Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Electronic Supplementary Material (ESI) This journal is © The Royal Society of Chemistry 2022

Supporting Information for Synthesis of Imidazo[1,2-a]pyridinones via a visible lightphotocatalyzed functionalization of alkynes/nitrile insertion/ cyclization tandem sequences using micro-flow technology[†]

Minghui Wei^a, Jiankun Chen^a, Chengkou Liu^a, Zhao Yang^b, Hong Qin^a, Yujing Hu^a, Jindian Duan^a, Yuguang Li^d, Zheng Fang^{a,c*}, Kai Guo^{a,c*}

a. College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University ,30 Puzhu Rd S., Nanjing, 211816, China.
E-mail: guok@njtech.edu.cn, fzcpu@163.com; Fax: +8625 5813 9935; Tel: +8625 5813 9926

b. College of Engineering, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210003, China. E-mail: yzcpu@163.com

c. State Key Laboratory of Materials-Oriented Chemical Engineering, 30 Puzhu Rd S., Nanjing, 211816, China

d. Institute of Nanjing Advanced Biomaterials & Processing Equipment, Liyuguang@njibp.com

Contents

1.	General Information	2
2.	Batch and Microfluidic Reactor Device	3
3.	Select Optimization Results	3
4.	Preparation of Substrates	9
5.	Experiments for Mechanistic Studies	10
6.	Analytical data for isolated compounds	11
7.	Crystal Data and Structure Refinements	
8.	¹ H NMR and ¹³ C NMR spectra	41
9.	References	

1. General Information

¹H/¹³C NMR spectra were recorded on magnet system 400'54 ascend instrument purchased from Bruker Biospin AG. All chemical shifts are given in parts per million and are measured relative to DMSO as an internal standard. ESI-MS spectra were recorded on Agilent Q-TOF 6520. Products were purified by flash chromatogrgraphy on 200-300 mesh silica gel and visualized using a UV lamp (254 nm or 365 nm). All the solvents were used without further purification, unless otherwise state. the other commercial chemicals were used without further purification. All reactions were performed under an inert atmosphere of nitrogend.

2. Batch and Microfluidic Reactor Device

Figure 1 Batch reactor device

Figure 2 Microfluidic reactor device **Note:** The light source is a simulated solar lamp (10W, 220V, wavelength 420nm-430nm).

3. Select Optimization Results

Figure 3 Optimization of reaction conditions

3.1 Table 1. Varying the wavelength of light^a

	$\begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$	
	1k 2a	1
Entry	Wavelength of Light	yield 1 ^b (%)
1	360-370 nm	55
2	380-385 nm	48
3	390-398 nm	53
4	420-430 nm	67
5	435-445 nm	35

Table 1 Optimizing the wavelength of light

[a] Reaction conditions: 1k (1 mmol, 1 equiv), 2a (2 mmol, 2 equiv), PC-C (2 mmol%, 2 equiv%), K₃PO₄ (1.1 mmol, 1.1 equiv), solvent: DCE (5 mL), N₂, 25°C, 12 h; The models of lamps used are 10 W₂ 220 V₂ LED.
[b] Isolated yield.

3.2 Table 2. Varying the Catalyst^a

		2a	Visible Light PC (2%) K ₃ PO ₄ (1.1 equiv) DCE (0.2 M) N ₂ , 25 °C, 12 h		
Entry	Р	C		yield 1 ^b (%)	
1	PC	C-A		58	
2	PC	С-В		69	
		4	4		

Table 2 Explore the effects of different catalysts on the reaction

3	PC-C	67
4	PC-D	46
5	None	None
6°	РС-В	None

[a] Reaction conditions: 1k (1 mmol, 1 equiv), 2a (2 mmol, 2 equiv), PC (2 mmol%, 2 equiv%), K₃PO₄ (1.1 mmol, 1.1 equiv), solvent: DCE (5 mL), N₂, 25°C, 12 h, bluelight (10 W、 220 V、 LED、 wavelenght 420 nm-430 nm). [b] Isolated yield. [c] no light.

3.3 Table 3. Varying the Base^a

Table 3 Explore the effect of different Bases on the reaction

	$ \begin{array}{c} $	le Light B(2%) 1.1 equiv) (0.2 M) °C, 12 h
Entry	Base	yield 1 ^b (%)
1	K ₃ PO ₄	69
2	K ₂ CO ₃	53
3	NaHCO ₃	49
4	LiOtBu	42
5	Et_3N	71
6	DMAP	48
7	DBU	36
8	Pyridine	44
9	None	37

[a] Reaction conditions: 1k (1 mmol, 1 equiv), 2a (2 mmol, 2 equiv), PC-B (2 mmol%, 2 equiv%), Base (1.1 mmol, 1.1 equiv), solvent: DCE (5 mL), N₂, 25°C, 12 h, bluelight (10 W, 220 V, LED, wavelenght 420 nm-430 nm). [b] Isolated yield.

3.4 Table 4. Varying the Solvent^a

Table 4 Explore the effect of different Solvents on the reaction

Entry	solvent	yield 1 ^b (%)
1	DCE	71
2	MeCN	82
3	THF	55
4	DMA	43
5	DMF	41
6	Cyclohexane	50
7	1,4-Dioxane	78

[a] Reaction conditions: 1k (1 mmol, 1 equiv), 2a (2 mmol, 2 equiv), PC-B (2 mmol%, 2 equiv%), Et₃N (1.1 mmol, 1.1 equiv), solvent: (5 mL), N₂, 25°C, 12 h, bluelight (10 W $\$ 220 V $\$ LED $\$ wavelenght 420 nm-430 nm). [b] Isolated yield.

3.5 Table 5. Concentration^a

	$\begin{array}{c} O \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
1k	2a	1
Entry	Concentration	yield 1 ^b (%)
1	1 M	80
2	0.5M	81
3	0.2M	82
4	0.1M	64
5	0.05M	43

Table 5 Explore the effect of substrate concentration on the reaction

[a] Reaction conditions : 1k (1 mmol, 1 equiv), 2a (2 mmol, 2 equiv), PC-B (2 mmol%, 2 equiv%), Et₃N (1.1 mmol, 1.1 equiv), solvent: MeCN (X mL), N₂, 25°C, 12 h, bluelight (10 W, 220 V, LED, wavelenght 420 nm-430 nm). [b] Isolated yield.

3.6 Table 6. Catalyst concentration^a

Table 6 Explore the effect of the amount of catalyst on the reaction

1	4	83
2	2	82
3	1	64
4	0.5	58
5	None	None

[a] Reaction conditions: 1k (1 mmol, 1 equiv), 2a (2 mmol, 2 equiv), PC-B (X% mmol, X% equiv), Et₃N (1.1 mmol, 1.1 equiv), solvent: MeCN (5 mL), N₂, 25°C, 12 h, bluelight (10 W, 220 V, LED, wavelenght 420 nm-430 nm). [b] Isolated yield.

3.7 Table 7. Residence time^a

	Br + Br	
1k	2a	1
Entry	Time (h)	yield 1 ^b (%)
1	1	24
2	2	31
3	3	57
4	4	81
5	6	83
6	12	82

Table 7 Explore the effect of reaction time on the reaction

[a] Reaction conditions: 1k (1 mmol, 1 equiv), 2a (2 mmol, 2 equiv), PC-B (2 mmol%, 2 equiv%), Et₃N (1.1 mmol, 1.1 equiv), solvent: MeCN (5 mL), N₂, 25°C, bluelight (10 W、 220 V、 LED、 wavelenght 420 nm-430 nm).
[b] Isolated yield.

3.8 Table 8. Reagent Loading^a

	O Br +		
1k	2a	1	
Entry	Phenylacetylene	yield 1 ^b (%)	
1	1	73	
2	2	81	

Table 8 Explore the effect of substrate ratio on the reaction

3	3	84
4	4	82

[a] Reaction conditions: **1k** (1 mmol, 1 equiv), **PC-B** (2 mmol%, 2 equiv%), Et_3N (1.1 mmol, 1.1 equiv), solvent: MeCN (5 mL), N₂, 25°C, 4 h, bluelight (10 W, 220 V, LED, wavelenght 420 nm-430 nm). [b] Isolated yield.

3.9 Table 9. Reagent Loadings^a

Entry	PC-B (equiv)	Tube diameter (mm)	Tube length (m)	Residence time (minute)	yield 1 ^b (%)
1	2%	1	2	30	85
2	1%	1	2	30	93
3	0.5%	1	2	30	53
4	0.1%	1	2	30	34
5	1%	1	3	30	84
6	1%	1	1	30	81
7	1%	1	0.5	30	68
8	1%	1	2	5	37
9	1%	1	2	10	45
10	1%	1	2	20	91
11	1%	1	2	40	92

Table 9 Optimization of microchannel reaction conditions

[a] Reaction conditions: **1k** (1.0 mmol, 1.0 equiv), **2a** (1.0 mmol, 1.0 equiv), Et₃N (1.1 mmol, 1.1 equiv), 5 mL MeCN (0.2 M) solution, N₂, 25°C; bluelight (10 W, 220 V, LED, wavelenght 420 nm-430 nm). [b] Isolated yield.

3.10 A Scale-up Continuous Flow Reaction^a

^a Reaction conditions: **1k** (10 mmol), **2a** (1 equiv), MeCN (20 mL), Et₃N (1.1 equiv), and **PC-B** (1 % equiv.) at room temperature for 20 minutes. Isolated yield.

4. Preparation of Substrates

4.1 Method for synthesizing phenazine catalysts

Figure 4 Synthetic method of phenazine catalyst

As shown in Figure 4, S1 and S2 are synthesized according to the literature¹.

4.2 Method for synthesizing phenethylamine-derived

bromide substrates

Figure 5 Synthesis method of indole substrates

As shown in **Figure 5:** 1)² To a stirring solution of **S3**(12 mmol, 1.0 equiv.) and NaOAc (3.0 equiv.) in MeOH (100 ml, 0.12 M) at 0 °C, BrCN **S4** (1.2 equiv.) was added. Then the reaction was warmed to room temperature and stirred for 12 h. Upon completion, the solvent was removed in vacuo. To the residue was added water and extracted with ethyl acetate, and the combined organic layers were washed by brine and dried over Na₂SO₄, then filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel or recrystallization to give compound **S5**. 2)² To a stirring solution of **S5** (12 mmol, 1.0 equiv.) and Et₃N (2.4 equiv.) in THF (100 ml, 0.12 M) at 0°C, 2-Bromo-2-methylpropionyl bromide **S6** (1.2 equiv) was slowly added. Then the reaction was warmed to room temperature and stirred for 12 h. Upon completion, the solvent was removed in vacuo. To the residue was added water and extracted water and extracted with ethyl acetate, and the combined organic layers were washed by brine and dried over Na₂SO₄, then filtered and extracted with ethyl acetate, and the combined organic layers. The residue was purified by flash column chromatography on silica gel or solvent was slowly added. Then the reaction was warmed to room temperature and stirred for 12 h. Upon completion, the solvent was removed in vacuo. To the residue was added water and extracted with ethyl acetate, and the combined organic layers were washed by brine and dried over Na₂SO₄, then filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel or recrystallization to give compound **S7**.

4.3 Method for synthesizing products (1 as an example)

Figure 6 Microfluidic reactor device

An oven-dried 10 mL reaction syringe was charged with 2-bromo-N-cyano-N-(2,2diphenylethyl)-2-methylpropanamide (1 mmol, 1 equiv), phenylacetylene (1 mmol, 1 equiv), PC-B (1 mol %) and Et_3N (1.1 mmol, 1.1 equiv). And add 5 mL MeCN (0.2 M) solution. Pass the solutions through a Quartz tubing (id = 1 mm, length =2.0 m) to building the **1** during 20 minutes of residence time under blue light (10 W, 220 V, LED, wavelength 420nm-430nm). The reaction mixture was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate or dichloromethane/methanol to afford the desired product **1** (91% yield).

5. Experiments for Mechanistic Studies

5.1 Free radical capture experiment

Figure 7 Radical trapping experiment with TEMPO

Figure 8 HR-MS (EI) analysis of S-1

5.2 Variable control experiment

2

	•	
Entry	Changes to "standard conditions"	yield 1 ^b (%
1	No organic photocatalyst	0

No light

Table 10 Variable Control Experiment

[a] Reaction conditions: 1k (1 mmol, 1 equiv), 2a (3 mmol, 3 equiv), Et₃N (1.1 mmol, 1.1 equiv), solvent: MeCN (5 mL), N₂, 25°C, 20 minutes, bluelight (10 W, 220 V, LED, wavelength 420 nm-430 nm). [b] Isolated yield.

0

5.3 Discussion on theoretical reaction mechanism

Figure 9 Reaction mechanism

6. Analytical data for isolated compounds

6.1 Characterization data for phenethylamine-derived bromides substrates

2-bromo-N-cyano-2-methyl-N-phenethylpropanamide:(1a)

Brown oil (3.15 g, 89% yield); ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.35 – 7.24 (m, 5H), 3.93 (t, *J* = 7.0 Hz, 2H), 2.94 (t, *J* = 7.0 Hz, 2H), 1.96 (s, 6H). ¹³C NMR (101 MHz, DMSO*d*₆) δ 169.74, 137.32, 129.47, 128.97, 127.28, 110.03, 56.51, 50.48, 33.07, 30.80. HRMS (EI) calcd for C₁₃H₁₅N₂OBr [M+H]: 295.0441; found: 295.0445.

2-bromo-N-cyano-2-methyl-N-(4-methylphenethyl)propanamide:(1b)

Brown oil (3.01 g, 81% yield); ¹**H NMR** (400 MHz, DMSO- d_6) δ 7.14 (q, J = 8.1 Hz, 4H), 3.89 (t, J = 7.2 Hz, 2H), 2.91 (t, J = 7.1 Hz, 2H), 2.28 (s, 3H), 1.99 (s, 6H). ¹³**C NMR** (101 MHz, DMSO- d_6) δ 169.68, 136.25, 134.12, 129.52, 129.26, 109.97, 56.36, 50.57, 32.74, 30.84, 21.15. **HRMS** (EI) calcd for C₁₄H₁₇N₂OBr [M+H]: 309.0597; found: 309.0592.

2-bromo-N-cyano-N-(4-fluorophenethyl)-2-methylpropanamide:(1c)

Yellow oil (2.85 g, 76% yield); ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.37 – 7.27 (m, 2H), 7.19 – 7.09 (m, 2H), 3.93 (t, *J* = 6.9 Hz, 2H), 2.94 (t, *J* = 6.9 Hz, 2H), 1.97 (s, 6H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 169.74, 161.73 (d, *J* = 242.7 Hz), 133.51 (d, *J* = 3.4 Hz), 131.38 (d, *J* = 8.0 Hz), 115.67 (d, *J* = 21.1 Hz), 110.00, 56.44, 50.52, 32.26, 30.80. ¹⁹**F NMR** (376 MHz, DMSO- d_6) δ -116.11. **HRMS** (EI) calcd for C₁₃H₁₄N₂OBrF [M+H]:

313.0346; found: 313.0348.

2-bromo-N-(4-chlorophenethyl)-N-cyano-2-methylpropanamide:(1d)

Yellow oil (2.84 g, 72% yield); ¹H NMR (400 MHz, DMSO- d_6) δ 7.28 – 7.22 (m, 2H), 7.22 – 7.16 (m, 2H), 3.84 (t, J = 7.0 Hz, 2H), 2.86 (t, J = 6.9 Hz, 2H), 1.89 (s, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 169.69, 136.27, 132.13, 131.27, 128.87, 109.91, 56.26, 50.32, 32.49, 30.84. HRMS (EI) calcd for C₁₃H₁₄N₂OBrCl [M+H]: 329.0051; found: 329.0056.

2-bromo-N-(4-bromophenethyl)-N-cyano-2-methylpropanamide:(1e)

Yellow oil (3.40 g, 76% yield); ¹H NMR (400 MHz, DMSO- d_6) δ 7.41 – 7.32 (m, 2H), 7.24 – 7.15 (m, 2H), 3.98 (t, J = 6.9 Hz, 2H), 2.99 (t, J = 6.9 Hz, 2H), 2.02 (s, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 169.87, 136.45, 132.31, 131.45, 129.05, 110.09, 56.43, 50.49, 32.67, 31.02. HRMS (EI) calcd for C₁₃H₁₄N₂OBr₂ [M+H]: 372.9546; found: 372.9546.

2-bromo-N-cyano-N-(4-methoxyphenethyl)-2-methylpropanamide:(1f)

Brown oil (3.08 g, 79% yield); ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.35 – 7.08 (m, 2H), 6.95 – 6.81 (m, 2H), 3.88 (t, *J* = 7.0 Hz, 2H), 3.73 (s, 3H), 2.88 (t, *J* = 7.0 Hz, 2H), 1.98 (s, 6H). ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 169.73, 158.64, 130.45, 129.06, 114.34, 110.03, 56.44, 55.43, 50.71, 32.25, 30.82. **HRMS** (EI) calcd for C₁₄H₁₇N₂O₂Br [M+H]: 325.0546; found: 325.0548.

2-bromo-N-cyano-2-methyl-N-(4-(trifluoromethyl)phenethyl)propanamide:(1g)

Brown oil (2.96 g, 68% yield); ¹H NMR (400 MHz, DMSO- d_6) δ 7.68 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 7.9 Hz, 2H), 3.99 (t, J = 6.9 Hz, 2H), 3.05 (t, J = 6.9 Hz, 2H), 1.96 (s, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 169.73, 142.39, 130.41, 125.74 (q, J = 3.8 Hz), 124.80 (d, J = 271.9 Hz), 109.96, 56.45, 50.07, 46.20, 32.89, 30.77. ¹⁹F NMR (376 MHz, DMSO- d_6) δ -60.89. **HRMS** (EI) calcd for C₁₄H₁₄N₂OBrF₃ [M+H]: 363.0314; found: 363.0318.

2-bromo-N-cyano-N-(3-fluorophenethyl)-2-methylpropanamide:(1h)

Yellow oil (2.93 g, 78% yield); ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.35 (td, *J* = 8.1, 6.3 Hz, 1H), 7.26 – 7.09 (m, 2H), 7.09 – 7.00 (m, 1H), 3.95 (t, *J* = 6.9 Hz, 2H), 2.97 (t, *J* = 6.9 Hz, 2H), 1.97 (s, 6H). ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 169.68, 162.68 (d, *J* = 243.5 Hz), 140.21 (d, *J* = 7.4 Hz), 130.77 (d, *J* = 8.5 Hz), 125.63 (d, *J* = 2.5 Hz), 116.27 (d, *J* = 21.2 Hz), 114.08 (d, *J* = 20.9 Hz), 109.94, 56.35, 50.24, 32.78, 30.78. ¹⁹**F NMR** (376 MHz, DMSO-*d*₆) δ -113.34. **HRMS** (EI) calcd for C₁₃H₁₄N₂OBrF [M+H]: 313.0346; found: 313.0349.

2-bromo-N-cyano-N-(3,4-dimethoxyphenethyl)-2-methylpropanamide:(1i)

Yellow oil (3.66 g, 86% yield); ¹H NMR (400 MHz, DMSO- d_6) δ 6.92 – 6.84 (m, 2H), 6.77 (dd, J = 8.2, 2.0 Hz, 1H), 3.91 (t, J = 7.0 Hz, 2H), 3.75 (s, 3H), 3.73 (s, 3H), 2.88 (t, J = 6.9 Hz, 2H), 1.98 (s, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 169.69, 149.18, 148.21, 129.57, 121.41, 113.09, 112.19, 109.99, 56.34, 55.86, 55.84, 50.69, 32.69, 30.76. HRMS (EI) calcd for C₁₅H₁₉N₂O₃Br [M+H]: 355.0652; found: 355.0655.

2-bromo-N-cyano-2-methyl-N-(3-phenylpropyl)propanamide:(1j)

Yellow oil (3.30 g, 89% yield); ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.33 – 7.28 (m, 2H), 7.24 – 7.18 (m, 3H), 3.70 (t, *J* = 7.1 Hz, 2H), 2.69 – 2.63 (m, 2H), 2.05 (s, 6H), 1.99 – 1.93 (m, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 169.85, 141.03, 128.87, 128.71, 126.53, 110.18, 56.79, 48.87, 32.12, 30.86, 28.99. HRMS (EI) calcd for C₁₄H₁₇N₂OBr [M+H]: 309.0597; found: 309.0595.

2-bromo-N-cyano-N-(2,2-diphenylethyl)-2-methylpropanamide:(1k)

White solid (3.16 g, 71% yield); ¹**H NMR** (400 MHz, DMSO- d_6) δ 7.33 (ddt, J = 33.1, 25.9, 7.4 Hz, 10H), 4.37 (d, J = 6.8 Hz, 2H), 3.11 (tt, J = 7.4, 3.7 Hz, 1H), 1.86 (d, J = 6.6 Hz, 6H). ¹³**C NMR** (101 MHz, DMSO- d_6) δ 169.85, 140.99, 129.10, 128.48, 127.58, 109.79, 56.14, 52.65, 48.82, 30.93, 30.66. **HRMS** (EI) calcd for C₁₉H₁₉N₂OBr [M+H]: 371.0754; found: 371.0757.

N-(2-(1H-indol-3-yl)ethyl)-2-bromo-N-cyano-2-methylpropanamide:(11)

Yellow oil (3.85 g, 96% yield); ¹**H NMR** (400 MHz, DMSO- d_6) δ 10.96 (s, 1H), 7.59 (d, J = 7.9 Hz, 1H), 7.39 (d, J = 8.1 Hz, 1H), 7.26 (d, J = 2.4 Hz, 1H), 7.17 – 7.08 (m, 1H), 7.03 (td, J = 7.5, 7.0, 1.1 Hz, 1H), 3.94 (t, J = 7.3 Hz, 2H), 3.09 (t, J = 7.2 Hz, 2H), 1.99 (s, 6H). ¹³**C NMR** (101 MHz, DMSO- d_6) δ 169.85, 136.74, 127.41, 124.18, 121.62, 119.00, 118.48, 112.02, 110.23, 109.50, 56.67, 50.12, 30.82, 23.17. **HRMS** (EI) calcd for C₁₅H₁₆N₃OBr [M+H]: 334.0551; found: 334.0553.

2-bromo-N-cyano-2-methyl-N-(2-(2-methyl-1H-indol-3-

yl)ethyl)propanamide:(1m)

Yellow oil (3.88 g, 93% yield); ¹**H NMR** (400 MHz, DMSO- d_6) δ 10.82 (s, 1H), 7.42 (d, J = 7.6 Hz, 1H), 7.24 (d, J = 7.7 Hz, 1H), 7.03 – 6.90 (m, 2H), 3.84 (t, J = 7.3 Hz, 2H), 2.99 (t, J = 7.3 Hz, 2H), 2.35 (s, 3H), 1.91 (s, 6H). ¹³**C NMR** (101 MHz, DMSO- d_6) δ 169.83, 135.68, 133.49, 128.55, 120.65, 118.81, 117.51, 110.97, 110.31, 105.22, 56.60, 50.08, 30.76, 22.12, 11.71. **HRMS** (EI) calcd for C₁₆H₁₈N₃OBr [M+H]: 348.0706; found: 348.0709.

2-bromo-N-cyano-N-isobutyl-2-methylpropanamide:(1n)

Yellow oil (2.46 g, 83% yield); ¹H NMR (400 MHz, DMSO- d_6) δ 3.52 (d, J = 7.3 Hz, 2H), 2.05 (s, 6H), 1.99 (dd, J = 13.7, 7.0 Hz, 1H), 0.94 (d, J = 6.8 Hz, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 169.97, 110.58, 56.88, 55.94, 30.89, 27.26, 19.64. HRMS (EI) calcd for C₉H₁₅N₂OBr [M+H]:247.0441; found: 247.0446

6.2 Product Characterization Data

6,6-dimethyl-2,2,8-triphenyl-2,6-dihydroimidazo[1,2-a]pyridin-5(3H)-one:(1)

White solid (357.81 mg, 91% yield); ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.78 (d, *J* = 7.5 Hz, 2H), 7.53 – 7.40 (m, 7H), 7.35 (t, *J* = 7.7 Hz, 4H), 7.26 – 7.22 (m, 2H), 6.75 (s, 1H), 4.50 (s, 2H), 1.39 (s, 6H). ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 171.60, 152.69, 147.46, 147.34, 135.72, 129.05, 128.92, 128.61, 128.57, 127.34, 126.58, 125.97, 77.82, 56.43, 42.80, 26.93. **HRMS** (EI) calcd for C₂₇H₂₄N₂O [M+H]: 393.1961; found: 393.1965.

6,6-dimethyl-2,2-diphenyl-8-(p-tolyl)-2,6-dihydroimidazo[1,2-a]pyridin-5(3H)one:(2)

White solid (358.35 mg, 88% yield); ¹H NMR (400 MHz, DMSO- d_6) δ 7.65 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 7.0 Hz, 4H), 7.32 (t, J = 7.7 Hz, 4H), 7.26 (d, J = 7.9 Hz, 2H), 7.21 (t, J = 7.4 Hz, 2H), 6.68 (s, 1H), 4.47 (s, 2H), 2.35 (s, 3H), 1.35 (s, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 171.63, 152.77, 147.38, 146.70, 137.95, 132.83, 129.13, 128.91, 127.32, 126.56, 125.82, 77.78, 56.38, 42.73, 26.97, 21.26. HRMS (EI) calcd for C₂₈H₂₆N₂O [M+H]: 407.2118; found: 407.2113.

8-(4-fluorophenyl)-6,6-dimethyl-2,2-diphenyl-2,6-dihydroimidazo[1,2-a]pyridin-5(3H)-one:(3)

Yellow solid (324.84 mg, 79% yield); ¹H NMR (400 MHz, DMSO- d_6) δ 7.90 – 7.74 (m, 2H), 7.45 (dd, J = 8.4, 1.3 Hz, 4H), 7.30 (q, J = 8.9, 8.2 Hz, 6H), 7.23 – 7.17 (m, 2H), 6.72 (s, 1H), 4.49 (s, 2H), 1.35 (s, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 171.54, 162.52 (d, J = 245.1 Hz), 152.70, 147.38, 147.30, 132.03 (d, J = 3.5 Hz), 131.10 (d, J = 8.1 Hz), 128.89, 127.33, 126.58, 124.95, 115.42 (d, J = 21.4 Hz), 77.85, 56.47, 42.82, 26.89. ¹⁹F

NMR (376 MHz, DMSO-*d*₆) δ -113.77. **HRMS** (EI) calcd for C₂₇H₂₃N₂OF [M+H]: 411.1867; found: 411.1863.

8-(4-chlorophenyl)-6,6-dimethyl-2,2-diphenyl-2,6-dihydroimidazo[1,2-a]pyridin-5(3H)-one:(4)

Yellow solid (303.28 mg, 71% yield); ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.88 – 7.79 (m, 2H), 7.59 – 7.55 (m, 2H), 7.51 – 7.45 (m, 4H), 7.36 (dd, *J* = 8.4, 7.0 Hz, 4H), 7.28 – 7.22 (m, 2H), 6.83 (s, 1H), 4.51 (s, 2H), 1.40 (s, 6H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 171.50, 152.54, 147.87, 147.27, 134.47, 133.38, 130.84, 128.92, 128.61, 127.36, 126.58, 124.81, 77.85, 56.44, 42.88, 26.85. HRMS (EI) calcd for C₂₇H₂₃N₂OCl [M+H]: 427.1572; found: 427.1577.

8-(4-bromophenyl)-6,6-dimethyl-2,2-diphenyl-2,6-dihydroimidazo[1,2-a]pyridin-5(3H)-one:(5)

Light yellow oily (315.64 mg, 67% yield); ¹H NMR (400 MHz, DMSO- d_6) δ 7.73 (d, J = 8.6 Hz, 2H), 7.65 (d, J = 8.6 Hz, 2H), 7.45 (d, J = 7.0 Hz, 4H), 7.31 (t, J = 7.7 Hz, 4H), 7.20 (t, J = 7.3 Hz, 2H), 6.77 (s, 1H), 4.48 (s, 2H), 1.35 (s, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 171.47, 152.49, 147.80, 147.28, 134.84, 131.52, 131.15, 128.91, 127.34, 126.58, 124.94, 122.04, 77.87, 56.45, 42.88, 26.84. HRMS (EI) calcd for C₂₇H₂₃N₂OBr [M+H]: 471.1067; found: 471.1065.

8-(4-methoxyphenyl)-6,6-dimethyl-2,2-diphenyl-2,6-dihydroimidazo[1,2a]pyridin-5(3H)-one:(6)

Yellow solid (258.16 mg, 61% yield); ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.83 – 7.67 (m, 2H), 7.47 (d, *J* = 7.8 Hz, 4H), 7.33 (t, *J* = 7.7 Hz, 4H), 7.24 – 7.20 (m, 2H), 7.06 – 7.02 (m, 2H), 6.66 (s, 1H), 4.48 (s, 2H), 3.81 (s, 3H), 1.36 (s, 6H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 171.68, 159.70, 152.88, 147.39, 145.95, 130.23, 128.90, 127.94, 127.32, 126.58, 125.37, 113.97, 77.78, 56.39, 55.62, 42.70, 27.02. HRMS (EI) calcd for C₂₈H₂₆N₂O₂ [M+H]: 423.2067; found: 423.2069.

6,6-dimethyl-2,2-diphenyl-8-(4-(trifluoromethyl)phenyl)-2,6-dihydroimidazo[1,2a]pyridin-5(3H)-one:(7)

Yellow oil (285.93 mg, 62% yield); ¹**H NMR** (400 MHz, DMSO- d_6) δ 7.95 – 7.81 (m, 2H), 7.70 (d, J = 8.3 Hz, 2H), 7.39 – 7.29 (m, 4H), 7.19 (t, J = 7.8 Hz, 4H), 7.09 – 7.05 (m, 2H), 6.74 (s, 1H), 4.38 (s, 2H), 1.25 (s, 6H). ¹³**C NMR** (101 MHz, DMSO- d_6) δ 171.37, 152.40, 148.98, 147.25, 139.73, 129.84, 128.88, 127.32, 126.57, 125.43 (q, J = 3.8 Hz), 124.97, 77.95, 56.47, 42.97, 26.74. ¹⁹**F NMR** (376 MHz, DMSO- d_6) δ -61.11. **HRMS** (EI) calcd for C₂₈H₂₃N₂OF₃ [M+H]: 461.1835; found: 461.1837.

8-(4-ethylphenyl)-6,6-dimethyl-2,2-diphenyl-2,6-dihydroimidazo[1,2-a]pyridin-5(3H)-one:(8)

Yellow solid (341.19 mg, 81% yield); ¹H NMR (400 MHz, DMSO- d_6) δ 7.73 – 7.60 (m, 2H), 7.50 – 7.40 (m, 4H), 7.32 (q, J = 7.7 Hz, 6H), 7.26 – 7.18 (m, 2H), 6.70 (s, 1H), 4.46 (s, 2H), 2.66 (q, J = 7.5 Hz, 2H), 1.35 (s, 6H), 1.22 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 171.64, 152.76, 147.35, 146.86, 144.24, 133.10, 128.96, 128.92, 127.96, 127.34, 126.58, 125.80, 77.79, 56.38, 42.74, 28.37, 26.98, 15.98. HRMS (EI) calcd for C₂₉H₂₈N₂O [M+H]: 421.2274; found: 421.2278.

4-(6,6-dimethyl-5-oxo-2,2-diphenyl-2,3,5,6-tetrahydroimidazo[1,2-a]pyridin-8yl)benzaldehyde:(9)

Yellow oil (219.02 mg, 52% yield); ¹**H NMR** (400 MHz, DMSO- d_6) δ 7.81 – 7.68 (m, 2H), 7.35 – 7.27 (m, 6H), 7.17 (t, J = 7.7 Hz, 5H), 7.09 – 7.04 (m, 2H), 6.66 (s, 1H), 4.33 (s, 2H), 1.21 (s, 6H). ¹³**C NMR** (101 MHz, DMSO- d_6) δ 171.48, 152.54, 148.63, 148.29, 147.25, 134.90, 130.95, 128.92, 127.36, 126.60, 124.66, 121.08, 77.89, 56.48, 42.89, 26.84. **HRMS** (EI) calcd for C₂₈H₂₄N₂O₂ [M+H]: 421.1911; found: 421.1913.

methyl 4-(6,6-dimethyl-5-oxo-2,2-diphenyl-2,3,5,6-tetrahydroimidazo[1,2a]pyridin-8-yl)benzoate:(10)

Yellow oil (212.06 mg, 47% yield); ¹**H NMR** (400 MHz, DMSO- d_6) δ 8.06 (d, J = 8.2 Hz, 2H), 7.92 (d, J = 8.2 Hz, 2H), 7.45 (d, J = 7.5 Hz, 2H), 7.35 – 7.28 (m, 6H), 7.23 – 7.19 (m, 2H), 6.89 (s, 1H), 4.48 (s, 2H), 3.89 (d, J = 1.2 Hz, 3H), 1.37 (s, 6H). ¹³**C NMR** (101 MHz, DMSO- d_6) δ 171.41, 166.47, 152.40, 148.85, 147.28, 142.91, 140.34, 129.41, 128.92, 128.82, 128.43, 127.35, 126.58, 77.91, 56.44, 52.67, 42.98, 26.81. **HRMS** (EI) calcd for C₂₉H₂₆N₂O₃ [M+H]: 451.2016; found: 451.2017.

6,6-dimethyl-2,2-diphenyl-8-(o-tolyl)-2,6-dihydroimidazo[1,2-a]pyridin-5(3H)-one:(11)

Yellow solid (346.13 mg, 85% yield); ¹H NMR (400 MHz, DMSO- d_6) δ 7.37 – 7.30 (m, 6H), 7.30 – 7.27 (m, 4H), 7.25 (ddd, J = 5.4, 3.0, 1.2 Hz, 2H), 7.22 – 7.18 (m, 2H), 6.43 (s, 1H), 4.47 (s, 2H), 2.18 (s, 3H), 1.36 (s, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 171.78, 153.04, 148.33, 147.20, 136.74, 136.18, 130.30, 130.20, 128.82, 128.52, 127.33, 126.77, 126.60, 126.04, 77.66, 56.73, 42.68, 26.89, 20.10. HRMS (EI) calcd for C₂₈H₂₆N₂O [M+H]: 407.2118; found: 407.2112.

8-(2-fluorophenyl)-6,6-dimethyl-2,2-diphenyl-2,6-dihydroimidazo[1,2-a]pyridin-5(3H)-one:(12)

Yellow oil (320.73 mg, 78% yield); ¹**H NMR** (400 MHz, DMSO- d_6) δ 7.31 (td, J = 7.6, 2.0 Hz, 1H), 7.28 – 7.23 (m, 1H), 7.21 – 7.19 (m, 3H), 7.09 (t, J = 7.7 Hz, 7H), 7.01 – 6.96 (m, 2H), 6.46 (s, 1H), 4.27 (s, 2H), 1.15 (s, 6H). ¹³**C NMR** (101 MHz, DMSO- d_6) δ 171.44, 161.32, 158.87, 152.38, 149.70, 147.30, 132.17, 132.14, 130.88, 130.80, 128.82, 127.30, 126.60, 124.73, 124.69, 123.83, 123.68, 121.60, 116.21, 116.00, 77.73, 56.89, 42.87, 26.82. ¹⁹**F NMR** (376 MHz, DMSO- d_6) δ -113.32. **HRMS** (EI) calcd for C₂₇H₂₃N₂OF [M+H]: 411.1867; found: 411.1869.

6,6-dimethyl-2,2-diphenyl-8-(m-tolyl)-2,6-dihydroimidazo[1,2-a]pyridin-5(3H)one:(13)

Yellow solid (354.27 mg, 87% yield); ¹H NMR (400 MHz, DMSO- d_6) δ 7.63 (d, J = 7.9 Hz, 1H), 7.55 (d, J = 1.9 Hz, 1H), 7.49 (dd, J = 8.3, 1.3 Hz, 4H), 7.38 (t, J = 7.9 Hz, 5H), 7.29 – 7.25 (m, 3H), 6.76 (s, 1H), 4.51 (s, 2H), 2.43 (s, 3H), 1.41 (s, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 171.61, 152.72, 147.35, 147.25, 137.65, 135.68, 129.55, 129.20, 129.13, 128.92, 128.39, 127.34, 126.57, 126.30, 126.03, 77.79, 56.42, 42.77, 26.96, 21.59. HRMS (EI) calcd for C₂₈H₂₆N₂O [M+H]: 407.2118; found: 407.2113.

8-(3-fluorophenyl)-6,6-dimethyl-2,2-diphenyl-2,6-dihydroimidazo[1,2-a]pyridin-5(3H)-one:(14)

Yellow oil (312.51 mg, 76% yield); ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.68 – 7.59 (m, 2H), 7.54 – 7.48 (m, 1H), 7.44 (d, *J* = 8.2 Hz, 4H), 7.33 (t, *J* = 7.6 Hz, 4H), 7.23 (q, *J* =

7.2, 6.8 Hz, 3H), 6.86 (s, 1H), 4.47 (s, 2H), 1.36 (s, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 171.46, 162.25 (d, J = 242.5 Hz), 152.46, 148.42, 147.25, 137.90 (d, J = 8.0 Hz), 130.51 (d, J = 8.4 Hz), 128.94, 127.37, 126.55, 125.09 (d, J = 2.8 Hz), 124.65, 115.85 (d, J = 22.6 Hz), 115.40 (d, J = 20.9 Hz), 77.87, 56.36, 42.88, 26.82. ¹⁹F NMR (376 MHz, DMSO- d_6) δ -113.39. HRMS (EI) calcd for C₂₇H₂₃N₂OF [M+H]: 411.1867; found: 411.1863.

8-(4-ethynylphenyl)-6,6-dimethyl-2,2-diphenyl-2,6-dihydroimidazo[1,2a]pyridin-5(3H)-one:(15)

Yellow solid (2.28 g, 76% yield); ¹**H** NMR (400 MHz, DMSO- d_6) δ 7.56 (d, J = 8.1 Hz, 2H), 7.34 (d, J = 8.1 Hz, 2H), 7.21 (d, J = 7.5 Hz, 4H), 7.07 (t, J = 7.7 Hz, 4H), 6.96 (t, J = 7.3 Hz, 2H), 6.55 (s, 1H), 4.24 (s, 2H), 4.03 (s, 1H), 1.11 (s, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 171.46, 152.49, 148.04, 147.27, 136.14, 132.42, 131.94, 129.30, 128.91, 127.34, 126.58, 125.26, 121.96, 83.75, 82.04, 77.89, 56.42, 42.88, 26.85. **HRMS** (EI) calcd for C₂₉H₂₄N₂O [M+H]: 417.1961; found: 417.1964.

6,6-dimethyl-2,2-diphenyl-8-(thiophen-3-yl)-2,6-dihydroimidazo[1,2-a]pyridin-5(3H)-one:(16)

Yellow oil (287.39 mg, 72% yield); ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.44 (d, *J* = 1.6 Hz, 1H), 7.70 – 7.60 (m, 2H), 7.52 (d, *J* = 7.5 Hz, 4H), 7.33 (t, *J* = 7.6 Hz, 4H), 7.22 (t, *J* = 7.4 Hz, 2H), 7.02 (s, 1H), 4.47 (s, 2H), 1.35 (s, 6H). ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 171.52, 152.53, 147.37, 145.58, 135.48, 131.08, 128.93, 127.32, 126.58, 126.29, 125.16,

120.42, 77.80, 56.16, 42.47, 26.98. **HRMS** (EI) calcd for C₂₅H₂₂N₂OS [M+H]: 399.1526; found: 399.1529.

6,6-dimethyl-2,2-diphenyl-8-(thiophen-2-yl)-2,6-dihydroimidazo[1,2-a]pyridin-5(3H)-one:(17)

Yellow oil (243.48 mg, 61% yield); ¹**H NMR** (400 MHz, DMSO- d_6) δ 7.81 (dd, J = 3.7, 1.2 Hz, 1H), 7.64 (dd, J = 5.1, 1.2 Hz, 1H), 7.56 (dd, J = 8.4, 1.3 Hz, 4H), 7.34 (t, J = 7.8 Hz, 4H), 7.25 – 7.20 (m, 3H), 7.16 (dd, J = 5.2, 3.7 Hz, 1H), 7.05 (s, 1H), 4.50 (s, 2H), 1.35 (s, 6H). ¹³**C NMR** (101 MHz, DMSO- d_6) δ 171.41, 151.99, 147.50, 143.96, 136.42, 135.36, 134.42, 128.96, 128.16, 127.42, 127.35, 126.49, 126.37, 119.62, 78.01, 56.54, 42.75, 26.93. **HRMS** (EI) calcd for C₂₅H₂₂N₂OS [M+H]: 399.1526; found: 399.1523.

6,6-dimethyl-2,8-diphenyl-2,6-dihydroimidazo[1,2-a]pyridin-5(3H)-one:(18)

White solid (225.2 mg, 71% yield); ¹**H NMR** (400 MHz, DMSO- d_6) δ 7.64 (dd, J = 8.1, 1.6 Hz, 2H), 7.43 – 7.33 (m, 5H), 7.32 – 7.27 (m, 3H), 6.70 (s, 1H), 5.35 (dd, J = 10.3, 7.4 Hz, 1H), 4.28 (dd, J = 11.4, 10.3 Hz, 1H), 3.56 (dd, J = 11.4, 7.5 Hz, 1H), 1.39 (s, 6H). ¹³**C NMR** (101 MHz, DMSO- d_6) δ 171.50, 154.20, 146.86, 143.37, 135.81, 129.12, 129.08, 128.47, 128.40, 127.78, 127.20, 126.14, 68.48, 50.96, 42.77, 27.17, 26.84. **HRMS** (EI) calcd for C₂₁H₂₀N₂O [M]: 317.1648; found: 317.1642.

6,6-dimethyl-2-phenyl-8-(p-tolyl)-2,6-dihydroimidazo[1,2-a]pyridin-5(3H)one:(19)

White solid (215.27 mg, 65% yield); ¹**H NMR** (400 MHz, DMSO- d_6) δ 7.57 (d, J = 8.2 Hz, 2H), 7.42 – 7.35 (m, 2H), 7.34 – 7.27 (m, 3H), 7.21 (d, J = 7.9 Hz, 2H), 6.67 (s, 1H), 5.37 (dd, J = 10.3, 7.5 Hz, 1H), 4.30 (dd, J = 11.4, 10.4 Hz, 1H), 3.57 (dd, J = 11.4, 7.5 Hz, 1H), 2.33 (s, 3H), 1.40 (s, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 171.53, 154.28, 146.13, 143.39, 137.80, 132.92, 129.05, 128.99, 128.94, 127.75, 127.16, 126.00, 68.45, 50.93, 42.70, 27.21, 26.87, 21.23. **HRMS** (EI) calcd for C₂₂H₂₂N₂O [M+H]: 331.1805; found: 331.1803.

8-(4-fluorophenyl)-6,6-dimethyl-2-phenyl-2,6-dihydroimidazo[1,2-a]pyridin-5(3H)-one:(20)

Yellow solid (191.04 mg, 57% yield); ¹**H NMR** (400 MHz, DMSO- d_6) δ 7.74 (ddd, J = 8.9, 5.5, 3.0 Hz, 2H), 7.43 – 7.37 (m, 2H), 7.36 – 7.32 (m, 3H), 7.26 (s, 2H), 6.76 (s, 1H), 5.39 (dd, J = 10.3, 7.5 Hz, 1H), 4.32 (t, J = 10.9 Hz, 1H), 3.64 – 3.56 (m, 1H), 1.42 (s, 6H). ¹³**C NMR** (101 MHz, DMSO- d_6) δ 171.47, 162.40 (d, J = 245.0 Hz), 154.19, 146.84, 143.32, 135.47 (d, J = 8.8 Hz), 131.16 (d, J = 8.2 Hz), 129.07, 127.79, 127.21, 125.06, 115.24 (d, J = 21.3 Hz), 68.49, 50.99, 42.79, 27.14, 26.79. ¹⁹**F NMR** (376 MHz, DMSO- d_6) δ -114.08. **HRMS** (EI) calcd for C₂₁H₁₉N₂OF [M+H]: 335.1554; found: 335.1557.

8-(4-chlorophenyl)-6,6-dimethyl-2-phenyl-2,6-dihydroimidazo[1,2-a]pyridin-5(3H)-one:(21) Light yellow oil (175.56 mg, 50% yield); ¹H NMR (400 MHz, DMSO- d_6) δ 7.69 (d, J = 8.5 Hz, 2H), 7.50 – 7.43 (m, 2H), 7.41 – 7.34 (m, 2H), 7.33 – 7.26 (m, 3H), 6.76 (s, 1H), 5.36 (dd, J = 10.4, 7.5 Hz, 1H), 4.29 (t, J = 10.9 Hz, 1H), 3.56 (dd, J = 11.4, 7.5 Hz, 1H), 1.39 (s, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 171.40, 154.03, 147.27, 143.27, 134.56, 133.24, 130.89, 129.07, 128.42, 127.80, 127.22, 124.97, 68.51, 50.97, 42.85, 27.10, 26.74. HRMS (EI) calcd for C₂₁H₁₉N₂OC1 [M+H]: 351.1259; found: 351.1253.

8-(4-bromophenyl)-6,6-dimethyl-2-phenyl-2,6-dihydroimidazo[1,2-a]pyridin-5(3H)-one:(22)

Light yellow oil (168.54 mg, 48% yield); ¹H NMR (400 MHz, DMSO- d_6) δ 7.45 – 7.33 (m, 4H), 7.10 (dq, J = 16.3, 8.7, 8.1 Hz, 5H), 6.53 (s, 1H), 5.13 (dd, J = 10.3, 7.5 Hz, 1H), 4.06 (t, J = 10.9 Hz, 1H), 3.34 (dd, J = 11.4, 7.6 Hz, 1H), 1.16 (s, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 171.36, 153.98, 147.23, 143.27, 134.92, 131.34, 131.20, 129.05, 127.78, 127.21, 125.08, 121.90, 68.53, 50.98, 42.86, 27.10, 26.74. HRMS (EI) calcd for C₂₁H₁₉N₂OBr [M+H]: 395.0754; found: 395.0758.

8-(4-methoxyphenyl)-6,6-dimethyl-2-phenyl-2,6-dihydroimidazo[1,2-a]pyridin-5(3H)-one:(23)

Yellow solid (177.06 mg, 51% yield); ¹H NMR (400 MHz, DMSO- d_6) δ 7.70 – 7.55 (m, 2H), 7.44 – 7.33 (m, 2H), 7.33 – 7.23 (m, 3H), 7.01 – 6.88 (m, 2H), 6.70 – 6.56 (m, 1H), 5.35 (dd, J = 10.3, 7.5 Hz, 1H), 4.28 (dd, J = 11.4, 10.4 Hz, 1H), 3.76 (s, 3H), 3.56 (dd, J = 11.4, 7.5 Hz, 1H), 1.38 (s, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 171.58, 159.60,

154.39, 145.41, 143.41, 130.30, 129.05, 128.06, 127.75, 127.18, 125.55, 113.79, 68.45, 55.59, 50.93, 42.67, 27.26, 26.92. **HRMS** (EI) calcd for C₂₂H₂₂N₂O₂ [M+H]: 347.1754; found: 347.1755.

8-(4-ethylphenyl)-6,6-dimethyl-2-phenyl-2,6-dihydroimidazo[1,2-a]pyridin-5(3H)-one:(24)

Yellow solid (214.02 mg, 62% yield); ¹**H** NMR (400 MHz, DMSO- d_6) δ 7.56 (d, J = 7.8 Hz, 2H), 7.41 – 7.33 (m, 2H), 7.33 – 7.26 (m, 3H), 7.22 (d, J = 7.9 Hz, 2H), 6.65 (s, 1H), 5.35 (dd, J = 10.4, 7.5 Hz, 1H), 4.28 (t, J = 10.9 Hz, 1H), 3.56 (dd, J = 11.4, 7.5 Hz, 1H), 2.60 (q, J = 7.5 Hz, 2H), 1.38 (s, 6H), 1.18 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 171.53, 154.29, 146.21, 144.13, 143.38, 133.20, 129.06, 127.77, 127.18, 126.03, 68.46, 50.94, 42.71, 28.38, 27.22, 26.88, 16.08. HRMS (EI) calcd for C₂₃H₂₄N₂O [M+H]: 345.1961; found: 345.1961.

6,6-dimethyl-2-phenyl-8-(o-tolyl)-2,6-dihydroimidazo[1,2-a]pyridin-5(3H)one:(25)

White solid (228.51 mg, 69% yield); ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.34 (ddd, *J* = 7.4, 6.3, 1.3 Hz, 2H), 7.27 – 7.21 (m, 5H), 7.19 (dd, *J* = 4.7, 1.3 Hz, 2H), 6.47 – 6.39 (m, 1H), 5.25 (dd, *J* = 10.3, 7.4 Hz, 1H), 4.28 (dd, *J* = 11.4, 10.3 Hz, 1H), 3.57 (dd, *J* = 11.4, 7.5 Hz, 1H), 2.23 (s, 3H), 1.39 (d, *J* = 2.1 Hz, 6H). ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 171.66, 154.46, 147.69, 143.33, 136.65, 136.22, 130.24, 130.17, 129.01, 128.39, 127.77,

127.19, 126.78, 125.88, 68.45, 51.09, 42.67, 27.07, 26.84, 20.18. **HRMS** (EI) calcd for C₂₂H₂₂N₂O [M+H]: 331.1805; found: 331.1807.

6,6-dimethyl-2-phenyl-8-(m-tolyl)-2,6-dihydroimidazo[1,2-a]pyridin-5(3H)one:(26)

White solid (225.21 mg, 68% yield); ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.52 – 7.44 (m, 2H), 7.42 – 7.36 (m, 2H), 7.33 – 7.26 (m, 4H), 7.18 (d, *J* = 7.5 Hz, 1H), 6.69 (s, 1H), 5.38 (dd, *J* = 10.3, 7.4 Hz, 1H), 4.30 (dd, *J* = 11.4, 10.4 Hz, 1H), 3.58 (dd, *J* = 11.4, 7.4 Hz, 1H), 2.35 (s, 3H), 1.41 (s, 6H). ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 171.52, 154.25, 146.70, 143.39, 137.47, 135.80, 129.55, 129.06, 128.24, 127.77, 127.16, 126.43, 126.27, 68.45, 50.98, 42.73, 27.17, 26.86, 21.52. **HRMS** (EI) calcd for C₂₂H₂₂N₂O [M+H]: 331.1805; found: 331.1802.

8-(3-fluorophenyl)-6,6-dimethyl-2-phenyl-2,6-dihydroimidazo[1,2-a]pyridin-5(3H)-one:(27)

Yellow oil (194.39 mg, 58% yield); ¹**H NMR** (400 MHz, DMSO- d_6) δ 7.58 – 7.50 (m, 2H), 7.43 (td, J = 8.2, 6.2 Hz, 1H), 7.40 – 7.34 (m, 2H), 7.33 – 7.28 (m, 3H), 7.19 (td, J = 6.6, 1.1 Hz, 1H), 6.82 (s, 1H), 5.37 (dd, J = 10.3, 7.5 Hz, 1H), 4.29 (dd, J = 11.4, 10.4 Hz, 1H), 3.57 (dd, J = 11.4, 7.5 Hz, 1H), 1.40 (s, 6H). ¹³**C NMR** (101 MHz, DMSO- d_6) δ 171.39, 162.15 (d, J = 242.6 Hz), 153.94, 147.72, 143.25, 137.98 (d, J = 8.6 Hz), 130.33 (d, J = 8.4 Hz), 129.07, 127.80, 127.18, 125.10 (d, J = 2.7 Hz), 124.87 (d, J = 2.8 Hz), 115.97 (d, J = 22.7 Hz), 115.24 (d, J = 20.9 Hz), 68.52, 50.95, 42.84, 27.04, 26.69. ¹⁹**F**

NMR (376 MHz, DMSO-*d*₆) δ -113.64. **HRMS** (EI) calcd for C₂₁H₁₉N₂OF [M+H]: 335.1554; found: 335.1559.

6,6-dimethyl-8-phenyl-2-(p-tolyl)-2,6-dihydroimidazo[1,2-a]pyridin-5(3H)one:(28)

Yellow oil (228.51 mg, 69% yield); ¹**H NMR** (400 MHz, DMSO- d_6) δ 7.69 – 7.59 (m, 2H), 7.42 – 7.33 (m, 3H), 7.21 – 7.12 (m, 4H), 6.69 (s, 1H), 5.30 (dd, J = 10.3, 7.4 Hz, 1H), 4.25 (dd, J = 11.4, 10.4 Hz, 1H), 3.54 (dd, J = 11.4, 7.5 Hz, 1H), 2.28 (s, 3H), 1.39 (s, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 171.49, 154.02, 146.74, 140.41, 136.89, 135.82, 129.60, 129.12, 128.46, 128.38, 127.10, 126.18, 68.29, 50.98, 42.74, 27.18, 26.84, 21.17. HRMS (EI) calcd for C₂₂H₂₂N₂O [M+H]: 331.1805; found: 331.1808.

2-(4-fluorophenyl)-6,6-dimethyl-8-phenyl-2,6-dihydroimidazo[1,2-a]pyridin-5(3H)-one:(29)

Yellow oil (204.44 mg, 61% yield); ¹**H** NMR (400 MHz, DMSO- d_6) δ 7.55 (dd, J = 8.1, 1.6 Hz, 2H), 7.33 – 7.22 (m, 5H), 7.09 (t, J = 8.9 Hz, 2H), 6.60 (s, 1H), 5.27 (dd, J = 10.4, 7.6 Hz, 1H), 4.19 (dd, J = 11.4, 10.4 Hz, 1H), 3.45 (dd, J = 11.5, 7.7 Hz, 1H), 1.30 (s, 6H). ¹³**C** NMR (101 MHz, DMSO- d_6) δ 171.53, 161.88 (d, J = 242.8 Hz), 154.36, 146.92, 139.56 (d, J = 3.2 Hz), 135.81, 129.22 (d, J = 8.1 Hz), 129.13, 128.47, 128.39, 126.17, 115.77 (d, J = 21.1 Hz), 67.78, 50.96, 42.77, 27.17, 26.77. ¹⁹**F** NMR (376 MHz, DMSO- d_6) δ -115.37. **HRMS** (EI) calcd for C₂₁H₁₉N₂OF [M+H]: 335.1554; found: 335.1557.

2-(4-chlorophenyl)-6,6-dimethyl-8-phenyl-2,6-dihydroimidazo[1,2-a]pyridin-5(3H)-one:(30)

Yellow oil (193.12 mg, 55% yield); ¹**H NMR** (400 MHz, DMSO- d_6) δ 7.70 (d, J = 8.5 Hz, 2H), 7.47 (d, J = 8.6 Hz, 2H), 7.40 – 7.35 (m, 2H), 7.34 – 7.28 (m, 3H), 6.77 (s, 1H), 5.36 (dd, J = 10.4, 7.5 Hz, 1H), 4.30 (t, J = 10.9 Hz, 1H), 3.57 (dd, J = 11.4, 7.5 Hz, 1H), 1.40 (s, 6H). ¹³**C NMR** (101 MHz, DMSO- d_6) δ 171.37, 154.00, 147.24, 143.24, 134.53, 133.21, 130.86, 129.04, 128.39, 127.77, 127.19, 124.94, 68.48, 50.94, 42.81, 27.07, 26.71. **HRMS** (EI) calcd for C₂₁H₁₉N₂OC1 [M+H]: 351.1259; found: 351.1259.

2-(4-bromophenyl)-6,6-dimethyl-8-phenyl-2,6-dihydroimidazo[1,2-a]pyridin-5(3H)-one:(31)

Yellow oil (213.34 mg, 54% yield); ¹**H NMR** (400 MHz, DMSO- d_6) δ 7.44 – 7.32 (m, 4H), 7.10 (dq, J = 16.3, 8.7, 8.1 Hz, 5H), 6.53 (s, 1H), 5.13 (dd, J = 10.3, 7.5 Hz, 1H), 4.06 (t, J = 10.9 Hz, 1H), 3.34 (dd, J = 11.4, 7.6 Hz, 1H), 1.16 (s, 6H). ¹³**C NMR** (101 MHz, DMSO- d_6) δ 171.38, 154.00, 147.26, 143.29, 134.95, 131.37, 131.22, 129.08, 127.81, 127.23, 125.11, 121.92, 68.55, 51.00, 42.88, 27.13, 26.76. **HRMS** (EI) calcd for C₂₁H₁₉N₂OBr [M+H]: 395.0754; found: 395.0759.

2-(4-methoxyphenyl)-6,6-dimethyl-8-phenyl-2,6-dihydroimidazo[1,2-a]pyridin-

5(3H)-one:(32)

Light yellow oily (177.06 mg, 51% yield); ¹H NMR (400 MHz, DMSO- d_6) δ 7.66 (dd, J = 8.1, 1.6 Hz, 2H), 7.41 – 7.31 (m, 3H), 7.26 – 7.20 (m, 2H), 6.94 – 6.87 (m, 2H), 6.68 (s, 1H), 5.30 (dd, J = 10.2, 7.4 Hz, 1H), 4.25 (dd, J = 11.4, 10.3 Hz, 1H), 3.72 (s, 3H), 3.56 (dd, J = 11.4, 7.5 Hz, 1H), 1.40 (s, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 171.47, 158.98, 153.90, 146.66, 135.85, 135.38, 129.13, 128.45, 128.36, 128.34, 126.26, 114.41, 68.06, 55.50, 51.05, 42.74, 27.18, 26.85. HRMS (EI) calcd for C₂₂H₂₂N₂O₂ [M+H]: 347.1754; found: 347.1757.

6,6-dimethyl-8-phenyl-2-(4-(trifluoromethyl)phenyl)-2,6-dihydroimidazo[1,2a|pyridin-5(3H)-one:(33)

Yellow oil (215.69 mg, 56% yield); ¹**H NMR** (400 MHz, DMSO- d_6) δ 7.73 (d, J = 7.7 Hz, 2H), 7.66 – 7.63 (m, 2H), 7.56 (d, J = 8.1 Hz, 2H), 7.42 – 7.36 (m, 3H), 6.72 (d, J = 0.6 Hz, 1H), 5.47 (dd, J = 10.4, 7.6 Hz, 1H), 4.33 (dd, J = 11.4, 10.5 Hz, 1H), 3.58 (dd, J = 11.5, 7.7 Hz, 1H), 1.39 (d, J = 3.0 Hz, 6H). ¹³**C NMR** (101 MHz, DMSO- d_6) δ 171.55, 154.85, 147.94, 147.17, 135.75, 129.13, 128.51, 128.42, 128.14, 126.17 – 125.88 (m), 67.96, 50.69, 42.82, 27.17, 26.75. ¹⁹F NMR (376 MHz, DMSO- d_6) δ -60.85. **HRMS** (EI) calcd for C₂₂H₁₉N₂OF₃ [M+H]: 385.1522; found: 385.1525.

2-(3-fluorophenyl)-6,6-dimethyl-8-phenyl-2,6-dihydroimidazo[1,2-a]pyridin-5(3H)-one:(34)

Yellow oil (194.39 mg, 58% yield); ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.51 – 7.38 (m, 2H), 7.23 – 7.13 (m, 4H), 7.01 – 6.96 (m, 2H), 6.92 (td, *J* = 7.5, 2.1 Hz, 1H), 6.51 (s, 1H),

5.18 (dd, J = 10.4, 7.7 Hz, 1H), 4.10 (dd, J = 11.4, 10.4 Hz, 1H), 3.36 (dd, J = 11.4, 7.7 Hz, 1H), 1.19 (s, 6H). ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 171.53, 162.76 (d, J = 243.5 Hz), 154.66, 147.04, 146.20 (d, J = 7.3 Hz), 135.79, 131.04 (d, J = 8.1 Hz), 129.12, 128.48, 128.40, 126.11, 123.32 (d, J = 2.8 Hz), 114.57 (d, J = 21.0 Hz), 114.10 (d, J = 21.7 Hz), 67.92, 50.78, 42.78, 27.21, 26.71. ¹⁹**F NMR** (376 MHz, DMSO-*d*₆) δ -112.84. **HRMS** (EI) calcd for C₂₁H₁₉N₂OF [M+H]: 335.1554; found: 335.1558.

2-(1H-indol-3-yl)-6,6-dimethyl-8-phenyl-2,6-dihydroimidazo[1,2-a]pyridin-5(3H)-one:(35)

White solid (227.95 mg, 64% yield); ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 11.03 (s, 1H), 7.62 (dd, *J* = 7.9, 1.7 Hz, 2H), 7.44 – 7.31 (m, 6H), 7.14 – 7.06 (m, 1H), 7.02 – 6.95 (m, 1H), 6.70 (s, 1H), 5.59 (dd, *J* = 10.2, 7.2 Hz, 1H), 4.42 – 4.22 (m, 1H), 3.79 (dd, *J* = 11.3, 7.2 Hz, 1H), 1.43 (d, *J* = 4.9 Hz, 6H). ¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 171.53, 153.17, 146.41, 137.24, 135.87, 129.09, 128.44, 128.35, 126.32, 125.92, 123.32, 121.75, 119.23, 118.83, 116.21, 112.30, 62.49, 49.52, 42.70, 27.23, 27.11. **HRMS** (EI) calcd for C₂₃H₂₁N₃O [M+H]: 356.1757; found: 356.1753.

6,6-dimethyl-2-(2-methyl-1H-indol-3-yl)-8-phenyl-2,6-dihydroimidazo[1,2a]pyridin-5(3H)-one:(36)

White solid (229.52 mg, 62% yield); ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 11.02 (s, 1H), 7.51 (d, *J* = 8.1 Hz, 2H), 7.39 (d, *J* = 8.1 Hz, 2H), 7.32 (d, *J* = 2.4 Hz, 1H), 7.15 (d, *J* = 8.0 Hz, 2H), 7.12 – 7.06 (m, 1H), 7.00 – 6.94 (m, 1H), 6.65 (s, 1H), 5.57 (dd, *J* = 10.2, 7.2 Hz, 1H), 4.32 – 4.18 (m, 1H), 3.77 (dd, *J* = 11.3, 7.2 Hz, 1H), 2.28 (s, 3H), 1.41 (d, *J* = 4.5 Hz, 1H), 4.32 – 4.18 (m, 1H), 3.77 (dd, *J* = 11.3, 7.2 Hz, 1H), 2.28 (s, 3H), 1.41 (d, *J* = 4.5 Hz, 1H), 4.32 – 4.18 (m, 1H), 3.77 (dd, *J* = 11.3, 7.2 Hz, 1H), 2.28 (s, 3H), 1.41 (d, *J* = 4.5 Hz, 1H), 4.32 – 4.18 (m, 1H), 3.77 (dd, *J* = 11.3, 7.2 Hz, 1H), 2.28 (s, 3H), 1.41 (d, *J* = 4.5 Hz), 1.41 (d, *J* = 4.5 Hz), 3.77 (dd, *J* = 11.3, 7.2 Hz, 1H), 3.77 (dd, *J* = 10.2, 7.2 Hz), 3.77 (dd, *J* = 11.3, 7.2 Hz), 3.77 (dd, *J* = 4.5 Hz), 3.77 (dd, *J* = 11.3, 7.2 Hz), 3.77 (dd, *J* = 11.3), 3.77 (dd, *J* = 3.8 Hz), 3.78 Hz), 3. 6H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 171.57, 153.24, 145.70, 137.75, 137.23, 132.97, 128.95, 128.90, 126.13, 125.92, 123.26, 121.74, 119.21, 118.85, 116.24, 112.28, 62.46, 49.47, 42.64, 27.25, 27.15, 21.21. HRMS (EI) calcd for C₂₄H₂₃N₃O [M+H]: 370.1914; found: 370.1918.

2-(3,4-dimethoxyphenyl)-6,6-dimethyl-8-phenyl-2,6-dihydroimidazo[1,2a]pyridin-5(3H)-one:(37)

Light yellow oily (203.68 mg, 54% yield); ¹H NMR (400 MHz, DMSO- d_6) δ 7.71 – 7.61 (m, 2H), 7.42 – 7.34 (m, 3H), 6.95 – 6.90 (m, 2H), 6.82 (dd, J = 8.3, 2.0 Hz, 1H), 6.68 (s, 1H), 5.29 (dd, J = 10.2, 7.5 Hz, 1H), 4.25 (t, J = 10.8 Hz, 1H), 3.75 (d, J = 9.4 Hz, 6H), 3.59 (dd, J = 11.4, 7.6 Hz, 1H), 1.39 (d, J = 2.1 Hz, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 171.50, 153.93, 149.27, 148.56, 146.67, 135.87, 135.82, 129.12, 128.46, 128.38, 126.27, 119.10, 112.40, 111.22, 68.28, 56.01, 55.95, 50.96, 42.74, 27.18, 26.85. HRMS (EI) calcd for C₂₃H₂₄N₂O₃ [M+H]: 377.1860; found: 377.1866.

2-(3-fluorophenyl)-6,6-dimethyl-8-(p-tolyl)-2,6-dihydroimidazo[1,2-a]pyridin-5(3H)-one:(38)

Yellow oil (195.54 mg, 56% yield); ¹**H NMR** (400 MHz, DMSO- d_6) δ 7.51 – 7.42 (m, 2H), 7.34 (td, J = 7.9, 6.0 Hz, 1H), 7.15 – 7.00 (m, 6H), 6.58 (s, 1H), 5.30 (dd, J = 10.4, 7.7 Hz, 1H), 4.21 (dd, J = 11.4, 10.4 Hz, 1H), 3.47 (dd, J = 11.4, 7.7 Hz, 1H), 2.24 (s, 3H), 1.30 (s, 6H). ¹³**C NMR** (101 MHz, DMSO- d_6) δ 171.59, 162.77 (d, J = 243.4 Hz), 154.74, 146.36, 146.24 (d, J = 6.7 Hz), 137.83, 132.91, 131.05 (d, J = 8.1 Hz), 128.98, 125.94,

123.30 (d, J = 2.8 Hz), 114.55 (d, J = 21.0 Hz), 114.07 (d, J = 21.8 Hz), 67.88, 50.73, 42.72, 27.24, 26.75, 21.22. ¹⁹F NMR (376 MHz, DMSO- d_6) δ -112.87. HRMS (EI) calcd for C₂₂H₂₁N₂OF [M+H]: 349.1711; found: 349.1718.

7,7-dimethyl-2,9-diphenyl-2,3,4,7-tetrahydro-6H-pyrido[1,2-a]pyrimidin-6one:(39)

Light yellow oily (135.78 mg, 41% yield); ¹H NMR (400 MHz, DMSO- d_6) δ 7.47 – 7.41 (m, 2H), 7.35 – 7.25 (m, 7H), 7.23 – 7.17 (m, 1H), 6.39 (s, 1H), 4.60 (dd, J = 9.4, 4.1 Hz, 1H), 3.93 (dt, J = 13.2, 4.5 Hz, 1H), 3.58 (ddd, J = 13.2, 11.1, 4.3 Hz, 1H), 2.26 (dq, J = 13.0, 4.3 Hz, 1H), 1.63 (dddd, J = 13.8, 11.0, 9.4, 4.7 Hz, 1H), 1.37 (d, J = 2.9 Hz, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 174.12, 147.07, 144.88, 141.89, 138.15, 132.27, 130.10, 128.59, 127.81, 127.68, 126.89, 56.97, 40.58, 39.67, 29.13, 27.77, 27.58. HRMS (EI) calcd for C₂₂H₂₂N₂O [M+H]: 331.1805; found: 331.1809.

7. Crystal Data and Structure Refinements

Figure 9 Structure of 3a by X-Ray crystallographic (CCDC = 2263771)

Single crystal suitable for X-ray diffraction was obtained by slow evaporation of a saturated solution of compound 3a (cyclohexane/CH₂Cl₂) in a loosely capped vial.

Empirical formula	C ₂₀ H ₁₉ NO
Formula weight	406.51
Temperature/K	193
Crystal system	monoclinic
Space group	P21/c
a/Å	11.9263(8)
b/Å	17.9508(11)
c/Å	10.8524(8)
$\alpha/^{\circ}$	90
β/°	106.642(2)
$\gamma/^{\circ}$	90
Volume/Å ³	2226.0(3)
Z	4
pcalcg/cm ³	1.213
μ/mm^{-1}	0.074
F(000)	864.0
Crystal size/mm ³	0.13 imes 0.12 imes 0.1
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data	4.528 to 55.03
collection/°	
Index ranges	$\textbf{-15} \leqslant \textbf{h} \leqslant \textbf{13}, \textbf{-23} \leqslant \textbf{k} \leqslant \textbf{23}, \textbf{-13} \leqslant$

Table 11 Cry	stal data	and structure	refinement for	3a
--------------	-----------	---------------	----------------	----

37

 $l \leq 14$

Reflections collected	21000
Independent reflections	5107 [Rint = 0.0597, Rsigma =
	0.0564]
Data/restraints/parameters	5107/0/283
Final R indexes [I>= 2σ (I)]	R1 = 0.0573, wR2 = 0.1164
Final R indexes [all data]	R1 = 0.0998, wR2 = 0.1354
Largest diff. peak/hole / e Å ⁻³	0.23/-0.20

8. ¹H NMR and ¹³C NMR spectra

¹³C NMR Spectrum of Compound **1b**

¹³C NMR Spectrum of Compound **1c**

¹H NMR Spectrum of Compound **1f**

¹H NMR Spectrum of Compound **1**j

¹H NMR Spectrum of Compound **1**I

¹³C NMR Spectrum of Compound **4**

¹⁹F NMR Spectrum of Compound **12**

-1.46 -1.47 -1.46 -1.44 -1.44 -1.33 -1.13

¹⁹F NMR Spectrum of Compound **29**

¹⁹F NMR Spectrum of Compound **34**

1.103 1.756 1.756 1.756 1.756 1.756 1.756 1.756 1.756 1.756 1.753 1.756 1.753 1.756 1.753 1.756 1.753 1.756 1.753 1.756 1.753 1.758 1.756 1.753 1.758 1.756

7.167 7.166 7.166 7.166 7.166 7.166 7.166 7.173 7.133

¹³C NMR Spectrum of Compound **37**

 ò

9. References

- J. C. Theriot, C. H. Lim, H. Yang, M. D. Ryan, C. B. Musgrave and G. M. Miyake, *Science*, 2016, 352, 1082-1086.
- 2. Z. Pan, S. Wang, J. T. Brethorst and C. J. Douglas, *Journal of the American Chemical Society*, 2018, **140**, 3331-3338.