Supporting Information for:

Visible-light-driven selective difluoroalkylation of α-CF₃ alkenes

to access CF₂-containing gem-difluoroalkenes and

trifluoromethylalkanes

Panpan Lei,[†] Bingran Chen,[†] Tonghui Zhang,[†] Qinlin Chen, Liangming Xuan, Haifeng Wang, Qiongjiao Yan, Wei Wang,* Jie Zeng,* and Fener Chen*

Table of Contents

1. General Information	S2
2. Reaction Optimization	S 3
3. Product Synthesis and Characterization	S5
3.1 List of Substrates	S5
3.2 General procedure for the visible-light-promoted	S6
selective difluoroalkylation of α-CF3 alkenes	
4. Scale-Up and Transformation of Product 3aa	S23
5. Mechanistic Experiments	S26
6. X-Ray Structure of Product 4jh	S34
7. DFT Computational Study	S36
8. References	S67
9. NMR Spectra	S69

1. General Information

Flash column chromatography was performed using silica gel from Qingdao Haiyang. Anhydrous solvents [tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-MeTHF), *N*,*N*-dimethylformamide (DMF), benzotrifluoride (PhCF₃), ethyl acetate (EtOAc), acetonitrile (CH₃CN), methanol (CH₃OH), dichloromethane (DCM), methylsulfoxide (DMSO), and 1,4-dioxane] were purchased from Adamas, Energy Chemicals, or Innochem, and used as received. All commercial reagents were purchased from Bidepharm, Energy Chemical, Aladdin, and Adamas of the highest purity grade. Photosensitizers were purchased from laajoo, Adamas, Alfa, or Aldrich, and used as received.

General Analytical Information

All new compounds were characterized by NMR spectroscopy, high-resolution mass spectroscopy, and melting point (if solids). NMR spectra were recorded on a Bruker AscendTM 400 spectrometer and were calibrated using TMS or residual deuterated solvent as an internal reference (Chloroform-*d*: 7.26 ppm for ¹H NMR and 77.16 ppm for ¹³C NMR, DMSO-*d*₆: 2.50 ppm for ¹H NMR and 39.52 ppm for ¹³C NMR). Data were reported as follows: chemical shift, multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet), coupling constants (hertz), and integration. HRMS spectra were recorded on a Waters Acquity UPLC/Xevo TQD MSMS. Melting points (Mp) were recorded on a MP450 melting point apparatus.

Experimental Set-up

Figure S1. The emission spectra and spectral distribution of the purple LEDs

The Material of the Irradiation Vessel Manufacturer: GeAo Chemical Model: 24 W, purple LEDs Broadband source: $\lambda = 365-375$ nm ($\lambda_{max} = 366.0$ nm) Material of the irradiation vessel: borosilicate reaction tube Distance from the light source to the irradiation vessel: 3.0 cm Not use any filters

Figure S2. The set-up for the reaction

2. Reaction Optimization

Table S1. Effect of photocatalysts on this reaction^[a]

Ph CF ₃	+ Br $\xrightarrow{F}_{O} \xrightarrow{F}_{O} OEt = \frac{F}{DI}$	Photocatalyst (2 mol%) PEA, CH ₃ CN, RT, N ₂ , 24 h Purple LEDs (365 nm)	Ph 3aa	F OEt
Entry	Photocatalyst		Yield (%) ^[b]	
1	<i>fac</i> -Ir(ppy) ₃		31	
2	[Ir(dFppy) ₂ (dtbbpy)]PF ₆		47	
3	[Ir(ppy) ₂ (dtbbpy)]PF ₆		48	
4	[Ir(dFCF ₃ ppy) ₂ (dtbbpy)]PF ₆		62	

5	[Ir(dFCF ₃ ppy) ₂ (bpy)]PF ₆	66
6	$Ru(bpy)_3(PF_6)_2$	33
7	$Ru(bpz)_3(PF_6)_2$	17
8	$Ru(phen)_3(PF_6)_2$	44
9	[Mes-Acr-Me][BF ₄]	51
10	Rose bengal	29
11	Rhodamine 6G	63
12	Eosin Y	67
13	4CzIPN	73

[a] Reaction condition: **1a** (0.1 mmol, 1.0 equiv.), **2a** (0.2 mmol, 2.0 equiv.), photocatalyst (2 mol%), DIPEA (0.2 mmol, 2.0 equiv.), CH₃CN (1.0 mL), 24 W purple LEDs (365 nm), room temperature, nitrogen atmosphere, 24 h. [b] The yield was determined by crude ¹H NMR using CH₂Br₂ as internal standard.

Ph Ta	+ Br OEt OIPE	4CzIPN (2 mol%) A, solvent, RT, N ₂ , 24 h urple LEDs (365 nm)	Ph 3aa
Entry	So	lvent	Yield of 3aa (%) ^[b]
1	Т	ΉF	76
2	2-M	leTHF	60
3	D	CM	75
4	Μ	eOH	0
5	Et	OAc	52
6	Pl	nCF ₃	48
7	1,4-0	lioxane	64
8	D	MSO	92
9	Ľ	OMF	96

Table S2. Effect of solvents on this reaction^[a]

[a] Reaction condition: **1a** (0.1 mmol, 1.0 equiv.), **2a** (0.2 mmol, 2.0 equiv.), 4CzIPN (2 mol%), DIPEA (0.2 mmol, 2.0 equiv.), solvent (1.0 mL), 24 W purple LEDs (365 nm), room temperature, nitrogen atmosphere, 24 h. [b] The yield was determined by crude ¹H NMR using CH₂Br₂ as internal standard.

Table S3. Effect of additives and light source on this reaction^[a]

Entry	Light source	Additive	Yield of 3aa (%) ^[b]
1	365 nm	TMEDA	0
2	365 nm	Et ₃ N	66
3	365 nm	DIPEA	96
4	365 nm	quinuclidine	34
5	365 nm	HE	54
6	400 nm	DIPEA	76
7	460 nm	DIPEA	75
8	dark conditions	DIPEA	0

[a] Reaction condition: **1a** (0.1 mmol, 1.0 equiv.), **2a** (0.2 mmol, 2.0 equiv.), 4CzIPN (2 mol%), additive (0.2 mmol, 2.0 equiv.), DMF (1.0 mL), 24 W LEDs light, room temperature, nitrogen atmosphere, 24 h. [b] The yield was determined by crude ¹H NMR using CH₂Br₂ as internal standard.

3. Product Synthesis and Characterization

3.1 List of Substrates

All the α -trifluoromethyl styrenes were synthesized according to the reported procedure.¹

List of bromodifluoro precursors

All the bromodifluoro precursors were synthesized according to the reported procedure.^{2,3}

3.2 General procedure for the visible-light-promoted selective difluoroalkylation of α-CF₃ alkenes

General Procedure:

To an oven-dried quartz vial, α -trifluoromethyl styrenes **1** (0.1 mmol, 1.0 equiv.) and bromodifluoro precursors **2** (0.2 mmol, 2.0 equiv.) were added sequentially. The vial was charged with a stir bar and transferred to a glovebox, where the solids were backfilled with an inert atmosphere. In the glovebox, 4CzIPN (0.002 mmol, 2 mol%) and DIPEA (0.2 mmol, 2.0 equiv.) were added into the vial, followed by DMF (1.0 mL). The vial was sealed with a rubber plug, removed from the glove box, and irradiated and stir by 24 W 365 nm LEDs at room temperature for 24 h. After removal of solvents, the crude mixture was purified by flash chromatography (petroleum ether/ethyl acetate) to afford the pure products **3aa-3xa**, **3ab-3ag**, **3ar**, **3as**, **4ah-4aq**, **4ih-4lh**, **4vh**, **4xh**.

Ethyl 4-([1,1'-biphenyl]-4-yl)-2,2,5,5-tetrafluoropent-4enoate (3aa). General Procedure was used to prepare the desired product 3aa. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded 3aa as a yellow oil (31.7 mg, 0.09 mmol, 90%). ¹H NMR (400 MHz, Chloroform-d) δ : 7.61 – 7.54 (m, 4H), 7.47 – 7.40 (m,

2H), 7.39 – 7.32 (m, 3H), 4.03 (q, J = 7.2 Hz, 2H), 3.24 (tt, J = 15.1, 2.0, 2H), 1.19 (t, J = 7.2 Hz, 3H). ¹³C **NMR (101 MHz, Chloroform-***d***)** δ : 163.4 (t, J = 32.3 Hz), 155.4 (t, J = 292.6 Hz), 140.8, 140.3, 131.1 (t, J = 1.8 Hz),129.6, 128.8, 127.6, 127.1, 127.0, 114.5 (t, J = 252.7 Hz), 84.6 (t, J = 20.1 Hz), 63.0, 34.5 – 33.0 (m), 13.7. ¹⁹F **NMR (376 MHz, Chloroform-***d***)** δ : -86.18 (d, J = 5.5 Hz), -104.14 (d, J = 3.7 Hz), -104.18 (d, J = 3.6 Hz), -104.22 (d, J = 3.5 Hz). **HRMS (DART-TOF)** calculated for C₁₉H₁₈F₄NO⁺ [M+NH₄-H₂O]⁺ m/z 352.1319, found 352.1331.

Ethyl 2,2,5,5-tetrafluoro-4-(*p*-tolyl)pent-4-enoate (3ba). General Procedure was used to prepare the desired product 3ba. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded 3ba as a yellow oil (20.0 mg, 0.069 mmol, 69%). ¹H NMR (400 MHz,

Chloroform-*d***)** δ : 7.17 (s, 4H), 4.02 (q, J = 7.2 Hz, 2H), 3.18 (tt, J = 15.0, 2.0, 2H), 2.34 (s, 3H), 1.20 (t, J = 7.1 Hz, 3H). ¹³**C NMR (101 MHz, Chloroform-***d***)** δ : 162.4 (t, J = 32.3 Hz), 154.2 (d, J = 291.8, 288.3 Hz), 136.7, 128.1, 128.0 (t, J = 1.9 Hz), 127.3 (t, J = 3.0 Hz), 113.5 (t, J = 254.2 Hz), 83.8 – 83.3 (m), 61.9, 33.0 (t, J = 25.4 Hz), 20.1, 12.6. ¹⁹**F NMR (376 MHz, Chloroform-***d***)** δ : -87.13 (d, J = 7.9 Hz), -104.23 (d, J = 4.0 Hz), -104.27 (d, J = 4.1 Hz), -104.31. **HRMS (DART-TOF)** calculated for C₁₄H₁₂F₄NaO⁺ [M+Na-H₂O]⁺ m/z 295.0716, found 295.0710.

Ethyl 2,2,5,5-Tetrafluoro-4-(4-methoxyphenyl)pent-4enoate (3ca). General Procedure was used to prepare the desired product 3ca. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded 3ca as a yellow oil (22.0 mg, 0.072 mmol, 72%). ¹H NMR

(400 MHz, Chloroform-*d*) δ : 7.25 – 7.18 (m, 2H), 6.92 – 6.85 (m, 2H), 4.03 (q, J = 7.2 Hz, 2H), 3.81 (s, 3H), 3.16 (tt, J = 15.0, 2.0, 2H), 1.21 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ : 163.4 (t, J = 32.3 Hz), 159.1, 155.2 (t, J = 292.9 Hz), 129.7 (t, J = 2.8 Hz), 124.1, 113.9, 113.8 (t, J = 254.2 Hz), 84.8 – 84.3 (m), 62.9, 55.3, 34.1 (t, J = 26.1 Hz), 13.7. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -104.24 (t, J = 2.9 Hz), -104.28 (t, J = 3.1 Hz), -104.29 – -104.35 (m). HRMS (DART-TOF) calculated for C₁₄H₁₄F₄KO₃⁺ [M+K]⁺ m/z 345.0511, found 345.0521.

Ethyl 2,2,5,5-tetrafluoro-4-(4-(trifluoromethoxy)phenyl)pent-4-enoate (3da). General Procedure was used to prepare the desired product 3da. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded 3da as a yellow oil (25.6 mg, 0.071 mmol, 71%). ¹H NMR (400 MHz,

Chloroform-*d***)** δ : 7.37 – 7.29 (m, 2H), 7.25 – 7.18 (m, 2H), 4.06 (q, J = 7.2 Hz, 2H), 3.19 (tt, J = 15.1, 2.1, 2H), 1.21 (t, J = 7.2 Hz, 3H). ¹³**C NMR (101 MHz, Chloroform-***d***)** δ : 163.3 (t, J = 32.2 Hz), 155.4 (t, J = 293.0 Hz), 148.7, 130.9, 130.1 (t, J = 3.1 Hz), 121.0, 120.4 (q, J = 257.6 Hz), 114.3 (t, J = 253.2 Hz), 84.5 – 83.4 (m), 63.1, 34.0 (t, J = 25.9 Hz), 13.7. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -85.72 (d, J = 4.5 Hz), -104.25 – -104.30 (m), -104.32 (d, J = 3.2 Hz), -104.37. HRMS (DART-TOF) calculated for C₁₄H₁₁F₇KO₃⁺ [M+K]⁺ m/z 399.0228, found 399.0224.

Ethyl 4-(4-chlorophenyl)-2,2,5,5-tetrafluoropent-4-enoate (3ea). General Procedure was used to prepare the desired product 3ea. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded 3ea as a yellow oil (20.5 mg, 0.066 mmol, 66%). ¹H NMR (400 MHz,

Chloroform-*d***)** δ : 7.39 – 7.33 (m, 2H), 7.28 – 7.23 (m, 2H), 4.12 (q, J = 7.2 Hz, 2H), 3.20 (tt, J = 15.0, 2.0, 2H), 1.26 (t, J = 7.2 Hz, 3H). ¹³**C NMR (101 MHz, Chloroform-***d***)** δ : 163.3 (t, J = 32.1 Hz), 155.3 (t, J = 292.9 Hz), 133.9, 130.7, 129.8 (t, J = 3.1 Hz), 128.7, 119.5 – 105.2 (m), 89.4 – 80.3 (m), 63.1, 33.9 (t, J = 25.4 Hz), 137. ¹⁹**F NMR (376 MHz, Chloroform-***d***)** δ : -85.82 (d, J = 2.7 Hz), -104.21 (t, J = 3.0 Hz), -104.25 (t, J = 3.1 Hz), -104.29 (t, J = 3.1 Hz). **HRMS (DART-TOF)** calculated for C₁₃H₁₁ClF₄KO₂⁺ [M+K]⁺ m/z 349.0015, found 349.0002.

Ethyl 4-(4-bromophenyl)-2,2,5,5-tetrafluoropent-4-enoate (3fa). General Procedure was used to prepare the desired product 3fa. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded 3fa as a yellow oil (26.6 mg, 0.075 mmol, 75%). ¹H NMR (400 MHz,

Chloroform-*d***)** δ : 7.52 – 7.46 (m, 2H), 7.20 – 7.14 (m, 2H), 4.10 (q, J = 7.1 Hz, 2H), 3.17 (tt, J = 15.1, 2.1, 2H), 1.24 (t, J = 7.2 Hz, 3H). ¹³**C NMR (101 MHz, Chloroform-***d***)** δ : 163.3 (t, J = 32.2 Hz), 155.2 (t, J = 293.0 Hz), 131.7, 131.2, 130.1 (t, J = 3.1 Hz), 122.0, 118.0 – 110.4 (m), 91.5 – 79.1 (m), 63.1, 33.8 (t, J = 25.5 Hz), 13.7. ¹⁹**F NMR (376 MHz, Chloroform-***d***)** δ : -85.69 (d, J = 2.9 Hz), -104.20 (t, J = 3.0 Hz), -104.24 (t, J = 3.1 Hz), -104.29 (d, J = 3.2 Hz). **HRMS (DART-TOF)** calculated for C₁₃H₁₁BrF₄KO₂⁺ [M+K]⁺ m/z 394.9490, found 394.9497.

Ethyl2,2,5,5-tetrafluoro-4-(4-(trimethylsilyl)phenyl)pent-4-enoate(3ga).GeneralProcedurewas used to prepare the desired product 3ga.Chromatographic purification on silica gel using petroleumether/ethyl acetate (5/1) as eluent afforded 3ga as a yellow oil

(23.0 mg, 0.066 mmol, 66%). ¹H NMR (400 MHz, Chloroform-d) δ: 7.54 (d, J = 7.6 Hz, 2H),

7.32 – 7.27 (m, 2H), 3.98 (q, J = 7.1 Hz, 2H), 3.29 – 3.17 (m, 2H), 1.17 (t, J = 7.2 Hz, 3H), 0.35 – 0.25 (m, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ : 64.6 (t, J = 32.3 Hz), 156.6 (t, J = 292.6 Hz), 141.6, 134.6, 133.6 (t, J = 2.5 Hz), 128.9 (t, J = 2.9 Hz), 118.9 – 112.1 (m), 86.7 – 85.2 (m), 64.1, 35.8 – 34.7 (m), 14.8, 0.0. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -86.25 – 86.55 (m), -104.25 (d, J = 4.7 Hz), -104.29 (d, J = 4.8 Hz), -104.33 (d, J = 4.6 Hz). HRMS (DART-TOF) calculated for C₁₆H₂₁F₄O₂Si⁺ [M+H]⁺ m/z 349.1241, found 349.1242.

Ethyl 2,2,5,5-tetrafluoro-4-(4-(methylthio)phenyl)pent-4enoate (3ha). General Procedure was used to prepare the desired product 3ha. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded 3ha as a yellow oil (13.2 mg, 0.041 mmol, 41%). ¹H NMR

(400 MHz, Chloroform-*d*) δ : 7.25 – 7.19 (m, 4H), 4.05 (q, J = 7.2 Hz, 2H), 3.17 (tt, J = 15.0, 2.0, 2H), 2.48 (s, 3H), 1.22 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ : 163.4 (t, J = 32.2 Hz), 155.3 (t, J = 292.4 Hz), 138.6, 128.8 (t, J = 3.1 Hz), 128.6, 126.2, 114.5 (t, J = 252.9 Hz), 84.6 – 84.2 (m), 63.0, 33.9 (t, J = 25.7 Hz), 15.5, 13.7. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -86.45 (t, J = 2.6 Hz), -104.23 (t, J = 3.1 Hz), -104.27 (t, J = 3.2 Hz), -104.31 (d, J = 2.9 Hz). HRMS (DART-TOF) calculated for C₁₄H₁₈F₄NO₂S⁺ [M+NH₄-H₂O]⁺ m/z 322.0883, found 322.0900.

Ethyl2,2,5,5-tetrafluoro-4-(4-(methylsulfonyl)phenyl)pent-4-enoate(3ia).GeneralProcedurewas used to prepare the desired product 3ia.Chromatographic purification on silica gel using petroleumether/ethyl acetate(5/1) as eluent afforded 3ia as a yellow

oil (27.6 mg, 0.078 mmol, 78%). ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.96 (t, J = 7.8 Hz, 2H), 7.54 (t, J = 8.4 Hz, 2H), 4.16 (q, J = 10.9 Hz, 2H), 3.24 (tt, J = 15.4, 2.0, 2H), 3.07 (d, J = 2.5 Hz, 3H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ : 163.2 (t, J = 32.0 Hz), 155.7 (t, J = 294.8 Hz), 139.9, 138.3 (t, J = 3.8 Hz), 130.2, 129.4 (t, J = 3.3 Hz), 127.9, 127.7, 116.8 – 111.5 (m), 84.5 – 83.8 (m), 63.3, 44.5, 33.6 (t, J = 25.2 Hz), 13.8. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -83.27 (dt, J = 21.0, 5.3 Hz), -83.70 (d, J = 23.2 Hz), -104.15 (d, J = 5.2 Hz), -104.24 (d, J = 5.2 Hz). HRMS (DART-TOF) calculated for C₁₄H₁₄F₄NaO₄S⁺ [M+H]⁺ m/z 377.0441, found 377.0439.

Ethyl 4-(4-acetylphenyl)-2,2,5,5-tetrafluoropent-4enoate (3ja). General Procedure was used to prepare the desired product 3ja. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded 3ja as a yellow oil (20.0 mg, 0.063 mmol, 63%). ¹H NMR (400 MHz, Chloroform-*d*) δ: 7.98 – 7.93 (m, 2H),

7.44 – 7.39 (m, 2H), 4.11 (q, J = 7.1 Hz, 2H), 3.23 (tt, J = 15.2, 2.1, 2H), 2.60 (s, 3H), 1.24 (t, J = 7.2 Hz, 3H). ¹³**C NMR (101 MHz, Chloroform-d)** δ : 197.2, 163.3 (t, J = 32.1 Hz), 155.5 (t, J = 294.1 Hz), 137.2 (t, J = 3.5 Hz), 136.4, 128.6 (t, J = 3.0 Hz), 128.5, 117.5 – 110.2 (m), 85.6 – 83.9 (m), 63.1, 34.0 – 33.2 (m), 26.5, 13.7. ¹⁹**F NMR (376 MHz, Chloroform-d)** δ : -

84.20 - -84.59 (m), -104.16 (d, J = 5.0 Hz), -104.20 (d, J = 4.9 Hz), -104.24 (d, J = 4.9 Hz). HRMS (DART-TOF) calculated for C₁₅H₁₃F₄O₃⁺ [M-H]⁻ m/z 317.0806, found 317.0793.

Methyl 4-(5-ethoxy-1,1,4,4-tetrafluoro-5-oxopent-1en-2-yl)benzoate (3ka). General Procedure was used to prepare the desired product 3ka. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded 3ka as a yellow oil (19.4 mg, 0.058

mmol, 58%). ¹**H** NMR (400 MHz, Chloroform-*d*) δ : 8.04 (dd, J = 8.4, 4.1 Hz, 2H), 7.42 – 7.36 (m, 2H), 4.08 (q, J = 7.1 Hz, 2H), 3.92 (s, 3H), 3.23 (tt, J = 15.2, 2.1, 2H), 1.23 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ : 166.5, 163.3 (t, J = 31.9 Hz), 155.6 (t, J = 293.9 Hz), 137.0 (t, J = 3.3 Hz), 130.0, 129.7, 128.5 (t, J = 3.3 Hz), 117.7 – 109.1 (m), 85.5 – 83.7 (m), 63.1, 52.2, 33.7 (td, J = 25.6, 2.2 Hz), 13.7. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -84.33 – -84.75 (m), -104.24 (d, J = 5.1 Hz), -104.28 (d, J = 4.9 Hz), -104.32 (d, J = 5.1 Hz). HRMS (DART-TOF) calculated for C₁₅H₁₅F₄O₄⁺ [M+H]⁺ m/z 335.0901, found 335.0899.

Ethyl 4-(4-cyanophenyl)-2,2,5,5-tetrafluoropent-4-enoate (**3la**). General Procedure was used to prepare the desired product **3la**. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded **3la** as a yellow oil (22.3 mg, 0.074 mmol, 74%). ¹H NMR (400 MHz,

Chloroform-*d***)** δ : 7.71 – 7.64 (m, 2H), 7.44 (d, J = 8.1 Hz, 2H), 4.16 (q, J = 7.2 Hz, 2H), 3.22 (tt, J = 15.4, 2.2, 2H), 1.27 (t, J = 7.1 Hz, 3H). ¹³**C NMR (101 MHz, Chloroform-***d***)** δ : 163.2 (t, J = 32.1 Hz), 155.6 (t, J = 294.9 Hz), 137.4 – 137.1 (m), 132.3, 129.2 (t, J = 3.4 Hz), 118.3, 111.7, 116.8-111.8 (m), 84.9 – 83.6 (m), 63.2, 33.8 – 33.1 (m), 13.8. ¹⁹F NMR (376 MHz, Chloroform-*d***)** δ : -81.55 – -84.36 (m), -104.22 (d, J = 5.1 Hz), -104.26 (d, J = 5.1 Hz), -104.30 (d, J = 5.1 Hz). **HRMS (DART-TOF)** calculated for C₁₄H₁₂F₄NO₂⁺ [M+H]⁺ m/z 302.0799, found 302.0786.

Ethyl 2,2,5,5-tetrafluoro-4-(3-methoxyphenyl)pent-4enoate (3ma). General Procedure was used to prepare the desired product 3ma. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded 3ma as a yellow oil (19.6 mg, 0.064 mmol, 64%). ¹H NMR

(400 MHz, Chloroform-*d*) δ : 7.31 – 7.23 (m, 1H), 6.91 – 6.80 (m, 3H), 4.04 (q, J = 7.1 Hz, 2H), 3.81 (s, 3H), 3.19 (tt, J = 15.0, 2.0, 2H), 1.20 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ : 163.4 (t, J = 32.3 Hz), 159.5, 155.3 (t, J = 292.3 Hz), 133.5 – 133.3 (m), 129.5, 120.9 (t, J = 3.0 Hz), 114.5-109.3 (m), 114.4 (t, J = 3.1 Hz), 113.3, 85.2 – 84.3 (m), 63.0, 55.3, 34.1 (t, J = 27.0 Hz), 13.7. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -85.95 (d, J = 29.5 Hz), -86.45 (dt, J = 29.4, 5.4 Hz), -104.26 (d, J = 5.0 Hz), -104.30 (d, J = 5.0 Hz), -104.34 (d, J = 5.1 Hz). HRMS (DART-TOF) calculated for C₁₄H₁₄F₄KO₃⁺ [M+K]⁺ m/z 345.0511, found 345.0521.

Ethyl 2,2,5,5-tetrafluoro-4-(2-fluoro-4methoxyphenyl)pent-4-enoate (3na). General Procedure was used to prepare the desired product 3na. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded 3na as a yellow oil (13.0 mg, 0.04

mmol, 40%). ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.15 (t, *J* = 8.6 Hz, 1H), 6.77 – 6.62 (m, 2H), 4.13 (q, *J* = 7.2 Hz, 2H), 3.82 (s, 3H), 3.18 (tt, *J* = 15.0, 2.0, 2H), 1.27 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ : 163.3 (t, *J* = 32.4 Hz), 161.1 (d, *J* = 11.0 Hz), 160.9 (d, *J* = 247.7 Hz), 158.5 – 151.9 (m), 131.8 – 131.6 (m), 114.6 – 108.6 (m), 110.1 (d, *J* = 3.1 Hz), 102.0, 101.7, 80.0 – 79.0 (m), 63.0, 55.6, 33.7 (t, *J* = 25.4 Hz), 13.7. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -84.52 (dd, *J* = 27.3, 8.4 Hz), -87.31 (dt, *J* = 27.3, 3.4 Hz), -104.32 (d, *J* = 4.0 Hz), -104.36 (d, *J* = 3.9 Hz), -104.40 (d, *J* = 3.9 Hz), -111.72 (dt, *J* = 12.7, 8.5 Hz). HRMS (DART-TOF) calculated for C₁₄H₁₃F₅KO₃⁺ [M+K]⁺ m/z 363.0416, found 363.0412.

Ethyl 4-(3,5-dimethoxyphenyl)-2,2,5,5-tetrafluoropent-4enoate (30a). General Procedure was used to prepare the desired product 30a. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded 30a as a yellow oil (17.5 mg, 0.052 mmol, 52%). ¹H NMR (400 MHz, Chloroform-*d*) δ : 6.43 (dd, J = 2.3, 1.1 Hz, 2H),

6.40 (t, J = 2.2 Hz, 1H), 4.07 (q, J = 7.2 Hz, 2H), 3.79 (s, 6H), 3.16 (tt, J = 15.1, 2.0, 2H), 1.22 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ : 163.4 (t, J = 32.2 Hz), 160.7, 155.3 (t, J = 292.4 Hz), 134.1 – 133.8 (m), 117.8 – 110.7 (m), 106.8 (t, J = 3.2 Hz), 99.9, 89.4 – 78.8 (m), 63.0, 55.4, 34.1 (td, J = 25.8, 2.5 Hz), 13.7. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -85.30 (d, J = 29.1 Hz), -86.32 (dt, J = 31.7, 5.5 Hz), -104.22 (d, J = 5.1 Hz), -104.26 (d, J = 5.0 Hz), -104.30 (d, J = 5.2 Hz). HRMS (DART-TOF) calculated for C₁₅H₁₇F₄O₄⁺ [M+H]⁺ m/z 337.1057, found 337.1045.

Dimethyl 5-(5-ethoxy-1,1,4,4-tetrafluoro-5-oxopent-1-en-2-yl)isophthalate (3pa). General Procedure was used to prepare the desired product **3pa**. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded **3pa** as a white solid (21.9 mg, 0.056 mmol, 56%); **Mp:** 87.7-88.9 °C. ¹H NMR (400 MHz,

Chloroform-*d***)** δ : 8.64 (t, J = 1.6 Hz, 1H), 8.19 (t, J = 1.2 Hz, 2H), 4.16 (q, J = 7.2 Hz, 2H), 3.98 (s, 6H), 3.27 (tt, J = 15.3, 2.2, 2H), 1.28 (t, J = 7.2 Hz, 3H). ¹³**C NMR (101 MHz, Chloroform-***d***)** δ : 165.7, 163.2 (t, J = 32.1 Hz), 155.6 (t, J = 293.8 Hz), 133.7 (t, J = 3.0 Hz), 133.4 (t, J = 3.1 Hz), 131.1, 130.1, 114.3 (t, J = 249.8 Hz), 63.2, 52.6, 84.0 (dd, J = 21.8, 19.5 Hz), 13.7. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -84.73 – -85.01 (m), -104.07 (d, J = 4.3 Hz), -104.11 (d, J = 4.2 Hz), -104.15 (d, J = 4.2 Hz). HRMS (DART-TOF) calculated for $C_{17}H_{20}F_4NO_6^+$ [M+NH₄]⁺ m/z 410.1221, found 410.1228.

Ethyl 2,2,4,4-tetrafluoro-3-(naphthalen-2-yl)but-3-enoate (3qa). General Procedure was used to prepare the desired product 3qa. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded 3qa as a brown oil (26.7 mg, 0.082 mmol, 82%). ¹H NMR (400 MHz, Chloroform-d) δ : 7.82 (dd, J = 9.1, 5.9 Hz, 3H), 7.75 (d, J =

1.8 Hz, 1H), 7.49 (dt, J = 6.2, 3.6 Hz, 2H), 7.40 (dt, J = 8.6, 1.7 Hz, 1H), 3.90 (q, J = 7.2 Hz, 2H), 3.31 (tt, J = 15.1, 2.0, 2H), 1.09 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroformd) δ : 163.4 (t, J = 32.2 Hz), 155.6 (t, J = 292.6 Hz), 133.1, 132.7, 129.5 (t, J = 3.1 Hz), 128.2, 128.0, 127.6, 127.9 (t, J = 3.1 Hz), 126.5 (2C), 126.0 (t, J = 3.0 Hz), 118.4 – 108.8 (m), 86.8 – 83.5 (m), 62.9, 34.1 (td, J = 25.8, 2.4 Hz), 13.6. ¹⁹F NMR (376 MHz, Chloroform-d) δ : -86.06 – -86.47 (m), -104.15 (d, J = 4.7 Hz), -104.19 (d, J = 4.8 Hz), -104.23 (d, J = 4.7 Hz). HRMS (DART-TOF) calculated for C₁₇H₁₄F₄NaO₆⁺ [M+Na]⁺ m/z 349.0822, found 349.0817.

Ethyl 4-(benzo[d][1,3]dioxol-5-yl)-2,2,5,5-tetrafluoropent-4-enoate (3ra). General Procedure was used to prepare the desired product 3ra. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded 3ra as a yellow oil (23.4 mg, 0.073 mmol, 73%). ¹H NMR (400 MHz, Chloroform-d) δ : 6.82 – 6.72 (m, 3H), 5.97 (s, 2H), 4.12

(q, J = 7.2 Hz, 2H), 3.13 (tt, J = 15.0, 2.0, 2H), 1.25 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, **Chloroform-d**) δ : 163.4 (t, J = 32.3 Hz), 158.6 – 150.9 (m), 147.7, 147.2, 125.7 (t, J = 3.3 Hz), 122.3 (t, J = 3.1 Hz), 117.7 – 111.0 (m), 109.1 (t, J = 3.1 Hz), 108.3, 101.3, 84.6 (t, J = 20.5 Hz), 63.0, 39.7 – 31.0 (m), 13.7. ¹⁹F NMR (376 MHz, Chloroform-d) δ : -86.75 (d, J = 31.3 Hz), -87.08 – -87.34 (m), -104.19 (d, J = 4.8 Hz), -104.23 (d, J = 4.7 Hz), -104.27 (d, J = 4.8 Hz). HRMS (DART-TOF) calculated for C₁₄H₁₃F₄O₄⁺ [M+H]⁺ m/z 321.0744, found 321.0753.

Ethyl 2,2,5,5-tetrafluoro-4-(thiophen-3-yl)pent-4-enoate (3sa). General Procedure was used to prepare the desired product 3sa. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded 3sa as a yellow oil (16.6 mg, 0.059 mmol, 59%). ¹H NMR (400 MHz, Chloroform-d) δ: 7.33

(dd, J = 5.1, 3.0 Hz, 1H), 7.24 (dd, J = 3.0, 1.4 Hz, 1H), 7.15 (dd, J = 5.1, 2.2 Hz, 1H), 4.13 (q, J = 7.1 Hz, 2H), 3.19 (td, J = 15.4, 2.6 Hz, 2H), 1.28 – 1.23 (m, 3H). ¹³C NMR (101 MHz, **Chloroform-d)** δ : 163.3 – 161.6 (m), 157.4 – 151.6 (m), 131.2, 125.9 (d, J = 4.3 Hz), 124.7, 121.9 (t, J = 5.6 Hz), 115.9 – 110.8 (m), 84.2 – 83.5 (m), 62.1, 32.8 – 32.3 (m), 12.7. ¹⁹F NMR (376 MHz, Chloroform-d) δ : -82.83 (d, J = 28.0 Hz), -86.48 (ddq, J = 28.3, 6.1, 2.9 Hz), -104.36 (d, J = 5.8 Hz), -104.40 (d, J = 5.7 Hz), -104.44 (d, J = 6.0 Hz). HRMS (DART-TOF) calculated for C₁₁H₁₀F₄KSO₂⁺ [M+K]⁺ m/z 320.9969, found 320.9954.

Ethyl 2,2,4,4-tetrafluoro-3-(quinolin-3-yl)but-3-enoate (**3ta**). **General Procedure** was used to prepare the desired product **3ta**. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded **3ta** as a pale yellow solid (21.9 mg, 0.067 mmol, 67%); **Mp:** 147.5-

148.8 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ : 8.86 (d, J = 2.1 Hz, 1H), 8.13 – 8.06 (m, 2H), 7.82 (dd, J = 8.2, 1.5 Hz, 1H), 7.74 (dd, J = 8.3, 6.8 Hz, 1H), 7.58 (dd, J = 8.1, 6.9 Hz, 1H), 4.06 (q, J = 7.1 Hz, 2H), 3.32 (tt, J = 15.3, 2.1, 2H), 1.19 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ : 163.3 (t, J = 32.0 Hz), 155.9 (t, J = 294.0 Hz), 149.9, 147.2, 135.5, 130.1, 129.3, 127.8, 127.4, 127.3, 125.5 (t, J = 3.8 Hz), 117.1 – 111.1 (m), 82.7 – 82.3 (m), 63.2, 34.1 – 33.5 (m), 13.7. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -83.98 – -84.21 (m), -84.77 (d, J = 25.8 Hz), -104.06 (d, J = 4.9 Hz), -104.10 (d, J = 4.9 Hz), -104.14 (d, J = 4.9 Hz). HRMS (DART-TOF) calculated for C₁₆H₁₄F₄NO₂⁺ [M+H]⁺ m/z 328.0955, found 328.0957.

Ethyl 4-(dibenzo[*b,d*]thiophen-3-yl)-2,2,5,5tetrafluoropent-4-enoate (3ua). General Procedure was used to prepare the desired product 3ua. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded 3ua

as a yellow oil (21.4 mg, 0.056 mmol, 56%). ¹H NMR (400 MHz, Chloroform-*d*) δ : 8.14 (td, J = 7.8, 7.0, 2.6 Hz, 2H), 7.85 (d, J = 5.5 Hz, 1H), 7.61 – 7.38 (m, 3H), 7.36 (dd, J = 7.4, 2.4 Hz, 1H), 3.99 (q, J = 7.2 Hz, 2H), 3.36 (td, J = 15.1, 2.2 Hz, 2H), 1.08 (td, J = 7.2, 2.6 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ : 163.2 (t, J = 32.4 Hz), 155.4 (dd, J = 295.4, 292.1 Hz), 139.5, 138.9, 136.1, 135.6, 128.2, 127.1, 126.9 (d, J = 4.1 Hz), 124.8, 124.6, 122.8, 121.8, 121.6, 117.4 – 110.1 (m), 84.3 – 83.1 (m), 63.0, 33.0 (t, J = 26.6 Hz), 13.5. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -81.57 (d, J = 23.8 Hz), -86.30 (d, J = 24.5 Hz), -104.13 (td, J = 15.7, 4.3 Hz). HRMS (DART-TOF) calculated for C₁₉H₁₄F₄NaO₂S⁺ [M+Na]⁺ m/z 405.0543, found 405.0542.

Ethyl 4-(9,9-dimethyl-9*H*-fluoren-2-yl)-2,2,5,5tetrafluoropent-4-enoate (3va). General Procedure was used to prepare the desired product 3va. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded 3va as a yellow oil (35.3

mg, 0.09 mmol, 90%). ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.73 – 7.66 (m, 2H), 7.46 – 7.40 (m, 1H), 7.37 – 7.30 (m, 3H), 7.25 (d, J = 2.1 Hz, 1H), 3.95 (q, J = 7.2 Hz, 2H), 3.26 (tt, J = 15.0, 2.0, 2H), 1.48 (s, 6H), 1.13 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ : 163.4 (t, J = 32.2 Hz), 155.5 (t, J = 292.2 Hz), 153.9 (2C), 139.1, 138.5, 130.9 (t, J = 3.3 Hz), 127.6, 127.4 (t, J = 3.1 Hz), 127.1, 123.1 – 122.7 (m), 122.6, 120.2, 119.9, 118.1 – 112.0 (m), 85.3 (t, J = 20.1 Hz), 62.8, 46.9, 34.3 (t, J = 25.9 Hz), 27.1, 13.7. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -86.26 – -86.64 (m), -104.17 (d, J = 5.3 Hz), -104.21 (d, J = 5.1 Hz), -104.25 (d, J = 5.2 Hz). HRMS (DART-TOF) calculated for C₂₂H₂₀F₄NaO₂⁺ [M+Na]⁺ m/z 415.1292, found 415.1299.

Ethyl 4-(9,9'-spirobi[fluoren]-2-yl)-2,2,5,5tetrafluoropent-4-enoate (3wa). General Procedure was used to prepare the desired product 3wa. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded 3wa as a yellow oil (41.6 mg, 0.081 mmol, 81%). ¹H NMR (400 MHz, Chloroform-d) δ : 7.83 (dd, J = 10.4, 7.7 Hz,

4H), 7.34 (dt, J = 24.4, 7.7 Hz, 4H), 7.11 (t, J = 7.5 Hz, 3H), 6.71 (t, J = 6.7 Hz, 3H), 6.62 (s, 1H), 3.95 (q, J = 7.1 Hz, 2H), 3.01 (tt, J = 15.0, 2.0, 2H), 1.12 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ : 163.3 (t, J = 32.1 Hz), 159.4 – 152.3 (m), 149.1 (d, J = 10.9 Hz), 148.3, 141.3 (d, J = 72.2 Hz), 140.9, 131.7 (t, J = 3.4 Hz), 128.3 (t, J = 2.6 Hz), 128.2, 127.9 (d, J = 2.4 Hz), 127.8, 124.0, 123.9 (t, J = 2.9 Hz), 120.0 (t, J = 10.9 Hz), 117.0 – 110.3 (m), 85.52 – 84.4 (m), 65.9, 62.8, 34.0 (t, J = 25.7 Hz), 13.7. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -85.94 (d, J = 29.0 Hz), -86.30 (dt, J = 29.1, 6.1 Hz), -104.15 (d, J = 5.8 Hz), -104.19 (d, J = 5.6 Hz), -104.23 (d, J = 5.9 Hz). HRMS (DART-TOF) calculated for C₃₂H₂₂F₄KO₂⁺ [M+K]⁺ m/z 553.1188, found 553.1188.

Ethyl 4-(3-(5-(2,5-dimethylphenoxy)-2,2-dimethylpentanamido)phenyl)-2,2,5,5-tetrafluoropent-4-enoate (3xa). General Procedure was used to prepare the desired product 3xa. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded

3xa as a yellow oil (39.2 mg, 0.075 mmol, 75%). ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.50 (d, J = 2.2 Hz, 1H), 7.46 (dt, J = 8.1, 1.5 Hz, 1H), 7.37 (s, 1H), 7.30 (t, J = 7.9 Hz, 1H), 7.06 – 6.96 (m, 2H), 6.66 (d, J = 7.4 Hz, 1H), 6.61 (d, J = 1.6 Hz, 1H), 4.07 (q, J = 7.2 Hz, 2H), 3.95 (p, J = 2.5 Hz, 2H), 3.18 (tt, J = 15.1, 2.0, 2H), 2.29 (s, 3H), 2.17 (s, 3H), 1.82 (d, J = 3.0 Hz, 4H), 1.34 (s, 6H), 1.22 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ : 175.8, 163.4 (t, J = 32.2 Hz), 158.5 – 152.8 (m), 156.8, 138.2, 136.5, 133.1, 130.3, 129.1, 124.5, 123.6, 120.9, 120.0, 119.6, 115.9 – 110.0 (m), 112.3, 85.0 – 83.7 (m), 67.9, 63.0, 42.9, 37.7, 34.4 – 33.6 (m), 25.6, 25.2, 21.3, 15.8, 13.7. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -85.92 (d, J = 29.1 Hz), -86.17 – -86.54 (m), -104.28 (d, J = 4.9 Hz), -104.32 (d, J = 4.8 Hz), -104.36 (d, J = 4.9 Hz). HRMS (DART-TOF) calculated for C₂₈H₃₃F₄NNaO₄⁺ [M+Na]⁺ m/z 546.2238, found 546.2265.

1-Methylcyclohexyl2,2,5,5-tetrafluoro-4-(phenylcarbamoyl)pent-4-enoate(3ab).Procedure was used to prepare the desired product 3ab.Chromatographic purification on silica gel usingpetroleum ether/ethyl acetate (5/1) as eluent afforded 3abas a colorless oil (13.0 mg, 0.031 mmol, 31%).¹H NMR

(400 MHz, Chloroform-*d*) δ : 7.63 – 7.53 (m, 4H), 7.40 (dd, J = 19.6, 13.3 Hz, 5H), 3.22 (td, J = 15.3, 2.7 Hz, 2H), 2.11 – 2.00 (m, 2H), 1.50 – 1.42 (m, 4H), 1.35 (s, 3H), 1.26 (s, 4H). ¹³C

NMR (101 MHz, Chloroform-*d***)** δ : 162.2 (t, J = 31.9 Hz), 157.6 – 152.7 (m), 140.7, 140.5, 131.4, 128.9, 128.8 127.5, 127.2, 127.0, 117.4 – 111.3 (m), 86.5, 83.6 – 82.6 (m), 36.2, 34.3 – 32.9 (m), 25.1, 24.7, 21.9. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -85.77 – -85.99 (m), -86.41 (d, J = 29.8 Hz), -103.23 (d, J = 5.6 Hz), -103.27 (d, J = 5.6 Hz), -103.31 (d, J = 5.9 Hz). HRMS (DART-TOF) calculated for C₂₄H₂₄F₄NaO₂⁺ [M+Na]⁺ m/z 443.1605, found 443.1601.

Benzyl 4-([1,1'-biphenyl]-4-yl)-2,2,5,5-tetrafluoropent-4-enoate (3ac). General Procedure was used to prepare the desired product 3ac. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded 3ac as a colorless oil (35.2 mg, 0.085 mmol, 85%).

¹H NMR (400 MHz, Chloroform-*d*) δ : 7.60 – 7.53 (m, 4H), 7.44 (dd, J = 8.5, 6.8 Hz, 2H), 7.40 – 7.30 (m, 6H), 7.30 – 7.24 (m, 2H), 4.99 (s, 2H), 3.24 (tt, J = 15.1, 2.1 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ : 163.8 – 162.8 (m), 158.8 – 152.1 (m), 140.7, 140.3, 134.0, 131.0, 128.9 (2C), 129.8, 128.7, 128.5, 127.6, 127.1, 127.0, 117.1 – 112.0 (m), 84.7 – 84.3 (m), 68.4, 34.0 (t, J = 25.7 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -85.99 (t, J = 3.5 Hz), -103.89 (t, J = 3.3 Hz), -103.93 (t, J = 3.1 Hz), -103.98 (d, J = 3.5 Hz). HRMS (DART-TOF) calculated for C₂₄H₁₉F₄O₂⁺ [M+H]⁺ m/z 415.1316, found 415.1357.

Cinnamyl4-([1,1'-biphenyl]-4-yl)-2,2,5,5-tetrafluoropent-4-enoate(3ad).GeneralProcedure was used to prepare the desired product3ad. Chromatographic purification on silica gel usingpetroleum ether/ethyl acetate (5/1) as eluent afforded

3ad as a colorless oil (36.5 mg, 0.083 mmol, 83%). ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.61 – 7.55 (m, 4H), 7.47 – 7.41 (m, 2H), 7.40 – 7.35 (m, 3H), 7.34 – 7.26 (m, 5H), 6.58 (dt, *J* = 15.9, 1.3 Hz, 1H), 6.12 (dt, *J* = 15.9, 6.7 Hz, 1H), 4.59 (dd, *J* = 6.7, 1.3 Hz, 2H), 3.26 (tt, *J* = 15.0, 2.1 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ : 163.2 (t, *J* = 32.4 Hz), 161.4 – 154.59 (m), 140.7, 140.2, 136.1, 135.6, 131.0 (t, *J* = 2.4 Hz), 128.9 (d, *J* = 3.0 Hz), 128.9, 128.6, 128.6 (t, *J* = 9.3 Hz), 128.5, 127.6, 127.1, 127.0, 126.7, 117.0 – 112.0 (m), 84.7 – 84.2 (m), 67.4, 34.01 (t, *J* = 25.5 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -85.78 – -86.10 (m), -103.95 (d, *J* = 4.9 Hz), -103.99 (d, *J* = 4.3 Hz), -104.03 (d, *J* = 4.7 Hz). HRMS (DART-TOF) calculated for C₂₆H₂₀F₄NaO₂⁺ [M+Na]⁺ m/z 463.1292, found 463.1285.

3,7-Dimethyloct-6-en-1-yl 4-([1,1'-biphenyl]-4-yl)-2,2,5,5-tetrafluoropent-4-enoate (3ae). General Procedure was used to prepare the desired product **3ae**. Chromatographic purification on silica gel

using petroleum ether/ethyl acetate (5/1) as eluent afforded **3ae** as a colorless oil (25.4 mg, 0.055 mmol, 55%). ¹**H NMR (400 MHz, Chloroform-***d***)** δ : 7.70 – 7.51 (m, 4H), 7.44 (dd, J = 8.3, 6.7 Hz, 2H), 7.40 – 7.32 (m, 3H), 5.04 (t, J = 5.5 Hz, 1H), 4.07 – 3.97 (m, 2H), 3.23 (tt, J = 15.1, 2.0, 2H), 1.94 (dq, J = 16.9, 7.5 Hz, 2H), 1.67 (d, J = 1.5 Hz, 3H), 1.58 (d, J = 1.3 Hz, 3H), 1.51 – 1.34 (m, 3H), 1.30 – 1.23 (m, 1H), 1.14 (dt, J = 9.3, 7.6 Hz, 1H), 0.86 (d, J = 6.4

Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ : 163.5 (t, J = 32.3 Hz), 155.4 (t, J = 292.6 Hz), 140.7, 140.3, 131.5, 128.9, 128.8, 128.8, 127.6, 127.1, 127.0, 124.3, 117.3 – 110.6 (m), 84.6 (t, J = 4.2 Hz), 65.5, 36.8, 33.9 (t, J = 25.5 Hz), 34.9, 29.3, 25.7, 25.3, 19.3, 17.6. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -86.09 (d, J = 4.7 Hz), -104.13, -104.17 (d, J = 3.4 Hz), -104.21. HRMS (DART-TOF) calculated for C₂₇H₂₈F₄NaO⁺ [M+Na-H₂O]⁺ m/z 467.1968, found 467.1994.

(1S,2R,5S)-2-Isopropyl-5-methylcyclohexyl ([1,1'-biphenyl]-4-yl)-2,2,5,5-tetrafluoropent-4 enoate (3af). General Procedure was used to prepare the desired product 3af. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as

eluent afforded **3af** as a colorless oil (29.1 mg, 0.063 mmol, 63%). ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.59 (d, J = 7.7 Hz, 4H), 7.40 (dd, J = 20.0, 13.5 Hz, 5H), 4.75 (td, J = 11.0, 4.4 Hz, 1H), 3.23 (tt, J = 15.5, 2.2, 2H), 1.83 (dq, J = 12.9, 6.7, 5.5 Hz, 2H), 1.68 (td, J = 12.0, 10.2, 5.6 Hz, 2H), 1.45 (t, J = 11.4 Hz, 2H), 1.05 (t, J = 12.9 Hz, 1H), 0.89 (d, J = 6.9 Hz, 4H), 0.84 (d, J = 6.5 Hz, 4H), 0.74 (d, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ : 163.2 (t, J = 32.0 Hz), 155.4 (t, J = 292.5 Hz), 140.6, 140.3, 131.4 (t, J = 3.6 Hz), 129.5 – 129.3 (m), 128.8, 127.5, 127.1, 127.0, 114.7 (t, J = 253.2 Hz), 84.7 (t, J = 19.8 Hz), 46.8, 40.0, 34.0, 33.7 (t, J = 25.1 Hz), 31.4, 26.1, 23.3, 21.9, 20.6, 16.1. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -85.59 (dd, J = 29.7, 5.6 Hz), -86.12 (d, J = 29.0 Hz), -103.26 (td, J = 15.0, 5.2 Hz), -103.59 (td, J = 16.3, 6.3 Hz). HRMS (DART-TOF) calculated for C₂₇H₃₁F₄O₂⁺ [M+H]⁺ m/z 463.2255, found 463.2263.

(3S,8S,9S,10R,13R,14S,17R)-10,13-Dimethyl-17-((R)-6-methylheptan-2-yl)-

2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-3-yl 4-([**1,1'-biphenyl**]-4-yl)-2,2,5,5-tetrafluoropent-4-enoate (3ag). General Procedure was used to prepare the desired product 3ag. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded 3ag as a white solid (65.7 mg, 0.095 mmol, 95%); **Mp:** 83.9-85.2 °C. ¹**H NMR (400 MHz, Chloroform-***d*) δ : 7.58 (dd, *J* = 7.9, 4.4 Hz, 4H), 7.43 (t, *J* = 7.5 Hz, 2H), 7.36 (t, *J* = 7.1 Hz, 3H), 5.28 (dd, *J* = 5.1, 2.5 Hz, 1H), 4.48 (dt, *J* = 11.5, 6.2 Hz, 1H), 3.33 – 3.06 (m, 2H), 2.23 (dd, *J* = 11.8, 2.9 Hz, 1H), 2.16 (dd, *J* = 5.2, 2.1 Hz, 1H), 2.05 – 1.64 (m, 6H), 1.63 – 1.20 (m, 9H), 1.20 – 0.98 (m, 10H), 0.94 – 0.81 (m, 13H), 0.66 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ : 162.9 (t, *J* = 3.1 Hz), 155.4 (t, *J* = 292.5 Hz), 140.8, 140.3, 138.7, 131.1 (t, *J* = 3.4 Hz), 128.9 (t, *J* = 3.1 Hz), 128.8, 127.5, 127.2, 127.1, 123.4, 114.5 (t, *J* = 254.0 Hz), 84.9 (t, *J* = 20.0 Hz), 56.7, 56.2, 49.9, 42.3, 39.7, 39.5, 37.4, 36.8, 36.5, 36.2, 35.8, 33.9 (t, J = 25.2 Hz), 31.8 (d, J = 2.5 Hz), 31.6, 28.2, 28.0, 27.2, 24.3, 23.9, 22.8, 22.7, 22.6, 21.0, 19.2, 18.7, 14.1, 11.8. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : - 85.83 (dd, J = 29.0, 4.7 Hz), -86.17 (d, J = 29.1 Hz), -103.84 (d, J = 5.3 Hz), -103.88 (d, J = 5.4 Hz), -103.92 (d, J = 5.2 Hz). HRMS (DART-TOF) calculated for C₄₄H₅₇F₄O₂⁺ [M+H]⁺ m/z 693.4289, found 693.4309.

Tert-butyl 4-(4-([1,1'-biphenyl]-4-yl)-2,2,5,5-tetrafluoropent-4-enoyl)piperazine-1-carboxylate (3ar). General Procedure was used to prepare the desired product 3ar. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as

eluent afforded **3ar** as a white solid (29.0 mg, 0.059 mmol, 59%); **Mp**: 95.2-96.3 °C. ¹**H NMR** (**400 MHz, Chloroform-***d***)** δ : 7.63 – 7.54 (m, 4H), 7.48 – 7.38 (m, 4H), 7.37 – 7.31 (m, 1H), 3.68 – 3.59 (m, 2H), 3.56 (d, J = 5.5 Hz, 2H), 3.47 – 3.29 (m, 6H), 1.45 (s, 9H). ¹³**C NMR (101 MHz, Chloroform-***d***)** δ : 162.9 – 160.1 (m), 158.3 – 152.4 (m), 154.4, 140.4, 132.2, 128.8, 128.6, 128.6, 127.5, 127.1, 127.0, 121.0 – 115.0 (m), 85.1 – 84.5 (m), 80.5, 45.6, 43.0, 33.5 (t, J = 22.8 Hz), 28.3. ¹⁹F NMR (376 MHz, Chloroform-*d***)** δ : -86.37, -98.59 (t, J = 18.7 Hz). **HRMS (DART-TOF)** calculated for C₂₆H₂₈F₄N₂NaO₃⁺ [M+Na]⁺ m/z 515.1928, found 515.1930.

4-([1,1'-Biphenyl]-4-yl)-2,2,5,5-tetrafluoro-N-(((1R,4aS,10aR)-7-isopropyl-1,4adimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthren-1-yl)methyl)pent-4-enamide (3as). General Procedure was used to prepare the desired product 3as. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded **3as** as a yellow oil (35.5 mg, 0.06 mmol, 60%). ¹H NMR (400 MHz, Chloroform-d) δ: 7.62 – 7.51 (m, 4H), 7.43 (dd, J = 8.4, 6.8 Hz, 2H), 7.41 - 7.29 (m, 3H), 7.15 (d, J = 8.2 Hz, 1H), 6.99 (dd, J = 8.1, 2.0)Hz, 1H), 6.91 - 6.82 (m, 1H), 6.16 (s, 1H), 3.28 (t, J = 16.3 Hz, 2H), 3.07 (t, J = 6.7 Hz, 2H), 2.94 – 2.70 (m, 3H), 2.28 (d, J = 12.8 Hz, 1H), 1.85 – 1.50 (m, 4H), 1.46 – 1.24 (m, 4H), 1.22 (s, 3H), 1.20 (d, J = 2.4 Hz, 6H), 0.90 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ : 163.7 (t, J = 28.0 Hz), 158.6 – 152.2 (m), 146.8, 145.7, 140.5, 140.3, 134.5, 131.2, 128.8, 128.6 (t, J = 3.1 Hz), 127.5, 127.1, 127.0, 126.9, 124.2, 123.9, 120.3 – 115.8 (m), 85.1 – 84.6 (m), 50.1, 45.9, 38.2, 37.5, 37.2, 36.1, 33.4, 33.0 – 32.3 (m), 30.1, 25.3, 24.0, 19.0, 18.5, 18.4. ¹⁹F NMR (376 MHz, Chloroform-d) δ : -85.58 – -85.95 (m), -86.21 (d, J = 29.3 Hz), -103.89 (td, J =17.3, 4.5 Hz), -104.01 - -104.18 (m). HRMS (DART-TOF) calculated for $C_{37}H_{41}F_4KNO^+$ [M+K]⁺ m/z 630.2756, found 630.2688.

4-([1,1'-Biphenyl]-4-yl)-2,2,5,5,5-pentafluoro-*N*phenylpentanamide (4ah). General Procedure was used to prepare the desired product 4ah. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded 4ah as a white solid (21.8

mg, 0.052 mmol, 52%); **Mp:** 129.3-130.6 °C. ¹**H NMR (400 MHz, Chloroform-***d***)** δ : 7.66 (s, 1H), 7.52 (d, J = 8.3 Hz, 2H), 7.48 – 7.31 (m, 9H), 7.31 – 7.24 (m, 2H), 7.19 – 7.08 (m, 1H), 3.81 – 3.66 (m, 1H), 3.14 – 2.82 (m, 2H). ¹³**C NMR (101 MHz, Chloroform-***d***)** δ : 160.8 (t, J = 27.9 Hz), 141.8, 140.2, 135.5, 131.6, 129.6, 129.1, 128.7, 127.6, 127.5, 127.1, 126.1 (q, J = 286.8 Hz), 125.7, 120.1, 116.7 (t, J = 254.7 Hz), 44.4 (q, J = 27.7 Hz), 33.5 (t, J = 23.9 Hz). ¹⁹**F NMR (376 MHz, Chloroform-***d***)** δ : -70.24 (d, J = 9.2 Hz), -100.52 (t, J = 15.4 Hz), -101.21 (t, J = 15.5 Hz), -105.32 (t, J = 16.7 Hz), -106.01 (t, J = 16.7 Hz). **HRMS (DART-TOF)** calculated for C₂₃H₁₈F₅NNaO⁺ [M+Na]⁺ m/z 442.1201, found 442.1199.

4-([1,1'-Biphenyl]-4-yl)-2,2,5,5,5-pentafluoro-*N*-(4-methoxyphenyl)pentanamide (4ai). General Procedure was used to prepare the desired product 4ai. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent

afforded **4ai** as a yellow solid (17.1 mg, 0.038 mmol, 38%); **Mp:** 119.1-120.6 °C. ¹**H NMR** (**400 MHz, Chloroform-***d***)** δ : 7.60 – 7.51 (m, 3H), 7.52 – 7.46 (m, 2H), 7.47 – 7.35 (m, 5H), 7.25 (d, J = 8.9 Hz, 2H), 6.84 – 6.79 (m, 2H), 3.79 – 3.74 (m, 4H), 3.12 – 2.86 (m, 2H). ¹³**C NMR (101 MHz, Chloroform-***d***)** δ : 160.6 (t, J = 27.9 Hz), 157.3, 141.8, 140.2, 131.6, 129.6, 128.7, 128.5, 127.6, 127.4, 127.1, 126.1 (d, J = 287.0 Hz), 121.8, 114.5 (t, J = 233.9 Hz), 114.3, 55.4, 45.5 – 43.3 (m), 33.5 (t, J = 24.4 Hz). ¹⁹**F NMR (376 MHz, Chloroform-***d***)** δ : -70.27 (d, J = 9.1 Hz), -100.19 (t, J = 15.2 Hz), -100.87 (t, J = 15.1 Hz), -105.68 (t, J = 16.7 Hz), -106.36 (td, J = 16.6, 3.9 Hz). **HRMS (DART-TOF)** calculated for C₂₄H₂₀F₅NNaO₂⁺ [M+Na]⁺ m/z 472.1306, found 472.1315.

4-([1,1'-Biphenyl]-4-yl)-2,2,5,5,5-pentafluoro-*N*-(4-fluorophenyl)pentanamide (4aj). General Procedure was used to prepare the desired product 4aj. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded

4aj as a white solid (24.5 mg, 0.056 mmol, 56%); **Mp:** 137.3-138.6 °C. ¹**H NMR (400 MHz, Chloroform-***d***)** δ : 7.62 (s, 1H), 7.55 – 7.49 (m, 2H), 7.47 – 7.32 (m, 7H), 7.31 – 7.26 (m, 2H), 6.99 – 6.90 (m, 2H), 3.81 – 3.66 (m, 1H), 3.12 – 2.82 (m, 2H). ¹³**C NMR (101 MHz, Chloroform-***d***)** δ : 160.8 (t, J = 27.8 Hz), 160.1 (d, J = 245.8 Hz), 141.9, 140.0, 131.5, 131.5 (d, J = 2.9 Hz), 129.6, 128.8, 127.7, 127.4, 127.0, 126.1 (q, J = 294.4 Hz), 122.0 (d, J = 8.1 Hz), 116.7 (d, J = 256.9 Hz), 115.9 (d, J = 22.8 Hz), 44.9 – 44.1 (m), 33.7 – 33.2 (m). ¹⁹F **NMR (376 MHz, Chloroform-***d***)** δ : -70.27, -99.24 – -102.25 (m), -106.33 (dd, J = 258.7, 16.7 Hz), -115.80 (d, J = 8.1 Hz). **HRMS (DART-TOF)** calculated for C₂₃H₁₇F₆NNaO⁺ [M+Na]⁺ m/z 460.1107, found 460.1116.

4-([1,1'-Biphenyl]-4-yl)-*N*-(4-bromophenyl)-2,2,5,5,5-pentafluoropentanamide (4ak). General Procedure was used to prepare the desired product 4ak. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded

4ak as a white solid (45.7 mg, 0.092 mmol, 92%); **Mp:** 101.3-102.3 °C. ¹**H NMR (400 MHz, Chloroform-***d***)** δ : 7.62 (s, 1H), 7.55 – 7.49 (m, 2H), 7.48 – 7.34 (m, 9H), 7.27 – 7.22 (m, 2H), 3.84 – 3.66 (m, 1H), 3.18 – 2.80 (m, 2H). ¹³**C NMR (101 MHz, Chloroform-***d***)** δ : 161.7 – 160.0 (m), 141.9, 140.0, 134.6, 132.2, 131.2, 129.6, 128.8, 127.7, 127.4, 127.0, 126.0 (q, *J* = 280.5 Hz), 121.5, 118.6, 116.6 (t, *J* = 257.4 Hz), 44.6 – 44.2 (m), 33.7 – 33.2 (m). ¹⁹**F NMR (376 MHz, Chloroform-***d***)** δ : -70.29 (d, *J* = 9.0 Hz), -99.43 (t, *J* = 14.8 Hz), -100.12 (t, *J* = 14.7 Hz), -106.46 (dd, *J* = 18.5, 15.2 Hz), -107.01 – -107.27 (m). **HRMS (DART-TOF)** calculated for C₂₃H₁₇F₅NNaO⁺ [M+Na]⁺ m/z 520.0306, found 520.0304.

4-([1,1'-Biphenyl]-4-yl)-2,2,5,5,5-pentafluoro-*N*-(3-fluorophenyl)pentanamide (4al). General Procedure was used to prepare the desired product 4al. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded

4al as a white solid (35.0 mg, 0.08 mmol, 80%); **Mp:** 119.2-121.0 °C. ¹**H NMR (400 MHz, Chloroform-***d***)** δ : 7.68 (s, 1H), 7.57 – 7.51 (m, 2H), 7.50 – 7.29 (m, 8H), 7.23 (td, J = 8.2, 6.3 Hz, 1H), 7.05 – 6.97 (m, 1H), 6.85 (td, J = 8.3, 2.5 Hz, 1H), 3.82 – 3.66 (m, 1H), 3.14 – 2.84 (m, 2H). ¹³**C NMR (101 MHz, Chloroform-***d***)** δ : 162.8 (d, J = 246.3 Hz), 161.0 (t, J = 28.2 Hz), 141.9, 140.0, 137.0 (d, J = 10.7 Hz), 131.4 (d, J = 2.0 Hz), 130.3 (d, J = 9.2 Hz), 129.6, 128.7, 127.6, 127.5, 127.0, 126.0 (q, J = 280.0 Hz), 116.6 (t, J = 257.0 Hz), 115.4 (d, J = 3.1 Hz), 112.5 (d, J = 21.3 Hz), 107.7 (d, J = 26.5 Hz), 45.3 – 43.1 (m), 33.5 (t, J = 23.8 Hz). ¹⁹**F NMR (376 MHz, Chloroform-***d***) \delta: -70.27, -100.43 (dd, J = 259.4, 15.3 Hz), -104.16 – -109.56 (m), -110.62 (d, J = 6.7 Hz). HRMS (DART-TOF)** calculated for C₂₃H₁₇F₆NNaO⁺ [M+Na]⁺ m/z 460.1107, found 460.1112.

4-([1,1'-Biphenyl]-4-yl)-2,2,5,5,5-pentafluoro-*N*-(2fluorophenyl)pentanamide (4am). General Procedure was used to prepare the desired product 4am. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded 4am

as a pale yellow solid (40.6 mg, 0.093 mmol, 93%); **Mp:** 118.1-19.3 °C. ¹**H NMR (400 MHz, Chloroform-***d***)** δ : 8.03 (dd, J = 10.3, 5.5 Hz, 1H), 7.90 (s, 1H), 7.53 – 7.45 (m, 2H), 7.44 – 7.28 (m, 7H), 7.09 – 6.97 (m, 3H), 3.85 – 3.65 (m, 1H), 3.13 – 2.82 (m, 2H). ¹³**C NMR (101 MHz, Chloroform-***d***)** δ : 160.9 (t, J = 28.4 Hz), 152.5 (d, J = 244.9 Hz), 141.8, 140.1, 131.3 – 131.2 (m), 129.56, 128.7, 127.5, 127.4, 127.2 (q, J = 258.8 Hz), 127.1, 125.8 (d, J = 7.7 Hz), 124.7 (d, J = 3.8 Hz), 124.2 (d, J = 10.2 Hz), 121.5. 115.0 (d, J = 18.9 Hz), 44.8 – 43.6 (m), 33.5 (t, J = 23.9 Hz). ¹⁹**F NMR (376 MHz, Chloroform-***d***)** δ : -70.27 (d, J = 9.0 Hz), -100.27 (d, J = 259.3 Hz), -103.88 – -110.84 (m), -130.66 (d, J = 3.3 Hz). **HRMS (DART-TOF)** calculated for C₂₃H₁₇F₆NNaO⁺ [M+Na]⁺ m/z 460.1107, found 460.1128.

4-([1,1'-Biphenyl]-4-yl)-*N*-benzyl-2,2,5,5,5pentafluoropentanamide (4an). General Procedure was used to prepare the desired product 4an. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded 4an as a pale yellow solid

(29.4 mg, 0.068 mmol, 68%); **Mp:** 87.6-89.3 °C. ¹**H NMR (400 MHz, Chloroform-***d***)** δ : 7.58 (dt, *J* = 8.3, 1.8 Hz, 4H), 7.44 (t, *J* = 7.7 Hz, 2H), 7.39 – 7.27 (m, 6H), 7.18 (dd, *J* = 7.5, 2.1 Hz, 2H), 6.35 (s, 1H), 4.41 (dd, *J* = 14.6, 6.1 Hz, 1H), 4.19 (dd, *J* = 14.6, 5.4 Hz, 1H), 3.71 (td, *J* = 9.3, 4.6 Hz, 1H), 2.99 – 2.81 (m, 2H). ¹³**C NMR (101 MHz, Chloroform-***d***)** δ : 163.1 (t, *J* = 28.5 Hz), 141.6, 140.2, 136.4, 132.1, 129.6, 128.9, 128.9, 128.1, 127.9, 127.6, 127.3, 127.1, 126.1 (q, *J* = 277.0 Hz), 116.7 (t, *J* = 254.3 Hz), 44.4 – 44.0 (m), 43.6, 33.9 – 32.9 (m). ¹⁹**F NMR (376 MHz, Chloroform-***d***)** δ : -70.29 (d, *J* = 9.1 Hz), -102.15 (t, *J* = 16.5 Hz), -102.84 (t, *J* = 16.4 Hz), -104.76 (t, *J* = 16.2 Hz), -105.45 (t, *J* = 16.1 Hz). **HRMS (DART-TOF)** calculated for C₂₄H₂₀F₅NNaO⁺ [M+Na]⁺ m/z 456.1357, found 456.1359.

4-([1,1'-Biphenyl]-4-yl)-*N*-(cyclopropylmethyl)-2,2,5,5,5-pentafluoropentanamide (4ao). General Procedure was used to prepare the desired product 4ao. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded 4ao

as a white solid (32.9 mg, 0.083 mmol, 83%); **Mp:** 95-96 °C. ¹**H NMR (400 MHz, Chloroform-***d***)** δ : 7.57 (dd, J = 7.8, 4.4 Hz, 4H), 7.44 (dd, J = 8.4, 6.7 Hz, 2H), 7.37 (t, J = 7.3 Hz, 3H), 6.21 (s, 1H), 3.72 (td, J = 9.4, 4.0 Hz, 1H), 3.15 – 2.95 (m, 1H), 2.97 – 2.74 (m, 3H), 0.99 – 0.70 (m, 1H), 0.56 – 0.34 (m, 2H), 0.15 (d, J = 4.8 Hz, 2H). ¹³**C NMR (101 MHz, Chloroform-***d***)** δ : 163.0 (t, J = 28.0 Hz), 141.6, 140.2, 132.1 (d, J = 2.2 Hz), 129.6, 128.8, 127.6, 127.3, 127.0, 126.1 (q, J = 279.6 Hz), 119.9 – 112.5 (m), 44.5, 44.4 – 43.9 (m), 33.5 (t, J = 24.4 Hz), 10.1, 3.5, 3.5. ¹⁹**F NMR (376 MHz, Chloroform-***d***)** δ : -70.28 (d, J = 9.2 Hz), -102.08 (t, J = 16.2 Hz), -102.77 (t, J = 16.2 Hz), -105.37 (t, J = 16.3 Hz), -106.05 (t, J = 16.3 Hz). **HRMS (DART-TOF)** calculated for C₂₁H₂₀F₅NNaO⁺ [M+Na]⁺ m/z 420.1357, found 420.1357.

4-([1,1'-Biphenyl]-4-yl)-*N*-((3s,5s,7s)-adamantan-1yl)-2,2,5,5,5-pentafluoropentanamide (4ap). General Procedure was used to prepare the desired product 4ap. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded

4ap as a colorless oil (30.1 mg, 0.063 mmol, 63%). ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.64 – 7.53 (m, 4H), 7.48 – 7.32 (m, 5H), 5.79 (s, 1H), 3.70 (pd, J = 9.4, 3.7 Hz, 1H), 2.98 – 2.71 (m, 2H), 2.09 – 1.99 (m, 3H), 1.87 (s, 6H), 1.63 (d, J = 3.1 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ : 161.8 (t, J = 27.0 Hz), 141.6, 140.4, 132.3, 129.6, 128.8, 127.6, 127.4, 127.1, 52.6, 126.2 (q, J = 286.2 Hz), 120.9 – 112.2 (m), 44.8 – 44.2 (m), 41.1, 36.1, 33.3 (t, J = 24.3Hz), 29.3. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -70.27 (d, J = 9.1 Hz), -101.04 (t, J = 16.2Hz), -101.73 (t, J = 16.3 Hz), -104.13 (t, J = 15.9 Hz), -104.81 (t, J = 15.9 Hz). HRMS (DART-TOF) calculated for C₂₇H₂₈F₅NKO⁺ [M+K]⁺ m/z 516.1723, found 516.1724.

Tert-Butyl (3S)-3-((3-([1,1'-biphenyl]-4-yl)-1,1,4,4,4-pentafluorobutyl)amino)piperidine-1carboxylate (4aq). General Procedure was used to prepare the desired product 4aq. Chromatographic purification on silica gel using petroleum ether/ethyl

acetate (5/1) as eluent afforded **4aq** as a white solid (41.5 mg, 0.079 mmol, 79%); **Mp:** 115.3-116.5 °C. ¹**H NMR (400 MHz, Chloroform-***d***)** δ : 7.58 (dt, J = 8.5, 4.3 Hz, 4H), 7.41 (dt, J = 26.1, 7.7 Hz, 5H), 6.42 (s, 1H), 3.97 (t, J = 3.7 Hz, 1H), 3.82 – 3.50 (m, 2H), 3.52 – 3.29 (m, 3H), 3.28 – 3.11 (m, 1H), 2.99 – 2.66 (m, 1H), 1.75 – 1.49 (m, 4H), 1.43 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ : 197.3, 161.7 (t, J = 27.8 Hz), 138.5 (d, J = 1.9 Hz), 137.3, 136.3, 129.5, 128.6, 128.5, 125.8 (q, J = 280.0 Hz), 116.4 (t, J = 254.7 Hz), 50.9, 45.2 – 43.3 (m), 34.6, 34.6, 33.4 (t, J = 23.9 Hz), 27.8, 26.6, 24.0, 23.9. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -70.30 (t, J = 11.1 Hz), -99.46 – -110.55 (m). HRMS (DART-TOF) calculated for $C_{27}H_{32}F_5N_2O_3^+$ [M+K]⁺ m/z 527.2328, found 527.2331.

4-(1,1,1,4,4-Pentafluoro-5-oxo-5-(phenylamino)pentan-2-yl)phenyl methanesulfinate (4ih). General Procedure was used to prepare the desired product 4ih. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent

afforded **4ih** as a yellow oil (21.9 mg, 0.052 mmol, 52%). ¹H NMR (**400** MHz, Chloroform*d*) δ : 7.91 (d, J = 8.1 Hz, 2H), 7.81 (s, 1H), 7.56 (d, J = 8.1 Hz, 2H), 7.42 (d, J = 7.5 Hz, 2H), 7.34 (t, J = 7.9 Hz, 2H), 7.23 – 7.14 (m, 1H), 3.98 – 3.78 (m, 1H), 3.10 – 2.84 (m, 5H). ¹³C NMR (**101** MHz, Chloroform-*d*) δ : 160.5 (t, J = 27.8 Hz), 141.1, 139.2, 135.5, 130.3, 129.3, 127.8, 126.0, 125.6 (q, J = 280.2 Hz), 120.1, 116.3 (t, J = 256.2 Hz), 45.3 – 44.1 (m), 44.3, 33.4 (t, J = 23.4 Hz). ¹⁹F NMR (**376** MHz, Chloroform-*d*) δ : -69.85 (d, J = 8.9 Hz), -101.63 (t, J =15.9 Hz), -102.32 (t, J = 15.9 Hz), -104.17 (t, J = 16.5 Hz), -104.86 (t, J = 16.5 Hz). HRMS (DART-TOF) calculated for C₁₈H₁₆F₅KNO₃⁺ [M+K]⁺ m/z 460.0403, found 460.0402.

4-(4-Acetylphenyl)-2,2,5,5,5-pentafluoro-Nphenylpentanamide (4jh). General Procedure was used to prepare the desired product 4jh. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded 4jh as a white solid (29.6

mg, 0.077 mmol, 77%); **Mp:** 123.5-124.6 °C. ¹**H NMR (400 MHz, Chloroform-***d***)** δ : 7.89 (d, J = 8.4 Hz, 2H), 7.74 (s, 1H), 7.43 (d, J = 8.1 Hz, 2H), 7.39 – 7.34 (m, 2H), 7.31 (t, J = 7.9 Hz, 2H), 7.21 – 7.12 (m, 1H), 3.80 (td, J = 9.4, 3.8 Hz, 1H), 3.29 – 2.59 (m, 2H), 2.50 (s, 3H). ¹³**C NMR (101 MHz, Chloroform-***d***)** δ : 197.3, 160.7 (t, J = 27.9 Hz), 137.9 (d, J = 1.9 Hz), 137.3, 135.5, 129.5, 129.2, 128.7, 125.8, 125.7 (q, J = 280.0 Hz), 120.1, 119.2 – 113.4 (m), 45.7 – 43.2 (m), 33.4 (t, J = 24.0 Hz), 26.5. ¹⁹**F NMR (376 MHz, Chloroform-***d***)** δ : -69.98 (d, J = 9.1 Hz), -101.29 (t, J = 15.7 Hz), -101.98 (t, J = 15.6 Hz), -104.90 (dd, J = 18.1, 15.0 Hz), -105.49 – -105.67 (m). **HRMS (DART-TOF)** calculated for C₁₉H₁₇F₅NO₂⁺ [M+H]⁺ m/z 386.1174, found 386.1191.

Methyl4-(1,1,1,4,4-pentafluoro-5-oxo-5-(phenylamino)pentan-2-yl)benzoate(4kh). GeneralProcedure was used to prepare the desired product 4kh.Chromatographicpurification on silica gel usingpetroleum ether/ethyl acetate (5/1) as eluent afforded 4kh

as a pale yellow solid (31.3 mg, 0.078 mmol, 78%); **Mp:** 111.7-112.7 °C. ¹**H NMR (400 MHz, Chloroform-***d***)** δ : 8.01 (d, J = 8.2 Hz, 2H), 7.73 (s, 1H), 7.47 – 7.39 (m, 4H), 7.34 (dd, J = 8.7, 7.1 Hz, 2H), 7.23 – 7.16 (m,1H), 3.91 (s, 3H), 3.87 – 3.75 (m, 1H), 2.96 (td, J = 16.1, 7.3 Hz, 2H). ¹³**C NMR (101 MHz, Chloroform-***d***)** δ : 165.3, 159.7 (t, J = 27.9 Hz), 136.9 (d, J = 2.0 Hz), 134.4, 129.6, 129.0, 128.2, 128.2, 124.8, 124.7 (q, J = 279.8 Hz), 119.1, 118.4 – 111.9 (m), 51.2, 43.5 (q, J = 28.5 Hz), 32.4 (t, J = 24.3 Hz). ¹⁹**F NMR (376 MHz, Chloroform-***d***)** δ : -69.99 (d, J = 9.0 Hz), -101.88 (t, J = 16.2 Hz), -102.57 (t, J = 16.2 Hz), -104.27 (t, J = 16.4 Hz), -104.96 (t, J = 16.4 Hz). **HRMS (DART-TOF)** calculated for C₁₉H₁₆F₅NNaO₃⁺ [M+Na]⁺ m/z 424.0943, found 424.0944.

4-(4-Cyanophenyl)-2,2,5,5,5-pentafluoro-*N*phenylpentanamide (4lh). General Procedure was used to prepare the desired product 4lh. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded 4lh as a yellow oil (18.8 mg, 0.051 mmol, 51%). ¹H

NMR (400 MHz, Chloroform-*d***)** δ : 7.80 (s, 1H), 7.68 – 7.61 (m, 2H), 7.49 (d, J = 8.1 Hz, 2H), 7.45 – 7.41 (m, 2H), 7.38 (dd, J = 8.8, 7.1 Hz, 2H), 7.26 – 7.20 (m, 1H), 3.85 (dd, J = 11.2, 7.2 Hz, 1H), 3.04 – 2.85 (m, 2H). ¹³C **NMR (101 MHz, Chloroform-***d***)** δ : 160.5 (t, J = 27.8 Hz), 138.3 (d, J = 1.9 Hz), 135.4, 132.5, 130.0, 129.3, 126.1, 125.5 (q, J = 280.0 Hz), 120.1, 118.0, 119.3 – 113.3 (m), 113.0, 45.0 – 44.2 (m), 33.4 (t, J = 23.8 Hz). ¹⁹F **NMR (376 MHz, Chloroform-***d***)** δ : -69.92 (d, J = 8.9 Hz), -102.16 (d, J = 15.8 Hz), -102.83 (t, J = 16.1 Hz), -103.92 (t, J = 16.5 Hz), -104.63 (d, J = 16.5 Hz). **HRMS (DART-TOF)** calculated for C₁₈H₁₄F₅N₂O⁺ [M+H]⁺ m/z 369.1021, found 369.1029.

4-(9,9-Dimethyl-9H-fluoren-2-yl)-2,2,5,5,5pentafluoro-*N*-phenylpentanamide (4vh). General Procedure was used to prepare the desired product 4vh. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded 4vh as a white solid (26.2 mg, 0.057 mmol, 57%); Mp: 92.4-

93.8 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ : 7.70 – 7.56 (m, 3H), 7.41 – 7.36 (m, 1H), 7.35 (s, 1H), 7.33 – 7.25 (m, 5H), 7.19 (t, *J* = 7.9 Hz, 2H), 7.11 – 7.02 (m, 1H), 3.89 – 3.64 (m, 1H), 3.22 – 2.74 (m, 2H), 1.41 (s, 3H), 1.38 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ : 160.9 (t, *J* = 28.0 Hz), 154.2, 153.8, 140.1, 138.3, 135.4, 131.5, 129.0, 128.1, 127.6, 127.0, 125.7, 123.4, 122.6, 120.2, 120.2, 126.1 (q, *J* = 279.8 Hz), 120.1, 119.5 – 113.9 (m), 46.9, 44.8 (d, *J* = 28.3 Hz), 33.7 (t, *J* = 23.5 Hz), 27.0, 26.9. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -70.23 (d, *J* = 9.1 Hz), -100.93 (dd, *J* = 258.4, 15.7 Hz), -105.31 (dd, *J* = 258.4, 16.5 Hz). HRMS (DART-TOF) calculated for C₂₆H₂₂F₅KNO⁺ [M+K]⁺ m/z 498.1253, found 498.1252.

4-(3-(5-(2,5-Dimethylphenoxy)-2,2dimethylpentanamido)phenyl)-2,2,5,5,5-pentafluoro-*N*phenylpentanamide (4xh). General Procedure was used to prepare the desired product 4xh. Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded 4xh as a yellow solid (15.3 mg, 0.026 mmol, 26%); Mp: 113.6-114.6 °C. ¹H NMR (400

MHz, Chloroform-*d***)** δ : 7.85 (s, 1H), 7.56 (s, 1H), 7.42 – 7.35 (m, 2H), 7.32 – 7.28 (m, 2H), 7.28 – 7.24 (m, 3H), 7.18 – 7.07 (m, 2H), 7.00 (d, *J* = 7.5 Hz, 1H), 6.66 (d, *J* = 7.5 Hz, 1H), 6.61 (s, 1H), 3.94 (t, *J* = 2.9 Hz, 2H), 3.67 (td, *J* = 9.7, 3.6 Hz, 1H), 3.08 – 2.73 (m, 2H), 2.29 (s, 3H), 2.16 (s, 3H), 1.80 (s, 4H), 1.31 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ : 175.9, 161.0 (t, *J* = 27.9 Hz), 156.8, 138.1, 136.6, 135.7, 133.6, 130.4, 129.4, 128.9, 125.9 (q, *J* = 279.7 Hz), 125.6, 124.8, 123.5, 121.8, 121.0, 120.6, 120.3, 119.3 – 113.4 (m), 112.2, 67.9, 44.7 (d, *J* = 28.2 Hz), 42.8, 37.6, 33.6 (t, *J* = 23.7 Hz), 25.6, 25.5, 25.1, 21.4, 15.8. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -69.99 (d, *J* = 9.0 Hz), -100.35 (t, *J* = 15.2 Hz), -101.04 (t, *J* = 15.3 Hz), -105.59 (t, *J* = 16.4 Hz), -106.28 (t, *J* = 16.5 Hz). HRMS (DART-TOF) calculated for C₃₂H₃₅F₅N₂NaO₃⁺ [M+Na]⁺ m/z 613.2460, found 613.2468.

4. Scale-Up and Transformation of Product 3aa

4.1 Gram-scale synthesis

A mixture of 4CzIPN (0.02 mmol, 2 mol%), α -trifluoromethyl styrene **1a** (1.0 mmol, 1.0 equiv.), bromodifluoroacetate **2a** (2.0 mmol, 2.0 equiv.), DIPEA (2.0 mmol, 2.0 equiv.) and DMF (5 mL) was degassed by three cycles of freeze-pump-thaw. The mixture was irradiated by 24 W 365 nm LEDs at room temperature for 5 days. After removal of solvents, the crude mixture was purified by flash chromatography (petroleum ether/ethyl acetate) to afford the pure product **3aa** (0.24 g, 0.68 mmol, 68%).

4.2 Sunlight driven experiment

A mixture of 4CzIPN (0.002 mmol, 2 mol%), α -trifluoromethyl styrene **1a** (0.1 mmol, 1.0 equiv.), bromodifluoroacetate **2a** (0.2 mmol, 2.0 equiv.), DIPEA (0.2 mmol, 2.0 equiv.) and DMF (1 mL) was degassed by three cycles of freeze-pump-thaw. The resulting mixture was stirred upon sunlight irradiation under nitrogen atmosphere for 24 h (as an on/off visible light irradiation experiment, the reaction solution was kept in dark place at night). After completion of the reaction, the crude mixture was purified by flash chromatography (petroleum ether/ethyl acetate) to afford the product **3aa** (14.8 mg, 0.042 mmol, 42% yield).

4.3 Synthetic applications

To a 10 mL Schlenk flask was added *gem*-difluoroalkene **3aa** (35.2 mg, 0.1 mmol, 1.0 equiv.), and Selectfluor (46.0 mg, 0.13 mmol, 1.3 equiv.). Then H₂O (0.80 mmol, 14.4 μ L) and CH₃CN (1 mL) was added by syringe. The reaction mixture was stirred at 40 °C for 4 h. After cooling to room temperature, the solvent was removed under vacuum, and the crude mixture was purified by flash chromatography (petroleum ether/ethyl acetate) to afford the product **5**.

Ethyl 4-([1,1'-biphenyl]-4-yl)-2,2,5,5,5-pentafluoro-4hydroxypentanoate (5). Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded 5 as a white solid (25.2 mg, 0.065 mmol, 65% yield); Mp: 115.3-

116.5 °C. ¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.68 – 7.54 (m, 6H), 7.45 (t, J = 7.5 Hz, 2H), 7.36 (t, J = 7.3 Hz, 1H), 4.09 (m, 2H), 3.27 (s, 1H), 3.10 (m, 2H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.8 (t, J = 31.8 Hz), 141.9, 140.1, 133.8, 128.9, 127.7, 127.5 (q, J = 285.9 Hz), 127.1, 127.0, 126.7, 114.4 (dd, J = 250.6, 250.7 Hz), 74.9 (dd, J = 34.0, 4.6 Hz), 63.4, 39.5 (t, J = 23.5 Hz), 13.7. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -80.94, -97.29 (d, J = 13.8 Hz), -97.99 (dd, J = 16.6, 11.5 Hz), -99.63 (dd, J = 17.8, 11.3 Hz), -100.35 (dd, J = 16.9, 12.3 Hz). HRMS (DART-TOF) calculated for C₁₉H₁₇F₅NaO₃⁺ [M+Na]⁺ m/z 411.0990, found 411.0981.

The *gem*-difluoroalkene **3aa** (35.2 mg, 0.1 mmol, 1.0 equiv.) was dissolved in a 4:1 mixture of MeOH and water, and lithium hydroxide monohydrate was added (5 equiv.). When full conversion was observed, the resulting mixture was diluted with water and

washed with ethyl acetate. The organic layer was discarded. The aqueous layer was acidified with 2 M HCl solution and extracted with ethyl acetate (\times 3). The combined organic layers were dried over anhydrous Na₂SO₄. The solvent was removed in vacuo, and the resulting acid was used in the next step without further purification.

To a flame-dried round-bottom flask, EDC-HCl (1-(3-dimethylaminopropyl)-3ethylcarbodiimide hydrochloride, 1.3 equiv.) and DMAP (1.4 equiv.) were added. The mixture was degassed and flushed with nitrogen. Dry DCM (2 mL) was added, and the mixture was cooled to 0 °C in an ice bath. The above the resulting acid (0.1 mmol, 1.0 equiv.) was added, and the mixture was stirred for five minutes before the benzylamine (0.12 mmol, 1.2 equiv.) was added. The ice bath was then removed and the reaction allowed to stir overnight at room temperature. The reaction was quenched with 1 M HCl and the organics were separated. The aqueous layer was then extracted with DCM twice. The organic layers were combined, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude mixture was purified by flash chromatography (petroleum ether/ethyl acetate) to afford the product **6**.

4-([1,1'-Biphenyl]-4-yl)-*N*-benzyl-2,2,5,5tetrafluoropent-4-enamide (6). Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded 6 as a white solid (18.2 mg, 0.044 mmol, 44% yield); Mp: 89.2-90.2 °C. ¹H NMR (400 MHz, Chloroform-d) δ : 7.61 – 7.51 (m, 4H), 7.44 (t, *J* =

7.6 Hz, 2H), 7.40 – 7.27 (m, 6H), 7.23 – 7.16 (m, 2H), 6.45 (s, 1H), 4.33 (d, J = 5.8 Hz, 2H), 3.32 (t, J = 16.1 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ : 163.3 (t, J = 28.3 Hz), 155.3 (t, J = 292.8 Hz), 140.6, 140.3, 136.5, 131.2 (t, J = 3.5 Hz), 128.9, 128.8, 128.7, 128.1, 127.9, 127.5, 127.1, 127.0, 120.4 – 114.0 (m), 85.0 – 84.6 (m), 43.6, 33.1 – 32.6 (m). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ : -85.74 (d, J = 29.8 Hz), -86.13 (d, J = 29.2 Hz), -104.55 (dd, J = 16.1, 5.2 Hz). HRMS (DART-TOF) calculated for C₂₄H₁₉F₄NNaO⁺ [M+Na]⁺ m/z 436.1295, found 436.1322.

5. Mechanistic Experiments

5.1 Radical Inhibition Experiment

To an oven-dried quartz vial, α -trifluoromethyl styrene **1a** (0.1 mmol, 1.0 equiv.) and bromodifluoroacetate **2a** (0.2 mmol, 2.0 equiv.) were added sequentially. The vial was charged with a stir bar and transferred to a glovebox, where the solids were backfilled with an inert atmosphere. In the glovebox, 4CzIPN (0.002 mmol, 2 mol%), ethene-1,1-diyldibenzene (DPE, 4.0 equiv.), and DIPEA (0.2 mmol, 2.0 equiv.) were added into the vial, followed by DMF (1.0 mL). The vial was sealed with a rubber plug, removed from the glove box, and irradiated and stir by 24 W 365 nm LEDs at room temperature for 24 h. **HRMS (DART-TOF)**: compound **7** calculated for C₁₈H₁₇F₂O₂⁺ [M+H]⁺ m/z 303.1191, found 303.1194.

Figure S3 α -trifluoromethyl styrene **1a** and bromodifluoroacetate **2a** under standard conditions with ethene-1,1-diyldibenzene (4.0 equiv.)

5.2 Control experiments

Procedure: To an oven-dried quartz vial, α -trifluoromethyl styrene **1a** (0.1 mmol, 1.0 equiv.) and bromodifluoroacetate **2a** (0.2 mmol, 2.0 equiv.) were added. The vial was charged with a stir bar and transferred to a glovebox, where the solids were backfilled with an inert atmosphere. In the glovebox, 4CzIPN (0.002 mmol, 2 mol%) and DIPEA (0.2 mmol, 2.0 equiv.) were added into the vial, followed by CD₃OD (0.5 mL) and DMF (0.5 mL). The vial was sealed with a rubber plug, removed from the glove box, and irradiated and stir by 24 W 365 nm LEDs at room temperature for 24 h.

Methyl- d_3 4-([1,1'-biphenyl]-4-yl)-2,2,5,5tetrafluoropent-4-enoate (8) and methyl- d_3 4-([1,1'-biphenyl]-4-yl)-2,2,5,5,5-pentafluoropentanoate-4-*d* (9). Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded 8 and 9 as a yellow oil (0.086 mmol, 86%, 8:9 = 1.6:1, products 8 and 9 were inseparable). ¹H NMR (8, 400 MHz, Chloroform-*d*) δ: 7.63 – 7.55 (m, 4H), 7.44 (t, *J* = 7.5 Hz, 2H), 7.40 – 7.33 (m, 3H), 3.32 – 3.16 (m, 2H). ¹⁹F NMR (8, 376 MHz, Chloroform-*d*) δ: -86.02 – -86.44 (m), -104.37 (td, *J* = 14.9, 4.8

Hz). **HRMS (8, DART-TOF)** calculated for $C_{18}H_{12}D_3F_4O_2^+$ [M+H]⁺ m/z 342.1191, found 342.1200. ¹H NMR (9, 400 MHz, Chloroform-*d*) δ : 7.63 – 7.55 (m, 4H), 7.44 (t, *J* = 7.5 Hz, 2H), 7.40 – 7.33 (m, 3H), 2.91 – 2.72 (m, 2H). ¹⁹F NMR (9, 376 MHz, Chloroform-*d*) δ - 70.47, -101.47 (t, *J* = 13.2 Hz), -102.17 (t, *J* = 13.1 Hz), -106.21 – -106.86 (m), -107.14 (t, *J* = 17.4 Hz). HRMS (9, DART-TOF) calculated for $C_{18}H_{12}D_4F_5O_2^+$ [M+H]⁺ m/z 363.1316, found 363.1325.

Procedure: To an oven-dried quartz vial, α -trifluoromethyl styrene **1a** (0.1 mmol, 1.0 equiv.) and bromodifluoroacetamide **2h** (0.2 mmol, 2.0 equiv.) were added. The vial was charged with a stir bar and transferred to a glovebox, where the solids were backfilled with an inert atmosphere. In the glovebox, 4CzIPN (0.002 mmol, 2 mol%) and DIPEA (0.2 mmol, 2.0 equiv.) were added into the vial, followed by CD₃OD (0.5 mL) and DMF (0.5 mL). The vial was sealed with a rubber plug, removed from the

glove box, and irradiated and stir by 24 W 365 nm LEDs at room temperature for 24 h.

4-([1,1'-biphenyl]-4-yl)-2,2,5,5-tetrafluoro-*N*phenylpent-4-enamide (3ah) and 4-([1,1'-biphenyl]-4-yl)-2,2,5,5,5-pentafluoro-*N*-phenylpentanamide-4-*d* (4ah-D). Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded 3ah and 4ah-D as a yellow oil (0.05 mmol, 50%, 3ah:4ah-D = 1:1.9, products 3ah and 4ah-D were inseparable). ¹H NMR (3ah, 400 MHz, Chloroform*d*) δ : 7.78 (s, 1H), 7.61 – 7.48 (m, 3H), 7.48 – 7.26 (m, 10H), 7.19 – 7.07 (m, 1H), 3.46 – 3.28 (m, 2H). ¹⁹F NMR (3ah, 376 MHz,

Chloroform-*d***)** δ : -85.19 – -87.27 (m), -104.37 (td, J = 16.0, 3.8 Hz). **HRMS (3ah, DART-TOF)** calculated for C₂₃H₁₈F₄NO⁺ [M+H]⁺ m/z 400.1319, found 400.1320. ¹H NMR (4ah-D, 400 MHz, Chloroform-*d***)** δ : 7.67 (s, 1H), 7.61 – 7.49 (m, 3H), 7.48 – 7.26 (m, 10H), 7.19 – 7.04 (m, 1H), 3.18 – 2.45 (m, 2H). ¹⁹F NMR (4ah-D, 376 MHz, Chloroform-*d***)** δ -70.34, - 100.49 (t, J = 15.4 Hz), -101.18 (t, J = 15.5 Hz), -105.41 (t, J = 16.5 Hz), -106.10 (dd, J = 18.5, 14.8 Hz). HRMS (4ah-D, DART-TOF) calculated for C₂₃H₁₇DF₅KNO⁺ [M+H]⁺ m/z 459.1003, found 459.0993.

Procedure: To an oven-dried quartz vial, α -trifluoromethyl styrene **1a** (0.1 mmol, 1.0 equiv.) and deuterated bromodifluoroacetamide **2h-D** (0.2 mmol, 2.0 equiv.) were added. The vial was charged with a stir bar and transferred to a glovebox, where the solids were backfilled with an inert atmosphere. In the glovebox, 4CzIPN (0.002 mmol, 2 mol%) and DIPEA (0.2 mmol, 2.0 equiv.) were added into the vial, followed by and DMF (1.0 mL). The vial was sealed with a rubber plug, removed from the glove box, and irradiated and stir by 24 W 365 nm LEDs at room temperature for 24 h.

4-([1,1'-biphenyl]-4-yl)-2,2,5,5,5-pentafluoro-N-(phenyl-d5)pentanamide (10) and 4-([1,1'-biphenyl]-4-yl)-2,2,5,5,5-pentafluoro-N-(phenyl-d5)pentanamide-4-d (10-D). Chromatographic purification on silica gel using petroleum ether/ethyl acetate (5/1) as eluent afforded

10 and **10-D** as a yellow oil (0.083 mmol, 83%, products **10** and **10-D** were inseparable). ¹H **NMR (10, 400 MHz, Chloroform-***d***)** δ : 7.66 (s, 1H), 7.52 (d, J = 7.9 Hz, 2H), 7.49 – 7.30 (m, 7H), 3.75 (td, J = 10.4, 9.9, 3.3 Hz, 1H), 3.12 – 2.84 (m, 2H). ¹⁹F **NMR (10, 376 MHz, Chloroform-***d***)** δ : -70.25, -100.54 (t, J = 15.5 Hz), -101.22 (t, J = 15.5 Hz), -105.38 (t, J = 16.7 Hz), -106.07 (t, J = 16.6 Hz). **HRMS (10, DART-TOF)** calculated for C₂₃H₁₄D₅F₅NO⁺ [M+H]⁺ m/z 425.1695, found 425.1701. **HRMS (10-D, DART-TOF)** calculated for C₂₃H₁₂D₆F₅KNO⁺ [M+K]⁺ m/z 464.1317, found 464.1294.

5.3 Stern-Volmer fluorescence quenching experiments

All fluorescence measurements were recorded by an Agilent Cary Eclipse fluorescence spectrophotometer. Stern-Volmer fluorescence quenching experiments were run with freshly prepared solutions of 1.5 μ M 4CzIPN, in degassed dry DMF at room temperature. The solutions were irradiated at 360 nm and fluorescence was measured from 450 nm to 670 nm. Control experiments showed that the excited state 4CzIPN* was mainly quenched by **DIPEA**.

(c)

Figure S4 The fluorescence emission spectra of excited 4CzIPN* with different concentration of BrCF₂COOEt 2a, BrCF₂CONHPh 2h, or DIPEA in DMF (excitation wavelength: 360 nm). (a) BrCF₂COOEt 2a (b) BrCF₂CONHPh 2h (c) DIPEA

Figure S5 Stern-Volmer fluorescence quenching plot

6. X-Ray Structure of Product 4jh

X-ray crystallography of 4jh

Figure S6. ORTEP diagram (50% probability) of 4jh

A single crystal of **4jh** was obtained *via* evaporation of its hexanes/dichloromethane solvent mixture. A suitable crystal of **4jh** was selected and analyzed by an Agilent Gemini X-ray Single Crystal Diffractometer. Using Olex2⁴, the structure was solved with the ShelXT⁵ structure solution program using Direct Methods and refined with the ShelXL⁶ refinement package using Least Squares minimization. Details of the crystal, data collection, and structure refinement parameters for crystallographic analysis of **4jh** are summarized in **Table S4**. Crystallographic data (CCDC 2213890) for **4jh** can be obtained free of charge from the Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

Table S4. Parameters for crystallographic analysis of 4jh		
Identification code	0417JFC2_0m_5	
Empirical formula	C19 H16 F5 N O2	
Formula weight	385.33	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	$a = 8.161(2) \text{ Å}$ $\alpha = 79.398(7)^{\circ}$	
	$b = 10.353(3) \text{ Å} \beta = 85.889(7)^{\circ}$	
	$c = 20.984(6) \text{ Å} \gamma = 89.958(7)^{\circ}$	
Volume	1738.0(8) Å ³	
Z	4	
Density (calculated)	1.473 Mg/m ³	
Absorption coefficient	0.131 mm ⁻¹	
F(000)	792	
Crystal size	0.200 x 0.200 x 0.200 mm ³	
Theta range for data collection	0.990 to 25.000°.	
Index ranges	-9<=h<=9, -12<=k<=12, 0<=l<=24	
Reflections collected	6011	
S34		

Independent reflections	6011 [R(int) = 0]
Completeness to theta = 25.000°	99.1 %
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	6011 / 0 / 442
Goodness-of-fit on F ²	0.989
Final R indices [I>2sigma(I)]	R1 = 0.0717, $wR2 = 0.1962$
R indices (all data)	R1 = 0.1723, $wR2 = 0.2571$
Extinction coefficient	n/a
Largest diff. peak and hole	0.322 and -0.320 e.Å ⁻³

7. DFT Computational Study

7.1 Computational Methods

All the species are fully optimized at the ω B97X-D/6-31++G(d,p) level^{7,8}. Frequency analyses are performed at the same level to confirm that the characteristics of the structures are minima (without imaginary frequencies) or transition states (only one imaginary frequency). Calculations of the intrinsic reaction coordinates (IRC)⁹⁻¹⁰ are calculated to ensure that the states indeed have connected minima. The solvent transition two N.N-Dimethylformamide(DMF) was evaluated by single-point energy calculation with SMD solvation model¹¹, using ω B97X-D functional method on the basis sets of 6-311++G(d, p). The single-point energies are added to the Gibbs free energy correction to obtain the Gibbs free energies (ΔG). All these calculations are performed with Gaussian 16 program¹².

7.2 Modified Marcus theory

The activation free energies of the outer-sphere single electron transfer reactions were calculated using modified Marcus theory¹³. According to the Marcus equation, the solvent reorganization energy λ_0 may be calculated from equation (1):

a₁ and a₂ are the radii of **E** and 4CzIPN⁻, $R = a_1 + a_2$, ε_{op} is the optical dielectric constat ($\varepsilon_{op} = 2.05$), ε is the static dielectric constant for the DMF solvent ($\varepsilon = 37.2$). We estimate the inner reorganization energy for the reactants $\lambda_i = 0$. Thus, the total reorganization energy $\lambda = \lambda_i + \lambda_0$. According to Marcus theory, ΔG_r is the reaction energy, and ΔG_0^{\neq} is the intrinsic barrier.

$$\Delta G_{\rm ET'}^{\neq} = \Delta G_0^{\neq} \left(1 + \frac{\Delta G_r}{4\Delta G_0^{\neq}} \right)^2 \qquad \Delta G_0^{\neq} = \frac{\lambda}{4}$$
(3)

For eq2, $\Delta G_r = -11.8$ kcal mol⁻¹, $\Delta G_0^{\neq} = 2.0$ kcal mol⁻¹, the activation barrier for ET with respect to mixture is $\Delta G^{\neq}_{ET} = 0.4$ kcal mol⁻¹, according to eq.3.

Figure S7. Two possible mechanism pathways for the allylic defluorinative difluoroalkylation and hydrodifluoroalkylation.

Note: For the substrate bromodifluoroacetamide 2n, the hydrodifluoroalkylation product 4an (major, 70%) and the defluorinative difluoroalkylated product 3an (or 6, minor, 4%) were observed by the crude ¹⁹F NMR. The results suggest that two pathways of β -F elimination or protonation can occur toward the bromodifluoroacetamides.

Cartesian coordinates together with the electronic energies (hartree) for all the complexes calculated in this study

*i*Pr₂NEt

E = -370.967334

Ν	-0.01156300	-0.02782300	-0.49577800
С	0.51300600	1.19291600	-1.07749600

С	0.35463000	2.49244900	-0.27160300
Н	0.03532600	1.34084500	-2.05691800
Н	1.57585400	1.03484200	-1.28974700
Н	0.81467000	3.32498700	-0.81535900
Н	-0.70105400	2.74160000	-0.12343100
Н	0.82750300	2.42420300	0.71170300
С	-1.43609400	-0.04518000	-0.18268900
С	-1.78845500	0.28281800	1.27930900
С	-2.07851500	-1.37236100	-0.60500600
Н	-1.88247200	0.73701800	-0.81026800
Н	-1.36004600	1.23975600	1.58886100
Н	-2.87472100	0.33504500	1.40951000
Н	-1.41364200	-0.49190600	1.95786200
Н	-1.87181200	-1.57331900	-1.65948300
Н	-1.68816500	-2.21040600	-0.01664000
Н	-3.16329000	-1.34458800	-0.45597500
С	0.88224300	-0.86048700	0.30278100
С	1.64720500	-0.12441700	1.41588900
С	1.85444300	-1.63771700	-0.59345600
Н	0.24513200	-1.60536700	0.79263400
Н	0.96481800	0.40946400	2.08286400
Н	2.22425100	-0.83671900	2.01526900
Н	2.35428300	0.60012500	0.99660600
Н	1.30020100	-2.21085800	-1.34130300
Н	2.53661600	-0.96181900	-1.12117300
Н	2.46671500	-2.32627000	-0.00093900

A

E = -370.714290

Ν	-0.00219300	0.10666600	-0.26129300
С	0.58491200	1.18347600	-1.03678500
С	0.46955900	2.53303300	-0.30850100
Н	0.04373100	1.22451100	-1.98953300
Н	1.62859800	0.94528100	-1.23981200
Н	0.91869600	3.29896900	-0.94371400
Н	-0.57085700	2.81103800	-0.12743800
Н	1.00617900	2.51251800	0.64180500
С	-1.45903600	0.06361400	-0.11493000
С	-1.85262900	0.23240000	1.35937800
		620	

S38

С	-2.01301700	-1.22618600	-0.73755600
Н	-1.83917100	0.91691800	-0.68253800
Н	-1.43199200	1.14716600	1.78320200
Н	-2.94150600	0.30089000	1.41261300
Н	-1.54209100	-0.62031500	1.96809600
Н	-1.71923800	-1.32244900	-1.78548400
Н	-1.69278100	-2.11643500	-0.19059400
Н	-3.10338400	-1.18022000	-0.69312400
С	0.84277700	-0.91050500	0.36596500
С	1.83605000	-0.25735200	1.33578800
С	1.53615000	-1.75580700	-0.71465500
Н	0.17015400	-1.55607600	0.93290000
Н	1.32094700	0.33053700	2.09894500
Н	2.39208500	-1.05302300	1.83652200
Н	2.55852500	0.37810500	0.81709800
Н	0.81331700	-2.18975000	-1.40884200
Н	2.27280900	-1.17814200	-1.27804500
Н	2.06273600	-2.57223500	-0.21522800

*i*Pr₂N⁺HEt

E = -371.366559

Ν	-0.02274200	0.24936300	0.27872000
С	0.11338400	1.57491500	-0.42827200
С	-0.77520200	2.65433300	0.16866900
Н	-0.09878100	1.40596400	-1.48451500
Н	1.16014600	1.86754300	-0.33676400
Н	-0.53539800	3.60284500	-0.31669300
Н	-1.84024000	2.47362600	0.01222200
Н	-0.59019000	2.78243000	1.24025900
С	-1.37971600	-0.42550000	0.06250400
С	-1.66643300	-1.37325100	1.22200800
С	-1.49616300	-1.09754200	-1.29709900
Н	-2.09374000	0.39894300	0.11175800
Н	-1.58871100	-0.87087100	2.19189800
Н	-2.69165100	-1.73788200	1.12938600
Н	-1.01114300	-2.24845800	1.22353700
Н	-1.28747800	-0.41674700	-2.12571600
Н	-0.85037000	-1.97527300	-1.38095300
Н	-2.52697700	-1.43919000	-1.41428300

С	1.19339400	-0.67212800	0.09918100
С	2.21302800	-0.33610800	1.18151800
С	1.79204300	-0.61448000	-1.30150200
Н	0.80639400	-1.67632000	0.27986500
Н	1.80207300	-0.47449400	2.18697200
Н	3.07170900	-1.00394300	1.08630700
Н	2.58616200	0.68890500	1.08693600
Н	1.05329400	-0.75962700	-2.09031500
Н	2.32827500	0.31950000	-1.48517800
Н	2.51959700	-1.42531300	-1.38309800
Н	-0.01979100	0.48138400	1.27530100

B

E = -370.315050

Ν	0.06089800	0.08658900	-0.02714400
С	-0.06532000	1.35285200	0.69679800
С	0.17326400	2.57861100	-0.18289000
Н	0.62141200	1.35691200	1.55031000
Н	-1.06689100	1.41682300	1.13341300
Н	0.07784700	3.49782300	0.40573300
Н	1.17261800	2.55452700	-0.62572800
Н	-0.55332200	2.61499400	-0.99955700
С	1.26439500	-0.62602800	0.11931900
С	-1.18656500	-0.65851700	-0.23049100
С	-2.23601100	0.18581300	-0.95712600
С	-1.74132800	-1.26121200	1.06820500
Н	-0.94458700	-1.48178700	-0.90557000
Н	-1.82929900	0.58409700	-1.89078700
Н	-3.10540300	-0.43500500	-1.19477900
Н	-2.59118100	1.02478700	-0.34980600
Н	-0.97671800	-1.86232100	1.56906400
Н	-2.06630600	-0.48049500	1.76453600
Н	-2.60553500	-1.89992300	0.85817400
С	1.35309200	-1.99901000	-0.48175900
С	2.53681900	0.17359400	0.07521200
Н	0.61025100	-2.69916100	-0.08515400
Н	1.24115800	-1.98930400	-1.58187400
Н	2.33762200	-2.42258000	-0.26666600
Н	3.38085300	-0.44949600	0.38364900

Н	2.75271100	0.53701000	-0.94689600
Н	2.52840900	1.05035600	0.72833600

2c

E = -3268.868811

С	-2.10668700	-0.41896000	-0.11463700
С	-0.83584700	-1.28781700	-0.20545000
F	-2.88522500	-0.62993800	-1.17794400
F	-2.81729800	-0.69901500	0.99013300
0	-0.45463900	-1.77333200	-1.23482000
0	-0.25039900	-1.34641800	0.98154500
С	1.11740900	-1.81780700	0.99432900
Н	1.19231900	-2.73199700	0.40170000
Н	1.29858800	-2.04659100	2.04541700
С	2.04185900	-0.74415700	0.48129100
С	1.96250500	0.54984100	1.00385300
С	2.98101200	-1.02753300	-0.50874600
С	2.81133700	1.54707100	0.53653700
Н	1.23081200	0.77524100	1.77401500
С	3.83885400	-0.03084500	-0.97026200
Н	3.02795600	-2.02459000	-0.93745700
С	3.75789000	1.25607900	-0.44550300
Н	2.73786900	2.55198700	0.94033500
Н	4.56442900	-0.25949600	-1.74427100
Н	4.42202300	2.03415600	-0.80829000
Br	-1.56917100	1.44184700	-0.07381200

С

E = -370.150295

N	1	0.07914100	0.01746900	0.12553600
C	2	-0.01398600	1.38710600	0.69910200
C	2	0.26374700	2.48186800	-0.32478100
H	I	0.66373000	1.44575400	1.55147700
H	I	-1.02139200	1.48893200	1.10000000
H	I	0.19236700	3.45320100	0.17006900
H	I	1.26348600	2.39719100	-0.75728800
H	I	-0.46400400	2.46343100	-1.13763900
C		1.21926700	-0.57519900	-0.05590200
C		-1.22569400	-0.66129600	-0.16996200
			0.4.1	

С	-2.13158400	0.21366700	-1.03166600
С	-1.87594300	-1.10457800	1.13998400
Н	-0.98248200	-1.54703900	-0.75278300
Н	-1.63904300	0.51169400	-1.96044300
Н	-3.01442400	-0.37296700	-1.29587400
Н	-2.48175400	1.10705900	-0.50853500
Н	-1.20435100	-1.73695100	1.72705800
Н	-2.18298900	-0.25544300	1.75650000
Н	-2.77286100	-1.68419600	0.90992200
С	1.30668000	-1.96959900	-0.60518900
С	2.52729800	0.06505800	0.27229700
Н	0.72629300	-2.67600900	-0.00548200
Н	0.93461500	-2.00855600	-1.63399400
Н	2.34500400	-2.29973300	-0.61200600
Н	3.04052600	-0.56665400	1.00574900
Н	3.14839700	0.05449400	-0.62988000
Н	2.47618700	1.08133800	0.65110300

[*i*Pr₂N⁺HEt]Br⁻

E = -2943.335065

Ν	1.15517600	-0.11601000	-0.37363300
С	0.56236100	0.55850900	-1.59249800
С	1.34126400	1.78189400	-2.04432100
Н	-0.47762300	0.78187500	-1.32468900
Н	0.57104200	-0.18304300	-2.38916200
Н	0.87824300	2.13990400	-2.96702000
Н	1.30535000	2.60528400	-1.32774700
Н	2.38985300	1.55284000	-2.26877800
С	1.20387500	0.86909000	0.82462500
С	2.64836000	1.33313900	0.98807900
С	0.62206900	0.36437100	2.13940200
Н	0.56017100	1.69157600	0.50814100
Н	3.07139700	1.73574200	0.06341000
Н	2.69154600	2.12314400	1.74125300
Н	3.28497500	0.51104200	1.33671800
Н	-0.44173600	0.13809100	2.03137400
Н	1.16853400	-0.47989500	2.56614100
Н	0.70196100	1.19632700	2.84554600
С	0.57403500	-1.50162200	-0.05755500

С	1.68737500	-2.34423200	0.55693500
С	-0.03953600	-2.19513600	-1.26463900
Н	-0.24194400	-1.31402500	0.63842200
Н	2.20353800	-1.84001100	1.37736900
Н	1.26113800	-3.26730900	0.95599900
Н	2.43202700	-2.62338300	-0.19979400
Н	-0.91927500	-1.65713500	-1.62223600
Н	0.67907300	-2.36140100	-2.07597200
Н	-0.38200100	-3.17643600	-0.92460700
Н	2.13241400	-0.29714300	-0.61340800
Br	-2.35867800	0.29542700	0.19898000

D

E = -697.062846

С	-2.72706200	0.05982300	-0.57722500
С	-1.66218000	-0.30017100	0.35019400
F	-3.65779300	-0.81636000	-0.86936000
F	-3.12222600	1.30236200	-0.74766300
0	-1.44811600	-1.44929600	0.67955200
0	-0.96262100	0.77825400	0.71797400
С	0.22075500	0.53523100	1.51739900
Н	0.01425600	-0.27967400	2.21393800
Н	0.35479300	1.46600400	2.06948600
С	1.41322600	0.23448500	0.64931300
С	2.14857200	1.28028800	0.08514700
С	1.78598600	-1.08526800	0.38308000
С	3.24022600	1.01307400	-0.73570300
Н	1.86275500	2.30883400	0.28958100
С	2.87961800	-1.35384100	-0.43664300
Н	1.20764500	-1.89914900	0.80965000
С	3.60721000	-0.30616200	-0.99694700
Н	3.80614600	1.83217300	-1.16810300
Н	3.16243000	-2.38214400	-0.63833500
Н	4.45993200	-0.51649500	-1.63491400

1

E = -646.526858

С	-3.35116500	-0.38166500	-0.10303700
С	-2.44025700	-1.31087400 \$43	0.39428400

Н	-2.77712300	-2.30026100	0.68693900
С	-1.09500300	-0.97901500	0.52356900
Н	-0.40025500	-1.71007300	0.92101700
С	-0.64191200	0.29468500	0.15911400
С	-1.56259200	1.21757600	-0.35116100
Н	-1.21539100	2.19560800	-0.67027000
С	-2.90775200	0.88448100	-0.47684900
Н	-3.60663700	1.61150800	-0.87822000
С	1.84056600	-0.26552300	-0.16375800
С	0.78122500	0.70183900	0.31241900
С	1.15297400	1.87631800	0.82383800
F	1.93064200	-1.35034300	0.64189200
F	1.57270200	-0.72330900	-1.40114200
F	3.06766400	0.28287700	-0.20224900
Н	-4.39911700	-0.64515500	-0.20454900
Н	2.19448900	2.16697000	0.89097400
Н	0.40844800	2.57144700	1.19708600

E

E = -1343.654865

С	2.09229000	2.62901000	-1.35271000
С	1.24116100	3.21667900	-0.41516000
Н	1.52008300	4.15117700	0.06145700
С	0.03917800	2.61905400	-0.07981100
Н	-0.59342400	3.10498600	0.65110700
С	-0.37529900	1.40329700	-0.69309400
С	0.51851200	0.82041700	-1.63211300
Н	0.27942100	-0.12305400	-2.10676100
С	1.72431800	1.42221100	-1.94759600
Н	2.38698700	0.93986900	-2.65831000
С	-2.54770800	1.42850500	0.61608500
С	-1.63819300	0.79781000	-0.40392800
С	-2.17650400	-0.39734100	-1.13945000
Н	-3.25910200	-0.30999400	-1.26278200
Н	-1.74211000	-0.47290500	-2.13782900
С	-1.96046600	-1.74980200	-0.45534100
С	-0.48657800	-2.20349400	-0.41859200
F	-1.98526100	1.48247500	1.84631300
F	-2.87720300	2.70581400	0.29456500

F	-3.70997000	0.76962000	0.74901000
F	-2.63749900	-2.69846500	-1.17011700
F	-2.48549700	-1.74704800	0.79443400
0	0.12795200	-2.41509500	-1.43582300
Н	3.03690400	3.09892200	-1.60638300
0	-0.02278200	-2.31080200	0.81450100
С	1.36705500	-2.67928800	0.95042600
Н	1.61056500	-3.44318000	0.20905400
Н	1.41797500	-3.11217300	1.95102500
С	2.27695700	-1.48520500	0.82584400
С	2.01525000	-0.32100900	1.55385900
С	3.41441800	-1.55073000	0.02308200
С	2.89293400	0.75479800	1.49106300
Н	1.11855600	-0.25658400	2.16376400
С	4.30042900	-0.47600200	-0.03115400
Н	3.60793400	-2.44395000	-0.56455500
С	4.04251500	0.67541700	0.70616900
Н	2.67726000	1.65864800	2.05127200
Н	5.18665400	-0.53797300	-0.65503400
Н	4.72818700	1.51586100	0.66122600

F

E = -1343.728806

С	-1.60408600	3.18820500	1.61435300
С	-0.83074900	3.57988700	0.51751800
Н	-1.03044900	4.53141600	0.02710600
С	0.19672900	2.78638600	0.02951500
Н	0.76457000	3.14905000	-0.81888100
С	0.53735400	1.52985100	0.61810500
С	-0.27432200	1.15767500	1.72940700
Н	-0.12988600	0.19282000	2.20356500
С	-1.30191500	1.96084700	2.20532800
Н	-1.89253000	1.60420000	3.04676500
С	2.40206700	1.14801900	-0.99006600
С	1.59440000	0.69186900	0.12955700
С	2.19828400	-0.37879000	0.99897700
Н	3.29614600	-0.34821200	0.99638200
Н	1.89130100	-0.24827000	2.04294800
С	1.87524100	-1.83223200	0.65829800
		S15	

S45

С	0.37573000	-2.18184100	0.63696800
F	1.70496300	1.39938000	-2.15715900
F	3.09781600	2.35718500	-0.81284000
F	3.38515400	0.27623900	-1.34089800
F	2.43590500	-2.65866100	1.61685300
F	2.44146300	-2.21298100	-0.52040500
0	-0.28182800	-2.27084100	1.64523800
Н	-2.41275400	3.81051700	1.98643600
0	-0.08049400	-2.38846500	-0.59776600
С	-1.46550600	-2.71695000	-0.72485800
Н	-1.75479100	-3.38705500	0.09047400
Н	-1.52186400	-3.25861600	-1.67294600
С	-2.36576000	-1.50378400	-0.75038200
С	-1.86313500	-0.22070300	-0.95283000
С	-3.74073300	-1.68796100	-0.58098700
С	-2.72985100	0.87090800	-0.96916800
Н	-0.79367300	-0.05968000	-1.05929800
С	-4.60696900	-0.59946800	-0.61706000
Н	-4.13477800	-2.68720700	-0.40515000
С	-4.09938000	0.68595100	-0.80762600
Н	-2.31407600	1.86746300	-1.07303200
Н	-5.67359800	-0.75224200	-0.47637400
Н	-4.76715400	1.54258800	-0.80804200

3

E = -1243.835332

С	-3.24227700	1.57179000	1.59764300
С	-2.86597000	2.49257700	0.62290100
Н	-3.57183600	3.24174600	0.27776700
С	-1.57872100	2.47062600	0.09673400
Н	-1.29649600	3.21102500	-0.64370300
С	-0.64374600	1.51953900	0.52673500
С	-1.03102500	0.60443000	1.51284900
Н	-0.33830300	-0.15188600	1.86616500
С	-2.31780400	0.63081000	2.04038100
Н	-2.59718400	-0.09774500	2.79467400
С	0.99549500	1.77040300	-1.28885100
С	0.74623300	1.51177700	-0.00683000
С	1.90872600	1.27915800	0.94142800
		S46	

Н	2.64783800	2.08313400	0.86581800
Н	1.53109200	1.28041800	1.96556500
С	2.69936500	-0.02049300	0.77081400
С	1.81995500	-1.28004800	0.64056200
F	3.48688500	-0.18117400	1.87264500
F	3.53931600	0.05995000	-0.29591400
0	1.32362800	-1.81626000	1.60062900
Н	-4.24548300	1.59166900	2.01173900
0	1.65675800	-1.63157100	-0.62528300
С	0.71636200	-2.70300500	-0.88267900
Н	0.88462200	-3.50618900	-0.16235100
Н	0.98985900	-3.04305400	-1.88235900
С	-0.70244300	-2.20236500	-0.83144200
С	-1.11769100	-1.19982400	-1.71093100
С	-1.60869700	-2.71980600	0.09360300
С	-2.41832900	-0.71102600	-1.65726600
Н	-0.41415700	-0.78997900	-2.43018300
С	-2.91862200	-2.24815000	0.13219400
Н	-1.28256400	-3.48175800	0.79569100
С	-3.32261700	-1.23941900	-0.73805300
Н	-2.72430000	0.08451500	-2.32863800
Н	-3.61761700	-2.65478800	0.85633500
Н	-4.33630200	-0.85464200	-0.69210100
F	0.08618800	1.96365100	-2.23241800
F	2.20078700	1.88072200	-1.81719400

4CzIPN

E = -2481.099289			
С	-0.49212900	0.00000000	0.00000200
С	0.21938100	-1.14187200	-0.42590200
С	1.62511300	-1.11817000	-0.45522500
С	2.33326400	-0.00028200	-0.00008400
С	1.62536400	1.11774400	0.45511300
С	0.21963700	1.14172700	0.42586700
С	4.54825500	-0.79471300	0.81253400
С	4.54832800	0.79391900	-0.81271200
С	4.18031700	-1.71391800	1.79036500
С	5.89381300	-0.50692700	0.51959200
С	4.18047400	1.71312900	-1.79057200

С	5.89386000	0.50614500	-0.51964200
С	5.20182200	-2.36591000	2.47068500
Н	3.13851300	-1.91450100	2.01916600
С	6.90250600	-1.17192800	1.21740300
С	5.20203800	2.36514200	-2.47078200
Н	3.13868900	1.91369000	-2.01948100
С	6.90261400	1.17115900	-1.21735200
С	6.54953800	-2.10168200	2.18774500
Н	4.94901600	-3.09233800	3.23617800
Н	7.94669800	-0.96364100	1.00626500
С	6.54972900	2.10092200	-2.18771600
Н	4.94930000	3.09157300	-3.23629400
Н	7.94678700	0.96288100	-1.00611600
Н	7.32313800	-2.62802400	2.73665000
Н	7.32337700	2.62727800	-2.73654100
С	-1.48281900	2.36450000	1.78250600
С	-0.41349700	3.52408400	0.14400500
С	-1.85166200	1.42396600	2.73747600
С	-2.12422900	3.60941700	1.67550300
С	0.41243700	3.91964500	-0.90400700
С	-1.44425800	4.34778700	0.62855200
С	-2.93050300	1.72993600	3.55693800
Н	-1.32911700	0.47978700	2.83847500
С	-3.19744600	3.90482200	2.51637200
С	0.18972400	5.17397800	-1.46091400
Н	1.20854500	3.28515200	-1.27833000
С	-1.64962600	5.60314000	0.05784400
С	-3.60312400	2.95509100	3.44569100
Н	-3.25453300	1.00315500	4.29462200
Н	-3.70609600	4.86105500	2.44438100
С	-0.82936400	6.01090600	-0.98691800
Н	0.82545100	5.51083200	-2.27332000
Н	-2.44509700	6.24691400	0.41998200
Н	-4.44215400	3.16530000	4.10058100
Н	-0.97546000	6.98564800	-1.44026900
С	-0.41428600	-3.52408300	-0.14398500
С	-1.48340500	-2.36426900	-1.78245600
С	0.41161100	-3.91983300	0.90398200
С	-1.44530500	-4.34752200	-0.62843100
		G 10	

С	-1.85205000	-1.42367300	-2.73744100
С	-2.12514400	-3.60900700	-1.67536600
С	0.18859100	-5.17408200	1.46095400
Н	1.20791300	-3.28554000	1.27823500
С	-1.65098000	-5.60279600	-0.05766200
С	-2.93102900	-1.72937800	-3.55682000
Н	-1.32925100	-0.47964200	-2.83850800
С	-3.19849700	-3.90415100	-2.51615200
С	-0.83076000	-6.01074800	0.98706100
Н	0.82427900	-5.51107800	2.27333200
Н	-2.44665100	-6.24636700	-0.41972300
С	-3.60397800	-2.95434400	-3.44547900
Н	-3.25490900	-1.00253700	-4.29450900
Н	-3.70740400	-4.86024200	-2.44409000
Н	-0.97709200	-6.98543300	1.44045900
Н	-4.44311000	-3.16434800	-4.10030300
С	-2.71376600	-0.85369600	0.74735300
С	-2.71360700	0.85414100	-0.74732600
С	-2.35613900	-1.82518500	1.67663200
С	-4.05825000	-0.54669600	0.47511500
С	-2.35579500	1.82560800	-1.67655700
С	-4.05814800	0.54731000	-0.47517900
С	-3.37877900	-2.52801300	2.30102200
Н	-1.31997600	-2.03828600	1.91237200
С	-5.07129200	-1.25836400	1.11743100
С	-3.37830500	2.52856600	-2.30101400
Н	-1.31958800	2.03859700	-1.91221100
С	-5.07105700	1.25910800	-1.11756100
С	-4.72523400	-2.25459900	2.02195700
Н	-3.12356400	-3.30416700	3.01527000
Н	-6.11379100	-1.03271000	0.91546600
С	-4.72481400	2.25530700	-2.02205600
Н	-3.12294500	3.30469800	-3.01523400
Н	-6.11359800	1.03358200	-0.91566900
Н	-5.50182900	-2.82174600	2.52440600
Н	-5.50130400	2.82255100	-2.52455700
Ν	-0.44324400	2.30364300	0.84252200
Ν	3.73355400	-0.00041800	-0.00014800
Ν	-0.44374700	-2.30365500 849	-0.84254600

Ν	-1.89440900	0.00015800	0.00002900
С	2.34698000	2.21379700	1.03428500
С	2.34647800	-2.21437200	-1.03442900
Ν	2.93643400	3.08696100	1.51561400
Ν	2.93572600	-3.08766300	-1.51578100

4CzIPN'-

E = -2481.165023

C	-0.50996200	-0.00040800	-0.00013400
С	0.17558200	-1.14754000	-0.41573200
С	1.62907100	-1.12190500	-0.47873500
C	2.30851300	0.00080300	0.00015600
C	1.62801900	1.12291300	0.47889600
C	0.17453300	1.14733700	0.41562900
C	4.53510900	-0.76401500	0.82805800
С	4.53460800	0.76763900	-0.82727300
С	4.16601600	-1.66567500	1.82467200
С	5.88603700	-0.48793000	0.53362900
С	4.16493200	1.66898300	-1.82395700
С	5.88571800	0.49277700	-0.53252600
С	5.18361100	-2.29944700	2.52441300
Н	3.12118700	-1.86500000	2.03660800
С	6.89189400	-1.13697500	1.25184100
С	5.18211500	2.30369100	-2.52344700
Н	3.11997000	1.86735800	-2.03613900
С	6.89115300	1.14274100	-1.25049700
С	6.53539700	-2.04159200	2.24402600
Н	4.92644500	-3.01167400	3.30261100
Н	7.93753200	-0.93558500	1.03723400
С	6.53406900	2.04705200	-2.24275000
Н	4.92448500	3.01569500	-3.30169600
Н	7.93692300	0.94229800	-1.03564700
Н	7.30655000	-2.55597600	2.80907500
Н	7.30488800	2.56214100	-2.80761200
C	-1.45190700	2.48525300	1.77112100
C	-0.48068700	3.51350500	0.02140900
С	-1.80585700	1.58812300	2.77703800
С	-2.05907500	3.75324900	1.66271800

С	0.30438700	3.82945700	-1.08710600
С	-1.43075700	4.41638000	0.53944400
С	-2.80881400	1.96764400	3.65738000
Н	-1.32090700	0.62257500	2.85964000
С	-3.06116300	4.11840200	2.56384700
С	0.11439400	5.07111800	-1.67830100
Н	1.04099200	3.12915000	-1.46627500
С	-1.60510000	5.65927400	-0.07082700
С	-3.43756100	3.21948100	3.55371600
Н	-3.11453200	1.27652600	4.43700000
Н	-3.54047300	5.09037400	2.48783000
С	-0.83211200	5.98113800	-1.17976400
Н	0.71721100	5.34499400	-2.53909300
Н	-2.33905900	6.36187200	0.31374600
Н	-4.22238000	3.48453300	4.25556100
Н	-0.95517200	6.94509000	-1.66398600
С	-0.47736300	-3.51442600	-0.02201000
С	-1.44919100	-2.48693000	-1.77183000
С	0.30761600	-3.82965500	1.08678300
С	-1.42594700	-4.41844500	-0.54078300
С	-1.80395200	-1.58994200	-2.77759200
С	-2.05463700	-3.75581500	-1.66414400
С	0.11910900	-5.07179700	1.67744300
Н	1.04307600	-3.12846400	1.46653500
С	-1.59881200	-5.66180400	0.06896900
С	-2.80590700	-1.97061200	-3.65858100
Н	-1.32032400	-0.62368500	-2.85965100
С	-3.05574000	-4.12209700	-2.56591100
С	-0.82586800	-5.98298000	1.17813700
Н	0.72191900	-5.34513000	2.53841000
Н	-2.33160300	-6.36530000	-0.31619100
С	-3.43290700	-3.22338800	-3.55567800
Н	-3.11220600	-1.27968000	-4.43813900
Н	-3.53370100	-5.09477700	-2.49046200
Н	-0.94778700	-6.94728000	1.66195200
Н	-4.21697000	-3.48933200	-4.25803000
С	-2.74394400	-0.79201900	0.80228800
С	-2.74441200	0.79030700	-0.80200900
С	-2.38281400	-1.70739500	1.78892300
		0.51	

С	-4.09415400	-0.50959800	0.51484000
С	-2.38384900	1.70558200	-1.78894400
С	-4.09445100	0.50844600	-0.51325900
С	-3.40083000	-2.36591500	2.46370900
Н	-1.34258300	-1.90571200	2.01800500
С	-5.10296800	-1.17798300	1.21021100
С	-3.40222400	2.36472300	-2.46256900
Н	-1.34374000	1.90350600	-2.01895100
С	-5.10365700	1.17741600	-1.20750600
С	-4.75156200	-2.10989100	2.17837800
Н	-3.14059900	-3.09798900	3.22209000
Н	-6.14727900	-0.96898300	0.99644400
С	-4.75278600	2.10931900	-2.17587200
Н	-3.14241500	3.09683100	-3.22106000
Н	-6.14785000	0.96891800	-0.99267700
Н	-5.52488900	-2.64380200	2.72205100
Н	-5.52640900	2.64372400	-2.71863700
Ν	-0.50724000	2.33635000	0.76192100
Ν	3.72497300	0.00141100	0.00026600
Ν	-0.50515600	-2.33709700	-0.76218600
Ν	-1.93019600	-0.00105500	-0.00030000
С	2.34190300	2.19371300	1.07209800
С	2.34397800	-2.19199700	-1.07196000
Ν	2.91941200	3.08526900	1.55197500
Ν	2.92234000	-3.08301400	-1.55181900

E = -470.199353

Ν	-0.14072300	0.17760300	-0.16126800
С	-0.51947400	1.28375000	0.72730500
С	-0.79988100	2.58903400	-0.01505600
Н	0.25717800	1.43429000	1.48283000
Н	-1.40839900	0.99796600	1.29825700
Н	-1.07848200	3.37925400	0.69088500
Н	0.08018700	2.92183000	-0.57220400
Н	-1.61757500	2.46302500	-0.72994400
С	1.22949000	-0.19895700	-0.12376000

С	-1.16088900	-0.87109900	-0.32566000
С	-2.46985600	-0.28067900	-0.85529800
С	-1.39717300	-1.72202300	0.93038400
Н	-0.79790200	-1.53368800	-1.11412700
Н	-2.29075600	0.29969500	-1.76470100
Н	-3.16764300	-1.08975400	-1.09159400
Н	-2.96033000	0.36811800	-0.12222000
Н	-0.46693000	-2.17924500	1.27531700
Н	-1.79557000	-1.11830600	1.75275600
Н	-2.12239700	-2.51511000	0.71933000
С	1.58155400	-1.36808500	-1.03554900
С	2.16632400	0.97761100	-0.38193500
Н	1.11370500	-2.29525000	-0.70059100
Н	1.27915100	-1.15810800	-2.06508300
Н	2.66263900	-1.51736600	-1.01217100
Н	3.20177500	0.64724800	-0.27678600
Н	2.01168800	1.35460300	-1.39629700
Н	2.00222800	1.79272200	0.32431700
F	1.58910100	-0.66138400	1.21203500

Br

E = -2942.142375

Ν	0.87647700	0.21069800	0.24902500
С	1.17751400	0.99780900	-0.95198600
С	2.07108500	2.20930500	-0.70016600
Н	0.23367100	1.30312700	-1.41404900
Н	1.65152200	0.34102200	-1.68713700
Н	2.22853200	2.75607900	-1.63571700
Н	1.61960900	2.89406600	0.02220300
Н	3.04813600	1.90959800	-0.31273500
С	-0.38123100	0.37956900	0.81124100
С	1.57840300	-1.08138500	0.37108100
С	3.09033600	-0.89356400	0.22950000
С	1.04963000	-2.16559000	-0.57599100
Н	1.41813700	-1.42085000	1.39606800
Н	3.45367900	-0.12527200	0.91756500

Н	3.59252300	-1.83484900	0.47020300
Н	3.38569100	-0.61789800	-0.78768300
Н	0.01737100	-2.43383600	-0.34096600
Н	1.06964400	-1.82894300	-1.61745300
Н	1.67192700	-3.06263000	-0.49606900
С	-0.68536900	-0.48286900	2.02484200
С	-0.77079400	1.83256000	1.04539400
Н	-0.68153900	-1.54713500	1.78850000
Н	0.04753500	-0.28129100	2.81528500
Н	-1.67826900	-0.23234500	2.39892000
Н	-1.79023700	1.88484300	1.42884300
Н	-0.08473300	2.26049500	1.78592300
Н	-0.72761900	2.43171400	0.13595500
Br	-1.92538200	-0.24702300	-0.57526600

2n

E = -3249.021248

С	-2.12645000	-0.53168200	0.43198700
С	-0.96227200	-1.14638400	-0.38211600
F	-3.22098200	-1.29019800	0.31482200
F	-1.82988300	-0.44690700	1.75391100
0	-1.14832200	-1.48751200	-1.53248000
С	1.44636700	-1.60703000	-0.32950500
Н	1.22830200	-1.74238700	-1.39281400
Н	1.77181200	-2.57580100	0.06414300
С	2.53088300	-0.57003800	-0.12857400
С	2.23885900	0.79491300	-0.19534200
С	3.84904600	-0.97193600	0.09128400
С	3.25083500	1.73945500	-0.04860500
Н	1.21533200	1.12121300	-0.35978000
С	4.86360100	-0.02758100	0.23337600
Н	4.08574000	-2.03125400	0.15208400
С	4.56658800	1.33108800	0.16284400
Н	3.01172700	2.79680000	-0.10366100
Н	5.88436100	-0.35451900	0.40465500
Н	5.35467100	2.06848400	0.27714700
Ν	0.19775500	-1.21514700	0.29944000
Н	0.21664800	-0.90921200	1.26128700
Br	-2.49866500	1.24576900	-0.22200000

G
E = -677.211765

С	-2.83684800	-0.10085600	-0.61173700
С	-1.79772700	-0.15948400	0.44387900
F	-3.94424900	-0.78553600	-0.44628600
F	-3.06008800	1.05512700	-1.23880200
0	-1.77034000	-1.09400600	1.23226100
С	0.28759200	0.86863600	1.24704900
Н	0.05617900	0.25271600	2.11871600
Н	0.45443800	1.89304700	1.59182000
С	1.51412000	0.34343400	0.53239100
С	2.54037100	1.20464600	0.14439400
С	1.61837800	-1.01962200	0.23453500
С	3.65678900	0.71715600	-0.53485000
Н	2.47155800	2.26470500	0.37718100
С	2.72971200	-1.50674900	-0.44553700
Н	0.82371500	-1.69439800	0.54172800
С	3.75182100	-0.63914000	-0.83213000
Н	4.44998100	1.39722200	-0.82953100
Н	2.80244000	-2.56636600	-0.66993700
Н	4.61979700	-1.02143700	-1.36006100
Ν	-0.90047500	0.86038300	0.40287100
Н	-0.95827400	1.52943600	-0.35027300

H

E = -1323.809027

-2.07696600	2.49419100	1.41421900
-1.24249100	3.12856600	0.49165200
-1.55018900	4.06361600	0.03410900
-0.02324300	2.57513900	0.14463100
0.59358800	3.09588400	-0.57577000
0.42706000	1.35865800	0.73173000
-0.44564300	0.73247400	1.66252200
-0.17812900	-0.21312500	2.11746200
-1.67129700	1.28899000	1.98629600
-2.31918500	0.77112700	2.68551500
2.57637600	1.44545500	-0.61212700
1.70059700	0.78786900	0.41909000
	-2.07696600 -1.24249100 -1.55018900 -0.02324300 0.59358800 0.42706000 -0.44564300 -0.17812900 -1.67129700 -2.31918500 2.57637600 1.70059700	-2.076966002.49419100-1.242491003.12856600-1.550189004.06361600-0.023243002.575139000.593588003.095884000.427060001.35865800-0.445643000.73247400-0.17812900-0.21312500-1.671297001.28899000-2.319185000.771127002.576376001.445455001.700597000.78786900

S55

С	2.26864800	-0.42030100	1.11070900
Н	3.35379000	-0.32988700	1.20283800
Н	1.86314700	-0.52503400	2.11877600
C	2.02399800	-1.75160600	0.39990600
С	0.55223000	-2.21240500	0.42465600
F	1.99008900	1.48659600	-1.83513600
F	2.88092500	2.72920400	-0.29766200
F	3.75159700	0.81437000	-0.77115700
F	2.76824000	-2.71450700	1.00935500
F	2.46819200	-1.68351800	-0.90005700
0	0.02193300	-2.45573100	1.49711900
Н	-3.03781400	2.92697700	1.67256000
С	-1.46080200	-2.61774400	-0.89323500
Н	-1.69901700	-3.33829800	-0.10740600
Н	-1.59888100	-3.11761500	-1.85699300
С	-2.38671900	-1.42085400	-0.79511000
С	-2.10304800	-0.23437900	-1.47577900
С	-3.56848000	-1.51398000	-0.06120300
С	-2.99724400	0.82973300	-1.44193700
Н	-1.17350100	-0.13216500	-2.02954700
С	-4.46646600	-0.44832300	-0.02508200
Н	-3.78755800	-2.42453900	0.49014300
С	-4.18547300	0.72332000	-0.72136100
Н	-2.76056200	1.74736000	-1.97055800
Н	-5.38291600	-0.53481000	0.55053800
Н	-4.88234800	1.55527300	-0.69435600
Ν	-0.05192000	-2.28434200	-0.77475700
Н	0.48992500	-2.06665300	-1.59652100

Ι

E = -1323.888775

С	-2.04585100	2.75601800	1.30334800
С	-1.11819800	3.35131900	0.44561100
Н	-1.30248000	4.35225900	0.05964100
С	0.05199100	2.70156000	0.07765800
Н	0.74481600	3.21898700	-0.57533500
С	0.37581900	1.40044700	0.55342900
С	-0.60713300	0.80717800	1.39227700
Н	-0.47439100	-0.21022900	1.74693400
		\$56	

S56

С	-1.77015600	1.46987600	1.76228600
Н	-2.48610200	0.95312000	2.39683600
С	2.62254500	1.38500200	-0.55148500
С	1.59025700	0.69290600	0.20830600
С	2.07103000	-0.41316000	1.12420000
Н	3.14436800	-0.32857800	1.33225000
Н	1.56913700	-0.34973300	2.09702000
С	1.90175900	-1.87015500	0.67063300
С	0.56056600	-2.30480700	0.02286100
F	2.21176200	1.85660900	-1.78212500
F	3.17509000	2.53408700	0.03055200
F	3.70970600	0.61021400	-0.80889900
F	2.13802500	-2.68563700	1.74444200
F	2.88071700	-2.18704700	-0.25351600
0	-0.03037500	-3.31988000	0.37463100
Н	-2.96124300	3.26838800	1.58522900
С	-1.01613700	-1.71422500	-1.74714900
Н	-1.15160000	-2.79500700	-1.84600600
Н	-0.85516600	-1.29751500	-2.74635600
С	-2.25130800	-1.09409400	-1.12812100
С	-2.65099300	0.19509000	-1.48323400
С	-2.98986000	-1.79470700	-0.17128300
С	-3.77961100	0.77173200	-0.90838100
Н	-2.05772000	0.76393700	-2.19459900
С	-4.12078000	-1.21990900	0.40405300
Н	-2.65441300	-2.78275500	0.13142700
С	-4.52247000	0.06158100	0.03127000
Н	-4.06049100	1.78589700	-1.17391400
Н	-4.68535300	-1.77187500	1.15057100
Н	-5.39762300	0.51450400	0.48867300
Ν	0.19556600	-1.49201600	-0.98380100
Н	0.65578200	-0.56219100	-0.97458000

E = -1323.900115

С	2.28246100	2.60232400	-1.75476600
С	1.39822800	3.38434700	-1.01989300
Н	1.57935800	4.44903400	-0.89854400
С	0.27016500	2.81238200	-0.43047100
		S57	

Н	-0.39484500	3.45280400	0.13567100
С	0.00648300	1.44675800	-0.56700800
С	0.90277700	0.66729200	-1.31129400
Н	0.72680200	-0.40053000	-1.43585100
С	2.02529000	1.24023800	-1.89647800
Н	2.70882700	0.60648800	-2.45295200
С	-2.06084500	1.60411200	0.92932900
С	-1.18562800	0.72425800	0.05933100
С	-2.04121800	-0.03676700	-0.98941100
Н	-3.04671900	0.38598700	-1.07439600
Н	-1.56692400	0.03808200	-1.96897500
С	-2.18357900	-1.52953200	-0.69426400
С	-0.81470900	-2.23161000	-0.53131900
F	-1.36866100	2.17829800	1.94412700
F	-2.64992700	2.62381600	0.24717300
F	-3.06307800	0.91740700	1.50251100
F	-2.87991800	-2.08203800	-1.75118300
F	-2.99962100	-1.70022100	0.39466300
0	-0.17423800	-2.40694000	-1.60353400
Н	3.16406900	3.04697900	-2.20839100
С	0.87728100	-2.95712500	0.86841900
Н	1.13908700	-3.66659700	0.06966100
Н	0.92202000	-3.49725800	1.82493600
С	1.93012500	-1.86233700	0.89826400
С	1.78810500	-0.77668600	1.77052500
С	3.04427800	-1.89155000	0.05770900
С	2.72696200	0.24984100	1.79890600
Н	0.91124500	-0.73647200	2.41138600
С	3.99583900	-0.87191300	0.09025600
Н	3.14711900	-2.71053200	-0.64949400
С	3.83963300	0.20510300	0.95884800
Н	2.58251300	1.09557200	2.46567800
Н	4.84846700	-0.90727000	-0.58351900
Н	4.56415400	1.01457200	0.96602300
Ν	-0.46732800	-2.42828200	0.71698700
Н	-0.77902900	-0.02752600	0.75242700

E = -1324.461786

C -4.53316400 -0.90876200 1.13447100 C -4.45094400 0.38003700 0.61089000 H -5.34275500 0.99357400 0.53143800 C -3.22586900 0.88742200 0.18786100 H -3.17760500 1.89177200 -0.22172300 C -2.06939300 0.10828500 0.27968700 C -2.15839300 -1.18107600 0.8407300 H -1.26310500 -1.79201400 0.87735200 C -3.38341200 -1.68781400 1.23088600 H -3.43710800 -2.69227300 1.63902200 C -0.66572700 0.83973200 -1.66541100 C -0.36282700 1.91051700 0.66059600 H -0.64811700 1.70922100 1.69559700 C 1.09947700 2.32383400 0.72278600 C 2.01703900 1.13613900 1.07520600 F 1.50210700 2.9081900 -0.45476100 O 1.93485400 0.625				
C -4.45094400 0.38003700 0.61089000 H -5.34275500 0.99357400 0.53143800 C -3.22586900 0.88742200 0.18786100 H -3.17760500 1.89177200 -0.22172300 C -2.06939300 0.10828500 0.27968700 C -2.15839300 -1.18107600 0.80407300 H -1.26310500 -1.79201400 0.87735200 C -3.38341200 -1.68781400 1.23088600 H -3.43710800 -2.6927300 1.6591100 C -0.66572700 0.83973200 -1.66541100 C -0.36282700 1.91051700 0.66059600 H -0.93754200 2.77475700 0.31680600 H -0.64811700 1.70922100 1.6955970 C 1.1997000 -0.21817600 -2.31515900 F -1.17927000 -0.21817600 -2.1306700 F 1.36497400 1.92828800 -2.07284100 F 1.23669700 3.28	С	-4.53316400	-0.90876200	1.13447100
H -5.34275500 0.99357400 0.53143800 C -3.22586900 0.88742200 0.18786100 H -3.17760500 1.89177200 -0.22172300 C -2.06939300 0.10828500 0.27968700 C -2.15839300 -1.18107600 0.80407300 H -1.26310500 -1.79201400 0.87735200 C -3.38341200 -1.68781400 1.23088600 H -3.43710800 -2.69227300 1.63902200 C -0.66572700 0.83973200 -1.66541100 C -0.36282700 1.91051700 0.66059600 H -0.93754200 2.77475700 0.31680600 H -0.64811700 1.70922100 1.69559700 C 1.09947700 2.32383400 0.72276800 C 2.01703900 1.13613900 1.07520600 F -1.17927000 -0.21817600 -2.131515900 F 1.23669700 3.28158800 1.68039900 F 1.50210700 2.	С	-4.45094400	0.38003700	0.61089000
C -3.22586900 0.88742200 0.18786100 H -3.17760500 1.89177200 -0.22172300 C -2.06939300 0.10828500 0.27968700 C -2.15839300 -1.18107600 0.80407300 H -1.26310500 -1.79201400 0.87735200 C -3.38341200 -1.68781400 1.23088600 H -3.43710800 -2.69227300 1.63902200 C -0.66572700 0.83973200 -1.66541100 C -0.36282700 1.91051700 0.66059600 H -0.93754200 2.77475700 0.31680600 H -0.64811700 1.70922100 1.69559700 C 2.01703900 1.13613900 1.07520600 F -1.17927000 -0.21817600 -2.12306700 F 0.59977900 0.98510100 -2.12306700 F 1.50210700 2.90801900 -0.45476100 O 1.93485400 0.62504800 2.1805300 F 1.50210700 2.9	Н	-5.34275500	0.99357400	0.53143800
H -3.17760500 1.89177200 -0.22172300 C -2.06939300 0.10828500 0.27968700 C -2.15839300 -1.18107600 0.80407300 H -1.26310500 -1.79201400 0.87735200 C -3.38341200 -1.68781400 1.23088600 H -3.43710800 -2.69227300 1.63902200 C -0.66572700 0.83973200 -1.66541100 C -0.36282700 1.91051700 0.66059600 H -0.93754200 2.77475700 0.31680600 H -0.64811700 1.7092100 1.69559700 C 1.09947700 2.32383400 0.72276800 C 2.01703900 1.13613900 1.07520600 F -1.17927000 -0.21817600 -2.12306700 F 0.59977900 0.98510100 -2.12306700 F 1.50210700 2.90801900 -0.45476100 O 1.93485400 0.62504800 2.18005300 H -5.48879900 -1.	С	-3.22586900	0.88742200	0.18786100
C -2.06939300 0.10828500 0.27968700 C -2.15839300 -1.18107600 0.80407300 H -1.26310500 -1.79201400 0.87735200 C -3.38341200 -1.68781400 1.23088600 H -3.43710800 -2.69227300 1.63902200 C -0.66572700 0.83973200 -1.66541100 C -0.71238700 0.64361200 -0.15061400 C -0.31682700 1.91051700 0.66059600 H -0.93754200 2.77475700 0.31680600 H -0.64811700 1.70922100 1.69559700 C 1.09947700 2.32383400 0.72276800 C 2.01703900 1.13613900 1.07520600 F -1.17927000 -0.21817600 -2.13206700 F 1.32669700 3.28158800 1.68039900 F 1.50210700 2.90801900 -0.45476100 O 9.9979900 0.62504800 2.1805300 G 3.42759500 0.6226	Н	-3.17760500	1.89177200	-0.22172300
C -2.15839300 -1.18107600 0.80407300 H -1.26310500 -1.79201400 0.87735200 C -3.38341200 -1.68781400 1.23088600 H -3.43710800 -2.69227300 1.63902200 C -0.66572700 0.83973200 -1.66541100 C -0.71238700 0.64361200 -0.15061400 C -0.36282700 1.91051700 0.66059600 H -0.93754200 2.77475700 0.31680600 H -0.64811700 1.70922100 1.69559700 C 1.09947700 2.32383400 0.72276800 C 1.09947700 2.321817600 -2.31515900 F -1.17927000 -0.21817600 -2.12306700 F 1.50210700 2.90801900 -0.45476100 O 1.93485400 0.62504800 2.18005300 H -5.48879900 -1.30189700 1.46646500 C 3.42759500 -0.62458500 0.15377800 H 4.18873500	С	-2.06939300	0.10828500	0.27968700
H -1.26310500 -1.79201400 0.87735200 C -3.38341200 -1.68781400 1.23088600 H -3.43710800 -2.69227300 1.63902200 C -0.66572700 0.83973200 -1.66541100 C -0.71238700 0.64361200 -0.15061400 C -0.36282700 1.91051700 0.66059600 H -0.93754200 2.77475700 0.31680600 H -0.64811700 1.70922100 1.69559700 C 1.09947700 2.32383400 0.72276800 C 2.01703900 1.13613900 1.07520600 F -1.17927000 -0.21817600 -2.31515900 F 0.59977900 0.98510100 -2.12306700 F 1.50210700 2.90801900 -0.45476100 O 1.93485400 0.62504800 2.18005300 H 5.48879900 -1.30189700 1.4664500 C 3.42759500 -0.62458500 0.15377800 H 4.18873500 -0.67	С	-2.15839300	-1.18107600	0.80407300
C -3.38341200 -1.68781400 1.23088600 H -3.43710800 -2.69227300 1.63902200 C -0.66572700 0.83973200 -1.66541100 C -0.71238700 0.64361200 -0.15061400 C -0.36282700 1.91051700 0.66059600 H -0.93754200 2.77475700 0.31680600 H -0.64811700 1.70922100 1.69559700 C 1.09947700 2.32383400 0.72276800 C 2.01703900 1.13613900 1.07520600 F -1.17927000 -0.21817600 -2.31515900 F 0.59977900 0.98510100 -2.12306700 F 1.23669700 3.28158800 1.68039900 F 1.50210700 2.90801900 0.45476100 O 1.93485400 0.62204800 2.18005300 H 3.92981300 -0.69953700 1.12068700 C 3.42759500 -0.62458500 0.15377800 C 1.95547800 -2.4501	Н	-1.26310500	-1.79201400	0.87735200
H -3.43710800 -2.69227300 1.63902200 C -0.66572700 0.83973200 -1.66541100 C -0.71238700 0.64361200 -0.15061400 C -0.36282700 1.91051700 0.66059600 H -0.93754200 2.77475700 0.31680600 H -0.64811700 1.70922100 1.69559700 C 1.09947700 2.32383400 0.72276800 C 2.01703900 1.13613900 1.07520600 F -1.17927000 -0.21817600 -2.31515900 F -1.34876400 1.92828800 -2.07284100 F 0.59977900 0.98510100 -2.12306700 G 1.93485400 0.62504800 2.18005300 F 1.50210700 2.90801900 -0.45476100 O 1.93485400 0.62504800 2.18005300 H 3.92981300 -0.69953700 1.12068700 H 4.18873500 -0.67067800 -0.62868900 C 2.41711900 -1.74	С	-3.38341200	-1.68781400	1.23088600
C -0.66572700 0.83973200 -1.66541100 C -0.71238700 0.64361200 -0.15061400 C -0.36282700 1.91051700 0.66059600 H -0.93754200 2.77475700 0.31680600 H -0.64811700 1.70922100 1.69559700 C 1.09947700 2.32383400 0.72276800 C 2.01703900 1.13613900 1.07520600 F -1.17927000 -0.21817600 -2.31515900 F -1.34876400 1.92828800 -2.07284100 F 0.59977900 0.98510100 -2.12306700 G 1.93485400 0.62504800 2.18005300 F 1.50210700 2.90801900 -0.45476100 O 1.93485400 0.62504800 2.18005300 H -5.48879900 -1.30189700 1.46646500 C 3.42759500 -0.67067800 -0.62868900 C 2.41711900 -1.74292800 -0.00707600 C 1.95547800 -2.4	Н	-3.43710800	-2.69227300	1.63902200
C -0.71238700 0.64361200 -0.15061400 C -0.36282700 1.91051700 0.66059600 H -0.93754200 2.77475700 0.31680600 H -0.64811700 1.70922100 1.69559700 C 1.09947700 2.32383400 0.72276800 C 2.01703900 1.13613900 1.07520600 F -1.17927000 -0.21817600 -2.31515900 F -1.34876400 1.92828800 -2.07284100 F 0.59977900 0.98510100 -2.12306700 F 1.23669700 3.28158800 1.68039900 F 1.50210700 2.90801900 -0.45476100 O 1.93485400 0.62504800 2.18005300 H -5.48879900 -1.30189700 1.46646500 C 3.42759500 -0.62458500 0.15377800 H 3.92981300 -0.67067800 -0.62868900 C 1.88972000 -2.03764200 -1.26759400 C 0.91462700 -3.01	С	-0.66572700	0.83973200	-1.66541100
C -0.36282700 1.91051700 0.66059600 H -0.93754200 2.77475700 0.31680600 H -0.64811700 1.70922100 1.69559700 C 1.09947700 2.32383400 0.72276800 C 2.01703900 1.13613900 1.07520600 F -1.17927000 -0.21817600 -2.31515900 F -1.34876400 1.92828800 -2.07284100 F 0.59977900 0.98510100 -2.12306700 F 1.23669700 3.28158800 1.68039900 F 1.50210700 2.90801900 -0.45476100 O 1.93485400 0.62504800 2.18005300 H -5.48879900 -1.30189700 1.46646500 C 3.42759500 -0.62458500 0.15377800 H 3.92981300 -0.67067800 -0.62868900 C 2.41711900 -1.74292800 -0.00707600 C 0.91462700 -3.01964800 -1.41660700 H 2.2342300 -1.486	С	-0.71238700	0.64361200	-0.15061400
H -0.93754200 2.77475700 0.31680600 H -0.64811700 1.70922100 1.69559700 C 1.09947700 2.32383400 0.72276800 C 2.01703900 1.13613900 1.07520600 F -1.17927000 -0.21817600 -2.31515900 F -1.34876400 1.92828800 -2.07284100 F 0.59977900 0.98510100 -2.12306700 F 1.23669700 3.28158800 1.68039900 F 1.50210700 2.90801900 -0.45476100 O 1.93485400 0.62504800 2.18005300 H -5.48879900 -1.30189700 1.46646500 C 3.42759500 -0.62458500 0.15377800 H 3.92981300 -0.69953700 1.12068700 C 2.41711900 -1.74292800 -0.00707600 C 2.41711900 -1.48661200 -2.13930400 C 0.91462700 -3.01964800 -1.41660700 H 2.2342300 -1.486	С	-0.36282700	1.91051700	0.66059600
H -0.64811700 1.70922100 1.69559700 C 1.09947700 2.32383400 0.72276800 C 2.01703900 1.13613900 1.07520600 F -1.17927000 -0.21817600 -2.31515900 F -1.34876400 1.92828800 -2.07284100 F 0.59977900 0.98510100 -2.12306700 F 1.23669700 3.28158800 1.68039900 F 1.50210700 2.90801900 -0.45476100 O 1.93485400 0.62504800 2.18005300 H -5.48879900 -1.30189700 1.46646500 C 3.42759500 -0.62458500 0.15377800 H 3.92981300 -0.69953700 1.12068700 C 2.41711900 -1.74292800 -0.00707600 C 1.95547800 -2.45012200 1.10436800 C 0.91462700 -3.01964800 -1.41660700 H 2.2342300 -1.48661200 -2.13930400 C 0.98938800 -3.444	Н	-0.93754200	2.77475700	0.31680600
C 1.09947700 2.32383400 0.72276800 C 2.01703900 1.13613900 1.07520600 F -1.17927000 -0.21817600 -2.31515900 F 0.59977900 0.98510100 -2.12306700 F 1.23669700 3.28158800 1.68039900 F 1.50210700 2.90801900 -0.45476100 O 1.93485400 0.62504800 2.18005300 H -5.48879900 -1.30189700 1.46646500 C 3.42759500 -0.62458500 0.15377800 H 3.92981300 -0.69953700 1.12068700 C 1.88927000 -2.03764200 -1.34660700 C 1.95547800 -2.45012200 1.10436800 C 0.991462700 -3.01964800 -1.41660700 H 2.34049900 -2.20484200 2.08928500 C 0.99136200 -3.72898800 -0.30328200 H 0.50483200 -3.22980000 -2.39912700 H 0.63967200 -3.9	Н	-0.64811700	1.70922100	1.69559700
C 2.01703900 1.13613900 1.07520600 F -1.17927000 -0.21817600 -2.31515900 F -1.34876400 1.92828800 -2.07284100 F 0.59977900 0.98510100 -2.12306700 F 1.23669700 3.28158800 1.68039900 F 1.50210700 2.90801900 -0.45476100 O 1.93485400 0.62504800 2.18005300 H -5.48879900 -1.30189700 1.46646500 C 3.42759500 -0.62458500 0.15377800 H 3.92981300 -0.69953700 1.12068700 C 2.41711900 -1.74292800 -0.00707600 C 1.88927000 -2.03764200 -1.41660700 H 2.23342300 -1.48661200 -2.13930400 C 0.99838800 -3.44424300 0.95578700 H 2.34049900 -2.20484200 2.08928500 C 0.46582300 -3.72898800 -2.39912700 H 0.63967200 -3.	С	1.09947700	2.32383400	0.72276800
F -1.17927000 -0.21817600 -2.31515900 F -1.34876400 1.92828800 -2.07284100 F 0.59977900 0.98510100 -2.12306700 F 1.23669700 3.28158800 1.68039900 F 1.50210700 2.90801900 -0.45476100 O 1.93485400 0.62504800 2.18005300 H -5.48879900 -1.30189700 1.46646500 C 3.42759500 -0.62458500 0.15377800 H 3.92981300 -0.69953700 1.12068700 C 2.41711900 -1.74292800 -0.00707600 C 1.88927000 -2.03764200 -1.26759400 C 0.91462700 -3.01964800 -1.41660700 H 2.23342300 -1.48661200 -2.13930400 C 0.98938800 -3.4424300 0.95578700 H 2.34049900 -2.20484200 2.08928500 C 0.46582300 -3.72898800 -0.30328200 H 0.63967200 -3.98897500 1.82742200 H 0.63967200 -3.98897500	С	2.01703900	1.13613900	1.07520600
F -1.34876400 1.92828800 -2.07284100 F 0.59977900 0.98510100 -2.12306700 F 1.23669700 3.28158800 1.68039900 F 1.50210700 2.90801900 -0.45476100 O 1.93485400 0.62504800 2.18005300 H -5.48879900 -1.30189700 1.46646500 C 3.42759500 -0.62458500 0.15377800 H 3.92981300 -0.69953700 1.12068700 H 4.18873500 -0.67067800 -0.62868900 C 2.41711900 -1.74292800 -0.00707600 C 1.88927000 -2.03764200 -1.26759400 C 1.95547800 -2.45012200 1.10436800 C 0.91462700 -3.01964800 -1.41660700 H 2.3342300 -1.48661200 -2.13930400 C 0.98938800 -3.44424300 0.95578700 H 2.34049900 -2.20484200 2.08928500 C 0.46582300 -3.72898800 -0.30328200 H 0.63967200 -3.98897500<	F	-1.17927000	-0.21817600	-2.31515900
F 0.59977900 0.98510100 -2.12306700 F 1.23669700 3.28158800 1.68039900 F 1.50210700 2.90801900 -0.45476100 O 1.93485400 0.62504800 2.18005300 H -5.48879900 -1.30189700 1.46646500 C 3.42759500 -0.62458500 0.15377800 H 3.92981300 -0.69953700 1.12068700 H 3.92981300 -0.67067800 -0.62868900 C 2.41711900 -1.74292800 -0.00707600 C 1.95547800 -2.45012200 1.10436800 C 0.91462700 -3.01964800 -1.41660700 H 2.3342300 -1.48661200 -2.13930400 C 0.98938800 -3.44424300 0.95578700 H 2.34049900 -2.20484200 2.08928500 C 0.46582300 -3.72898800 -0.30328200 H 0.50483200 -3.22980000 -2.39912700 H 0.63967200 -3.9	F	-1.34876400	1.92828800	-2.07284100
F 1.23669700 3.28158800 1.68039900 F 1.50210700 2.90801900 -0.45476100 O 1.93485400 0.62504800 2.18005300 H -5.48879900 -1.30189700 1.46646500 C 3.42759500 -0.62458500 0.15377800 H 3.92981300 -0.69953700 1.12068700 H 4.18873500 -0.67067800 -0.62868900 C 2.41711900 -1.74292800 -0.00707600 C 1.88927000 -2.03764200 -1.26759400 C 0.91462700 -3.01964800 -1.41660700 H 2.23342300 -1.48661200 -2.13930400 C 0.98938800 -3.44424300 0.95578700 H 2.34049900 -2.20484200 2.08928500 C 0.46582300 -3.72898800 -0.30328200 H 0.63967200 -3.98897500 1.82742200 H 0.63967200 -3.98897500 1.82742200 H 0.29314300 -4.49653600 -0.41799400	F	0.59977900	0.98510100	-2.12306700
F 1.50210700 2.90801900 -0.45476100 O 1.93485400 0.62504800 2.18005300 H -5.48879900 -1.30189700 1.46646500 C 3.42759500 -0.62458500 0.15377800 H 3.92981300 -0.69953700 1.12068700 H 4.18873500 -0.67067800 -0.62868900 C 2.41711900 -1.74292800 -0.00707600 C 1.88927000 -2.03764200 -1.26759400 C 1.95547800 -2.45012200 1.10436800 C 0.91462700 -3.01964800 -1.41660700 H 2.23342300 -1.48661200 -2.13930400 C 0.98938800 -3.44424300 0.95578700 H 2.34049900 -2.20484200 2.08928500 C 0.46582300 -3.72898800 -0.30328200 H 0.50483200 -3.22980000 -2.39912700 H 0.63967200 -3.98897500 1.82742200 H -0.29314300 -4.49653600 -0.41799400	F	1.23669700	3.28158800	1.68039900
O 1.93485400 0.62504800 2.18005300 H -5.48879900 -1.30189700 1.46646500 C 3.42759500 -0.62458500 0.15377800 H 3.92981300 -0.69953700 1.12068700 H 4.18873500 -0.67067800 -0.62868900 C 2.41711900 -1.74292800 -0.00707600 C 1.88927000 -2.03764200 -1.26759400 C 1.95547800 -2.45012200 1.10436800 C 0.91462700 -3.01964800 -1.41660700 H 2.3342300 -1.48661200 -2.13930400 C 0.98938800 -3.44424300 0.95578700 H 2.34049900 -2.20484200 2.08928500 C 0.46582300 -3.72898800 -0.30328200 H 0.50483200 -3.22980000 -2.39912700 H 0.63967200 -3.98897500 1.82742200 H 0.29314300 -4.49653600 -0.41799400	F	1.50210700	2.90801900	-0.45476100
H-5.48879900-1.301897001.46646500C3.42759500-0.624585000.15377800H3.92981300-0.699537001.12068700H4.18873500-0.67067800-0.62868900C2.41711900-1.74292800-0.00707600C1.88927000-2.03764200-1.26759400C1.95547800-2.450122001.10436800C0.91462700-3.01964800-1.41660700H2.23342300-1.48661200-2.13930400C0.98938800-3.444243000.95578700H2.34049900-2.204842002.08928500C0.46582300-3.72898800-0.30328200H0.63967200-3.988975001.82742200H-0.29314300-4.49653600-0.41799400N2.794575000.687226000.0699840	0	1.93485400	0.62504800	2.18005300
C 3.42759500 -0.62458500 0.15377800 H 3.92981300 -0.69953700 1.12068700 H 4.18873500 -0.67067800 -0.62868900 C 2.41711900 -1.74292800 -0.00707600 C 1.88927000 -2.03764200 -1.26759400 C 1.95547800 -2.45012200 1.10436800 C 0.91462700 -3.01964800 -1.41660700 H 2.23342300 -1.48661200 -2.13930400 C 0.98938800 -3.44424300 0.95578700 H 2.34049900 -2.20484200 2.08928500 C 0.46582300 -3.72898800 -0.30328200 H 0.63967200 -3.98897500 1.82742200 H 0.63967200 -3.98897500 1.82742200 H -0.29314300 -4.49653600 -0.41799400	Н	-5.48879900	-1.30189700	1.46646500
H3.92981300-0.699537001.12068700H4.18873500-0.67067800-0.62868900C2.41711900-1.74292800-0.00707600C1.88927000-2.03764200-1.26759400C1.95547800-2.450122001.10436800C0.91462700-3.01964800-1.41660700H2.23342300-1.48661200-2.13930400C0.98938800-3.444243000.95578700H2.34049900-2.204842002.08928500C0.46582300-3.72898800-0.30328200H0.63967200-3.988975001.82742200H-0.29314300-4.49653600-0.41799400N2.794575000.687226000.06998400	С	3.42759500	-0.62458500	0.15377800
H4.18873500-0.67067800-0.62868900C2.41711900-1.74292800-0.00707600C1.88927000-2.03764200-1.26759400C1.95547800-2.450122001.10436800C0.91462700-3.01964800-1.41660700H2.23342300-1.48661200-2.13930400C0.98938800-3.444243000.95578700H2.34049900-2.204842002.08928500C0.46582300-3.72898800-0.30328200H0.50483200-3.22980000-2.39912700H0.63967200-3.988975001.82742200H-0.29314300-4.49653600-0.41799400N2.794575000.687226000.06998400	Н	3.92981300	-0.69953700	1.12068700
C 2.41711900 -1.74292800 -0.00707600 C 1.88927000 -2.03764200 -1.26759400 C 1.95547800 -2.45012200 1.10436800 C 0.91462700 -3.01964800 -1.41660700 H 2.23342300 -1.48661200 -2.13930400 C 0.98938800 -3.44424300 0.95578700 H 2.34049900 -2.20484200 2.08928500 C 0.46582300 -3.72898800 -0.30328200 H 0.50483200 -3.22980000 -2.39912700 H 0.63967200 -3.98897500 1.82742200 H -0.29314300 -4.49653600 -0.41799400 N 2.79457500 0.68722600 0.06998400	Н	4.18873500	-0.67067800	-0.62868900
C 1.88927000 -2.03764200 -1.26759400 C 1.95547800 -2.45012200 1.10436800 C 0.91462700 -3.01964800 -1.41660700 H 2.23342300 -1.48661200 -2.13930400 C 0.98938800 -3.44424300 0.95578700 H 2.34049900 -2.20484200 2.08928500 C 0.46582300 -3.72898800 -0.30328200 H 0.50483200 -3.22980000 -2.39912700 H 0.63967200 -3.98897500 1.82742200 H -0.29314300 -4.49653600 -0.41799400 N 2.79457500 0.68722600 0.06998400	С	2.41711900	-1.74292800	-0.00707600
C 1.95547800 -2.45012200 1.10436800 C 0.91462700 -3.01964800 -1.41660700 H 2.23342300 -1.48661200 -2.13930400 C 0.98938800 -3.44424300 0.95578700 H 2.34049900 -2.20484200 2.08928500 C 0.46582300 -3.72898800 -0.30328200 H 0.50483200 -3.22980000 -2.39912700 H 0.63967200 -3.98897500 1.82742200 H -0.29314300 -4.49653600 -0.41799400 N 2.79457500 0.68722600 0.06998400	С	1.88927000	-2.03764200	-1.26759400
C0.91462700-3.01964800-1.41660700H2.23342300-1.48661200-2.13930400C0.98938800-3.444243000.95578700H2.34049900-2.204842002.08928500C0.46582300-3.72898800-0.30328200H0.50483200-3.22980000-2.39912700H0.63967200-3.988975001.82742200H-0.29314300-4.49653600-0.41799400N2.794575000.687226000.06998400	С	1.95547800	-2.45012200	1.10436800
H2.23342300-1.48661200-2.13930400C0.98938800-3.444243000.95578700H2.34049900-2.204842002.08928500C0.46582300-3.72898800-0.30328200H0.50483200-3.22980000-2.39912700H0.63967200-3.988975001.82742200H-0.29314300-4.49653600-0.41799400N2.794575000.687226000.06998400	С	0.91462700	-3.01964800	-1.41660700
C0.98938800-3.444243000.95578700H2.34049900-2.204842002.08928500C0.46582300-3.72898800-0.30328200H0.50483200-3.22980000-2.39912700H0.63967200-3.988975001.82742200H-0.29314300-4.49653600-0.41799400N2.794575000.687226000.06998400	Н	2.23342300	-1.48661200	-2.13930400
H2.34049900-2.204842002.08928500C0.46582300-3.72898800-0.30328200H0.50483200-3.22980000-2.39912700H0.63967200-3.988975001.82742200H-0.29314300-4.49653600-0.41799400N2.794575000.687226000.06998400	С	0.98938800	-3.44424300	0.95578700
C0.46582300-3.72898800-0.30328200H0.50483200-3.22980000-2.39912700H0.63967200-3.988975001.82742200H-0.29314300-4.49653600-0.41799400N2.794575000.687226000.06998400	Н	2.34049900	-2.20484200	2.08928500
H0.50483200-3.22980000-2.39912700H0.63967200-3.988975001.82742200H-0.29314300-4.49653600-0.41799400N2.794575000.687226000.06998400	С	0.46582300	-3.72898800	-0.30328200
H0.63967200-3.988975001.82742200H-0.29314300-4.49653600-0.41799400N2.794575000.687226000.06998400	Н	0.50483200	-3.22980000	-2.39912700
H-0.29314300-4.49653600-0.41799400N2.794575000.687226000.06998400	Н	0.63967200	-3.98897500	1.82742200
N 2.79457500 0.68722600 0.06998400	Н	-0.29314300	-4.49653600	-0.41799400
	Ν	2.79457500	0.68722600	0.06998400

Н	2.70603800	1.13624100	-0.82932700
Н	0.02715800	-0.13937200	0.05192200

product 3

E = -1223.987898

С	-3.17022200	1.67300800	1.59423000
С	-2.74059500	2.62198400	0.66997800
Н	-3.40679000	3.41924600	0.35498600
С	-1.44942700	2.56450700	0.15592200
Н	-1.12455900	3.32565300	-0.54524300
С	-0.56588300	1.54978400	0.54746300
С	-1.00406600	0.60790900	1.48564900
Н	-0.35026800	-0.19548600	1.80741800
С	-2.29492200	0.67032400	2.00025300
Н	-2.61646700	-0.08014300	2.71517400
С	1.07710600	1.80269500	-1.25733200
С	0.82567700	1.50377900	0.01573200
С	1.98337500	1.20094000	0.95224500
Н	2.75121100	1.97899400	0.89410400
Н	1.61024900	1.18436700	1.97808200
С	2.71377600	-0.12488300	0.73935200
С	1.78434600	-1.35316500	0.68728200
F	3.59892500	-0.29399700	1.75751600
F	3.46437000	-0.07636900	-0.41412100
0	1.24173700	-1.74533500	1.70786400
Н	-4.17689600	1.71868100	1.99794500
С	0.54474500	-2.86030100	-0.77838600
Н	0.60760300	-3.62251300	0.00200100
Н	0.76812800	-3.34068700	-1.73499800
С	-0.84175200	-2.24675300	-0.79702400
С	-1.13085700	-1.18424000	-1.65598200
С	-1.84146300	-2.72404100	0.04895900
С	-2.39361000	-0.60186100	-1.66442300
Н	-0.35844700	-0.79344100	-2.31383200
С	-3.11281100	-2.15366400	0.03198500
Н	-1.61885000	-3.53392700	0.73813600
С	-3.38990200	-1.08932800	-0.82100200
Н	-2.59623800	0.23802900	-2.32088000
Н	-3.88104200	-2.52977200	0.70057600
		0.40	

Н	-4.37276600	-0.62934400	-0.81856300
Ν	1.58835800	-1.87320300	-0.53903700
Н	2.08828200	-1.46871000	-1.31512500
F	0.17054800	2.05338900	-2.19100500
F	2.28430700	1.90186400	-1.79226200

TS1

E = -1714.005237

С	-0.32542200	3.27508900	0.52372800
С	0.24851000	2.85603800	-0.67565200
Н	0.66147600	3.59055200	-1.36392400
С	0.30936700	1.51023200	-1.01572200
Н	0.79462000	1.23395700	-1.94234400
С	-0.20521700	0.50158400	-0.16629000
С	-0.82638700	0.95688900	1.02054500
Н	-1.29824200	0.25427600	1.69739300
С	-0.87545600	2.30462200	1.35817800
Н	-1.37299600	2.59564200	2.27909300
С	0.64144600	-1.36179600	-1.56651300
С	-0.02685600	-0.92303200	-0.42903900
С	-0.24057900	-1.94716200	0.65770600
Н	0.50668600	-2.74574000	0.60734800
Н	-0.15841800	-1.50175300	1.65641800
С	-1.56723800	-2.70659600	0.64345400
С	-2.81597100	-1.83071300	0.84795400
F	-1.55607300	-3.60937300	1.68058500
F	-1.69387800	-3.43666300	-0.49483300
0	-3.08262100	-1.34488900	1.92124600
Н	-0.37566100	4.32809900	0.78248600
0	-3.51228200	-1.68067900	-0.26833700
С	-4.66410600	-0.81617100	-0.19568200
Н	-5.20425400	-1.01306300	0.73327200
Н	-5.27240000	-1.13289300	-1.04499600
С	-4.28560200	0.63737800	-0.30684400
С	-3.45484500	1.07040100	-1.34327700
С	-4.78326600	1.56565100	0.60592600
С	-3.14029100	2.41798300	-1.47073500
Н	-3.03255600	0.34582700	-2.03374500
С	-4.47624200	2.91843100 S61	0.47259600
		501	

Н	-5.40419300	1.22806900	1.43133500
С	-3.65604900	3.34538500	-0.56738600
Н	-2.47473200	2.74167300	-2.26377300
Н	-4.86661300	3.63423800	1.18964100
Н	-3.40064200	4.39602900	-0.66407100
F	0.45018800	-0.77088900	-2.75172300
F	0.76410200	-2.67578300	-1.76075600
Ν	3.81869300	0.30993900	0.54970100
С	2.69022500	0.76817900	1.39225400
С	3.00298600	0.78056000	2.88145200
Н	1.83567300	0.13685300	1.15804800
Н	2.40799300	1.76218200	1.04317400
Н	2.10392300	1.09164500	3.41970700
Н	3.29074500	-0.21031300	3.24449700
Н	3.80614100	1.47990000	3.12532900
С	3.98725300	-0.94944400	0.27977800
С	4.59874200	1.36247500	-0.15899400
С	5.04474400	2.46607600	0.79627500
С	3.80342300	1.88867500	-1.35244400
Н	5.50121900	0.87463400	-0.52480800
Н	5.62331600	2.06593500	1.63355700
Н	5.68410200	3.15870400	0.24277700
Н	4.20253600	3.04200900	1.18882300
Н	3.40195900	1.06148800	-1.94415900
Н	2.96181200	2.50270500	-1.02326100
Н	4.45842100	2.50645200	-1.97346900
С	5.03575300	-1.41045700	-0.68871900
С	3.26138600	-2.03719300	0.99654000
Н	4.91433500	-0.91523700	-1.65269900
Н	6.04028500	-1.21590700	-0.29699500
Н	4.92884800	-2.48227300	-0.84975900
Н	2.82799800	-2.69329900	0.23932500
Н	4.00139800	-2.61394400	1.56434600
Н	2.47726500	-1.70461500	1.67008500
F	2.34416100	-1.02122100	-1.52153600

TS2

E = -1323.880332

С

1.74433000

0 2.81071200 -2.28186600 S62

С	0.67473100	2.02511400	-2.70640500
Η	0.50666500	1.85661700	-3.76694100
С	-0.18019200	1.43078000	-1.78347300
Η	-0.97696400	0.79633700	-2.15954500
С	-0.01013000	1.59696700	-0.39231500
С	1.07252200	2.40296300	0.01233700
Η	1.26000200	2.56641800	1.06627800
С	1.92869800	2.99249600	-0.91176800
Η	2.75238600	3.60410400	-0.55137400
С	-0.70988600	1.09518400	1.98211700
С	-0.88764100	0.84162200	0.53458600
С	-2.36332900	0.74223200	0.12116600
Н	-3.03831900	1.08916800	0.91079200
Н	-2.55854100	1.37067900	-0.75305300
С	-2.84527300	-0.66877900	-0.25250900
С	-1.84905100	-1.52863900	-1.07556800
F	0.54874300	0.83340800	2.42923000
F	-0.95389900	2.39509900	2.39782000
F	-1.53817000	0.34135000	2.74358500
F	-4.02567300	-0.54290400	-0.93716300
F	-3.16466400	-1.36346500	0.89896700
0	-2.19132900	-2.06279400	-2.13742100
Н	2.41721100	3.27020000	-3.00012900
С	0.44112200	-2.16301800	-1.19320700
Н	0.50405200	-1.77176300	-2.22020300
Н	0.27187000	-3.24532500	-1.28323400
С	1.73818500	-1.90080100	-0.46172100
С	2.16204800	-2.75026800	0.56349100
С	2.50934900	-0.77427500	-0.75700800
С	3.32912800	-2.48542200	1.27590300
Н	1.55771600	-3.61902300	0.81249700
С	3.67430400	-0.50095400	-0.04385300
Н	2.18015300	-0.08955400	-1.53405600
С	4.09047100	-1.35710500	0.97329400
Н	3.63957900	-3.15415300	2.07422500
Н	4.24600300	0.39255000	-0.27782400
Н	4.99595700	-1.14203800	1.53406100
Ν	-0.65736500	-1.54122000	-0.48212700
Η	-0.53893100	-0.45754700 S63	0.21161400

TS3 E = -1695.422090

-				
	С	-2.73823000	3.26235800	-0.91016400
	С	-3.36938100	2.28207000	-1.67409500
	Н	-3.79588600	2.53399200	-2.63965500
	С	-3.43674900	0.97127100	-1.21607700
	Н	-3.90457800	0.21519400	-1.83672800
	С	-2.88048400	0.62341400	0.01681600
	С	-2.25944600	1.61284100	0.77772200
	Н	-1.81812400	1.35296300	1.73605200
	С	-2.18122800	2.92529200	0.31930200
	Н	-1.66875500	3.67437400	0.91430600
	С	-4.33749900	-1.17335600	0.99430500
	С	-2.92854600	-0.80199400	0.54295000
	С	-2.40083900	-1.87980900	-0.42164900
	Н	-2.66067900	-2.87202200	-0.04302000
	Н	-2.82971400	-1.76525500	-1.41802800
	С	-0.89119500	-1.87023300	-0.58065000
	С	-0.34775700	-0.64062600	-1.34411200
	F	-4.84618200	-0.26448900	1.84408800
	F	-5.20346100	-1.29015300	-0.03248300
	F	-4.34795000	-2.36017300	1.64502200
	F	-0.53540300	-3.01123500	-1.26857400
	F	-0.31628900	-2.02131700	0.67067100
	0	-0.95161100	-0.40290000	-2.39765200
	Н	-2.67330000	4.28229600	-1.27621900
	С	0.78249900	1.38136300	-1.39351600
	Н	-0.18685500	1.69201100	-1.80569000
	Н	1.46615600	1.36368100	-2.25769000
	С	1.24602700	2.43471500	-0.41066400
	С	1.09361500	2.27499500	0.96667300
	С	1.82232900	3.61743200	-0.88132000
	С	1.51952800	3.26135800	1.85412200
	Н	0.63164300	1.36515400	1.33219700
	С	2.24581800	4.60965100	-0.00104100
	Н	1.94949400	3.75810100	-1.95252600
	С	2.10112300	4.43342300	1.37475000
	Н	1.39168800	3.11635600	2.92340000

S64

Η	2.69449000	5.51958100	-0.38850500
Н	2.43509600	5.20284100	2.06399400
Ν	0.63820800	0.06662100	-0.78271700
Н	1.89869400	-0.53254100	-0.36975200
Н	-2.33600000	-0.84654400	1.46285600
Ν	2.82611200	-1.13343900	0.10444100
С	2.42717300	-0.95457200	1.53978900
С	2.75873100	-2.03836400	2.55563900
Н	1.34509400	-0.82419200	1.51285800
Н	2.84491700	0.00625700	1.84945200
Н	2.37868300	-1.70194800	3.52484000
Н	2.25289300	-2.97842600	2.32325400
Н	3.82809000	-2.22495800	2.66732800
С	2.61740300	-2.51383900	-0.47480400
С	3.68649700	-3.55381300	-0.13400200
С	2.47118300	-2.43062300	-1.99890900
Н	1.66441100	-2.83878200	-0.05598500
Н	3.84940600	-3.68484300	0.93485900
Н	3.35461100	-4.51433500	-0.53825200
Н	4.64409800	-3.31935200	-0.60887300
Н	1.80869900	-1.62465400	-2.31605900
Н	3.44006200	-2.30187800	-2.49213900
Н	2.04155200	-3.36781700	-2.35953700
С	4.17659300	-0.55640200	-0.24241900
С	5.26120700	-0.83069100	0.80174800
С	4.09130800	0.93539900	-0.53456200
Н	4.46927600	-1.05474500	-1.16887200
Н	5.37037000	-1.88962100	1.03667300
Н	6.21667500	-0.47942100	0.40251500
Н	5.07658400	-0.28252100	1.73028200
Н	3.43058200	1.13797400	-1.37737500
Н	3.73126300	1.50575000	0.32608500
Н	5.08747600	1.30700900	-0.79039600

TS4

E = -1694.161416C-0.097483002.670765001.71874000C0.196904002.662158000.35454700H0.404090003.59720200-0.16074100S65S65S65S65

С	0.22728500	1.47851700	-0.37136200
Η	0.46483000	1.53062500	-1.42374200
С	-0.03984900	0.22204600	0.23118400
С	-0.35301900	0.26121200	1.61167600
Η	-0.60664400	-0.64741400	2.14482900
С	-0.37783000	1.45239300	2.33311100
Η	-0.63414400	1.41865700	3.38840800
С	0.56671000	-1.13122100	-1.75456700
С	0.03562300	-1.04716100	-0.48279100
С	-0.16022700	-2.36430500	0.22876700
Η	0.41979200	-3.15588600	-0.25398400
Н	0.16386700	-2.33361300	1.27531800
С	-1.59445800	-2.88893000	0.24479500
С	-2.56324200	-2.05270000	1.10255800
F	-1.59495100	-4.16166500	0.73990300
F	-2.07837300	-2.97866300	-1.03950800
0	-2.53288100	-2.14594000	2.32211200
Η	-0.13153300	3.60005400	2.27814400
С	-4.21531000	-0.24821600	1.08690000
Η	-3.72421500	0.03287300	2.02381500
Н	-5.16514100	-0.72828800	1.34918500
С	-4.45471500	0.96114300	0.21644900
С	-3.40156900	1.83886300	-0.05692300
С	-5.70992700	1.21317800	-0.33765200
С	-3.60084500	2.94706900	-0.87227200
Н	-2.42208600	1.64747900	0.36897600
С	-5.91389600	2.32736900	-1.15158100
Η	-6.53426600	0.53489700	-0.13229400
С	-4.85906200	3.19522400	-1.42127800
Η	-2.77046800	3.61621700	-1.07609300
Η	-6.89548800	2.51340200	-1.57641000
Η	-5.01579200	4.06107200	-2.05728100
F	0.41391600	-0.16470400	-2.66090000
F	0.57577900	-2.30114300	-2.38254900
Ν	3.99022300	0.47220700	0.28725000
С	3.18075500	1.15338700	1.32244400
С	3.81977900	1.08534900	2.70217900
Η	2.17839500	0.73036400	1.32040000
Н	3.05945400	2.18814400 866	1.00889000

Н	3.17711300	1.61318000	3.41147200
Н	3.92486100	0.05383000	3.04907200
Н	4.80707800	1.55506900	2.71383000
С	3.97194500	-0.81903100	0.13813000
С	4.69326300	1.35950500	-0.67875300
С	5.59021300	2.36665500	0.03577300
С	3.66407300	1.99727900	-1.61253000
Н	5.33347200	0.71710700	-1.27922600
Н	6.31157000	1.86748700	0.68937100
Н	6.14698800	2.93114900	-0.71660900
Н	5.01936800	3.08689400	0.62846800
Н	3.02959300	1.21894900	-2.04633600
Н	3.02990600	2.71712100	-1.08649200
Н	4.19041600	2.52989000	-2.40973500
С	4.88295300	-1.51225500	-0.83192400
С	3.16276600	-1.70887400	1.02017500
Н	4.58695100	-1.26460200	-1.85295600
Н	5.92749700	-1.23644500	-0.65653300
Н	4.78144400	-2.59067000	-0.71425300
Н	2.69769800	-2.45645300	0.37611000
Н	3.83918700	-2.22627400	1.71106600
Н	2.38373300	-1.20270300	1.58547900
F	2.36599800	-0.94591800	-1.70566100
Ν	-3.34372100	-1.20149100	0.41548600
Н	-3.28633900	-1.19448900	-0.59253600

8. References

[1] (a) Y.-Q. Guo, Y. Wu, R. Wang, H. Song, Y. Liu and Q. Wang, Photoredox/Hydrogen Atom Transfer Cocatalyzed C–H Difluoroallylation of Amides, Ethers, and Alkyl Aldehydes. *Org. Lett.* **2021**, *23*, 2353-2358; (b) Y.-X. Chen, Z.-J. Wang, J.-A. Xiao, K. Chen, H.-Y. Xiang and H. Yang, Visible-Light-Driven Sulfonation of α -Trifluoromethylstyrenes: Access to Densely Functionalized CF₃-Substituted Tertiary Alcohol. *Org. Lett.* **2021**, *23*, 6558-6562.

[2] L. Wang, X.-J. Wei, W.-L. Jia, J.-J. Zhong, L.-Z. Wu and Q. Liu, Visible-Light-Driven Difluoroacetamidation of Unactive Arenes and Heteroarenes by Direct C–H Functionalization at Room Temperature. *Org. Lett.* **2014**, *16*, 5842-5845.

[3] B. Du, C. Chan, P. Lee, L. Cheung, X. Xu, Z. Lin and W. Yu, 2,2-difluorovinyl benzoates for diverse synthesis of *gem*-difluoroenol ethers by Ni-catalyzed cross-coupling reactions. *Nat.*

Commun. 2021, 12, 412.

[4] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. J. Puschmann, a complete structure solution, refinement and analysis program. *Appl. Crys-tallogr.* **2009**, *42*, 339-341.

[5] G. M. Sheldrick, SHELXT - Integrated space-group and crystal-structure determination. *Acta Crystallogr. Sect. A* **2015**, *71*, 3-8.

[6] G. M. Sheldrick, Crystal Structure Refinement with SHELXL. *Acta Crystallogr. Sect. C* 2015, 71, 3-8.

[7] J.-D. Chai and M. Head-Gordon, Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. *Phys. Chem. Chem. Phys.* **2008**, *10*, 6615-6620.

[8] C. Lee, W. Yang and G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B* **1988**, *37*, 785-789.

[9] K. Fukui, Formulation of the reaction coordinate. J. Phys. Chem. 1970, 74, 4161-4163.

[10] K. Fukui, The path of chemical reactions - the IRC approach. *Acc. Chem. Res.* **1981**, *14*, 363-368.

[11] A. V. Marenich, C. J. Cramer and D. G. Truhlar, Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem. B* **2009**, *113*, 6378-6396.

[12] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision A.03, Gaussian: Wallingford, CT, USA, (2016).
[13] R. A. Marcus, *Annu. Rev. Phys. Chem.* 1964, *15*, 155-196.

1H (CDCI3, 400 MHz)

 $\begin{array}{c} 4.07\\ 4.05\\ 4.03\\ 3.27\\ 3.23\\ 3.24\\ 3.23\\ 3.26\\ 3.29\\$

L.22 L.20

¹H NMR Spectrum of **3aa**

13C (CDCI3, 101 MHz)

¹³C NMR Spectrum of **3ba**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

¹H NMR Spectrum of **3ca**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm) ¹⁹F NMR Spectrum of **3**ca

¹H NMR Spectrum of 3da

¹³C NMR Spectrum of **3da**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm) ¹⁹F NMR Spectrum of **3da**

37 37	36	35	34	28	27	26	25	25
<u> </u>	<u> </u>	7	7.	2.	2.	2.	2.	5

¹H NMR Spectrum of **3ea**

13C (CDCI3, 101 MHz)

¹³C NMR Spectrum of **3ea**

-1.28 -1.26 -1.24

¹H NMR Spectrum of **3fa**

¹⁹F NMR Spectrum of 3fa

¹H NMR Spectrum of 3ga

104.25 104.26 104.29

86.30 86.31 86.37 86.37 86.39 86.39 86.39 86.42

104.30 104.33 104.34

-90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm) 10 0 -10 -20 -30 -40 -50 -60 -70 -80 20 ¹⁹F NMR Spectrum of 3ga

¹H NMR Spectrum of **3ha**

¹³C NMR Spectrum of **3ha**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm) ¹⁹F NMR Spectrum of **3ha**

¹H NMR Spectrum of **3ia**

¹³C NMR Spectrum of **3ia**

19F (CDCI3, 376 MHz)

²0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm) ¹⁹F NMR Spectrum of **3ia**

¹H NMR Spectrum of **3ja**

19F (CDCI3, 376 MHz)

¹⁹F NMR Spectrum of **3ja**

1H (CDCI3, 400 MHz)

 $\begin{array}{c} 4.11 \\ 4.09 \\ 4.07 \\ 3.27 \\ 3.27 \\ 3.23 \\ 3.23 \\ 3.23 \\ 3.23 \\ 3.23 \\ 3.23 \\ 3.23 \\ 3.23 \\ 3.21 \\ 3.23 \\ 3.23 \\ 3.21 \\ 3.23 \\ 3.21 \\ 3.22 \\ 3.23 \\ 3.21 \\ 3.23 \\ 3.21 \\ 3.22 \\ 3.23 \\ 3.22 \\ 3.23 \\ 3.23 \\ 3.23 \\ 3.24 \\ 3.24 \\ 3.24 \\ 3.25 \\ 3.24 \\ 3.25 \\ 3.24 \\ 3.25 \\ 3.24 \\ 3.25 \\ 3.24 \\ 3.25 \\ 3.24 \\ 3.25 \\ 3.24 \\ 3.25 \\ 3.$

1.25 1.23 1.21

19F (CDCI3, 376 MHz)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

¹⁹F NMR Spectrum of 3ka

¹H NMR Spectrum of **3la**

-1.29 -1.27 -1.25

¹³C NMR Spectrum of **3la**

19F (CDCI3, 1376 MHz)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

¹⁹F NMR Spectrum of 3la

1H (CDCI3, 400 MHz)

.0

8.5

8.0

7.5

7.0

6.5

6.0

5.5

5.0

4.5

¹H NMR Spectrum of **3ma**

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

4.0 f1 (ppm)

¹³C NMR Spectrum of **3ma**

²0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm) ¹⁹F NMR Spectrum of **3ma** 1H (CDCI3, 400 MHz)

¹H NMR Spectrum of **3na**

¹³C NMR Spectrum of **3na**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm) ¹⁹F NMR Spectrum of **3na**

¹H NMR Spectrum of **30a**

13C (CDCI3, 101 MHz)

¹³C NMR Spectrum of **3oa**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm) ¹⁹F NMR Spectrum of **3**0a

¹H NMR Spectrum of **3pa**

¹³C NMR Spectrum of **3pa**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

¹⁹F NMR Spectrum of **3pa**

8 2 2	2 8 8 2 8 8	75	50 49	48 5	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				<u> </u>	

3.92 3.91 3.91 3.91 3.35 3.34 3.34 3.34 3.31 3.31 3.31 3.31 3.37 3.37 3.27 3.27 3.27 1.10 1.09 1.07

¹H NMR Spectrum of 3qa

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

¹⁹F NMR Spectrum of 3qa

¹H NMR Spectrum of **3ra**

¹³C NMR Spectrum of **3ra**

-90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm) -20 -30 -60 -70 -10 -40 -50 -80 10 20 0

¹⁹F NMR Spectrum of 3ra

¹H NMR Spectrum of 3sa

¹³C NMR Spectrum of **3sa**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

¹⁹F NMR Spectrum of 3sa

3ta

,OEt

13C (CDCI3, 101 MHz) 163.6 163.6 163.3 163.3 163.9 155.9 149.9 147.2 135.5 135.5 135.5 135.5 129.3 129.3 127.4 127.4 127.3 125.5 1125.5 82.8 82.5 82.1 82.1 -63.2 34.0 33.8 33.8 33.5 -13.7 ,OEt 3ta 0 100 f1 (ppm) -10

¹³C NMR Spectrum of **3ta**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm) ¹⁹F NMR Spectrum of **3**ta

004400004000800000000	- NNMUQQOQQUNNNN	106870
	O O O O O O O O O O O O O O O O O O O	110000
8 8 8 8 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7	44000000000000000000	

¹H NMR Spectrum of **3ua**

¹³C NMR Spectrum of **3ua**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm) ¹⁹F NMR Spectrum of **3ua**

¹H NMR Spectrum of **3va**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm) ¹⁹F NMR Spectrum of **3va**

948497544954497497	N 9 4 0	5 1 7	
0077077783888888	୦ ୦ ୦ ୦	000	
000000000000000000000000000000000000000	ຕ່ຕ່ຕ່ຕ	n n n	

¹H NMR Spectrum of **3wa**

13C (CDCI3, 101 MHz)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm) ¹⁹F NMR Spectrum of **3**wa

¹H NMR Spectrum of **3xa**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm) ¹⁹F NMR Spectrum of **3xa**

59	2	46	4	42	64	38	37	37	35	26
	2	2	Ľ.	<u> </u>		2	2	2	2	2

F F F	F
Ph	Å.

25 25 11 11 22 25 25 25 25 25 11 20 26 11 27 26	050	× 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

¹H NMR Spectrum of **3ab**

¹³C NMR Spectrum of **3ab**

-10

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm) ¹⁹F NMR Spectrum of **3ab**

¹H NMR Spectrum of **3ac**

19F (CDCI3, 376 MHz)

ထထဝင	2 88 8	90 92	<u>66</u>	97	68
6666 666	0 0 0 0 0 0				8
8 8 8 0		11		<u> </u>	

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm) ¹⁹F NMR Spectrum of **3ac**

¹H NMR Spectrum of **3ad**

¹H NMR Spectrum of **3ae**

13C (CDCI3, 101 MHz)

¹³C NMR Spectrum of **3ae**

19F (CDCI3, 376 MHz)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

¹⁹F NMR Spectrum of 3ae

0 8 5 5 7 9 8 9 5 7		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 9 9 9 9 9 9 9 9 9 9 9 9 9
フフフフフフフクク	1 4 4 4 M M M H H H H H H H H H H		
	n		

¹H NMR Spectrum of **3af**

13C (CDCI3, 101 MHz)

¹³C NMR Spectrum of **3af**

19F (CDCI3, 376 MHz)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm) ¹⁹F NMR Spectrum of **3af**

445245523333414557333414557445574455744557445574	000000000000000000000000000000000000000	001 001 001 001 001 001 001 001 001 001
~~~~~~~~~		





¹H NMR Spectrum of **3ag** 

#### 13C (CDCI3, 101 MHz)



¹³C NMR Spectrum of **3ag** 

-10

110 100 f1 (ppm)







-90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm) -10 -20 -30 -40 -50 -60 -70 -80 10 20 0

¹⁹F NMR Spectrum of 3ag







¹H NMR Spectrum of **4ah** 

## 13C (CDCI3, 101 MHz)













TΤ -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm) 10 0 -10 -20 -30 -40 -50 -60 -70 -80 20

¹⁹F NMR Spectrum of 4ah





¹H NMR Spectrum of 4ai



¹³C NMR Spectrum of 4ai

## 13C (CDCI3, 101 MHz)

19F (CDCI3, 376 MHz)





-90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm) 10 -10 -20 -30 -40 -50 -60 -70 -80 20 0

¹⁹F NMR Spectrum of 4ai





¹H NMR Spectrum of **4aj** 



¹³C NMR Spectrum of 4aj



20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

¹⁹F NMR Spectrum of 4aj

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

 7.50

<t





¹H NMR Spectrum of **4ak** 



¹³C NMR Spectrum of **4ak** 





20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm) ¹⁹F NMR Spectrum of **4ak** 





¹H NMR Spectrum of **4al** 













20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

¹⁹F NMR Spectrum of 4al







¹H NMR Spectrum of **4am** 





¹³C NMR Spectrum of 4am



¹⁹F NMR Spectrum of 4am



¹H NMR Spectrum of **4an** 



¹³C NMR Spectrum of 4an



20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)







¹H NMR Spectrum of **4ao**












20 20 20 20 20 20 20 20 20 20 20 20 20 2	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	79
		<u>ה</u>

$\sim$	$\sim$	0	δ	$\infty$			0	$\infty$		9	S	4	4	$\mathbf{\omega}$	$\sim$	$\sim$		0	σ	$\infty$		4	4	$\mathbf{c}$		$\mathbf{c}$	$\mathbf{c}$
			9	9	9	δ	δ	$\infty$	8	8	8	Ô	Ô	8	8	$\infty$	8	8				Ó	Ó	0	8	9	9
		1.1																		1. E	1 H						
ന	$\sim$	$\mathbf{c}$	$\mathbf{c}$	$\mathbf{c}$	$\mathbf{c}$	$\sim$	$\sim$	$\sim$	$\sim$	$\sim$	$\sim$	$\sim$	$\sim$	$\sim$	$\sim$	$\sim$	$\sim$	$\sim$	$\sim$	$\sim$	$\sim$	$\sim$	$\sim$	$\sim$			
L_	L	L	1	1		L	ι.	1																			





¹H NMR Spectrum of **4ap** 









10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

¹⁹F NMR Spectrum of 4ap







¹H NMR Spectrum of 4aq

## 13C (CDCI3, 101 MHz)



¹³C NMR Spectrum of 4aq

19F (CDCI3, 376 MHz)

-70.27 -70.30 -70.33





20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

¹⁹F NMR Spectrum of 4aq







¹H NMR Spectrum of **4ih** 



¹³C NMR Spectrum of **4ih** 



19F (CDCI3, 376 MHz)



¹H NMR Spectrum of **4jh** 





¹³C NMR Spectrum of **4jh** 





20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

¹⁹F NMR Spectrum of 4jh



6	89	87	83	81	81	79	F	66	97	95	6	6	91	6	89
(m)	(m)	ς Ω	(m)	ς.	(m)	ς,	(m)	N	Ņ	N	Ņ	N	Ņ	Ņ	N.
						$\swarrow$		<u> </u>							





¹H NMR Spectrum of **4kh** 



¹³C NMR Spectrum of **4kh** 





20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

¹⁹F NMR Spectrum of 4kh

 $\begin{array}{c} 7.7\\ 7.64\\ 7.64\\ 7.62\\ 7.64\\ 7.62\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\ 7.65\\$ 





¹H NMR Spectrum of **4lh** 







¹⁹F NMR Spectrum of 4lh







¹H NMR Spectrum of **4vh** 



¹³C NMR Spectrum of **4vh** 

19F (CDCI3, 376 MHz)







 19 F NMR Spectrum of 4vh

7.37 7.37 7.37 7.37	7.29 7.29 7.29 7.29 7.25 7.25	7.16 7.15 7.15 7.14 7.12 7.12 7.12 7.12 7.12 7.12 7.10	-7.09 -7.00 -6.67 -6.67 -6.67 -6.67 -6.61 -13.95 -13.95 -13.94 -3.94 -3.94 -3.94 -3.93	¹ 3.69 ¹ 3.67 ¹ 3.65 ¹ 2.95 ¹ 2.93 ¹ 2.9	-2.85 -2.85 -2.85 -2.84 -2.16 -1.80 -1.31
			<b>a (n.</b> runna		
	CF ₃ F F H				
4xh					



¹H NMR Spectrum of 4xh



¹³C NMR Spectrum of **4xh** 

19F (CDCI3, 376 MHz)



20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm) ¹⁹F NMR Spectrum of **4xh** 

65 60 60 60 60 60 60 60 60 60 60 60 60 60	22224600 2222222222222222222222222222222





¹H NMR Spectrum of **5** 









20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

¹⁹F NMR Spectrum of 5





¹H NMR Spectrum of 6





¹³C NMR Spectrum of **6** 









¹⁹F NMR Spectrum of 6



31	27	26	23	89	87	86	85	84	83	81	80
က်က်	ň	ň	ň	<u>7</u>	Ņ	N	2	2	Ņ	2	2





¹H NMR Spectrum of **8+9** 

<u> </u>		Ŀ	2	m	4	4	LO.	0	-	=	2	4	47	51	51	14	11	21	21	32	33	36	37	<b>6</b>	4	39	4	48	60	14	18
70.4		36.1	36.2	36.2	36.2	36.2	36.2	36.3	36.3	36.3	36.3	10.	10.	10.	5	8	62	8	8	8	8	8	8	2	2	8	8	8	6	6	01
1	Ψ	ų	ų		5	9	-	4	Ψ.	ų	<u> </u>	5	5	T	7	7	7	Ţ	Ţ	7	Ţ	7	Ţ	7	T	T	7	7	7	7	Ξ



20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

8779484484848484848484848484848484848484	04000000000040000000004000040000
<u>vonnnnnnn44444uuuu</u>	



¹H NMR Spectrum of **3ah+4ah-D** 


## 1H (CDCI3, 400 MHz)







¹H NMR Spectrum of 10+10-D





20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

¹⁹F NMR Spectrum of 10+10-D





¹H NMR Spectrum of **3ar** 











-----. . . . . . Т -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm) ¹⁹F NMR Spectrum of **3ar** 10 0 -10 -20 -30 -40 -50 -70 20 -60 -80

## 1H (CDCI3, 400 MHz)



¹H NMR Spectrum of **3as** 



```
19F (CDCI3, 376 MHz)
```



										4	ഹ	$\infty$	σ	$\mathbf{c}$	4	ഹ	9	σ	$\mathbf{c}$	$\mathbf{c}$	ഹ
$\sim$	$\mathbf{c}$	S	$\infty$	0	-	$\sim$	$\infty$		S	$\infty$	$\infty$	$\infty$	$\infty$	σ	σ	0	0	0	<b></b>		
				$\infty$	8	00	00	<b>—</b>	$\sim$										1.1	1.1	1.1
- E	1.4	1.4	1.4						13	m	m	m	m	က	m	T	T	T	T	T	T
ഹ	ഹ	ഹ	ഹ	ഹ	ഹ	ഹ	ഹ	9	9	0	0	0	0	0	0	0	0	0	0	0	0
$\infty$	$\infty$	$\infty$	$\infty$	$\infty$	$\infty$	$\infty$	$\infty$	$\infty$	$\infty$	<b></b>		-				-	<b></b>		<b></b>		
1	1	10	1	1 E -	1	1 E -	1 E	1 E	1 E	- H.	- H.	- E	- H.	- E	- H.	- E.		- H.	- H.	- E.	
								1		<u> </u>		/									

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

¹⁹F NMR Spectrum of 3as