# Metal-free hydrophosphorodithiolation of alkynes with $\mathbf{P}_{4} \mathbf{S}_{10}$ and alcohols leading to vinyl phosphorodithioates 

Chengming Qu, ${ }^{\text {a,b }}$ Yalu Wang, ${ }^{\text {a }}$ Yufen Lv, ${ }^{\text {b }}$ Huilan Yue, ${ }^{\text {a }}$ Wei Wei, ${ }^{* a, b}$ and Dong Yi*, ${ }^{\text {c }}$${ }^{a}$ Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan MedicineResearch, Northwest Institute of Plateau Biology, Xining 810008, Qinghai, P. R. China.${ }^{b}$ School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.E-mail:weiweiqfnu@163.com${ }^{c}$ School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, P. R. China.E-mail: yidong@swmu.edu.cn.Contents

1. General information ..... S2
2. General procedure for hydrophosphorodithiolation of alkynes with $\mathrm{P}_{4} \mathrm{~S}_{10}$ and alcohols leading to vinyl phosphorodithioates ..... S2
3. Gram-scale reaction ..... S3
4. Preliminary mechanistic studies ..... S3-S6
5. Characterization data of products ..... S6-S16
6. Copies of NMR spectra for products ..... S17-S55

All commercially available reagent grade chemicals were purchased from Aldrich, Acros, Bidepharm and Energy Chemical Company and used as received without further purification unless otherwise stated. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19} \mathrm{~F}$ NMR, and ${ }^{31} \mathrm{P}$ NMR were recorded in $\mathrm{CDCl}_{3}$ on a Bruker Avance III spectrometer with TMS as internal standard $500 \mathrm{MHz}{ }^{1} \mathrm{H}, 125 \mathrm{MHz}{ }^{13} \mathrm{C}, 202 \mathrm{MHz}{ }^{31} \mathrm{P}$, and $471 \mathrm{MHz}{ }^{19} \mathrm{~F}$ ) at room temperature, the chemical shifts ( $\delta$ ) were expressed in ppm and J values were given in Hz . The following abbreviations are used to indicate the multiplicity: singlet ( s ), doublet (d), triplet ( t ), quartet (q), doublet of doublets (dd), doublet of triplets (dt), and multiplet (m). All first order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted were designated as multiplet (m). Mass analyses and HRMS were obtained on a Finnigan-LCQDECA mass spectrometer and a Bruker Daltonics Bio-TOF-Q mass spectrometer by the ESI method, respectively. Column chromatography was performed on silica gel (200-300 mesh).

## 2. General procedure for hydrophosphorodithiolation of alkynes with $\mathbf{P}_{\mathbf{4}} \mathbf{S}_{\mathbf{1 0}}$ and alcohols leading to vinyl phosphorodithioates.



Alkyne $\mathbf{1}(0.2 \mathrm{mmol}), \mathrm{P}_{4} \mathrm{~S}_{10} \mathbf{2}(0.2 \mathrm{mmol})$, and alcohol $\mathbf{3}(0.5 \mathrm{~mL})$ were successively added in a 15 mL reaction tube. Then, 1,4-dioxane ( 1.5 mL ) was added to the mixture. The reaction mixture was open to air and stirred at room temperature for 6 h . After completion of the reaction, the reaction mixture was concentrated in vacuum. The residue was purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired product 4.

## 3. Gram-scale reaction

Phenylacetylene (1a) ( 5 mmol ), $\mathrm{P}_{4} \mathrm{~S}_{10} 2$ ( 5 mmol ), and EtOH 3a ( 6 mL ) were successively added in a 100 mL reaction tube. Then, 1,4 -dioxane ( 18 mL ) was added to the mixture. The reaction mixture was open to air and stirred at room temperature for 12 h . After completion of the reaction, the reaction mixture was concentrated in vacuum. The residue was purified by flash column chromatography using a mixture of
petroleum ether and ethyl acetate as eluent to give the desired product ( $\mathbf{4 a}$ ) in $84 \%$ yield (1.21g).

## 4. Preliminary mechanistic studies

### 4.1 The reaction of $\mathrm{P}_{4} \mathrm{~S}_{10}$ with EtOH.


$\mathrm{P}_{4} \mathrm{~S}_{10} 2(0.2 \mathrm{mmol})$ and $\mathrm{EtOH}(0.5 \mathrm{ml})$ were added in a 15 mL reaction tube. Then, 1,4-dioxane ( 1.5 mL ) was added to the above mixture. The reaction mixture was open to air and stirred at room temperature for 6 h . After completion of the reaction, the reaction mixture was concentrated in vacuum, the desired product $\mathbf{5 a}$ was obtained in $86 \%$ yield.

### 4.2 The reaction of O,O-diethyl S-hydrogen phosphorodithioate 5a with phenylacetylene 1a.



Phenylacetylene $1 \mathbf{1 a}(0.2 \mathrm{mmol})$ and $\mathrm{EtOH}(0.5 \mathrm{ml})$ were added in a 15 mL reaction tube. Then, O,O-diethyl S-hydrogen phosphorodithioate $\mathbf{5 a}(0.2 \mathrm{mmol})$ and 1,4-dioxane $(1.5 \mathrm{~mL})$ was added to the above mixture. The reaction mixture was open to air and stirred at room temperature for 6 h . After completion of the reaction, the reaction mixture was concentrated in vacuum, the desired product $\mathbf{4 a}$ was isolated in $85 \%$ yield. This result indicated that S-hydrogen phosphorodithioate as a key intermediate might be involved in the present transformation.

### 4.3 The addition of TEMPO in the model reaction system.



Phenylacetylene 1a ( 0.2 mmol ), $\mathrm{P}_{4} \mathrm{~S}_{10} 2(0.2 \mathrm{mmol})$, and EtOH $3(0.5 \mathrm{~mL})$ were successively added in a 15 mL reaction tube. Then, TEMPO ( 0.4 mmol ) and 1,4dioxane ( 1.5 mL ) was added to the above mixture. The reaction mixture was open to air and stirred at room temperature for 6 h . After completion of the reaction, the solution
was concentrated in vacuum, no desired product $\mathbf{4 a}$ was observed. This result indicated that a radical process might be involved in the present transformation.

### 4.4 The addition of TEMPO in the reaction system of phenylacetylene 1 a with intermediate 5a.



Phenylacetylene 1a ( 0.2 mmol ), O,O-diethyl S-hydrogen phosphorodithioate 5a, and EtOH $3(0.5 \mathrm{~mL})$ were successively added in a 15 mL reaction tube. Then, TEMPO $(0.4 \mathrm{mmol})$ and 1,4 -dioxane $(1.5 \mathrm{~mL})$ was added to the above mixture. The reaction mixture was open to air and stirred at room temperature for 6 h . After completion of the reaction, the solution was concentrated in vacuum, the corresponding disulfide of O,O-diethyl phosphorodithioate (5a') was obtained in $58 \%$ yield and none of product $4 \mathbf{a}$ was observed. This result indicated that a radical process might be involved in the present transformation.

### 4.5 The model reaction was carried out under $\mathbf{N}_{2}$.



Phenylacetylene 1a ( 0.2 mmol ), $\mathrm{P}_{4} \mathrm{~S}_{10} 2(0.2 \mathrm{mmol})$, and EtOH 3a $(0.5 \mathrm{~mL})$ were successively added in a 15 mL reaction tube under $\mathrm{N}_{2}$. Then, 1,4-dioxane ( 1.5 mL ) was added to the above mixture. The reaction mixture was stirred under $\mathrm{N}_{2}$ at room temperature for 6 h . After completion of the reaction, the solution was concentrated in vacuum, no desired product $\mathbf{4 a}$ was detected. This result indicated that air $\left(\mathrm{O}_{2}\right)$ is indispensable for this transformation.

### 4.6 The reaction of phenylacetylene 1a and intermediate 5 a was carried out under $\mathbf{N}_{2}$.



Phenylacetylene 1a ( 0.2 mmol ), O,O-diethyl S-hydrogen phosphorodithioate 5a
$(0.2 \mathrm{mmol})$ and $\mathrm{EtOH}(0.5 \mathrm{ml})$ were added in a 15 mL reaction tube under $\mathrm{N}_{2}$. Then, 1,4-dioxane ( 1.5 mL ) was added to the above mixture. The reaction mixture was stirred under $\mathrm{N}_{2}$ at room temperature for 6 h . After completion of the reaction, the solution was concentrated in vacuum, no desired product 4a was detected. This result indicated that air $\left(\mathrm{O}_{2}\right)$ is indispensable for this transformation.

### 4.7 The model reaction was carried out in EtOD.



Phenylacetylene 1a ( 0.2 mmol ), $\mathrm{P}_{4} \mathrm{~S}_{10} 2(0.2 \mathrm{mmol})$, and EtOD $(1.5 \mathrm{~mL})$ were successively added in a 15 mL reaction tube. Then, the reaction mixture was open to air and stirred at room temperature for 6 h . After completion of the reaction, the reaction mixture was concentrated in vacuum, the desired product D-4a was isolated in $84 \%$ yield. This result indicated that water should not take part in this transformation.


## 5. Characterization data of products



## O,O-diethyl $S$-styryl phosphorodithioate (4a)

4a $(\mathrm{Z} / \mathrm{E}=83: 17$ ) was obtained in $88 \%$ yield ( 51.0 mg ) according to the general procedure (eluent ratio for column chromatography: petroleum ether/EtOAc=200/1), Yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.49(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.39(\mathrm{~m}, 3 \mathrm{H})$, $7.29(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.84\left(\mathrm{dd}, J_{1}=2.7 \mathrm{~Hz}, J_{2}=15.6 \mathrm{~Hz}, 0.2 \mathrm{H}\right.$ for E), $6.74(\mathrm{~d}, J=$ $10.6 \mathrm{~Hz}, 1 \mathrm{H}$ for Z), $6.70\left(\mathrm{dd}, J_{I}=8.7 \mathrm{~Hz}, J_{2}=15.6 \mathrm{~Hz}, 0.2 \mathrm{H}\right.$ for E), 6.44 (dd, $J_{l}=10.5$ $\mathrm{Hz}, J_{2}=14.5 \mathrm{~Hz}, 1 \mathrm{H}$ for Z), 4.21-4.30 (m, 2.4H), 4.10-4.19 (m, 2.4H), 1.32-1.40 (m, 7.2 H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 136.7(\mathrm{~d}, J=11.7 \mathrm{~Hz}), 135.8(\mathrm{~d}, J=1.6$ $\mathrm{Hz}), 135.6(\mathrm{~d}, J=1.3 \mathrm{~Hz}), 131.5(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 128.9(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 128.7$, 128.4 , $127.9,126.4,117.8(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 116.7(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 64.3(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 64.2$, $15.9(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 15.8(\mathrm{~d}, J=8.4 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 88.6, 88.5. ESI HRMS: calculated for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{PS}_{2}[\mathrm{M}+\mathrm{H}]^{+}$289.0486. found 289.0487.


## $\boldsymbol{O}, \boldsymbol{O}$-diethyl $\boldsymbol{S}$-(4-methylstyryl) phosphorodithioate (4b)

4b $(Z / E=80: 20)$ was obtained in $78 \%$ yield $(47.0 \mathrm{mg})$ according to the general procedure (eluent ratio for column chromatography: petroleum ether/EtOAc=200/1), Yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.39(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$ for Z), $7.26(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 0.5 \mathrm{H}$ for E), 7.17 ( $\mathrm{d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$ for Z ), 7.14 (d, $J=7.9 \mathrm{~Hz}, 0.5 \mathrm{H}$ for E), $6.81\left(\mathrm{dd}, J_{1}=2.9 \mathrm{~Hz}, J_{2}=15.5 \mathrm{~Hz}, 0.25 \mathrm{H}\right.$ for E), $6.71(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}$ for Z), 6.64 (dd, $J_{l}=8.4 \mathrm{~Hz}, J_{2}=15.5 \mathrm{~Hz}, 0.25 \mathrm{H}$ for E), $6.37\left(\mathrm{dd}, J_{l}=10.5 \mathrm{~Hz}, J_{2}=14.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$ for Z), 4.20-4.27 (m, 2.5H), 4.11-4.19 (m, 2.5H), $2.35(\mathrm{~s}, 3 \mathrm{H}$ for Z), $2.34(\mathrm{~s}, 0.75 \mathrm{H}$ for E), 1.33-1.39 (m, 7.5H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 138.5,137.8,137.1(\mathrm{~d}, J$ $=11.4 \mathrm{~Hz}), 132.8,131.6(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 131.5,129.4,129.1,128.9(\mathrm{~d}, J=1.6 \mathrm{~Hz})$, $126.3(\mathrm{~d}, J=1.0 \mathrm{~Hz}), 116.6(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 115.2(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 64.3(\mathrm{~d}, J=5.3 \mathrm{~Hz})$, $64.2(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 21.3,21.2,15.9(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 15.8(\mathrm{~d}, J=8.4 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 88.8, 88.6. ESI HRMS: calculated for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{PS}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 303.0642. found 303.0644.


## O,O-diethyl $S$-(3-methylstyryl) phosphorodithioate (4c)

$4 \mathrm{c}(\mathrm{Z} / \mathrm{E}=80: 20)$ was obtained in $84 \%$ yield $(51.0 \mathrm{mg})$ according to the general procedure (eluent ratio for column chromatography: petroleum ether/EtOAc=200/1), Yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.27-7.30(\mathrm{~m}, 2 \mathrm{H}$ for Z ), 7.25 ( $\mathrm{d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}$ for Z), 7.22 (d, $J=7.5 \mathrm{~Hz}, 0.25 \mathrm{H}$ for E), 7.16 (d, $J=8.7 \mathrm{~Hz}, 0.5 \mathrm{H}$ for E ), 7.10 (d, $J=8.7 \mathrm{~Hz}, 1.25 \mathrm{H}$ ), $6.81\left(\mathrm{dd}, J_{1}=2.9 \mathrm{~Hz}, J_{2}=15.5 \mathrm{~Hz}, 0.25 \mathrm{H}\right.$ for E), 6.71 (d, $J=$ $10.5 \mathrm{~Hz}, 1 \mathrm{H}$ for Z), 6.64 (dd, $J_{l}=8.4 \mathrm{~Hz}, J_{2}=15.5 \mathrm{~Hz}, 0.25 \mathrm{H}$ for E), 6.37 (dd, $J_{I}=$ $10.5 \mathrm{~Hz}, J_{2}=14.4 \mathrm{~Hz}, 1 \mathrm{H}$ for Z$), 4.20-4.27(\mathrm{~m}, 2.5 \mathrm{H}), 4.11-4.19(\mathrm{~m}, 2.5 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}$ for Z), 2.34 (s, 0.75 H for E ), 1.33-1.39 (m, 7.5 H$).{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ $138.4,138.0,137.0(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 135.7(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 135.6(\mathrm{~d}, J=1.3 \mathrm{~Hz}), 131.6$
(d, $J=9.8 \mathrm{~Hz}$ ), 129.5 (d, $J=1.5 \mathrm{~Hz}$ ), 129.2, 128.7, 128.6, 128.3, 127.0 (d, $J=1.0 \mathrm{~Hz}$ ), 125.9 (d, $J=1.8 \mathrm{~Hz}), 123.6,117.5(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 116.3(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 64.3(\mathrm{~d}, J=$ $5.3 \mathrm{~Hz}), 64.2(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 21.5,21.4,15.9(\mathrm{~d}, J=10.4 \mathrm{~Hz}), 15.8(\mathrm{~d}, J=8.4 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR (202 MHz, $\mathrm{CDCl}_{3}$ ): 89.1, 88.5. ESI HRMS: calculated for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{PS}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 303.0642. found 303.0642.


O,O-diethyl S-(2-methylstyryl) phosphorodithioate (4d)
4d $(\mathrm{Z} / \mathrm{E}=83: 17)$ was obtained in $92 \%$ yield $(56.0 \mathrm{mg})$ according to the general procedure (eluent ratio for column chromatography: petroleum ether/EtOAc=200/1), Yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 7.39-7.41 (m, 1H), 7,14-7.21 (m, 3.8H), 7.07 (dd, $J_{I}=3.1 \mathrm{~Hz}, J_{2}=15.4 \mathrm{~Hz}, 0.2 \mathrm{H}$ for E), $6.86\left(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$ for Z), $6.60\left(\mathrm{dd}, J_{I}\right.$ $=8.7 \mathrm{~Hz}, J_{2}=15.4 \mathrm{~Hz}, 0.2 \mathrm{H}$ for E), $6.51\left(\mathrm{dd}, J_{1}=10.2 \mathrm{~Hz}, J_{2}=15.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$ for Z), 4.25-4.31 (m, 0.8H), 4.17-4.23 (m, 2H), 4.09-4.14 (m, 2H), 2.34 (s, 0.6H for E), 2.27 (s, 3 H for Z ), $1.38-1.35(\mathrm{~m}, 7.5 \mathrm{H}),{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 136.2,135.4$ (d, $J=1.1 \mathrm{~Hz}$ ), $135.2(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 135.0(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 134.6(\mathrm{~d}, J=1.1 \mathrm{~Hz}), 130.9$ (d, $J=10.3 \mathrm{~Hz}$ ), 130.5, 130.1, 128.4 (d, $J=1.6 \mathrm{~Hz}$ ), 128.3, 128.1, 126.2, 125.8, 125.6, $119.3(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 117.6(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 64.9(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 64.2(\mathrm{~d}, J=5.4 \mathrm{~Hz})$, $19.8,15.8(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 15.8(\mathrm{~d}, J=8.7 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 89.2, 88.7. ESI HRMS: calculated for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{PS}_{2}[\mathrm{M}+\mathrm{H}]^{+} 303.0642$. found 303.0649.


## $\boldsymbol{S}$-(4-(tert-butyl)styryl) $\boldsymbol{O , O} \boldsymbol{O}$-diethyl phosphorodithioate (4e)

$4 \mathrm{e}(\mathrm{Z} / \mathrm{E}=78: 22)$ was obtained in $78 \%$ yield $(54.0 \mathrm{mg})$ according to the general procedure (eluent ratio for column chromatography: petroleum ether/EtOAc=200/1), Yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.44$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$ for Z), 7.38 (d, $J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}$ for Z), 7.35 (d, $J=8.4 \mathrm{~Hz}, 0.56 \mathrm{H}$ for E), 7.30 (d, $J=8.5 \mathrm{~Hz}, 0.56 \mathrm{H}$ for E), $6.83\left(\mathrm{dd}, J_{I}=2.9 \mathrm{~Hz}, J_{2}=15.5 \mathrm{~Hz}, 0.28 \mathrm{H}\right.$ for E), $6.73(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}$ for Z), 6.66 (dd, $J_{I}=8.5 \mathrm{~Hz}, J_{2}=15.5 \mathrm{~Hz}, 0.28 \mathrm{H}$ for E), $6.38\left(\mathrm{dd}, J_{I}=10.5 \mathrm{~Hz}, J_{2}=14.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$ for Z), 4.18-4.26 (m, 2.56H), 4.11-4.17 (m, 2.56H), 1.33-1.38 (m, 7.68H), $1.31(\mathrm{~s}, 9 \mathrm{H})$, $1.31(\mathrm{~s}, 2.52 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 151.7,151.0,137.0(\mathrm{~d}, J=11.5$ $\mathrm{Hz}), 133.1(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 132.8(\mathrm{~d}, J=1.3 \mathrm{~Hz}), 131.4(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 128.7(\mathrm{~d}, J=$ $1.6 \mathrm{~Hz}), 126.2(\mathrm{~d}, J=0.7 \mathrm{~Hz}), 125.7,125.3,116.7(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 115.5(\mathrm{~d}, J=6.4 \mathrm{~Hz})$, 64.3 (d, $J=5.3 \mathrm{~Hz}), 64.2(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 34.6,31.2,15.9(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 15.8(\mathrm{~d}, J=$ 8.4 Hz ). ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 88.8, 88.6. ESI HRMS: calculated for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{PS}_{2}[\mathrm{M}+\mathrm{H}]^{+}$345.1112. found 345.1108.


## O,O-diethyl $\boldsymbol{S}$-(4-methoxystyryl) phosphorodithioate (4f)

$4 f(\mathrm{Z} / \mathrm{E}=77: 23)$ was obtained in $63 \%$ yield $(40.0 \mathrm{mg})$ according to the general procedure (eluent ratio for column chromatography: petroleum ether/EtOAc=200/1), Yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.45(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$ for Z$), 7.30(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 0.6 \mathrm{H}$ for E), 6.86-6.90 (m, 2H for Z), 6.85-6.86 (m, 0.6H for E), 6.78 (dd, $J_{1}$ $=3.2 \mathrm{~Hz}, J_{2}=15.4 \mathrm{~Hz}, 0.30 \mathrm{H}$ for E), $6.71\left(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$ for Z), $6.50\left(\mathrm{dd}, J_{1}=8.0\right.$ $\mathrm{Hz}, J_{2}=15.5 \mathrm{~Hz}, 0.3 \mathrm{H}$ for E), $6.26\left(\mathrm{dd}, J_{1}=10.5 \mathrm{~Hz}, J_{2}=13.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$ for Z), 4.214.28 (m, 2.6H), 4.11-4.19 (m, 2.6H), 3.18 (s, 3H for Z), 3.80 (s, 0.9H for E), 1.33-1.39 $(\mathrm{m}, 7.8 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 159.9,159.2,137.3(\mathrm{~d}, J=10.8 \mathrm{~Hz}$ ), 131.4 (d, $J=9.8 \mathrm{~Hz}$ ), 130.4 (d, $J=1.7 \mathrm{~Hz}), 128.7$ (d, $J=1.8 \mathrm{~Hz}), 128.3$ (d, $J=1.4 \mathrm{~Hz}$ ), $127.8(\mathrm{~d}, J=0.8 \mathrm{~Hz}), 115.0(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 114.1,113.8,113.4(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 64.2$ (d, $J=5.3 \mathrm{~Hz}$ ), $64.1(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 55.3,55.3,15.9(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 15.8(\mathrm{~d}, J=8.4$ Hz ). ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 89.1, 88.5. ESI HRMS: calculated for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{PS}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 319.0591$. found 319.0592 .


## O,O-diethyl $S$-(4-fluorostyryl) phosphorodithioate (4g)

$4 \mathrm{~g}(\mathrm{Z} / \mathrm{E}=80: 20)$ was obtained in $70 \%$ yield $(43.0 \mathrm{mg})$ according to the general procedure (eluent ratio for column chromatography: petroleum ether/EtOAc=200/1), Yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.45-7.48(\mathrm{~m}, 2 \mathrm{H}$ for Z ), 7.31-7.34 (m, 0.5 H for E), 7.02-7.07 (m, 2H for Z), 7.00-7.02 (m, 0.5 H for E), $6.80\left(\mathrm{dd}, J_{1}=2.8 \mathrm{~Hz}, J_{2}=\right.$ $15.5 \mathrm{~Hz}, 0.25 \mathrm{H}$ for E), 6.71 (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}$ for Z), 6.61 (dd, $J_{1}=8.8 \mathrm{~Hz}, J_{2}=15.5$ $\mathrm{Hz}, 0.25 \mathrm{H}$ for E), 6.40 (dd, $J_{l}=10.5 \mathrm{~Hz}, J_{2}=14.3 \mathrm{~Hz}, 1 \mathrm{H}$ for Z), 4.20-4.28 (m, 2.5 H ), 4.11-4.19 (m, 2.5H), 1.34-1.39 (m, 7.5H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 163.0$ (d, $J=247.2 \mathrm{~Hz}$ ), $135.6(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 132.11(\mathrm{dd}, J=1.3 \mathrm{~Hz}, 3.3 \mathrm{~Hz}), 131.8(\mathrm{dd}, J$ $=1.3 \mathrm{~Hz}, 3.4 \mathrm{~Hz}), 130.6(\mathrm{dd}, J=1.7 \mathrm{~Hz}, 8.1 \mathrm{~Hz}), 130.4(\mathrm{~d}, J=10 \mathrm{~Hz}), 128.0(\mathrm{~d}, J=$ 8.2 Hz), 116.50 (dd, $J=2.3 \mathrm{~Hz}, 6.0 \mathrm{~Hz}), 115.8$ (d, $J=21.6 \mathrm{~Hz}), 115.4$ (d, $J=21.4 \mathrm{~Hz})$, $64.4(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 64.3(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 15.8(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 15.8(\mathrm{~d}, J=8.7 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): -112.7, $-112.9 .{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 88.7, 88.2. ESI HRMS: calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{FO}_{2} \mathrm{PS}_{2}[\mathrm{M}+\mathrm{H}]^{+}$307.0392. found 307.0387.


O,O-diethyl S-(3-fluorostyryl) phosphorodithioate (4h)
4h ( $\mathrm{Z} / \mathrm{E}=77: 23$ ) was obtained in $85 \%$ yield ( 52.0 mg ) according to the general procedure (eluent ratio for column chromatography: petroleum ether/EtOAc=200/1), Yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.31-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.30(\mathrm{~m}, 0.3 \mathrm{H})$, 7.20-7.35 (m, 2H), 7.11 (d, $J=7.7 \mathrm{~Hz}, 0.3 \mathrm{H}), 7.04-7.06(\mathrm{~m}, 0.3 \mathrm{H}), 6.95-6.99(\mathrm{~m}, 1.3 \mathrm{H})$, 6.71-6.78 (m, 0.6H for E), $6.68\left(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$ for Z), $6.50\left(\mathrm{dd}, J_{1}=10.6 \mathrm{~Hz}, J_{2}=\right.$ $14.9 \mathrm{~Hz}, 1 \mathrm{H}$ for Z ), 4.20-4.28 (m, 2.6H), 4.12-4.19 (m, 2.6H), 1.35-1.39 (m, 7.8 H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 163.4(\mathrm{~d}, J=246.1 \mathrm{~Hz}), 162.6(\mathrm{~d}, J=245.8 \mathrm{~Hz})$, 138.1 (d, $J=1.1 \mathrm{~Hz}, 7.7 \mathrm{~Hz}$ ), 137.7 (d, $J=1.2 \mathrm{~Hz}, 8.1 \mathrm{~Hz}$ ), 134.8 (d, $J=2.6 \mathrm{~Hz}, 12.1$ $\mathrm{Hz}), 130.3$ (d, $J=8.3 \mathrm{~Hz}$ ), 130.0 (d, $J=2.5 \mathrm{~Hz}, 10.1 \mathrm{~Hz}$ ), 129.9 (d, $J=8.5 \mathrm{~Hz}$ ), 124.6 , $122.2(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 119.8(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 118.9(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 115.47(\mathrm{dd}, J=1.7$ $\mathrm{Hz}, 22.3 \mathrm{~Hz}), 115.17$ (d, $J=21.3 \mathrm{~Hz}$ ), $114.75(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 112.84(\mathrm{~d}, J=22.7 \mathrm{~Hz})$, $64.4(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 64.3(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 15.8(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 15.8(\mathrm{~d}, J=8.6 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): -112.7, $-112.9 .{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 88.2, 88.1. ESI HRMS: calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{FO}_{2} \mathrm{PS}_{2}[\mathrm{M}+\mathrm{H}]^{+}$307.0392. found 307.0394.


O,O-diethyl $S$-(2-fluorostyryl) phosphorodithioate (4i)
$4 i(\mathrm{Z} / \mathrm{E}=72: 28)$ was obtained in $82 \%$ yield $(50.0 \mathrm{mg})$ according to the general procedure (eluent ratio for column chromatography: petroleum ether/EtOAc=200/1), Yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.65(\mathrm{t}, J=7.65 \mathrm{~Hz}, 1 \mathrm{H}$ for Z$), 7.41(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 0.4 \mathrm{H}$ for E ), $7.23-7.29(\mathrm{~m}, 1.4 \mathrm{H}), 7.09-7.16(\mathrm{~m}, 1.4 \mathrm{H}), 7.02-7.07(\mathrm{~m}, 1.4 \mathrm{H})$, $6.95\left(\mathrm{dd}, J_{I}=2.6 \mathrm{~Hz}, J_{2}=15.8 \mathrm{~Hz}, 0.4 \mathrm{H}\right.$ for E), $6.87(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}$ for Z), 6.82 (dd, $J_{1}=9.1 \mathrm{~Hz}, J_{2}=15.5 \mathrm{~Hz}, 0.4 \mathrm{H}$ for E), $6.55\left(\mathrm{dd}, J_{I}=10.6 \mathrm{~Hz}, J_{2}=14.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$ for Z), 4.20-4.28 (m, 2.8H), 4.12-4.19 (m, 2.8H), 1.35-1.40 (m, 8.4H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 160.0(\mathrm{~d}, J=249 \mathrm{~Hz}), 129.7(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 129.6(\mathrm{~d}, J=8.5 \mathrm{~Hz})$, $129.5(\mathrm{t}, J=9.8 \mathrm{~Hz}), 128.9(\mathrm{dd}, J=3.0 \mathrm{~Hz}, 12.2 \mathrm{~Hz}), 127.5(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 124.3(\mathrm{~d}, J$ $=3.6 \mathrm{~Hz}), 123.8(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 123.7(\mathrm{dd}, J=5.6 \mathrm{~Hz}, 10.3 \mathrm{~Hz}), 123.5(\mathrm{dd}, J=1.2 \mathrm{~Hz}$, $12.8 \mathrm{~Hz}), 120.6(\mathrm{dd}, J=1.4 \mathrm{~Hz}, 3.9 \mathrm{~Hz}), 120.0(\mathrm{dd}, J=6.0 \mathrm{~Hz}, 6.0 \mathrm{~Hz}), 115.9(\mathrm{~d}, J=$ $21.9 \mathrm{~Hz}), 115.5(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 64.4(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 64.3(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 15.9(\mathrm{~d}, J=$ 7.7 Hz ), 15.8 (d, $J=8.4 \mathrm{~Hz}$ ). ${ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): -115.4, -117.2. ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 88.1, 87.9. ESI HRMS: calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{FO}_{2} \mathrm{PS}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 307.0392. found 307.0392.


## $\boldsymbol{S}$-(3-chlorostyryl) $\boldsymbol{O}, \boldsymbol{O}$-diethyl phosphorodithioate (4j)

$\mathbf{4 j}(\mathrm{Z} / \mathrm{E}=74: 26)$ was obtained in $86 \%$ yield $(55.0 \mathrm{mg})$ according to the general procedure (eluent ratio for column chromatography: petroleum ether/EtOAc=200/1), Yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ (s, 0.4 H$), 7.29(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.74-6.75(\mathrm{~m}, 0.7 \mathrm{H}$ for E$), 6.64$ (d, $J=10.6 \mathrm{~Hz}, 1 \mathrm{H}$ for Z), 6.38 (dd, $J_{1}=10.6 \mathrm{~Hz}, J_{2}=14.8 \mathrm{~Hz}, 1 \mathrm{H}$ for Z), $4.20-4.28$ $(\mathrm{m}, 2.7 \mathrm{H}), 4.12-4.19(\mathrm{~m}, 2.7 \mathrm{H}), 1.35-1.39(\mathrm{~m}, 8.1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(125 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ): $\delta 137.6(\mathrm{~d}, J=1.4 \mathrm{~Hz}$ ), 137.3 (d, $J=1.3 \mathrm{~Hz}$ ), 134.7, $134.5(\mathrm{~d}, J=11.9 \mathrm{~Hz})$, $134.3,129.9,129.8(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 129.6,128.7(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 128.2,127.8,126.9$ (d, $J=1.5 \mathrm{~Hz}), 126.2,124.5,120.0(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 117.9(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 64.5(\mathrm{~d}, J=$ $5.5 \mathrm{~Hz}), 64.4(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 15.8(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 15.8(\mathrm{~d}, J=8.6 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR (202 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 88.2, 88.1. ESI HRMS: calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ClO}_{2} \mathrm{PS}_{2}[\mathrm{M}+\mathrm{H}]^{+}$
323.0096. found 323.0093 .


## $\boldsymbol{S}$-(4-chlorostyryl) $\boldsymbol{O}, \boldsymbol{O}$-diethyl phosphorodithioate (4k)

$\mathbf{4 k}(\mathrm{Z} / \mathrm{E}=80: 20)$ was obtained in $62 \%$ yield $(40.0 \mathrm{mg})$ according to the general procedure (eluent ratio for column chromatography: petroleum ether/EtOAc=200/1), Yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.34(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.27(\mathrm{~m}, 1 \mathrm{H})$, $7.23-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.70\left(\mathrm{dd}, J_{1}=2.2 \mathrm{~Hz}, J_{2}=15.6 \mathrm{~Hz}, 0.25 \mathrm{H}\right.$ for E), $6.64\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 0.25 \mathrm{H}\right.$ for E), $6.60\left(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$ for Z), 6.38 (dd, $J_{I}=10.5$ $\mathrm{Hz}, J_{2}=14.6 \mathrm{~Hz}, 1 \mathrm{H}$ for Z), 4.11-4.20 (m, 2.5H), 4.08-4.11 (m, 2.5H), 1.23-1.32 (m, $7.5 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 135.0(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 134.3(\mathrm{~d}, J=1.4$ $\mathrm{Hz}), 134.1,134.1(\mathrm{~d}, J=1.3 \mathrm{~Hz}), 133.5,130.12(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 130.1(\mathrm{~d}, J=1.6 \mathrm{~Hz})$, $128.9,128.6,127.5,118.9(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 117.9(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 64.4(\mathrm{~d}, J=5.6 \mathrm{~Hz})$, $64.4(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 15.9(\mathrm{~d}, J=9.7 \mathrm{~Hz}), 15.8(\mathrm{~d}, J=8.4 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR $(202 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ): 88.5, 88.1. ESI HRMS: calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ClO}_{2} \mathrm{PS}_{2}[\mathrm{M}+\mathrm{H}]^{+} 323.0096$. found 323.0099 .

$\boldsymbol{S}$-(4-bromostyryl) $\boldsymbol{O}, \boldsymbol{O}$-diethyl phosphorodithioate (41)
$41(\mathrm{Z} / \mathrm{E}=80: 20)$ was obtained in $86 \%$ yield $(63.0 \mathrm{mg})$ according to the general procedure (eluent ratio for column chromatography: petroleum ether/EtOAc=200/1), Yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.48$ (d, $J=8.45 \mathrm{~Hz}, 2 \mathrm{H}$ for Z), 7.45 (d, $J$ $=8.45 \mathrm{~Hz}, 0.5 \mathrm{H}$ for E), 7.35 ( $\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$ for Z ), 7.22 (d, $J=8.4 \mathrm{~Hz}, 0.5 \mathrm{H}$ for E), 6.68-6.76 (m, 0.5H for E), $6.67\left(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$ for Z), $6.49\left(\mathrm{dd}, J_{1}=10.5 \mathrm{~Hz}, J_{2}=\right.$ $14.6 \mathrm{~Hz}, 1 \mathrm{H}$ for Z ), 4.21-4.26 (m, 2.5H), 4.12-4.18 (m, 2.5H), 1.39-1.40 (m, 7.5H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 135.0(\mathrm{~d}, J=12.0 \mathrm{~Hz}$ ), $134.7(\mathrm{~d}, J=1.4 \mathrm{~Hz})$, $134.5(\mathrm{~d}, J=1.3 \mathrm{~Hz}), 131.9,131.5,130.4(\mathrm{~d}, J=1.6 \mathrm{~Hz}$ ), $130.1(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 127.8$, $122.2,121.7,119.1(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 118.1(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 64.4(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 64.3$ (d, $J=5.6 \mathrm{~Hz}), 15.8(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 15.7(\mathrm{~d}, J=8.8 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 88.4 , 88.1. ESI HRMS: calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrO}_{2} \mathrm{PS}_{2}[\mathrm{M}+\mathrm{H}]^{+} 366.9591$. found 366.9592 .


## $\boldsymbol{S}$-(4-acetylstyryl) $\boldsymbol{O , O}$-diethyl phosphorodithioate (4m)

$\mathbf{4 m}(\mathrm{Z} / \mathrm{E}=70: 30)$ was obtained in $50 \%$ yield $(51.0 \mathrm{mg})$ according to the general procedure (eluent ratio for column chromatography: petroleum ether/EtOAc=200/1), Yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.95$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$ for Z), 7.92 (d, $J$ $=8.2 \mathrm{~Hz}, 0.9 \mathrm{H}$ for E), 7.57 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$ for Z), 7.43 (d, $J=8.2 \mathrm{~Hz}, 0.9 \mathrm{H}$ for Z),
$6.90\left(\mathrm{dd}, J_{1}=9.6 \mathrm{~Hz}, J_{2}=15.1 \mathrm{~Hz}, 0.45 \mathrm{H}\right.$ for E $), 6.82(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 0.45 \mathrm{H}$ for E$)$, $6.85\left(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$ for Z), $6.60\left(\mathrm{dd}, J_{1}=10.7 \mathrm{~Hz}, J_{2}=15.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$ for Z), 4.21-4.30 $(\mathrm{m}, 2.9 \mathrm{H}), ~ 4.13-4.19(\mathrm{~m}, 2.5 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}$ for Z$), 2.59(\mathrm{~s}, 1.4 \mathrm{H}$ for E$), 1.35-1.40(\mathrm{~m}$, 8.7H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 197.4,197.3,140.2(\mathrm{~d}, J=1.3 \mathrm{~Hz}$, overlapped), 136.4, 135.9, 134.1 (d, $J=12.2 \mathrm{~Hz}$ ), 129.9 (d, $J=9.9 \mathrm{~Hz}$ ), 128.9 (d, $J=$ $1.6 \mathrm{~Hz}), 128.8,128.4,126.3,121.4(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 121.0(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 64.4(\mathrm{~d}, J=$ $5.5 \mathrm{~Hz}), 64.5(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 26.6,26.6,15.9(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 15.8(\mathrm{~d}, J=8.4 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR (202 MHz, $\mathrm{CDCl}_{3}$ ): 88.1, 88.0. ESI HRMS: calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{PS}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 331.0591. found 331.0591 .


O,O-diethyl S-(4-nitrostyryl) phosphorodithioate (4n)
4n ( $\mathrm{Z} / \mathrm{E}=77: 23$ ) was obtained in $40 \%$ yield $(27.0 \mathrm{mg})$ according to the general procedure (eluent ratio for column chromatography: petroleum ether/EtOAc=200/1), Yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.21-8.23(\mathrm{~m}, 2 \mathrm{H}$ for Z ), $8.18-8.20(\mathrm{~m}, 0.6 \mathrm{H}$ for E), $7.63\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}\right.$ for E), $7.49\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 0.6 \mathrm{H}\right.$ for Z), $7.02\left(\mathrm{dd}, J_{I}=\right.$ $10.8 \mathrm{~Hz}, J_{2}=15.7 \mathrm{~Hz}, 0.3 \mathrm{H}$ for E), $6.85\left(\mathrm{dd}, J_{I}=2.2 \mathrm{~Hz}, J_{2}=15.9 \mathrm{~Hz}, 0.3 \mathrm{H}\right.$ for E), 6.70-6.78 (m, 2H for Z), 4.23-4.29 (m, 2.6H), 4.14-4.22 (m, 2.6H), 1.36-1.39 (m, $7.8 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 147.1,146.6,142.0(\mathrm{~d}, J=1 \mathrm{~Hz}$, overlapped), 132.1 (d, $J=12.5 \mathrm{~Hz}$ ), 129.4 (d, $J=1.6 \mathrm{~Hz}$ ), 128.4 (d, $J=10.1 \mathrm{~Hz}$ ), 126.7, $124.2,124.1(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 123.9(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 123.7,64.7(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 64.6(\mathrm{~d}$, $J=5.8 \mathrm{~Hz}), 15.9(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 15.8(\mathrm{~d}, J=8.1 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 87.8, 87.5. ESI HRMS: calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NNaO}_{4} \mathrm{PS}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$356.0156. found 356.0163.

$S, S^{\prime}$-(1,3-phenylenebis(ethene-2,1-diyl)) $O, O, O^{\prime}, O^{\prime}$-tetraethyl bis(phosphorodithio ate) (40)
$40(Z / E=77: 23)$ was obtained in $48 \%$ yield $(48.0 \mathrm{mg})$ according to the general procedure (eluent ratio for column chromatography: petroleum ether/EtOAc=200/1), Yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.60(\mathrm{~s}, 0.6 \mathrm{H}$ for E ), $7.26-7.24$ ( $\mathrm{m}, 4 \mathrm{H}$ for Z), $6.83\left(\mathrm{dd}, J_{l}=2.5 \mathrm{~Hz}, J_{2}=15.6 \mathrm{~Hz}, 0.3 \mathrm{H}\right.$ for E), $6.71-6.76(\mathrm{~m}, 2.3 \mathrm{H}), 6.45\left(\mathrm{dd}, J_{I}=\right.$ $10.5 \mathrm{~Hz}, J_{2}=14.3 \mathrm{~Hz}, 2 \mathrm{H}$ for Z), 4.22-4.27 (m, 4.6H), 4.13-4.18 (m, 4.6H), 1.35-1.40 $(\mathrm{m}, 13.8 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 136.0(\mathrm{~d}, J=3.2 \mathrm{~Hz}$ ), $135.8(\mathrm{~d}, J=$ $1.2 \mathrm{~Hz}), 130.9(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 130.7(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 129.0,128.8,128.5,128.3(\mathrm{~d}, J=$ $1.2 \mathrm{~Hz}), 126.8,125.6,118.8(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 117.9(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 64.4(\mathrm{~d}, J=5.3 \mathrm{~Hz})$, $64.3(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 15.9(\mathrm{~d}, J=10.4 \mathrm{~Hz}), 15.8(\mathrm{~d}, J=8.4 \mathrm{~Hz}),{ }^{31} \mathrm{P}$ NMR ( 202 MHz , $\mathrm{CDCl}_{3}$ ): 88.5, 88.4. ESI HRMS: calculated for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{~S}_{4}[\mathrm{M}+\mathrm{H}]^{+}$499.0424. found 499.0428.


## O,O-diethyl $\boldsymbol{S}$-(2-(naphthalen-1-yl)vinyl) phosphorodithioate (4p)

$\mathbf{4 p}(Z / E=87: 13)$ was obtained in $78 \%$ yield $(53.0 \mathrm{mg})$ according to the general procedure (eluent ratio for column chromatography: petroleum ether/EtOAc=200/1), Yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.0$ (d, $J=8.3 \mathrm{~Hz}, 0.15 \mathrm{H}$ for E ), 7.91-7.94 ( $\mathrm{m}, 1 \mathrm{H}$ for Z ), $7.84-7.86(\mathrm{~m}, 1 \mathrm{H}$ for Z$), 7.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$ for Z$), 7.56-7.61(\mathrm{~m}$, 0.15 H for E$), 7.43-7.56(\mathrm{~m}, 4.8 \mathrm{H}), 7.33(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}$ for Z$), 6.75\left(\mathrm{dd}, J_{1}=8.9\right.$ $\mathrm{Hz}, J_{2}=15.3 \mathrm{~Hz}, 0.15 \mathrm{H}$ for E$), 6.70\left(\mathrm{dd}, J_{1}=10.1 \mathrm{~Hz}, J_{2}=12.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$ for Z), 4.24$4.30(\mathrm{~m}, 0.6 \mathrm{H}$ for E$), 4.16-4.21(\mathrm{~m}, 2 \mathrm{H}$ for Z$), 4.06-4.12(\mathrm{~m}, 2 \mathrm{H}$ for Z$), 1.37-1.39$ (m, 0.9 H for E ), $1,32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}$ for Z$) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 134.4$ $(\mathrm{d}, J=11.7 \mathrm{~Hz}), 133.6,133.5,132.5,131.2,,130.2(\mathrm{~d}, J=10.4 \mathrm{~Hz}), 128.8,128.7,128.6$, $128.5,126.6(\mathrm{~d}, ~ J=1.3 \mathrm{~Hz}), 126.4,126.2,126.0,125.9,125.1,124.2,124.1,123.5$, $121.2(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 118.9(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 64.3(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 64.2(\mathrm{~d}, J=5.4 \mathrm{~Hz})$, $15.9(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 15.8(\mathrm{~d}, J=8.4 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR (202 MHz, $\left.\mathrm{CDCl}_{3}\right): 89.1,88.5 . \mathrm{ESI}$ HRMS: calculated for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{PS}_{2}[\mathrm{M}+\mathrm{H}]^{+} 339.0642$. found 339.0636.


## O,O-diethyl $\boldsymbol{S}$-(2-(thiophen-2-yl)vinyl) phosphorodithioate (4q)

$\mathbf{4 q}(Z / E=69: 31)$ was obtained in $73 \%$ yield $(43.0 \mathrm{mg})$ according to the general procedure (eluent ratio for column chromatography: petroleum ether/EtOAc=200/1), Yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.36$ (d, $J=5 \mathrm{~Hz}, 1 \mathrm{H}$ for Z$), 7.21(\mathrm{~d}, J=$ $4.8 \mathrm{~Hz}, 0.45 \mathrm{H}$ for E ), 7.17 ( $\mathrm{d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}$ for Z ), 7.02-7.04 (m, 1 H for Z ), 6.92-6.98 $(\mathrm{m}, 2.35 \mathrm{H}), 6.49\left(\mathrm{dd}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=15.2 \mathrm{~Hz}, 0.45 \mathrm{H}\right.$ for E), $6.26\left(\mathrm{dd}, J_{1}=10.2 \mathrm{~Hz}\right.$, $J_{2}=15.2 \mathrm{~Hz}, 1 \mathrm{H}$ for Z $), 4.22-4.34(\mathrm{~m}, 2.9 \mathrm{H}), 4.11-4.21(\mathrm{~m}, 2.9 \mathrm{H}), 1.34-1.40(\mathrm{~m}, 8.7 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 140.4,139.1(\mathrm{~d}, J=1.3 \mathrm{~Hz}), 130.5(\mathrm{~d}, J=12.0$ $\mathrm{Hz}), 129.4(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 127.5,,127.1(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $), 126.8,126.6(\mathrm{~d}, J=1.6 \mathrm{~Hz}$ ), $125.6(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 125.5,115.2(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 114.8(\mathrm{~d}, J=4.8 \mathrm{~Hz}),, 64.4(\mathrm{~d}, J=$ $5.3 \mathrm{~Hz}), 64.3(\mathrm{~d}, J=5.5 \mathrm{~Hz}),, 15.8(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 15.9(\mathrm{~d}, J=8.4 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR (202 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 88.1, 87.6. ESI HRMS: calculated for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{PS}_{3}[\mathrm{M}+\mathrm{H}]^{+} 295.0050$. found 295.0044 .


## O,O-diethyl $\boldsymbol{S}$-(2-(thiophen-3-yl)vinyl) phosphorodithioate (4r)

4r $(Z / E=87: 13)$ was obtained in $92 \%$ yield $(54.0 \mathrm{mg})$ according to the general procedure (eluent ratio for column chromatography: petroleum ether/EtOAc=200/1), Yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.49-7.50(\mathrm{~m}, 1 \mathrm{H}$ for Z$), 7.33$ ( $\mathrm{d}, J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}$ for Z ), 7.29-7.31 (m, 1H for Z), 7.28-7.29 (m, 0.15H for E), 7.19-7.20 (m, 0.3H
for E), $6.70\left(\mathrm{dd}, J_{1}=3.1 \mathrm{~Hz}, J_{2}=15.4 \mathrm{~Hz}, 0.15 \mathrm{H}\right.$ for E), $6.73(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}$ for Z), 6.53 (dd, $J_{l}=8.5 \mathrm{~Hz}, J_{2}=15.4 \mathrm{~Hz}, 0.15 \mathrm{H}$ for E), $6.30\left(\mathrm{dd}, J_{I}=10.3 \mathrm{~Hz}, J_{2}=13.5\right.$ $\mathrm{Hz}, 1 \mathrm{H}$ for Z), 4.21-4.28 (m, 2.3H), 4.12-4.19 (m, 2.5H), 1.34-1.39 (m, 6.9H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 138.3(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 137.0(\mathrm{~d}, J=1.6 \mathrm{~Hz}),, 131.5(\mathrm{~d}, J=$ 11.9 Hz ), $128.3(\mathrm{~d}, J=1.3 \mathrm{~Hz}), 126.5,125.9(\mathrm{~d}, J=10.4 \mathrm{~Hz}), 125.4,125.2(\mathrm{~d}, J=2.2$ $\mathrm{Hz}), 124.7,123.3(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 116.3(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 116.0(\mathrm{~d}, J=6.4 \mathrm{~Hz}), 64.3(\mathrm{~d}, J$ $=5.5 \mathrm{~Hz}), 64.3\left(\mathrm{~d}, J=5.5 \mathrm{~Hz}\right.$ ), $15.9(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 15.8(\mathrm{~d}, J=8.4 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR (202 MHz, $\mathrm{CDCl}_{3}$ ): 88.7, 87.9. ESI HRMS: calculated for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{PS}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 295.0050. found 295.0052.

ethyl 3-((diethoxyphosphorothioyl)thio)acrylate (4s)
$4 \mathrm{~s}(\mathrm{Z} / \mathrm{E}=89: 11)$ was obtained in $98 \%$ yield $(54.0 \mathrm{mg})$ according to the general procedure (eluent ratio for column chromatography: petroleum ether/EtOAc=200/1), Yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.62(\mathrm{t}, J=14.6 \mathrm{~Hz}, 0.12 \mathrm{H}$ for E ), 7.35 (dd, $J_{1}=10.1 \mathrm{~Hz}, J_{2}=19.5 \mathrm{~Hz}, 1 \mathrm{H}$ for E), $6.12\left(\mathrm{dd}, J_{I}=1.2 \mathrm{~Hz}, J_{2}=15.5 \mathrm{~Hz}, 0.15 \mathrm{H}\right.$ for E), $6.10(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}$ for Z), 4.16-4.25 (m, 4.48H), 4.12-4.16 (m, 2.24H), 1.36 (t, $J$ $=7.1 \mathrm{~Hz}, 6.72 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3.36 \mathrm{H}), .{ }^{13} \mathrm{C}\left\{{ }^{\{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $165.7,164.3,140.4(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 139.3(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 122.0(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 117.9$ (d, $J=8.5 \mathrm{~Hz}), 64.7(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 64.5(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 60.7,60.6,15.9(\mathrm{~d}, J=8.2$ $\mathrm{Hz}), 15.7(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 14.2,14.2 .{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 91.4. ${ }^{31} \mathrm{P}$ NMR (202 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 91.4. ESI HRMS: calculated for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{NaO}_{4} \mathrm{PS}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$307.0204. found 307.0206.

$O, O$-dimethyl $S$-styryl phosphorodithioate (4t)
$4 \mathbf{t}(\mathrm{Z} / \mathrm{E}=74: 26)$ was obtained in $58 \%$ yield $(30.0 \mathrm{mg})$ according to the general procedure (eluent ratio for column chromatography: petroleum ether/EtOAc=200/1), Yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.49(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.38$ (m, $4.8 \mathrm{H}), 6.84\left(\mathrm{dd}, J_{1}=2.9 \mathrm{~Hz}, J_{2}=15.5 \mathrm{~Hz}, 0.35 \mathrm{H}\right.$ for E), $6.75(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}$ for Z), $6.65\left(\mathrm{dd}, J_{1}=8.6 \mathrm{~Hz}, J_{2}=15.5 \mathrm{~Hz}, 0.35 \mathrm{H}\right.$ for E), $6.36\left(\mathrm{dd}, J_{1}=10.5 \mathrm{~Hz}, J_{2}=14.3\right.$ $\mathrm{Hz}, 1 \mathrm{H}$ for Z ), 3.85 ( $\mathrm{s}, 1 \mathrm{H}$ for E ), 3.82 ( $\mathrm{s}, 1 \mathrm{H}$ for E ), 3.81 ( $\mathrm{s}, 3 \mathrm{H}$ for E ), 3.78 ( $\mathrm{s}, 3 \mathrm{H}$ for E). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 137.2(\mathrm{~d}, J=11.7 \mathrm{~Hz}), 135.7,135.5(\mathrm{~d}, J=1$ $\mathrm{Hz}), 132.0(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 128.9(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 128.7$, $128.5,128.4,128.0$, 126.4, $117.3(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 116.1(\mathrm{~d}, J=6.2 \mathrm{~Hz}), 54.2(\mathrm{~d}, J=4.9 \mathrm{~Hz}), 54.2(\mathrm{~d}, J=5.2 \mathrm{~Hz})$. ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 93.6. ESI HRMS: calculated for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{PS}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 261.0173. found 261.0175. ESI HRMS: calculated for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{PS}_{2}[\mathrm{M}+\mathrm{H}]^{+}$261.0173. found 261.0175 .


## O,O-dibutyl S-styryl phosphorodithioate (4u)

$\mathbf{4 u}(\mathrm{Z} / \mathrm{E}=87: 13)$ was obtained in $52 \%$ yield $(36.0 \mathrm{mg})$ according to the general procedure (eluent ratio for column chromatography: petroleum ether/EtOAc=200/1), Yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.48(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.37(\mathrm{~m}$, $2.75 \mathrm{H}), 7.28(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82\left(\mathrm{dd}, J_{1}=2.7 \mathrm{~Hz}, J_{2}=15.5 \mathrm{~Hz}, 0.15 \mathrm{H}\right.$ for E), 6.73 $(\mathrm{d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}$ for Z$), 6.69\left(\mathrm{dd}, J_{1}=8.8 \mathrm{~Hz}, J_{2}=15.5 \mathrm{~Hz}, 0.15 \mathrm{H}\right.$ for E), 6.41 (dd, $J_{1}=10.5 \mathrm{~Hz}, J_{2}=14.4 \mathrm{~Hz}, 1 \mathrm{H}$ for Z), 4.13-4.19 (m, 2.3H), 4.08-4.09 (m, 2.3H), 1.65$1.69(\mathrm{~m}, 6 \mathrm{H}), 1.37-1.42(\mathrm{~m}, 6 \mathrm{H}), 0.91(\mathrm{t}, J=7.35 \mathrm{~Hz}, 6.9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 136.6(\mathrm{~d}, J=11.7 \mathrm{~Hz}), 135.9,135.6(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 131.5(\mathrm{~d}, J=9.8 \mathrm{~Hz})$, $128.9(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 128.7,128.4,127.8,126.3,117.9(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 116.8(\mathrm{~d}, J=$ $5.9 \mathrm{~Hz}), 68.0(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 67.9(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 32.0(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 31.9(\mathrm{~d}, J=8.2$ Hz ), 18.8, 18.8, 13.6, 13.5. ${ }^{31} \mathrm{P}$ NMR (202 MHz, $\mathrm{CDCl}_{3}$ ): 88.9, 88.8. ESI HRMS: calculated for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{PS}_{2}[\mathrm{M}+\mathrm{H}]^{+} 345.1112$. found 345.1114 .


O,O-diisopropyl $S$-styryl phosphorodithioate (4v)
$\mathbf{4 v}(Z / E=87: 13)$ was obtained in $68 \%$ yield $(43.0 \mathrm{mg})$ according to the general procedure (eluent ratio for column chromatography: petroleum ether/EtOAc=200/1), Yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.48$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$ for Z ), 7.35 (t, $J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}$ for Z$), 7.32(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 0.35 \mathrm{H}$ for E$), 7.27(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$ for Z$), 7.25$ $(\mathrm{d}, J=3.5 \mathrm{~Hz}, 0.4 \mathrm{H}$ for E$), 6.78-6.82(\mathrm{~m}, 0.15 \mathrm{H}$ for E$), 6.73-6.76(\mathrm{~m}, 0.15 \mathrm{H}$ for E$)$, $6.70(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}$ for Z$), 6.69\left(\mathrm{dd}, J_{1}=10.6 \mathrm{~Hz}, J_{2}=15 \mathrm{~Hz}, 1 \mathrm{H}\right.$ for E), 4.79-4.93 $(\mathrm{m}, 2.3 \mathrm{H}), 1.36-1.39(\mathrm{~m}, 7.8 \mathrm{H}), 1.33(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 136.0,135.7(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 130.7(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 128.8(\mathrm{~d}, J=1.6 \mathrm{~Hz})$, $128.7,128.3,128.2,127.7,126.3,118.7(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 117.7(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 73.9(\mathrm{~d}$, $J=5.9 \mathrm{~Hz}), 73.8(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 23.8(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 23.7(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 23.4(\mathrm{~d}, J=$ $5.1 \mathrm{~Hz}), 23.3(\mathrm{~d}, J=5.2 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 85.3, 85.1. ESI HRMS: calculated for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NaO}_{2} \mathrm{PS}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 339.0618$. found 339.0620.


O,O-dicyclohexyl $S$-styryl phosphorodithioate (4w)
$\mathbf{4 w}(\mathrm{Z} / \mathrm{E}=80: 20)$ was obtained in $63 \%$ yield $(50.0 \mathrm{mg})$ according to the general procedure (eluent ratio for column chromatography: petroleum ether/EtOAc=200/1), Yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.48(\mathrm{~d}, J=7.75 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.37(\mathrm{~m}$,
$3 \mathrm{H}), 7.24-7.27(\mathrm{~m}, 1.25 \mathrm{H}), 6.75-6.86(\mathrm{~m}, 0.5 \mathrm{H}$ for E), $6.71(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}$ for Z$)$, $6.48\left(\mathrm{dd}, J_{I}=8.9 \mathrm{~Hz}, J_{2}=14.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$ for Z), $4.55-4.62(\mathrm{~m}, 2.5 \mathrm{H}), 1.90-1.98(\mathrm{~m}, 5 \mathrm{H})$, 1.69-1.74 (m, 5H), 1.48-1.62 (m, 10H), 1.12-1.38 (m, 10H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 125 MHz , $\mathrm{CDCl}_{3}$ ): $\delta 136.1(\mathrm{~d}, J=1.3 \mathrm{~Hz}), 135.8(\mathrm{~d}, J=1.3 \mathrm{~Hz}), 135.7,130.7(\mathrm{~d}, J=9.8 \mathrm{~Hz})$, $128.8(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 128.7,128.3,128.2,127.7,126.3,118.8(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 117.8(\mathrm{~d}$, $J=5.8 \mathrm{~Hz}), 78.6(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 78.6(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 33.4(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 33.0(\mathrm{~d}, J=$ 4.4 Hz ), 25.1, $25.1,23.6\left(\mathrm{~d}, J=3.3 \mathrm{~Hz}\right.$ ). ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 85.1, 85.0. ESI HRMS: calculated for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NaO}_{2} \mathrm{PS}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$419.1244. found 419.1240.


O,O-dibenzyl $S$-styryl phosphorodithioate (4x)
$4 x(Z / E=83: 17)$ was obtained in $75 \%$ yield $(62.0 \mathrm{mg})$ according to the general procedure (eluent ratio for column chromatography: petroleum ether/EtOAc=200/1), Yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.41-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.37(\mathrm{~m}, 15 \mathrm{H})$, 6.69-6.72 (m, 1.2H), 6.51-6.56 (m, 0.2H for E), $6.37\left(\mathrm{dd}, J_{I}=10.5 \mathrm{~Hz}, J_{2}=14.4 \mathrm{~Hz}\right.$, 1 H for Z), $5.17(\mathrm{t}, J=11.3 \mathrm{~Hz}, 2.4 \mathrm{H}), 5.07(\mathrm{t}, J=9.9 \mathrm{~Hz}, 2.4 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 135.5(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 135.2(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 133.0,132.1(\mathrm{~d}, J=10.1$ $\mathrm{Hz}), 130.1,129.7,129.0,128.9(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 128.6,128.6,128.5,128.4$, 128.4 (d, $J$ $=1.8 \mathrm{~Hz}), 128.3,128.2,128.1,127.9,126.5(\mathrm{~d}, J=1.0 \mathrm{~Hz}), 117.3(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 115.9$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}), 69.6(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 69.5(\mathrm{~d}, J=5.2 \mathrm{~Hz}) .{ }^{31} \mathrm{P} \mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ 90.1, 89.8. ESI HRMS: calculated for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NaO}_{2} \mathrm{PS}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$435.0618. found 435.0619.


## $O, O$-diethyl S-hydrogen phosphorodithioate (5a) ${ }^{[1]}$

5a Yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 4.11-4.24(\mathrm{~m}, 4 \mathrm{H}), 2.95(\mathrm{~s}, 1 \mathrm{H}), 1.39(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$ ).
${ }^{[1]}$ M. Stankiewicz, J. Nycz and J. Rachon, Reductive cleavage of the halogen-phosph orus and sulfur-phosphorus bonds with alkali metals. Heteroat. Chem., 2002, 13, 330339.

disulfide of O,O-diethyl phosphorodithioate (5a') ${ }^{[2]}$
$\mathbf{5 a}$ ' was obtained in $58 \%$ yield ( 42.0 mg ) according to the general procedure (eluent ratio for column chromatography: petroleum ether/EtOAc $=100 / 1$ ), Yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 4.28-4.35(\mathrm{~m}, 4 \mathrm{H}), 4.16-4.26(\mathrm{~m}, 4 \mathrm{H}), 1.38-1.42(\mathrm{~m}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 64.8(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 15.9(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 15.8(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}$ ). ESI HRMS: calculated for $\mathrm{C}_{8} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{~S}_{4}[\mathrm{M}+\mathrm{H}]^{+} 370.9798$, found 370.9763 .
${ }^{[2]}$ M. B. Gazizov, R. A. Khairullin, N. G. Aksenov and O. G. Sinyashin, Reactions of O,O-dialkyldithiophosphoric acids with N-tert-butyl-2-bromo-2-methylpropanimine a nd its salts. Tetrahedron Lett., 2015, 56, 4993-4996.

## 6.Copies of NMR spectra for products

$4 \mathbf{a}^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

## 





4a ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )






4a ${ }^{31}$ P NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




4b ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


4b ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



4c ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

$4 \mathbf{c}^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




$\xrightarrow{|c| c c c}$


4d ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



| 1 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 80 | 170 | 160 | 1 |

4d ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )
m
N
N
2i
in

$\qquad$

$4 \mathbf{e}^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

## 


$4 \mathbf{e ~}^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )





4e ${ }^{31}$ P NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

## 


$\qquad$

$4 \mathbf{f}^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )





$4 \mathbf{f}^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

$\mathbf{4 g}{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

$\mathbf{4 g}{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



| 90 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 |  | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

4g ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



4g ${ }^{19}$ F NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )
$<_{-112.9250}^{-112.7613}$




4h ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


4h ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


(s,


4h ${ }^{19}$ F NMR (471 MHz, $\mathrm{CDCl}_{3}$ )





$4 \mathbf{i}^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




4i ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

$\qquad$

$4 \mathbf{i}{ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

$\mathbf{4 j}{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

## 


$4 \mathbf{j}{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )






4k ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



$4 \mathbf{k}{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




4k ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



[^0]


$41{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )







4m ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




$\mathbf{4 m}{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


4m ${ }^{31}$ P NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

$$
\begin{aligned}
& \dot{B}_{0}^{\infty} \\
& 0_{8}^{\circ} \\
& \overbrace{0}^{\infty} \\
& \underset{\sim}{\infty}
\end{aligned}
$$




| 1 |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 150 | 140 | 1 |

4n ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




|  |  |  |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $l$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $$ | $\begin{aligned} & \text { He } \\ & \text { Be } \\ & \text { chis } \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6. 0 | 5.5 | $\begin{aligned} & 5.0 \\ & { }_{1}^{5}(\mathrm{ppm}) \end{aligned}$ | 4. 5 | 4.0 | 3. 5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 |

4n ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

|  |  |  |
| :---: | :---: | :---: |




4n ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )





$4 \mathbf{o}^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


(an

$\mathbf{4 p}{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


4p ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




4p ${ }^{31}$ P NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

$\qquad$

| 50 | 140 | 130 | 1 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

$\mathbf{4 q}{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


$\mathbf{4 q}{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )





4r ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )








4s ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


4s ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



4s ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )
$\stackrel{\stackrel{\rightharpoonup}{9}}{i}$




$4 t{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




| $\uparrow$ | 1 | , | , | , | , | , |  |  |  |  |  | , |  | , | + | , | , | 1 | , | 1 | , | , | + | , | 1 | 1 | 1 | 1 | 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 150 | 145 | 140 | 135 | 130 | 125 | 120 | 115 | 110 | 105 | 100 | 95 | 90 | 85 | 80 | ${ }_{\mathrm{fl}}{ }^{75}(\mathrm{pp}$ | ${ }_{\mathrm{mm})}{ }^{70}$ | 65 | 60 | 55 | 50 | 45 | 40 | 35 | 30 | 25 | 20 | 15 | 10 | 5 | 0 |

4u ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10.0 | 9. 5 | 9. 0 | 8.5 | 8.0 | 7.5 | 7.0 | 6. 5 | 6.0 | 5.5 | 5.0 | $\stackrel{4.5}{\mathrm{f} 1(\mathrm{ppm})}$ | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -0. 5 | -1.0 |



4u ${ }^{31}$ P NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




4v ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


4v ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


ヘู่ ตู่ ตั


$\qquad$


4w ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

## 




Sh



4w ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




4x ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


4x ${ }^{31}$ P NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



5a ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

$\mathbf{5 a}{ }^{\boldsymbol{1}} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

## 



$\mathbf{5 a}{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

| ${ }_{5}^{6}$ |  |  |
| :---: | :---: | :---: |
| 今「0 | 㟋 | －\％¢ ¢ \％ |





[^0]:    

