483	0.182053	-0.433572
Н	1.763600	0.162605	1.328211
Н	0.282783	-4.699381	0.341655

Н	1.834945	-4.387794	-0.472717
Н	1.755119	-4.411600	1.301187
Н	-4.913492	1.631991	0.557293
Н	-5.165742	4.049385	1.000311
Н	-3.830116	5.690894	-0.284254
Н	-2.226014	4.907432	-1.997763
Н	-1.941421	2.483279	-2.408870

С	-2.640748	2.421228	-0.293383
С	-2.563973	0.963473	-0.385863
С	-1.245191	0.359455	-0.566213
С	-0.140652	1.160361	-0.608191
С	-0.282264	2.565081	-0.436590
С	-1.522094	3.197770	-0.297380
Ν	1.182712	0.841993	-0.761477
С	2.001911	1.961713	-0.285536
С	1.072291	3.170941	-0.454841
С	1.637097	-0.511753	-0.533074
S	-3.282728	0.388718	1.268338
С	-3.366159	-1.354153	0.964876
С	-4.398516	-1.879994	0.190047
С	-4.479879	-3.250562	-0.005539
С	-3.542204	-4.094573	0.580129
С	-2.517774	-3.569525	1.357778
С	-2.422972	-2.197075	1.547634
Н	-3.625188	2.861181	-0.186027
Н	-3.298312	0.592043	-1.110048
Н	-1.180216	-0.719448	-0.628792
Н	-1.577598	4.272504	-0.188512
Н	2.265347	1.820358	0.768736
Н	2.916228	2.041476	-0.869353
Н	1.199127	3.634234	-1.442038
Н	1.197971	3.954556	0.290630
Н	1.094553	-1.199802	-1.180774
Н	2.695955	-0.572892	-0.776014
Н	1.489887	-0.813740	0.511186
Н	-5.131950	-1.216236	-0.251257
Н	-5.280012	-3.660550	-0.607899
Н	-3.612089	-5.164340	0.430598
Н	-1.789342	-4.226478	1.814916
Н	-1.623018	-1.776264	2.143934

Table S68. The Cartesian Coordinates of C6-I.

 Table S69.
 The Cartesian Coordinates of C6-II.

С	-4.095940	2.449931	0.522626
С	-4.032898	0.990701	0.605068
С	-2.712259	0.364436	0.602245
С	-1.599250	1.145528	0.486887
С	-1.738477	2.552237	0.331389
С	-2.974257	3.206725	0.367481
Ν	-0.273584	0.802564	0.451983
С	0.487261	1.904698	-0.146761
С	-0.384041	3.131893	0.152309
С	0.115444	-0.560571	0.165392
S	-4.973345	0.438120	-0.942734
С	-4.975983	-1.313011	-0.678759
С	-4.127213	-2.117975	-1.434924
С	-4.161394	-3.496628	-1.271215
С	-5.029552	-4.065702	-0.347926
С	-5.871679	-3.259407	0.410642
С	-5.852529	-1.882714	0.242744
Н	-5.078139	2.907043	0.549881
Н	-4.668435	0.627979	1.420993
Н	-2.657879	-0.715398	0.657432
Н	-3.025410	4.282224	0.264216
Н	1.479424	1.968296	0.294448
Н	0.588055	1.754997	-1.227684
Н	-0.351295	3.914627	-0.603792
Н	-0.106427	3.589499	1.110968
Н	-0.342511	-1.236414	0.887056
Н	-0.187400	-0.860063	-0.845622
Н	1.196748	-0.643836	0.253417
Н	-3.446397	-1.663089	-2.143492
Н	-3.506851	-4.123793	-1.862295
Н	-5.051652	-5.140180	-0.218824
Н	-6.550050	-3.703961	1.127169
Н	-6.514385	-1.248656	0.819882

Table S70. The Cartesian Coordinates of C6-III.

The Curtestan Coordinates of Co III.			
С	-2.669654	2.432172	-0.220299
С	-2.594450	0.977902	-0.358695
С	-1.275478	0.377931	-0.552647
С	-0.169739	1.178335	-0.565947
С	-0.310502	2.577289	-0.350234
С	-1.550066	3.206998	-0.196272
Ν	1.153122	0.864644	-0.726336
С	1.974048	1.967908	-0.217489
С	1.044442	3.182434	-0.344813

С	1.608242	-0.496688	-0.554469
S	-3.324206	0.351408	1.270298
С	-3.393515	-1.382569	0.916418
С	-4.406281	-1.892093	0.105861
С	-4.475524	-3.257136	-0.129210
С	-3.546191	-4.112471	0.453492
С	-2.541853	-3.603804	1.267198
С	-2.458151	-2.236487	1.495679
Н	-3.653871	2.869784	-0.102085
Н	-3.324127	0.633270	-1.100986
Н	-1.212039	-0.698699	-0.647797
Н	-1.604573	4.277995	-0.054880
Н	2.886600	2.065784	-0.801399
Н	2.241005	1.793419	0.830874
Н	1.168961	3.938177	0.429165
Н	1.172213	3.682415	-1.313782
Н	1.064838	-1.157714	-1.229189
Н	2.666764	-0.547356	-0.801279
Н	1.462966	-0.842480	0.476365
Н	-5.134262	-1.220488	-0.332680
Н	-5.260390	-3.654423	-0.759551
Н	-3.607039	-5.178037	0.273203
Н	-1.819693	-4.269270	1.721984
Н	-1.672892	-1.828349	2.119601

 Table S71. The Cartesian Coordinates of C6-IV.

С	-4.094946	2.446546	0.521685
С	-4.029634	0.987290	0.601808
С	-2.707917	0.363209	0.598293
С	-1.596181	1.146271	0.485930
С	-1.737350	2.553063	0.333126
С	-2.974318	3.205332	0.368691
Ν	-0.269650	0.805315	0.452087
С	0.489334	1.909862	-0.144925
С	-0.383675	3.135169	0.156689
С	0.120537	-0.556457	0.159959
S	-4.971071	0.435131	-0.944891
С	-4.977314	-1.315744	-0.679031
С	-4.125606	-2.122964	-1.429267
С	-4.162952	-3.501330	-1.263670
С	-5.037084	-4.067699	-0.344460
С	-5.882237	-3.259100	0.408354
С	-5.860014	-1.882753	0.238423
Н	-5.077608	2.902357	0.549895

Н	-4.663457	0.622644	1.418349
Η	-2.651769	-0.716703	0.650505
Η	-3.027540	4.280858	0.266747
Η	1.481614	1.973941	0.295895
Η	0.589638	1.762412	-1.226211
Н	-0.351983	3.919409	-0.597941
Н	-0.107020	3.591409	1.116220
Н	-0.336116	-1.235500	0.879424
Н	-0.182837	-0.852338	-0.851968
Н	1.201990	-0.638902	0.246867
Н	-3.439969	-1.669976	-2.134387
Н	-3.506254	-4.130542	-1.850167
Н	-5.061400	-5.141973	-0.214081
Н	-6.565188	-3.701665	1.121745
Н	-6.524121	-1.246373	0.810406

 S72. The Cartesian Coordinates of C7-I.

-2.711485	1.376503	1.862112
-1.523603	1.179139	1.282676
-1.214920	-0.047404	0.491922
-2.280236	-1.076420	0.589687
-3.563697	-0.797093	1.171583
-3.766185	0.377688	1.791051
-2.213188	-2.293734	0.155495
-3.465210	-3.046641	0.379280
-4.432710	-2.012756	0.980862
-1.078474	-2.960778	-0.455865
0.331851	1.405076	-1.294213
0.225011	2.782445	-1.460928
1.374701	3.562315	-1.489051
2.621483	2.970081	-1.338236
2.724940	1.593377	-1.167243
1.582676	0.807121	-1.153688
-1.134322	0.406481	-1.312826
-2.912544	2.295417	2.395660
-0.742239	1.927001	1.325803
-0.240684	-0.466895	0.750546
-4.718972	0.591407	2.260590
-3.239787	-3.873252	1.053254
-3.795664	-3.451519	-0.576103
-5.252078	-1.799185	0.295360
-4.858277	-2.357488	1.920908
-0.881366	-3.876078	0.102078
-1.332085	-3.213732	-1.485270
	$\begin{array}{c} -2.711485 \\ -1.523603 \\ -1.523603 \\ -1.214920 \\ -2.280236 \\ -3.563697 \\ -3.766185 \\ -2.213188 \\ -3.465210 \\ -4.432710 \\ -1.078474 \\ 0.331851 \\ 0.225011 \\ 1.374701 \\ 2.621483 \\ 2.724940 \\ 1.582676 \\ -1.134322 \\ -2.912544 \\ -0.742239 \\ -0.240684 \\ -4.718972 \\ -3.239787 \\ -3.795664 \\ -5.252078 \\ -4.858277 \\ -0.881366 \\ -1.332085 \end{array}$	-2.711485 1.376503 -1.523603 1.179139 -1.214920 -0.047404 -2.280236 -1.076420 -3.563697 -0.797093 -3.766185 0.377688 -2.213188 -2.293734 -3.465210 -3.046641 -4.432710 -2.012756 -1.078474 -2.960778 0.331851 1.405076 0.225011 2.782445 1.374701 3.562315 2.621483 2.970081 2.724940 1.593377 1.582676 0.807121 -1.134322 0.406481 -2.912544 2.295417 -0.742239 1.927001 -0.240684 -0.466895 -4.718972 0.591407 -3.239787 -3.873252 -3.795664 -3.451519 -5.252078 -1.799185 -4.858277 -2.357488 -0.881366 -3.876078 -1.332085 -3.213732

Н	-0.206567	-2.314503	-0.440897
Н	-0.751855	3.236945	-1.565612
Н	1.292719	4.633151	-1.622547
Н	3.515237	3.580358	-1.355130
Н	3.696744	1.130633	-1.054129
Н	1.656688	-0.267660	-1.037228

С	-2.859275	1.571002	1.170334
С	-1.782961	1.473383	0.384388
С	-1.332537	0.175168	-0.195759
С	-2.306834	-0.921652	0.028927
С	-3.412983	-0.787728	0.936306
С	-3.683727	0.412446	1.475559
Ν	-2.273399	-2.100881	-0.503297
С	-3.377029	-2.966078	-0.036482
С	-4.093754	-2.127663	1.035503
С	-1.334519	-2.611478	-1.485290
С	1.322026	0.906384	0.158972
С	1.832360	0.900412	-1.137555
С	2.717687	1.893052	-1.531471
С	3.104148	2.879556	-0.630416
С	2.601226	2.878100	0.664298
С	1.704122	1.894593	1.061487
S	0.215527	-0.377264	0.682921
Н	-3.134762	2.523133	1.602775
Н	-1.161516	2.332753	0.168197
Н	-1.076483	0.267446	-1.253064
Н	-4.532692	0.535934	2.137277
Н	-2.948997	-3.892161	0.344040
Н	-4.004660	-3.196139	-0.897813
Н	-5.162612	-2.056133	0.846359
Н	-3.951399	-2.558427	2.026202
Н	-1.904062	-3.014227	-2.322531
Н	-0.673879	-1.819810	-1.824786
Н	-0.749331	-3.410165	-1.029661
Н	1.537439	0.120202	-1.829108
Н	3.113070	1.891225	-2.538929
Н	3.800251	3.648945	-0.938792
Н	2.901472	3.644889	1.366517
Н	1.298584	1.891283	2.065191

Table S73. The Cartesian Coordinates of C7-II.

Table S74. The	Cartesian Coordin	ates of C7-III
	С	-4.415592

2.132917

-0.215484

С	-4.392160	0.841988	-0.560599
С	-3.117961	0.061287	-0.582605
С	-1.927259	0.932572	-0.569956
С	-1.995395	2.281461	-0.058576
С	-3.193805	2.865971	0.086316
Ν	-0.721729	0.635915	-0.937701
С	0.233408	1.737543	-0.685974
С	-0.584971	2.783959	0.086252
С	-0.247091	-0.554521	-1.621410
С	-1.574745	-1.638148	1.093131
С	-1.469522	-2.894763	0.499197
С	-0.251348	-3.558351	0.505383
С	0.857618	-2.973583	1.108473
С	0.749934	-1.726391	1.713101
С	-0.465919	-1.055737	1.705905
S	-3.122428	-0.779417	1.096037
Н	-5.357077	2.662164	-0.157745
Н	-5.300268	0.289406	-0.761804
Н	-3.101263	-0.712136	-1.346625
Н	-3.267517	3.900285	0.399228
Н	0.585906	2.094950	-1.654203
Н	1.078517	1.336701	-0.127704
Н	-0.295449	2.798186	1.137705
Н	-0.455961	3.785351	-0.317511
Н	-1.077289	-1.207030	-1.870139
Н	0.264671	-0.236286	-2.529516
Н	0.456544	-1.080921	-0.975076
Н	-2.338414	-3.341953	0.032428
Н	-0.167246	-4.532684	0.041936
Н	1.806704	-3.494121	1.111188
Н	1.611492	-1.274379	2.187191
Н	-0.560487	-0.080432	2.168961

	Table S75	. The	Cartesian	Coordinates	of C7-IV .
--	-----------	-------	-----------	-------------	-------------------

С	-5.860868	-1.803564	-0.185501
С	-5.656939	-0.976296	0.844217
С	-4.297746	-0.439136	1.157813
С	-3.358275	-0.601156	0.032306
С	-3.572054	-1.611963	-0.976919
С	-4.785695	-2.169981	-1.096729
Ν	-2.256352	0.043733	-0.182994
С	-1.521435	-0.469826	-1.359602
С	-2.309749	-1.717104	-1.788283
С	-1.738024	1.213675	0.504312

С	-2.040450	-1.032939	2.780853
С	-0.961391	-1.638207	2.138056
С	0.328079	-1.181808	2.377021
С	0.538080	-0.124262	3.254621
С	-0.537919	0.472300	3.903836
С	-1.827765	0.017738	3.671738
S	-3.679811	-1.625604	2.475606
Н	-6.844244	-2.218113	-0.361880
Н	-6.448223	-0.721992	1.536706
Н	-4.319391	0.558939	1.587818
Н	-4.990671	-2.876973	-1.891252
Н	-0.495450	-0.677486	-1.058438
Н	-1.517422	0.317761	-2.113997
Н	-2.501593	-1.734361	-2.858452
Н	-1.765952	-2.624458	-1.522479
Н	-2.451235	1.570706	1.239683
Н	-0.798540	0.953306	0.993925
Н	-1.553881	1.985422	-0.242837
Н	-1.137942	-2.458459	1.451963
Н	1.166228	-1.649802	1.877202
Н	1.543181	0.233633	3.437243
Н	-0.371640	1.290536	4.592337
Н	-2.672212	0.476043	4.171411

	Table S76.	The Cartesian	n Coordinates	of C2-I.
--	------------	---------------	---------------	----------

Carlesian Coord			
С	-2.215234	0.349482	2.163795
С	-1.591646	-0.897052	1.760476
С	-2.120775	-1.734305	0.835198
С	-3.357465	-1.346985	0.255835
С	-4.016926	-0.123217	0.666912
С	-3.397165	0.736757	1.629339
Ν	-4.073218	-1.963531	-0.661609
С	-5.270132	-1.200846	-0.941404
С	-5.175950	-0.041264	-0.030863
С	-3.799175	-3.258156	-1.264443
S	-1.481335	1.294995	3.457243
С	0.224856	1.298352	2.971990
С	1.190174	1.168859	3.966332
С	2.536495	1.221765	3.629528
С	2.920962	1.381250	2.304307
С	1.953304	1.503636	1.313686
С	0.605831	1.475865	1.643603
S	-5.178115	-0.607636	-2.691472
С	-6.804536	0.084990	-2.837745

С	-7.903236	-0.752565	-3.019948
С	-9.167664	-0.202089	-3.168237
С	-9.332756	1.178614	-3.150289
С	-8.234622	2.011662	-2.978103
С	-6.967229	1.467445	-2.816501
Н	-0.656123	-1.166193	2.236446
Н	-1.632192	-2.658990	0.563748
Н	-3.876895	1.664427	1.912386
Н	-6.169803	-1.809118	-0.823431
Н	-5.921176	0.740219	0.005323
Н	-2.725717	-3.382353	-1.381443
Н	-4.201797	-4.052236	-0.636133
Н	-4.275279	-3.288425	-2.241999
Н	0.888416	1.021496	4.995772
Н	3.284712	1.123656	4.405440
Н	3.970818	1.410483	2.043443
Н	2.246461	1.633185	0.279756
Н	-0.145838	1.594850	0.872639
Н	-7.763337	-1.826289	-3.047483
Н	-10.022608	-0.850838	-3.307423
Н	-10.319885	1.605186	-3.273649
Н	-8.362326	3.086219	-2.966233
Н	-6.106172	2.108294	-2.674589

Table S77. The Cartesian Coordinates of C2-II.

sian Coord	limates of \mathbb{C}^2 -II.		
С	-1.325455	1.267340	0.012049
С	-0.785310	-0.063499	-0.193066
С	-1.518388	-1.106370	-0.654324
С	-2.881974	-0.847538	-0.952881
С	-3.436861	0.481342	-0.785083
С	-2.621796	1.538704	-0.268279
Ν	-3.805830	-1.672294	-1.400472
С	-5.055542	-0.962675	-1.567015
С	-4.734472	0.424126	-1.171770
С	-3.633922	-3.066088	-1.776910
S	-0.243684	2.568830	0.502785
С	0.656793	1.813264	1.830821
С	0.037806	0.974357	2.755067
С	0.778323	0.438861	3.799553
С	2.124308	0.756040	3.940949
С	2.733149	1.605900	3.026168
С	2.006557	2.127115	1.963789
S	-6.278075	-1.669658	-0.372175
С	-7.725939	-0.790101	-0.898302

С	-8.220843	0.245289	-0.110264
С	-9.381512	0.904774	-0.493594
С	-10.036138	0.538196	-1.662594
С	-9.537270	-0.494306	-2.449648
С	-8.386142	-1.166686	-2.066258
Н	0.263525	-0.218580	0.030581
Н	-1.080331	-2.082762	-0.802930
Н	-3.046074	2.522579	-0.117478
Н	-5.448575	-1.073738	-2.580165
Н	-5.466020	1.219316	-1.172241
Н	-2.880704	-3.522277	-1.140079
Н	-4.583576	-3.578335	-1.637683
Н	-3.331544	-3.133060	-2.821675
Н	-1.016970	0.745404	2.662930
Н	0.296790	-0.218938	4.511720
Н	2.695684	0.342328	4.761575
Н	3.781350	1.855546	3.128733
Н	2.485119	2.771858	1.237234
Н	-7.698652	0.528915	0.794700
Н	-9.770436	1.706736	0.120189
Н	-10.938745	1.055763	-1.960932
Н	-10.050023	-0.783008	-3.357884
Н	-8.000302	-1.982667	-2.665041

Table S78. T	he Cartesia	n Coordinates	s of C3-I .

esian Coord	mates of C3-I .		
С	-8.679641	0.086889	-0.497405
С	-9.247143	-1.184374	-0.326500
С	-8.461450	-2.310452	-0.138902
С	-7.095376	-2.111859	-0.130732
С	-6.511536	-0.865955	-0.302073
С	-7.292840	0.256094	-0.484688
Ν	-6.055851	-3.071067	0.041761
С	-4.900541	-2.507834	-0.027138
С	-5.024942	-1.038645	-0.216705
С	-6.320916	-4.482631	0.297234
S	-9.820425	1.413178	-0.732243
С	-8.765023	2.838249	-0.763039
С	-8.406787	3.458570	0.431019
С	-7.588383	4.579592	0.405003
С	-7.134952	5.082797	-0.808957
С	-7.500415	4.466760	-1.999545
С	-8.316279	3.342665	-1.979963
S	-4.394328	-0.233232	1.312023
С	-2.649780	-0.508821	1.117870

С	-2.013054	-1.475078	1.891411
С	-0.641573	-1.659742	1.769019
С	0.087262	-0.887759	0.873720
С	-0.551357	0.076317	0.101197
С	-1.918740	0.273148	0.225752
Н	-10.325000	-1.288192	-0.337284
Н	-8.906730	-3.287207	-0.005162
Н	-6.840927	1.230836	-0.612253
Н	-3.983011	-3.070102	0.088475
Н	-4.463303	-0.668289	-1.074608
Н	-6.888011	-4.882590	-0.541097
Н	-5.373750	-5.002462	0.402271
Н	-6.907104	-4.560351	1.211221
Н	-8.766805	3.061411	1.371761
Н	-7.308679	5.061706	1.332754
Н	-6.498995	5.958514	-0.826657
Н	-7.151379	4.859963	-2.945566
Н	-8.604063	2.854859	-2.902579
Н	-2.589636	-2.075068	2.584188
Η	-0.145121	-2.408421	2.372570
Н	1.155435	-1.034527	0.778813
Η	0.017150	0.681808	-0.592613
Н	-2.421402	1.031402	-0.362252

Table S79. The Cartesian Coordinates of C3-II..

sian Coordinates of C3-II					
С	-8.631206	0.047310	-0.458023		
С	-9.123940	-1.250515	-0.659408		
С	-8.311091	-2.364506	-0.523000		
С	-6.996164	-2.126262	-0.176732		
С	-6.486616	-0.852952	0.026730		
С	-7.293537	0.256741	-0.113595		
Ν	-5.944786	-3.064687	0.030269		
С	-4.851157	-2.463143	0.344889		
С	-5.029278	-0.986948	0.351472		
С	-6.129566	-4.501896	-0.135295		
S	-9.796137	1.354363	-0.679771		
С	-8.855894	2.795454	-0.250552		
С	-8.805609	3.216970	1.075412		
С	-8.077932	4.351102	1.409486		
С	-7.407537	5.063891	0.422221		
С	-7.464879	4.645116	-0.901426		
С	-8.189870	3.510382	-1.241788		
S	-4.031405	-0.302913	-1.033510		
С	-2.391854	-0.515413	-0.383940		

С	-1.543033	-1.453305	-0.964432
С	-0.242544	-1.587655	-0.494447
С	0.202080	-0.798075	0.557868
С	-0.649725	0.135496	1.138929
С	-1.944091	0.286314	0.664220
Н	-10.164688	-1.385660	-0.926439
Н	-8.698144	-3.362392	-0.680092
Н	-6.896454	1.251794	0.036653
Н	-3.933899	-3.006472	0.531473
Н	-4.714922	-0.522202	1.286128
Н	-6.437094	-4.692830	-1.161879
Н	-5.190914	-5.000816	0.083767
Н	-6.908653	-4.827389	0.551326
Н	-9.332563	2.656508	1.837272
Н	-8.038037	4.679041	2.440162
Н	-6.843100	5.949486	0.684587
Н	-6.946412	5.201580	-1.671432
Н	-8.238753	3.176098	-2.270371
Н	-1.900706	-2.070971	-1.778510
Н	0.419605	-2.312923	-0.949225
Н	1.214307	-0.907233	0.925353
Н	-0.302010	0.754894	1.955492
Н	-2.606295	1.024519	1.100258

9. Reference.

1. H. Y. Li, J. Y. Jie, S. X. Wu, X. B. Yang and H. Xu, Org. Chem. Front., 2017, 4, 250–254.

2. W. S. Ouyang, X. Q. Cai, X. J. Chen, J. Wang, J. H. Rao, Y. Gao, Y. P. Huo, Q. Chen and X. W. Li, *Chem. Commun.*, 2021, **57**, 8075–8078.

 D. Singh, A. M. Deobald, L. R. S. Camargo, G. Tabarelli, O. E. D. Rodrigues and A. L. Braga, *Org. Lett.*, 2010, **12**, 3288–3291.

- 4. F. Neese, Wiley. Interdiscip. Rev. Comput. Mol. Sci., 2012, 2, 73-78.
- 5. F. Neese, Wiley. Interdiscip. Rev. Comput. Mol. Sci., 2018, 8, e1327.
- 6. Y. Zhao, D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215-241.

7. F. Weigend, Phys. Chem. Chem. Phys., 2006, 8, 1057-1065.

 (a) A. Klamt and G. Schüürmann, J. Chem. Soc. Perkin. Trans., 1993, 2, 799; (b) J. Andzelm, C. Kölmel and A. Klamt, J. Chem. Phys., 1995, 103, 9312–9320; (c) V. Barone and M. Cossi, J. Phys. Chem. A., 1998, 102, 1995–2001; (d) M. Cossi, N. Rega, G. Scalmani and V. Barone, J. Comput. Chem., 2003, 24, 669–681.

9. (a) T. Lu and Q. Chen, Comp. Theore. Chem., 2021, 1200, 113249; (b) Shermo 2.3.4, 2023,

(http://sobereva.com/soft/shermo)

10. CYLview20, C. Y. Legault, Université de Sherbrooke, 2020, (http://www.cylview.org).

11. (a) W. Humphrey, A. Dalke and K. Schulten, *J. Molec. Graphics.*, 1996, **14**, 33–38; (b) VMD 1.9.3, 2023, (https://tcbg.illinois.edu/Research/vmd/).

12. (a) T. Lu and F. Chen, *J. Comput. Chem.*, 2012, **33**, 580–592; (b) Multiwfn 3.7, 2023, (http://sobereva.com/multiwfn/).

10. Analytic data of the obtained compounds.

(1) 1-methyl-5-(phenylthio)indoline (1a-1)

Yellow liquid, ¹**H-NMR** (500 MHz, Chloroform-*d*) δ 7.31 (d, *J* = 8.0 Hz, 1H), 7.25–7.22 (m, 3H), 7.17– 7.15 (m, 2H), 7.11 (d, *J* = 7.3 Hz, 1H), 6.47 (d, *J* = 8.1 Hz, 1H), 3.41 (t, *J* = 8.3 Hz, 2H), 2.98 (t, *J* = 8.3 Hz, 2H), 2.83 (s, 3H). ¹³**C-NMR** (126 MHz, Chloroform-*d*) δ 153.96, 140.48, 135.02, 131.70, 131.00, 128.75, 126.95, 124.99, 118.66, 107.21, 55.83, 35.58, 28.35. **HRMS (ESI):** Calcd. for C₁₅H₁₅NS [M+H]⁺: 242.0925, found: 242.0919.

(2) 1-methyl-5-(phenylthio)-1*H*-indole (1a-2)

Known compound, ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.92 (s, 1H), 7.43 (d, *J* = 6.9 Hz, 1H), 7.37 (d, *J* = 8.5 Hz, 1H), 7.28-7.24 (m, 2H), 7.24–7.21 (m, 2H), 7.16 (t, *J* = 7.2 Hz, 1H), 7.13 (d, *J* = 3.1 Hz, 1H), 6.54 (d, *J* = 3.0 Hz, 1H), 3.84 (s, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 140.04, 136.65, 129.86, 129.48, 128.84, 127.92, 127.75, 127.56, 125.27, 122.33, 110.38, 101.25, 33.03.

(3) 1-methyl-3-(phenylthio)-1*H*-indole (1a-4)

Known compound, ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.68 (d, *J* = 7.9 Hz, 1H), 7.44 (d, *J* = 8.2 Hz, 1H), 7.37 (s, 1H), 7.35 (d, *J* = 7.3 Hz, 1H), 7.21 (ddt, *J* = 13.2, 7.2, 3.4 Hz, 3H), 7.18–7.15 (m, 2H), 7.10 (t, *J* = 7.2 Hz, 1H), 3.87 (s, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 139.73, 137.60, 135.12, 129.89, 128.71, 125.78, 124.72, 122.62, 120.55, 119.78, 109.79, 100.54, 33.17.

(4) 1-methyl-3-((4-nitrophenyl)thio)-1*H*-indole (4)

Known compound, (47.6 mg, 67% yield), ¹H-NMR (600 MHz, Chloroform-*d*) δ 8.01 (d, J = 8.9 Hz, 2H),
7.55 (d, J = 7.9 Hz, 1H), 7.47 (d, J = 8.3 Hz, 1H), 7.40 (s, 1H), 7.37 (t, J = 7.6 Hz, 1H), 7.23 (t, J = 7.5 Hz, 1H),
7.15 (d, J = 8.9 Hz, 2H), 3.92 (s, 3H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 150.21, 144.93, 137.74,
135.41, 129.23, 125.04, 123.83, 123.10, 121.07, 119.32, 110.13, 97.93, 33.32.

(5) methyl 2-((1-methyl-1*H*-indol-3-yl)thio)benzoate (5)

Known compound, (60.1 mg, 81% yield), ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 8.05 (d, *J* = 7.7 Hz, 1H), 7.59 (d, *J* = 7.9 Hz, 1H), 7.43 (d, *J* = 8.3 Hz, 1H), 7.36–7.32 (m, 2H), 7.19 (t, *J* = 7.5 Hz, 1H), 7.16–7.13 (m, 1H), 7.08 (t, *J* = 7.5 Hz, 1H), 6.90 (d, *J* = 8.1 Hz, 1H), 4.03 (s, 3H), 3.87 (s, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 167.07, 144.80, 137.83, 135.56, 132.25, 131.17, 129.83, 126.36, 125.90, 123.61, 122.70, 120.62, 119.80, 109.87, 100.63, 52.11, 33.18.

(6) 1-methyl-3,5-bis(phenylthio)-1*H*-indole (3aa)

White solid, (81.5 mg, 94% yield), m.p.: 124-125 °C, ¹**H-NMR** (500 MHz, Chloroform-*d*) δ 7.87 (d, *J* = 1.3 Hz, 1H), 7.43 (d, *J* = 6.9 Hz, 1H), 7.39 (d, *J* = 8.1 Hz, 2H), 7.23–7.20 (m, 2H), 7.20–7.16 (m, 4H), 7.15–7.12 (m, 3H), 7.09 (t, *J* = 7.2 Hz, 1H), 3.86 (s, 3H). ¹³**C-NMR** (125 MHz, Chloroform-*d*) δ 139.15, 139.12, 137.38, 135.89, 130.73, 128.85, 128.76, 128.56, 128.04, 126.00, 125.89, 125.57, 124.97, 124.57, 110.96, 101.24, 33.33. **HRMS (ESI):** Calcd. for C₂₁H₁₇NS₂ [M+H]⁺: 348.0875, found: 348.0869.

(7) 1-ethyl-3,5-bis(phenylthio)-1*H*-indole (3ba)

White solid, (55.1 mg, 61% yield), m.p.: 115-116 °C, ¹**H-NMR** (500 MHz, Chloroform-*d*) δ 7.89 (s, 1H), 7.47 (s, 1H), 7.43 (s, 2H), 7.24–7.19 (m, 6H), 7.16–7.09 (m, 4H), 4.24 (q, *J* = 7.3 Hz, 2H), 1.56 (t, *J* = 7.3 Hz, 3H). ¹³**C-NMR** (125 MHz, Chloroform-*d*) δ 139.24, 139.15, 136.52, 134.20, 130.89, 128.87, 128.78, 128.44, 128.07, 126.01, 125.95, 125.58, 124.95, 124.48, 111.04, 101.22, 41.60, 15.45. **HRMS (ESI):** Calcd. for C₂₂H₁₉NS₂ [M+H]⁺: 362.1032, found: 362.1027.

(8) 3,5-bis(phenylthio)-1-propyl-1*H*-indole (3ca)

White solid, (69.4 mg, 74% yield), m.p.: 89-90 °C, ¹H-NMR (600 MHz, Chloroform-*d*) δ 7.89 (s, 1H), 7.45 (s, 1H), 7.42 (d, *J* = 1.1 Hz, 2H), 7.25–7.19 (m, 6H), 7.16–7.13 (m, 3H), 7.11 (t, *J* = 7.3 Hz, 1H), 4.15 (t, *J* = 7.1 Hz, 2H), 1.96 (h, *J* = 7.3 Hz, 2H), 1.02 (t, *J* = 7.4 Hz, 3H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 139.28, 139.12, 136.77, 135.07, 130.84, 128.87, 128.78, 128.40, 128.09, 125.95, 125.90, 125.59, 124.93,

124.44, 111.17, 101.03, 48.60, 23.47, 11.56. **HRMS (ESI):** Calcd. for C₂₃H₂₁NS₂ [M+H]⁺: 376.1188, found: 376.1184.

(9) 1-benzyl-3,5-bis(phenylthio)-1*H*-indole (3da)

Yellow liquid, (69.8 mg, 66% yield), ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.96–7.81 (m, 1H), 7.46 (s, 1H), 7.42–7.35 (m, 5H), 7.25–7.21 (m, 8H), 7.18–7.16 (m, 3H), 7.12 (t, *J* = 7.2 Hz, 1H), 5.37 (s, 2H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 139.02, 138.80, 136.98, 136.29, 135.22, 130.98, 129.08, 128.90, 128.81, 128.50, 128.45, 128.20, 127.14, 126.12, 125.75, 125.69, 125.19, 125.05, 111.41, 102.17, 50.70. **HRMS** (ESI): Calcd. for C₂₇H₂₁NS₂ [M+H]⁺: 424.1188, found: 424.1182.

(10) 3,5-bis(phenylthio)-1*H*-indole (3fa)

White solid, (35.0 mg, 42% yield), m.p.: 108-109 °C, ¹H-NMR (600 MHz, Chloroform-*d*) δ 8.43 (s, 1H), 7.89 (s, 1H), 7.48 (d, J = 2.6 Hz, 1H), 7.41–7.39 (m, 2H), 7.26–7.20 (m, 6H), 7.18–7.15 (m, 3H), 7.12 (t, J = 7.2 Hz, 1H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 138.86, 138.74, 136.32, 131.55, 130.10, 128.95, 128.85, 128.34, 126.23, 125.78, 125.55, 125.19, 125.15, 112.84, 103.43. HRMS (ESI): Calcd. for C₂₀H₁₅NS₂[M+H]⁺: 334.0719, found: 334.0713.

(11) 1,2-dimethyl-3,5-bis(phenylthio)-1*H*-indole (3ga)

White solid, (68.6 mg, 76% yield), m.p.: 120-122 °C, ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.86 (s, 1H), 7.40 (d, *J* = 6.8 Hz, 1H), 7.35 (d, *J* = 8.4 Hz, 1H), 7.23–7.17 (m, 6H), 7.13 (t, *J* = 7.1 Hz, 1H), 7.10–7.06

(m, 3H), 3.78 (s, 3H), 2.56 (s, 3H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 143.92, 139.52, 139.29, 137.03, 130.74, 128.78, 128.72, 127.94, 127.81, 125.65, 125.37, 125.31, 124.69, 124.12, 110.20, 98.77, 30.53, 10.97. HRMS (ESI): Calcd. for C₂₂H₁₉NS₂ [M+H]⁺: 362.1032, found: 362.1026.

(12) 1-methyl-2-phenyl-3,5-bis(phenylthio)-1*H*-indole (3ha)

White solid, (84.6 mg, 80% yield), m.p.: 126-127 °C, ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 8.00 (d, *J* = 1.4 Hz, 1H), 7.55–7.50 (m, 6H), 7.48 (d, *J* = 8.5 Hz, 1H), 7.28 (dd, *J* = 5.2, 3.5 Hz, 4H), 7.24–7.18 (m, 3H), 7.16–7.11 (m, 3H), 3.79 (s, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 146.88, 139.58, 139.31, 137.58, 130.82, 130.66, 130.23, 129.09, 128.93, 128.86, 128.81, 128.46, 128.12, 125.98, 125.90, 125.63, 125.00, 124.81, 111.20, 100.33, 31.96. **HRMS (ESI):** Calcd. for C₂₇H₂₁NS₂ [M+H]⁺: 424.1188, found: 424.1182.

(13) 1,4-dimethyl-3,5-bis(phenylthio)-1*H*-indole (3ia)

White solid, (60.5 mg, 67% yield), m.p.: 150-152 °C, ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.51 (d, *J* = 8.5 Hz, 1H), 7.37 (s, 1H), 7.25 (d, *J* = 8.5 Hz, 1H), 7.22–7.18 (m, 4H), 7.10–7.06 (m, 4H), 7.03 (dt, *J* = 8.3, 1.6 Hz, 2H), 3.84 (s, 3H), 2.83 (s, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 141.31, 139.31, 138.33, 137.17, 137.15, 130.77, 128.79, 128.43, 126.76, 125.29, 124.89, 124.68, 123.34, 108.40, 101.19, 33.20, 15.60. **HRMS (ESI):** Calcd. for C₂₂H₁₉NS₂ [M+H]⁺: 362.1032, found: 362.1027.

(14) 1,6-dimethyl-3,5-bis(phenylthio)-1H-indole (3ja)

White solid, (49.6 mg, 55% yield), m.p.: 129-131 °C, ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.92 (d, *J* = 5.7 Hz, 1H), 7.36 (s, 1H), 7.32 (s, 1H), 7.23–7.15 (m, 6H), 7.13–7.05 (m, 4H), 3.84 (s, 3H), 2.56 (s, 3H). ¹³C-S76

NMR (151 MHz, Chloroform-*d*) δ 139.31, 138.95, 138.42, 136.33, 135.25, 128.94, 128.83, 128.74, 127.97, 126.88, 126.05, 125.05, 124.93, 123.73, 111.60, 101.10, 33.21, 21.52. HRMS (ESI): Calcd. for C₂₂H₁₉NS₂ [M+H]⁺: 362.1032, found: 362.1028.

(15) 1,8-bis(phenylthio)-5,6-dihydro-4*H*-pyrrolo[3,2,1-*ij*]quinoline (3ka)

White solid, (72.7 mg, 78% yield), m.p.: 110-111 °C, ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.74 (s, 1H), 7.37 (s, 1H), 7.26–7.23 (m, 4H), 7.22 (d, *J* = 6.5 Hz, 5H), 7.17–7.10 (m, 2H), 4.19 (t, 2H), 3.01 (t, *J* = 6.1 Hz, 2H), 2.29 (p, *J* = 6.0 Hz, 2H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 139.64, 139.51, 134.98, 133.10, 128.85, 128.77, 128.38, 127.93, 126.11, 125.60, 125.46, 124.96, 124.56, 123.74, 123.61, 101.10, 44.44, 24.43, 22.72. **HRMS (ESI):** Calcd. for C₂₃H₁₉NS₂ [M+H]⁺: 374.1032, found: 374.1028.

(16) 6-fluoro-1-methyl-3,5-bis(phenylthio)-1*H*-indole (3la)

Brown solid, (67.5 mg, 74% yield), m.p.: 126-128 °C, ¹H-NMR (600 MHz, Chloroform-*d*) δ 7.81 (d, J = 7.0 Hz, 1H), 7.35 (s, 1H), 7.24–7.17 (m, 7H), 7.14 (dd, J = 10.4, 7.5 Hz, 3H), 7.11 (t, J = 7.3 Hz, 1H), 3.81 (s, 3H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 160.40, 158.80, 138.76 (d, J = 3.0 Hz), 138.15 (d, J = 10.6 Hz), 137.40, 128.91, 128.81, 127.94, 127.70, 126.69, 126.21 (d, J = 1.5 Hz), 125.87, 125.17, 113.23 (d, J = 19.6 Hz), 101.93, 97.41 (d, J = 28.7 Hz), 33.39. ¹⁹F-NMR (565 MHz, Chloroform-*d*) δ -113.22. HRMS (ESI): Calcd. for C₂₁H₁₆FNS₂ [M+H]⁺: 366.0781, found: 366.0777.

(17) 4-chloro-1-methyl-3,5-bis(phenylthio)-1*H*-indole (3ma)

S77

White solid, (65.7 mg, 69% yield), m.p.: 166-168 °C, ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.35 (s, 1H), 7.31 (d, *J* = 8.6 Hz, 1H), 7.28–7.24 (m, 4H), 7.21 (dd, *J* = 14.1, 7.9 Hz, 4H), 7.14 (d, *J* = 7.4 Hz, 2H), 7.09 (t, *J* = 7.3 Hz, 1H), 3.81 (s, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 140.86, 138.46, 137.66, 136.62, 129.83, 129.61, 129.07, 128.68, 128.47, 126.82, 126.41, 126.06, 125.52, 124.85, 109.14, 101.83, 33.38. **HRMS (ESI):** Calcd. for C₂₁H₁₆CINS₂ [M+H]⁺: 382.0485, found: 382.0482.

(18) 6-bromo-1-methyl-3,5-bis(phenylthio)-1*H*-indole (3na)

White solid, (68.9 mg, 65% yield), m.p.: 143-145 °C, ¹H-NMR (600 MHz, Chloroform-*d*) δ 7.77 (s, 1H), 7.73 (s, 1H), 7.33 (s, 1H), 7.23 (dd, *J* = 8.6, 4.8 Hz, 2H), 7.19–7.16 (m, 5H), 7.12–7.08 (m, 3H), 3.81 (s, 3H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 138.54, 138.06, 136.95, 136.13, 129.92, 129.03, 128.93, 128.77, 126.61, 126.36, 126.21, 126.14, 125.21, 122.18, 114.88, 102.01, 33.37. HRMS (ESI): Calcd. for C₂₁H₁₆BrNS₂ [M+H]⁺: 425.9980, found: 425.9977.

(19) methyl 1-methyl-3,5-bis(phenylthio)-1*H*-indole-7-carboxylate (30a)

White solid, (24.3 mg, 24% yield), m.p.: 106-107 °C, ¹H-NMR (600 MHz, Chloroform-*d*) δ 8.10 (d, *J* = 7.1 Hz, 1H), 8.01 (d, *J* = 8.8 Hz, 1H), 7.76–7.71 (m, 2H), 7.69 (d, *J* = 8.0 Hz, 1H), 7.62 (s, 1H), 7.42 (d, *J* = 11.4 Hz, 2H), 7.38 (t, *J* = 7.0 Hz, 1H), 7.29 (t, *J* = 6.8 Hz, 1H), 6.99 (s, 1H), 3.69 (s, 3H), 2.13 (s, 3H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 184.92, 183.57, 143.25, 142.92, 135.45, 135.25, 134.79, 133.60, 133.45, 132.69, 132.24, 131.37, 126.82, 125.94, 125.16, 123.75, 121.80, 120.54, 118.23, 110.20, 103.76, 30.03, 8.86. HRMS (ESI): Calcd. for C₂₃H₁₉NO₂S₂ [M+H]⁺: 406.0930, found: 406.0925

(20) 1-methyl-3,5-bis(phenylthio)-1*H*-pyrrolo[2,3-*b*]pyridine (3pa)

White solid, (53.1 mg, 61% yield), m.p.: 132-134 °C, ¹H-NMR (600 MHz, Chloroform-*d*) δ 8.53 (s, 1H), 8.09 (s, 1H), 7.52 (s, 1H), 7.24–7.19 (m, 4H), 7.18–7.14 (m, 3H), 7.14–7.10 (m, 3H), 3.97 (s, 3H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 148.83, 148.00, 138.45, 138.09, 136.14, 133.85, 129.04, 128.88, 128.24, 126.26, 126.06, 125.34, 122.71, 122.36, 100.43, 31.68. HRMS (ESI): Calcd. for C₂₀H₁₆N₂S₂ [M+H]⁺: 349.0828, found: 349.0824.

(21) 1-methyl-3,5-bis(p-tolylthio)-1H-indole (3ab)

White solid, (76.9 mg, 82% yield), m.p.: 123-125 °C, ¹**H-NMR** (500 MHz, Chloroform-*d*) δ 7.83 (s, 1H), 7.38 (d, *J* = 6.9 Hz, 1H), 7.34 (t, *J* = 4.2 Hz, 2H), 7.14 (d, *J* = 8.2 Hz, 2H), 7.06 (td, *J* = 5.0, 2.3 Hz, 4H), 7.02 (d, *J* = 8.1 Hz, 2H), 3.83 (s, 3H), 2.33 (s, 3H), 2.30 (s, 3H). ¹³**C-NMR** (126 MHz, Chloroform-*d*) δ 137.14, 135.76, 135.56, 135.46, 135.05, 134.83, 130.65, 129.69, 129.54, 129.05, 127.82, 126.52, 125.65, 125.02, 110.79, 101.85, 33.27, 21.02, 20.93. **HRMS (ESI):** Calcd. for C₂₃H₂₁NS₂ [M+H]⁺: 376.1188, found: 376.1183.

(22) 3,5-bis((4-(tert-butyl)phenyl)thio)-1-methyl-1H-indole (3ac)

Yellow liquid, (78.0 mg, 68% yield), ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.89 (s, 1H), 7.42 (d, *J* = 6.9 Hz, 1H), 7.36 (d, *J* = 9.9 Hz, 2H), 7.27 (d, *J* = 8.5 Hz, 2H), 7.24 (d, *J* = 8.5 Hz, 2H), 7.16 (d, *J* = 8.5 Hz, 2H), 7.10 (d, *J* = 8.5 Hz, 2H), 3.85 (s, 3H), 1.32 (s, 9H), 1.30 (s, 9H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 148.90, 148.15, 137.22, 135.69, 135.66, 135.30, 130.86, 128.31, 128.23, 126.10, 125.91, 125.79, 125.52,

125.18, 110.74, 101.85, 34.41, 34.33, 33.24, 31.34, 31.32. **HRMS (ESI):** Calcd. for C₂₉H₃₃NS₂ [M+H]⁺: 460.2127, found: 460.2123.

(23) 3,5-bis((4-methoxyphenyl)thio)-1-methyl-1*H*-indole (3ad)

White liquid, (78.3 mg, 77% yield), ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.76 (d, *J* = 1.1 Hz, 1H), 7.32– 7.28 (m, 5H), 7.17 (d, *J* = 8.9 Hz, 2H), 6.84 (d, *J* = 8.9 Hz, 2H), 6.77 (d, *J* = 8.9 Hz, 2H), 3.81 (s, 3H), 3.77 (s, 6H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 158.85, 158.00, 136.81, 135.04, 132.44, 130.47, 129.44, 129.07, 128.21, 127.47, 126.43, 123.24, 114.73, 114.55, 110.63, 102.97, 55.36, 33.15. **HRMS (ESI):** Calcd. for C₂₃H₂₁NO₂S₂ [M+H]⁺: 408.1086, found: 408.1079.

(24) 3,5-bis((4-fluorophenyl)thio)-1-methyl-1*H*-indole (3ae)

White solid, (66.1 mg, 69% yield), m.p.: 87-89 °C, ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.72 (s, 1H), 7.36 (d, *J* = 4.4 Hz, 2H), 7.36 (s, 1H), 7.22–7.19 (m, 2H), 7.12–7.09 (m, 2H), 6.96–6.92 (m, 2H), 6.91–6.88 (m, 2H), 3.85 (s, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 162.13 (d, *J* = 83.1 Hz), 160.50 (d, *J* = 81.5 Hz), 137.20, 135.60, 133.86 (d, *J* = 3.0 Hz), 133.33 (d, *J* = 3.0 Hz), 131.16 (d, *J* = 7.6 Hz), 130.43, 128.25 (d, *J* = 7.6 Hz), 127.61, 125.94, 124.56, 115.97 (d, *J* = 21.1 Hz), 115.77 (d, *J* = 22.7 Hz), 110.92, 101.91, 33.27. ¹⁹**F-NMR** (565 MHz, Chloroform-*d*) δ -116.23, -117.77. **HRMS (ESI):** Calcd. for C₂₁H₁₅F₂NS₂ [M+H]⁺: 384.0687, found: 384.0684.

(25) 3,5-bis((4-chlorophenyl)thio)-1-methyl-1*H*-indole (3af)

White solid, (77.8 mg, 75% yield), m.p.: 126-128 °C, ¹**H-NMR** (400 MHz, Chloroform-*d*) δ 7.76 (s, 1H), 7.40 (s, 3H), 7.18 (d, *J* = 6.6 Hz, 2H), 7.15 (d, *J* = 6.7 Hz, 2H), 7.08 (d, *J* = 6.7 Hz, 2H), 7.03 (d, *J* = 6.7 Hz, 2H), 3.88 (s, 3H). ¹³**C-NMR** (101 MHz, Chloroform-*d*) δ 137.63, 137.60, 137.46, 136.02, 131.54, 130.79, 130.45, 129.40, 128.97, 128.83, 128.44, 127.27, 125.57, 124.50, 111.19, 100.85, 33.42. **HRMS (ESI)**: Calcd. for C₂₁H₁₅Cl₂NS₂ [M+H]⁺: 416.0096, found: 416.0090.

(26) 3,5-bis((4-bromophenyl)thio)-1-methyl-1*H*-indole (3ag)

White solid, (67.8 mg, 54% yield), m.p.: 150-152 °C, ¹H-NMR (400 MHz, Chloroform-*d*) δ 7.76 (d, *J* = 1.7 Hz, 1H), 7.40 (d, *J* = 2.6 Hz, 3H), 7.32 (d, *J* = 6.8 Hz, 2H), 7.29 (d, *J* = 6.8 Hz, 2H), 7.00 (d, *J* = 6.8 Hz, 2H), 6.96 (d, *J* = 6.8 Hz, 2H), 3.88 (s, 3H). ¹³C-NMR (101 MHz, Chloroform-*d*) δ 138.37, 138.36, 137.49, 136.07, 131.86, 131.71, 130.44, 129.54, 128.54, 127.55, 125.68, 124.26, 119.35, 118.57, 111.23, 100.69, 33.44. HRMS (ESI): Calcd. for C₂₁H₁₅Br₂NS₂ [M+H]⁺: 503.9085, found: 503.9080.

(27) 1-methyl-3,5-bis((4-nitrophenyl)thio)-1*H*-indole (3ah)

Yellow solid, (74.3 mg, 68% yield), m.p.: 96-97 °C, ¹**H-NMR** (500 MHz, Chloroform-*d*) δ 8.02 (d, *J* = 2.4 Hz, 2H), 8.00 (d, *J* = 2.4 Hz, 2H), 7.80 (s, 1H), 7.55 (d, *J* = 8.5 Hz, 1H), 7.51 (s, 1H), 7.49 (d, *J* = 6.9 Hz, 1H), 7.13 (d, *J* = 8.9 Hz, 2H), 7.08 (d, *J* = 8.9 Hz, 2H), 3.98 (s, 3H). ¹³**C-NMR** (126 MHz, Chloroform-*d*) δ 150.10, 149.30, 145.09, 145.00, 138.20, 136.94, 130.52, 129.83, 127.00, 125.70, 125.05, 123.95, 123.92, 121.51, 112.02, 98.87, 33.66. **HRMS (ESI):** Calcd. for C₂₁H₁₃N₃O₄S₂ [M+H]⁺: 438.0577, found: 438.0573.

(28) 1-methyl-3,5-bis(o-tolylthio)-1H-indole (3ai)

White solid, (70.3 mg, 75% yield), m.p.: 160-162 °C, ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.76 (s, 1H), 7.40 (d, *J* = 8.5 Hz, 1H), 7.38–7.35 (m, 2H), 7.18 (d, *J* = 7.4 Hz, 1H), 7.16 (d, *J* = 7.4 Hz, 1H), 7.09 (t, *J* = 7.4 Hz, 1H), 7.03 (q, *J* = 8.0 Hz, 2H), 6.95 (t, *J* = 7.5 Hz, 2H), 6.77 (d, *J* = 7.7 Hz, 1H), 3.87 (s, 3H), 2.50 (s, 3H), 2.41 (s, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 138.19, 137.76, 137.33, 136.61, 135.90, 134.48, 130.91, 130.10, 129.91, 128.63, 128.05, 126.40, 126.27, 125.78, 125.36, 124.62, 124.50, 110.97, 100.61, 33.34, 20.30, 19.94. **HRMS (ESI):** Calcd. for C₂₃H₂₁NS₂ [M+H]⁺: 376.1188, found: 376.1183.

(29) 3,5-bis((2-chlorophenyl)thio)-1-methyl-1*H*-indole (3aj)

White solid, (73.7 mg, 71% yield), m.p.: 164-167 °C, ¹**H-NMR** (400 MHz, Chloroform-*d*) δ 7.94–7.74 (m, 1H), 7.50–7.41 (m, 3H), 7.36–7.29 (m, 2H), 7.05–6.93 (m, 4H), 6.67 (ddd, *J* = 7.2, 3.4, 1.8 Hz, 2H), 3.92 (s, 3H). ¹³**C-NMR** (101 MHz, Chloroform-*d*) δ 139.11, 138.21, 137.97, 136.62, 130.83, 130.16, 129.74, 129.38, 127.55, 127.38, 126.96, 126.91, 126.26, 125.92, 125.63, 122.32, 111.48, 99.68, 33.52. **HRMS** (ESI): Calcd. for C₂₁H₁₅Cl₂NS₂ [M+H]⁺: 416.0096, found: 416.0091.

(30) 1-methyl-3,5-bis(m-tolylthio)-1H-indole (3ak)

White solid, (62.8 mg, 67% yield), m.p.: 116-118 °C, ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.93 (d, *J* = 1.4 Hz, 1H), 7.46 (d, *J* = 6.8 Hz, 1H), 7.39 (d, *J* = 8.5 Hz, 1H), 7.37 (s, 1H), 7.15 (t, *J* = 7.7 Hz, 1H), 7.12–7.09 (m, 2H), 7.05 (s, 1H), 7.02 (d, *J* = 7.9 Hz, 1H), 6.99 (d, *J* = 7.5 Hz, 1H), 6.97 (d, *J* = 8.0 Hz, 1H), 6.94 (d, *J* = 7.5 Hz, 1H), 3.84 (s, 3H), 2.31 (s, 3H), 2.30 (s, 3H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 139.00, 138.87, 138.66, 138.53, 137.39, 135.87, 130.85, 128.83, 128.76, 128.67, 128.50, 126.71, 126.60, 126.00,

125.80, 125.33, 124.77, 123.25, 110.95, 101.43, 33.28, 21.43, 21.38. **HRMS (ESI):** Calcd. for C₂₃H₂₁NS₂ [M+H]⁺: 376.1188, found: 376.1185.

(31) 3,5-bis((3-bromophenyl)thio)-1-methyl-1*H*-indole (3al)

White solid, (75.3 mg, 60% yield), m.p.: 120-121 °C, ¹**H-NMR** (400 MHz, Chloroform-*d*) δ 7.84 (d, *J* = 8.5 Hz, 1H), 7.43 (t, *J* = 9.5 Hz, 3H), 7.24 (dd, *J* = 11.5, 5.7 Hz, 4H), 7.10–7.01 (m, 4H), 3.91 (s, 3H). ¹³**C-NMR** (101 MHz, Chloroform-*d*) δ 142.00, 141.71, 137.70, 136.35, 130.58, 130.15, 130.12, 130.11, 129.86, 129.11, 128.40, 128.19, 128.02, 126.36, 125.94, 124.34, 123.38, 122.99, 111.43, 100.20, 33.51. **HRMS** (ESI): Calcd. for C₂₁H₁₅Br₂NS₂ [M+H]⁺: 503.9085, found: 503.9081.

(32) 3,5-bis((2,4-dimethylphenyl)thio)-1-methyl-1*H*-indole (3am)

White solid, (81.6 mg, 81% yield), m.p.: 137-139 °C, ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.66 (s, 1H), 7.33 (d, *J* = 6.3 Hz, 1H), 7.31 (s, 1H), 7.28 (d, *J* = 4.8 Hz, 1H), 7.04–6.97 (m, 3H), 6.88 (t, *J* = 6.8 Hz, 1H), 6.77 (t, *J* = 6.6 Hz, 1H), 6.74–6.71 (m, 1H), 3.84 (s, 3H), 2.46 (s, 3H), 2.36 (s, 3H), 2.32 (s, 3H), 2.28 (s, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 137.77, 136.96, 136.28, 135.40, 134.84, 134.50, 134.44, 133.26, 131.15, 130.85, 130.78, 130.51, 127.22, 127.03, 126.77, 126.34, 125.88, 123.84, 110.70, 101.36, 33.22, 20.92, 20.76, 20.33, 19.92. **HRMS (ESI):** Calcd. for C₂₅H₂₅NS₂ [M+H]⁺: 404.1501, found: 404.1497.

(33) 1-methyl-3,5-bis(naphthalen-2-ylthio)-1*H*-indole (3an)

S83

White solid, (80.5 mg, 72% yield), m.p.: 142-143 °C, ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.94 (s, 1H), 7.74 (ddd, *J* = 14.0, 6.3, 3.3 Hz, 2H), 7.66 (d, *J* = 8.6 Hz, 1H), 7.62–7.58 (m, 4H), 7.53 (s, 1H), 7.47 (d, *J* = 6.9 Hz, 1H), 7.43–7.39 (m, 6H), 7.31 (d, *J* = 6.8 Hz, 1H), 7.28 (s, 1H), 3.85 (s, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 136.63, 136.29, 135.92, 133.82, 133.77, 131.70, 131.47, 130.78, 128.41, 128.34, 128.33, 127.73, 127.68, 127.15, 126.96, 126.72, 126.41, 126.39, 125.55, 125.49, 125.17, 124.97, 124.91, 123.81, 111.04, 101.33, 33.32. **HRMS (ESI):** Calcd. for C₂₉H₂₁NS₂ [M+H]⁺: 448.1188, found: 448.1184.

(34) 1-methyl-3,5-bis(phenylselanyl)-1*H*-indole (3ao)

Brown solid, (89.5 mg, 81% yield), m.p.: 107-109 °C, ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.99 (s, 1H), 7.53 (d, *J* = 6.9 Hz, 1H), 7.36–7.33 (m, 4H), 7.29–7.27 (m, 2H), 7.21–7.13 (m, 6H), 3.85 (s, 3H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 137.28, 136.25, 133.79, 133.75, 131.83, 130.75, 129.54, 129.06, 128.99, 128.95, 127.81, 126.24, 125.79, 120.27, 110.77, 96.46, 33.18. **HRMS (ESI):** Calcd. for C₂₁H₁₇NSe₂ [M+H]⁺: 443.9764, found: 443.9759.

(35) 1-methyl-3,5-bis(p-tolylselanyl)-1H-indole (3ap)

White solid, (81.2 mg, 69% yield), m.p.: 112-113 °C, ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.98 (s, 1H), 7.49 (d, *J* = 6.9 Hz, 1H), 7.32 (s, 1H), 7.32–7.29 (m, 3H), 7.21 (d, *J* = 8.1 Hz, 2H), 7.05 (d, *J* = 7.9 Hz, 2H), 7.00 (d, *J* = 7.9 Hz, 2H), 3.82 (s, 3H), 2.33 (s, 3H), 2.30 (s, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 137.11, 136.31, 135.94, 135.65, 131.78, 131.53, 129.91, 129.85, 129.81, 129.63, 129.45, 128.95, 127.15, 120.98, 110.63, 96.91, 33.12, 21.07, 20.99. **HRMS (ESI):** Calcd. for C₂₃H₂₁NSe₂ [M+H]⁺: 472.0077, found: 472.0072.

(36) 3,5-bis((4-fluorophenyl)selanyl)-1-methyl-1*H*-indole (3aq)

White solid, (75.4 mg, 63% yield), m.p.: 106-109 °C, ¹**H-NMR** (400 MHz, Chloroform-*d*) δ 7.89 (s, 1H), 7.48 (d, *J* = 8.5 Hz, 1H), 7.34 (q, *J* = 8.7, 7.7 Hz, 4H), 7.25 (dd, *J* = 8.1, 5.6 Hz, 2H), 6.90 (dt, *J* = 19.4, 8.6 Hz, 4H), 3.85 (s, 3H). ¹³**C-NMR** (101 MHz, Chloroform-*d*) δ 163.05 (d, *J* = 39.4 Hz), 160.61 (d, *J* = 37.4 Hz), 137.16, 136.10, 133.47 (d, *J* = 7.1 Hz), 131.54, 131.05 (d, *J* = 8.1 Hz), 128.87, 127.80 (d, *J* = 17.2 Hz), 126.85, 121.10, 116.35, 116.17 (d, *J* = 6.1 Hz), 115.99, 110.88, 96.76, 33.23. ¹⁹**F-NMR** (376 MHz, Chloroform-*d*) δ -115.65, -116.79. **HRMS (ESI):** Calcd. for C₂₁H₁₅F₂NSe₂ [M+H]⁺: 479.9576, found: 479.9570.

(37) 3,5-bis((4-chlorophenyl)selanyl)-1-methyl-1*H*-indole (3ar)

White solid, (100.7 mg, 79% yield), m.p.: 116-118 °C, ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.87 (s, 1H), 7.49 (d, *J* = 7.1 Hz, 1H), 7.37 (s, 1H), 7.34 (d, *J* = 8.5 Hz, 1H), 7.24 (d, *J* = 8.5 Hz, 2H), 7.17–7.14 (m, 4H), 7.12 (d, *J* = 8.6 Hz, 2H), 3.87 (s, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 137.35, 136.31, 132.44, 132.14, 131.89, 131.87, 131.85, 131.58, 130.24, 129.42, 129.16, 129.05, 127.50, 120.28, 110.95, 96.22, 33.24. **HRMS (ESI):** Calcd. for C₂₁H₁₅Cl₂NSe₂ [M+H]⁺: 511.8985, found: 511.8975.

(38) 3,5-bis((4-bromophenyl)selanyl)-1-methyl-1*H*-indole (3as)

White solid, (61.4 mg, 41% yield), m.p.: 126-127 °C, ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.89 (s, 1H), 7.50 (d, *J* = 6.3 Hz, 1H), 7.37–7.34 (m, 2H), 7.32–7.29 (m, 2H), 7.27–7.25 (m, 2H), 7.16 (dq, *J* = 5.9, 1.9 Hz, 2H), 7.09 (dq, *J* = 6.5, 2.1 Hz, 2H), 3.86 (s, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 137.39, 136.39, 132.73, 132.33, 132.09, 131.97, 131.58, 130.52, 129.53, 127.61, 120.38, 120.10, 119.74, 111.03, 96.08,
33.27. HRMS (ESI): Calcd. for C₂₁H₁₅Br₂NSe₂ [M+H]⁺: 599.7962, found: 599.7958.

(39) 1-methyl-3,5-bis((4-(trifluoromethyl)phenyl)selanyl)-1*H*-indole (3at)

Yellow solid, (92.6 mg, 64% yield), m.p.: 129-131 °C, ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.94 (s, 1H), 7.57 (d, *J* = 8.5 Hz, 1H), 7.43 (t, *J* = 4.2 Hz, 2H), 7.39 (dd, *J* = 8.1, 5.2 Hz, 4H), 7.31 (dd, *J* = 14.8, 8.2 Hz, 4H), 3.92 (s, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 139.68, 139.40, 137.70, 136.86, 131.72, 130.33, 129.53, 128.49, 128.27, 128.23, 128.03 (d, *J* = 4.5 Hz), 127.83, 125.65 (d, *J* = 3.0 Hz), 125.09 (d, *J* = 3.0 Hz), 123.29 (d, *J* = 3.0 Hz), 118.91, 111.30, 95.30, 33.31. ¹⁹**F-NMR** (565 MHz, Chloroform-*d*) δ -62.51, -62.56. **HRMS (ESI):** Calcd. for C₂₃H₁₅F₆NSe₂ [M+H]⁺: 579.9512, found: 579.9506.

(40) 1-methyl-2,3-bis(phenylthio)-1*H*-indole (4aa)

Known compound, (79.4 mg, 91% yield), ¹**H-NMR** (500 MHz, Chloroform-*d*) δ 7.77 (d, J = 8.0 Hz, 1H), 7.46 (d, J = 8.3 Hz, 1H), 7.42 (t, J = 7.0 Hz, 1H), 7.25 (ddd, J = 14.7, 6.6, 1.2 Hz, 3H), 7.20 (d, J = 4.3 Hz, 5H), 7.15–7.09 (m, 3H), 3.86 (s, 3H). ¹³**C-NMR** (126 MHz, Chloroform-*d*) δ 138.62, 138.59, 135.92, 134.38, 129.29, 129.28, 128.77, 127.49, 126.68, 126.30, 125.10, 124.10, 121.19, 120.46, 111.15, 110.32, 31.20. Calcd. for C₂₁H₁₇NS₂.

(41) 2,3-bis(phenylthio)-1*H*-indole (4ba)

Known compound, (78.7 mg, 85% yield), ¹H-NMR (500 MHz, Chloroform-*d*) δ 8.35 (s, 1H), 7.67 (d, J = 7.9 Hz, 1H), 7.35 (d, J = 8.2 Hz, 1H), 7.33–7.25 (m, 6H), 7.20 (td, J = 7.4, 6.6, 3.5 Hz, 5H), 7.14–7.09 (m, 1H). ¹³C-NMR (126 MHz, Chloroform-*d*) δ 138.12, 136.95, 134.45, 133.63, 130.02, 129.70, 129.47, 128.82, 127.31, 126.65, 125.18, 123.96, 121.31, 119.98, 111.28. Calcd. for C₂₀H₁₅NS₂.

(42) 5-methoxy-1-methyl-2,3-bis(phenylthio)-1H-indole (4ca)

White solid, (82.0 mg, 87% yield), m.p.: 149-151 °C, ¹H-NMR (500 MHz, Chloroform-*d*) δ 7.33 (d, *J* = 8.9 Hz, 1H), 7.22–7.17 (m, 3H), 7.16–7.11 (m, 5H), 7.08 (d, *J* = 7.4 Hz, 3H), 7.04 (d, *J* = 6.4 Hz, 1H), 3.84 (s, 3H), 3.81 (s, 3H). ¹³C-NMR (126 MHz, Chloroform-*d*) δ 155.31, 138.64, 136.01, 134.28, 133.69, 129.92, 129.19, 128.69, 127.34, 126.39, 126.16, 124.94, 114.99, 111.21, 110.05, 100.99, 55.84, 31.28. HRMS (ESI): Calcd. for C₂₂H₁₉NOS₂ [M+H]⁺: 378.0981, found: 378.0975.

(43) 1,2-bis(phenylthio)-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinoline (4da)

White solid, (77.4 mg, 83% yield), m.p.: 120-121 °C, ¹**H-NMR** (500 MHz, Chloroform-*d*) δ 7.50 (d, *J* = 8.0 Hz, 1H), 7.24–7.18 (m, 6H), 7.17–7.07 (m, 6H), 4.14–4.10 (m, 2H), 3.04 (t, *J* = 6.1 Hz, 2H), 2.24 (p, *J* = 6.0 Hz, 2H). ¹³**C-NMR** (126 MHz, Chloroform-*d*) δ 138.82, 135.99, 135.91, 132.37, 129.20, 128.69, 127.59, 127.54, 126.69, 126.21, 124.99, 122.42, 121.18, 120.74, 117.66, 109.97, 43.11, 24.81, 22.75. **HRMS (ESI)**: Calcd. for C₂₃H₁₉NS₂ [M+H]⁺: 374.1032, found: 374.1027.

(44) 4-methyl-2,3-bis(phenylthio)-1*H*-indole (4ea)

White solid, (70.36 mg, 81% yield), m.p.: 113-115 °C, ¹**H-NMR** (500 MHz, Chloroform-*d*) δ 8.39 (s, 1H), 7.35–7.25 (m, 5H), 7.23–7.16 (m, 4H), 7.14–7.07 (m, 3H), 6.96 (d, *J* = 5.1 Hz, 1H), 2.73 (s, 3H). ¹³C-NMR (126 MHz, Chloroform-*d*) δ 140.41, 137.27, 134.95, 134.35, 132.05, 129.95, 129.46, 128.87, 128.07, 127.35, 125.54, 124.74, 123.75, 123.00, 109.09, 107.96, 18.77. **HRMS (ESI):** Calcd. for C₂₁H₁₇NS₂ [M+H]⁺: 348.0875, found: 348.0871.

(45) 6-fluoro-2,3-bis(phenylthio)-1*H*-indole (4fa)

Known compound, (68.5 mg, 78% yield), ¹**H-NMR** (500 MHz, Chloroform-*d*) δ 8.39 (s, 1H), 7.52 (d, J = 5.3 Hz, 1H), 7.32–7.23 (m, 5H), 7.22–7.09 (m, 5H), 7.03 (d, J = 9.2 Hz, 1H), 6.98–6.92 (m, 1H). ¹³**C-NMR** (126 MHz, Chloroform-*d*) δ 160.89 (d, J = 241.9 Hz), 137.74, 136.81 (d, J = 12.6 Hz), 134.32, 133.66 (d, J = 3.8 Hz), 129.64, 129.47, 128.85, 127.36, 126.73, 126.40, 125.34, 121.01 (d, J = 10.1 Hz), 110.19 (d, J = 25.2 Hz), 109.82, 97.77 (d, J = 27.7 Hz). ¹⁹**F-NMR** (471 MHz, Chloroform-*d*) δ -117.83. Calcd. for C₂₀H₁₄FNS₂.

(46) 4-chloro-2,3-bis(phenylthio)-1*H*-indole (4ga)

White solid, (76.1 mg, 83% yield), m.p.: 141-144 °C, ¹H-NMR (500 MHz, Chloroform-*d*) δ 8.46 (s, 1H), 7.36 (dd, *J* = 7.6, 2.0 Hz, 2H), 7.34–7.29 (m, 3H), 7.24–7.17 (m, 5H), 7.16–7.13 (m, 2H), 7.11 (t, *J* = 7.1 Hz, 1H). ¹³**C-NMR** (126 MHz, Chloroform-*d*) δ 139.91, 138.14, 137.59, 133.01, 130.93, 129.69, 128.79, 128.01, 126.43, 126.25, 126.23, 124.99, 123.95, 122.72, 110.02, 106.67. **HRMS (ESI):** Calcd. for C₂₀H₁₄CINS₂ [M+H]⁺: 368.0329, found: 368.0324.

(47) 5-bromo-2,3-bis(phenylthio)-1H-indole (4ha)

Known compound, (63.7 mg, 62% yield), ¹**H-NMR** (500 MHz, Chloroform-*d*) δ 8.32 (s, 1H), 7.76 (s, 1H), 7.33 (dtd, J = 12.7, 7.0, 2.0 Hz, 6H), 7.22–7.18 (m, 3H), 7.13 (dd, J = 8.1, 1.9 Hz, 3H). ¹³**C-NMR** (126 MHz, Chloroform-*d*) δ 137.61, 136.04, 135.38, 133.25, 131.89, 130.56, 129.61, 128.89, 127.85, 126.68, 126.58, 125.37, 122.22, 114.79, 112.53, 107.71. Calcd. for C₂₀H₁₄BrNS₂.

(48) methyl 2,3-bis(phenylthio)-1*H*-indole-7-carboxylate (4ia)

White solid, (41.0 mg, 42% yield), m.p.: 157-159 °C, ¹**H-NMR** (500 MHz, Chloroform-*d*) δ 9.98 (s, 1H), 7.94 (d, *J* = 6.7 Hz, 1H), 7.82 (d, *J* = 7.9 Hz, 1H), 7.37 (d, *J* = 6.8 Hz, 2H), 7.32–7.27 (m, 3H), 7.17 (s, 3H), 7.15–7.08 (m, 3H), 3.97 (s, 3H). ¹³**C-NMR** (126 MHz, Chloroform-*d*) δ 167.31, 137.86, 136.73, 135.72, 133.55, 131.07, 130.33, 129.50, 128.81, 127.66, 126.62, 125.78, 125.26, 120.57, 112.84, 108.62, 52.09. **HRMS (ESI):** Calcd. for C₂₂H₁₇NO₂S₂ [M+H]⁺: 392.0773, found: 392.0767.

(49) 2,3-bis(phenylthio)-1*H*-indole-5-carbonitrile (4ja)

Known compound, (36.7 mg, 41% yield), ¹**H-NMR** (500 MHz, Chloroform-*d*) δ 8.70 (s, 1H), 7.91 (s, 1H), 7.45 (d, *J* = 8.4 Hz, 1H), 7.41–7.37 (m, 3H), 7.36–7.31 (m, 3H), 7.24–7.20 (m, 2H), 7.16–7.13 (m, 3H). ¹³C-S89 **NMR** (126 MHz, Chloroform-*d*) δ 138.47, 138.19, 136.95, 132.24, 131.37, 130.03, 129.79, 129.02, 128.39, 126.95, 126.35, 125.78, 124.90, 120.04, 112.04, 108.45, 104.42. Calcd. for C₂₁H₁₄N₂S₂.

(50) 5-nitro-2,3-bis(phenylthio)-1*H*-indole (4ka)

Known compound, (44.4 mg, 47% yield), ¹**H-NMR** (500 MHz, Chloroform-*d*) δ 8.53 (d, J = 2.2 Hz, 2H), 8.14 (d, J = 6.7 Hz, 1H), 7.44–7.41 (m, 2H), 7.39–7.35 (m, 4H), 7.24–7.21 (m, 2H), 7.18–7.13 (m, 3H). ¹³**C-NMR** (126 MHz, Chloroform-*d*) δ 142.96, 139.55, 139.35, 136.85, 131.82, 131.65, 129.93, 129.89, 129.03, 128.61, 127.08, 125.85, 118.99, 116.41, 111.12, 109.70. Calcd. for C₂₀H₁₄N₂O₂S₂.

(51) 1-methyl-2,3-bis(p-tolylthio)-1H-indole (4ab)

Known compound, (81.6 mg, 87% yield), ¹**H-NMR** (500 MHz, Chloroform-*d*) δ 7.78–7.74 (m, 1H), 7.43 (d, *J* = 7.6 Hz, 1H), 7.41–7.37 (m, 1H), 7.27–7.23 (m, 1H), 7.12 (s, 2H), 7.08–7.05 (m, 4H), 7.02 (s, 2H), 3.85 (s, 3H), 2.35–2.31 (m, 6H). ¹³**C-NMR** (126 MHz, Chloroform-*d*) δ 138.49, 136.29, 135.02, 134.88, 134.82, 132.28, 130.02, 129.52, 129.28, 127.98, 127.12, 123.90, 121.01, 120.42, 111.43, 110.19, 31.15, 21.03, 20.99. Calcd. for C₂₃H₂₁NS₂.

(52) 2,3-bis((4-(*tert*-butyl)phenyl)thio)-1-methyl-1*H*-indole (4ac)

White solid, (83.8 mg, 73% yield), m.p.: 96-99 °C, ¹**H-NMR** (500 MHz, Chloroform-*d*) δ 7.76 (d, *J* = 8.0 Hz, 1H), 7.42 (d, *J* = 8.2 Hz, 1H), 7.37 (t, *J* = 7.1 Hz, 1H), 7.26–7.20 (m, 5H), 7.13 (d, *J* = 8.5 Hz, 2H), 7.06 (d, *J* = 8.5 Hz, 2H), 3.85 (s, 3H), 1.30 (d, *J* = 1.8 Hz, 18H). ¹³**C-NMR** (126 MHz, Chloroform-*d*) δ 149.51, 148.15, 138.44, 135.18, 134.87, 132.34, 129.38, 127.68, 126.78, 126.25, 125.75, 123.86, 120.96, 120.47, 111.41, 110.13, 34.46, 34.35, 31.36, 31.28, 31.17. **HRMS (ESI):** Calcd. for C₂₉H₃₃NS₂ [M+H]⁺: 460.2127, found: 460.2121.

(53) 2,3-bis((4-methoxyphenyl)thio)-1-methyl-1*H*-indole (4ad)

Known compound, (89.5 mg, 88% yield), ¹**H-NMR** (500 MHz, Chloroform-*d*) δ 7.77–7.69 (m, 1H), 7.39– 7.32 (m, 2H), 7.24–7.16 (m, 3H), 7.13 (ddd, *J* = 8.6, 3.9, 2.0 Hz, 2H), 6.78–6.72 (m, 4H), 3.83 (s, 3H), 3.77 (s, 3H), 3.76 (s, 3H). ¹³**C-NMR** (126 MHz, Chloroform-*d*) δ 158.75, 157.98, 138.26, 135.39, 130.51, 129.53, 129.19, 129.13, 126.10, 123.77, 120.92, 120.28, 114.88, 114.45, 111.97, 110.09, 55.35, 55.32, 31.09. Calcd. for C₂₃H₂₁NO₂S₂.

(54) 2,3-bis((4-fluorophenyl)thio)-1-methyl-1*H*-indole (4ae)

Brown solid, (78.5 mg, 87% yield), m.p.: 109-111 °C, ¹**H-NMR** (500 MHz, Chloroform-*d*) δ 7.73 (d, J = 8.0 Hz, 1H), 7.44 (d, J = 8.2 Hz, 1H), 7.40 (t, J = 7.0 Hz, 1H), 7.26 (t, J = 6.8 Hz, 1H), 7.16–7.13 (m, 2H), 7.10 (ddt, J = 8.2, 5.2, 2.6 Hz, 2H), 6.91 (dddd, J = 22.0, 8.8, 6.1, 2.1 Hz, 4H), 3.86 (s, 3H). ¹³**C-NMR** (126 MHz, Chloroform-*d*) δ 162.41 (d, J = 71.8 Hz), 160.45 (d, J = 70.6 Hz), 138.43, 134.57, 133.41 (d, J = 3.8 Hz), 130.66 (d, J = 2.5 Hz), 129.92 (d, J = 7.6 Hz), 129.08, 128.93 (d, J = 7.6 Hz), 124.24, 121.32, 120.25, 116.40 (d, J = 22.7 Hz), 115.80 (d, J = 22.7 Hz), 111.53, 110.35, 31.16. ¹⁹**F-NMR** (471 MHz, Chloroform-*d*) δ -115.20, -117.37. **HRMS (ESI):** Calcd. for C₂₁H₁₅F₂NS₂ [M+H]⁺: 384.0687, found: 384.0681.

(55) 2,3-bis((4-chlorophenyl)thio)-1-methyl-1H-indole (4af)

Known compound, (87.1 mg, 84% yield), ¹**H-NMR** (500 MHz, Chloroform-*d*) δ 7.72 (d, *J* = 8.0 Hz, 1H), 7.46 (d, *J* = 8.2 Hz, 1H), 7.42 (t, *J* = 7.5 Hz, 1H), 7.28 (t, *J* = 7.4 Hz, 1H), 7.19 (d, *J* = 8.5 Hz, 2H), 7.14 (d, *J* = 8.6 Hz, 2H), 7.06 (d, *J* = 8.5 Hz, 2H), 7.01 (d, *J* = 8.5 Hz, 2H), 3.86 (s, 3H). ¹³**C-NMR** (126 MHz, Chloroform-*d*) δ 138.56, 137.05, 134.27, 133.94, 132.45, 131.03, 129.41, 129.06, 128.85, 128.79, 127.95, 124.43, 121.50, 120.29, 110.93, 110.48, 31.23. Calcd. for C₂₁H₁₅Cl₂NS₂.

(56) 2,3-bis((4-bromophenyl)thio)-1-methyl-1*H*-indole (4ag)

Known compound, (96.8 mg, 77% yield), ¹**H-NMR** (500 MHz, Chloroform-*d*) δ 7.67 (d, J = 8.0 Hz, 1H), 7.45 (d, J = 8.2 Hz, 1H), 7.42–7.38 (m, 1H), 7.31 (d, J = 8.6 Hz, 2H), 7.27–7.23 (m, 3H), 6.95 (d, J = 8.6 Hz, 2H), 6.91 (d, J = 8.6 Hz, 2H), 3.84 (s, 3H). ¹³**C-NMR** (126 MHz, Chloroform-*d*) δ 138.53, 137.66, 134.91, 133.74, 132.28, 131.70, 128.99, 128.92, 128.18, 128.15, 124.40, 121.47, 120.26, 118.80, 110.78, 110.42, 31.20. Calcd. for C₂₁H₁₅Br₂NS₂.

(57) 2,3-bis((2-chlorophenyl)thio)-1-methyl-1*H*-indole (4ah)

Known compound, (68.5 mg, 66% yield), ¹**H-NMR** (500 MHz, Chloroform-*d*) δ 7.68 (d, J = 8.0 Hz, 1H), 7.49 (d, J = 8.3 Hz, 1H), 7.43 (t, J = 7.1 Hz, 1H), 7.33 (ddd, J = 13.7, 7.9, 1.3 Hz, 2H), 7.26 (t, J = 7.1 Hz, 1H), 7.08–7.05 (m, 1H), 7.00 (tdd, J = 7.8, 4.7, 1.5 Hz, 2H), 6.95–6.91 (m, 1H), 6.65 (d, J = 6.4 Hz, 1H), 6.59 (d, J = 6.4 Hz, 1H), 3.86 (s, 3H). ¹³C-NMR (126 MHz, Chloroform-*d*) δ 138.89, 137.59, 135.15, 133.49, 131.34, 130.56, 129.79, 129.38, 129.16, 127.74, 127.43, 126.99, 126.84, 126.65, 125.63, 124.44, 121.48, 120.39, 110.50, 110.11, 31.21. Calcd. for C₂₁H₁₅Cl₂NS₂.

(58) 2,3-bis((3-bromophenyl)thio)-1-methyl-1*H*-indole (4ai)

Known compound, (74.2 mg, 59% yield), ¹**H-NMR** (400 MHz, Chloroform-*d*) δ 7.72 (d, *J* = 8.0 Hz, 1H), 7.47 (d, *J* = 8.2 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 1H), 7.30–7.26 (m, 2H), 7.25–7.16 (m, 3H), 7.07 (t, *J* = 7.9 Hz, 1H), 7.04–6.99 (m, 2H), 6.96 (d, *J* = 7.8 Hz, 1H), 3.87 (s, 3H). ¹³**C-NMR** (101 MHz, Chloroform-*d*) δ 140.88, 138.59, 137.93, 133.56, 130.57, 130.08, 129.85, 129.53, 129.10, 128.92, 128.24, 125.85, 125.04, 124.50, 123.28, 122.89, 121.58, 120.28, 110.55, 110.52, 31.31. Calcd. for C₂₁H₁₅Br₂NS₂.

(59) 1-methyl-2,3-bis(naphthalen-2-ylthio)-1H-indole (4aj)

White solid, (84.9 mg, 76% yield), m.p.: 115-116 °C, ¹**H-NMR** (500 MHz, Chloroform-*d*) δ 7.80 (d, *J* = 8.0 Hz, 1H), 7.74–7.70 (m, 2H), 7.66–7.61 (m, 2H), 7.58–7.53 (m, 4H), 7.47 (d, *J* = 8.3 Hz, 1H), 7.44–7.40 (m, 3H), 7.40–7.35 (m, 2H), 7.34 (d, *J* = 6.8 Hz, 1H), 7.27 (d, *J* = 6.9 Hz, 1H), 7.23 (d, *J* = 8.6 Hz, 1H), 3.89 (s, 3H). ¹³**C-NMR** (126 MHz, Chloroform-*d*) δ 138.62, 136.06, 134.51, 133.74, 133.12, 131.84, 131.47, 129.41, 128.95, 128.28, 127.72, 127.67, 127.12, 126.97, 126.68, 126.30, 126.07, 125.90, 125.59, 125.47, 125.16, 124.58, 124.13, 121.26, 120.48, 110.35, 31.27. **HRMS** (**ESI**): Calcd. for C₂₉H₂₁NS₂ [M+H]⁺: 448.1188, found: 448.1180.

(60) 2,3-bis(ethylthio)-1-methyl-1*H*-indole (4ak)

White solid, (49.6 mg, 79% yield), m.p.: 87-90 °C, ¹**H-NMR** (500 MHz, Chloroform-*d*) δ 7.82 (d, *J* = 7.9 Hz, 1H), 7.37 (d, *J* = 8.2 Hz, 1H), 7.33 (t, *J* = 7.0 Hz, 1H), 7.23 (t, *J* = 6.8 Hz, 1H), 3.93 (s, 3H), 2.89 (q, *J* = 7.4 Hz, 2H), 2.83 (q, *J* = 7.4 Hz, 2H), 1.25 (q, *J* = 7.4 Hz, 6H). ¹³**C-NMR** (126 MHz, Chloroform-*d*) δ 137.86, 136.15, 129.91, 123.15, 120.39, 119.76, 112.24, 109.89, 31.28, 30.90, 30.69, 15.19, 14.89. **HRMS** (ESI): Calcd. for C₁₃H₁₇NS₂ [M+H]⁺: 252.0875, found: 252.0873.

(61) 1-methyl-2,3-bis(phenylselanyl)-1H-indole (4al)

White solid, (82.0 mg, 83% yield), m.p.: 121-123 °C, ¹**H-NMR** (500 MHz, Chloroform-*d*) δ 7.75 (d, *J* = 8.0 Hz, 1H), 7.42 (d, *J* = 8.3 Hz, 1H), 7.36 (t, *J* = 7.1 Hz, 1H), 7.30 (dd, *J* = 4.8, 3.0 Hz, 2H), 7.25–7.21 (m,

3H), 7.18 (dt, J = 5.4, 2.4 Hz, 3H), 7.14 (dt, J = 4.6, 3.2 Hz, 3H), 3.90 (s, 3H). ¹³C-NMR (126 MHz, Chloroform-*d*) δ 138.94, 133.79, 133.68, 131.62, 130.52, 130.15, 129.45, 129.42, 128.96, 126.80, 125.80, 123.64, 121.35, 120.97, 110.23, 109.04, 32.83. **HRMS (ESI):** Calcd. for C₂₁H₁₇NSe₂ [M+H]⁺: 443.9764, found: 443.9758.

(62) 1-methyl-3,5-bis(phenylthio)-2-(trifluoromethyl)-1H-indole (6)

White solid, (71.6 mg, 69% yield), m.p.: 73-75 °C, ¹H-NMR (600 MHz, Chloroform-*d*) δ 7.90 (s, 1H), 7.50 (d, *J* = 8.9 Hz, 1H), 7.43 (d, *J* = 8.6 Hz, 1H), 7.26–7.16 (m, 7H), 7.16–7.11 (m, 3H), 3.96 (s, 3H). ¹³C-NMR (151 MHz, Chloroform-*d*) δ 137.97, 137.54, 137.41, 130.72, 130.04 (d, *J* = 36.2 Hz), 129.46, 129.00, 128.92, 128.87, 127.03, 126.95, 126.47, 126.11, 125.63, 122.12, 111.35, 106.47, 32.00 (d, *J* = 3.0 Hz, 1H). ¹⁹F-NMR (565 MHz, Chloroform-*d*) δ -56.51. HRMS (ESI): Calcd. for C₂₂H₁₆F₃NS₂ [M+H]⁺: 416.0749, found: 416.0742.

(63) 1-methyl-3,5-bis(phenylthio)-2-(1*H*-pyrazol-1-yl)-1*H*-indole (7)

White solid, (43.4 mg, 42% yield), m.p.: 106-108 °C, ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.93 (s, 1H), 7.89 (s, 1H), 7.76 (d, *J* = 2.4 Hz, 1H), 7.50 (d, *J* = 6.9 Hz, 1H), 7.45 (d, *J* = 8.5 Hz, 1H), 7.26–7.23 (m, 2H), 7.22 (s, 4H), 7.16 (t, *J* = 7.1 Hz, 1H), 7.11 (t, *J* = 7.6 Hz, 3H), 6.49 (t, *J* = 2.1 Hz, 1H), 3.81 (s, 3H). ¹³**C**-**NMR** (151 MHz, Chloroform-*d*) δ 142.52, 139.72, 138.71, 138.02, 135.07, 133.47, 129.48, 129.02, 129.01, 128.95, 128.37, 126.27, 126.00, 125.87, 125.81, 125.39, 111.30, 107.05, 95.91, 30.98. **HRMS (ESI):** Calcd. for C₂₄H₁₉N₃S₂ [M+H]⁺: 414.1093, found: 414.1089.

(64) 1-methyl-2,3,5-tris(phenylthio)-1*H*-indole (8)

White solid, (97.8 mg, 86% yield), m.p.: 129-131 °C, ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.89 (s, 1H), 7.46–7.44 (m, 1H), 7.38 (d, *J* = 8.6 Hz, 1H), 7.25–7.21 (m, 6H), 7.16 (ddt, *J* = 13.3, 6.5, 3.4 Hz, 6H), 7.12– 7.08 (m, 3H), 3.82 (s, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 138.52, 138.15, 138.06, 135.53, 135.48, 129.99, 129.46, 129.30, 128.92, 128.74, 128.63, 127.72, 127.01, 126.45, 125.87, 125.86, 125.77, 125.32, 111.59, 111.28, 31.31. **HRMS (ESI):** Calcd. for C₂₇H₂₁NS₃ [M+H]⁺: 456.0909, found: 456.0903.

(65) 2-bromo-1-methyl-3,5-bis(phenylthio)-1H-indole (9)

White solid, (81.6 mg, 77% yield), m.p.: 118-119 °C, ¹**H-NMR** (600 MHz, Chloroform-*d*) δ 7.86 (s, 1H), 7.44 (d, *J* = 8.7 Hz, 1H), 7.28 (d, *J* = 8.7 Hz, 1H), 7.22 (t, *J* = 7.4 Hz, 2H), 7.19–7.15 (m, 3H), 7.14–7.07 (m, 5H), 3.80 (s, 3H). ¹³**C-NMR** (151 MHz, Chloroform-*d*) δ 138.08, 137.11, 136.10, 135.29, 130.90, 129.33, 128.83, 127.71, 127.01, 126.67, 126.51, 125.30, 122.74, 114.73, 111.75, 110.60, 31.37. **HRMS** (**ESI**): Calcd. for C₂₁H₁₆BrNS₂ [M+H]⁺: 425.9980.1080, found: 425.9975.

SPECTROSCOPIC DATA

- 11. NMR spectra of the obtained compounds.
- (1) ¹H-NMR (600 MHz, CDCl₃) spectrum of 1f

(2) ¹H-NMR (600 MHz, CDCl₃) spectrum of 2f

(3) ¹H-NMR (600 MHz, CDCl₃) spectrum of 2q

(4) ¹H-NMR (500 MHz, CDCl₃) spectrum of 1a-1

(5) ¹³C-NMR (126 MHz, CDCl₃) spectrum of 1a-1

(7) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 1a-2

(8) ¹H-NMR (600 MHz, CDCl₃) spectrum of 1a-4

(9) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 1a-4

(10) ¹H-NMR (600 MHz, CDCl₃) spectrum of 4

(11) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 4

(12) ¹H-NMR (600 MHz, CDCl₃) spectrum of 5

(13) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 5

(14) ¹H-NMR (500 MHz, CDCl₃) spectrum of 3aa

(15) ¹³C-NMR (126 MHz, CDCl₃) spectrum of 3aa

(17) ¹³C-NMR (126 MHz, CDCl₃) spectrum of 3ba

(18) ¹H-NMR (600 MHz, CDCl₃) spectrum of 3ca

(19) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 3ca

(20) ¹H-NMR (600 MHz, CDCl₃) spectrum of 3da

(21) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 3da

(22) ¹H-NMR (600 MHz, CDCl₃) spectrum of 3fa

(23) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 3fa

150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 (

(24) ¹H-NMR (600 MHz, CDCl₃) spectrum of 3ga

(25) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 3ga

(26) ¹H-NMR (600 MHz, CDCl₃) spectrum of 3ha

(27) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 3ha

(28) ¹H-NMR (600 MHz, CDCl₃) spectrum of 3ia

(29) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 3ia

(30) ¹H-NMR (600 MHz, CDCl₃) spectrum of 3ja

(31) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 3ja

(32) ¹H-NMR (600 MHz, CDCl₃) spectrum of 3ka

(33) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 3ka

(34) ¹H-NMR (600 MHz, CDCl₃) spectrum of 3la

(35) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 3la

(36) ¹⁹F-NMR (565 MHz, CDCl₃) spectrum of 3la

(38) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 3ma

0 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15

(40) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 3na

(41) ¹H-NMR (600 MHz, CDCl₃) spectrum of 30a

(42) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 3oa

(43) ¹H-NMR (600 MHz, CDCl₃) spectrum of 3pa

(44) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 3pa

(46) ¹³C-NMR (126 MHz, CDCl₃) spectrum of 3ab

(47) ¹H-NMR (600 MHz, CDCl₃) spectrum of 3ac

(48) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 3ac

(49) ¹H-NMR (600 MHz, CDCl₃) spectrum of 3ad

(50) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 3ad

(51) ¹H-NMR (600 MHz, CDCl₃) spectrum of 3ae

(52) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 3ae

(53) ¹⁹F-NMR (565 MHz, CDCl₃) spectrum of 3ae

(54) ¹H-NMR (400 MHz, CDCl₃) spectrum of 3af

(55) ¹³C-NMR (101 MHz, CDCl₃) spectrum of 3af

(56) ¹H-NMR (400 MHz, CDCl₃) spectrum of 3ag

(58) ¹H-NMR (500 MHz, CDCl₃) spectrum of 3ah

(59) ¹³C-NMR (126 MHz, CDCl₃) spectrum of 3ah

(60) ¹H-NMR (600 MHz, CDCl₃) spectrum of 3ai

(61) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 3ai

(62) ¹H-NMR (400 MHz, CDCl₃) spectrum of 3aj

S127

(63) ¹³C-NMR (101 MHz, CDCl₃) spectrum of 3aj

(64) ¹H-NMR (600 MHz, CDCl₃) spectrum of 3ak

(67) ¹³C-NMR (101 MHz, CDCl₃) spectrum of 3al

(68) ¹H-NMR (600 MHz, CDCl₃) spectrum of 3am

(69) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 3am

(70) ¹H-NMR (600 MHz, CDCl₃) spectrum of 3an

(71) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 3an

(72) ¹H-NMR (600 MHz, CDCl₃) spectrum of 3ao

$\begin{array}{c} 7.39\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.72\\$

(73) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 3ao

(75) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 3ap

(76) ¹H-NMR (400 MHz, CDCl₃) spectrum of 3aq

(78) ¹⁹F-NMR (376 MHz, CDCl₃) spectrum of 3aq

^{-94 -96 -98 -100 -102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136 -138 -140}

(80) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 3ar

S136

(82) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 3as

(83) ¹H-NMR (600 MHz, CDCl₃) spectrum of 3at

(84) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 3at

(85) ¹⁹F-NMR (565 MHz, CDCl₃) spectrum of 3at

(86) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4aa

(88) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4ba

(89) ¹³C-NMR (126 MHz, CDCl₃) spectrum of 4ba

(90) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4ca

(93) ¹³C-NMR (126 MHz, CDCl₃) spectrum of 4da

(94) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4ea

(95) ¹³C-NMR (126 MHz, CDCl₃) spectrum of 4ea

(96) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4fa

(97) ¹³C-NMR (126 MHz, CDCl₃) spectrum of 4fa

(98) ¹⁹F-NMR (471 MHz, CDCl₃) spectrum of 4fa

94 -98 -102 -106 -110 -114 -118 -122 -126 -130 -134 -138 -14

(99) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4ga

(100) ¹³C-NMR (126 MHz, CDCl₃) spectrum of 4ga

(101) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4ha

(102) ¹³C-NMR (126 MHz, CDCl₃) spectrum of 4ha

(103) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4ia

(105) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4ja

(106) ¹³C-NMR (126 MHz, CDCl₃) spectrum of 4ja

(107) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4ka

(108) ¹³C-NMR (126 MHz, CDCl₃) spectrum of 4ka

(109) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4ab

(110) ¹³C-NMR (126 MHz, CDCl₃) spectrum of 4ab

(111) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4ac

(113) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4ad

(114) ¹³C-NMR (126 MHz, CDCl₃) spectrum of 4ad

(115) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4ae

$\begin{array}{c} 7.7.7\\ 7.7.4\\ 7.7.3\\ 7.7.4\\ 7.7.3\\ 7.7.2\\ 7.7.3\\ 7.7.2\\ 7.7.3\\ 7.7.2\\ 7.7.3\\ 7.$

(116) ¹³C-NMR (126 MHz, CDCl₃) spectrum of 4ae

(117) ¹⁹F-NMR (126 MHz, CDCl₃) spectrum of 4ae

-96 -98 -100 -102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136 -138 -

(118) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4af

(119) ¹³C-NMR (126 MHz, CDCl₃) spectrum of 4af

(120) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4ag

¹H-NMR (500 MHz, CDCl₃) spectrum of 4ah (122)

$\begin{array}{c} 7.69\\ 7.750\\ 7.7$

(123) ¹³C-NMR (126 MHz, CDCl₃) spectrum of 4ah

(124) ¹H-NMR (400 MHz, CDCl₃) spectrum of 4ai

(125) ¹³C-NMR (101 MHz, CDCl₃) spectrum of 4ai

(126) ¹H-NMR (500 MHz, CDCl₃) spectrum of 4aj

Ó

0.0

(131) ¹³C-NMR (126 MHz, CDCl₃) spectrum of 4al

(132) ¹H-NMR (600 MHz, CDCl₃) spectrum of 6

(133) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 6

(134) ¹⁹F-NMR (565 MHz, CDCl₃) spectrum of 6

(135) ¹H-NMR (600 MHz, CDCl₃) spectrum of 7

(136) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 7

(137) ¹H-NMR (600 MHz, CDCl₃) spectrum of 8

(138) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 8

(139) ¹H-NMR (600 MHz, CDCl₃) spectrum of 9

(140) ¹³C-NMR (151 MHz, CDCl₃) spectrum of 9

