Pyridine- N-oxide Catalyzed Acylative Desymmetrization of Bisphenols: Access to P-Stereogenic Phosphinates with Low

 Catalyst Loadings

 Catalyst Loadings}

Yang-Guang Chen, ${ }^{a}$ Ying Hu, ${ }^{b}$ Jia-Yi Liu, ${ }^{b}$ Ming-Sheng Xie, ${ }^{b}$,* and Hai-Ming Guo ${ }^{a, b, *}$
${ }^{a}$ School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
${ }^{b}$ State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.

E-mail: xiemingsheng@htu.edu.cn; ghm@htu.edu.cn

Contents

\qquad
2. Substrates synthesis... S3-S3
3. Optimization study...S4-S4
4. General procedure for the catalytic reactions...S5-S21
5. Late-stage functionalization of drugs...S22-S24
6. X-ray data of 3aa.. S25-S25
7. HRMS analysis...S26-S26
8. NMR Spectra ..S27-S67
9. HPLC Spectra... 68 -S92
10. Reference... 93 -S93

General information

${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker Avance III HD 600 or Avance 400 MHz spectrometer. Chemical shifts are recorded in ppm relative to tetramethylsilane and with the solvent resonance as the internal standard. Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet; $\mathrm{t}=$ triplet; $\mathrm{q}=$ quartet; dd = doublet of doublets; sept $=$ septet; $\mathrm{m}=$ multiplet; $\mathrm{br}=$ broad and etc), coupling constants (Hz), integration. ${ }^{13} \mathrm{C}$ NMR data were collected on Bruker Avance III HD 150 or Avance 100 MHz spectrometer. Chemical shifts are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard. Enantiomer excesses were determined by chiral HPLC analysis on Chiralcel AS/ADH/IA/IC in comparison with the authentic racemates. Chiral HPLC analysis recorded on Thermo scientific Dionex Ultimate 3000 and Agilent Technologies 1260 Infinity. Optical rotations were reported as follows: $[\alpha]_{\mathrm{D}}{ }^{\mathrm{T}}$ (c: $\mathrm{g} / 100 \mathrm{~mL}$, in solvent). Optical rotations recorded on Autopol Automatic Polarimeter. HRMS was recorded on an $\mathrm{ABI} /$ Sciex QStar Mass Spectrometer (ESI). $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and THF were purchased extra dry solvents. Other solvents used for work-up and purification purposes were purchased in technical grade quality and distilled by rotary evaporator before use. Single crystal X-ray crystallography data were obtained on Supernova Atlas S2 CCD detector. The chiral 3substituted PPY- N-oxide catalysts C1a were prepared according to literature precedebts. ${ }^{[1]}$ Chiral 4-aryl-pyridine- N -oxides C2a-C2l, C3d were prepared by literature precedents. ${ }^{[2]}$

Substrate synthesis.

General procedure A To a dry round bottomed flask equipped with a magnetic stir bar, added Phenols S2 (1 equiv) in THF, then NaH (1.2 equiv) was added with nitrogen. The reaction was stirring at $0{ }^{\circ} \mathrm{C}$ for 30 minutes. When the reaction completed, phosphoryl trichloride $\mathbf{S 1}$ (0.5 equiv) was added to the mixture at $0{ }^{\circ} \mathrm{C}$ for 1 h with nitrogen, and then 24 h at room temperature. Extracted with CHCl_{3} and the organic phase was dried over MgSO_{4}. The resulting crude residue was purified via column chromatography on silica gel to afford the desired products diphenyl phosphorochloridate S3.

General procedure B An appropriate diphenyl phosphorochloridate $\mathbf{S 3}(5.0 \mathrm{mmol})$ was added dropwise to a suspension of sodium azide ($7.5 \mathrm{mmol}, 1.5$ equiv) in acetonitrile (10 mL) at $0{ }^{\circ} \mathrm{C}$ under argon. After stirring at $25^{\circ} \mathrm{C}$ for 12 h , the reaction mixture was filtered, the solvent was removed under reduced pressure at $25{ }^{\circ} \mathrm{C}$ and the reaction mixture was diluted with EtOAc (20 $\mathrm{mL})$. The organic layer was washed with water $(2 \times 5 \mathrm{~mL}), 5 \% \mathrm{Na}_{2} \mathrm{CO}_{3}(2 \times 5 \mathrm{~mL})$, water $(5 \mathrm{~mL})$ and brine (5 mL), dried over NaSO_{4}. The solvent was removed under reduced pressure. The crude mixture was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=10 / 1$ to $5 / 1)$ to obtain the desired products $\mathbf{S 4}$.

General procedure C A flame-dried Schlenk tube equipped with a magnetic stir bar was successively charged with the diphenylphosphoryl azide $\mathbf{S 4}(0.50 \mathrm{mmol}, 1.0$ equiv), aliphatic alcohol (0.2 mL), $\mathrm{CuCl}(0.05 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.25 \mathrm{mmol}, 0.5$ equiv) in cyclohexane $(1.8 \mathrm{~mL})$. The reaction mixture was stirred at the indicated temperature and time. The reaction was monitored by TLC. After completion of the reaction, the reaction mixture was allowed to cool to room temperature and diluted with EtOAc (25 mL). The crude reaction mixture was washed with $1 \% \mathrm{HCl}$ aq $(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude mixture was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=15 / 1$ to $5 / 1)$ to obtain the desired products $\mathbf{S 5}$.

General procedure D To a dry round bottomed flask equipped with a magnetic stir bar, added LDA (4.0 equiv) at $-78^{\circ} \mathrm{C}, \mathbf{S 5}$ (1.0 equiv) dissolved in pure and dry THF was added in 60 min at $78^{\circ} \mathrm{C}$. The resulting reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for another 60 min , then it was allowed to warm up to rt and it was stirred at rt for 12 h . After the reaction was completed, quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, then extracted with CHCl_{3}. The organic phase was separated and the combined organic phase was dried over MgSO_{4}, filtered and the solvent was removed. The crude mixture was purified by silica gel column chromatography ($\mathrm{PE} / \mathrm{EtOAc}=10 / 1$ to $4 / 1$) to obtain the desired products $\mathbf{S 6}$.

Optimization study

Table S1. Base screening

entry a	base	3aa:4aa	yield (\%) $(\mathbf{3 a a})^{b}$	ee (\%) ${ }^{c}$
1	$\mathrm{Et}_{3} \mathrm{~N}$	$1.4: 1$	54	91
2	DIPEA	$1.4: 1$	54	90
3	DBU	$1.7: 1$	54	87
4	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	$1.4: 1$	55	92
5	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	$1.4: 1$	48	90
6	NaHCO_{3}	$1.4: 1$	52	89

${ }^{a}$ Unless otherwise noted, the reaction conditions are as follows: $\mathbf{1 a}$ (0.1 mmol), $\mathbf{2}$ (0.2 equiv), catalyst ($10 \mathrm{~mol} \%$), and base (1.0 equiv) in toluene $\left(1.0 \mathrm{~mL}\right.$) at $10^{\circ} \mathrm{C}$ for $10 \mathrm{~min} .{ }^{b}$ Isolated yield. ${ }^{c}$ Determined by chiral HPLC analysis.

General procedure for the catalytic reactions

General procedure E Chiral ArPNO C2a (5 mg) was added in 5 mL toluene. In a dry test tube, chiral ArPNO C2a ($24 \mu \mathrm{~L}, 0.0005 \mathrm{mmol}, 0.05 \mathrm{~mol} \%$), substrate $1(0.1 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(10.6 \mathrm{mg}$, $0.1 \mathrm{mmol}, 1.0 \mathrm{eq})$ were added. Then, toluene (2.0 mL) and acyl chloride $2(1.0 \mathrm{eq})$ were added and the reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h . The test tube was sealed with a screw rubber stopper. Purification by flash column chromatography using gradient elution to give the title product 3. The eluents were pure Pet and $\mathrm{Pet} / \mathrm{EtOAc}$, respectively.

(S)-2-((2-Hydroxyphenyl)(methoxy)phosphoryl)phenyl 3,3-dimethylbutanoate (3aa)

Prepared according to general procedure E using chiral ArPNO C2a ($24 \mu \mathrm{~L}, 0.005 \mathrm{mmol}, 0.05$ $\mathrm{mol} \%$), methyl bis(2-hydroxyphenyl)phosphinate $\mathbf{1 a}(26.4 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(10.6 \mathrm{mg}, 0.1$ mmol), were added in toluene (2 mL). Then, the 3,3-dimethylbutanoyl chloride 2a ($14.9 \mu \mathrm{~L}, 0.1$ mmol) was added in mixture at $0{ }^{\circ} \mathrm{C}$ for 2 h . Purification by flash column chromatography using gradient elution to give the title product 3aa as a white solid ($33.3 \mathrm{mg}, 92 \%$ yield, 94% ee). The eluents were pure Pet and Pet/EtOAc (10/1, v/v), respectively.
$\mathrm{R}_{\mathrm{f}}=0.51(\mathrm{Pet} / \mathrm{EtOAc}, 2 / 1, \mathrm{v} / \mathrm{v}) . \mathrm{m} . \mathrm{p}: 108.2-109.4^{\circ} \mathrm{C}$.
HPLC analysis: 94\% ee (IA, 2-propanol $/ n$-hexane $=20 / 80$, flow rate $=0.6 \mathrm{~mL} / \mathrm{min} ; \lambda=256 \mathrm{~nm}$) $\mathrm{t}_{R}=9.2 \mathrm{~min}$ (major), 10.9 min (minor).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 2}}=-95.5\left(c 0.47, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.96(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{ddd}, J=12.4,7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{tt}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{tdd}, J=7.6,2.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 1 \mathrm{H})$, 7.07 (ddd, $J=14.8,8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.79(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $3 \mathrm{H}), 2.46(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.0,163.3\left(\mathrm{~d}, J_{C-P}=5.0 \mathrm{~Hz}\right), 153.1\left(\mathrm{~d}, J_{C-P}=4.0 \mathrm{~Hz}\right), 135.2(\mathrm{~d}$,
$\left.J_{C-P}=2.0 \mathrm{~Hz}\right), 134.3\left(\mathrm{~d}, J_{C-P}=2.0 \mathrm{~Hz}\right), 133.0\left(\mathrm{~d}, J_{C-P}=5.0 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{C-P}=10.0 \mathrm{~Hz}\right), 125.7$
$\left(\mathrm{~d}, J_{C-P}=11.0 \mathrm{~Hz}\right), 124.1\left(\mathrm{~d}, J_{C-P}=8.0 \mathrm{~Hz}\right), 123.1\left(\mathrm{~d}, J_{C-P}=146.0 \mathrm{~Hz}\right), 119.7\left(\mathrm{~d}, J_{C-P}=13.0 \mathrm{~Hz}\right)$,
$118.0\left(\mathrm{~d}, J_{C-P}=9.0 \mathrm{~Hz}\right), 110.5\left(\mathrm{~d}, J_{C-P}=133.0 \mathrm{~Hz}\right), 51.8\left(\mathrm{~d}, J_{C-P}=6.0 \mathrm{~Hz}\right), 46.9,30.9,29.7$.
${ }^{31} \mathbf{P}$ NMR (162 MHz, CDCl_{3}): $\delta 37.6$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NaO}_{5} \mathrm{P}^{+}$385.1174, found 385.1169.

(S)-2-((2-Hydroxyphenyl)(methoxy)phosphoryl)phenyl propionate (3ab)

Prepared according to general procedure E using chiral ArPNO C2a ($24 \mu \mathrm{~L}, 0.005 \mathrm{mmol}, 0.05$ $\mathrm{mol} \%$), methyl bis(2-hydroxyphenyl)phosphinate $1 \mathrm{a}(26.4 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(10.6 \mathrm{mg}, 0.1$ mmol), were added in toluene (2 mL). Then, the propionyl chloride $\mathbf{2 b}(8.7 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) was added in mixture at $0{ }^{\circ} \mathrm{C}$ for 2 h . Purification by flash column chromatography using gradient elution to give the title product $\mathbf{3 a b}$ as a white solid ($29.8 \mathrm{mg}, 93 \%$ yield, 91% ee). The eluents were pure Pet and Pet/EtOAc (10/1, v/v), respectively.
$\mathrm{R}_{\mathrm{f}}=0.46(\mathrm{Pet} / \mathrm{EtOAc}, 2 / 1, \mathrm{v} / \mathrm{v})$. m.p: $110.0-111.4^{\circ} \mathrm{C}$.
HPLC analysis: 91% ee (IA, 2-propanol $/ n$-hexane $=10 / 90$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min} ; \lambda=256 \mathrm{~nm}$) $\mathrm{t}_{R}=21.9 \mathrm{~min}$ (major), 25.4 min (minor).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 2}}=-104.3\left(c 0.51, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.96(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{ddd}, J=12.0,7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.57(\mathrm{~m}$, $1 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.35$ (ddd, $J=7.6,2.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17$ (ddd, $J=8.4,5.6,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.06 (ddd, $J=14.8,8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{ddd}, J=8.8,5.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{tdd}, J=7.6,3.2$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.63-2.41(\mathrm{~m}, 2 \mathrm{H}), 1.12(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.3,163.3\left(\mathrm{~d}, J_{C-P}=5.0 \mathrm{~Hz}\right), 153.2,135.2\left(\mathrm{~d}, J_{C-P}=2.0 \mathrm{~Hz}\right)$, $134.4\left(\mathrm{~d}, J_{C-P}=2.0 \mathrm{~Hz}\right), 132.9\left(\mathrm{~d}, J_{C-P}=5.0 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{C-P}=10.0 \mathrm{~Hz}\right), 125.8\left(\mathrm{~d}, J_{C-P}=12.0\right.$ $\mathrm{Hz}), 124.2\left(\mathrm{~d}, J_{C-P}=9.0 \mathrm{~Hz}\right), 123.8,119.8\left(\mathrm{~d}, J_{C-P}=13.0 \mathrm{~Hz}\right), 118.0\left(\mathrm{~d}, J_{C-P}=9.0 \mathrm{~Hz}\right), 110.5(\mathrm{~d}$, $\left.J_{C-P}=132.0 \mathrm{~Hz}\right), 51.8\left(\mathrm{~d}, J_{C-P}=6.0 \mathrm{~Hz}\right), 27.3,8.8$.
${ }^{31} \mathbf{P}$ NMR (162 MHz, CDCl_{3}): $\delta 49.0$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NaO}_{5} \mathrm{P}^{+}$343.0706, found 343.0705.

(S)-2-((2-Hydroxyphenyl)(methoxy)phosphoryl)phenyl isobutyrate (3ac)

Prepared according to general procedure E using chiral ArPNO C2a ($24 \mu \mathrm{~L}, 0.005 \mathrm{mmol}, 0.05$ $\mathrm{mol} \%$), methyl bis(2-hydroxyphenyl)phosphinate 1 a ($26.4 \mathrm{mg}, 0.1 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($10.6 \mathrm{mg}, 0.1$ $\mathrm{mmol})$, were added in toluene (2 mL). Then, the isobutyryl chloride $\mathbf{2 c}(10.5 \mu \mathrm{~L}, 0.1 \mathrm{mmol})$ was added in mixture at $0{ }^{\circ} \mathrm{C}$ for 2 h . Purification by flash column chromatography using gradient elution to give the title product 3 ac as a white solid ($31.7 \mathrm{mg}, 95 \%$ yield, 94% ee). The eluents were pure Pet and Pet/EtOAc (10/1, v/v), respectively.
$\mathrm{R}_{\mathrm{f}}=0.45(\mathrm{Pet} / \mathrm{EtOAc}, 2 / 1, \mathrm{v} / \mathrm{v})$. m.p: $105.9-106.4^{\circ} \mathrm{C}$.
HPLC analysis: 94\% ee (IA, 2-propanol $/ n$-hexane $=20 / 80$, flow rate $=0.6 \mathrm{~mL} / \mathrm{min} ; \lambda=256 \mathrm{~nm}$) $\mathrm{t}_{R}=8.9 \mathrm{~min}$ (major), 10.4 min (minor).
$[\alpha]_{\mathbf{D}}{ }^{22}=-56.3\left(c 0.45, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.92(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{tdd}, J=12.4,7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.57(\mathrm{~m}$, $1 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{tdd}, J=7.6,2.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{tdd}, J=8.0,5.6,0.8 \mathrm{~Hz} \mathrm{1H})$, 7.08 (ddd, $J=14.8,7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96$ (tdd, $J=8.4,5.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.80(\mathrm{~m}, 1 \mathrm{H}), 3.78$ $(\mathrm{d}, J=11.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.82-2.72(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.0,163.3,153.4\left(\mathrm{~d}, J_{C-P}=4.5 \mathrm{~Hz}\right), 135.2,134.4,133.1\left(\mathrm{~d}, J_{C-P}\right.$ $=4.5 \mathrm{~Hz}), 131.6\left(\mathrm{~d}, J_{C-P}=10.5 \mathrm{~Hz}\right), 125.7\left(\mathrm{~d}, J_{C-P}=12.0 \mathrm{~Hz}\right), 124.0\left(\mathrm{~d}, J_{C-P}=7.5 \mathrm{~Hz}\right), 122.9(\mathrm{~d}$, $\left.J_{C-P}=145.5 \mathrm{~Hz}\right), 119.7\left(\mathrm{~d}, J_{C-P}=13.5 \mathrm{~Hz}\right), 118.0\left(\mathrm{~d}, J_{C-P}=9.0 \mathrm{~Hz}\right), 110.5\left(\mathrm{~d}, J_{C-P}=132.0 \mathrm{~Hz}\right)$, $51.8\left(\mathrm{~d}, J_{C-P}=6.0 \mathrm{~Hz}\right), 33.9,19.0,18.6$.
${ }^{31} \mathbf{P}$ NMR (162 MHz, CDCl_{3}): δ 38.0.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NaO}_{5} \mathrm{P}^{+}$357.0862, found 357.0859.

(S)-2-((2-Hydroxyphenyl)(methoxy)phosphoryl)phenyl pivalate (3ad)

Prepared according to general procedure E using chiral ArPNO C2a ($24 \mu \mathrm{~L}, 0.005 \mathrm{mmol}, 0.05$ $\mathrm{mol} \%$), methyl bis(2-hydroxyphenyl)phosphinate $1 \mathbf{1 a}$ ($26.4 \mathrm{mg}, 0.1 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($10.6 \mathrm{mg}, 0.1$ $\mathrm{mmol})$, were added in toluene (2 mL). Then, the pivaloyl chloride $2 \mathrm{~d}(12.3 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) was added in mixture at $0{ }^{\circ} \mathrm{C}$ for 2 h . Purification by flash column chromatography using gradient elution to give the title product 3ad as a white solid ($32.4 \mathrm{mg}, 93 \%$ yield, 91% ee). The eluents were pure Pet and Pet/EtOAc (10/1, v/v), respectively.
$\mathrm{R}_{\mathrm{f}}=0.52(\mathrm{Pet} / \mathrm{EtOAc}, 2 / 1, \mathrm{v} / \mathrm{v}) . \mathrm{m} . \mathrm{p}: 120.8-121.4^{\circ} \mathrm{C}$.
HPLC analysis: 91% ee (AS, 2-propanol $/ n$-hexane $=20 / 80$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min} ; \lambda=256 \mathrm{~nm}$) $\mathrm{t}_{R}=16.1 \mathrm{~min}$ (major), 9.2 min (minor).
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 2}}=-76.2\left(c 0.41, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.82(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{tdd}, J=12.8,7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=8.0$ $\mathrm{Hz} 1 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{tdd}, J=7.6,2.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{tdd}, J=$ $8.4,5.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.81(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 176.7,163.3\left(\mathrm{~d}, J_{C-P}=6.0 \mathrm{~Hz}\right), 153.6\left(\mathrm{~d}, J_{C-P}=3.0 \mathrm{~Hz}\right), 135.1$, $134.5,133.7\left(\mathrm{~d}, J_{C-P}=7.5 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{C-P}=10.5 \mathrm{~Hz}\right), 125.7\left(\mathrm{~d}, J_{C-P}=12.0 \mathrm{~Hz}\right), 124.0\left(\mathrm{~d}, J_{C-P}\right.$ $=7.5 \mathrm{~Hz}), 122.6\left(\mathrm{~d}, J_{C-P}=144.0 \mathrm{~Hz}\right), 119.6\left(\mathrm{~d}, J_{C-P}=13.5 \mathrm{~Hz}\right), 118.1\left(\mathrm{~d}, J_{C-P}=9.0 \mathrm{~Hz}\right), 110.3(\mathrm{~d}$, $\left.J_{C-P}=133.5 \mathrm{~Hz}\right), 51.8\left(\mathrm{~d}, J_{C-P}=6.0 \mathrm{~Hz}\right), 39.3,27.1$.
${ }^{31} \mathbf{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 33.4$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NaO}_{5} \mathrm{P}^{+}$371.1019, found 371.1017.

(S)-2-((2-Hydroxyphenyl)(methoxy)phosphoryl)phenyl 3-methylbutanoate (3ae)

Prepared according to general procedure E using chiral ArPNO C2a ($24 \mu \mathrm{~L}, 0.005 \mathrm{mmol}, 0.05$ $\mathrm{mol} \%$), methyl bis(2-hydroxyphenyl)phosphinate $1 \mathbf{a}(26.4 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(10.6 \mathrm{mg}, 0.1$ mmol), were added in toluene (2 mL). Then, the 3-methylbutanoyl chloride $\mathbf{2 e}(12.2 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) was added in mixture at $0^{\circ} \mathrm{C}$ for 2 h . Purification by flash column chromatography using gradient elution to give the title product 3ae as a white solid ($33.1 \mathrm{mg}, 95 \%$ yield, $94 \% \mathrm{ee}$). The eluents were pure Pet and Pet/EtOAc (10/1, v/v), respectively.
$\mathrm{R}_{\mathrm{f}}=0.54(\mathrm{Pet} / \mathrm{EtOAc}, 2 / 1, \mathrm{v} / \mathrm{v})$. m.p: $106.9-107.4^{\circ} \mathrm{C}$.
HPLC analysis: 94\% ee (IA, 2-propanol $/ n$-hexane $=20 / 80$, flow rate $=0.6 \mathrm{~mL} / \mathrm{min} ; \lambda=256 \mathrm{~nm}$) $\mathrm{t}_{R}=10.4 \mathrm{~min}$ (major), 12.1 min (minor).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 2}}=-123.3\left(c 0.54, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.94(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{tdd}, J=12.6,7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{td}, J=$ $8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{td}, J=7.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=7.8,5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.07$ (ddd, $J=15.0,7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=8.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{td}, J=7.2,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.78(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.43(\mathrm{dd}, J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{dd}, J=15.6,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.12-2.05 (m, 1H), $1.00(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.8,163.3\left(\mathrm{~d}, J_{C-P}=6.0 \mathrm{~Hz}\right), 153.1\left(\mathrm{~d}, J_{C-P}=4.5 \mathrm{~Hz}\right), 135.2$, $134.3,132.9\left(\mathrm{~d}, J_{C-P}=4.5 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{C-P}=10.5 \mathrm{~Hz}\right), 125.7\left(\mathrm{~d}, J_{C-P}=12.0 \mathrm{~Hz}\right), 124.1\left(\mathrm{~d}, J_{C-P}\right.$ $=9.0 \mathrm{~Hz}), 123.0\left(\mathrm{~d}, J_{C-P}=145.5 \mathrm{~Hz}\right), 119.7\left(\mathrm{~d}, J_{C-P}=13.5 \mathrm{~Hz}\right), 118.0\left(\mathrm{~d}, J_{C-P}=9.0 \mathrm{~Hz}\right), 110.5(\mathrm{~d}$, $\left.J_{C-P}=133.5 \mathrm{~Hz}\right), 51.8\left(\mathrm{~d}, J_{C-P}=4.5 \mathrm{~Hz}\right), 42.6,25.4,22.5$.
${ }^{31} \mathbf{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 37.6$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NaO}_{5} \mathrm{P}^{+}$371.1019, found 371.1016.

(S)-2-((2-Hydroxyphenyl)(methoxy)phosphoryl)phenyl 2,2-dimethylbutanoate (3af)

Prepared according to general procedure E using chiral ArPNO C2a ($24 \mu \mathrm{~L}, 0.005 \mathrm{mmol}, 0.05$ $\mathrm{mol} \%$), methyl bis(2-hydroxyphenyl)phosphinate $1 \mathbf{1 a}\left(26.4 \mathrm{mg}, 0.1 \mathrm{mmol}\right.$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(10.6 \mathrm{mg}, 0.1$ mmol), were added in toluene (2 mL). Then, the 2,2-dimethylbutanoyl chloride $\mathbf{2 f}$ ($13.7 \mu \mathrm{~L}, 0.1$ mmol) was added in mixture at $0{ }^{\circ} \mathrm{C}$ for 2 h . Purification by flash column chromatography using gradient elution to give the title product $\mathbf{3 a f}$ as a yellow solid ($32.2 \mathrm{mg}, 89 \%$ yield, 91% ee). The eluents were pure Pet and Pet/EtOAc (10/1, v/v), respectively.
$\mathrm{R}_{\mathrm{f}}=0.60\left(\mathrm{Pet} / \mathrm{EtOAc}, 2 / 1\right.$, v/v). m.p: $118.3-120.9^{\circ} \mathrm{C}$.
HPLC analysis: 91% ee (IA, 2-propanol $/ n$-hexane $=10 / 90$, flow rate $=0.6 \mathrm{~mL} / \mathrm{min} ; \lambda=256 \mathrm{~nm}$) $\mathrm{t}_{R}=14.8 \mathrm{~min}$ (major), 17.1 min (minor).

$$
[\alpha]_{\mathbf{D}}^{22}=-67.5\left(c 0.35, \mathrm{CHCl}_{3}\right) .
$$

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.82(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{ddd}, J=13.2,8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{tdd}, J=7.6,2.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.94$ $(\mathrm{m}, 1 \mathrm{H}), 6.86-6.81(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}$, $3 \mathrm{H}), 0.92(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.2,163.3\left(\mathrm{~d}, J_{C-P}=5.0 \mathrm{~Hz}\right), 153.7\left(\mathrm{~d}, J_{C-P}=3.0 \mathrm{~Hz}\right), 135.1(\mathrm{~d}$, $\left.J_{C-P}=3.0 \mathrm{~Hz}\right), 134.4\left(\mathrm{~d}, J_{C-P}=3.0 \mathrm{~Hz}\right), 133.8\left(\mathrm{~d}, J_{C-P}=6.0 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{C-P}=10.0 \mathrm{~Hz}\right), 125.6$ $\left(\mathrm{d}, J_{C-P}=12.0 \mathrm{~Hz}\right), 124.0\left(\mathrm{~d}, J_{C-P}=8.0 \mathrm{~Hz}\right), 122.5\left(\mathrm{~d}, J_{C-P}=145.0 \mathrm{~Hz}\right), 119.7\left(\mathrm{~d}, J_{C-P}=14.0 \mathrm{~Hz}\right)$, $118.1\left(\mathrm{~d}, J_{C-P}=9.0 \mathrm{~Hz}\right), 110.4\left(\mathrm{~d}, J_{C-P}=132.0 \mathrm{~Hz}\right), 51.8\left(\mathrm{~d}, J_{C-P}=5.0 \mathrm{~Hz}\right), 43.1,33.3,24.4\left(\mathrm{~d}, J_{C-}\right.$ $\left.{ }_{P}=17.0 \mathrm{~Hz}\right), 9.2$.
${ }^{31} \mathbf{P}$ NMR (162 MHz, CDCl_{3}): $\delta 39.4$.
HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{Calcd}$ for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NaO}_{5} \mathrm{P}^{+} 385.1175$, found 385.1170 .

(S)-2-((2-Hydroxyphenyl)(methoxy)phosphoryl)phenyl cyclopropanecarboxylate (3ag)

Prepared according to general procedure \mathbf{E} using chiral ArPNO C2a ($24 \mu \mathrm{~L}, 0.005 \mathrm{mmol}, 0.05$ $\mathrm{mol} \%$), methyl bis(2-hydroxyphenyl)phosphinate 1 a ($26.4 \mathrm{mg}, 0.1 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($10.6 \mathrm{mg}, 0.1$ mmol), were added in toluene (2 mL). Then, the cyclopropanecarbonyl chloride $2 \mathrm{~g}(9.1 \mu \mathrm{~L}, 0.1$ mmol) was added in mixture at $0{ }^{\circ} \mathrm{C}$ for 2 h . Purification by flash column chromatography using gradient elution to give the title product 3ag as a white solid ($29.9 \mathrm{mg}, 90 \%$ yield, 86% ee). The eluents were pure Pet and Pet/EtOAc (10/1, v/v), respectively.
$\mathrm{R}_{\mathrm{f}}=0.63(\mathrm{Pet} / \mathrm{EtOAc}, 2 / 1, \mathrm{v} / \mathrm{v}) . \mathrm{m} . \mathrm{p}: 100.8-101.2{ }^{\circ} \mathrm{C}$.
HPLC analysis: 86% ee (IA, 2-propanol $/ n$-hexane $=10 / 90$, flow rate $=0.6 \mathrm{~mL} / \mathrm{min} ; \lambda=256 \mathrm{~nm}$) $\mathrm{t}_{R}=22.0 \mathrm{~min}$ (major), 26.7 min (minor).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 2}}=-80.7\left(c 0.44, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.95(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{ddd}, J=12.4,7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{td}, J=7.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=8.4,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.10(\mathrm{ddd}, J=14.8,8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=8.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{td}, J=7.2,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.88-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.13-1.07(\mathrm{~m}, 1 \mathrm{H}), 1.05-0.98(\mathrm{~m}, 1 \mathrm{H}), 0.95-0.86(\mathrm{~m}$, $2 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 172.9,163.4\left(\mathrm{~d}, J_{C-P}=5.0 \mathrm{~Hz}\right), 153.2\left(\mathrm{~d}, J_{C-P}=4.0 \mathrm{~Hz}\right)$, $135.1\left(\mathrm{~d}, J_{C-P}=2.0 \mathrm{~Hz}\right), 134.3\left(\mathrm{~d}, J_{C-P}=2.0 \mathrm{~Hz}\right), 133.0\left(\mathrm{~d}, J_{C-P}=6.0 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{C-P}=10.0\right.$ $\mathrm{Hz}), 125.8\left(\mathrm{~d}, J_{C-P}=12.0 \mathrm{~Hz}\right), 124.2\left(\mathrm{~d}, J_{C-P}=8.0 \mathrm{~Hz}\right), 123.2\left(\mathrm{~d}, J_{C-P}=146.0 \mathrm{~Hz}\right), 119.7(\mathrm{~d}$, $\left.J_{C-P}=13.0 \mathrm{~Hz}\right), 118.1\left(\mathrm{~d}, J_{C-P}=10.0 \mathrm{~Hz}\right), 110.4\left(\mathrm{~d}, J_{C-P}=132.0 \mathrm{~Hz}\right), 51.8\left(\mathrm{~d}, J_{C-P}=5.0 \mathrm{~Hz}\right)$, $12.8,9.9\left(\mathrm{~d}, J_{C-P}=16.0 \mathrm{~Hz}\right)$.
${ }^{31} \mathbf{P}$ NMR $\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 33.4$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NaO}_{5} \mathrm{P}^{+}$355.0706, found 355.0705 .

(S)-2-((2-Hydroxyphenyl)(methoxy)phosphoryl)phenyl cyclopentanecarboxylate (3ah)

Prepared according to general procedure E using chiral ArPNO C2a ($24 \mu \mathrm{~L}, 0.005 \mathrm{mmol}, 0.05$ $\mathrm{mol} \%$), methyl bis(2-hydroxyphenyl)phosphinate $1 \mathbf{1 a}(26.4 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(10.6 \mathrm{mg}, 0.1$ $\mathrm{mmol})$, were added in toluene $(2 \mathrm{~mL})$. Then, the cyclopentanecarbonyl chloride $\mathbf{2 h}(12.2 \mu \mathrm{~L}, 0.1$ mmol) was added in mixture at $0^{\circ} \mathrm{C}$ for 2 h . Purification by flash column chromatography using gradient elution to give the title product $\mathbf{3 a h}$ as a white solid ($33.8 \mathrm{mg}, 94 \%$ yield, 96% ee). The eluents were pure Pet and $\mathrm{Pet} / \mathrm{EtOAc}(10 / 1, \mathrm{v} / \mathrm{v})$, respectively.
$\mathrm{R}_{\mathrm{f}}=0.60(\mathrm{Pet} / E t O A c, 2 / 1, \mathrm{v} / \mathrm{v})$. m.p: $110.5-110.9^{\circ} \mathrm{C}$.
HPLC analysis: 96\% ee (IA, 2-propanol $/ n$-hexane $=10 / 90$, flow rate $=0.6 \mathrm{~mL} / \mathrm{min} ; \lambda=256 \mathrm{~nm}$) $\mathrm{t}_{R}=17.1 \mathrm{~min}$ (major), 29.0 min (minor).
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 2}}=-58.6\left(c 0.31, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.92(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{ddd}, J=12.6,7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{td}, J=$ $8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{td}, J=7.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=8.4,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.09$ (ddd, $J=15.0,7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=8.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{td}, J=7.8,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.78(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.98-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.76-$ $1.66(\mathrm{~m}, 3 \mathrm{H}), 1.64-1.58(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.7,163.3\left(\mathrm{~d}, J_{C-P}=5.4 \mathrm{~Hz}\right), 153.4\left(\mathrm{~d}, J_{C-P}=4.4 \mathrm{~Hz}\right), 135.1$, $134.3,133.1\left(\mathrm{~d}, J_{C-P}=5.4 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{C-P}=9.8 \mathrm{~Hz}\right), 125.7\left(\mathrm{~d}, J_{C-P}=11.9 \mathrm{~Hz}\right), 124.0\left(\mathrm{~d}, J_{C-P}=\right.$ $8.7 \mathrm{~Hz}), 123.0\left(\mathrm{~d}, J_{C-P}=145.5 \mathrm{~Hz}\right), 119.7\left(\mathrm{~d}, J_{C-P}=13.5 \mathrm{~Hz}\right), 118.0\left(\mathrm{~d}, J_{C-P}=9.0 \mathrm{~Hz}\right), 110.5(\mathrm{~d}$, $\left.J_{C-P}=133.5 \mathrm{~Hz}\right), 51.8\left(\mathrm{~d}, J_{C-P}=6.0 \mathrm{~Hz}\right), 43.5,30.1\left(\mathrm{~d}, J_{C-P}=8.4 \mathrm{~Hz}\right), 26.0$.
${ }^{31} \mathbf{P}$ NMR (162 MHz, CDCl_{3}): $\delta 38.0$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NaO}_{5} \mathrm{P}^{+}$383.1019, found 383.1018.

(S)-2-((2-Hydroxyphenyl)(methoxy)phosphoryl)phenyl cyclohexanecarboxylate (3ai)

Prepared according to general procedure E using chiral ArPNO C2a ($24 \mu \mathrm{~L}, 0.005 \mathrm{mmol}, 0.05$ $\mathrm{mol} \%$), methyl bis(2-hydroxyphenyl)phosphinate $1 \mathbf{1 a}$ ($26.4 \mathrm{mg}, 0.1 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($10.6 \mathrm{mg}, 0.1$ mmol), were added in toluene (2 mL). Then, the cyclohexanecarbonyl chloride $\mathbf{2 i}$ ($13.4 \mu \mathrm{~L}, 0.1$ mmol) was added in mixture at $0{ }^{\circ} \mathrm{C}$ for 2 h . Purification by flash column chromatography using gradient elution to give the title product 3ai as a yellow solid ($36.3 \mathrm{mg}, 97 \%$ yield, 94% ee). The eluents were pure Pet and $\mathrm{Pet} / \mathrm{EtOAc}(10 / 1, \mathrm{v} / \mathrm{v})$, respectively.
$\mathrm{R}_{\mathrm{f}}=0.51(\mathrm{Pet} / \mathrm{EtOAc}, 2 / 1, \mathrm{v} / \mathrm{v})$. m.p: $108.8-109.8^{\circ} \mathrm{C}$.
HPLC analysis: 94\% ee (IA, 2-propanol $/ n$-hexane $=20 / 80$, flow rate $=0.6 \mathrm{~mL} / \mathrm{min} ; \lambda=256 \mathrm{~nm}$) $\mathrm{t}_{R}=10.3 \mathrm{~min}$ (major), 19.2 min (minor).
$[\alpha]_{\mathbf{D}}{ }^{22}=-63.7\left(c 0.51, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.91(\mathrm{~s}, 1 \mathrm{H}), 7.93-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{td}, J=7.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{ddd}, J=15.0,7.8,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.96(\mathrm{dd}, J=8.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{td}, J=7.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.49$ $(\mathrm{tt}, J=11.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{dd}, J=12.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.66(\mathrm{dt}, J=12.6,4.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.47$ (tdd, $J=24.0,12.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.41-1.20(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.9,163.3\left(\mathrm{~d}, J_{C-P}=6.0 \mathrm{~Hz}\right), 153.4\left(\mathrm{~d}, J_{C-P}=4.5 \mathrm{~Hz}\right), 135.2$, $134.4,133.1\left(\mathrm{~d}, J_{C-P}=6.0 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{C-P}=9.0 \mathrm{~Hz}\right), 125.6\left(\mathrm{~d}, J_{C-P}=12.0 \mathrm{~Hz}\right), 124.0\left(\mathrm{~d}, J_{C-P}=\right.$ $9.0 \mathrm{~Hz}), 122.9\left(\mathrm{~d}, J_{C-P}=145.5 \mathrm{~Hz}\right), 119.7\left(\mathrm{~d}, J_{C-P}=13.5 \mathrm{~Hz}\right), 118.0\left(\mathrm{~d}, J_{C-P}=10.5 \mathrm{~Hz}\right), 110.5(\mathrm{~d}$, $\left.J_{C-P}=133.5 \mathrm{~Hz}\right), 51.8\left(\mathrm{~d}, J_{C-P}=4.5 \mathrm{~Hz}\right), 42.9,29.0,28.7,25.8,25.5,25.4$.
${ }^{31} \mathbf{P}$ NMR (162 MHz, CDCl_{3}): $\delta 38.1$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NaO}_{5} \mathrm{P}^{+}$397.1175, found 397.1181.

(S)-2-((2-Hydroxyphenyl)(methoxy)phosphoryl)phenyl benzoate (3aj)

Prepared according to general procedure E using chiral ArPNO C2a ($24 \mu \mathrm{~L}, 0.005 \mathrm{mmol}, 0.05$ $\mathrm{mol} \%$), methyl bis(2-hydroxyphenyl)phosphinate 1 a ($26.4 \mathrm{mg}, 0.1 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($10.6 \mathrm{mg}, 0.1$ mmol), were added in toluene (2 mL). Then, the benzoyl chloride $\mathbf{2 j}$ ($11.6 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) was added in mixture at $0{ }^{\circ} \mathrm{C}$ for 2 h . Purification by flash column chromatography using gradient elution to give the title product 3aj as a white solid ($32.4 \mathrm{mg}, 88 \%$ yield, 69% ee). The eluents were pure Pet and Pet/EtOAc (10/1, v/v), respectively.
$\mathrm{R}_{\mathrm{f}}=0.38(\mathrm{Pet} / \mathrm{EtOAc}, 2 / 1, \mathrm{v} / \mathrm{v})$. m.p: 120.4-121.4 ${ }^{\circ} \mathrm{C}$.
HPLC analysis: 69\% ee (IA, 2-propanol $/ n$-hexane $=20 / 80$, flow rate $=0.6 \mathrm{~mL} / \mathrm{min} ; \lambda=256 \mathrm{~nm}$) $\mathrm{t}_{R}=16.5 \mathrm{~min}$ (major), 22.5 min (minor).
$[\alpha]_{\mathbf{D}}{ }^{22}=-55.7\left(c 0.42, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.67(\mathrm{~s}, 1 \mathrm{H}), 8.07-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.95(\mathrm{ddd}, J=12.8,7.6,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.68-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{tdd}, J=7.6,2.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.26$ $(\mathrm{m}, 2 \mathrm{H}), 7.10(\mathrm{ddd}, J=14.8,8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{tdd}, J=7.6,3.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{ddd}$, $J=8.4,5.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 164.5,163.3\left(\mathrm{~d}, J_{C-P}=6.0 \mathrm{~Hz}\right), 153.1\left(\mathrm{~d}, J_{C-P}=4.5 \mathrm{~Hz}\right), 135.1$, $134.5,134.0,133.3\left(\mathrm{~d}, J_{C-P}=6.0 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{C-P}=10.5 \mathrm{~Hz}\right), 130.5,128.5,128.5,126.1(\mathrm{~d}$, $\left.J_{C-P}=12.0 \mathrm{~Hz}\right), 124.4\left(\mathrm{~d}, J_{C-P}=9.0 \mathrm{~Hz}\right), 123.4\left(\mathrm{~d}, J_{C-P}=145.5 \mathrm{~Hz}\right), 119.5\left(\mathrm{~d}, J_{C-P}=12.0 \mathrm{~Hz}\right)$, $118.0\left(\mathrm{~d}, J_{C-P}=10.5 \mathrm{~Hz}\right), 110.0\left(\mathrm{~d}, J_{C-P}=132.0 \mathrm{~Hz}\right), 51.8\left(\mathrm{~d}, J_{C-P}=4.5 \mathrm{~Hz}\right)$.
${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 38.2$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NaO}_{5} \mathrm{P}^{+}$391.0706, found 391.0707.

(S)-2-((2-Hydroxyphenyl)(methoxy)phosphoryl)phenyl 4-fluorobenzoate (3ak)

Prepared according to general procedure E using chiral ArPNO C2a ($24 \mu \mathrm{~L}, 0.005 \mathrm{mmol}, 0.05$ $\mathrm{mol} \%$), methyl bis(2-hydroxyphenyl)phosphinate $1 \mathbf{1 a}(26.4 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(10.6 \mathrm{mg}, 0.1$ mmol), were added in toluene (2 mL). Then, the 4 -fluorobenzoyl chloride $\mathbf{2 k}(11.8 \mu \mathrm{~L}, 0.1 \mathrm{mmol})$ was added in mixture at $0^{\circ} \mathrm{C}$ for 2 h . Purification by flash column chromatography using gradient elution to give the title product 3ak as a white solid ($35.1 \mathrm{mg}, 91 \%$ yield, 74% ee). The eluents were pure Pet and Pet/EtOAc (10/1, v/v), respectively.
$\mathrm{R}_{\mathrm{f}}=0.63$ (Pet/EtOAc, 2/1, v/v). m.p: 147.3-148.5 ${ }^{\circ} \mathrm{C}$.
HPLC analysis: 74\% ee (IA, 2-propanol $/ n$-hexane $=30 / 70$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min} ; \lambda=256 \mathrm{~nm}$) $\mathrm{t}_{R}=7.7 \mathrm{~min}$ (major), 18.3 min (minor).
$[\alpha]_{\mathbf{D}}{ }^{22}=-62.7\left(c 0.53, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.68(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{dd}, J=5.6,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{dd}, J=8.4,5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{td}, J=5.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=5.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.05(\mathrm{q}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{td}, J=5.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=5.6,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.72 (d, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (150 MHz, CDCl_{3}): $\delta 167.3,165.6,163.4,163.2\left(\mathrm{~d}, J_{C-P}=5.3 \mathrm{~Hz}\right), 153.0\left(\mathrm{~d}, J_{C-P}=4.1\right.$ $\mathrm{Hz}), 135.1,134.5,133.2\left(\mathrm{~d}, J_{C-P}=9.2 \mathrm{~Hz}\right), 131.5\left(\mathrm{~d}, J_{C-P}=10.1 \mathrm{~Hz}\right), 126.1\left(\mathrm{~d}, J_{C-P}=11.9 \mathrm{~Hz}\right)$, $124.7\left(\mathrm{~d}, J_{C-P}=3.0 \mathrm{~Hz}\right), 124.4\left(\mathrm{~d}, J_{C-P}=8.6 \mathrm{~Hz}\right), 123.3\left(\mathrm{~d}, J_{C-P}=147.6 \mathrm{~Hz}\right), 119.6\left(\mathrm{~d}, J_{C-P}=13.2\right.$ $\mathrm{Hz}), 117.9\left(\mathrm{~d}, J_{C-P}=9.2 \mathrm{~Hz}\right), 115.7\left(\mathrm{~d}, J_{C-P}=22.1 \mathrm{~Hz}\right), 110.0\left(\mathrm{~d}, J_{C-F}=134.0 \mathrm{~Hz}\right), 51.8\left(\mathrm{~d}, J_{C-P}=\right.$ 5.6 Hz).
${ }^{31} \mathbf{P}$ NMR (243 MHz, CDCl_{3}): δ 38.0.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-104.01$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{Calcd}$ for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{FNaO}_{5} \mathrm{P}^{+} 409.0612$, found 409.0620.

(S)-2-((2-Hydroxyphenyl)(methoxy)phosphoryl)phenyl 4-methoxybenzoate (3al)

Prepared according to general procedure E using chiral ArPNO C2a ($24 \mu \mathrm{~L}, 0.005 \mathrm{mmol}, 0.05$ $\mathrm{mol} \%$), methyl bis(2-hydroxyphenyl)phosphinate $1 \mathbf{1 a}(26.4 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(10.6 \mathrm{mg}, 0.1$ $\mathrm{mmol})$, were added in toluene (2 mL). Then, the 4-methoxybenzoyl chloride $2 \mathbf{2 l}$ ($13.5 \mu \mathrm{~L}, 0.1$ mmol) was added in mixture at $0{ }^{\circ} \mathrm{C}$ for 2 h . Purification by flash column chromatography using gradient elution to give the title product 3al as a white solid ($32.6 \mathrm{mg}, 82 \%$ yield, 60% ee). The eluents were pure Pet and $\mathrm{Pet} / \mathrm{EtOAc}(10 / 1, \mathrm{v} / \mathrm{v})$, respectively.
$\mathrm{R}_{\mathrm{f}}=0.63(\mathrm{Pet} / \mathrm{EtOAc}, 2 / 1, \mathrm{v} / \mathrm{v})$. m.p: $112.9-113.4^{\circ} \mathrm{C}$.
HPLC analysis: 60% ee (IA, 2-propanol $/ n$-hexane $=25 / 75$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min} ; \lambda=256 \mathrm{~nm}$) $\mathrm{t}_{R}=11.0 \mathrm{~min}$ (major), 26.8 min (minor).
$[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 2}}=-107.7\left(c 0.61, \mathrm{CHCl}_{3}\right)$.
${ }^{1}$ H NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.70(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.93$ (ddd, $J=12.6,7.2$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{td}, J=7.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.10$ (ddd, $J=$ $15.0,7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{td}, J=7.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=8.4$, $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 164.2\left(\mathrm{~d}, J_{C-P}=10.1 \mathrm{~Hz}\right), 163.3\left(\mathrm{~d}, J_{C-P}=5.4 \mathrm{~Hz}\right), 153.2\left(\mathrm{~d}, J_{C-P}\right.$ $=3.3 \mathrm{~Hz}), 135.1,134.4,133.3\left(\mathrm{~d}, J_{C-P}=6.5 \mathrm{~Hz}\right), 132.7,131.6\left(\mathrm{~d}, J_{C-P}=9.8 \mathrm{~Hz}\right), 125.9\left(\mathrm{~d}, J_{C-P}=\right.$ $12.0 \mathrm{~Hz}), 124.5\left(\mathrm{~d}, J_{C-P}=7.7 \mathrm{~Hz}\right), 123.4\left(\mathrm{~d}, J_{C-P}=145.5 \mathrm{~Hz}\right), 120.9,119.5\left(\mathrm{~d}, J_{C-P}=13.1 \mathrm{~Hz}\right)$, $117.9\left(\mathrm{~d}, J_{C-P}=9.8 \mathrm{~Hz}\right), 113.8,110.6,109.7,55.6,51.8\left(\mathrm{~d}, J_{C-P}=5.6 \mathrm{~Hz}\right)$.
${ }^{31} \mathbf{P}$ NMR (243 MHz, CDCl_{3}): $\delta 38.4$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NaO}_{6} \mathrm{P}^{+}$421.0811, found 421.0819.

(S)-2-((2-Hydroxyphenyl)(methoxy)phosphoryl)phenyl 2,2-diphenylacetate (3am)

Prepared according to general procedure \mathbf{E} using chiral ArPNO C2a ($24 \mu \mathrm{~L}, 0.005 \mathrm{mmol}, 0.05$ $\mathrm{mol} \%$), methyl bis(2-hydroxyphenyl)phosphinate $1 \mathbf{1 a}$ ($26.4 \mathrm{mg}, 0.1 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($10.6 \mathrm{mg}, 0.1$ mmol), were added in toluene (2 mL). Then, the 2,2-diphenylacetyl chloride $\mathbf{2 m}(23.0 \mathrm{mg}, 0.1$ mmol) was added in mixture at $0{ }^{\circ} \mathrm{C}$ for 2 h . Purification by flash column chromatography using gradient elution to give the title product 3 am as a white solid ($41.7 \mathrm{mg}, 91 \%$ yield, 87% ee). The eluents were pure Pet and $\mathrm{Pet} / \mathrm{EtOAc}(10 / 1, \mathrm{v} / \mathrm{v})$, respectively.
$\mathrm{R}_{\mathrm{f}}=0.55(\mathrm{Pet} / \mathrm{EtOAc}, 2 / 1, \mathrm{v} / \mathrm{v}) . \mathrm{m} . \mathrm{p}: 123.6-124.4^{\circ} \mathrm{C}$.
HPLC analysis: 87% ee (IA, 2-propanol $/ n$-hexane $=20 / 80$, flow rate $=0.6 \mathrm{~mL} / \mathrm{min} ; \lambda=256 \mathrm{~nm}$) $\mathrm{t}_{R}=13.6 \mathrm{~min}$ (major), 28.4 min (minor).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 2}}=-116.9\left(c \quad 0.58, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.98(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{ddd}, J=12.4,7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{td}, J=$ $8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.23(\mathrm{~m}, 10 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{dd}, J=8.4,5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.77(\mathrm{td}, J=7.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.6,163.2\left(\mathrm{~d}, J_{C-P}=5.6 \mathrm{~Hz}\right), 152.9\left(\mathrm{~d}, J_{C-P}=4.1 \mathrm{~Hz}\right), 138.0(\mathrm{~d}$, $\left.J_{C-P}=39.8 \mathrm{~Hz}\right), 135.2,134.3,133.1\left(\mathrm{~d}, J_{C-P}=5.6 \mathrm{~Hz}\right), 131.5\left(\mathrm{~d}, J_{C-P}=9.2 \mathrm{~Hz}\right), 128.8\left(\mathrm{~d}, J_{C-P}=8.9\right.$ $\mathrm{Hz}), 128.8,127.6\left(\mathrm{~d}, J_{C-P}=4.2 \mathrm{~Hz}\right), 126.0\left(\mathrm{~d}, J_{C-P}=12.2 \mathrm{~Hz}\right), 123.6\left(\mathrm{t}, J_{C-P}=8.0 \mathrm{~Hz}\right), 122.7$, $119.7\left(\mathrm{~d}, J_{C-P}=13.4 \mathrm{~Hz}\right), 118.1\left(\mathrm{~d}, J_{C-P}=9.8 \mathrm{~Hz}\right), 110.5\left(\mathrm{~d}, J_{C-P}=132.3 \mathrm{~Hz}\right), 56.4,51.8\left(\mathrm{~d}, J_{C-P}=\right.$ 5.6 Hz).
${ }^{31} \mathbf{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 37.7$.
HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{Calcd}$ for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{NaO}_{5} \mathrm{P}^{+} 481.1175$, found 481.1172.

(S)-2-((2-hydroxyphenyl)(methoxy)phosphoryl)phenyl 2-phenylacetate (3an)

Prepared according to general procedure E using chiral ArPNO C2a ($24 \mu \mathrm{~L}, 0.005 \mathrm{mmol}, 0.05$ $\mathrm{mol} \%$), methyl bis(2-hydroxyphenyl)phosphinate $1 \mathbf{1 a}(26.4 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(10.6 \mathrm{mg}, 0.1$ $\mathrm{mmol})$, were added in toluene (2 mL). Then, the phenylacetyl choride $2 \mathrm{n}(13.2 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) was added in mixture at $0{ }^{\circ} \mathrm{C}$ for 2 h . Purification by flash column chromatography using gradient elution to give the title product 3an as a white solid ($35.1 \mathrm{mg}, 92 \%$ yield, 86% ee). The eluents were pure Pet and Pet/EtOAc (10/1, v/v), respectively.
$\mathrm{R}_{\mathrm{f}}=0.52(\mathrm{Pet} / \mathrm{EtOAc}, 2 / 1, \mathrm{v} / \mathrm{v})$. m.p: $113.8-114.2^{\circ} \mathrm{C}$.
HPLC analysis: 86% ee (IC, 2-propanol $/ n$-hexane $=30 / 70$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min} ; \lambda=256 \mathrm{~nm}$) $\mathrm{t}_{R}=19.5 \mathrm{~min}$ (minor), 22.6 min (major).
$[\alpha]_{\mathrm{D}}{ }^{22}=-123.5\left(c 0.52, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 11.05(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{ddd}, J=12.6,7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.54(\mathrm{~m}$, $1 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{ddd}, J=$ $8.4,5.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{tdd}, J=7.8,3.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=$ $11.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.72(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 169.4,163.2\left(\mathrm{~d}, J_{C-P}=4.5 \mathrm{~Hz}\right), 153.1\left(\mathrm{~d}, J_{C-P}=4.5 \mathrm{~Hz}\right), 135.3$, $134.4,133.1,132.9\left(\mathrm{~d}, J_{C-P}=6.0 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{C-P}=9.0 \mathrm{~Hz}\right), 129.2\left(\mathrm{~d}, J_{C-P}=135.0 \mathrm{~Hz}\right), 127.4$, $125.9\left(\mathrm{~d}, J_{C-P}=10.5 \mathrm{~Hz}\right), 124.0\left(\mathrm{~d}, J_{C-P}=9.0 \mathrm{~Hz}\right), 123.5,122.6,119.8\left(\mathrm{~d}, J_{C-P}=13.5 \mathrm{~Hz}\right), 118.0$ $\left(\mathrm{d}, J_{C-P}=10.5 \mathrm{~Hz}\right), 110.5\left(\mathrm{~d}, J_{C-P}=132.0 \mathrm{~Hz}\right), 51.8\left(\mathrm{~d}, J_{C-P}=6.0 \mathrm{~Hz}\right), 40.7$.
${ }^{31} \mathbf{P}$ NMR $\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 37.5$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NaO}_{5} \mathrm{P}^{+}$405.0862, found 405.0864.

(S)-4-Bromo-2-((5-bromo-2-hydroxyphenyl)(methoxy)phosphoryl)phenyl 3,3-dimethyl butanoate (3ba)

Prepared according to general procedure E using chiral ArPNO C2a ($24 \mu \mathrm{~L}, 0.005 \mathrm{mmol}, 0.05$ $\mathrm{mol} \%$), methyl bis(2-hydroxyphenyl)phosphinate $\mathbf{1 b}$ ($42.0 \mathrm{mg}, 0.1 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($10.6 \mathrm{mg}, 0.1$ mmol), were added in toluene (2 mL). Then, the 3,3-dimethylbutanoyl chloride $\mathbf{2 a}$ ($14.9 \mu \mathrm{~L}, 0.1$ mmol) was added in mixture at $0^{\circ} \mathrm{C}$ for 2 h . Purification by flash column chromatography using gradient elution to give the title product $\mathbf{3 b a}$ as a yellow solid ($48.2 \mathrm{mg}, 93 \%$ yield, 93% ee). The eluents were pure Pet and Pet/EtOAc (10/1, v/v), respectively.
$\mathrm{R}_{\mathrm{f}}=0.62\left(\mathrm{Pet} / \mathrm{EtOAc}, 2 / 1\right.$, v/v). m.p: $95.6-96.4^{\circ} \mathrm{C}$.
HPLC analysis: 93\% ee (IC, 2-propanol $/ n$-hexane $=30 / 70$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min} ; \lambda=256 \mathrm{~nm}$) $\mathrm{t}_{\mathrm{R}}=7.9 \mathrm{~min}$ (major), 6.2 min (minor).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 2}}=-134.8\left(c 0.62, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.83(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{dd}, J=12.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=8.8$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=9.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=14.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=8.4,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=8.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.47(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.31$ $(\mathrm{d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H})$.

[^0]

Prepared according to general procedure E using chiral ArPNO C2a ($24 \mu \mathrm{~L}, 0.005 \mathrm{mmol}, 0.05$ $\mathrm{mol} \%$), methyl bis(2-hydroxyphenyl)phosphinate $\mathbf{1 c}(33.2 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(10.6 \mathrm{mg}, 0.1$ mmol), were added in toluene (2 mL). Then, the 3,3-dimethylbutanoyl chloride 2 a ($14.9 \mu \mathrm{~L}, 0.1$ mmol) was added in mixture at $0^{\circ} \mathrm{C}$ for 2 h . Purification by flash column chromatography using gradient elution to give the title product 3 ca as a yellow solid ($40.0 \mathrm{mg}, 93 \%$ yield, $91 \% \mathrm{ee}$). The eluents were pure Pet and Pet/EtOAc (10/1, v/v), respectively.
$\mathrm{R}_{\mathrm{f}}=0.59(\mathrm{Pet} / \mathrm{EtOAc}, 2 / 1, \mathrm{v} / \mathrm{v})$. m.p: $92 \cdot 6-93 \cdot 2^{\circ} \mathrm{C}$.
HPLC analysis: 91% ee (IC, 2-propanol $/ n$-hexane $=30 / 70$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min} ; \lambda=256 \mathrm{~nm}$) $\mathrm{t}_{\mathrm{R}}=5.8 \mathrm{~min}$ (minor), 7.3 min (major).
$[\alpha]_{\mathbf{D}}{ }^{22}=-125.6\left(c 0.60, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.80(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{dd}, J=12.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=8.8$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=9.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=8.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=14.8,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=9.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.47(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.31$ (d, $J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.6,161.8\left(\mathrm{~d}, J_{C-P}=5.0 \mathrm{~Hz}\right), 151.4,135.5\left(\mathrm{~d}, J_{C-P}=2.0\right.$ $\mathrm{Hz}), 134.5\left(\mathrm{~d}, J_{C-P}=3.0 \mathrm{~Hz}\right), 132.7\left(\mathrm{~d}, J_{C-P}=6.0 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{C-P}=15.0 \mathrm{~Hz}\right), 130.5\left(\mathrm{~d}, J_{C-P}\right.$ $=11.0 \mathrm{~Hz}), 125.5\left(\mathrm{~d}, J_{C-P}=9.0 \mathrm{~Hz}\right), 124.9\left(\mathrm{~d}, J_{C-P}=21.0 \mathrm{~Hz}\right), 124.1\left(\mathrm{~d}, J_{C-P}=106.0 \mathrm{~Hz}\right)$, $119.8\left(\mathrm{~d}, J_{C-P}=11.0 \mathrm{~Hz}\right), 111.7\left(\mathrm{~d}, J_{C-P}=133 \mathrm{~Hz}\right), 52.3\left(\mathrm{~d}, J_{C-P}=6.0 \mathrm{~Hz}\right), 47.0,31.0,29.6$.
${ }^{31} \mathbf{P}$ NMR (162 MHz, CDCl_{3}): $\delta 33.7$.
HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{Calcd}$ for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{NaO}_{5} \mathrm{P}^{+} 453.0396$, found 453.0398 .

(S)-2-((2-Hydroxy-5-methylphenyl)(methoxy)phosphoryl)-4-methylphenyl 3,3-dimethyl butanoate (3da)

Prepared according to general procedure E using chiral ArPNO C2a ($24 \mu \mathrm{~L}, 0.005 \mathrm{mmol}, 0.05$ $\mathrm{mol} \%$), methyl bis(2-hydroxy-5-methylphenyl)phosphinate $\mathbf{1 c}(29.2 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(10.6$ $\mathrm{mg}, 0.1 \mathrm{mmol})$, were added in toluene $(2 \mathrm{~mL})$. Then, the 3,3-dimethylbutanoyl chloride $\mathbf{2 a}$ (14.9 $\mu \mathrm{L}, 0.1 \mathrm{mmol}$) was added in mixture at $0{ }^{\circ} \mathrm{C}$ for 2 h . Purification by flash column chromatography using gradient elution to give the title product 3 ca as a white solid ($36.3 \mathrm{mg}, 93 \%$ yield, 93% ee). The eluents were pure Pet and $\mathrm{Pet} / \mathrm{EtOAc}(10 / 1, \mathrm{v} / \mathrm{v})$, respectively.
$\mathrm{R}_{\mathrm{f}}=0.58(\mathrm{Pet} / \mathrm{EtOAc}, 2 / 1, \mathrm{v} / \mathrm{v})$. m.p: $102.9-103.4^{\circ} \mathrm{C}$.

HPLC analysis: 93\% ee (IC, 2-propanol $/ n$-hexane $=30 / 70$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min} ; \lambda=256 \mathrm{~nm}$) $\mathrm{t}_{R}=12.3 \mathrm{~min}$ (major), 14.1 min (minor).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{22}=-112.5\left(c 0.53, \mathrm{CHCl}_{3}\right)$.
${ }^{1}$ H NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.74(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{dd}, J=13.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=8.4$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=8.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.85(\mathrm{~m}, 2 \mathrm{H}), 3.77$ $(\mathrm{d}, J=11.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.44(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~s}$, $3 \mathrm{H}), 1.05$ ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.2,161.1\left(\mathrm{~d}, J_{C-P}=5.3 \mathrm{~Hz}\right), 150.8\left(\mathrm{~d}, J_{C-P}=4.2 \mathrm{~Hz}\right), 136.1$, $135.6\left(\mathrm{~d}, J_{C-P}=11.3 \mathrm{~Hz}\right), 134.9,133.2\left(\mathrm{~d}, J_{C-P}=5.3 \mathrm{~Hz}\right), 131.2\left(\mathrm{~d}, J_{C-P}=9.9 \mathrm{~Hz}\right), 128.8\left(\mathrm{~d}, J_{C-P}=\right.$ $13.2 \mathrm{~Hz}), 123.8\left(\mathrm{~d}, J_{C-P}=8.9 \mathrm{~Hz}\right), 122.7\left(\mathrm{~d}, J_{C-P}=144.5 \mathrm{~Hz}\right), 117.8\left(\mathrm{~d}, J_{C-P}=10.5 \mathrm{~Hz}\right), 110.1(\mathrm{~d}$, $\left.J_{C-P}=132.3 \mathrm{~Hz}\right), 51.7\left(\mathrm{~d}, J_{C-P}=5.4 \mathrm{~Hz}\right), 46.9,30.9,29.7,21.0,20.5$.
${ }^{31} \mathbf{P}$ NMR (243 MHz, CDCl_{3}): $\delta 37.9$.
HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NaO}_{5} \mathrm{P}^{+} 413.1488$, found 413.1492 .

(S)-2-((2-Hydroxy-5-methoxyphenyl)(methoxy)phosphoryl)-4-methoxyphenyl 3,3-dimethyl butanoate (3ea)

Prepared according to general procedure E using chiral ArPNO C2a ($24 \mu \mathrm{~L}, 0.005 \mathrm{mmol}, 0.05$ $\mathrm{mol} \%$), methyl bis(2-hydroxy-5-methoxyphenyl)phosphinate $\mathbf{1 d}(32.4 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}$ $(10.6 \mathrm{mg}, 0.1 \mathrm{mmol})$, were added in toluene (2 mL). Then, the 3,3-dimethylbutanoyl chloride 2a $(14.9 \mu \mathrm{~L}, 0.1 \mathrm{mmol})$ was added in mixture at $0{ }^{\circ} \mathrm{C}$ for 2 h . Purification by flash column chromatography using gradient elution to give the title product 3da as a white solid ($38.4 \mathrm{mg}, 91 \%$ yield, 90% ee). The eluents were pure Pet and $\mathrm{Pet} / \mathrm{EtOAc}(10 / 1, \mathrm{v} / \mathrm{v})$, respectively.
$\mathrm{R}_{\mathrm{f}}=0.48(\mathrm{Pet} / \mathrm{EtOAc}, 2 / 1, \mathrm{v} / \mathrm{v}) . \mathrm{m} . \mathrm{p}: 108.4-110.2^{\circ} \mathrm{C}$.
HPLC analysis: 90% ee (IC, 2-propanol $/ n$-hexane $=30 / 70$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min} ; \lambda=256 \mathrm{~nm}$) $\mathrm{t}_{R}=34.2 \mathrm{~min}$ (major), 19.2 min (minor).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 2}}=-198.5\left(c 0.47, \mathrm{CHCl}_{3}\right)$.
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.46(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=13.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.00(\mathrm{~m}, 3 \mathrm{H})$, $6.91(\mathrm{dd}, J=9.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{dd}, J=15.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, CDCl_{3}): $\delta 170.5,157.4\left(\mathrm{~d}, J_{C-P}=5.0 \mathrm{~Hz}\right), 156.9\left(\mathrm{~d}, J_{C-P}=14.0 \mathrm{~Hz}\right), 152.5$ $\left(\mathrm{d}, J_{C-P}=17.0 \mathrm{~Hz}\right), 146.2,125.2\left(\mathrm{~d}, J_{C-P}=10.0 \mathrm{~Hz}\right), 124.3,122.9,122.5\left(\mathrm{~d}, J_{C-P}=2.0 \mathrm{~Hz}\right), 119.8$ $\left(\mathrm{d}, J_{C-P}=2.0 \mathrm{~Hz}\right), 119.1\left(\mathrm{~d}, J_{C-P}=11.0 \mathrm{~Hz}\right), 117.4\left(\mathrm{~d}, J_{C-P}=6.0 \mathrm{~Hz}\right), 114.5\left(\mathrm{~d}, J_{C-P}=11.0 \mathrm{~Hz}\right)$, $110.2\left(\mathrm{~d}, J_{C-P}=133.0 \mathrm{~Hz}\right), 56.0\left(\mathrm{~d}, J_{C-P}=2.0 \mathrm{~Hz}\right), 51.9,51.9,46.9,30.8,29.7$.
${ }^{31} \mathbf{P}$ NMR $\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 36.8$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NaO}_{7} \mathrm{P}^{+} 445.1387$, found 445.1391 .

Prepared according to general procedure E using chiral ArPNO C2a ($24 \mu \mathrm{~L}, 0.005 \mathrm{mmol}, 0.05$ $\mathrm{mol} \%$), methyl bis(4-hydroxy-[1,1'-biphenyl]-3-yl)phosphinate $\mathbf{1 e}(41.6 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}$ $(10.6 \mathrm{mg}, 0.1 \mathrm{mmol})$, were added in toluene $(2 \mathrm{~mL})$. Then, the 3,3-dimethylbutanoyl chloride $\mathbf{2 a}$ $(14.9 \mu \mathrm{~L}, 0.1 \mathrm{mmol})$ was added in mixture at $0{ }^{\circ} \mathrm{C}$ for 2 h . Purification by flash column chromatography using gradient elution to give the title product 3ea as a white solid ($46.3 \mathrm{mg}, 90 \%$ yield, 95% ee). The eluents were pure Pet and Pet/EtOAc (10/1, v/v), respectively.
$\mathrm{R}_{\mathrm{f}}=0.56(\mathrm{Pet} / \mathrm{EtOAc}, 2 / 1, \mathrm{v} / \mathrm{v})$. m.p: $110.5-111.4^{\circ} \mathrm{C}$.
HPLC analysis: 95\% ee (IA, 2-propanol $/ n$-hexane $=30 / 70$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min} ; \lambda=256 \mathrm{~nm}$) $\mathrm{t}_{R}=8.6 \mathrm{~min}$ (major), 7.8 min (minor).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 2}}=-309.4\left(c 0.51, \mathrm{CHCl}_{3}\right)$.
${ }^{1}$ H NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 11.01(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{dd}, J=12.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=8.4$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{dd}, J=9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{td}, J=7.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-$ $7.36(\mathrm{~m}, 6 \mathrm{H}), 7.28(\mathrm{tt}, J=6.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=8.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.85$ $(\mathrm{d}, J=11.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.48(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.1,162.8\left(\mathrm{~d}, J_{C-P}=6.0 \mathrm{~Hz}\right), 152.2\left(\mathrm{~d}, J_{C-P}=5.0 \mathrm{~Hz}\right), 139.8(\mathrm{~d}$, $\left.J_{C-P}=46.0 \mathrm{~Hz}\right), 139.2\left(\mathrm{~d}, J_{C-P}=12.0 \mathrm{~Hz}\right), 134.1\left(\mathrm{~d}, J_{C-P}=2.0 \mathrm{~Hz}\right), 133.2,133.0\left(\mathrm{~d}, J_{C-P}=3.0 \mathrm{~Hz}\right)$, $131.7\left(\mathrm{~d}, J_{C-P}=5.0 \mathrm{~Hz}\right), 129.9\left(\mathrm{~d}, J_{C-P}=11.0 \mathrm{~Hz}\right), 129.1,128.9,128.1,127.4,127.2,126.8,124.4$ $\left(\mathrm{d}, J_{C-P}=9.0 \mathrm{~Hz}\right), 124.0,122.6,118.5\left(\mathrm{~d}, J_{C-P}=10.0 \mathrm{~Hz}\right), 110.9\left(\mathrm{~d}, J_{C-P}=132.0 \mathrm{~Hz}\right), 52.0\left(\mathrm{~d}, J_{C-P}\right.$ $=5.0 \mathrm{~Hz}), 47.0,31.0,29.7$.
${ }^{31} \mathbf{P}$ NMR (243 MHz, CDCl_{3}): $\delta 37.3$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{NaO}_{5} \mathrm{P}^{+}$537.1081, found 537.1080.

(S)-2-(Ethoxy(2-hydroxyphenyl)phosphoryl)phenyl 3,3-dimethylbutanoate (3ga)

Prepared according to general procedure E using chiral ArPNO C2a ($24 \mu \mathrm{~L}, 0.005 \mathrm{mmol}, 0.05$ $\mathrm{mol} \%$), methyl ethyl bis(2-hydroxyphenyl)phosphinate $1 \mathrm{f}(27.8 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(10.6 \mathrm{mg}$, 0.1 mmol), were added in toluene (2 mL). Then, the 3,3-dimethylbutanoyl chloride $\mathbf{2 a}(14.9 \mu \mathrm{~L}$, 0.1 mmol) was added in mixture at $0{ }^{\circ} \mathrm{C}$ for 2 h . Purification by flash column chromatography using gradient elution to give the title product $\mathbf{3 f a}$ as a white solid ($35.0 \mathrm{mg}, 93 \%$ yield, 94% ee). The eluents were pure Pet and Pet/EtOAc (10/1, v/v), respectively.
$\mathrm{R}_{\mathrm{f}}=0.55\left(\mathrm{Pet} / \mathrm{EtOAc}, 2 / 1\right.$, v/v). m.p: $108.8-110.6^{\circ} \mathrm{C}$.
HPLC analysis: 94\% ee (IA, 2-propanol $/ n$-hexane $=30 / 70$, flow rate $=0.6 \mathrm{~mL} / \mathrm{min} ; \lambda=256 \mathrm{~nm}$) $\mathrm{t}_{R}=8.5 \mathrm{~min}$ (major), 9.9 min (minor).
$[\alpha]_{\mathbf{D}}{ }^{22}=-77.9\left(c 0.42, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 11.03(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{ddd}, J=12.4,7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.55(\mathrm{~m}$, $1 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.34$ (tdd, $J=7.6,2.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15$ (ddd, $J=8.0,5.6,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.08 (ddd, $J=14.8,7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.95$ (ddd, $J=8.4,5.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{tdd}, J=7.2,2.8$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.21(\mathrm{~m}, 1 \mathrm{H}), 4.09-3.99(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~d}, J=14.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.38(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 169.9,163.1\left(\mathrm{~d}, J_{C-P}=6.0 \mathrm{~Hz}\right), 153.1\left(\mathrm{~d}, J_{C-P}=4.0 \mathrm{~Hz}\right), 135.0(\mathrm{~d}$, $\left.J_{C-P}=3.0 \mathrm{~Hz}\right), 134.1\left(\mathrm{~d}, J_{C-P}=2.0 \mathrm{~Hz}\right), 133.0\left(\mathrm{~d}, J_{C-P}=5.0 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{C-P}=10.0 \mathrm{~Hz}\right), 125.6$ $\left(\mathrm{d}, J_{C-P}=12.0 \mathrm{~Hz}\right), 124.0\left(\mathrm{~d}, J_{C-P}=8.0 \mathrm{~Hz}\right), 123.5\left(\mathrm{~d}, J_{C-P}=146.0 \mathrm{~Hz}\right), 119.6\left(\mathrm{~d}, J_{C-P}=13.0 \mathrm{~Hz}\right)$, $117.9\left(\mathrm{~d}, J_{C-P}=9.0 \mathrm{~Hz}\right), 111.4\left(\mathrm{~d}, J_{C-P}=133.0 \mathrm{~Hz}\right), 61.7\left(\mathrm{~d}, J_{C-P}=5.0 \mathrm{~Hz}\right), 46.9,30.9,29.7,16.4$ $\left(\mathrm{d}, J_{C-P}=7.0 \mathrm{~Hz}\right)$.
${ }^{31} \mathbf{P}$ NMR (162 MHz, CDCl_{3}): $\delta 35.5$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NaO}_{5} \mathrm{P}^{+}$399.1332, found 399.1339.

(S)-2-((2-Hydroxyphenyl)(propoxy)phosphoryl)phenyl 3,3-dimethylbutanoate (3ha)

Prepared according to general procedure \mathbf{E} using chiral $\mathrm{ArPNO} \mathbf{C 2 a}(24 \mu \mathrm{~L}, 0.005 \mathrm{mmol}, 0.05$ $\mathrm{mol} \%$), propyl bis(2-hydroxyphenyl)phosphinate $\mathbf{1 g}(29.2 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(10.6 \mathrm{mg}, 0.1$ mmol), were added in toluene (2 mL). Then, the 3,3-dimethylbutanoyl chloride 2a ($14.9 \mu \mathrm{~L}, 0.1$ mmol) was added in mixture at $0{ }^{\circ} \mathrm{C}$ for 2 h . Purification by flash column chromatography using gradient elution to give the title product 3ga as a white solid ($35.5 \mathrm{mg}, 91 \%$ yield, 94% ee). The eluents were pure Pet and $\mathrm{Pet} / \mathrm{EtOAc}(10 / 1$, v/v), respectively.
$\mathrm{R}_{\mathrm{f}}=0.57(\mathrm{Pet} / \mathrm{EtOAc}, 2 / 1, \mathrm{v} / \mathrm{v})$. m.p: $102.9-103.4^{\circ} \mathrm{C}$.
HPLC analysis: 94% ee (IA, 2-propanol $/ n$-hexane $=5 / 95$, flow rate $=0.4 \mathrm{~mL} / \mathrm{min} ; \lambda=256 \mathrm{~nm}$) t_{R} $=23.7 \mathrm{~min}$ (major), 28.4 min (minor).
$[\alpha]_{\mathbf{D}}{ }^{22}=-76.3\left(c 0.52, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 11.03(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{ddd}, J=12.0,7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{tt}, J=7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{tdd}, J=7.2,2.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ (ddd, $J=8.4$, $5.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{ddd}, J=14.8,8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.82-6.78(\mathrm{~m}, 1 \mathrm{H})$, 4.20-4.12 (m, 1H), 3.93-3.86 (m, 1H), $2.45(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-$ $1.72(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.9,163.1\left(\mathrm{~d}, J_{C-P}=5.0 \mathrm{~Hz}\right), 153.2\left(\mathrm{~d}, J_{C-P}=5.0 \mathrm{~Hz}\right), 135.0(\mathrm{~d}$, $\left.J_{C-P}=3.0 \mathrm{~Hz}\right), 134.1\left(\mathrm{~d}, J_{C-P}=3.0 \mathrm{~Hz}\right), 132.9\left(\mathrm{~d}, J_{C-P}=4.0 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{C-P}=10.0 \mathrm{~Hz}\right), 125.6(\mathrm{~d}$, $\left.J_{C-P}=12.0 \mathrm{~Hz}\right), 124.0\left(\mathrm{~d}, J_{C-P}=8.0 \mathrm{~Hz}\right), 123.5\left(\mathrm{~d}, J_{C-P}=146.0 \mathrm{~Hz}\right), 119.6\left(\mathrm{~d}, J_{C-P}=14.0 \mathrm{~Hz}\right)$, $117.9\left(\mathrm{~d}, J_{C-P}=10.0 \mathrm{~Hz}\right), 111.3\left(\mathrm{~d}, J_{C-P}=132.0 \mathrm{~Hz}\right), 67.0\left(\mathrm{~d}, J_{C-P}=6.0 \mathrm{~Hz}\right), 46.9,30.9,29.7,23.9$ $\left(\mathrm{d}, J_{C-P}=7.0 \mathrm{~Hz}\right), 10.3$.
${ }^{31} \mathbf{P}$ NMR (162 MHz, CDCl_{3}): $\delta 35.3$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NaO}_{5} \mathrm{P}^{+} 413.1488$, found 413.1489.

Prepared according to general procedure E using chiral ArPNO C2a ($24 \mu \mathrm{~L}, 0.005 \mathrm{mmol}, 0.05$ $\mathrm{mol} \%$), bis(2-hydroxyphenyl)(phenyl)phosphine oxide 1 h ($31.0 \mathrm{mg}, 0.1 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(10.6 \mathrm{mg}$, 0.1 mmol), were added in toluene (2 mL). Then, the 3,3-dimethylbutanoyl chloride $\mathbf{2 a}(14.9 \mu \mathrm{~L}$, 0.1 mmol) was added in mixture at $0{ }^{\circ} \mathrm{C}$ for 2 h . Purification by flash column chromatography using gradient elution to give the title product 3 ha as a white solid ($34.3 \mathrm{mg}, 84 \%$ yield, 12% ee). The eluents were pure Pet and Pet/EtOAc (10/1, v/v), respectively.
$\mathrm{R}_{\mathrm{f}}=0.45\left(\mathrm{Pet} / \mathrm{EtOAc}, 2 / 1\right.$, v/v). m.p: 134.9-136.4 ${ }^{\circ} \mathrm{C}$.
HPLC analysis: 12% ee (IC, 2-propanol $/ n$-hexane $=30 / 70$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min} ; \lambda=256 \mathrm{~nm}$) $\mathrm{t}_{R}=16.1 \mathrm{~min}$ (major), 23.2 min (minor).
$[\alpha]_{\mathbf{D}}{ }^{22}=-18.3\left(c 0.42, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 11.19(\mathrm{~s}, 1 \mathrm{H}), 7.74-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{td}, J=$ $7.8,3.0 \mathrm{~Hz} 2 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{ddd}, J=13.8,7.8,1.8 \mathrm{~Hz} 1 \mathrm{H}), 6.98$ (dd, $J=8.4,4.8 \mathrm{~Hz} 1 \mathrm{H}), 6.83(\mathrm{td}, J=7.2,2.4 \mathrm{~Hz} 1 \mathrm{H}), 1.93(\mathrm{dd}, J=17.4,14.4 \mathrm{~Hz} 2 \mathrm{H}), 0.95(\mathrm{~s}$, 9H).
${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 169.6,163.9\left(\mathrm{~d}, J_{C-P}=3.0 \mathrm{~Hz}\right), 153.0\left(\mathrm{~d}, J_{C-P}=1.0 \mathrm{~Hz}\right), 134.5(\mathrm{~d}$, $\left.J_{C-P}=2.0 \mathrm{~Hz}\right), 134.3\left(\mathrm{~d}, J_{C-P}=2.0 \mathrm{~Hz}\right), 134.2\left(\mathrm{~d}, J_{C-P}=5.0 \mathrm{~Hz}\right), 132.6\left(\mathrm{~d}, J_{C-P}=3.0 \mathrm{~Hz}\right), 131.7(\mathrm{~d}$, $\left.J_{C-P}=107.0 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{C-P}=11.0 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{C-P}=10.0 \mathrm{~Hz}\right), 129.0\left(\mathrm{~d}, J_{C-P}=13.0 \mathrm{~Hz}\right)$, $125.7\left(\mathrm{~d}, J_{C-P}=12.0 \mathrm{~Hz}\right), 124.3\left(\mathrm{~d}, J_{C-P}=7.0 \mathrm{~Hz}\right), 124.2\left(\mathrm{~d}, J_{C-P}=103.0 \mathrm{~Hz}\right), 119.2\left(\mathrm{~d}, J_{C-P}=13.0\right.$ $\mathrm{Hz}), 118.8\left(\mathrm{~d}, J_{C-P}=8.0 \mathrm{~Hz}\right), 110.9\left(\mathrm{~d}, J_{C-P}=106.0 \mathrm{~Hz}\right), 46.6,30.6,29.5$.
${ }^{31} \mathbf{P}$ NMR (162 MHz, CDCl_{3}): δ 37.0.
HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{Calcd}$ for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NaO}_{4} \mathrm{P}^{+} 431.1383$, found 431.1388 .

(methoxylphosphoryl)bis(2,1-phenylene) bis(3,3-dimethylbutanoate) (4aa)

$\mathrm{R}_{\mathrm{f}}=0.24(\mathrm{Pet} / \mathrm{EtOAc}, 2 / 1, \mathrm{v} / \mathrm{v})$. m.p: $132.9-133.5^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.00(\mathrm{ddd}, J=13.2,7.6,1.6 \mathrm{~Hz} 2 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.36$ (tdd, $J=7.6,2.8,1.2 \mathrm{~Hz} 2 \mathrm{H}), 7.12(\mathrm{ddd}, J=8.0,5.6,0.8 \mathrm{~Hz} 2 \mathrm{H}), 3.67(\mathrm{~d}, J=11.6 \mathrm{~Hz} 3 \mathrm{H}), 2.15(\mathrm{dd}, J$ $=34.8,14.4 \mathrm{~Hz} 4 \mathrm{H}), 1.01(\mathrm{~s}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.0,152.4\left(\mathrm{~d}, J_{C-P}=3.5 \mathrm{~Hz}\right), 134.1\left(\mathrm{~d}, J_{C-P}=6.1 \mathrm{~Hz}\right)$,
$133.8\left(\mathrm{~d}, J_{C-P}=2.1 \mathrm{~Hz}\right), 125.6\left(\mathrm{~d}, J_{C-P}=12.2 \mathrm{~Hz}\right), 123.9\left(\mathrm{~d}, J_{C-P}=140.1 \mathrm{~Hz}\right), 123.8\left(\mathrm{~d}, J_{C-P}=\right.$ $8.0 \mathrm{~Hz}), 51.7\left(\mathrm{~d}, J_{C-P}=5.7 \mathrm{~Hz}\right), 47.0,30.7,29.6$.
${ }^{31} \mathbf{P}$ NMR (162 MHz, CDCl_{3}): $\delta 25.0$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NaO}_{6} \mathrm{P}^{+}$483.1907, found 483.1908.
(S)-3-(2-(Cyclohexylcarbamoyl)pyrrolidin-1-yl)-4-(3,5-di-tert-butylphenyl)pyridine 1-oxide (C2l)

Light yellow solid, m. p. $=111.2-113.5^{\circ} \mathrm{C}$.
$\mathrm{R}_{\mathrm{f}}=0.21(\mathrm{DCM} / \mathrm{MeOH}, 20 / 1, \mathrm{v} / \mathrm{v})$.
$[\alpha]_{\mathrm{D}}{ }^{\mathbf{2 5}}=-31.0\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}^{3}\right) \delta 8.07(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{dd}, J=6.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{t}, J$ $=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.07-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.27(\mathrm{~m}, 1 \mathrm{H}), 1.79-$ $1.96(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.49-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 18 \mathrm{H}), 1.22-1.31(\mathrm{~m}, 2 \mathrm{H}), 0.82-1.08$ (m, 3H).
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}): $\delta 170.6,151.5,144.7,137.5,131.2,130.7,128.8,127.9,122.6$, 122.0, 63.1, 53.0, 47.9, 35.1, 33.18, 33.16, 31.6, 31.2, 25.5, 24.9, 24.82, 24.80.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+} 478.3428$; found 478.3426 .

Late-stage functionalization of drugs. ${ }^{a}$

${ }^{a}$ Reaction conditions unless specified otherwise: $\mathbf{1 a}(0.1 \mathrm{mmol}), \mathbf{2 o}-\mathbf{2 q}(0.1 \mathrm{mmol}), \mathbf{C 2 a}(0.05 \mathrm{~mol} \%)$, and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (1.0 equiv) in toluene (1 mL) at $0^{\circ} \mathrm{C}$ for 2 h . Isolated yields are reported. The ee values are determined by chiral HPLC analysis.
(S)-2-((2-Hydroxyphenyl)(methoxy)phosphory)phenyl 5-(2,5-dimethylphenoxy)-2,2-dimethyl pentanoate (3ao)

Prepared according to general procedure \mathbf{E} using chiral ArPNO C2a ($24 \mu \mathrm{~L}, 0.005 \mathrm{mmol}, 0.05$ $\mathrm{mol} \%$), methyl bis(2-hydroxyphenyl)phosphinate $1 \mathbf{1 a}(26.4 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}$ ($10.6 \mathrm{mg}, 0.1$ mmol), were added in toluene (2 mL). Then, the 5-(2,5 -dimethylphenoxy)-2,2-dimethylpentanoyl chloride 20 ($26.8 \mathrm{mg}, 0.1 \mathrm{mmol}$) was added in mixture at $0{ }^{\circ} \mathrm{C}$ for 2 h . Purification by flash column chromatography using gradient elution to give the title product 3ao as a white solid (42.2 $\mathrm{mg}, 85 \%$ yield, 93% ee). The eluents were pure Pet and $\mathrm{Pet} / \mathrm{EtOAc}(10 / 1, \mathrm{v} / \mathrm{v}$), respectively.
$\mathrm{R}_{\mathrm{f}}=0.45$ (Pet/EtOAc, 2/1, v/v). m.p: 107.9-108.4 ${ }^{\circ} \mathrm{C}$.
HPLC analysis: 93% ee (IA, 2-propanol $/ n$-hexane $=20 / 80$, flow rate $=0.6 \mathrm{~mL} / \mathrm{min} ; \lambda=256 \mathrm{~nm}$) $\mathrm{t}_{R}=25.8 \mathrm{~min}$ (major), 23.4 min (minor).
$[\alpha]_{\mathbf{D}}{ }^{22}=-176.3\left(c 0.32, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.83(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{ddd}, J=13.2,8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.56(\mathrm{~m}$, $1 \mathrm{H}), 7.40(\mathrm{tt}, J=7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{tdd}, J=7.6,2.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.00-$ $6.94(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.81(\mathrm{~m}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{br}, 1 \mathrm{H}), 3.94-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.77$ $(\mathrm{d}, J=11.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 176.0,163.3\left(\mathrm{~d}, J_{C-P}=4.4 \mathrm{~Hz}\right), 157.0,153.6\left(\mathrm{~d}, J_{C-P}=3.2 \mathrm{~Hz}\right)$, 136.6, 135.2, 134.5, $133.8\left(\mathrm{~d}, J_{C-P}=6.3 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, J_{C-P}=10.8 \mathrm{~Hz}\right), 130.4,125.7\left(\mathrm{~d}, J_{C-P}=12.0\right.$ $\mathrm{Hz}), 124.0\left(\mathrm{~d}, J_{C-P}=7.8 \mathrm{~Hz}\right), 123.7,122.5\left(\mathrm{~d}, J_{C-P}=144.5 \mathrm{~Hz}\right), 120.8,119.7\left(\mathrm{~d}, J_{C-P}=13.2 \mathrm{~Hz}\right)$, $118.1\left(\mathrm{~d}, J_{C-P}=9.6 \mathrm{~Hz}\right), 112.1,110.4\left(\mathrm{~d}, J_{C-P}=132.3 \mathrm{~Hz}\right), 67.9,51.8\left(\mathrm{~d}, J_{C-P}=5.6 \mathrm{~Hz}\right), 42.7,37.0$, $25.0,25.0\left(\mathrm{~d}, J_{C-P}=43.5 \mathrm{~Hz}\right), 21.5,15.9$.
${ }^{31} \mathbf{P}$ NMR (162 MHz, CDCl_{3}): $\delta 39.2$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{NaO}_{6} \mathrm{P}^{+}$519.1907, found 519.1904.

(S)-2-((2-Hydroxyphenyl)(methoxy)phosphoryl)phenyl-2-(11-oxo-6,11-dihydrodibenzo [b,e]oxepin-2-yl)acetate (3ap)

Prepared according to general procedure E using chiral ArPNO C2a ($24 \mu \mathrm{~L}, 0.005 \mathrm{mmol}, 0.05$ $\mathrm{mol} \%$), methyl bis(2-hydroxyphenyl)phosphinate $1 \mathbf{1 a}(26.4 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(10.6 \mathrm{mg}, 0.1$ $\mathrm{mmol})$, were added in toluene (2 mL). Then, the 2-(11-oxo-6,11-dihydrodibenzo[b,e]oxepin-2yl)acetyl chloride $\mathbf{2 p}(28.6 \mathrm{mg}, 0.1 \mathrm{mmol})$ was added in mixture at $0{ }^{\circ} \mathrm{C}$ for 2 h . Purification by flash column chromatography using gradient elution to give the title product 3ap as a white solid $(45.2 \mathrm{mg}, 88 \%$ yield, 88% ee). The eluents were pure Pet and Pet/EtOAc ($10 / 1$, v/v), respectively.
$\mathrm{R}_{\mathrm{f}}=0.46(\mathrm{Pet} / \mathrm{EtOAc}, 2 / 1, \mathrm{v} / \mathrm{v})$. m.p: $112.9-114.4{ }^{\circ} \mathrm{C}$.
HPLC analysis: 88% ee (AD-H, 2-propanol $/ n$-hexane $=30 / 70$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min} ; \lambda=256$ nm) $\mathrm{t}_{R}=33.1 \mathrm{~min}$ (major), 46.9 min (minor).
$[\alpha]_{\mathbf{D}}{ }^{22}=-121.3\left(c \quad 0.32, \mathrm{CHCl}_{3}\right)$.
${ }^{1}$ H NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 11.04(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{ddd}, J=12.6,7.8$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{dd}, J=$ $8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{dd}, J=8.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.01(\mathrm{~m}, 3 \mathrm{H}), 6.86-6.83$ $(\mathrm{m}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 3.90(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.75(\mathrm{~d}, J=16.8 \mathrm{~Hz}$, 1H).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 190.9,169.4,163.2\left(\mathrm{~d}, J_{C-P}=5.0 \mathrm{~Hz}\right), 160.7,153.0\left(\mathrm{~d}, J_{C-P}=3.0\right.$ $\mathrm{Hz}), 140.6,136.7,135.6,135.4\left(\mathrm{~d}, J_{C-P}=2.0 \mathrm{~Hz}\right), 134.4\left(\mathrm{~d}, J_{C-P}=2.0 \mathrm{~Hz}\right), 132.9\left(\mathrm{~d}, J_{C-P}=5.0 \mathrm{~Hz}\right)$, $132.9\left(\mathrm{~d}, J_{C-P}=4.0 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{C-P}=10.0 \mathrm{~Hz}\right), 129.5\left(\mathrm{~d}, J_{C-P}=20.0 \mathrm{~Hz}\right), 127.9,126.9,126.0$ $\left(\mathrm{d}, J_{C-P}=12.0 \mathrm{~Hz}\right), 125.3,124.0\left(\mathrm{~d}, J_{C-P}=9.0 \mathrm{~Hz}\right), 123.0\left(\mathrm{~d}, J_{C-P}=146.0 \mathrm{~Hz}\right), 121.2,119.9\left(\mathrm{~d}, J_{C-}\right.$ $\left.{ }_{P}=14.0 \mathrm{~Hz}\right), 118.1\left(\mathrm{~d}, J_{C-P}=10.0 \mathrm{~Hz}\right), 110.5\left(\mathrm{~d}, J_{C-P}=133.0 \mathrm{~Hz}\right), 73.7,51.9\left(\mathrm{~d}, J_{C-P}=5.0 \mathrm{~Hz}\right)$, 39.6.
${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 37.5$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{NaO}_{7} \mathrm{P}^{+}$537.1074, found 537.1075.
(S)-2-((2-hydroxyphenyl)(methoxy)phosphoryl)phenyl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate (3aq)

Prepared according to general procedure E using chiral ArPNO C2a ($24 \mu \mathrm{~L}, 0.005 \mathrm{mmol}, 0.05$ $\mathrm{mol} \%$), methyl bis(2-hydroxyphenyl)phosphinate $1 \mathbf{1 a}\left(26.4 \mathrm{mg}, 0.1 \mathrm{mmol}\right.$), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($10.6 \mathrm{mg}, 0.1$ $\mathrm{mmol})$, were added in toluene (2 mL). Then, the 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetyl chloride $2 \mathbf{q}(37.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ was added in mixture at $0{ }^{\circ} \mathrm{C}$ for 2 h . Purification by flash column chromatography using gradient elution to give the title product $\mathbf{3 a q}$ as a white solid ($53.7 \mathrm{mg}, 89 \%$ yield, 80% ee). The eluents were pure Pet and $\mathrm{Pet} / \mathrm{EtOAc}(10 / 1$, v / v), respectively.
$\mathrm{R}_{\mathrm{f}}=0.46(\mathrm{Pet} / \mathrm{EtOAc}, 2 / 1, \mathrm{v} / \mathrm{v})$. m.p: $130.9-131.4^{\circ} \mathrm{C}$.
HPLC analysis: 80% ee (IA, 2-propanol $/ n$-hexane $=20 / 80$, flow rate $=0.6 \mathrm{~mL} / \mathrm{min} ; \lambda=256 \mathrm{~nm}$) $\mathrm{t}_{R}=34.5 \mathrm{~min}$ (major), 42.2 min (minor).
$[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 2}}=-66.1\left(c 0.32, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 11.15(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{ddd}, J=12.4,7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.62(\mathrm{~m}$, $2 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{tdd}, J=7.6,2.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 2 \mathrm{H})$, 7.03-6.99 (m, 2H), $6.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{tdd}, J=7.2,2.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.8$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.79(\mathrm{~m}, 6 \mathrm{H}), 3.75(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.8,168.5,163.3\left(\mathrm{~d}, J_{C-P}=5.0 \mathrm{~Hz}\right), 156.3,153.2\left(\mathrm{~d}, J_{C-P}=5.0\right.$ $\mathrm{Hz}), 139.4,136.5,135.4,134.5,134.0,132.9\left(\mathrm{~d}, J_{C-P}=4.0 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{C-P}=10.0 \mathrm{~Hz}\right), 131.3$, $131.0,130.7,129.3,126.1\left(\mathrm{~d}, J_{C-P}=12.0 \mathrm{~Hz}\right), 124.1\left(\mathrm{~d}, J_{C-P}=9.0 \mathrm{~Hz}\right), 123.0\left(\mathrm{~d}, J_{C-P}=146.0 \mathrm{~Hz}\right)$, $119.9\left(\mathrm{~d}, J_{C-P}=13.0 \mathrm{~Hz}\right), 118.1\left(\mathrm{~d}, J_{C-P}=10.0 \mathrm{~Hz}\right), 115.1,112.1,111.8,110.6\left(\mathrm{~d}, J_{C-P}=133.0 \mathrm{~Hz}\right)$, $101.3,55.9,51.9\left(\mathrm{~d}, J_{C-P}=5.0 \mathrm{~Hz}\right), 29.9\left(\mathrm{~d}, J_{C-P}=14.0 \mathrm{~Hz}\right), 13.5$.
${ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 37.4$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{ClNaO}_{7} \mathrm{P}^{+} 626.1106$, found 626.1115 .

X-ray data of (S)-3aa

Figure S1. X-Ray crystal structure of (S)-3aa (The crystal was obtained by slow evaporation of (S)-3aa in a mixture of $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$). (CCDC:2290776)

Table S2. Crystal data and structure refinement for (S)-3aa.

Identification code	(S)-3aa
Empirical formula	$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{P}$
Formula weight	362.34
Temperature/K	298.1(2)
Crystal system	triclinic
Space group	P1
a/Å	9.0660(2)
b/Å	9.2370(2)
c/Å	12.8726(2)
$\alpha{ }^{\circ}$	92.325(2)
$\beta /{ }^{\circ}$	96.687(2)
$\gamma /{ }^{\circ}$	115.494(2)
Volume/ \AA^{3}	961.45(4)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.252
μ / mm^{-1}	1.482
F(000)	384.0
Crystal size/mm ${ }^{3}$	$0.16 \times 0.14 \times 0.12$
Radiation	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ} 6.95$ to 142.484	
Index ranges	$-11 \leq \mathrm{h} \leq 11,-11 \leq \mathrm{k} \leq 11,-15 \leq 1 \leq 15$
Reflections collected	52356
Independent reflections	$6625\left[\mathrm{R}_{\text {int }}=0.0761, \mathrm{R}_{\text {sigma }}=0.0300\right]$
Data/restraints/parameters	6625/514/512
Goodness-of-fit on F^{2}	1.117
Final R indexes [$\mathrm{I}>=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0640, \mathrm{wR}_{2}=0.1841$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0667, \mathrm{wR}_{2}=0.1892$
Largest diff. peak/hole / e $\AA^{-3} 0.54 /-0.33$	
Flack parameter	-0.01(3)

HRMS analysis

Figure S2. The mixture of C2a and acyl chloride 2a in toluene at $0{ }^{\circ} \mathrm{C}$ for 1 h .

C2a

acyloxypridinium cation Exact Mass:570.3690 Found:570.3693
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHZ}, \mathrm{CDCl}_{3}\right)$ Spectrum of 3aa

${ }^{31}$ P-NMR(162 MHZ, CDCl_{3}) Spectrum of 3aa

(10
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHZ}, \mathrm{CDCl}_{3}\right)$ Spectrum of 3ab

${ }^{13}$ C-NMR(100 MHZ, CDCl_{3}) Spectrum of 3ab

${ }^{31} \mathbf{P}$-NMR(162 MHZ, CDCl_{3}) Spectrum of 3ab

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHZ}, \mathrm{CDCl}_{3}\right)$ Spectrum of 3ac

${ }^{31}$ P-NMR(162 MHZ, CDCl_{3}) Spectrum of 3ac

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHZ}, \mathrm{CDCl}_{3}\right)$ Spectrum of 3ad

${ }^{13}$ C-NMR($150 \mathrm{MHZ}, \mathrm{CDCl}_{3}$) Spectrum of 3ad

${ }^{31}$ P-NMR(243 MHZ, CDCl_{3}) Spectrum of 3ad

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHZ}, \mathrm{CDCl}_{3}\right)$ Spectrum of 3ae

${ }^{31}$ P-NMR(243 MHZ, CDCl ${ }_{3}$) Spectrum of 3ae

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHZ}, \mathrm{CDCl}_{3}\right)$ Spectrum of 3af

${ }^{13}$ C-NMR(100 MHZ, $\mathbf{C D C l}_{3}$) Spectrum of 3af

${ }^{31}$ P-NMR(162 MHZ, CDCl_{3}) Spectrum of 3af

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHZ}, \mathrm{CDCl}_{3}\right)$ Spectrum of 3ag

${ }^{13}$ C-NMR(100 MHZ, CDCl_{3}) Spectrum of 3ag

${ }^{31}$ P-NMR(243 MHZ, CDCl_{3}) Spectrum of 3ag

(1000000
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHZ}, \mathrm{CDCl}_{3}\right)$ Spectrum of 3ah

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHZ}, \mathrm{CDCl}_{3}\right)$ Spectrum of 3ah

${ }^{31}$ P-NMR(162 MHZ, CDCl_{3}) Spectrum of 3ah

${ }^{1} \mathrm{H}$-NMR($600 \mathrm{MHZ}, \mathrm{CDCl}_{3}$) Spectrum of 3ai

${ }^{13}$ C-NMR ($150 \mathrm{MHZ}, \mathrm{CDCl}_{3}$) Spectrum of 3ai

${ }^{31}$ P-NMR(162 MHZ, $\mathbf{C D C l}_{3}$) Spectrum of 3ai

${ }^{1}$ H-NMR(400 MHZ, CDCl_{3}) Spectrum of 3aj

${ }^{31}$ P-NMR(162 MHZ, $\mathbf{C D C l}_{3}$) Spectrum of 3aj

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHZ}, \mathrm{CDCl}_{3}\right)$ Spectrum of 3ak

${ }^{13}$ C-NMR(150 MHZ, CDCl ${ }_{3}$) Spectrum of 3ak

${ }^{31}$ P-NMR(242 MHZ, CDCl ${ }_{3}$) Spectrum of 3ak

${ }^{19}$ F-NMR($376 \mathrm{MHZ}, \mathrm{CDCl}_{3}$) Spectrum of 3ak

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHZ}, \mathrm{CDCl}_{3}\right)$ Spectrum of 3al

${ }^{13}$ C-NMR ($150 \mathrm{MHZ}, \mathrm{CDCl}_{3}$) Spectrum of 3al

${ }^{31}$ P-NMR(243 MHZ, $\mathbf{C D C l}_{3}$) Spectrum of 3al

${ }^{1} \mathrm{H}$-NMR(400 MHZ, CDCl_{3}) Spectrum of 3am

${ }^{13}$ C-NMR ($150 \mathrm{MHZ}, \mathrm{CDCl}_{3}$) Spectrum of 3am

${ }^{31}$ P-NMR(243 MHZ, CDCl $_{3}$) Spectrum of 3am

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHZ}, \mathrm{CDCl}_{3}\right)$ Spectrum of 3an
(
${ }^{13} \mathrm{C}$-NMR($150 \mathrm{MHZ}, \mathrm{CDCl}_{3}$) Spectrum of 3an

[^1]${ }^{31}$ P-NMR(243 MHZ, CDCl_{3}) Spectrum of 3an
(
${ }^{1} \mathrm{H}$-NMR($400 \mathrm{MHZ}, \mathrm{CDCl}_{3}$) Spectrum of 3ba

${ }^{13} \mathrm{C}$-NMR(100 MHZ, CDCl_{3}) Spectrum of 3ba

${ }^{31}$ P-NMR(243 MHZ, CDCl ${ }_{3}$) Spectrum of 3ba

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHZ}, \mathrm{CDCl}_{3}\right)$ Spectrum of 3ca

${ }^{31}$ P-NMR(162 MHZ, $\mathbf{C D C l}_{3}$) Spectrum of 3ca

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHZ}, \mathrm{CDCl}_{3}\right)$ Spectrum of 3da

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHZ}, \mathrm{CDCl}_{3}\right)$ Spectrum of 3ea

${ }^{13} \mathrm{C}$-NMR($100 \mathrm{MHZ}, \mathrm{CDCl}_{3}$) Spectrum of 3ea

${ }^{31}$ P-NMR(243 MHZ, CDCl_{3}) Spectrum of 3ea
(2000000
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHZ}, \mathrm{CDCl}_{3}\right)$ Spectrum of 3fa

${ }^{13}$ C-NMR($100 \mathrm{MHZ}, \mathrm{CDCl}_{3}$) Spectrum of 3fa

${ }^{31}$ P-NMR(243 MHZ, CDCl $_{3}$) Spectrum of 3fa

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHZ}, \mathrm{CDCl}_{3}\right)$ Spectrum of 3ga

${ }^{13}$ C-NMR(100 MHZ, CDCl_{3}) Spectrum of 3ga

${ }^{31}$ P-NMR(162 MHZ, CDCl_{3}) Spectrum of 3ga

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHZ}, \mathrm{CDCl}_{3}\right)$ Spectrum of 3ha

${ }^{31}$ P-NMR(162 MHZ, CDCl ${ }_{3}$) Spectrum of 3ha

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHZ}, \mathrm{CDCl}_{3}\right)$ Spectrum of 3ia

${ }^{31}$ P-NMR(162 MHZ, CDCl $_{3}$) Spectrum of 3ia

${ }^{1} \mathrm{H}$-NMR($400 \mathrm{MHZ}, \mathrm{CDCl}_{3}$) Spectrum of 4aa

${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHZ}, \mathrm{CDCl}_{3}$) Spectrum of 4aa
\qquad
\qquad

${ }^{31}$ P-NMR($\mathbf{1 6 2} \mathbf{~ M H Z}, \mathrm{CDCl}_{3}$) Spectrum of 4aa

${ }^{1} \mathrm{H}$-NMR(400 MHZ, CDCl_{3}) Spectrum of C21

${ }^{13}$ C-NMR(100 MHZ, CDCl_{3}) Spectrum of C21

${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHZ}, \mathrm{CDCl}_{3}\right)$ Spectrum of 3ao

${ }^{31}$ P-NMR(162 MHZ, CDCl_{3}) Spectrum of 3ao
(10
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHZ}, \mathrm{CDCl}_{3}\right)$ Spectrum of 3ap

${ }^{13} \mathrm{C}$-NMR(100 MHZ, $\left.\mathrm{CDCl}_{3}\right)$ Spectrum of 3ap

${ }^{31}$ P-NMR(162 MHZ, CDCl_{3}) Spectrum of 3ap

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHZ}, \mathrm{CDCl}_{3}\right)$ Spectrum of 3aq

${ }^{13} \mathrm{C}$-NMR($100 \mathrm{MHZ}, \mathrm{CDCl}_{3}$) Spectrum of 3aq

${ }^{31}$ P-NMR(162 MHZ, CDCl_{3}) Spectrum of 3aq

HPLC spectra of 3aa

Peak	Retention min	Area mAU*min	Height mAU	Area $\%$	Height $\%$
1	8.817	145.216	412.821	50.55	54.11
2	10.403	142.050	350.133	49.45	45.89
Total:		$\mathbf{2 8 7 . 2 6 6}$	$\mathbf{7 6 2 . 9 5 5}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

Peak	Retention Time min	Area mAU*min	Height mAU	Area $\%$	Height $\%$
1	9.223	109.182	369.411	97.16	97.41
2	10.865	3.197	9.828	2.84	2.59
Total:		$\mathbf{1 1 2 . 3 7 9}$	$\mathbf{3 7 9 . 2 3 9}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

HPLC spectra of 3ab

Peak	Retention Time min	Area mAU	Height mAU	Area $\%$	Height $\%$
1	22.050	12.511	17.762	49.88	53.02
2	25.347	12.572	15.739	50.12	46.98
Total:		$\mathbf{2 5 . 0 8 3}$	$\mathbf{3 3 . 5 0 1}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

HPLC spectra of 3ac

Peak	Retention min	Area mAU*min	Height mAU	Area $\%$	Height $\%$
1	8.920	239.387	564.307	96.77	96.95
2	10.383	8.000	17.767	3.23	3.05
Total:		$\mathbf{2 4 7 . 3 8 7}$	$\mathbf{5 8 2 . 0 7 3}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

HPLC spectra of 3ad

Peak	Retention time \min	Area mAU	Height mAU	Area $\%$	Height $\%$				
1	9.175	747.199	1842.141	50.02	67.74				
2	16.242	746.460	877.450	49.98	32.26				
Total:	$\mathbf{1 4 9 3 . 6 5 9}$						$\mathbf{2 7 1 9 . 5 9 1}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

Peak	Retention time \min	Area mAU	min	Height mAU	Area $\%$
1	16.243	92.666	236.196	4.67	Height $\%$
2		1891.595	2092.129	95.33	10.14
Total:	$\mathbf{1 9 8 4 . 2 6 0}$	$\mathbf{2 3 2 8 . 3 2 5}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

HPLC spectra of 3ae

Peak	Retention time \min	Area mAU	Heingt mAU	Area $\%$	Height $\%$
1	10.288	49.630	129.906	49.30	51.28
2	11.850	51.038	123.445	50.70	48.72
Total:		$\mathbf{1 0 0 . 6 6 8}$	$\mathbf{2 5 3 . 3 5 0}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

Peak	Retention time \min	Area mAU min	Height mAU	Area $\%$	Height $\%$
1	10.423	49.026	138.606	96.78	97.05
2	12.070	1.632	4.216	3.22	2.95
Total:	$\mathbf{5 0 . 6 5 8}$	$\mathbf{1 4 2 . 8 2 1}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

HPLC spectra of 3af

Peak	Retention Time min	Area mAU	Height mAU	Area $\%$	Height $\%$
1	14.957	162.727	310.186	49.77	53.63
2	17.070	164.225	268.210	50.23	46.37
Total:		$\mathbf{3 2 6 . 9 5 2}$	$\mathbf{5 7 8 . 3 9 5}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

Peak	Retention Time min	Area mAU*min	Height mAU	Area $\%$	Height $\%$
1	14.790	153.251	282.334	95.51	96.35
2	17.132	7.198	10.707	4.49	3.65
Total:		$\mathbf{1 6 0 . 4 4 9}$	$\mathbf{2 9 3 . 0 4 1}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

HPLC spectra of 3ag

Peak	Retention Time \min	Area mAU min	Height mAU	Area $\%$	Height $\%$
1	21.402	65.534	106.664	51.09	55.63
2	26.142	62.743	85.061	48.91	44.37
Total:		$\mathbf{1 2 8 . 2 7 7}$	$\mathbf{1 9 1 . 7 2 5}$	$\mathbf{1 0 0 . 0 0}$	100.00

Peak	Retention Time min	Area mAU*min	Height mAU	Area $\%$	Height $\%$
1	21.958	192.571	314.305	92.86	93.83
2	26.685	14.801	20.661	7.14	6.17
Total:		$\mathbf{2 0 7 . 3 7 1}$	$\mathbf{3 3 4 . 9 6 5}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

HPLC spectra of 3ah

Peak	Retention Time min	Area mAU	Height mAU	Area $\%$	Height $\%$
1	17.180	54.614	66.925	49.01	62.62
2	28.693	56.817	39.955	50.99	37.38
Total:		$\mathbf{1 1 1 . 4 3 1}$	$\mathbf{1 0 6 . 8 8 0}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

(

HPLC spectra of 3ai

Peak	Retention \min	Area mAU* \min	Height mAU	Area $\%$	Height $\%$
1	10.403	22.273	52.279	51.93	66.46
2	19.393	20.621	26.389	48.07	33.54
Total:	$\mathbf{4 2 . 8 9 4}$	$\mathbf{7 8 . 6 6 9}$	$\mathbf{1 0 0 . 0 0}$	100.00	

Peak	Retention \min	Area mAU	Height mAU	Area $\%$	Height $\%$
1	10.317	45.254	102.499	96.87	98.24
2	19.227	1.463	1.837	3.13	1.76
Total:		$\mathbf{4 6 . 7 1 7}$	$\mathbf{1 0 4 . 3 3 6}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

HPLC spectra of 3aj

Peak	Retention Time $m i n$	Area mAU	Height mAU	Area $\%$	Height $\%$
1	16.493	117.476	220.711	84.33	86.08
2	22.468	21.822	35.702	15.67	13.92
Total:		$\mathbf{1 3 9 . 2 9 8}$	$\mathbf{2 5 6 . 4 1 3}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

HPLC spectra of 3ak

Peak	Retention Time min	Area $\mathrm{mAU*} \min$	Height mAU	Area $\%$	Height $\%$
1	7.708	492.807	1786.569	49.59	66.17
2	17.868	500.875	913.493	50.41	33.83
Total:	$\mathbf{9 9 3 . 6 8 2}$	$\mathbf{2 7 0 0 . 0 6 2}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

Peak	Retention Time min	Area mAU*min	Height mAU	Area $\%$	Height $\%$			
1	7.732	127.936	433.119	86.98	91.67			
2	18.318	19.158	39.348	13.02	8.33			
Total:	$\mathbf{1 4 7 . 0 9 4}$						$\mathbf{4 7 2 . 4 6 7}$	$\mathbf{1 0 0 . 0 0}$

HPLC spectra of 3al

Peak	Retention Time min	Area mAU min	Height mAU	Area $\%$	Height $\%$					
1	11.020	1520.027	4974.117	51.15	72.40					
2	26.432	1451.738	1896.628	48.85	27.60					
\mathbf{T}							$\mathbf{2 9 7 1 . 7 6 5}$	$\mathbf{6 8 7 0 . 7 4 5}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

Peak	Retention Time \min	Area mAU	Height mAU	Area $\%$	Height $\%$
1	11.022	245.076	835.225	80.05	90.99
2	26.772	61.070	82.692	19.95	9.01
Total:	$\mathbf{3 0 6 . 1 4 6}$	$\mathbf{9 1 7 . 9 1 7}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

HPLC spectra of 3am

Peak	Retention min	Area mAU min	Height mAU	Area $\%$	Height $\%$					
1	13.703	79.472	146.759	50.11	68.05					
2	28.403	79.132	68.900	49.89	31.95					
Total:							$\mathbf{1 5 8 . 6 0 4}$	$\mathbf{2 1 5 . 6 5 9}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

Peak	Retention \min	Area mAU*min	Height mAU	Area $\%$	Height $\%$
1	13.607	204.549	365.631	93.42	96.60
2	28.367	14.397	12.863	6.58	3.40
Total:		218.946	378.494	100.00	100.00

HPLC spectra of 3an

Peak	Retention Time min	Area mAU min	Height mAU	Area $\%$	Height $\%$
1	19.463	30.771	56.760	49.96	54.24
2	22.638	30.820	47.878	50.04	45.76
Total:		$\mathbf{6 1 . 5 9 1}$	$\mathbf{1 0 4 . 6 3 8}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

Peak	Retention Time min	Area mAU min	Height mAU	Area $\%$	Height $\%$
1	19.528	3.727	6.879	6.91	8.15
2	22.630	50.228	77.541	93.09	91.85
Total:	$\mathbf{5 3 . 9 5 5}$	$\mathbf{8 4 . 4 2 1}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

HPLC spectra of 3ba

Peak	Retention Time \min	Area mAU min	Height mAU	Area $\%$	Height $\%$
1	6.305	71.892	208.872	49.25	49.38
2	7.993	74.073	214.117	50.75	50.62
Total:		$\mathbf{1 4 5 . 9 6 5}$	$\mathbf{4 2 2 . 9 8 9}$	$\mathbf{1 0 0 . 0 0}$	100.00

Peak	Retention Time min	Area mAU*min	Height mAU	Area $\%$	Height $\%$
1	6.267	4.190	12.489	3.66	3.55
2	7.923	110.413	339.323	96.34	96.45
Total:		$\mathbf{1 1 4 . 6 0 3}$	$\mathbf{3 5 1 . 8 1 2}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

HPLC spectra of 3ca

Peak	Retention Time min	Area mAU	Height mAU	Area $\%$	Height $\%$
1	5.787	46.835	179.347	49.89	48.25
2	7.340	47.047	192.383	50.11	51.75
Total:	$\mathbf{9 3 . 8 8 2}$	$\mathbf{3 7 1 . 7 3 0}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$	

Peak	Retention Time min	Area mAU min	Height mAU	Area $\%$	Height $\%$					
1	5.785	7.315	26.823	4.68	4.49					
2	7.290	148.978	570.087	95.32	95.51					
Total:							$\mathbf{1 5 6 . 2 9 3}$	$\mathbf{5 9 6 . 9 0 9}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

HPLC spectra of 3da

HPLC spectra of 3ea

HPLC spectra of 3fa

Peak	Retention Time min	Area mAU	Height mAU	Area $\%$	Height $\%$
1	7.753	14.627	52.897	2.39	2.61
2	8.590	598.476	1970.241	97.61	97.39
Total:		$\mathbf{6 1 3 . 1 0 3}$	$\mathbf{2 0 2 3 . 1 3 8}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

HPLC spectra of 3ga

Peak	Retention time min	Area mAU*min	Height mAU	Area $\%$	Height $\%$
1	8.475	320.181	1076.675	50.14	51.96
2	9.768	318.370	995.472	49.86	48.04
Total:		$\mathbf{6 3 8 . 5 5 2}$	$\mathbf{2 0 7 2 . 1 4 7}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

Peak	Retention time \min	Area mAU	Height mAU	Area $\%$	Height $\%$
1	8.535	144.459	411.427	97.02	97.32
2	9.870	4.444	11.347	2.98	2.68
Total:		$\mathbf{1 4 8 . 9 0 3}$	$\mathbf{4 2 2 . 7 7 4}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

HPLC spectra of 3ha

Peak	Retention Time \min	Area mAU*min	Height mAU	Area $\%$	Height $\%$
1	23.342	108.940	99.031	50.22	53.56
2	27.677	107.975	85.865	49.78	46.44
Total:		$\mathbf{2 1 6 . 9 1 5}$	$\mathbf{1 8 4 . 8 9 6}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

HPLC spectra of 3ia

Peak	Retention Time min	Area mAU*min	Height mAU	Area $\%$	Height $\%$			
1	16.215	46.191	75.280	50.18	57.98			
2	23.483	45.858	54.553	49.82	42.02			
Total:	$\mathbf{1 0 2 9 . 0 4 9}$						$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

Peak	Retention Time \min	Area $\mathrm{mAU*}$ min	Height mAU	Area $\%$	Height $\%$			
1	16.123	15.587	25.708	55.90	63.67			
2	23.202	12.296	14.667	44.10	36.33			
Total:	$\mathbf{1 0 0 . 0 6}$						$\mathbf{4 0 . 3 7 4}$	$\mathbf{1 0 0 . 0 0}$

HPLC spectra of 3ao

Peak	Retention Time min	Area mAU*min	Height mAU	Area $\%$	Height $\%$
1	22.717	157.199	202.185	49.86	61.25
2	25.493	158.083	127.888	50.14	38.75
Total:		315.282	330.073	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

Peak	Retention Time min	Area mAU*min	Height mAU	Area $\%$	Height $\%$
1	23.440	3.357	4.992	3.37	5.72
2	25.770	96.243	82.279	96.63	94.28
Total:		99.599	$\mathbf{8 7 . 2 7 1}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

HPLC spectra of 3ap

Peak	Retention Time \min	Area mAU*min	Height mAU	Area $\%$	Height $\%$
1	33.672	83.207	30.632	50.15	58.55
2	47.765	82.695	21.687	49.85	41.45
Total:		$\mathbf{1 6 5 . 9 0 2}$	$\mathbf{5 2 . 3 2 0}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

Peak	Retention Time min	Area mAU*min	Height mAU	Area $\%$	Height $\%$
1	33.090	475.858	207.765	94.15	95.07
2	46.920	29.573	10.772	5.85	4.93
Total:		$\mathbf{5 0 5 . 4 3 1}$	$\mathbf{2 1 8 . 5 3 7}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

HPLC spectra of 3aq

Peak	Retention min	Area mAU*min	Height mAU	Area $\%$	Height $\%$			
1	34.747	254.794	168.784	50.25	57.59			
2	42.517	252.232	124.298	49.75	42.41			
$\mathbf{~ T o t a l : ~} \mathbf{~} \mathbf{5 0 7 . 0 2 6}$							$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

Peak	Retention min	Area mAU*min	Height mAU	Area $\%$	Height $\%$
1	34.500	730.331	496.823	89.86	92.01
2	42.227	82.437	43.135	10.14	7.99
Total:		$\mathbf{8 1 2 . 7 6 9}$	$\mathbf{5 3 9 . 9 5 8}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$

Reference

[1] M.-S. Xie, Y.-F. Zhang, M. Shan, X.-X. Wu, G.-R. Qu and H.-M. Guo, Chiral DMAP-Noxides as Acyl Transfer Catalysts: Design, Synthesis, and Application in Asymmetric Steglich Rearrangement, Angew. Chem., Int. Ed., 2019, 58, 2839-2843.
[2] M.-S. Xie, M. Shan, N. Li, Y.-G. Chen, X.-B. Wang, X. Cheng, Y. Tian, X.-X. Wu, Y. Deng, G.-R. Qu and H.-M. Guo, Chiral 4-Aryl-pyridine- N-oxide Nucleophilic Catalysts: Design, Synthesis, and Application in Acylative Dynamic Kinetic Resolution. ACS Catal., 2022, 12, 877-891.

[^0]: ${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.5,162.3\left(\mathrm{~d}, J_{C-P}=5.0 \mathrm{~Hz}\right), 152.0\left(\mathrm{~d}, J_{C-P}=4.0 \mathrm{~Hz}\right), 138.3$, $137.5,135.6\left(\mathrm{~d}, J_{C-P}=6.0 \mathrm{~Hz}\right), 133.5\left(\mathrm{~d}, J_{C-P}=11.0 \mathrm{~Hz}\right), 125.9\left(\mathrm{~d}, J_{C-P}=9.0 \mathrm{~Hz}\right), 124.7\left(\mathrm{~d}, J_{C-P}=\right.$ $145.0 \mathrm{~Hz}), 120.3\left(\mathrm{~d}, J_{C-P}=10.0 \mathrm{~Hz}\right), 119.2\left(\mathrm{~d}, J_{C-P}=15.0 \mathrm{~Hz}\right), 113.0,111.6\left(\mathrm{~d}, J_{C-P}=17.0 \mathrm{~Hz}\right)$, $52.3\left(\mathrm{~d}, J_{C-P}=5.0 \mathrm{~Hz}\right), 47.0,31.0,29.6$.
 ${ }^{31} \mathbf{P}$ NMR (243 MHz, CDCl_{3}): $\delta 33.4$.
 HRMS (ESI) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{Br}_{2} \mathrm{NaO}_{5} \mathrm{P}^{+}$540.9386, found 540.9377.

[^1]: - 2400000
 -2400000
 -2300000
 -2300000
 -2200000
 -2200000
 -2100000
 \qquad
 \qquad

