Photocatalytic decarboxylative phosphorylation of \mathbf{N}-aryl glycines

Jiangwei Wen, ${ }^{*} \uparrow$ Xue Sun ${ }^{\dagger}$ Kelu Yan, Tingtao Yan, Zhen Liu, Yang Li, Jianjing, Yang*

Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China.
E-mail: wenjy@qfnu.edu.cn, jiyang@whu.edu.cn
${ }^{\dagger}$ These authors contributed equally.

1. General information

All glassware was oven dried at $100^{\circ} \mathrm{C}$ for hours and cooled down under vacuum. N -aryl glycine and phosphine oxide was prepared according to reported procedures. ${ }^{1}$ Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel in petroleum (b. p. $60-90{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ NMR data were recorded with Bruker Advance III (500 MHz) spectrometers with tetramethylsilane as an internal standard. All chemical shifts (δ) are reported in ppm and coupling constants (J) in Hz. All chemical shifts are reported relative to d-solvent peaks (77.00 ppm , chloroform).
2. General procedure for photocatalytic decarboxylative phosphorylation of N -aryl glycines

In an oven-dried reaction tube (10 mL) equipped with a stir bar, N -aryl glycines a $(0.5 \mathrm{mmol})$ and phosphine oxides $\mathbf{b}(0.25 \mathrm{mmol})$, and $\mathrm{MB}(3 \mathrm{~mol} \%)$ were combined and added. Then, $\mathrm{CH}_{3} \mathrm{CN}(2.0$ mL) was slowly injected into the reaction tube. The reaction mixture was stirred and exposed to blue LED (460 nm) irradiation under room temperature for 10 h . When the reaction was finished, the reaction mixture was monitored by TLC and concentrated. The pure product was obtained by flash column chromatography on silica gel (petroleum/ethyl ether).
3. Radical inhibition experiments

In an oven-dried reaction tube $(10 \mathrm{~mL})$ equipped with a stir bar, N -aryl glycines a $(0.5 \mathrm{mmol})$ and phosphine oxides $\mathbf{b}(0.25 \mathrm{mmol})$, MB ($3 \mathrm{~mol} \%$), and TEMPO or $\mathrm{CBr}_{4}(0.5 \mathrm{mmol})$ were combined and added. Then, $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$ was slowly injected into the reaction tube. The reaction mixture was stirred and exposed to blue LED (460 nm) irradiation under room temperature for 10 h . When the reaction was finished, the reaction mixture was monitored by TLC and concentrated. The solution was concentrated in a vacuum and the desired product $\mathbf{1 c}$ was obtained in a 42% yield. The detection of free radical species 1d by high-resolution mass spectrometry (HRMS) further
confirmed this reaction may be a radical pathway.

Figure S1. HRMS results of $\mathbf{1 d}$.

4. Large-scale synthesis of 1 c .

In an oven-dried round bottom flask $(100 \mathrm{~mL})$ equipped with a stir bar, phenylalanine 1a (10.0 $\mathrm{mmol})$ and diphenylphosphine oxide $\mathbf{1 b}(5.0 \mathrm{mmol})$, and $\mathrm{MB}(3 \mathrm{~mol} \%)$ were combined and added. Then, $\mathrm{CH}_{3} \mathrm{CN}(40.0 \mathrm{~mL})$ was slowly injected into the round bottom flask. The reaction mixture was stirred and exposed to blue LED (460 nm) irradiation under room temperature for 36 h . When the reaction was finished, the reaction mixture was monitored by TLC and concentrated. The pure product $1 \mathrm{c}(1.07 \mathrm{~g}, 70 \%$ yield) was obtained by flash column chromatography on silica gel (petroleum/ethyl ether = 1:1).

5. Fluorescence quenching experiments

a)

b)

Quenching of MB fluorescence emission in the presence of $\mathbf{1 a}$ or $\mathbf{1 b}$, the excitation wavelength was fixed at $425 \mathrm{~nm}, \mathbf{M B}\left(1.0 \times 10^{-3} \mathrm{~mol} / \mathrm{L}\right)$. a) Varying concentrations of 1a. b) Varying concentrations of $\mathbf{1 b}$.

6. References

(1) (a) Pe'try, N.; Vanderbeeken, T.; Malher, A.; Bringer, Y.; Retailleau, P.; Bantreil, X.; Lamaty F. Chem. Commun., 2019, 55, 9495-9498. (b) Li, C. J.; Lu, J.; Zhang, Z.-X.; Zhou, K.; Li, Y.; Qi, G. K. Res. Chem. Intermed. 2018, 44, 4547-45462.

7. Detail descriptions for products

diphenyl((phenylamino)methyl)phosphine oxide (1c): yellow solid was obtained with 79\% isolated yield (60.6 mg). m. p.: 128.2-129.5 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82-7.75(\mathrm{~m}, 4 \mathrm{H})$, $7.52(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.14(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.64$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=8.5,5.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.7(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 132.4(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 131.2(\mathrm{t}, J=8.0 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=100.4 \mathrm{~Hz}), 129.2,128.8$ (d, $J=11.9 \mathrm{~Hz}), 118.6,113.4,43.8(\mathrm{~d}, J=79.0 \mathrm{~Hz}) . \mathrm{HRMS}(\mathrm{EI})$ calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NOP}[\mathrm{M}+\mathrm{H}]^{+}$: 308.1199; found: 308.1198.

diphenyl((0-tolylamino)methyl)phosphine oxide (2c): white solid was obtained with 85% isolated yield (68.2 mg). m. p.: $120.5-122.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84-7.76(\mathrm{~m}, 4 \mathrm{H}), 7.56(\mathrm{td}, J$ $=7.4,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{td}, J=7.6,2.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.11(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.71$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.6(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 132.4(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 131.1(\mathrm{~d}, J=100.1 \mathrm{~Hz}), 131.1(\mathrm{~d}, J=$ $9.5 \mathrm{~Hz}), 130.2,128.8(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 127.0,123.4,118.4,110.3,43.8(\mathrm{~d}, J=78.6 \mathrm{~Hz}), 17.3 . \operatorname{HRMS}$ (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NOP}[\mathrm{M}+\mathrm{H}]^{+}$: 322.1355; found: 322.1354 .

(((2-ethylphenyl)amino)methyl)diphenylphosphine oxide (3c): white solid was obtained with 75% isolated yield $(62.8 \mathrm{mg})$. m. p.: $105-107{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{dd}, J=11.6,7.3$ $\mathrm{Hz}, 4 \mathrm{H}), 7.47(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{td}, J=7.6,2.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.03(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=7.3$
$\mathrm{Hz}, 1 \mathrm{H}), 6.67(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=9.2,5.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.33(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.02(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.0(\mathrm{~d}, J=11.1 \mathrm{~Hz})$, $132.4(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 131.2(\mathrm{~d}, J=100.0 \mathrm{~Hz}), 131.1(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 129.1,128.8(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 128.1$, 126.9, 118.6, 110.6, $43.9(\mathrm{~d}, J=78.7 \mathrm{~Hz}), 23.8,12.8$. HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NOP}[\mathrm{M}+\mathrm{H}]^{+}$: 336.1512; found: 336.1511 .

(((2-chlorophenyl)amino)methyl)diphenylphosphine oxide (4c): white solid was obtained with 65% isolated yield (55.4 mg). m. p.: $132-134{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83-7.78(\mathrm{~m}, 4 \mathrm{H})$, $7.57(\mathrm{dd}, J=10.6,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{td}, J=7.5,2.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=11.4$, $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.60(\mathrm{~m}, 2 \mathrm{H}), 4.70(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=8.9,5.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.3(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 132.5(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 131.2(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=109.4$ $\mathrm{Hz}), 129.2,128.8(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 127.7,120.1,118.6,111.8,43.9(\mathrm{~d}, J=78.2 \mathrm{~Hz})$. HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{ClNOP}[\mathrm{M}+\mathrm{H}]^{+}: 342.0809$; found: 342.0807 .

(((3-chlorophenyl)amino)methyl)diphenylphosphine oxide (5c): white solid was obtained with 64% isolated yield $(54.5 \mathrm{mg}) . \mathrm{m} . \mathrm{p} .: 149-150{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82-7.73(\mathrm{~m}, 4 \mathrm{H})$, $7.70(\mathrm{dd}, J=13.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.04(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69$ (dd, $J=7.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{dd}, J=8.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.7(\mathrm{~d}, J=10.4 \mathrm{~Hz}), 135.0,132.5(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 131.0$ $(\mathrm{d}, J=9.6 \mathrm{~Hz}), 130.6(\mathrm{~d}, J=101.8 \mathrm{~Hz}), 130.1,128.9(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 118.4,112.9,112.0,43.6(\mathrm{~d}, J=$ 78.2 Hz). HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{ClNOP}[\mathrm{M}+\mathrm{H}]^{+}: 342.0809$; found: 342.0807.

diphenyl((p-tolylamino)methyl)phosphine oxide (6c): white solid was obtained with 78\% isolated yield $(62.6 \mathrm{mg})$. m. p.: $161-162^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.47$
(t, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{td}, J=7.6,2.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.90(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.50(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.05$ $(\mathrm{d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.3(\mathrm{~d}, J=$ $11.6 \mathrm{~Hz}), 132.3(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 131.2(\mathrm{~d}, J=100.0 \mathrm{~Hz}), 131.1(\mathrm{~d}, J=9.4 \mathrm{~Hz}), 129.7,128.8(\mathrm{~d}, J=11.8$ Hz), 127.9, 113.6, $44.2\left(\mathrm{~d}, J=79.2 \mathrm{~Hz}\right.$), 20.4. HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NOP}[\mathrm{M}+\mathrm{H}]^{+}: 322.1355$; found: 322.1354 .

(((4-butylphenyl)amino)methyl)diphenylphosphine oxide (7c): white solid was obtained with 66% isolated yield (59.9 mg). m. p.: $110-112{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86-7.71(\mathrm{~m}, 4 \mathrm{H})$, $7.54(\mathrm{td}, J=7.4,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{td}, J=7.5,2.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.98(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 2H), 4.15 (d, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.58-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.38$ $-1.25(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.5(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 133.2$, $132.3(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 131.2(\mathrm{~d}, J=99.9 \mathrm{~Hz}), 131.1(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 129.1,128.8(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 113.5$, $44.2(\mathrm{~d}, J=79.1 \mathrm{~Hz}), 34.7,33.9,22.3,14.0$. HRMS (EI) calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NOP}[\mathrm{M}+\mathrm{H}]^{+}: 364.1825$; found: 364.1824 .

(((4-methoxyphenyl)amino)methyl)diphenylphosphine oxide (8c): Yellow liquid was obtained with 65% isolated yield (54.7 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.45(\mathrm{~m}$, 2H), $7.40(\mathrm{td}, J=7.5,2.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.67(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.82(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.9,141.8(\mathrm{~d}, J=11.8 \mathrm{~Hz})$, $132.3(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 131.1(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 131.0(\mathrm{~d}, J=100.0 \mathrm{~Hz}), 128.8(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 114.8,114.8$, 55.7, $44.9(\mathrm{~d}, ~ J=79.1 \mathrm{~Hz})$. HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$: 338.1304; found: 338.1303

(([1,1'-biphenyl]-4-ylamino)methyl)diphenylphosphine oxide (9c): white solid was obtained with 68% isolated yield $(65.1 \mathrm{mg})$. m. p.: $160-162^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76-7.69(\mathrm{~m}$, 4H), $7.48(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 6 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.17(\mathrm{dd}, J=8.7,6.0 \mathrm{~Hz}$,
$1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $147.0(\mathrm{~d}, J=10.9 \mathrm{~Hz}), 140.9,132.4(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 131.6,131.1(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 131.0(\mathrm{~d}, J=100.3 \mathrm{~Hz})$, $128.9(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 128.7,127.9,126.4,126.3,113.7,43.9(\mathrm{~d}, J=78.6 \mathrm{~Hz})$. HRMS (EI) calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NOP}[\mathrm{M}+\mathrm{H}]^{+}: 384.1512$; found: 384.1511 .

(((4-benzylphenyl)amino)methyl)diphenylphosphine oxide (10c): white solid was obtained with 70% isolated yield (69.4 mg). m. p.: $143-145^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81-7.72(\mathrm{~m}, 4 \mathrm{H})$, $7.53(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{td}, J=7.6,2.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.25(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{dd}, J=11.3$, $7.6 \mathrm{~Hz}, 3 \mathrm{H}), 6.98(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=$ 8.6, $5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.9(\mathrm{~d}, J=11.2 \mathrm{~Hz}$), 141.8, $132.3(\mathrm{~d}, J$ $=2.7 \mathrm{~Hz}), 131.3,131.2(\mathrm{~d}, J=100.0 \mathrm{~Hz}), 131.1(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 129.7,128.8(\mathrm{~d}, J=12.0 \mathrm{~Hz}), 128.7$, 128.3, 125.9, 113.7, $44.1(\mathrm{~d}, J=78.8 \mathrm{~Hz}), 41.0$. $\mathrm{HRMS}(\mathrm{EI})$ calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NOP}[\mathrm{M}+\mathrm{H}]^{+}: 398.1168$; found: 398.1167.

(((4-fluorophenyl)amino)methyl)diphenylphosphine oxide (11c): white solid was obtained with 70% isolated yield $(56.8 \mathrm{mg})$. m. p.: $139-140.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81-7.75(\mathrm{~m}, 4 \mathrm{H})$, $7.57(\mathrm{td}, J=7.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{td}, J=7.6,2.9 \mathrm{~Hz}, 4 \mathrm{H}), 6.86(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{dd}, J=8.9$, $4.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.4(\mathrm{~d}$, $J=236.5 \mathrm{~Hz}), 144.0(\mathrm{dd}, J=11.3,2.0 \mathrm{~Hz}), 132.4(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 131.1(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 131.0(\mathrm{~d}, J=$ $100.0 \mathrm{~Hz}), 128.8(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 115.6(\mathrm{~d}, J=22.6 \mathrm{~Hz}), 114.4(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 44.6(\mathrm{~d}, J=78.4 \mathrm{~Hz})$. ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-126.4. HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{FNOP}[\mathrm{M}+\mathrm{H}]^{+}: 326.1105$; found: 326.1104 .

(((4-chlorophenyl)amino)methyl)diphenylphosphine oxide (12c): white solid was obtained with 83% isolated yield (70.7 mg). m. p.: 172-173.5 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74-7.64(\mathrm{~m}, 4 \mathrm{H})$,
$7.49(\mathrm{td}, J=7.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{td}, J=7.5,2.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.01(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.49(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, 2H), $4.31(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.2(\mathrm{~d}, J=10.8 \mathrm{~Hz}), 132.5$ $(\mathrm{d}, J=2.8 \mathrm{~Hz}), 131.1(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=100.4 \mathrm{~Hz}), 129.0,128.9(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 123.2,114.5$, $44.0(\mathrm{~d}, J=78.1 \mathrm{~Hz})$. HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{ClNOP}[\mathrm{M}+\mathrm{H}]^{+}: 342.0809$; found: 342.0807.

(((4-bromophenyl)amino)methyl)diphenylphosphine oxide (13c): white solid was obtained with 69% isolated yield (66.4 mg). m. p.: $72-74{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78-7.73(\mathrm{~m}, 4 \mathrm{H})$, $7.56(\operatorname{td}, J=7.4,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{td}, J=7.6,2.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.21(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, 2H), $4.43(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.7(\mathrm{~d}, J=10.6 \mathrm{~Hz}), 132.5$ $(\mathrm{d}, J=2.9 \mathrm{~Hz}), 131.9,131.1(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=100.3 \mathrm{~Hz}), 128.9(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 115.0,110.3$, $43.8(\mathrm{~d}, J=78.2 \mathrm{~Hz})$. HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{BrNOP}[\mathrm{M}+\mathrm{H}]^{+}: 386.0304$; found: 386.0303.

diphenyl(((4-(trifluoromethyl)phenyl)amino)methyl)phosphine oxide (14c): white solid was obtained with 63% isolated yield (59 mg). m. p.: $149-151{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81-$ $7.73(\mathrm{~m}, 4 \mathrm{H}), 7.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 2H), $4.75(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.1(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 132.5$ $(\mathrm{d}, J=2.8 \mathrm{~Hz}), 131.0(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 130.6(\mathrm{~d}, J=100.6 \mathrm{~Hz}), 128.9(\mathrm{~d}, J=12.0 \mathrm{~Hz}), 126.5(\mathrm{q}, J=3.8$ $\mathrm{Hz}), 124.7(\mathrm{q}, J=270.3 \mathrm{~Hz}), 120.1(\mathrm{~d}, J=32.8 \mathrm{~Hz}), 112.6,43.3(\mathrm{~d}, J=77.6 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR $(471 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$-61.2. HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NOP}[\mathrm{M}+\mathrm{H}]^{+}: 376.1073$; found: 376.1072.

4-(((diphenylphosphoryl)methyl)amino)benzonitrile (15c): yellow solid was obtained with 35\% isolated yield (29 mg). m. p.: $189-191^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{dd}, J=10.9,7.9 \mathrm{~Hz}$, 4H), $7.59(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.39(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=$ $3.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.8(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 133.6,132.7(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 131.0(\mathrm{~d}$, $J=9.2 \mathrm{~Hz}), 130.5(\mathrm{~d}, J=101.7 \mathrm{~Hz}), 129.0(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 120.0,112.9,100.2,43.1(\mathrm{~d}, J=76.6 \mathrm{~Hz})$.

HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}: 333.1151$; found: 333.1151 .

(((4-hydroxyphenyl)amino)methyl)diphenylphosphine oxide (16c): white solid was obtained with 50% isolated yield $(40.3 \mathrm{mg}) . \mathrm{m} . \mathrm{p} .: 62-64{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79(\mathrm{dd}, J=10.3$, $8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.54(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 4 \mathrm{H}), 6.67(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, 2H), $4.33(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.4,142.3(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 132.2,131.2$ (d, $J=9.1 \mathrm{~Hz}), 131.1(\mathrm{~d}, J=103.2 \mathrm{~Hz}), 128.7(\mathrm{~d}, J=11.3 \mathrm{~Hz}), 117.12,116.0,53.9(\mathrm{~d}, J=65.3 \mathrm{~Hz})$. HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 324.1148$; found: 324.1147.

methyl 4-(((diphenylphosphoryl)methyl)amino)benzoate (17c): white solid was obtained with 72\% isolated yield (65.7 mg). m. p.: $200-201{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.69(\mathrm{dd}, J=11.4,7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.47(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 6.53(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, 2H), $4.94(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=7.6,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.0$, $151.4(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 132.5(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 131.3,131.0(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 130.7(\mathrm{~d}, J=101.2 \mathrm{~Hz}), 128.9$ $(\mathrm{d}, J=11.9 \mathrm{~Hz}), 119.6,112.1,51.5,43.3(\mathrm{~d}, J=77.4 \mathrm{~Hz}) . \mathrm{HRMS}(\mathrm{EI})$ calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{P}[\mathrm{M}+$ $\mathrm{H}]^{+}: 366.1254$; found: 366.1253.

tert-butyl 4-(((diphenylphosphoryl)methyl)amino)benzoate (18c): white solid was obtained with 81% isolated yield $(82.4 \mathrm{mg}) . \mathrm{m} . \mathrm{p} .: 170-172{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81-7.73(\mathrm{~m}, 6 \mathrm{H})$, $7.56(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.44(\mathrm{~m}, 4 \mathrm{H}), 6.59(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.81(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.55(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.9,150.9(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 132.5(\mathrm{~d}, J=$ $2.6 \mathrm{~Hz}), 131.2,131.0(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 130.7(\mathrm{~d}, J=106.4 \mathrm{~Hz}), 128.9(\mathrm{~d}, J=12.0 \mathrm{~Hz}), 121.7,112.1,80.0$, $43.2\left(\mathrm{~d}, J=77.6 \mathrm{~Hz}\right.$), 28.3. HRMS (EI) calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$: 408.1723; found: 408.1720.

(((4-methoxy-2-methylphenyl)amino)methyl)diphenylphosphine oxide (19c): yellow solid was obtained with 87% isolated yield $(76.3 \mathrm{mg})$. m. p.: $67-69^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83-$ $7.77(\mathrm{~m}, 4 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 4 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.7$, $139.7(\mathrm{~d}, J=11.7 \mathrm{~Hz}), 132.4(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 131.1(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 131.0(\mathrm{~d}, J=100.0 \mathrm{~Hz}), 128.8(\mathrm{~d}, J$ $=11.8 \mathrm{~Hz}), 125.5,117.0,111.9,111.4,55.7,44.7(\mathrm{~d}, J=79.1 \mathrm{~Hz}), 17.5$. HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 352.1461$; found: 352.1460 .

(((2,6-dimethylphenyl)amino)methyl)diphenylphosphine oxide (20c): yellow oil was obtained with 33% isolated yield $(27.6 \mathrm{mg}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{dd}, J=11.4,7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.54(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 4 \mathrm{H}), 6.91(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=$ $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.3(\mathrm{~d}, J=10.2$ $\mathrm{Hz}), 132.2(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 132.2(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 131.5(\mathrm{~d}, J=100.4 \mathrm{~Hz}), 131.1(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 128.8$, $128.6(\mathrm{~d}, J=11.7 \mathrm{~Hz}), 48.0(\mathrm{~d}, J=74.3 \mathrm{~Hz})$, 18.2. HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NOP}[\mathrm{M}+\mathrm{H}]^{+}$: 336.1512; found: 336.1510 .

(((2,4-dichlorophenyl)amino)methyl)diphenylphosphine oxide (21c): white solid was obtained with 53% isolated yield (49.6 mg). m. p.: 169-170 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84-7.75(\mathrm{~m}, 4 \mathrm{H})$, $7.58(\mathrm{td}, J=7.4,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{td}, J=7.6,2.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.62(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.95\left(\mathrm{dd}, J=8.5,5.6 \mathrm{~Hz}, 2 \mathrm{H}^{13} \mathrm{C}\right.$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 142.2(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 132.5(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 131.1(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 130.6(\mathrm{~d}, J=100.0 \mathrm{~Hz})$, $128.9(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 128.8,127.6,122.6,120.4,112.4,44.0(\mathrm{~d}, J=77.6 \mathrm{~Hz})$. HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{NOP}[\mathrm{M}+\mathrm{H}]^{+}: 376.0419$; found: 376.0417.

(((2,5-dichlorophenyl)amino)methyl)diphenylphosphine oxide (22c): white solid was obtained with 42% isolated yield (39.3 mg). m. p.: 148-150 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84-7.77(\mathrm{~m}, 4 \mathrm{H})$, $7.59(\mathrm{td}, J=7.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.12(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.62(\mathrm{~m}, 1 \mathrm{H}), 6.62$ $(\mathrm{s}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=8.7,5.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.2(\mathrm{~d}$, $J=9.4 \mathrm{~Hz}), 133.4,132.6(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 131.1(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 130.5(\mathrm{~d}, J=100.4 \mathrm{~Hz}), 129.9,128.9(\mathrm{~d}$, $J=11.8 \mathrm{~Hz}), 118.2,118.2,111.7,43.6(\mathrm{~d}, J=77.4 \mathrm{~Hz})$. HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{NOP}[\mathrm{M}+$ $\mathrm{H}]^{+}: 376.0419$; found: 376.0417 .

(((3-fluoro-4-methoxyphenyl)amino)methyl)diphenylphosphine oxide (23c): yellow oil was obtained with 72% isolated yield (63.9 mg). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79-7.71(\mathrm{~m}, 4 \mathrm{H})$, $7.57(\mathrm{dd}, J=10.8,4.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{td}, J=7.6,2.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.79(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{dd}, J=$ $13.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 153.3(\mathrm{~d}, J=244.6 \mathrm{~Hz}), 142.5(\mathrm{dd}, J=11.0,9.0 \mathrm{~Hz}), 140.3(\mathrm{~d}, J=11.2 \mathrm{~Hz}), 132.6(\mathrm{~d}, J=$ $2.8 \mathrm{~Hz}), 131.0(\mathrm{~d}, J=9.7 \mathrm{~Hz}), 130.1(\mathrm{~d}, J=100.9 \mathrm{~Hz}), 128.9(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 115.7(\mathrm{~d}, J=3.2 \mathrm{~Hz})$, $108.8(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 102.6(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 57.3,44.5(\mathrm{~d}, J=78.8 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-75.5. HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 356.1210$; found: 356.1209 .

((methyl(phenyl)amino)methyl)diphenylphosphine oxide (24) white solid was obtained with 54\% isolated yield (43.3 mg). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.49$ $-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.13(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{dd}, J=12.7,7.9 \mathrm{~Hz}, 3 \mathrm{H}), 4.20(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.93$ ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.9(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 132.1(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 131.5(\mathrm{~d}, J=94.7$ $\mathrm{Hz}), 131.3(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 128.9,128.6(\mathrm{~d}, J=11.3 \mathrm{~Hz}), 117.9,113.4,55.3(\mathrm{~d}, J=82.9 \mathrm{~Hz}), 39.9 . \mathrm{HRMS}$ (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NOP}[\mathrm{M}+\mathrm{H}]^{+}: 322.1352$; found: 322.1351 .

((phenylamino)methyl)di-p-tolylphosphine oxide (25c): white solid was obtained with 75% isolated yield (62.8 mg). m. p.: $120-122^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{dd}, J=11.5,8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.28$ (dd, $J=7.9,2.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.16(\mathrm{dd}, J=8.3,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, 2H), $4.26(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.7(\mathrm{~d}, J=$ $11.3 \mathrm{~Hz}), 142.8(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 131.1(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 129.5(\mathrm{~d}, J=12.2 \mathrm{~Hz}), 129.2,127.9(\mathrm{~d}, J=102.7$ $\mathrm{Hz}), 118.5,113.4,44.0(\mathrm{~d}, J=78.9 \mathrm{~Hz})$, 21.6. HRMS (EI) calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{NOP}[\mathrm{M}+\mathrm{H}]^{+}: 408.1512$; found: 408.1511 .

bis(3,5-dimethylphenyl)((phenylamino)methyl)phosphine oxide (26c): white solid was obtained with 70% isolated yield (63.5 mg). m. p.: $130-132^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, J=11.9$ $\mathrm{Hz}, 4 \mathrm{H}), 7.16(\mathrm{t}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 6.74(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.9(\mathrm{~d}, J=10.7 \mathrm{~Hz}), 138.5(\mathrm{~d}, J=12.3$ $\mathrm{Hz}), 134.0(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 130.9(\mathrm{~d}, J=99.2 \mathrm{~Hz}), 129.1,128.6(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 118.4,113.4,43.8(\mathrm{~d}, J$ $=77.6 \mathrm{~Hz}$), 21.3. $\mathrm{HRMS}(\mathrm{EI})$ calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{NOP}[\mathrm{M}+\mathrm{H}]^{+}$: 364.1825; found: 364.1824.

bis(4-methoxyphenyl)((phenylamino)methyl)phosphine oxide (27c): yellow solid was obtained with 65% isolated yield $(59.6 \mathrm{mg})$. m. p.: $180-181^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73-7.62(\mathrm{~m}$, 4H), $7.16(\mathrm{dd}, J=8.4,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{dd}, J=8.8,2.2 \mathrm{~Hz}, 4 \mathrm{H}), 6.74(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.7$
(d, $J=2.8 \mathrm{~Hz}), 147.7(\mathrm{~d}, J=11.1 \mathrm{~Hz}), 133.0(\mathrm{~d}, J=10.9 \mathrm{~Hz}), 129.2,122.4(\mathrm{~d}, J=106.9 \mathrm{~Hz}), 118.5$, $114.3(\mathrm{~d}, J=12.9 \mathrm{~Hz}), 113.3,55.3,44.2(\mathrm{~d}, J=79.6 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{DMSO}$) $\delta-111.2$. HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 368.1410$; found: 368.1408 .

bis(4-fluorophenyl)((phenylamino)methyl)phosphine oxide (28c): yellow solid was obtained with 93% isolated yield $(79.7 \mathrm{mg})$. m. p.: $145-146^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.82-$ $7.72(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.10(\mathrm{~m}, 6 \mathrm{H}), 6.75(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, 2H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4(\mathrm{dd}, J=254.8,3.3 \mathrm{~Hz}), 147.4(\mathrm{~d}, J=10.8 \mathrm{~Hz}), 133.7(\mathrm{dd}, J=$ $11.1,8.9 \mathrm{~Hz}), 129.2,126.2(\mathrm{dd}, J=103.9,3.5 \mathrm{~Hz}), 118.7,116.4(\mathrm{dd}, J=21.5,13.1 \mathrm{~Hz}), 113.4,44.1(\mathrm{~d}$, $J=80.5 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-105.1. HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{NOP}[\mathrm{M}+\mathrm{H}]^{+}$: 344.1010; found: 344.1008 .

di(naphthalen-2-yl)((phenylamino)methyl)phosphine oxide (29c): yellow solid was obtained with 66% isolated yield (67.2 mg). m. p.: $191-193{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.45(\mathrm{~d}, J=13.7 \mathrm{~Hz}$, $2 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.94-7.86(\mathrm{~m}, 6 \mathrm{H}), 7.76(\mathrm{t}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, 2H), $6.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.7(\mathrm{~d}, J=10.9$ $\mathrm{Hz}), 134.9(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 133.5(\mathrm{~d}, J=8.9 \mathrm{~Hz}), 132.5(\mathrm{~d}, J=13.0 \mathrm{~Hz}), 129.1(\mathrm{~d}, J=29.3 \mathrm{~Hz}), 128.8(\mathrm{~d}$, $J=11.8 \mathrm{~Hz}), 128.5,127.6(\mathrm{~d}, J=101.0 \mathrm{~Hz}), 127.5(\mathrm{~d}, J=89.9 \mathrm{~Hz}), 125.6(\mathrm{~d}, J=10.6 \mathrm{~Hz}), 118.5,113.5$, 43.9 (d, $J=79.2 \mathrm{~Hz}$). HRMS (EI) calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{NOP}[\mathrm{M}+\mathrm{H}]^{+}$: 408.1512; found: 408.1511 .

Copies of product NMR Spectra

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{1} \mathrm{H}$ NMR

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

${ }^{13}$ C NMR

${ }^{1} \mathrm{H}$ NMR

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

${ }^{13}$ C NMR

		$\begin{aligned} & \text { Ợ } \\ & \text { © } \\ & \stackrel{+}{C} \end{aligned}$	$\begin{aligned} & \text { N-N } \\ & \text { Now } \\ & \text { Nis } \end{aligned}$		$\stackrel{\text { ® }}{\text { ¢ }}$

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

	+	80
	=	NEM

${ }^{1} \mathrm{H}$ NMR

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR

$\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$

${ }^{1} \mathrm{H}$ NMR

No＝

${ }^{13} \mathrm{C}$ NMR

		袘品
		淃

${ }^{1} \mathrm{H}$ NMR

(12
 NNNNNNNNNNNNNNN

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

${ }^{13}$ C NMR

		$\begin{aligned} & \text { 密 } \\ & \stackrel{\rightharpoonup}{\sim} \end{aligned}$			$\begin{aligned} & 888_{0} \\ & \text { No } \\ & 0 \end{aligned}$	产

${ }^{1} \mathrm{H}$ NMR

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

${ }^{13}$ C NMR

${ }^{1} \mathrm{H}$ NMR

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

${ }^{13}$ C NMR

${ }^{1} \mathrm{H}$ NMR

 NイNNNNNNNNNNNNNNVN゚ 000

3, 500 MHz

${ }^{1} \mathrm{H}$ NMR

```
N~NOM
```


No

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

${ }^{13}$ C NMR

${ }^{19}$ F NMR

11c
$\mathrm{CDCl}_{3}, 471 \mathrm{MHz}$
\qquad

12c

${ }^{1} \mathrm{H}$ NMR

$$
\begin{array}{ll}
\underset{m}{m} & \stackrel{\circ}{\circ} \\
\stackrel{\infty}{m} & \infty \\
\stackrel{\infty}{\mid} & \underset{\infty}{\infty}
\end{array}
$$

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR

$\begin{array}{lllllllllllllllllllllllllllllllllll}100 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

13c

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

14c

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{19}$ F NMR
$\underset{\sim}{\tilde{\circ}}$
$\stackrel{i}{1}$

| 0 | 0 | -10 | -20 | -30 | -40 | -50 | -60 | $\mathrm{fl}^{-70}(\mathrm{ppm})$ | -80 | -90 | -100 | -110 | -120 | -130 | -140 | -14 |
| :--- |

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

$\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$

			1																
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{1} \mathrm{H}$ NMR


```
NNNNNNNNNNNNNO!O
```


										$\begin{aligned} & \stackrel{1}{8} \\ & \stackrel{-}{2} \end{aligned}$		$\begin{aligned} & \text { T } \\ & \stackrel{\rightharpoonup}{\mathrm{N}} \end{aligned}$					$\begin{aligned} & 4 \\ & \text { \% } \\ & \stackrel{\circ}{\sigma} \end{aligned}$			
10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	$\frac{5.0}{\mathrm{f} 1(\mathrm{ppm})}$	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

${ }^{13}$ C NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

$$				$\begin{aligned} & \stackrel{\text { N}}{\circ} \\ & \stackrel{1}{6} \\ & i \\ & i \end{aligned}$	

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{1} \mathrm{H}$ NMR

```
mon
NNNNNNNNNNNNNNオオNNOOONOO
```


$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

${ }^{13}$ C NMR

${ }^{1} \mathrm{H}$ NMR

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR

${ }^{1} \mathrm{H}$ NMR

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

${ }^{13}$ C NMR

${ }^{19}$ F NMR

 24c

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

200	190	180	170	160	150	140	130	120	110	$\mathrm{f} 1(\mathrm{ppm})$	90	80	70	60	50	40	30	20	10

25c

${ }^{1} \mathrm{H}$ NMR

$\stackrel{\infty}{\stackrel{\infty}{7}}$

${ }^{13}$ C NMR

¢్emzew	－$\overline{\text { ¢ }}$
犬800	㨞等

26c

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

27c

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

28c

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{19}$ F NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

									11											
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	

