Enantioselective Synthesis of Pyrroloquinolines via ThreeComponent Povarov Reaction with Aminoindoles

Zijie Zhou, ${ }^{\dagger}$ Ling Ye,${ }^{\ddagger}$ Lu Yang,${ }^{\dagger}$ Xinying Li, ${ }^{\dagger}$ Zhigang Zhao, ${ }^{\dagger}$ and Xuefeng Li $*, \dagger$${ }^{\dagger}$ Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry andEnvironment, Southwest Minzu University, Chengdu 610041, China\$Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China
E-mail: lixuefeng@swun.edu.cn
Table of contents

1. General methods 2
2. Optimization Studies 2
3. General procedure for the three-component Povarov reaction 5
4. Procedure for the reduction of indole 22
5. Procedure for the protection of secondary amine and Friedel-Crafts alkylation 23
6. X-ray crystallographic analysis of 4ak (CCDC 2290686) 24
7. Reference 25
8. NMR spectra and HPLC chromatograms of products 27

1. General methods

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Varian 400 MHz spectrometers. Chemical shifts (δ) were reported in ppm downfield from $\mathrm{CDCl}_{3}(\delta=7.26 \mathrm{ppm})$ and $\mathrm{DMSO}(\delta=2.50 \mathrm{ppm})$ for ${ }^{1} \mathrm{H}$ NMR and relative to the central CDCl_{3} resonance $(\delta=77.0 \mathrm{ppm})$ and DMSO $(\delta=39.5 \mathrm{ppm})$ for ${ }^{13} \mathrm{C}$ NMR spectroscopy. Coupling constants (J) were given in Hz. ESI-HRMS spectrometer was measured with a Thermo Scientific LTQ Orbitrap XL mass spectrometer. Enantiomeric excess was determined by HPLC analysis on Chiralpak IE, AD and OD columns in comparison with the authentic racemates. Optical rotation data were recorded on Rudolph Autopol I automatic polarimeter. Commercially available compounds were used without further purification. Solvents were dried according to standard procedures. Column chromatography was performed with silica gel (300-400 mesh).

Chiral phosphoric acid C1-C13 and C15 were prepared according to the literature procedures. ${ }^{1}$ Enamide 3a-3d, β-substituted enecarbamate 3e were synthesized using general procedures reported in the literature. ${ }^{2}$

2. Optimization Studies

Table S1. Screening of catalysts ${ }^{a}$

 $1 \mathbf{a}$		$\begin{array}{ll} \text { Cat. (} \\ \text { Tr } \end{array}$		
Entry	Catalyst	Time (h)	$\text { Yield }^{b}(\%)$	$\mathrm{ee}^{c}(\%)$
1	C1	4	89	94
2	C2	4	92	93
3	C3	3	73	91
4	C4	3	25	95
5	C5	24	69	36
6	C6	72	68	46
7	C7	9	70	94

8	$\mathbf{C 8}$	3	74	94
9	$\mathbf{C} 9$	5	82	86
10	$\mathbf{C 1 0}$	2	81	91
11	$\mathbf{C 1 1}$	2	76	87
12	$\mathbf{C 1 2}$	7	75	82
13	$\mathbf{C 1 3}$	6	53	94
14	$\mathbf{C 1 4}$	NR		
15	$\mathbf{C 1 5}$	26	66	43
16^{d}	$\mathbf{C 1}$	24	68	88
17^{e}	$\mathbf{C 1}$	6	70	89
18^{f}	$\mathbf{C 1}$	2	79	91
19^{g}	$\mathbf{C 1}$	1	74	86
20^{h}	$\mathbf{C 1}$	120	73	92

	C1: $\mathrm{R}=\mathrm{Ph}$ C2: $\mathrm{R}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}$ C3: $\mathrm{R}=p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$ C4: $\mathrm{R}=p-\mathrm{MeC}_{6} \mathrm{H}_{4}$ C5: $\mathrm{R}=3,5-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$ C6: $\mathrm{R}=3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$ C7: $\mathrm{R}=2,4,6-(\mathrm{iPr})_{3} \mathrm{C}_{6} \mathrm{H}_{2}$	C8: $R=1$-naphthyl C9: $R=2$-naphthyl C10: $R=9$-anthracenyl C11: $R=9$-phenanthryl C12: $R=2$-pyrenyl C13: $\mathrm{R}=\mathrm{Ph}\left[\mathrm{H}_{8}\right]$
 C14	NHTf	 C15

${ }^{a}$ Unless otherwise noted, the reaction was performed with 0.12 mmol of $\mathbf{1 a}, 0.1 \mathrm{mmol}$ of $\mathbf{2 a}$, and 0.4 mmol of $\mathbf{3 a}, 10$ mol \% catalyst in 1 mL of THF at $\mathrm{rt} . \mathrm{THF}=$ tetrahydrofuran. ${ }^{b}$ Isolated yield after flash chromatography on silica gel. ${ }^{c}$ Determined by HPLC on Daicel Chiralpak IE-H column. ${ }^{d}$ Performed with $5 \mathrm{~mol} \% \mathbf{C 1}$. ${ }^{e}$ Performed with $15 \mathrm{~mol} \%$ C1. ${ }^{f}$ Performed with $20 \mathrm{~mol} \% \mathbf{C 1} .{ }^{g}$ Conducted at $40^{\circ} \mathrm{C} .{ }^{h}$ Conducted at $0^{\circ} \mathrm{C}$.

Table S2. Screening of solvent ${ }^{a}$

${ }^{a}$ Unless otherwise noted, the reaction was performed with 0.12 mmol of $\mathbf{1 a}, 0.1 \mathrm{mmol}$ of $\mathbf{2 a}$, and 0.4 mmol of $\mathbf{3 a}, 10$ $\mathrm{mol} \% \mathbf{C 1}$ in 1 mL of solvent at $\mathrm{rt} . \mathrm{DCM}=$ dichloromethane, $\mathrm{EA}=$ ethyl acetate, $\mathrm{MTBE}=$ methyl tert-butyl ether, $\mathrm{ACN}=$ acetonitrile. ${ }^{b}$ Isolated yield after flash chromatography on silica gel. ${ }^{c}$ Determined by HPLC on Daicel Chiralpak IE-H column.

Table S3. Optimization of substrate ratio ${ }^{a}$

Entry	$\mathbf{3 a}$ (X equiv.)	Time (h)	Yield $^{b}(\%)$	ee $^{c}(\%)$
1	1	72	27	94
2	2	24	58	90
3	3	24	45	88
4	4	4	89	94

${ }^{a}$ Unless otherwise noted, the reaction was performed with 0.12 mmol of $\mathbf{1 a}, 0.1 \mathrm{mmol}$ of $\mathbf{2 a}$, and X equiv. of $\mathbf{3 a}, 10$
$\mathrm{mol} \% \mathbf{C 1}$ in 1 mL of THF at $\mathrm{rt} .{ }^{b}$ Isolated yield after flash chromatography on silica gel. ${ }^{c}$ Determined by HPLC on
Daicel Chiralpak IE-H column.

Table S4. Optimization study for the Povarov reaction with $\boldsymbol{\beta}$-substituted enecarbamate.

Entry	Ar	Time (h)	Yield $^{b}(\%)$	ee $^{c}(\%)$
1	$\mathrm{C}_{6} \mathrm{H}_{5}(\mathbf{C 1})$	96	78	86
2	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}(\mathbf{C 2})$	72	56	88
3	1-naphthyl (C8)	36	89	90
4	9-anthracenyl (C10)	36	85	76

${ }^{a}$ Unless otherwise noted, the reaction was performed with 0.12 mmol of $\mathbf{1 a}, 0.1 \mathrm{mmol}$ of $\mathbf{2 a}$, and 0.4 mmol of $\mathbf{3 e}, 10$ $\mathrm{mol} \%$ catalyst in 1 mL of THF at $\mathrm{rt} .{ }^{b}$ Isolated yield after flash chromatography on silica gel. ${ }^{c}$ Determined by HPLC on Daicel Chiralpak OD-H column.

3. General procedure for the three-component Povarov reaction

To a solution of 4-chlorobenzaldehyde $\mathbf{1 a}(16.9 \mathrm{mg}, 0.12 \mathrm{mmol})$ in dried THF (1 mL), was added 5-aminoindole 2a (13.2 mg, 0.1 mmol) and phosphoric acid C1 $(5.0 \mathrm{mg}, 0.01 \mathrm{mmol})$. After stirring at rt for 20 minutes, benzyl N-vinylcarbamate $\mathbf{3 a}(70.8 \mathrm{mg}, 0.4 \mathrm{mmol})$ was added in one portion. The reaction mixture was stirred at RT for 4 hours. After completion of the reaction (monitored by TLC), the solvent was removed in vacuo and the residue was purified via flash chromatography on silica gel (petroleum ether/ethyl acetate $=3: 1, \mathrm{v} / \mathrm{v}$) to give the annulated product 4aa.

The corresponding racemate was prepared with racemic BINOL-derived phosphoric acid under otherwise identical conditions.

Benzyl ((7R, 9R)-7-(4-chlorophenyl)-6, 7, 8, 9-tetrahydro-3H-pyrrolo[3, 2-f]quinolin-9-yl)

carbamate (4aa): The product was obtained as a white solid (38.4 $\mathrm{mg}, 89 \%$ yield) via flash chromatography on a silica gel (petroleum ether/ethyl acetate $=3: 1, \mathrm{v} / \mathrm{v}) .94 \%$ ee was determined by HPLC on IE column, hexane $/ i$-propanol ($70 / 30$), $1.0 \mathrm{~mL} / \mathrm{min}$, UV 254 nm , $\mathrm{t}_{\text {minor }}=10.297 \mathrm{~min}, \mathrm{t}_{\text {major }}=11.377 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+41.5\left(c=0.537, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, DMSO-d6) $\delta(\mathrm{ppm}): 10.71(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.31$ $(\mathrm{m}, 5 \mathrm{H}), 7.11(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H})$, $5.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=16.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.37(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=12.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{q}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 156.6,155.9,143.4,139.4,137.6,137.4,131.4,130.2,128.5,128.30$, $128.29,128.2,127.7,127.6,127.4,126.4,124.2,112.0,111.2,110.9,99.9,65.0,64.9,55.1,47.2 ;$ HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{NaO}_{2} 454.1293$, found 454.1290.

Benzyl ((7R, 9R)-7-(4-fluorophenyl)-6, 7, 8, 9-tetrahydro-3H-pyrrolo[3, 2-f]quinolin-9-yl)
 carbamate (4ab): The product was obtained as a white solid (34.0 $\mathrm{mg}, 82 \%$ yield) via flash chromatography on a silica gel (petroleum ether/ethyl acetate $=3: 1, \mathrm{v} / \mathrm{v}) .98 \%$ ee was determined by HPLC on IE column, hexane $/ i$-propanol ($80 / 20$), $1.0 \mathrm{~mL} / \mathrm{min}$, UV 254 nm , $\mathrm{t}_{\text {minor }}=21.140 \mathrm{~min}, \mathrm{t}_{\text {major }}=24.257 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+51.3\left(c=0.412, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, DMSO-d6) $\delta(\mathrm{ppm}): 10.71(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.19(\mathrm{t}, J=8.8 \mathrm{~Hz}$, 2H), $7.08(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 5.37$ (br s, 1H), $5.28(\mathrm{dd}, J=16.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.38$ $(\mathrm{d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=12.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{q}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, DMSO-d6) $\delta(\mathrm{ppm}): 161.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=241.1 \mathrm{~Hz}\right), 155.9,140.5\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=2.8 \mathrm{~Hz}\right), 139.5,137.6$, $130.2,128.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=7.9 \mathrm{~Hz}\right), 128.3,127.6,127.4,126.4,124.1,115.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=20.9 \mathrm{~Hz}\right), 112.0$, 111.2, 110.9, 109.5, 99.9, 65.0, 55.1, 47.3, 40.7; ${ }^{19}$ F NMR (376 MHz, DMSO-d6) $\delta(\mathrm{ppm}):-115.8$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{FN}_{3} \mathrm{O}_{2} 416.1769$, found 416.1765 .

Benzyl ((7R, 9R)-7-(4-bromophenyl)-6, 7, 8, 9-tetrahydro-3H-pyrrolo[3, 2-f]quinolin-9-yl) carbamate (4ac): The product was obtained as a white solid ($33.3 \mathrm{mg}, 70 \%$ yield) via flash

chromatography on a silica gel (petroleum ether/ethyl acetate $=3: 1$, v / v). 92% ee was determined by HPLC on IE column, hexane $/ i$ propanol $(70 / 30), 1.0 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=14.657 \mathrm{~min}$, $\mathrm{t}_{\text {major }}=15.777 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+30.4\left(c=0.625, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 10.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.11(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 5.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=16.8,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}$, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~d}, J=$ $11.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{q}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 155.9,143.9$, $139.4,137.6,131.2,130.2,128.9,128.3,127.7,127.6,127.4,126.4,124.2,119.9,112.1,111.2,99.9$, 65.0, 64.9, 55.2, 47.2; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{BrN}_{3} \mathrm{O}_{2}$ 476.0968, found 476.0964.

Benzyl ((7R, 9R)-7-(4-(trifluoromethyl) phenyl)-6, 7, 8, 9-tetrahydro-3H-pyrrolo[3, 2-f]

quinolin-9-yl)carbamate (4ad): The product was obtained as a white solid ($30.7 \mathrm{mg}, 66 \%$ yield) via flash chromatography on a silica gel (petroleum ether/ethyl acetate $=3: 1, \mathrm{v} / \mathrm{v}$). 95% ee was determined by HPLC on AD column, hexane/i-propanol (70/30), $1.0 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=13.047 \mathrm{~min}, \mathrm{t}_{\text {major }}=14.953 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+45.7\left(c=0.388, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 10.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~s}$, $1 \mathrm{H}), 5.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.29(\mathrm{dd}, J=16.8,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=12.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.49(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{dd}, J=11.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{q}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 155.9,149.2,137.5,130.3,128.30,128.28,127.7,127.6,127.5$, $127.4,126.4,125.2\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}\right), 124.4\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=270.2 \mathrm{~Hz}\right), 124.2,112.1,111.3,99.9,65.0$, 64.9, 55.4, 47.2; ${ }^{19}$ F NMR (376 MHz , DMSO-d6) $\delta\left(\mathrm{ppm}\right.$): -61.2; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} 466.1737$, found 466.1730 .

Benzyl ((7R, 9R)-7-(4-cyanophenyl)-6, 7, 8, 9-tetrahydro-3H-pyrrolo[3, 2-flquinolin-9yl)carbamate (4ae): The product was obtained as a yellow solid ($23.2 \mathrm{mg}, 55 \%$ yield) via flash chromatography on a silica gel (petroleum ether/ethyl acetate $=2: 1, \mathrm{v} / \mathrm{v}$). 96% ee was determined
by HPLC on OD column, hexane $/ i$-propanol ($70 / 30$), $1.0 \mathrm{~mL} / \mathrm{min}$,
 UV $254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=22.640 \mathrm{~min}, \mathrm{t}_{\text {minor }}=26.497 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+67.3$ $\left(c=0.365, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta(\mathrm{ppm}):$ $10.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.39-7.30(m, 5H), $7.12(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.54(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 5.53(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=16.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}$, $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{dd}, J=12.0,7.2 \mathrm{~Hz}$, 1H), $1.98(\mathrm{q}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6) $\delta(\mathrm{ppm}): 155.9,150.3,137.5,132.3$, $128.4,128.3,127.8,127.7,127.6,127.4,127.3,126.4,124.3,119.0,112.0,111.3,109.7,99.8,65.0$, 55.3, 47.1, 31.2; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{NaO}_{2} 445.1635$, found 445.1628 .

Benzyl ((7R, 9R)-7-phenyl-6, 7, 8, 9-tetrahydro-3H-pyrrolo[3, 2-flquinolin-9-yl)carbamate
 (4af): The product was obtained as a white solid ($31.3 \mathrm{mg}, 79 \%$ yield) via flash chromatography on a silica gel (petroleum ether/ethyl acetate $=3: 1, \mathrm{v} / \mathrm{v}) .94 \%$ ee was determined by HPLC on IE column, hexane $/ i$ propanol (85/15), $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV} 254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=23.163 \mathrm{~min}, \mathrm{t}_{\text {major }}=$ $28.497 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+39.5\left(c=0.622, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 10.71(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 6 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 5.37(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.29(\mathrm{dd}, J=16.8,9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{dd}, J$ $=11.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{q}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 156.0$, $144.4,139.7,137.6,130.2,128.3,127.7,127.6,127.4,126.7,127.1,126.7,124.1,112.1,111.2$, 110.8, 99.9, 65.0, 64.9, 56.0, 47.4; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{NaO}_{2}$ 445.1635, found 445.1628.

Benzyl ((7R, 9R)-7-(4-tolyl)-6, 7, 8, 9-tetrahydro-3H-pyrrolo[3, 2-f]quinolin-9-yl)carbamate

(4ag): The product was obtained as a white solid ($37.0 \mathrm{mg}, 90 \%$ yield) via flash chromatography on a silica gel (petroleum ether/ethyl acetate $=3: 1, \mathrm{v} / \mathrm{v}) .94 \%$ ee was determined by HPLC on IE column, hexane/i-propanol (80/20), $1.0 \mathrm{~mL} / \mathrm{min}$, UV 254 nm , $\mathrm{t}_{\text {minor }}=24.563 \mathrm{~min}, \mathrm{t}_{\text {major }}=31.300 \mathrm{~min} ;[\alpha]_{\mathrm{D}}^{25}=+42.5(c=0.741$,
CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 10.71$ (br s, 1H), 7.37-7.31 (m, 7H), $7.17(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 5.30-5.24$ $(\mathrm{m}, 2 \mathrm{H}), 5.14(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=11.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{dd}, J=12.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{q}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6) $\delta(\mathrm{ppm}): 156.0,141.3,137.6,136.1,130.2,128.8,128.33,128.31,127.7,127.6,127.4$, 126.6, 126.5, 124.1, 112.1, 111.2, 99.9, 65.0, 64.9, 55.9, 47.4, 20.7; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2} 412.2020$, found 412.2017.

Benzyl ((7R, 9R)-7-(4-methoxyphenyl)-6, 7, 8, 9-tetrahydro-3H-pyrrolo[3, 2-fl quinolin-9-yl)

carbamate (4ah): The product was obtained as a white solid ($36.0 \mathrm{mg}, 84 \%$ yield) via flash chromatography on a silica gel (petroleum ether/ethyl acetate $=2: 1, \mathrm{v} / \mathrm{v}$). 99% ee was determined by HPLC on IE column, hexane/i-propanol (70/30), $1.0 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=15.477 \mathrm{~min}, \mathrm{t}_{\text {major }}=23.837 \mathrm{~min}$; $[\alpha]_{\mathrm{D}}{ }^{25}=+57.4\left(c=0.734, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6) \delta(\mathrm{ppm}): 10.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.39-$ $7.36(\mathrm{~m}, 7 \mathrm{H}), 7.10(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 5.30-5.24(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.31(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{dd}, J=11.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{q}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 158.4,155.9,139.7,137.6,136.3,130.1,128.3,127.7$, 127.6, 127.4, 126.5, 124.1, 113.7, 112.1, 111.1, 109.5, 99.9, 65.0, 55.3, 55.1, 47.4, 40.8; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3} 428.1969$, found 428.1966.

Benzyl ((7R, 9R)-7-(3-chlorophenyl)-6, 7, 8, 9-tetrahydro-3H-pyrrolo[3,2-flquinolin-9-yl)
 carbamate (4ai): The product was obtained as a white solid (37.5 $\mathrm{mg}, 87 \%$ yield) via flash chromatography on a silica gel (petroleum ether/ethyl acetate $=3: 1, \mathrm{v} / \mathrm{v}) .94 \%$ ee was determined by HPLC on IE column, hexane $/ i$-propanol ($80 / 20$), $1.0 \mathrm{~mL} / \mathrm{min}$, UV 254 nm , $\mathrm{t}_{\text {minor }}=21.193 \mathrm{~min}, \mathrm{t}_{\text {major }}=23.870 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+40.3\left(c=0.561, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, DMSO-d6) $\delta(\mathrm{ppm}): 10.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.31(\mathrm{~m}, 8 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 5.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=16.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.14$ $(\mathrm{d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{dd}$,
$J=11.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{q}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 156.6$, $155.9,147.0,139.4,137.6,137.4,133.0,130.2,128.3,127.7,127.6,127.4,127.0,126.5,125.4$, $124.2,112.1,111.2,110.9,99.9,65.0,64.9,55.3,47.2 ;$ HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{NaO}_{2}$ 454.1293, found 454.1289.

Benzyl ((7R, 9R)-7-(3-fluorophenyl)-6, 7, 8, 9-tetrahydro-3H-pyrrolo[3, 2-flquinolin-9-yl)
 carbamate (4aj): The product was obtained as a white solid (37.4 $\mathrm{mg}, 93 \%$ yield) via flash chromatography on a silica gel (petroleum ether/ethyl acetate $=3: 1, \mathrm{v} / \mathrm{v}) .99 \%$ ee was determined by HPLC on IE column, hexane/i-propanol (70/30), $1.0 \mathrm{~mL} / \mathrm{min}$, UV 254 nm , $\mathrm{t}_{\text {major }}=10.907 \mathrm{~min}, \mathrm{t}_{\text {minor }}=13.667 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+38.5\left(c=0.553, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, DMSO-d6) $\delta(\mathrm{ppm}): 10.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.44-7.27(\mathrm{~m}, 9 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.55$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 5.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=16.8,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=12.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J=11.6,6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.96(\mathrm{q}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 162.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=\right.$ $241.7 \mathrm{~Hz}), 155.9,147.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=7.0 \mathrm{~Hz}\right), 139.4,137.6,130.3,130.2\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.7 \mathrm{~Hz}\right), 128.3$, $127.7,127.6,127.4,126.4,124.2,122.7\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=2.4 \mathrm{~Hz}\right), 113.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=20.2 \mathrm{~Hz}\right), 113.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}}\right.$ $\mathrm{F}=21.6 \mathrm{~Hz}), 112.1,111.2,110.9,99.9,65.0,64.9,55.3,47.2 ;{ }^{19} \mathrm{~F}$ NMR (376 MHz, DMSO-D6) δ (ppm): -113.4; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{FN}_{3} \mathrm{NaO}_{2}$ 438.1588, found 438.1587.

Benzyl ((7R, 9R)-7-(3-bromophenyl)-6, 7, 8, 9-tetrahydro-3H-pyrrolo[3, 2-flquinolin-9-yl)

carbamate (4ak): The product was obtained as a white solid (40.4 $\mathrm{mg}, 85 \%$ yield) via flash chromatography on a silica gel (petroleum ether/ethyl acetate $=3: 1, \mathrm{v} / \mathrm{v}) .94 \%$ ee was determined by HPLC on IE column, hexane/i-propanol (70/30), $1.0 \mathrm{~mL} / \mathrm{min}$, UV 254 nm , $\mathrm{t}_{\text {minor }}=13.657 \mathrm{~min}, \mathrm{t}_{\text {major }}=15.750 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+40.3\left(c=0.614, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, DMSO-d6) $\delta(\mathrm{ppm}): 10.71(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 7 \mathrm{H}), 7.10$ $(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.45$ (br s, 1H), $5.26(\mathrm{dd}, J=17.2,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.95(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{dd}, J=12.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{q}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 155.9,147.3,139.3,137.6,130.5,130.2,129.9,129.3$,
$128.3,127.7,127.6,127.4,126.4,125.8,124.2,121.6,112.0,111.2,110.9,99.9,65.0,64.9,55.2$, 47.2; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{BrN}_{3} \mathrm{NaO}_{2}$ 498.0788, found 498.0790.

Benzyl ((7R, 9R)-7-(3-tolyl)-6, 7, 8, 9-tetrahydro-3H-pyrrolo[3, 2-f] quinolin-9-yl)carbamate

(4al): The product was obtained as a white solid ($35.3 \mathrm{mg}, 66 \%$ yield) via flash chromatography on a silica gel (petroleum ether/ethyl acetate $=3: 1, \mathrm{v} / \mathrm{v}) .93 \%$ ee was determined by HPLC on IE column, hexane $/ i$-propanol ($80 / 20$), $1.0 \mathrm{~mL} / \mathrm{min}$, UV 254 nm , $\mathrm{t}_{\text {minor }}=23.093 \mathrm{~min}, \mathrm{t}_{\text {major }}=27.207 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+40.6\left(c=0.758, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO-d6) $\delta(\mathrm{ppm}): 10.71(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=4.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.11(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 5.32-$ $5.25(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=11.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{dd}, J=11.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{q}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 156.0,144.3,139.7,137.6,137.3,130.2,128.3,128.2,127.7,127.6$, $127.4,127.3,126.5,124.1,123.8,112.1,111.2,110.9,99.9,65.0,64.9,56.0,47.5,21.1$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{NaO}_{2}$ 434.1839, found 434.1841.

Benzyl ((7R, 9R)-7-(3-methoxyphenyl)-6, 7, 8, 9-tetrahydro-3H-pyrrolo[3, 2-f]quinolin-9-yl)

carbamate (4am): The product was obtained as a white solid ($32.0 \mathrm{mg}, 75 \%$ yield) via flash chromatography on a silica gel (petroleum ether/ethyl acetate $=2: 1, \mathrm{v} / \mathrm{v}$). 91% ee was determined by HPLC on IE column, hexane/i-propanol (70/30),
$1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV} 254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=16.600 \mathrm{~min}, \mathrm{t}_{\text {major }}=26.930 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+38.3\left(c=0.592, \mathrm{CHCl}_{3}\right) ;$ ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 10.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.36-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.10-7.04(\mathrm{~m}, 4 \mathrm{H})$, $6.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 5.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=16.8$, $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}$, $3 \mathrm{H}), 2.26(\mathrm{dd}, J=11.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{q}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6\right) \delta$ (ppm): 159.3, 156.0, 146.1, 139.6, 137.6, 130.2, 129.4, 128.4, 128.3, 127.6, 127.5, 126.5, 124.1, $118.8,112.6,112.15,112.10,111.2,99.9,65.0,55.9,55.0,47.4,40.7 ;$ HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ calcd. for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{NaO}_{3} 450.1788$, found 450.1787 .

Benzyl ((7R, 9R)-7-(2-chlorophenyl)-6, 7, 8, 9-tetrahydro-3H-pyrrolo[3, 2-f]quinolin-9-yl)

carbamate (4an): The product was obtained as a white solid (35.8 mg , 83% yield) via flash chromatography on a silica gel (petroleum ether/ethyl acetate $=3: 1, \mathrm{v} / \mathrm{v}) .94 \%$ ee was determined by HPLC on IE column, hexane $/ i$-propanol ($80 / 20$), $1.0 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=$ $27.987 \mathrm{~min}, \mathrm{t}_{\text {major }}=31.920 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+46.1\left(c=0.647, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 10.75$ (br s, 1H), 7.73 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (d, $J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.42-7.30(\mathrm{~m}, 7 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 5.45(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 5.26(\mathrm{dd}, J=16.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J$ $=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{dd}, J=12.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{q}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, DMSO-d6) $\delta(\mathrm{ppm}): 155.9,141.1,139.5,137.6,131.5,130.2,129.3,128.6,128.3,128.1,127.6$, $127.5,127.4,126.5,124.3,112.1,111.4,110.8,99.8,65.0,52.4,47.2,38.5 ;$ HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{ClN}_{3} \mathrm{O}_{2}$ 432.1473, found 432.1471.

Benzyl ((7R, 9R)-7-(2-fluorophenyl)-6, 7, 8, 9-tetrahydro-3H-pyrrolo[3, 2-flquinolin-9-yl)
 carbamate (4ao): The product was obtained as a white solid $(29.1 \mathrm{mg}$, 70% yield) via flash chromatography on a silica gel (petroleum ether/ethyl acetate $=3: 1, \mathrm{v} / \mathrm{v}$). 92% ee was determined by HPLC on OD column, hexane $/ i$-propanol $(70 / 30), 1.0 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=$ $13.960 \mathrm{~min}, \mathrm{t}_{\text {minor }}=17.817 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+41.2\left(c=0.426, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSOd6) $\delta(\mathrm{ppm}): 10.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.26-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.11$ $(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 5.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $5.26(\mathrm{dd}, J=16.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $4.65(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{dd}, J=12.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{q}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100$ MHz, DMSO-d6) $\delta(\mathrm{ppm}): 159.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=242.7 \mathrm{~Hz}\right), 155.9,139.4,137.6,130.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=13.8\right.$ $\mathrm{Hz}), 130.2,128.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.2 \mathrm{~Hz}\right), 128.3,128.0\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=4.5 \mathrm{~Hz}\right), 127.6,127.4,126.5,124.5(\mathrm{~d}$, $\left.{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.1 \mathrm{~Hz}\right), 124.2,115.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21.6 \mathrm{~Hz}\right), 112.1,111.3,110.7,99.9,65.0,48.8,47.1,38.7$; ${ }^{19}$ F NMR (376 MHz, DMSO-d6) $\delta(\mathrm{ppm}):-120.0$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{FN}_{3} \mathrm{NaO}_{2} 438.1588$, found 438.1589 .

Benzyl ((7R, 9R)-7-(2-bromophenyl)-6, 7, 8, 9-tetrahydro-3H-pyrrolo[3, 2-f]quinolin-9-yl) carbamate (4ap): The product was obtained as a white solid ($37.5 \mathrm{mg}, 79 \%$ yield) via flash

chromatography on a silica gel (petroleum ether/ethyl acetate $=3: 1, \mathrm{v} / \mathrm{v}$). 91% ee was determined by HPLC on IE column, hexane/i-propanol $(80 / 20), 1.0 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=30.120 \mathrm{~min}, \mathrm{t}_{\text {major }}=36.387$ $\min ;[\alpha]_{\mathrm{D}}{ }^{25}=+37.4\left(\mathrm{c}=0.625, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO-d6) $\delta(\mathrm{ppm}): 10.75$ (br s, 1H), 7.73 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 5.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=16.8,9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.17(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{dd}, J=11.2$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{q}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 155.9,142.6$, $139.5,137.6,132.6,130.3,129.0,128.3,128.1,127.7,127.6,127.4,126.5,124.3,122.2,112.2$, 111.4, 110.9, 99.8, 65.0, 64.9, 55.1, 47.2; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{BrN}_{3} \mathrm{O}_{2}$ 476.0968 found 476.0969.

Benzyl ((7R, 9R)-7-(2-tolyl)-6, 7, 8, 9-tetrahydro-3H-pyrrolo[3, 2-flquinolin-9-yl)carbamate

(4aq): The product was obtained as a white solid ($34.9 \mathrm{mg}, 85 \%$ yield) via flash chromatography on a silica gel (petroleum ether/ethyl acetate $=3: 1$, v/v). 92% ee was determined by HPLC on IE column, hexane $/ i$ propanol $(80 / 20), 1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV} 254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=19.657 \mathrm{~min}, \mathrm{t}_{\text {major }}=$ $25.690 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+42.2\left(c=0.634, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6) \delta(\mathrm{ppm}): 10.71(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}), 6.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 5.31(\mathrm{dd}, J=17.2,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 5.16(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$, $2.23(\mathrm{dd}, J=11.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{q}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6) $\delta(\mathrm{ppm}):$ 156.0, 142.1, 140.1, 137.6, 134.7, 130.22, 130.18, 128.3, 127.6, 127.4, 126.7, 126.6, 126.1, 126.0, $124.1,112.2,111.2,111.0,99.9,65.0,54.9,52.2,47.5,18.7 ;$ HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{NaO}_{2}$ 434.1839, found 434.1840.

Benzyl ((7R, 9R)-7-(2-methoxyphenyl)-6, 7, 8, 9-tetrahydro-3H-pyrrolo[3, 2-f]quinolin-9-yl) carbamate (4ar): The product was obtained as a white solid ($34.1 \mathrm{mg}, 80 \%$ yield) via flash chromatography on a silica gel (petroleum ether/ethyl acetate $=2: 1, \mathrm{v} / \mathrm{v}$). 94% ee was determined by HPLC on IE column, hexane/i-propanol ($70 / 30$), $1.0 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=15.977 \mathrm{~min}$,

$\mathrm{t}_{\text {major }}=18.593 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+46.7\left(c=0.751, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400$ MHz, DMSO-d6) $\delta(\mathrm{ppm}): 10.73$ (br s, 1H), 7.57 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.40-7.23 (m, 7H), $7.12(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.97(\mathrm{~m}$, $2 \mathrm{H}), 6.56(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 5.28-5.22(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{~d}$, $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.82(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{dd}, J=11.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{q}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSOd6) $\delta(\mathrm{ppm}): 156.2,155.9,139.9,137.6,131.9,130.1,128.3,127.9,127.6,127.4,126.6,126.5$, $124.1,120.4,112.2,111.2,110.8,110.7,99.8,79.2,65.0,55.5,49.0,47.2 ;$ HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3} 428.1969$, found 428.1966.

Benzyl ((7R, 9R)-7-(naphthalen-1-yl)-6, 7, 8, 9-tetrahydro-3H-pyrrolo[3, 2-f]quinolin-9-yl)

carbamate (4as): The product was obtained as a white solid (34.0 mg , 76% yield) via flash chromatography on a silica gel (petroleum ether/ethyl acetate $=3: 1, \mathrm{v} / \mathrm{v}) .89 \%$ ee was determined by HPLC on IE column, hexane/i-propanol (80/20), $1.0 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=$ $36.037 \mathrm{~min}, \mathrm{t}_{\text {major }}=43.743 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+40.1\left(c=0.591, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 10.73$ (br s, 1H), 8.33 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.97$ (d, $J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.89-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 5.47-5.41(\mathrm{~m}, 2 \mathrm{H}), 5.19(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J$ $=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=12.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{q}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 155.9,140.0,139.9,137.6,133.5,130.3,130.2,128.8$, $128.3,127.6,127.4,126.6,126.1,125.7,125.6,124.2,123.1,112.3,111.2,111.1,99.9,64.94,64.87$ 54.9, 47.4; HRMS (ESI) m/z: [M+Na] ${ }^{+}$calcd. for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{NaO}_{2} 470.1839$, found 470.1843.

Benzyl ((7R, 9R)-7-(naphthalen-2-yl)-6, 7, 8, 9-tetrahydro-3H-pyrrolo[3, 2-f]quinolin-9-yl)
 carbamate (4at): The product was obtained as a white solid (39.8 mg, 89% yield) via flash chromatography on a silica gel $($ petroleum ether/ethyl acetate $=3: 1, v / v) .93 \%$ ee was determined by HPLC on IE column, hexane/i-propanol (70/30), $1.0 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=18.020 \mathrm{~min}, \mathrm{t}_{\text {major }}=21.403 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+43.0\left(c=0.540, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}$ (400 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 10.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.94-7.92(\mathrm{~m}, 3 \mathrm{H}), 7.64(\mathrm{~d}, J=8.4$
$\mathrm{Hz}, 1 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 5.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.35(\mathrm{dd}, J=17.2,9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.15(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{dd}, J=11.6$, $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{q}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 156.0,142.0$, $139.7,137.6,133.1,132.5,130.2,128.33,128.30,127.8,127.7,127.6,127.5,127.4,126.5,126.1$, 125.6, 125.4, 124.9, 124.2, 112.1, 111.2, 111.0, 99.9, 65.0, 64.9, 56.0, 47.5; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2} 448.2020$, found 448.2017.

Benzyl ((7R, 9R)-7-(thiophen-2-yl)-6, 7, 8, 9-tetrahydro-3H-pyrrolo[3, 2-f]quinolin-9-yl)
 carbamate (4au): The product was obtained as a white solid $(31.0 \mathrm{mg}$, 77% yield) via flash chromatography on a silica gel (petroleum ether/ethyl acetate $=3: 1, \mathrm{v} / \mathrm{v}$). 95% ee was determined by HPLC on IE column, hexane $/ i$-propanol $(70 / 30), 1.0 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=$ $12.177 \mathrm{~min}, \mathrm{t}_{\text {major }}=14.360 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+35.7\left(c=0.531, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO-d6 $)$ $\delta(\mathrm{ppm}): 10.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.43-7.31(\mathrm{~m}, 7 \mathrm{~Hz}), 7.12(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.02-7.00 (m, 1H), $6.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 5.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.28(\mathrm{dd}, J=17.2,10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.33(\mathrm{dd}, J=12.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{q}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) δ (ppm): 156.0, 148.5, 139.1, 137.6, 130.4, 128.4, 127.8, 127.7, 127.5, 126.6, 126.4, 124.3, 124.2, $123.8,112.2,111.3,111.2,100.0,65.1,64.9,51.8,47.1 ;$ HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{NaO}_{2} \mathrm{~S} 426.1247$, found 426.1245.

Benzyl ((7R, 9R)-7-cyclohexyl-6, 7, 8, 9-tetrahydro-3H-pyrrolo [3, 2-flquinolin-9-yl)
 carbamate (4av): The product was obtained as a white solid (29.4 mg , 73% yield) via flash chromatography on a silica gel (petroleum ether/ethyl acetate $=3: 1, \mathrm{v} / \mathrm{v}$). 93% ee was determined by HPLC on IE column, hexane $/ i$-propanol $(80 / 20), 1.0 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=$ $18.223 \mathrm{~min}, \mathrm{t}_{\text {major }}=25.733 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+44.7\left(c=0.837, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6)$ $\delta(\mathrm{ppm}): 10.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.44-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.06(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.50$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H}), 5.17-5.06(\mathrm{~m}, 3 \mathrm{H}), 4.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=12.0,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.07(\mathrm{dd}, J=11.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.64(\mathrm{~m}, 5 \mathrm{H}), 1.47-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.06(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
(100 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 156.0,137.6,129.9,128.3,127.6,127.5,126.5,123.9,112.0,111.0$, 99.8, 64.9, 56.2, 47.4, 41.7, 33.8, 28.8, 27.9, 26.3, 26.14, 26.07; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{2} 404.2338$, found 404.2331.

Benzyl ((7R, 9R)-7-propyl-6, 7, 8, 9-tetrahydro-3H-pyrrolo[3, 2-flquinolin-9-yl)carbamate

(4aw): The product was obtained as a white solid ($22.1 \mathrm{mg}, 61 \%$ yield) via flash chromatography on a silica gel (petroleum ether/ethyl acetate $=3: 1, \mathrm{v} / \mathrm{v}) .90 \%$ ee was determined by HPLC on IE column, hexane $/ i$ propanol $(70 / 30), 1.0 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=9.587 \mathrm{~min}, \mathrm{t}_{\text {major }}=$ $10.490 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+35.5\left(c=0.494, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 10.63(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 7.43-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.06(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 5.17-5.02(\mathrm{~m}, 3 \mathrm{H}), 4.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.18-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{dd}, J=12.0,7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.64-1.41(\mathrm{~m}, 5 \mathrm{H}), 0.92(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 155.9$, $139.4,137.6,129.9,128.3,127.6,127.5,126.6,123.9,111.8,111.0,110.9,99.8,64.9,51.0,47.0$, 37.9, 37.5, 18.2, 14.2; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{NaO}_{2}$ 386.1839, found 386.1837.

Benzyl ((7R, 9R)-1-chloro-7-(4-chlorophenyl)-6, 7, 8, 9-tetrahydro-3H-pyrrolo[3, 2-f]quinolin-

9-yl)carbamate (4ax): The product was obtained as a yellow solid ($33.9 \mathrm{mg}, 73 \%$ yield) via flash chromatography on a silica gel (petroleum ether/ethyl acetate $=2: 1, \mathrm{v} / \mathrm{v}) .90 \%$ ee was determined by HPLC on AD column, hexane/i-propanol (70/30),
$1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV} 254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=11.087 \mathrm{~min}, \mathrm{t}_{\text {major }}=12.150 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+23.7\left(c=0.276, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 11.03(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.31(\mathrm{~m}$, 4H), $7.28(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.36(\mathrm{dd}, J=11.6,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.90(\mathrm{t}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{~s}, 1 \mathrm{H}), 2.34-2.23(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6) δ (ppm): 154.8, 144.2, 139.9, 137.5, 130.7, 129.2, 128.3, 128.2, 128.1, 128.0, 127.4, 127.1, 122.4, 122.3, 113.1, 107.2, 102.2, 64.5, 52.1, 43.9, 36.7; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{NaO}_{2} 488.0903$, found 488.0901 .

Benzyl ((7R, 9R)-1-chloro-7-(4-chlorophenyl)-2-methyl-6, 7, 8, 9-tetrahydro-3H-pyrrolo[3, 2-

f lquinolin-9-yl)carbamate (4ay): The product was obtained as a light yellow solid ($34.5 \mathrm{mg}, 72 \%$ yield) via flash chromatography on a silica gel (petroleum ether/ethyl acetate $=3: 1, \mathrm{v} / \mathrm{v}) .68 \%$ ee was determined by HPLC on AD column, hexane $/ i$-propanol $(80 / 20), 1.0 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=$ $21.333 \mathrm{~min}, \mathrm{t}_{\text {major }}=23.007 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+38.7\left(c=0.729, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6)$ $\delta(\mathrm{ppm}): 10.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.20(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.07$ $(\mathrm{d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.38(\mathrm{dd}, J=$ $11.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.37-2.24 (m, 5H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 154.8,144.3,139.8,137.5,130.9$, $130.8,128.4,128.2,128.1,128.0,127.8,127.4,127.1,123.0,112.3,111.6,107.0,100.0,64.6,52.2$, 43.9, 36.9, 11.1; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{NaO}_{2} 502.1060$, found 502.1059.

Tert-butyl ((7R, 9R)-7-(4-chlorophenyl)-6, 7, 8, 9-tetrahydro-3H-pyrrolo [3, 2-flquinolin-9-yl)
 carbamate (4ba): The product was obtained as a white solid (39.3 $\mathrm{mg},>99 \%$ yield) via flash chromatography on a silica gel (petroleum ether/ethyl acetate $=3: 1, \mathrm{v} / \mathrm{v}$). 91% ee was determined by HPLC on AD column, hexane $/ i$-propanol $(70 / 30), 1.0 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=7.503 \mathrm{~min}, \mathrm{t}_{\text {minor }}=10.833 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+48.3\left(c=0.647, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}$ (400 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 10.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.13(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~s}$, $1 \mathrm{H}), 5.37(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.19(\mathrm{dd}, J=16.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{dd}, J=11.6$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{q}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6) $\delta(\mathrm{ppm}):$ $155.4,143.5,139.3,131.3,130.2,128.5,128.2,126.5,124.1,112.0,111.3,111.0,99.8,77.4,55.1$, 46.5, 40.5, 28.4; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{NaO}_{2} 420.1455$, found 420.1455 .
N-((7R, 9R)-7-(4-chlorophenyl)-6, 7, 8, 9-tetrahydro-3H-pyrrolo[3, 2-f]quinolin-9-yl)

acetamide (4ca): The product was obtained as a white solid (25.4 $\mathrm{mg}, 75 \%$ yield) via flash chromatography on a silica gel (petroleum ether/ethyl acetate $=3: 1, \mathrm{v} / \mathrm{v}) .90 \%$ ee was determined by HPLC on OD column, hexane/i-propanol (70/30), $1.0 \mathrm{~mL} / \mathrm{min}, ~ U V ~ 254 \mathrm{~nm}$,
$\mathrm{t}_{\text {minor }}=10.267 \mathrm{~min}, \mathrm{t}_{\text {major }}=25.233 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+35.7\left(c=0.483, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, DMSO-d6) $\delta(\mathrm{ppm}): 10.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 5.46$ (dd, $J=16.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=11.2,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 1.86-1.76 (m, 4H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 168.5,143.4,139.6,131.4,130.1$, $128.5,128.2,126.5,124.3,112.0,111.2,110.7,99.7,55.0,44.6,39.9,22.6$; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{ClN}_{3} \mathrm{O} 340.1217$, found 340.1207.

benzamide (4da): The product was obtained as a white solid (21.3 $\mathrm{mg}, 53 \%$ yield) via flash chromatography on a silica gel (petroleum ether/ethyl acetate $=2: 1, \mathrm{v} / \mathrm{v}) .92 \%$ ee was determined by HPLC on OD column, hexane $/ i$-propanol ($70 / 30$) , $1.0 \mathrm{~mL} / \mathrm{min}$, UV 254 nm , $\mathrm{t}_{\text {minor }}=15.350 \mathrm{~min}, \mathrm{t}_{\text {major }}=18.283 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+27.4\left(c=0.158, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, DMSO-d6) $\delta(\mathrm{ppm}): 10.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.48(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H})$, $6.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 5.78(\mathrm{dd}, J=16.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=$ $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{dd}, J=12.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{q}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6) $\delta(\mathrm{ppm}): 165.6,143.5,139.5,134.6,131.4,130.9,128.6,128.3,128.2,128.1,127.4$, 127.3, 126.6, 124.4, 112.0, 111.3, 110.8, 99.5, 54.9, 45.2, 22.7; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{ClN}_{3} \mathrm{O} 402.1373$, found 402.1364 .

Benzyl ((7R, 8S, 9R)-7-(4-chlorophenyl)-8-methyl-6, 7, 8, 9-tetrahydro-3H-pyrrolo[3, 2-f]
 quinolin-9-yl) carbamate (4ea): The product was obtained as a white solid ($39.6 \mathrm{mg}, 89 \%$ yield) via flash chromatography on a silica gel (petroleum ether/ethyl acetate $=4: 1, \mathrm{v} / \mathrm{v}$). 90% ee was determined by HPLC on OD column, hexane/i-propanol (70/30), $1.0 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=13.810 \mathrm{~min}, \mathrm{t}_{\text {major }}=19.760 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+45.7\left(c=0.627, \mathrm{CHCl}_{3}\right) ;$ ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 10.71$ (br s, 1H), 7.44-7.43 (m, 3H), 7.37-7.29 (m, 6H), $7.10(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 5.37(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.15$ (d, $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$,
$2.05(\mathrm{dd}, J=15.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.69(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6) $\delta(\mathrm{ppm}):$ $156.7,141.9,137.7,131.7,130.3,129.7,128.33,128.30,128.2,127.71,127.70,127.6,127.4,126.6$, $124.2,111.6,111.1,99.7,79.2,65.0,61.9,53.7,15.4$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{ClN}_{3} \mathrm{O}_{2} 446.1630$, found 446.1625 .

Benzyl ((7R, 8S, 9R)-8-methyl-7-phenyl-6, 7, 8, 9-tetrahydro-3H-pyrrolo[3, 2-f]quinolin-9-yl)
 carbamate (4ef): The product was obtained as a white solid (33.7 mg , 82% yield) via flash chromatography on a silica gel (petroleum ether/ethyl acetate $=4: 1, \mathrm{v} / \mathrm{v}) .92 \%$ ee was determined by HPLC on OD column, hexane $/ i$-propanol $(70 / 30), 1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV} 254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=$ $12.097 \mathrm{~min}, \mathrm{t}_{\text {major }}=15.510 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+37.4\left(c=0.735, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6)$ $\delta(\mathrm{ppm}): 10.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.42-7.30(\mathrm{~m}, 9 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 5.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 4.82(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{dd}, J=16.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.68(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 156.7,156.6,142.8,139.7,137.7,137.4$, $130.2,129.1,128.32,128.29,128.2,127.8,127.7,127.6,127.4,126.6,124.1,111.6,111.2,111.0$, 99.7, 64.9, 62.7, 53.8, 42.5, 15.5; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2} 412.2025$, found 412.2018.

Benzyl ((7R, 8S, 9R)-7-(4-methoxyphenyl)- 8-methyl-6, 7, 8, 9-tetrahydro-3H-pyrrolo[3, 2-f]
 quinolin-9-yl) carbamate (4eh): The product was obtained as a white solid ($33.1 \mathrm{mg}, 75 \%$ yield) via flash chromatography on a silica gel (petroleum ether/ethyl acetate $=3: 1, \mathrm{v} / \mathrm{v}$). 98% ee was determined by HPLC on OD column, hexane/i-propanol (70/30), $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV} 254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=14.543 \mathrm{~min}, \mathrm{t}_{\text {major }}=18.040 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+51.7\left(c=0.672, \mathrm{CHCl}_{3}\right) ;$ ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 10.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 8 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $5.15(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=10.4 \mathrm{~Hz}$, 1H), $3.76(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{dd}, J=16.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.67(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6) $\delta(\mathrm{ppm}): 158.5,156.7,139.7,137.7,134.8,130.1,128.8,128.3,127.6,127.3,126.6$, $124.0,113.6,111.6,111.2,111.0,99.7,64.9,62.1,55.1,53.9,42.6,15.5 ; \operatorname{HRMS}(E S I) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$
calcd. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{3} 442.2125$, found 442.2121 .

Benzyl ((7R, 8S, 9R)-8-methyl-7-(2-tolyl)-6, 7, 8, 9-tetrahydro-3H-pyrrolo[3, 2-flquinolin-9-
 yl)carbamate (4er): The product was obtained as a white solid (29.5 $\mathrm{mg}, 67 \%$ yield) via flash chromatography on a silica gel (petroleum ether/ethyl acetate $=3: 1, \mathrm{v} / \mathrm{v}) .90 \%$ ee was determined by HPLC on OD column, hexane $/ i$-propanol ($70 / 30$), $1.0 \mathrm{~mL} / \mathrm{min}, ~ U V ~ 254 \mathrm{~nm}$, $\mathrm{t}_{\text {minor }}=27.313 \mathrm{~min}, \mathrm{t}_{\text {major }}=31.087 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+39.1\left(c=0.359, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, DMSO-d6) $\delta(\mathrm{ppm}): 10.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.08-6.97(\mathrm{~m}$, 4H), $6.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=$ $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{dd}, J=16.0,8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 0.73(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6) $\delta(\mathrm{ppm}): 157.1,156.5,139.8$, $137.7,130.8,130.0,128.30,128.25,128.0,127.7,127.6,127.4,127.3,126.8,124.0,120.6,111.6$, 111.1, 111.0, 110.8, 99.6, 64.9, 55.5, 53.7, 42.0, 15.2; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{3} 442.2125$, found 442.2121 .
(7R, 9R)-7-(4-chlorophenyl)-9-(1H-indol-2-yl)-6, 7, 8, 9-tetrahydro-3H-pyrrolo[3, 2-f]

quinolone (4fa): The product was obtained as a white solid ($36.6 \mathrm{mg}, 92 \%$ yield) via flash chromatography on a silica gel (hexane /ethyl acetate $=4: 1, \mathrm{v} / \mathrm{v}$). 86% ee was determined by HPLC on AD column, hexane/i-propanol (70/30), 1.0 $\mathrm{mL} / \mathrm{min}, \mathrm{UV} 254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=17.930 \mathrm{~min}, \mathrm{t}_{\text {major }}=21.940 \mathrm{~min}$; $[\alpha]_{\mathrm{D}}{ }^{25}=+43.7\left(c=0.791, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6) \delta(\mathrm{ppm}): 10.77(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.60$ (br s, 1H), $7.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.22(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 5.47$ (s, 1H), $4.78(\mathrm{dd}, J=11.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 144.0,143.7,139.1,136.1,131.4,130.1,128.6,128.2,128.0,127.4$, 123.7, 119.7, 119.1, 118.3, 112.3, 111.0, 110.9, 110.6, 99.7, 98.9, 55.7, 42.3, 36.9; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{ClN}_{3}$ 398.1419, found 398.1416.

4(3aR, 4R, 10cR)-4-(4-chlorophenyl)-3, 3a, 4, 5, 8, 10c-hexahydro-2H-furo[3, 2-c]pyrrolo[3, 2\boldsymbol{f} lquinoline (4ga): The product was obtained as a white solid ($26.9 \mathrm{mg}, 83 \%$ yield) via flash

chromatography on a silica gel (petroleum ether/ethyl acetate $=4: 1$, $\mathrm{v} / \mathrm{v}) .55 \%$ ee was determined by HPLC on AD column, hexane $/ i$ propanol ($70 / 30$), $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV} 254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=8.597 \mathrm{~min}, \mathrm{t}_{\text {minor }}$ $=15.153 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+33.7\left(c=0.865, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400$ MHz, DMSO-d6) $\delta(\mathrm{ppm}): 10.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.32$ ($\mathrm{s}, 1 \mathrm{H}), 5.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=14.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=10.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=14.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.35(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.51(\mathrm{~m}, 1 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 150.8,147.0,138.6,129.8,129.7,128.5,124.6,123.3$, $112.0,111.2,109.2,99.4,74.4,64.4,57.4,42.9,28.3$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{ClN}_{2} \mathrm{O}$ 325.1102, found 325.1098.

Benzyl ((2R, 4R)-2-(4-chlorophenyl)-2, 3, 4, 7-tetrahydro-1H-pyrrolo[2, 3-h]quinolin-4-yl)
 carbamate (5a): The product was obtained as a white solid (26.4 mg , 61% yield) via flash chromatography on a silica gel (petroleum ether/ethyl acetate $=4: 1, \mathrm{v} / \mathrm{v}) .86 \%$ ee was determined by HPLC on AD column, hexane $/ i$-propanol $(70 / 30), 1.0 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, \mathrm{t}_{\text {major }}=$ $21.270 \mathrm{~min}, \mathrm{t}_{\text {minor }}=30.780 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+31.8\left(c=0.613, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 9.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.38-7.23(\mathrm{~m}, 10 \mathrm{H})$, $6.92(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 5.34(\mathrm{dd}, J=16.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.15-5.09(\mathrm{~m}$, $3 \mathrm{H}), 4.79(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dd}, J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.07(\mathrm{~m}, 1 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 157.1,141.6,140.3,136.2,135.2,133.3,128.9,128.53$, $128.50,128.3,128.1,127.9,127.8,122.3,121.4,109.9,102.4,67.0,54.6,44.9,38.8$; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{NaO}_{2} 454.1293$, found 454.1294.

Benzyl ((7R, 9R)-7-(4-chlorophenyl)-6, 7, 8, 9-tetrahydro-1H-pyrrolo[2, 3-flquinolin-9-yl)

carbamate (5b): The product was obtained as a white solid (36.7 $\mathrm{mg}, 85 \%$ yield) via flash chromatography on a silica gel (petroleum ether/ethyl acetate $=7: 1, \mathrm{v} / \mathrm{v}) .92 \%$ ee was determined by HPLC on OD column, hexane $/ i$-propanol ($70 / 30$), $1.0 \mathrm{~mL} / \mathrm{min}$, UV 254 $\mathrm{nm}, \mathrm{t}_{\text {minor }}=17.823 \mathrm{~min}, \mathrm{t}_{\text {major }}=22.043 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+41.8\left(c=0.865, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$,

DMSO-d6) $\delta(\mathrm{ppm}): 9.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.30$ $(\mathrm{m}, 5 \mathrm{H}), 7.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 5.20(\mathrm{dd}, J=16.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J$ $=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{dd}, J=11.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{q}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}(100 \mathrm{MHz}$, DMSO-d6) $\delta(\mathrm{ppm}): 156.7,143.1,142.0,137.1,134.7,131.5,128.5,128.32,128.27,127.72,127.66$, 122.2, 120.3, 119.8, 110.1, 103.7, 101.4, 65.5, 54.9, 46.0, 39.3; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{ClN}_{3} \mathrm{O}_{2} 432.1473$, found 432.1468.

4. Procedure for the reduction of indole

To a solution of pyrroloquinolines $4 \mathbf{a k}(47.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{AcOH}(1 \mathrm{~mL})$, was added $\mathrm{NaCNBH}_{3}(10 \mathrm{mg}, 0.2 \mathrm{mmol})$ portionwise. The mixture was allowed to stir at rt until the reaction was complete by thin layer chromatography (TLC) analysis. Then the reaction mixture was diluted with water $(1 \mathrm{~mL})$ and the aqueous layer was extracted with ethyl acetate $(5 \mathrm{~mL} x 3)$. The combined organic layer was washed with a saturated aqueous NaHCO_{3} solution (5 mL x 2), dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuum. The resulting residue was directly used in the next step without further purification.

To a stirred solution of the crude product in chloroform (2 mL), was added pyridine ($9.7 \mu \mathrm{~L}, 0.12$ $\mathrm{mmol})$ and $\mathrm{TsCl}(20.9 \mathrm{mg}, 0.11 \mathrm{mmol})$ at room temperature. The resulting mixture was continued to stir at room temperature for 30 minutes. After completion of the reaction (monitored by TLC), the reaction mixture was poured into water. The aqueous layer was extracted with $\mathrm{DCM}(5 \mathrm{~mL} x 3)$. The combined organic layers were rinsed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel (petroleum ether/ ethyl acetate $=4: 1, \mathrm{v} / \mathrm{v}$) to give the desired product $\mathbf{6}$.

Benzyl ((7R, 9R)-7-(3-bromophenyl)-3-tosyl-2, 3, 6, 7, 8, 9- hexahydro -1H-pyrrolo[3, 2-f] quinolin-9-yl) carbamate (6): The product was obtained as a bright yellow solid ($60.6 \mathrm{mg}, 96 \%$
 yield) via flash chromatography on a silica gel (petroleum ether/ethyl acetate $=3: 1, \mathrm{v} / \mathrm{v}) .95 \%$ ee was determined by HPLC on AD column, hexane $/ i$-propanol ($70 / 30$), $1.0 \mathrm{~mL} / \mathrm{min}$, UV 254 $\mathrm{nm}, \mathrm{t}_{\text {major }}=26.773 \mathrm{~min}, \mathrm{t}_{\text {minor }}=30.553 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}=+47.3(c=$ $\left.0.792, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 7.61-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.40-7.27(\mathrm{~m}, 9 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.53(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=$ $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{dd}, J=16.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.82-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=19.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}$, $3 \mathrm{H}), 2.06(\mathrm{dd}, J=11.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.82(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta(\mathrm{ppm}):$ $155.9,147.0,144.3,144.1,137.7,133.5,132.6,132.2,131.0,130.5,130.2,129.6,128.7,128.2$, 128.1, 127.7, 126.1, 122.1, 118.8, 115.3, 114.4, 65.6, 54.7, 50.5, 47.1, 39.5, 27.3, 21.4; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{BrN}_{3} \mathrm{NaO}_{4} \mathrm{~S}$ 654.1033, found 654.1030.

5. Procedure for the protection of secondary amine and Friedel-Crafts alkylation

A round-bottom flask was charged with pyrroloquinolines $\mathbf{4 a b}(41.5 \mathrm{mg}, 0.1 \mathrm{mmol})$, pyridine $(48.2 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$ and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. Then the resulting solution was cooled down to $0{ }^{\circ} \mathrm{C}$, and 4-nitrobenzoyl chloride ($111.3 \mathrm{mg}, 0.6 \mathrm{mmol}$) was added slowly. Stirring was continued at $0^{\circ} \mathrm{C}$ for 30 minutes, then warmed up to room temperature and stirred for 6 hours. After completion of the reaction, the reaction was quenched with aqueous NaOH solution $(3 \mathrm{~mL}, 1 \mathrm{~N})$ at $0{ }^{\circ} \mathrm{C}$. Next, the organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL X 3). The combined organic layers were rinsed with dilute $\mathrm{HCl}(4 \mathrm{~mL}, 1 \mathrm{~N})$ and brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum and the residue was purified via column chromatography (petroleum ether/ ethyl acetate $=3: 1, \mathrm{v} / \mathrm{v}$) to afford the desired product 4ab'

4-Nitrobenzoyl-protected pyrroloquinolines $\mathbf{4 a b}{ }^{\prime}(46.2 \mathrm{mg}, 0.1 \mathrm{mmol})$ and racemic $1,1-$ binaphthyl-2,2-diyl hydrogenphosphate ($3.4 \mathrm{mg}, 0.01 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in 4 mL vial. After stirring for 10 minutes, ethyl vinyl ketone $(9.8 \mu \mathrm{~L}, 0.12 \mathrm{mmol})$ was added. The mixture was stirred at room temperature for 24 hours. Then the reaction mixture was diluted with water and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL} \times 3)$. The combined organic layers were washed with brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Flash chromatography on a silica gel (petroleum ether/ethyl acetate $=2: 1, \mathrm{v} / \mathrm{v}$) furnished the desired C3-alkylation product 7 .

Benzyl ((7R, 9R)-7-(4-fluorophenyl)-6-(4-nitrobenzoyl)-1-(3-oxopentyl)-6, 7, 8, 9-tetrahydro-3H-pyrrolo[3, 2-f]quinolin-9-yl)carbamate (7): The product was obtained as a bright yellow solid ($40.4 \mathrm{mg}, 76 \%$ yield) via flash chromatography on a silica gel (petroleum ether/ethyl acetate $=2: 1$,

v / v). 94% ee was determined by HPLC on AD column, hexane $/ i$-propanol $(70 / 30), 1.0 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=39.640 \mathrm{~min}, \mathrm{t}_{\text {major }}=43.620 \mathrm{~min}$; $[\alpha]_{\mathrm{D}}{ }^{25}=+47.6\left(c=0.815, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400$ MHz, DMSO-d6) δ (ppm): 10.94 (br s, 1H), 8.14 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.24$ $(\mathrm{m}, 8 \mathrm{H}), 7.07-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.91(\mathrm{~m}, 2 \mathrm{H}), 5.86-5.72(\mathrm{~m}, 2 \mathrm{H}), 5.25-5.22(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.03(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.61(\mathrm{~m}, 5 \mathrm{H})$, 2.45-2.33 (m, 2H), $0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta(\mathrm{ppm}): 210.4,160.7$ $\left(\mathrm{d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=240.6 \mathrm{~Hz}\right), 154.2,147.9,143.4,137.2,136.2,134.3,128.2,128.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.4 \mathrm{~Hz}\right), 127.6$, $127.4,124.4,124.2,123.4,120.6,119.2,115.0,114.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=20.7 \mathrm{~Hz}\right), 111.3,65.0,43.9,42.7$, 39.7, 34.6, 34.1, 19.9, 7.6; ${ }^{19}$ F NMR (376 MHz, DMSO-d6) δ (ppm): -112.6; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{37} \mathrm{H}_{33} \mathrm{FN}_{4} \mathrm{NaO}_{6} 671.2276$, found 671.2275 .

6. X-ray crystallographic analysis of 4ak (CCDC 2290686)

Single crystals of $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{BrN}_{3} \mathrm{O}_{2}$ were obtained via slow volatilization in a mixed solution of dichloromethane/i-Propanol. A suitable crystal was selected and measured on a New Gemini Dualsourced diffractometer $(\mathrm{Cu} \mathrm{K} \alpha \lambda=1.54184 \AA)$. The crystal was kept at 170 K during data collection. Using Olex2, the structure was solved with the ShelXT structure solution program using Direct Methods and refined with the ShelXL refinement package using Least Squares minimization. The ellipsoid contour percent probability level of 4ak is 50%.

Temperature/K	169.99(10)
Crystal system	orthorhombic
Space group	$\mathrm{P} 2{ }_{1} 2_{1}{ }_{1}$
a / \AA	5.1550(3)
b/A	8.0069(4)
c/Å	50.226(3)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
Volume/Å ${ }^{3}$	2073.11(19)
Z	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.526
μ / mm^{-1}	2.931
$\mathrm{F}(000)$	976.0
Crystal size/mm ${ }^{3}$	$0.14 \times 0.12 \times 0.1$
Radiation	$\mathrm{CuK} \mathrm{K}(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ}$	7.04 to 147.668
Index ranges	$-5 \leq \mathrm{h} \leq 6,-9 \leq \mathrm{k} \leq 6,-62 \leq 1 \leq 61$
Reflections collected	11527
Independent reflections	$4112\left[\mathrm{R}_{\text {int }}=0.0427, \mathrm{R}_{\text {sigma }}=0.0423\right]$
Data/restraints/parameters	4112/0/284
Goodness-of-fit on F^{2}	1.032
Final R indexes [$\mathrm{I}>=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0550, \mathrm{wR}_{2}=0.1300$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0604, \mathrm{wR}_{2}=0.1362$
Largest diff. peak/hole / e \AA^{-3}	1.10/-0.89
Flack/Hooft parameter	-0.002(16)/0.009(9)

7. Reference

(1) (a) Wu, T. R.; Shen, L.; Chong, J. M. Asymmetric Allylboration of Aldehydes and Ketones Using

3,3‘-Disubstitutedbinaphthol-Modified Boronates. Org. Lett. 2004, 6, 2701-2704. (b) Shen, K.; Liu, X.; Cai, Y.; Lin, L.; Feng, X. Facile and Efficient Enantioselective Strecker Reaction of Ketimines by Chiral Sodium Phosphate. Chem. Eur. J. 2009, 15, 6008-6014. (c) Xu, B.; Zhu, S.-F.; Xie, X.-L.; Shen, J.-J.; Zhou, Q.-L. Asymmetric N-H Insertion Reaction Cooperatively Catalyzed by Rhodium and Chiral Spiro Phosphoric Acids. Angew. Chem. Int. Ed. 2011, 50, 11483-11486. (d) Gicquiaud, J.; Abadie, B.; Dhara, K.; Berlande, M.; Hermange, P.; Sotiropoulos, J.-M.; Toullec, P. Y. Brønsted Acid-Catalyzed Enantioselective Cycloisomerization of Arylalkynes. Chem. Eur. J. 2020, 26, 16266-16271.
(2) (a) Hoang, T. T.; Smith, T. P.; Raines, R. T. A Boronic Acid Conjugate of Angiogenin that Shows ROS-Responsive Neuroprotective Activity. Angew. Chem. Int. Ed. 2017, 56, 2619-2622. (b) Carboni, A.; Dagousset, G.; Magnier, E.; Masson, G. Photoredox-Induced Three-Component Oxy-, Amino-, and Carbotrifluoromethylation of Enecarbamates. Org. Lett. 2014, 16, 1240-1243.

8. NMR spectra and HPLC chromatograms of products

Chromatogram

Chromatogram

$4 a b$

${ }^{19}$ F NMR (376 MHz , DMSO-d6) of 4ab

Inte	tion Resul						
No.	Peak Name	Retention Time min	Area $\mathrm{mAU}{ }^{\star}$ min	Height mAU	Relative Area \%	Relative Height \%	Amount n.a.
1		14.927	139.924	311.658	50.21	52.63	n.a.
2		15.973	138.762	280.454	49.79	47.37	n.a.
Total:			278.685	592.112	100.00	100.00	

Integration Results							
No.	Peak Name	Retention Time \min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$	Amount n.a.
1		14.657	360.395	787.012	96.27	96.20	n.a.
2		15.777	13.953	31.070	3.73	3.80	n.a.
Total:		374.349	818.082	100.00	100.00		

$$
\begin{aligned}
& \stackrel{\%}{0} \\
& \stackrel{1}{\overline{1}}
\end{aligned}
$$

${ }^{19}$ F NMR (376 MHz, DMSO-d6) of 4ad

Chromatogram

Chromatogram

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) of 4ae

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) of $\mathbf{4 a f}$

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) of 4af

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) of 4ah

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) of 4ai

${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6) of 4ai

 T10 !
${ }^{19}$ F NMR (376 MHz, DMSO-d6) of 4aj

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) of 4ak

Integration Results

No.	Peak Name	Retention Time \min	Area $\mathrm{mAU*}$ min	Height mAU	Relative Area $\%$	Relative Height $\%$	Amount n.a.
1		23.093	126.554	125.396	3.46	5.63	n.a.
2		27.207	3527.195	2100.911	96.54	94.37	n.a.
Total:		3653.749	$\mathbf{2 2 2 6 . 3 0 7}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{1 0 0 . 0 0}$		

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) of 4am

Chromatogram

$\left.\right|^{1}$

${ }^{19}$ F NMR (376 MHz, DMSO-d6) of 4ao

Chromatogram

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) of 4ap

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) of 4ap

Chromatogram

${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6) of $\mathbf{4 a q}$

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) of 4ar

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) of 4as

${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6) of 4at

Chromatogram

Chromatogram

$1 /$

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) of 4au

$\begin{aligned} & \text { I్On } \\ & \stackrel{\text { ¢ }}{1} \end{aligned}$			ఇ్ల무웟 	$\begin{aligned} & \text { \% } \\ & 0 \\ & \hline 1 \end{aligned}$		$\stackrel{\text { ¢ }}{\text { i }}$	

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) of 4au

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) of 4av

Chromatogram

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) of 4ax

$\stackrel{\text { \% }}{\stackrel{\circ}{\circ}}$

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) of 4ay

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) of 4ba

Chromatogram

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) of 4ba

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) of $\mathbf{4 e a}$

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) of $\mathbf{4 e f}$

Chromatogram

Integration Results							
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$	Amount n.a.
1		14.333	661.020	1334.524	49.59	53.72	n.a.
2		17.843	671.893	1149.899	50.41	46.28	n.a.
Total:		1332.912	2484.423	100.00	100.00		

Integration Results							
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$	Amount n.a.
1		14.543	7.740	15.495	1.11	1.30	n.a.
2	18.040	689.368	1178.354	98.89	98.70	n.a.	
Total:		697.108	1193.849	100.00	100.00		

${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6) of 4er

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) of $\mathbf{4 f a}$

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) of $\mathbf{4 f a}$

Chromatogram

Chromatogram

Chromatogram

Chromatogram

Chromatogram

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) of 5b

	桨 Nivi w 	$\stackrel{\text { n}}{\stackrel{\sim}{0}}$		¢	5	

${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) of $\mathbf{5 b}$

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) of 6

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) of 7

7

${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d6) of 7

7

${ }^{19}$ F NMR (376 MHz , DMSO-d6) of 7

Chromatogram

Chromatogram

