Supporting Information

Photocatalytic Formation of P-S Bonds via CdSeS/CdZnS Quantum

Dots under Visible Light Irradiation

Xiao-Rui Liu,^{a,d,#} Zi-Jun Lei,^{a,#} Yue-Yue Zhang,^a Hui-Ling Lu,^a Fu-Gang Zhao,^a Xunshan Liu,^{a,c,*}, Jian-Hai Zhou,^{b,*} Yong-Miao Shen,^{a,c,d*} Xiaogang Peng^c

^aSchool of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Zhejiang Key Laboratory of Polymer Surface and Interface Science, Hangzhou 310018, China

^bNajing Technology Corporation Ltd, 428 Qiuyi Road Building No. 3, Binjiang District, Hangzhou, Zhejiang, 310052, People's Republic of China.

^cKey Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou 310027, PR China.

^dZhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, PR China.

[#]*X*.-*R*. *L*. and *Z*.-*J*. *L* contributed equally.

Table of Contents

1.	General Information	2
2.	Preparation of CdSeS/CdZnS Quantum Dots	
3.	General Procedure for Synthesis of Products 4 and 6	
4.	General Procedure for Synthesis of Products 8 and 9	
5.	Recycling of QuantumDots	5
6.	Absorption and photoluminescence spectra of CdSeS/CdZnS QDs	5
7.	EDS Mapping Results	6
8.	Optimization Experiments of Phenylphosphine	8
9.	Gram-Scale Reaction	9
10.	The Radical Trapping Experiments	10
11.	Preliminary Mechanistic Studies	
12.	Liquid Nitrogen Deoxygenation Experiment	
13.	Unsuccessful substrates	
14.	Characterization Data	
15.	¹ H NMR, ¹³ C NMR and ³¹ P NMR Spectra	

1.General Information

General Remarks. Catalytic reactions were performed under an atmosphere of Ar in a glassware. Glassware was pre-dried in an oven at 100°C for several hours and cooled prior to use. All solvents were purchased from Energy Chemical, Macklin Biochemical or Sinopharm reagents. All chemicals were used directly without any further purification. Analytical TLC was performed with silica gel GF254 plates. For column chromatography, a 200-300 mesh silica gel was employed. Room temperature (r.t.) is 23-25 °C.

Instrumentation. Deuterated solvents were purchased from Cambridge Isotope Laboratories. ¹H NMR spectra were recorded on Bruker AVANCE III 400 and INOVA instruments with 400 MHz frequencies, and ¹³C NMR spectra were recorded on Bruker AVANCE III 400 with 100 MHz frequencies. ³¹P NMR spectra were recorded on a Bruker AVANCE III 400 spectrometer with a ³¹P operating frequency of 162 MHz. Chemical shifts (δ) were reported in ppm relative to the residual solvent signal (CDCl₃ δ = 7.26 for ¹H NMR and δ = 77.0 for ¹³C NMR). Chemical shifts (ppm) were recorded with tetramethylsilane (TMS) as the internal reference standard. Multiplicities are given as s (singlet), d (doublet), t (triplet), dd (doublet of doublets), td (triplet of doublets) or m (multiplet). HRMS was obtained using a Q-TOF instrument equipped with an ESI source. Data collection for crystal structure was performed at room temperature using Mo K α radiation on a Bruker APEXII diffractometer.

Light source in detail. The light source used for photochemical experiments was a household 3 W fluorescent bulb (**Figure S1**). The reaction vessel is borosilicate glass test tube and no filters were applied.

Figure S1. Reaction device

LED fixed lamp (Figure S2), 15-40 W ($\lambda = 460 \pm 15$ nm). Product model: PLS-LED 100. 3W blue LED , purchased from taobao.COM. Manufacturer: Beijing Perfect light Technology Co., Ltd. (China). The reaction vessel is borosilicate glass test tube and no filters were applied. The distance from the light source to the irradiation vessel is 4-5 cm.

Figure S2. Photoreaction setup for scale-up reaction.

LED fixed lamp (**Figure S3**), 3 W blue LED, purchased from taobao.COM. The reaction vessel is borosilicate glass test tube and no filters were applied. The distance from the light source to the irradiation vessel is 2-3 cm.

Figure S3. Photoreaction setup for liquid nitrogen deoxygenation reaction.

2. Preparation of CdSeS/CdZnS Quantum Dots

Synthesis of Cadmium Diethyldithiocarbamate (Cd(DDTC)₂), Zinc Diethyldithiocarbamate (Zn(DDTC)₂), and Se-S-ODE solution. The compound $Cd(Ac)_2 \cdot 2H_2O$ (10 mmol) was dissolved in 100 mL of distilled water, followed by the dropwise addition of NaDDTC $\cdot 3H_2O$ (20 mmol) dissolved in 60 mL of distilled water under vigorous stirring. The mixture was stirred for an additional 20 minutes to ensure complete precipitation of Cd(DDTC)₂. The resulting white precipitate was collected by filtration, washed with distilled water three times and dried under vacuum. The synthesis of Zn(DDTC)₂ followed the same procedure, with Cd(Ac)₂ $\cdot 2H_2O$ being replaced by an equal amount of Zn(Ac)₂ $\cdot 2H_2O$. For epitaxial growth of the shells, the shell precursor solutions were prepared with a given molar ratio of Cd(DDTC)₂ and Zn(DDTC)₂ in dodecane-amine (dodecane : oleylamine = 3 : 1) solution (0.1 mol/L in total). Se-S-ODE (1-octadecene) solution was prepared by dissolving sulfur powder and selenium power in a certain molar ratio (1 mmol in total) with 10mL of ODE by sonication.

Synthesis of CdSeS Core Quantum Dots. In a typical synthesis, CdO (0.13 g, 0.1 mmol) and oleic acid (0.85 g, 0.003 mmol) were loaded into a 25 mL three-neck flask with 5 mL of ODE. After bubbling with argon for 10 min, the mixture was heated to 250 °C. At this point, Se-S-ODE (0.4 mL) was rapidly injected into the reaction flask. After growth for 10 min, the reaction mixture was allowed to cool to 50 °C, add 0.2 mL of

tributylphosphate (TBP) and 0.2 mL of octylamine into the solution, and stir vigorously for 2.5 minutes. Then add 4 mL of hexane and 8 mL of anhydrous methanol, and stir for another 2.5 minutes. After the solution is layered, discard the part without quantum dots and continue with the above procedure. Then, blow away the hexane and methanol with argon at 60°C, and the remaining solution is the ODE solution containing CdSeS quantum dots.

Synthesis of CdSeS/CdZnS Quantum Dots. Take 0.6 mL of oleylamine and 1 mL of CdSeS-ODE solution, and add the corresponding volume of dodecane to make the total volume of the solution reach 6 mL. Bubble with argon gas for 10 minutes and heat to 80° C, then add 0.05 mL of Cd(DDTC)₂ solution and 0.05 mL of Cn(DDTC)₂ solution, and elevate the temperature to 160° C for 20 minutes. After that, cool the solution to 80° C and repeat the steps until the desired emission wavelength of the quantum dots is achieved.

Quantify the QDs. The total number of core/shell ODs was the same with the one of core QDs. The density of CdSe and CdS was 5810 kg/m³ and 4820 kg/m³. In our experiment, the proportion of Se and S was 3:1. Thus it was reasonable that the density of bulk of CdSeS was about 5562 kg/m³. And the size of CdSeS was about 3 nm. Therefor the mass of one CdSeS quantum dot was about 7.9×10^{-20} g. The molecular mass of CdSeS (Se:S = 3:1) in our experiment was about 179. In other words, the molar weight of Cd-Se-S in one quantum dot was about 4.4×10^{-22} mol. In our experiment, if the reaction progress was completely. The total molar weight of Cd-Se-S was about 1 mmol. Combined with Avogadro constant, the total molar weight of CdSeS QDs was 2.2×10^{-5} mol. Considering the dose of CdSeS for core/shell QDs. The total molar weight of core/shell QDs was about 2.2×10^{-6} mol in 20mL tolune. We use 50uL of QDs into the reaction solution (2.0 mL), so the quantum dot concentration in the reaction solution is about 2.75×10^{-8} mol/L. It should be noted that the concentration derived by this computation is approximately and greater than the actual concentration, so that the TON of this reaction must be greater than what we have reported.

3. General Procedure for Synthesis of Products 4 and 6

To two 4 mL vials respectively equipped with a Teflon septum and magnetic stir bar were added 1 or 5 (0.2 mmol per bottle, 0.4 mmol in total), 3 (0.4 mmol per bottle, 0.8 mmol in total), 2 mL toluene (4 mL toluene in total), 0.5 mL DMSO (1 mL DMSO in total), 2 (0.6 mmol per bottle, 1.2 mmol in total), and CdSeS/CdZnS QDs (50 μ L per bottle). The solution was purged with argon gas for 15 minutes irradiated with 3W blue LEDs. After 36 hours, add 12 mL of acetonitrile to precipitate and centrifuge to remove the QDs. Take the organic layer for concentration. The crude mixture was subjected to silica gel (ethyl acetate/petroleum ether 1:5) flash column chromatography, anhydrous magnesium sulfate drying, concentration in vacuum and purification to obtain the desired product 4 or 6.

4. General Procedure for Synthesis of Products 8 and 9

To two 4 mL vials respectively equipped with a Teflon septum and magnetic stir bar were added 1 or 5 (0.2 mmol per bottle, 0.4 mmol in total), TBPB (0.6 mmol per bottle, 1.2 mmol in total), 2 mL toluene (4 mL toluene in total), 0.5 mL DMSO (1 mL DMSO in total), 7 (0.4 mmol per bottle, 0.8 mmol in total), and CdSeS/CdZnS QDs (50 μ L per bottle). The solution was purged with argon gas for 15 minutes irradiated with 3W blue LEDs. After 36 hours, add 12 mL of acetonitrile to precipitate and centrifuge to remove the QDs. Take the organic layer for concentration. The crude mixture was subjected to silica gel (ethyl acetate/petroleum ether 1:6) flash column chromatography, anhydrous magnesium sulfate drying, concentration in vacuum and purification to obtain the desired product **8** or **9**.

5. Recycling of Quantum Dots

To verify the low contamination and repeatability of the reaction, we examined it by ICP-OES. The traditional quantum dots and the quantum dots used in our reaction were dried before testing. And before testing, the reaction stock solution was settled by 12 ml acetonitrile and centrifuged to remove the quantum dots in the reaction solution.

To reuse the catalysis of QDs, we need to precipitate nuclear / shell QDs (QDs) from the reaction solution. The crude reaction solution was combined with 50 ml of acetonitrile in a 100 ml centrifuge tube. Subsequently, the tube was inserted into a centrifuge and spun at a speed of 4000 rpm for 3 minutes. The resulting supernatant was discarded, while the obtained precipitate (QDs) was dissolved in toluene. Then put into the reaction to obtain the product **4**, repeat the above operation to obtain the yield of **4**.

Sample number	quanti ty (g)	constant volume/ V0 (mL)	Test eleme nts	Test element concentrati on/Co (mg/L)	dilutio n ratio/f	Elemental concentrat ion of the original sample solution/C 1 (mg/L)	Sample element content/C x (mg/kg)	Percent of sample element content/ W (%)
Z-QDs	0.0348	25	Zn	0.079	1	0.079	56.75	0.006
P-QDs	0.0271	25	Zn	9.341	100	934.100	861715.87	86.2
RL	1ML	25	Zn	0.512	25	12.800	/	/
Z-QDs	0.0348	25	Cd	8.935	100	893.500	641882.18	64.2
P-QDs	0.0271	25	Cd	1.334	100	133.400	123062.73	12.3
RL	1ML	25	Cd	0.008	25	0.200	/	/
Z-ODs: tr	aditional (DDs. P-ODs:	The ODs	used in the read	ction. RL:	The treated rea	ction solution	

|--|

Table S2. Catalyst recycling								
entry Time(h) Yield (%)								
1	36	91						
2	36	90						
3	36	>99						

6. Absorption and photoluminescence spectra of CdSeS/CdZnS QDs

Figure S4b. Stability of CdSeS / CdZnS QDs in toluene

Figure S4c. Stability of CdSeS/CdZnS QDs in toluene/DMSO

- 7. EDS Mapping Results

电子图像 1

Zn Ka1

Cd La1

S Ka1

Se Ka1

Figure S5. The HRTEM EDS-Mapping diagram of CdSeS/CdZnS QDs

Element	Weight percentage	Atomic percent
S K	36.36	55.31
Zn K	54.67	40.79
Se K	0.04	0.03
Cd L	8.93	3.87
Total quantity	100.0	

Table S3.	The elementa	l analysis of	f CdSeS/CdZnS	ODs

8. Optimization Experiments of Phenylphosphine

	1	SH	+	PH ₂ CdSeS/CdZnS QDs <u>oxidant</u> r.t. blue LED			
entry ^a	1 (mmo 1)	7 (mmo 1)	Oxidant (mmol)	Solvent(mL)	Oxidant	Yield (%)	
1	0.2	0.6	0.4	2 mL toluene	benzophenone	13	
2	0.2	0.6	0.4	2 mL dichloromethane	benzophenone	6	
3	0.2	0.6	0.4	2 mL heptane	benzophenone	11	
4	0.2	0.6	0.4	2 mL toluene/0.5 mL ethan	benzophenone	10	

Table S4. Selected optimization experiments of phenylphosphine

 \wedge

5	0.2	0.6	0.4	2 mL toluene/0.5 mL DMS O	benzophenone	20
6	0.2	0.6	0.4	2 mL toluene/0.5 mL DMS O	TBPB ^d	37
7	0.2	0.6	0.4	2 mL toluene/0.5 mL DMS O	H_2O_2	24
8	0.2	0.6	0.4	2 mL toluene/0.5 mL DMS O	azobenzene	27
9	0.2	0.6	0.4	2 mL toluene/0.5 mL DMS O	4- hydroxybenzaldehyde	28
10	0.2	0.6	0	2 mL toluene/0.5 mL DMS O	/	19
11	0.4	0.2	0.4	2 mL toluene/0.5 mL DMS O	TBPB	30
12	0.4	0.2	0.6	2 mL toluene/0.5 mL DMS O	TBPB	38
13	0.2	0.4	0.6	2 mL toluene/0.5 mL DMS O	TBPB	62
14 ^b	0.2	0.4	0.6	2 mL toluene/0.5 mL DMS O	TBPB	trace
15°	0.2	0.4	0.6	2 mL toluene/0.5 mL DMS O	TBPB	trace

^aReaction conditions: **1a** (0.2 mmol), **7** (0.4 mmol), 50 µL CdSeS/CdZnS QDs in solvent (2 mL toluene/0.5 mL DMSO) were irradiated with 3 W blue LEDs at room temperature under Ar for 36 h. ^bThe reaction was performed in the dark. ^cThe reaction wasperformed without photocatalyst. ^dThe TBPB is tert-Butyl peroxybenzoate.

9. Gram-Scale Reaction

In a 100ml round bottom flask, **1a** (0.433 g, 3.5 mmol), **2** (1.962 g, 10.5 mmol), **3** (0.752 g, 7.1 mmol), and 75 microliters of CdSeS/CdZnS QDs were dissolved in toluene (30ml) and DMSO (7.5 mL). The reaction mixture was mixed with argon for 30 min and reacted at 42 W blue LED for 36h. After the reaction, the reaction

mixture was diluted with acetonitrile and centrifuged to remove CdSeS/CdZnS QDs. It was then extracted with ethyl acetate (3×100 mL), and the combined organic extract was washed with saline (300 mL), dried with anhydrous sodium sulfate and concentrated in vacuo. The crude mixture was directly purified by column chromatography on silica gel (EtOAc : petroleum ether =1:5) by flash column chromatography to obtain the desired product **4a** (**0.896g**, **79%**).

In a 100ml round bottom flask, **1h** (0.528 g, 3.8 mmol), **2** (2.025 g, 10.9 mmol), **3** (0.791 g, 7.1 mmol), and 75 microliters of CdSeS/CdZnS QDs were dissolved in toluene (30ml) and DMSO (7.5 mL). The reaction mixture was mixed with argon for 30 min and reacted at 42 W blue LED for 36h. After the reaction, the reaction mixture was diluted with acetonitrile and centrifuged to remove CdSeS/CdZnS QDs. It was then extracted with ethyl acetate (3×100 mL), and the combined organic extract was washed with saline (300 mL), dried with anhydrous sodium sulfate and concentrated in vacuo. The crude mixture was directly purified by column chromatography on silica gel (EtOAc : petroleum ether =1:5) by flash column chromatography to obtain the desired product **4h** (**1.241g**, **96%**).

10. The Radical Trapping Experiments

To a 4 mL vial respectively equipped with a Teflon septum and magnetic stir bar were added 1 (0.2 mmol per bottle, 0.4 mmol in total), **3** (0.4 mmol per bottle, 0.8 mmol in total), **10** (TEMPO, 0.3130 g, 2.0 mmol). 2 mL toluene (4 mL toluene in total), 0.5 mL DMSO (1 mL DMSO in total), **2** (0.6 mmol per bottle, 1.2 mmol in total), and CdSeS/CdZnS QDs (50 μ L per bottle). The solution was purged with argon gas for 15 minutes irradiated with 3W blue LEDs. After 36 hours, add 12 mL of acetonitrile to precipitate and centrifuge to remove the QDs. Take the organic layer for concentration. The crude mixture was subjected to silica gel (ethyl acetate/petroleum ether 1:5) flash column chromatography, anhydrous magnesium sulfate drying, concentration in vacuum and purification to obtain the desired product **11** and **12**.

Figure S7. ¹H NMR of TEMPO-Diphenylphosphine adduct

11. **Preliminary Mechanistic Studies**

Scheme S1. The controlled experiments

5b	2 3	6b
Enter	Variation form standard conditions	Isolated yields(%)
1	None	96
2	No irradiation	trace
3	No photocatalyst	trace
4	In the air	10
5	No irradiation, No photocatalyst, in the oxygen	18

ő

S's	+ PH2	+ TBPB —	Standard conditions			
5b	2	3		8a		
Enter	Variation for	orm standard co	onditions	Isolated yields(%)		
1		None	62			
2	1	No irradiation	trace			
3	Ne	o photocatalyst	trace			
5		In the air	22			

Figure S8. GC-MS plot of benzaldehyde in reaction with p-methylthiophol

12. Liquid Nitrogen Deoxygenation Experiment

Oxygen was removed by using freezing and thawing protocol. The main operation steps are

shown below: A small magnet was added to the schlenk tube, followed by 0.0489 g (0.40 mmol) of 1a, 0.0844 g (0.80 mmol) of 3, 0.2312 g (1.21 mmol) of 2, CdSeS/CdZnS QDs (50 μ L), 4 mL of toluene, and 1 mL of

DMSO in the glove box,purged with Argon gas for 15 minutes, sonicate for 5 minutes. Then connect the Schlenk tube to the Schlenk line, making sure the switch is closed, and the bottle is sealed. Open the double inclined valve to connect the catheter to the vacuum line and place the Schlenk tube in a liquid nitrogen dewar until all the solvent is completely frozen. Open the valve and evacuate for 2-3 minutes, then close the valve to isolate the container from the vacuum line. The reaction was then removed from liquid nitrogen to allow the solvent to thaw. Repeat this freezing, pumping, and thawing cycle five times after the solvent is thawed. After the fifth cycle it was filled with argon through the Schlenk line. The Schlenk tube was then placed under blue light for 36 hours. After the reaction was completed, add 12 mL of acetonitrile to precipitate and centrifuge to remove the QDs. Take the organic layer for concentration. The crude mixture was separated to obtain 0.0143g of **4a** with a yield of 11%.

13. Unsuccessful substrates

14. Characterization Data

Diphenylphosphine as phosphorus source (1) Thiol/mercaptan as substrate

S ő

Phosphinothioic acid, P-diphenyl-S-(4-methylphenyl) ester (4a): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1 Gradient elution chromatography). White solide (87%, 55.4 mg), Mp: 106-108°C. The compound data was in agreement with the literature (*Org. Lett., 2016, 18, 5114-5117.*) ¹H NMR (400 MHz, Chloroform-d) δ 7.99 – 7.80 (m, 4H), 7.59 – 7.44 (m, 6H), 7.35 (dd, J = 8.2, 1.7 Hz, 2H), 7.04 (d, J = 7.9 Hz, 2H), 2.29 (d, J = 1.6 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 139.3, 135.5, 132.3, 131.8, 131.7, 130.0, 128.6, 128.5, 21.2. ³¹P NMR (162 MHz, Chloroform-d) δ 41.41.

Phosphinothioic acid, P-diphenyl-S-(3-methylphenyl) ester (4b): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1 Gradient elution chromatography). White solid (55%, 35.1 mg), Mp: 94-98°C. The compound data was in agreement with the literature (*Org. Lett., 2016, 18, 5114-5117.*) ¹H NMR (400 MHz, Chloroform-d) δ 7.95 – 7.82 (m, 4H), 7.59 – 7.53 (m, 2H), 7.48 (ddt, J = 10.7, 7.4, 2.8 Hz, 4H), 7.36 (s, 1H), 7.23 (t, J = 3.2 Hz, 1H), 7.11 (d, J = 8.4 Hz, 2H), 2.26 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 139.0, 136.2, 133.2, 132.5, 132.4, 132.4, 132.4, 132.1, 131.8, 131.7, 129.9, 128.9, 128.7, 128.5, 126.9, 125.7, 21.2. ³¹P NMR (162 MHz, Chloroform-d) δ 41.47.

Phosphinothioic acid, P-diphenyl-S-(2-methylphenyl) ester (4c): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1 Gradient elution chromatography). White solid (94%, 61.6 mg), Mp: 70-72°C. The compound data was in agreement with the literature (*Org. Lett., 2016, 18, 5114-5117.*) ¹H NMR (400 MHz, Chloroform-d) δ 7.92 – 7.79 (m, 4H), 7.56 – 7.50 (m, 2H), 7.46 (dt, J = 7.7, 3.8 Hz, 4H), 7.22 – 7.10 (m, 3H), 7.04 (td, J = 7.4, 1.9 Hz, 1H), 2.37 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 142.9, 136.8, 133.4, 132.4, 131.6, 131.5, 130.8, 129.4, 128.6, 128.5, 127.9, 127.2, 126.5, 125.5, 21.5. ³¹P NMR (162 MHz, Chloroform-d) δ 41.20.

Phosphinothioic acid, P-diphenyl-S-(4-methoxyphenyl) ester (4d): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1 Gradient elution chromatography). White solid (52%, 37.7 mg), Mp: 132-134°C. The compound data was in agreement with the literature (*Org. Lett., 2016, 18, 5114-5117.*) ¹H NMR (400 MHz, Chloroform-d) δ 7.90 – 7.80 (m, 4H), 7.53 – 7.47 (m, 2H), 7.44 (ddd, *J* = 8.6, 6.7, 3.6 Hz, 4H), 7.35 – 7.31 (m, 2H), 6.73 (d, *J* = 8.8 Hz, 2H), 3.72 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 160.6, 137.2, 137.1, 133.2, 132.5, 132.3, 132.3, 132.1, 131.7, 131.6, 128.7, 128.6, 128.5, 116.1, 115.9, 114.9, 154.3, ³¹P NMR (162 MHz, Chloroform-d) δ 41.42.

Phosphinothioic acid, P-diphenyl-S-(3-methoxyphenyl) ester (4e): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1 Gradient elution chromatography). White solid (26%, 19.4 mg), Mp: 129-138°C. The compound data was in agreement with the literature (*Org. Lett., 2016, 18, 5114-5117.*) ¹H NMR (400 MHz, Chloroform-d) δ 7.86 (ddd, J = 12.8, 6.9, 1.4 Hz, 4H), 7.55 – 7.48 (m, 2H), 7.44 (dt, J = 7.8, 3.9 Hz, 4H), 7.09 (d, J = 7.9 Hz, 1H), 7.04 (t, J = 1.4 Hz, 1H), 7.00 – 6.95 (m, 1H), 6.79 (d, J = 8.3 Hz, 1H), 3.65 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 159.7, 133.1, 132.4, 131.9, 131.8,

131.7, 131.4, 129.9, 128.7, 128.6, 127.6, 127.1, 126.5, 119.9, 115.9, 55.3. ³¹P NMR (162 MHz, Chloroformd) δ 41.61.

Phosphinothioic acid, P-diphenyl-S-(2-methoxyphenyl) ester (4f): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1 Gradient elution chromatography). White solid (62%, 40.5 mg), Mp: 66-67°C. The compound data was in agreement with the literature (*Org. Lett., 2016, 18, 5114-5117.*) ¹H NMR (400 MHz, Chloroform-d) δ 7.91 – 7.82 (m, 4H), 7.68 (dd, *J* = 7.8, 1.9 Hz, 1H), 7.52 – 7.47 (m, 2H), 7.44 – 7.40 (m, 3H), 7.23 – 7.19 (m, 2H), 6.86 (s, 1H), 6.70 (d, *J* = 8.3 Hz, 1H), 3.62 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 159.5, 159.5, 137.7, 137.7, 133.6, 132.2, 132.2, 131.7, 131.6, 130.8, 130.8, 128.4, 128.3, 121.2, 114.1, 114.1, 111.2, 55.6.³¹P NMR (162 MHz, Chloroform-d) δ 41.83.

Phosphinothioic acid, P-diphenyl-S-(2,6-dimethylphenyl) ester (4g): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1 Gradient elution chromatography). White solid (85%, 59.2 mg), Mp: 98-99°C. The compound data was in agreement with the literature (*Tetrahedron, 2017, 73, 3133-3138*) ¹H NMR (400 MHz, Chloroform-d) δ 7.82 – 7.69 (m, 4H), 7.56 – 7.49 (m, 2H), 7.42 (td, *J* = 7.8, 3.6 Hz, 4H), 7.14 – 7.08 (m, 1H), 7.01 (d, *J* = 7.5 Hz, 2H), 2.29 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 145.2, 133.7, 132.7, 132.3, 132.3, 131.4, 131.3, 129.3, 128.5, 128.5, 128.4, 128.4, 128.1, 127.5, 127.0, 124.6, 22.6. ³¹P NMR (162 MHz, Chloroform-d) δ 39.86.

Phosphinothioic acid, P-diphenyl-S-(2,4-dimethylphenyl) ester (4h): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1 Gradient elution chromatography). White solid (>99%, 83.2 mg), Mp: 73-76°C. The compound data was in agreement with the literature (*Org. Biomol. Chem., 2018, 16, 30-33*) ¹H NMR (400 MHz, Chloroform-d) δ 7.81 (dd, J = 12.9, 7.6 Hz, 4H), 7.50 (d, J = 7.3 Hz, 2H), 7.43 (dd, J = 7.6, 3.5 Hz, 4H), 7.29 (d, J = 8.0 Hz, 1H), 6.96 (s, 1H), 6.81 (d, J = 7.9 Hz, 1H), 2.30 (s, 3H), 2.23 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 142.9, 139.6, 136.9, 133.5, 132.5, 132.3, 131.6, 131.5, 128.6, 128.5, 128.0, 127.4, 127.4, 127.2, 121.6, 21.4, 21.1. ³¹P NMR (162 MHz, Chloroform-d) δ 40.99.

Phosphinothioic acid, P-diphenyl-S-(3,5-dimethylphenyl) ester (4i): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1 Gradient elution chromatography). White

solid (44%, 29.6 mg), Mp: 112-113°C. The compound data was in agreement with the literature (*Tetrahedron* 2016, 72, 7594-7598) ¹H NMR (400 MHz, Chloroform-d) δ 7.82 (ddt, *J* = 12.9, 6.9, 1.5 Hz, 4H), 7.51 – 7.45 (m, 2H), 7.41 (ddd, *J* = 8.7, 6.7, 3.7 Hz, 4H), 7.15 (t, *J* = 3.3 Hz, 1H), 7.01 (s, 1H), 6.85 (s, 1H), 2.15 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 140.5, 140.2, 138.8, 133.2, 132.3, 132.1, 131.8, 131.7, 130.9, 128.6, 128.5, 127.9, 127.6, 127.2, 125.2, 21.1. ³¹P NMR (162 MHz, Chloroform-d) δ 41.64.

Phosphinothioic acid, P-diphenyl-S-(2,5-dimethylphenyl) ester (4j): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1 Gradient elution chromatography). White solid (>99%, 74.1 mg), Mp: 82-85°C. ¹H NMR (400 MHz, Chloroform-d) δ 7.89 – 7.73 (m, 4H), 7.57 – 7.48 (m, 2H), 7.50 – 7.38 (m, 4H), 7.19 (s, 1H), 6.99 (d, J = 10.8 Hz, 1H), 6.89 – 6.76 (m, 1H), 2.28 (s, 3H), 2.13 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 139.9, 137.5, 136.2, 133.3, 132.4, 132.2, 131.6, 131.5, 130.5, 130.3, 128.6, 128.5, 124.7, 116.3, 115.6, 115.4, 20.9, 20.6. ³¹P NMR (162 MHz, Chloroform-d) δ 41.55. HRMS (ESI-TOF) for C₂₀H₁₉OSP ([M+H]⁺): calcd. 339.0967; found: 339.0964.

Phosphinothioic acid, P-diphenyl-S-(3,4-methoxyphenyl) ester (4k): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1 Gradient elution chromatography). White solid (55%, 42.4 mg), Mp: 134-138°C. ¹H NMR (400 MHz, Chloroform-d) δ 7.58 (ddt, J = 7.3, 5.3, 2.6 Hz, 4H), 7.34 (dt, J = 5.5, 1.7 Hz, 6H), 7.00 (ddd, J = 8.4, 2.2, 1.4 Hz, 1H), 6.90 (dd, J = 2.2, 1.0 Hz, 1H), 6.72 (s, 1H), 3.80 (s, 3H), 3.72 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 149.0, 137.8, 137.6, 132.9, 132.8, 129.4, 128.7, 128.6, 125.9, 125.2, 125.1, 116.3, 111.7, 56.0, 55.9. ³¹P NMR (162 MHz, Chloroform-d) δ 41.55. HRMS (ESI-TOF) for C₂₀H₁₉O₃SP ([M+H]⁺): calcd. 371.0866; found: 371.0861.

Phosphinothioic acid, P-diphenyl-S-[4-(1-methylethyl)phenyl] ester (4l): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1 Gradient elution chromatography). White solid (94%, 65.3 mg), Mp: 109-110°C. The compound data was in agreement with the literature (*ChemEur. J., 2021, 27, 14931-14935*) ¹H NMR (400 MHz, Chloroform-d) δ 7.89 – 7.80 (m, 4H), 7.50 (dt, J = 7.4, 3.7 Hz, 2H), 7.43 (td, J = 7.4, 3.3 Hz, 4H), 7.38 – 7.32 (m, 2H), 7.05 (d, J = 8.0 Hz, 2H), 2.85 – 2.77 (m, 1H), 1.16 (d, J = 6.9 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 150.2, 135.6, 133.1, 132.33, 132.1, 131.7, 131.6, 128.6, 128.5, 127.5, 122.4, 116.4, 115.6, 115.4, 33.8, 23.8. ³¹P NMR (162 MHz, Chloroform-d) δ 42.01.

Phosphinothioic acid, P-diphenyl-S-(4-ethylphenyl) ester (4m): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1 Gradient elution chromatography). White solid (91%, 64.6 mg), Mp: 84-86°C. The compound data was in agreement with the literature (*Org. Lett., 2016, 18, 5114-5117.*) ¹H NMR (400 MHz, Chloroform-d) δ 7.92 – 7.68 (m, 4H), 7.54 – 7.47 (m, 2H), 7.47 – 7.40 (m, 4H), 7.41 – 7.32 (m, 2H), 7.23 – 7.13 (m, 1H), 7.03 – 7.00 (m, 1H), 2.75 (d, J = 7.6 Hz, 1H), 2.54 (q, J = 7.6 Hz, 1H), 1.22 – 1.04 (m, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 148.4, 145.5, 136.8, 135.6, 133.2, 132.4, 131.8, 131.7, 131.5, 129.5, 129.2, 128.9, 128.7, 128.6, 128.5, 128.5, 127.3, 126.5, 122.5, 122.4, 28.5, 15.3. ³¹P NMR (162 MHz, Chloroform-d) δ 41.82.

Phosphinothioic acid, P-diphenyl-S-(4-tert-butylphenyl) ester (4n): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1 Gradient elution chromatography). White solid (82%, 64.6 mg), Mp: 128-129°C. The compound data was in agreement with the literature (*Org. Lett., 2016, 18, 5114-5117.*) ¹H NMR (400 MHz, Chloroform-d) δ 7.83 (dd, J = 12.9, 7.6 Hz, 4H), 7.53 – 7.47 (m, 2H), 7.43 (dd, J = 7.6, 3.3 Hz, 4H), 7.33 (s, 2H), 7.22 – 7.19 (m, 2H), 1.23 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 152.4, 135.3, 135.3, 132.3, 131.8, 131.7, 128.6, 128.5, 128.1, 128.1, 127.9, 127.8, 127.2, 127.1, 126.4, 34.6, 31.2. ³¹P NMR (162 MHz, Chloroform-d) δ 41.92.

Phosphinothioic acid, P-diphenyl-S-(4-tert-butyl-2-dimethylphenyl) ester (40): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1 Gradient elution chromatography). Colorless oil (87%, 68.7 mg). ¹H NMR (400 MHz, Chloroform-d) δ 7.84 (dd, J = 12.8, 7.6 Hz, 4H), 7.53 – 7.49 (m, 1H), 7.49 – 7.38 (m, 5H), 7.28 (d, J = 2.3 Hz, 1H), 7.16 (d, J = 2.3 Hz, 1H), 7.09 (d, J = 8.0 Hz, 1H), 2.41 (s, 3H), 1.09 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 149.4, 140.3, 133.9, 133.5, 132.41, 132.2, 131.7, 131.7, 130.5, 128.6, 128.5, 126.5, 124.7, 124.7, 34.2, 31.1, 21.1. ³¹P NMR (162 MHz, Chloroform-d) δ 41.80. HRMS (ESI-TOF) for C₂₃H₂₅OSP ([M+H]⁺): calcd. 381.1437; found: 381.1442.

Phosphinothioic acid, P-diphenyl-S-(4-methylthiophenyl) ester (4p): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1 Gradient elution chromatography). White

solid (84%, 68.9 mg) Mp: 92-94°C. ¹H NMR (400 MHz, Chloroform-d) δ 7.83 (dd, *J* = 13.0, 7.6 Hz, 3H), 7.54 – 7.36 (m, 5H), 7.33 (d, *J* = 7.7 Hz, 2H), 7.22 – 7.10 (m, 2H), 7.02 (d, *J* = 8.0 Hz, 2H), 2.39 (d, *J* = 25.0 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 140.7, 135.8, 132.9, 132.5, 131.7, 131.6, 130.3, 129.5, 128.7, 128.6, 127.6, 127.3, 126.9, 126.5, 15.2. ³¹P NMR (162 MHz, Chloroform-d) δ 42.06. HRMS (ESI-TOF) for C₁₉H₁₇OS₂P ([M+H]⁺): calcd. 357.0532; found: 357.0524.

((4-chlorobenzyl) thio) diphenylphosphine oxide (4q): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (10:1 Gradient elution chromatography). Yellow oil (21%, 15.7 mg). The compound data was in agreement with the literature (*Adv. Synth Catal., 2020, 362, 1825-1830*) ¹H NMR (400 MHz, Chloroform-d) δ 7.77 (ddd, *J* = 12.6, 5.5, 3.4 Hz, 4H), 7.54 – 7.48 (m, 2H), 7.44 (dtdd, *J* = 8.5, 5.2, 4.3, 3.4, 1.6 Hz, 4H), 7.14 (dd, *J* = 14.3, 7.8 Hz, 2H), 7.00 – 6.90 (m, 2H), 3.81 (dd, *J* = 18.7, 13.5 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 132.4, 131.7, 131.7, 131.6, 130.5, 129.3, 128.7, 128.6, 128.5, 128.2, 128.0, 127.2, 40.8, 40.5, 40.0. ³¹P NMR (162 MHz, Chloroform-d) δ 41.90, 35.86.

((4-methoxybenzyl) thio) diphenylphosphine oxide (4r): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (10:1 Gradient elution chromatography). Colourless oil (17%, 11.6 mg). ¹H NMR (400 MHz, Chloroform-d) δ 7.96 – 7.86 (m, 4H), 7.50 – 7.46 (m, 2H), 7.40 (td, *J* = 6.5, 5.9, 2.8 Hz, 4H), 7.16 (d, *J* = 8.6 Hz, 2H), 6.70 (d, *J* = 8.2 Hz, 2H), 4.11 (d, *J* = 11.7 Hz, 2H), 3.74 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 134.6, 132.2, 131.8, 131.8, 131.6, 131.5, 131.5, 130.5, 128.6, 128.5, 128.4, 113.9, 55.3, 35.5. ³¹P NMR (162 MHz, Chloroform-d) δ 80.30, 63.67. HRMS (ESI-TOF) for C₂₀H₁₉O₂SP ([M+H]⁺): calcd. 355.0917; found: 355.0897.

((4-tert-butylbenzyl) thio) diphenylphosphine oxide (4s): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (10:1 Gradient elution chromatography). Colourless oil (26%, 19.9 mg). ¹H NMR (400 MHz, Chloroform-d) δ 7.88 – 7.76 (m, 4H), 7.52 – 7.39 (m, 6H), 7.18 (dd, *J* = 8.2, 3.5 Hz, 2H), 6.95 (ddd, *J* = 8.5, 4.2, 2.4 Hz, 2H), 3.82 (dd, *J* = 13.5, 3.6 Hz, 2H), 1.26 (d, *J* = 3.7 Hz, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 150.0, 132.8, 132.2, 132.0, 131.7, 131.6, 131.5, 130.2, 130.2, 128.6, 128.4, 127.8, 125.0, 40.7, 40.2, 31.3. ³¹P NMR (162 MHz, Chloroform-d) δ 80.30, 42.06. HRMS (ESI-TOF) for C₂₃H₂₅OSP ([M+H]⁺): calcd. 381.1437; found: 381.1429.

((4-methylbenzyl) thio) diphenylphosphine oxide (4t): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (10:1 Gradient elution chromatography). Colourless oil (17%, 11.7 mg). The compound data was in agreement with the literature (*Adv. Synth Catal., 2020, 362, 1825-1830*) ¹H NMR (400 MHz, Chloroform-d) δ 7.86 – 7.77 (m, 4H), 7.50 – 7.41 (m, 6H), 6.97 (d, *J* = 7.8 Hz, 2H), 6.87 (dd, *J* = 8.1, 2.7 Hz, 2H), 3.83 (t, *J* = 13.6 Hz, 2H), 2.26 (d, *J* = 2.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 132.2, 131.7, 131.6, 131.6, 130.4, 130.4, 128.8, 128.8, 128.6, 128.5, 128.4, 128.32, 127.7, 40.8, 40.3, 21.2. ³¹P NMR (162 MHz, Chloroform-d) δ 80.29, 42.04.

(Thiobenzyl) diphenylphosphine oxide (4u): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (10:1 Gradient elution chromatography). Colourless oil (23%, 14.7 mg). The compound data was in agreement with the literature (*Org. Lett., 2016, 18, 5114-5117.*) ¹H NMR (400 MHz, Chloroform-d) δ 7.87 – 7.79 (m, 4H), 7.54 (dt, *J* = 7.4, 4.6 Hz, 2H), 7.48 (td, *J* = 7.4, 2.3 Hz, 4H), 7.25 – 7.17 (m, 3H), 7.11 – 6.97 (m, 2H), 3.89 (d, *J* = 13.5 Hz, 2H).¹³C NMR (101 MHz, Chloroform-d) δ 132.7, 132.2, 131.9, 131.7, 131.6, 131.6, 130.9, 130.6, 129.6, 128.6, 128.5, 128.0, 128.0, 127.2, 127.2, 125.9, 41.2, 40.7. ³¹P NMR (162 MHz, Chloroform-d) δ 80.27, 42.15.

(Thiophenylethyl) diphenylphosphine oxide (4v): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (10:1 Gradient elution chromatography). Colourless oil (28%, 18.9 mg). The compound data was in agreement with the literature (*Green. Chem., 2017, 19, 1005-1013*) ¹H NMR (400 MHz, Chloroform-d) δ 7.85 (dt, J = 12.7, 6.3 Hz, 4H), 7.66 – 7.39 (m, 6H), 7.22 (dd, J = 16.2, 8.0 Hz, 2H), 7.08 (t, J = 6.2 Hz, 2H), 3.15 – 3.00 (m, 2H), 2.91 (t, J = 6.3 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 139.5, 133.8, 132.4, 131.6, 131.5, 128.8, 128.7, 128.5, 126.7, 36.9, 30.5. ³¹P NMR (162 MHz, Chloroform-d) δ 44.01.

(1,3-propyl dithio) diphenylphosphine oxide (4w): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (30:1 Gradient elution chromatography). Colorless oil (15%, 15.1 mg). ¹H NMR (400 MHz, Chloroform-d) δ 7.98 – 7.82 (m, 8H), 7.46 (dddd, J = 12.9, 8.6, 5.3, 2.2 Hz, 12H), 2.95 (dt, J = 13.9, 7.1 Hz, 4H), 1.84 (p, J = 7.1 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 131.9, 131.5, 131.4, 128.7, 128.6, 30.4, 29.8. ³¹P NMR (162 MHz, Chloroform-d) δ 63.05. HRMS (ESI-TOF)

for C₂₃H₂₅OSP ([M+H]⁺): calcd. 509.0923; found: 509.0925.

(Sec-butylthio) diphenylphosphine oxide (4x): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (30:1 Gradient elution chromatography). White solid (67%, 44.2 mg), Mp:116-117°C. The compound data was in agreement with the literature (*Org. Lett., 2021, 23, 1541-1547.*) ¹H NMR (400 MHz, Chloroform-d) δ 8.01 – 7.74 (m, 4H), 7.59 – 7.43 (m, 6H), 3.26 (dq, *J* = 10.5, 6.6 Hz, 1H), 1.72 – 1.51 (m, 2H), 1.34 (d, *J* = 6.8 Hz, 3H), 0.92 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 134.7, 133.4, 132.2, 132.2, 131.6, 131.5, 131.4, 128.7, 128.5, 43.3, 31.7, 23.3, 11.1. ³¹P NMR (162 MHz, Chloroform-d) δ 41.94.

S-cyclopentyl diphenyl thiophosphate (4y): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (10:1 Gradient elution chromatography). White solid (98%, 59.4 mg), Mp: 56-58°C. The compound data was in agreement with the literature (*China, CN112010897 A*) ¹H NMR (400 MHz, Chloroform-d) δ 7.88 (dd, J = 13.1, 7.4 Hz, 4H), 7.55 – 7.45 (m, 6H), 3.53 – 3.38 (m, 1H), 1.96 (qd, J = 7.8, 6.8, 3.5 Hz, 2H), 1.74 – 1.56 (m, 4H), 1.51 (dt, J = 11.5, 3.7 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 140.4, 134.3, 133.3, 132.3, 132.2, 131.6, 131.5, 128.7, 128.6, 127.9, 127.7, 127.2, 43.6, 35.5, 29.7, 24.3. ³¹P NMR (162 MHz, Chloroform-d) δ 42.19.

S-cyclohexyl diphenylphosphinothioate (4z): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (10:1 Gradient elution chromatography). White solid (64%, 40.8 mg), Mp:80-82°C. The compound data was in agreement with the literature (*Org. Lett., 2016, 18, 5114-5117.*) ¹H NMR (400 MHz, Chloroform-d) δ 7.87 (dd, J = 13.0, 7.5 Hz, 4H), 7.61 – 7.38 (m, 6H), 3.30 (dq, J = 15.8, 10.5, 8.2 Hz, 1H), 2.04 – 1.87 (m, 2H), 1.66 (dd, J = 12.1, 5.6 Hz, 2H), 1.59 – 1.45 (m, 3H), 1.32 – 1.24 (m, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 132.3, 131.5, 131.4, 128.7, 128.6, 44.6, 44.6, 35.6, 35.6, 25.7, 25.3. ³¹P NMR (162 MHz, Chloroform-d) δ 42.51.

(2) Disulfide as substrate

Phosphinothioic acid, P-diphenyl-S-(4-methoxyphenyl) ester (6a): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1 Gradient elution chromatography). white solid (31%, 22.3 mg), Mp: 132-134°C. The compound data was in agreement with the literature (*Org. Lett., 2016,*

18, *5114-5117*.) ¹H NMR (400 MHz, Chloroform-d) δ 7.84 (ddt, *J* = 12.9, 6.9, 1.4 Hz, 4H), 7.51 – 7.39 (m, 6H), 7.36 – 7.31 (m, 2H), 6.79 – 6.68 (m, 2H), 3.71 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 160.6, 160.5, 137.1, 137.1, 133.2, 132.3, 132.3, 132.1, 131.7, 131.6, 131.5, 128.6, 128.5, 116.0, 114.9, 114.9, 55.3. ³¹P NMR (162 MHz, Chloroform-d) δ 41.48.

Phosphinothioic acid, P-diphenyl-S-(4-methylphenyl) (6b): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1 Gradient elution chromatography). White solid (96%, 63.3 mg), Mp: 106-108°C. The compound data was in agreement with the literature (*Org. Lett., 2016, 18, 5114-5117.*) ¹H NMR (400 MHz, Chloroform-d) δ 7.83 (dd, J = 12.8, 7.3 Hz, 4H), 7.54 – 7.35 (m, 6H), 7.31 (d, J = 7.7 Hz, 2H), 6.98 (dd, J = 8.2, 2.5 Hz, 2H), 2.22 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 140.0, 139.3, 135.5, 133.2, 132.3, 132.1, 131.8, 131.7, 130.1, 128.7, 128.5, 128.1, 127.9, 127.2, 122.2, 21.3. ³¹P NMR (162 MHz, Chloroform-d) δ 41.64.

(Thiobenzyl) diphenylphosphine oxide (6c): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (10:1 Gradient elution chromatography). Colourless oil (25%, 15.9 mg). The compound data was in agreement with the literature (*Org. Lett., 2016, 18, 5114-5117.*) ¹H NMR (400 MHz, Chloroform-d) δ 7.78 (dd, J = 12.7, 7.5 Hz, 4H), 7.53 – 7.47 (m, 2H), 7.44 (td, J = 7.5, 2.7 Hz, 4H), 7.23 – 7.13 (m, 3H), 7.05 – 6.95 (m, 2H), 3.84 (d, J = 13.5 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 132.7, 132.2, 131.9, 131.7, 131.6, 130.9, 130.8, 130.6, 130.5, 128.6, 128.5, 128.0, 128.0, 127.2, 127.2, 41.2, 40.7. ³¹P NMR (162 MHz, Chloroform-d) δ 42.15, 80.28.

S-cyclohexyl diphenylphosphinothioate (6d): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (10:1 Gradient elution chromatography). White solid (>99%, 66.5 mg), Mp:80-82°C. The compound data was in agreement with the literature (*Org. Lett., 2016, 18, 5114-5117.*) ¹H NMR (400 MHz, Chloroform-d) δ 7.88 (dd, *J* = 13.1, 7.5 Hz, 4H), 7.48 (dt, *J* = 15.9, 7.2 Hz, 6H), 3.30 (d, *J* = 10.9 Hz, 1H), 1.95 (d, *J* = 12.8 Hz, 2H), 1.67 (dd, *J* = 12.5, 5.3 Hz, 2H), 1.50 (dd, *J* = 16.2, 8.3 Hz, 3H), 1.27 (t, *J* = 11.8 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 134.7, 133.6, 132.2, 132.1, 131.5, 131.4, 128.7, 128.5, 35.6, 35.6, 25.8, 25.3. ³¹P NMR (162 MHz, Chloroform-d) δ 42.00.

(Methylthio) diphenylphosphine oxide (6e): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (30:1 Gradient elution chromatography). Colorless oil (77%, 41.1 mg). The compound data was in agreement with the literature (*Adv. Synth Catal., 2020, 362, 1825-1830*) ¹H NMR (400 MHz, Chloroform-d) δ 7.96 – 7.82 (m, 1H), 7.64 – 7.44 (m, 5H), 7.36 (qd, *J* = 4.9, 2.6 Hz, 4H), 2.22 (dd, *J* = 11.6, 4.7 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 137.5, 132.7, 132.5, 132.5, 131.5, 129.2, 128.6, 15.3, 15.1. ³¹P NMR (162 MHz, Chloroform-d) δ 65.95, 84.12.

(isopropyl thio) diphenylphosphine oxide (6f): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (30:1 Gradient elution chromatography). White solid (25%, 14.3 mg), Mp:104-106°C. The compound data was in agreement with the literature (*Green. Chem., 2017, 19, 1005-1013*) ¹H NMR (400 MHz, Chloroform-d) δ 7.58 (tq, J = 6.2, 2.7, 2.1 Hz, 4H), 7.42 – 7.32 (m, 6H), 3.27 (dq, J = 13.6, 6.7 Hz, 1H), 1.44 (dd, J = 6.8, 1.4 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 138.8, 138.6, 132.8, 132.6, 128.9, 128.5, 128.5, 38.9, 38.7, 25.6, 25.6. ³¹P NMR (162 MHz, Chloroform-d) δ 61.56, 78.59.

(Propylthio) diphenylphosphine oxide (6g): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (30:1 Gradient elution chromatography). Colorless oil (32%, 17.7 mg). The compound data was in agreement with the literature (*Org. Lett., 2016, 18, 5114-5117.*) ¹H NMR (400 MHz, Chloroform-d) δ 8.05 – 7.86 (m, 4H), 7.50 (dddd, J = 11.8, 8.4, 6.1, 2.2 Hz, 6H), 2.93 (dt, J = 13.0, 7.3 Hz, 1H), 1.83 – 1.57 (m, 3H), 1.00 (dt, J = 14.3, 7.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 131.8, 131.5, 131.4, 128.7, 128.5, 13.4. ³¹P NMR (162 MHz, Chloroform-d) δ 63.90, 80.89.

Phenylphosphine as phosphorus source

(1) Thiol/mercaptan as substrate

P-phenyl-S-bis(4-methylphenyl) ester (8a): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1 Gradient elution chromatography). Colorless oil (62%, 45.6 mg). The compound data was in agreement with the literature (*Org. Biomol. Chem., 2020, 18, 1567-1571*) ¹H NMR (400 MHz, Chloroform-d) δ 7.78 (d, *J* = 13.9 Hz, 2H), 7.50 (td, *J* = 7.3, 1.8 Hz, 1H), 7.43 – 7.36 (m, 3H), 7.32 (dd, *J* = 8.2, 2.0 Hz, 3H), 7.09 (dd, *J* = 14.4, 7.8 Hz, 4H), 2.31 (d, *J* = 5.0 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 139.7, 135.7, 135.7, 131.8, 131.7, 130.1, 129.9, 128.6, 128.5, 128.3, 21.3. ³¹P NMR (162 MHz, Chloroform-d) δ 49.81.

P-phenyl-S-bis(3-methylphenyl) ester (8b): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1 Gradient elution chromatography). White solid (57%, 44.1 mg), Mp: 76-80°C. ¹H NMR (400 MHz, Chloroform-d) δ 7.84 – 7.72 (m, 2H), 7.49 (dd, J = 7.5, 2.0 Hz, 1H), 7.40 (tt, J = 7.4, 4.4 Hz, 2H), 7.25 (d, J = 3.7 Hz, 4H), 7.13 (s, 4H), 2.26 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 139.2, 136.4, 136.3, 132.7, 132.7, 131.8, 131.7, 130.3, 130.3, 129.1, 129.0, 128.4, 128.3, 21.2. ³¹P NMR (162 MHz, Chloroform-d) δ 49.85. HRMS (ESI-TOF) for C₂₀H₁₉OS₂P ([M+H]⁺): calcd. 371.0688; found: 371.0696.

P-phenyl-S-bis(2-methylphenyl) ester (8c): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1 Gradient elution chromatography). White solid (68%, 51.4 mg), Mp: 80-84°C. The compound data was in agreement with the literature (*Org. Lett., 2017, 19, 3899-3902*) ¹H NMR (400 MHz, Chloroform-d) δ 7.81 (ddd, J = 14.0, 8.3, 1.4 Hz, 2H), 7.52 – 7.36 (m, 5H), 7.24 – 7.14 (m, 4H), 7.07 (td, J = 7.5, 1.8 Hz, 2H), 2.33 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 143.3, 137.3, 137.2, 132.6, 131.6, 131.5, 130.9, 130.9, 129.8, 129.8, 128.5, 128.3, 126.6, 126.6, 21.5. ³¹P NMR (162 MHz, Chloroform-d) δ 49.07.

P-phenyl-S-bis(4-methoxyphenyl) ester (8d): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1 Gradient elution chromatography). White solid (32%, 25.9 mg), Mp: 134-136°C. ¹H NMR (400 MHz, Chloroform-d) δ 7.87 – 7.71 (m, 2H), 7.52 – 7.45 (m, 1H), 7.43 – 7.31 (m, 6H), 6.81 (dd, J = 19.1, 8.7 Hz, 4H), 3.78 (d, J = 11.3 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 137.4, 137.4, 132.7, 132.6, 131.8, 131.7, 128.5, 128.3, 114.9, 114.7, 55.4. ³¹P NMR (162 MHz, Chloroform-d) δ 50.36. HRMS (ESI-TOF) for C₂₀H₁₉O₃S₂P ([M+H]⁺): calcd. 403.0586; found: 403.0597.

P-phenyl-S-bis(3-methoxyphenyl) ester (8e): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1 Gradient elution chromatography). White solid (42%, 34.0 mg), Mp: 88-91°C. ¹H NMR (400 MHz, Chloroform-d) δ 7.84 – 7.76 (m, 1H), 7.55 – 7.32 (m, 2H), 7.19 (dt, *J* = 16.1, 8.0 Hz, 3H), 7.13 – 7.02 (m, 4H), 6.98 (s, 1H), 6.86 (d, *J* = 8.3 Hz, 1H), 6.80 – 6.74 (m, 1H), 3.77 (d, *J* = 1.1 Hz, 3H), 3.71 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 132.8, 131.9, 131.7, 129.9, 128.6, 128.4, 127.9, 120.2, 119.6, 116.2, 113.2, 112.6, 55.4. ³¹P NMR (162 MHz, Chloroform-d) δ 49.87. HRMS (ESI-TOF) for C₂₀H₁₉O₃S₂P ([M+H]⁺): calcd. 403.0586; found: 403.0594.

P-phenyl-S-bis(3,5-dimethylphenyl) ester (8f): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1 Gradient elution chromatography). Yellow solid (31%, 24.3 mg), Mp: 120-123°C. ¹H NMR (400 MHz, Chloroform-d) δ 7.78 (ddd, J = 13.9, 8.1, 1.5 Hz, 1H), 7.52 – 7.22 (m, 4H), 7.11 (s, 1H), 7.05 (s, 3H), 6.89 (d, J = 33.9 Hz, 2H), 2.25 (d, J = 23.2 Hz, 12H). ¹³C NMR (101 MHz, Chloroform-d) δ 138.9, 133.4, 132.5, 131.8, 131.3, 129.1, 128.2, 127.6, 126.6, 125.2, 21.3, 21.1. ³¹P NMR (162 MHz, Chloroform-d) δ 49.80. HRMS (ESI-TOF) for C₂₂H₂₃OS₂P ([M+H]⁺): calcd. 399.1001; found: 399.1010.

P-phenyl-S-biscyclopentyl ester (8g): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (10:1 Gradient elution chromatography). Colorless oil (23%, 16.8 mg). ¹H NMR (400 MHz, Chloroform-d) δ 7.93 (dt, J = 13.3, 6.1 Hz, 2H), 7.49 (d, J = 6.1 Hz, 3H), 3.58 (dd, J = 10.8, 5.8 Hz, 2H), 2.14 (p, J = 7.0 Hz, 2H), 1.95 (dq, J = 11.4, 5.8, 5.4 Hz, 2H), 1.71 (tt, J = 12.1, 5.5 Hz, 5H), 1.54 (dq, J = 14.6, 7.8, 7.1 Hz, 6H), 1.36 – 1.25 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 132.4, 131.3, 131.2, 128.7, 128.5, 45.2, 35.4, 24.4, 24.3. ³¹P NMR (162 MHz, Chloroform-d) δ 51.54. HRMS (ESI-TOF) for C₁₆H₂₃OS₂P ([M+H]⁺): calcd. 327.1001; found: 327.1009.

P-phenyl-S-biscyclohexyl ester (8h): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (10:1 Gradient elution chromatography). Colorless oil (11%, 7.9 mg). ¹H NMR (400 MHz, Chloroform-d) δ 7.93 (dd, J = 14.2, 7.4 Hz, 2H), 7.64 – 7.45 (m, 3H), 3.41 (d, J = 10.7 Hz, 2H), 2.16 – 2.05 (m, 2H), 1.93 – 1.86 (m, 2H), 1.72 (dd, J = 9.3, 4.5 Hz, 2H), 1.63 (dd, J = 8.6, 4.7 Hz, 2H), 1.59 – 1.48 (m, 4H), 1.46 – 1.24 (m, 8H). ¹³C NMR (101 MHz, Chloroform-d) δ 132.3, 131.1, 130.9, 128.5, 128.4,

46.2, 35.4, 25.9, 25.3. ³¹P NMR (162 MHz, Chloroform-d) δ 51.84. HRMS (ESI-TOF) for C₁₈H₂₇OS₂P ([M+H]⁺): calcd. 355.1314; found: 355.1323.

(2) Disulfide as substrate

P-phenyl-S-bis(4-methoxyphenyl) ester (9a): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1 Gradient elution chromatography). White solid (48%, 38.5 mg), Mp: 134-136°C. ¹H NMR (400 MHz, Chloroform-d) δ 7.85 – 7.69 (m, 2H), 7.52 – 7.46 (m, 1H), 7.45 – 7.27 (m, 6H), 6.81 (ddd, J = 19.7, 8.7, 1.9 Hz, 4H), 3.78 (d, J = 13.6 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 160.85, 160.8, 137.4, 137.4, 132.7, 132.6, 132.6, 131.8, 131.7, 128.5, 128.3, 114.9, 114.9, 114.7, 55.4. ³¹P NMR (162 MHz, Chloroform-d) δ 50.29. HRMS (ESI-TOF) for C₂₀H₁₉O₃S₂P ([M+H]⁺): calcd. 403.0586; found: 403.0590.

P-phenyl-S-bis(4-methylphenyl) ester (9b): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1 Gradient elution chromatography). Colorless oil (52%, 38.2 mg). The compound data was in agreement with the literature (*Org. Biomol. Chem., 2020, 18, 1567-1571*) ¹H NMR (400 MHz, Chloroform-d) δ 7.79 (dd, J = 13.9, 7.5 Hz, 2H), 7.54 – 7.47 (m, 1H), 7.43 – 7.26 (m, 6H), 7.08 (dd, J = 14.9, 8.0 Hz, 4H), 2.31 (d, J = 5.2 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 139.7, 135.7, 132.7, 131.8, 130.1, 129.8, 128.6, 128.3, 122.6, 21.3. ³¹P NMR (162 MHz, Chloroform-d) δ 49.94.

P-phenyl-S-bisphenyl ester (9c): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1 Gradient elution chromatography). White solid (58%, 39.5 mg), Mp: 90-95°C. The compound data was in agreement with the literature (*J. Org. Chem., 1965, 30, 3967-3968*) ¹H NMR (400 MHz, Chloroform-d) δ 7.79 (dd, *J* = 14.2, 7.7 Hz, 2H), 7.51 – 7.38 (m, 7H), 7.35 – 7.27 (m, 5H), 7.24 (s, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 135.8, 132.7, 131.7, 129.5, 129.3, 129.1, 128.5, 128.4, 127.6, 127.2. ³¹P NMR (162 MHz, Chloroform-d) δ 49.84.

P-phenyl-S-biscyclohexyl ester (9d): The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate (10:1 Gradient elution chromatography). Colorless oil (23%, 15.7 mg). ¹H NMR (400 MHz, Chloroform-d) δ 7.93 (dd, J = 14.2, 7.4 Hz, 2H), 7.61 – 7.39 (m, 3H), 3.40 (ddt, J = 14.3, 9.8, 5.2 Hz, 2H), 2.16 – 2.02 (m, 2H), 1.93 – 1.84 (m, 2H), 1.75 – 1.25 (m, 16H). ¹³C NMR (101 MHz, Chloroform-d) δ 132.4, 132.3, 131.2, 131.1, 128.6, 128.5, 46.2, 46.2, 35.4, 25.9, 25.4. ³¹P NMR (162 MHz, Chloroform-d) δ 51.74. HRMS (ESI-TOF) for C₁₈H₂₇OS₂P ([M+H]⁺): calcd. 355.1314; found: 355.1320.

15. ¹H NMR, ¹³C NMR and ³¹P NMR Spectra

¹H NMR-spectrum (400MHz, CDCl₃) of 4a

³¹P NMR-spectrum (162MHz, CDCl₃) of 4a

¹H NMR-spectrum (400MHz, CDCl₃) of 4b

¹³C NMR-spectrum (101MHz, CDCl₃) of 4b

1xr1213-4-c.1.1.1r —

³¹P NMR-spectrum (162MHz, CDCl₃) of 4b

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 σ/ppm

¹H NMR-spectrum (400MHz, CDCl₃) of 4c

1xr1121-1.1.1.1r —

σ/ppm

³¹P NMR-spectrum (162MHz, CDCl₃) of 4c

1xr1121-1-p. 1. 1. 1r —

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 σ/ppm

¹H NMR-spectrum (400MHz, CDCl₃) of 4d

对甲氧基苯硫酚H.1.1.1r —

¹³C NMR-spectrum (101MHz, CDCl₃) of 4d

1xr1008-5.1.1.1r —

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 σ/ppm

¹H NMR-spectrum (400MHz, CDCl₃) of 4e

3-甲氧基苯硫酚H.1.1.1r —

³¹P NMR-spectrum (162MHz, CDCl₃) of 4e

150	130	110	90	70	50	30	10	-10	-30	-50	-70	-90	-110	-130	-150	-170	-190	-210	-230	-25
o/ppm																				

1H NMR-spectrum (400MHz, CDCl₃) of 4f

¹³C NMR-spectrum (101MHz, CDCl₃) of 4f

lxr1215-4-c.1.1.1r —

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 σ/ppm

³¹P NMR-spectrum (162MHz, CDCl₃) of 4g

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 σ/ppm

1H NMR-spectrum (400MHz, CDCl₃) of 4h

2,4-二甲基苯硫酚H.1.1.1r —

^{13}C NMR-spectrum (101MHz, CDCl₃) of 4h $_{\rm lxr1008-7.\, l.\, l.\, lr}$ –

150 130 110 90 70 50 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 30 10 -10 σ/ppm

¹H NMR-spectrum (400MHz, CDCl₃) of 4i

1xr1122-4.1.1.1r —

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 σ/ppm

³¹P NMR-spectrum (162MHz, CDCl₃) of 4i

1xr1122-4-p. 1. 1. 1r —

¹³C NMR-spectrum (101MHz, CDCl₃) of 4j

1xr1123-2-c. 1. 1. 1r —

¹H NMR-spectrum (400MHz, CDCl₃) of 4k

1xr1123-1. 1. 1. 1r —

 ^{13}C NMR-spectrum (101MHz, CDCl₃) of 4k

1xr1123-1-c. 1. 1. 1r —

149.01	$\begin{array}{c} 137.82\\ 137.57\\ 137.57\\ 132.78\\ 129.41\\ 1226.67\\ 1226.61\\ 1225.87\\ 125.87\\ 125.87\\ 125.05\\ 1125$	111.70	77.56 77.24 76.92	56.00 55.90
		1	\checkmark	\sim

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 σ/ppm

³¹P NMR-spectrum (162MHz, CDCl₃) of 4k

LXR0321-5-P. 1. 1. 1r —

¹³C NMR-spectrum (101MHz, CDCl₃) of 4l

1xr1112-1-c. 1. 1. 1r —

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 σ/ppm

¹H NMR-spectrum (400MHz, CDCl₃) of 4m

1xr1223-4.1.1.1r —

10 200 190 180 170 160 150 140 130 120 110 100 90 ò σ/ppm

^{31}P NMR-spectrum (162MHz, CDCl₃) of 4m

 $\begin{array}{c} \sum_{l \in I} \sum_{i \in I} \in I$

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 σ/ppm

¹H NMR-spectrum (400MHz, CDCl₃) of 4n

1xr1013-2.1.1.1r —

2.0 11.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 -1 σ/ppm

¹³C NMR-spectrum (101MHz, CDCl₃) of 4n

1xr1013-2.1.1.1r —

¹H NMR-spectrum (400MHz, CDCl₃) of 40

1xr1122-2.1.1.1r —

¹³C NMR-spectrum (101MHz, CDCl₃) of 40

1xr1122-2-c. 1. 1. 1r —

³¹P NMR-spectrum (162MHz, CDCl₃) of 40

lxr1122-2-p. 1. 1. 1r —

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 σ/ppm

¹H NMR-spectrum (400MHz, CDCl₃) of 4p

¹³C NMR-spectrum (101MHz, CDCl₃) of 4p

1xr0215-1-c.2.1.1r —

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 σ/ppm

¹H NMR-spectrum (400MHz, CDCl₃) of 4q

1xr1017-2.1.1.1r —

¹³C NMR-spectrum (101MHz, CDCl₃) of 4q

1xr1017-2.1.1.1r —

lxr1017-2-p. 1. 1. 1r —

¹H NMR-spectrum (400MHz, CDCl₃) of 4r

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 σ/ppm

¹H NMR-spectrum (400MHz, CDCl₃) of 4s

lxr1125-1.1.1.1r —

¹³C NMR-spectrum (101MHz, CDCl₃) of 4s

1xr1125-1-c. 1. 1. 1r —

σ/ppm

¹³C NMR-spectrum (101MHz, CDCl₃) of 4t

1xr1201-2-c. 1. 1. 1r —

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 σ/ppm

¹H NMR-spectrum (400MHz, CDCl₃) of 4u

1xr1112-5.1.1.1r —

σ/ppm

¹³C NMR-spectrum (101MHz, CDCl₃) of 4u

1xr1215-3-c. 1. 1. 1r —

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 σ/ppm

³¹P NMR-spectrum (162MHz, CDCl₃) of 4u

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 σ/ppm

1H NMR-spectrum (400MHz, CDCl₃) of 4v

¹³C NMR-spectrum (101MHz, CDCl₃) of 4v

1xr0215-3-c. 2. 1. 1r —

¹H NMR-spectrum (400MHz, CDCl₃) of 4w

1xr1017-5.1.1.1r ---

^{13}C NMR-spectrum (101MHz, CDCl₃) of 4w

1xr1017-5.1.1.1r —

σ/ppm

³¹P NMR-spectrum (162MHz, CDCl₃) of 4w

1xr1017-5-p. 1. 1. 1r —

¹³C NMR-spectrum (101MHz, CDCl₃) of 4x

lxr1112-7-c.1.1.1r —

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 σ/ppm

¹H NMR-spectrum (400MHz, CDCl₃) of 4y

1xr1223-3.1.1.1r —

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 σ/ppm

³¹P NMR-spectrum (162MHz, CDCl₃) of 4y

^{1}H NMR-spectrum (400MHz, CDCl₃) of 4z

¹³C NMR-spectrum (101MHz, CDCl₃) of 4z

lxr1114-3-c. 1. 1. 1r —

¹H NMR-spectrum (400MHz, CDCl₃) of 6a

³¹P NMR-spectrum (162MHz, CDCl₃) of 6a

lxr1126-3+P.1.1.1r -

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 σ/ppm

^{1}H NMR-spectrum (400MHz, CDCl₃) of **6b**

1xr0215-4.1.1.1r —

¹³C NMR-spectrum (101MHz, CDCl₃) of **6b**

1xr1220-1-c. 1. 1. 1r —

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 σ/ppm

¹H NMR-spectrum (400MHz, CDCl₃) of 6c

1xr0223-1-s. 1. 1. 1r —

¹³C NMR-spectrum (101MHz, CDCl₃) of 6c

1xr0223-1-s-c. 1. 1. 1r ---

σ/ppm

³¹P NMR-spectrum (162MHz, CDCl₃) of 6c

 ^{1}H NMR-spectrum (400MHz, CDCl₃) of 6d

¹³C NMR-spectrum (101MHz, CDCl₃) of 6d

1xr0215-2-c. 2. 1. 1r —

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 σ/ppm
¹H NMR-spectrum (400MHz, CDCl₃) of 6e

1xr1129-1.1.1.1r —

³¹P NMR-spectrum (162MHz, CDCl₃) of 6e

¹H NMR-spectrum (400MHz, CDCl₃) of 6f

¹³C NMR-spectrum (101MHz, CDCl₃) of 6f

lxr1129-2-c. 1. 1. 1r —

³¹P NMR-spectrum (162MHz, CDCl₃) of 6f

σ/ppm

¹H NMR-spectrum (400MHz, CDCl₃) of 6g

1xr0227-1.1.1.1.1r —

¹³C NMR-spectrum (101MHz, CDCl₃) of 6g

1xr0227-1-c. 1. 1. 1r —

90 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 σ/ppm

³¹P NMR-spectrum (162MHz, CDCl₃) of **6g**

¹H NMR-spectrum (400MHz, CDCl₃) of 8a

1xr0225-1.1.1.1r —

¹³C NMR-spectrum (101MHz, CDCl₃) of 8a

1xr0225-1-c. 2. 1. 1r —

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 σ/ppm

³¹P NMR-spectrum (162MHz, CDCl₃) of 8a

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 σ/ppm

¹H NMR-spectrum (400MHz, CDCl₃) of 8b

1xr0311-2. 1. 1. 1r ----

¹³C NMR-spectrum (101MHz, CDCl₃) of 8b

00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 (σ/ppm

³¹P NMR-spectrum (162MHz, CDCl₃) of 8b

1H NMR-spectrum (400MHz, CDCl₃) of 8c

1xr0311-1. 1. 1. 1r —

¹³C NMR-spectrum (101MHz, CDCl₃) of 8c

1xr0311-1-c. 2. 1. 1r —

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 σ/ppm

¹H NMR-spectrum (400MHz, CDCl₃) of 8d

1xr0227-4.1.1.1r ---

11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 σ/ppm

¹³C NMR-spectrum (101MHz, CDCl₃) of 8d

1xr0227-4-c. 1. 1. 1r —

³¹P NMR-spectrum (162MHz, CDCl₃) of 8d

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 σ/ppm

> <3.77 3.71

¹H NMR-spectrum (400MHz, CDCl₃) of 8e $l_{xr0227-5.1.1.1r}$ –

¹³C NMR-spectrum (101MHz, CDCl₃) of 8e

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 σ/ppm

8e

άH

¹H NMR-spectrum (400MHz, CDCl₃) of 8f

1xr0301-4.1.1.1r ---

¹³C NMR-spectrum (101MHz, CDCl₃) of 8f

1xr0301-4-c. 1. 1. 1r —

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 σ/ppm

³¹P NMR-spectrum (162MHz, CDCl₃) of 8f

^{1}H NMR-spectrum (400MHz, CDCl₃) of 8g

1xr0306-3.1.1.1r —

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 σ/ppm

¹H NMR-spectrum (400MHz, CDCl₃) of 8h

1xr0306-4.1.1.1r —

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 σ/ppm

³¹P NMR-spectrum (162MHz, CDCl₃) of 8h

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 σ/ppm

¹H NMR-spectrum (400MHz, CDCl₃) of 9a

1xr0308-2.1.1.1r —

1.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 σ/ppm

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 σ/ppm

¹H NMR-spectrum (400MHz, CDCl₃) of 9b

1xr0308-4.1.1.1r ---

¹³C NMR-spectrum (101MHz, CDCl₃) of 9b

1xr0308-4-c. 1. 1. 1r —

³¹P NMR-spectrum (162MHz, CDCl₃) of 9b

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 σ/ppm

¹H NMR-spectrum (400MHz, CDCl₃) of 9c

1xr0308-3.1.1.1r —

¹³C NMR-spectrum (101MHz, CDCl₃) of 9c

1xr0308-3-c.1.1.1r —

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 σ/ppm

¹H NMR-spectrum (400MHz, CDCl₃) of 9d

1xr0316-3.1.1.1r —

³¹P NMR-spectrum (162MHz, CDCl₃) of 9d

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 σ/ppm