Palladium-catalyzed enantioselective decarboxylative allylic

alkylation of α -benzyl cyanoacetates: access to chiral acyclic

quaternary carbon stereocenters

Qing Bao,^{a,c,#} Ting-Jia Sun,^{a,b,#} Yan-Ping Zhang,^a Zhen-Hua Wang,^a Yong You,^a Zhen-Zhen Ge,^{a,b} Ming-Qiang Zhou,^{a,b} Jian-Qiang Zhao,^{a,*} and Wei-Cheng Yuan^{a,b,*}

^aInnovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
^bNational Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
^cSchool of Pharmacy, Zunyi Medical University, Zunyi, 563006, China
[#]These authors contributed equally.

E-mail: zhaojianqiang@cdu.edu.cn; yuanwc@cioc.ac.cn

Supporting Information

1. General experimental information	S1
2. General experimental procedures for synthesis of alkenyl carbamate 1	S1
3. General experimental procedures synthesis of α-substituted cyanoacetates 2	S4
4. General experimental procedures for asymmetric synthesis of compounds 3	S7
5. Scale-up experiment	S15
6. The procedure for the synthesis of compound 5	S15
7. The procedure for the synthesis of compound 6	S16
8. X-ray crystal structure of compound 6	S17
9. The copies of ¹ H NMR, ¹³ C NMR and HPLC spectra for compounds 3, 5, 6	

1. General experimental information

Chemical reagents were purchased from commercial sources and were used as received unless mentioned otherwise. Reactions were monitored by thin-layer chromatography (TLC). ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra were recorded in DMSO-*d*₆. ¹H NMR chemical shifts are reported in ppm relative to tetramethylsilane (TMS), with the solvent resonance employed as the internal standard (DMSO-*d*₆ at 2.50 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, brs = broad singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR chemical shifts are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard (DMSO-*d*₆ at 39.51 ppm). Melting points were recorded on a Büchi Melting Point B-545 unit. The HRMS were recorded by Agilent 6545 LC/Q-TOF mass spectrometer.

2. General experimental procedures for synthesis of alkenyl carbamate 1

2-(Iodomethyl)-prop-2-en-1-o (S2) [1,2].

To a stirring solution of 2-methylenepropane-1,3-diol (5.7 g, 65 mmol), triphenylphosphine (18.6 g, 71 mmol) and imidazole (4.8 g, 71 mmol) in a 1:1 mixture of dichloromethane/ethyl acetate (100 mL) at 0 °C was added iodine (16.4 g, 65 mmol) portion-wise during 1 h. The reaction mixture was left to stir for 9 h at 0 °C before being diluted in ethyl acetate (50 mL) followed by washing with water (100 mL). The aqueous layer was extracted with ethyl acetate (25×3 mL) and the organic layers combined, dried over anhydrous Na₂SO₄ and concentrated to yield crude material which was purified by flash column chromatography on silica gel (20% ethyl acetate in petroleum ether) to furnish the product **S2** as a colorless oil.

5-methylene-3-tosyl-1,3-oxazinan-2-one (1a)

To a solution of S2 (5.0 g, 25 mmol) in DMF (80 mL) was added chloramine-T (8.6 g, 37 mmol). And the reaction mixture was stirred for 30 minutes at room temperature. Then the reaction was quenched by aq. $Na_2S_2O_3$ (1 M, 100 mL). The mixture was extracted with ethyl acetate and the

organic layer was washed with water, dried over anhydrous Na₂SO₄. After evaporation of solvent, the obtained crude product **S3** is proceeded directly to the next step without purification.

A solution of triphosgene (7.4 g, 25 mmol) in CH₂Cl₂ (100 mL) was slowly added to a solution of *N*-(2-(hydroxymethyl)allyl)-4-methylbenzenesulfonamide **S3** (4.6 g, 25 mmol) and triethylamine (35 mL, 250 mmol, 10 equiv) in CH₂Cl₂ (100 mL) at 0 °C over 30 min. The resulting mixture was stirred for 1 h. After completion of the reaction, as indicated by TLC, the reaction was quenched with aq. NH₄Cl and extracted with CH₂Cl₂ (80 mL × 3). The organic layer was dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with (PE/EA/DCM = 1:1:1) and the crude product thus obtained was purified by the recrystallization to afford compound **1a** as a white solid.

5-methylene-3-tosyl-1,3-oxazinan-2-one (1a): White solid;

¹**H NMR (600 MHz, CDCl₃)** δ 8.08 – 7.78 (m, 2H), 7.33 (d, *J* = 8.1 Hz, 2H), 5.35 – 5.29 (m, 1H), 5.30-5.25 (m, 1H), 4.66 (s, 2H), 4.50 (t, *J* = 1.6 Hz, 2H), 2.43 (s, 3H).

5-methylene-3-((4-nitrophenyl)sulfonyl)-1,3-oxazinan-2-one) (1b) ^[1,2]

In a reaction tube equipped with a magnetic stirring bar, the solution of **S2** (2.0 g, 10 mmol) in MeCN (40 mL) was at 80 °C, followed by addition of K₂CO₃ (2.8 g, 20 mmol, 2.0 equiv) and NsNH₂ (2.0 g, 10 mmol, 1.0 equiv). The resulting mixture was stirred for 1 h, filtered, and thus the filtrate obtained was concentrated in vacuo. Then the residue was purified by column chromatography (PE/EA/CH₂Cl₂ = 1:1:1) to afford the compound **S4** as a white solid (1.2 g, 44% yield).

A solution of triphosgene (445 mg, 1.5 mmol, 1.5 equiv) in CH_2Cl_2 (10 mL) was slowly added to a solution of *N*-(2-(hydroxymethyl)allyl)-4-nitrobenzenesulfonamide **S4** (272 mg, 1.0 mmol) and triethylamine (1.4 mL, 10 mmol, 10 equiv) in CH_2Cl_2 (10 mL) at 0 °C over 30 min. The resulting mixture was stirred for 30 min. After completion of the reaction, as indicated by TLC. The reaction was quenched with aq. NH₄Cl and extracted with CH_2Cl_2 (30 mL × 3). The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with (PE/EA = 1:3) and the crude product thus obtained was purified by the recrystallization to afford compound **1b** as a white solid.

5-methylene-3-((4-nitrophenyl)sulfonyl)-1,3-oxazinan-2-one (1b): White solid;

¹**H NMR (600 MHz, CDCl₃)** δ 8.42 - 8.34 (m, 2H), 8.32 - 8.19 (m, 2H), 5.39 (t, *J* = 1.6 Hz, 1H), 5.37 - 5.33 (m, 1H), 4.72 (t, *J* = 0.9 Hz, 2H), 4.55 (t, *J* = 1.6 Hz, 2H).

3-((λ^1 -methyl)(λ^1 -oxidaneyl)boraneyl)-5-methylene-1,3-oxazinan-2-one))(1c)^[1]

A solution of **S2** (5 g, 25 mmol, 1.0 equiv) in dry toluene (20 mL) was added AgOCN (5.7 g, 11 mmol, 1.5 equiv). the resulting mixture was refluxed in toluene (50 mL) for 14 h. Then, the mixture was filtered and the precipitate was washed with ethyl acetate, and concentrated in vacuo.

The product was obtained after purification by column chromatography on silica gel (PE/EA = 1:1) to provide **S5** as a white solid.

A solution of **S5** (452 mg, 4 mmol) in THF (10 mL), DMAP (0.98 g, 0.8 mmol) was added, followed by adding dropwise the solution of di(*tert*-butyl) carbonate (1.74 g, 8 mmol) at 0 °C. After completion of the reaction, as indicated by TLC, the reaction was quenched with aq. NH₄Cl and extracted with ethyl acetate (20 mL × 2). The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with petroleum ether / ethyl acetate = 5/1 to afford compound **1c** as a yellow oil.

3-((λ¹-methyl)(λ¹-oxidaneyl)boraneyl)-5-methylene-1,3-oxazinan-2-one)) (**1c):** White solid; **¹H NMR (400 MHz, CDCl₃)** δ 5.18 (d, *J* = 6.1 Hz, 2H), 4.63 (s, 2H), 4.28 (s, 2H), 1.51 (s, 9H). **3-benzoyl-5-methylene-1,3-oxazinan-2-one (1d)** ^[1]

A solution of **S5** (452 mg, 4 mmol) in DCM (10 mL), DMAP (0.12 g, 1.0 mmol) was added, followed by adding dropwise the solution of triethylamine (1.1 mL, 8 mmol) at 0 °C, After completion of the reaction, as indicated by TLC, the reaction mixture was quenched with HCl (1M, 30 mL), concentrated under reduced pressure, diluted with water, and extracted with DCM (15 mL \times 3). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under vacuo. The product was obtained after purification by column chromatography on silica gel (PE/EA = 2:1) to give the desired product **1d** as a white solid. Compound **1e** was prepared by the same method.

3-benzoyl-5-methylene-1,3-oxazinan-2-one (1d): White solid;

¹**H NMR (400 MHz, CDCl₃)** δ 7.60 (d, *J* = 7.7 Hz, 2H), 7.53 –7.50 (m, 1H), 7.46 –7.38 (m, 2H), 5.35 – 5.27 (m, 2H), 4.84 (s, 2H), 4.50 (d, *J* = 2.1 Hz, 2H).

5-methylene-3-(phenylsulfonyl)-1,3-oxazinan-2-one (1e): White solid;

¹**H NMR (400 MHz, CDCl₃)** δ 8.16-7.96 (m, 2H), 7.70 – 7.62 (m, 1H), 7.62 – 7.50 (m, 2H), 5.32 (d, J = 1.8 Hz, 1H), 5.30 – 5.25 (m, 1H), 4.67 (s, 2H), 4.52 (t, J = 1.7 Hz, 2H);

tert-butyl (2-(((4-methylphenyl)sulfonamido)methyl)allyl) carbonate (1f))^[1,2]

To a solution of **S1** (4.0 g, 45 mmol) in DCM (40 mL) was added DMAP (0.6 g, 5 mmol), followed by adding dropwise the solution of di(*tert*-butyl) carbonate (11.4 mL, 49.5 mmol) in CH₂Cl₂ (50 mL) at 0 °C. After completion of the reaction, as indicated by TLC, the solution was concentrated under reduced pressure and the mixture was dissolved in MeCN (50 mL) followed by adding CBr₄ (15.7 g) at room temperature. Then the mixture was added PPh₃ in partially. After completion monitored by TLC, the reaction was concentrated in vacuo and purified by column chromatography (PE/EA = 100:1) to afford the product **S7**.

The solution of S7 (5 mmol, 1.25 g) in CH₃CN (20.0 mL) was heated with oil bath and refluxed

at 82 °C, followed by addition of K_2CO_3 (1.4 g, 10 mmol, 2.0 equiv), KI (10 mg) and TsNH₂ (1.7 g, 10.0 mmol). Maintaining the reaction stirring at the same temperature until **S7** consumed as monitored by TLC. Then, the suspension was filtered through a short of celite column and the filtrate was concentrated, purified by column chromatography (PE/EA = 5:1) to afford the product **1f** as a white solid.

tert-butyl (2-(((4-methylphenyl)sulfonamido)methyl)allyl) carbonate (1f): White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 7.8 Hz, 2H), 7.29 (d, *J* = 7.8 Hz, 2H), 5.16 (s, 2H), 4.86 (t, *J* = 6.5 Hz, 1H), 4.45 (s, 2H), 3.60 (d, *J* = 6.5 Hz, 2H), 2.42 (s, 3H), 1.46 (s, 9H). 2-(benzamidomethyl)allyl *tert*-butyl carbonate (1g)

To a stirring solution of **S7** (2.0 g, 8 mmol, 1.0 equiv) was dissolved in dry DMF (40 mL), NaN₃ (1.0 g, 16.0 mmol, 2.0 equiv) was added dropwise for 10 min at 0 °C. The reaction was heated at 50 °C for 12h. After completion of the reaction (confirmed by TLC analysis), a precipitate mixture formed upon cooling the reaction mixture to room temperature, then quenched by water. The aqueous phase was extracted by ethyl acetate (20 mL \times 3), and the combined extracts washed with brine. The organic phase was dried over anhydrous Na₂SO₄ and evaporated in vacuo. The obtained crude product **S8** is proceeded directly to the next step without purification.

To a solution of **S8** (0.7 g, 3.4 mmol) in THF (20 mL) was heated with oil bath and added PPh₃ (2.52 g, 9.6 mmol) in partially at 50 °C for 5 h. The solution was cooled to room temperature and added H₂O (1 mL). Maintaining the reaction stirring at 3 hours until **S8** consumed as monitored by TLC. The solvent was concentrated under reduced pressure. The DCM (40 mL), DMAP (0.6 g, 5 mmol) was added, followed by adding dropwise the solution of benzoyl chloride (0.3 mL, 2.7 mmol) in CH₂Cl₂ (5 mL) at 0 °C. After completion of the reaction, as indicated by TLC, the solution was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel (PE/EA = 10:1 to 5:1) to give the desired product **1g** as colorless oil. Compound **1h** was prepared by the same method.

2-(benzamidomethyl)allyl tert-butyl carbonate (1g): White solid;

¹**H NMR (400 MHz, CDCl₃)** δ 7.81 (d, *J* = 7.5 Hz, 2H), 7.65 – 7.31 (m, 3H), 6.61 (d, *J* = 6.3 Hz, 1H), 5.28 (s, 2H), 4.63 (s, 2H), 4.14 (d, *J* = 5.7 Hz, 2H), 1.49 (s, 9H).

tert-butyl (2-(((tert-butoxycarbonyl)oxy)methyl)allyl)carbamate (1h)

¹**H NMR (400 MHz, CDCl₃)** δ 5.17 (d, J = 11.3 Hz, 2H), 4.77 (s, 1H), 4.56 (s, 2H), 3.78 (d, J = 5.1 Hz, 2H), 1.49 (s, 9H), 1.45 (s, 9H).

3. General experimental procedures synthesis of α -substituted cyanoacetates 2

The benzaldehyde are known compounds, which were prepared according to literature **2a-2p** (**2a** as the example)^[3,4].

Step 1:

To a stirring solution of benzaldehyde (2.0 mL, 20 mmol, 1.0 equiv), ethyl cyanoacetate (2.2 mL, 21 mmol, 1.05 equiv) in ethanol (10 mL), was added the piperdine (0.1 mL, 1 mmol, 0.05 equiv) dropwise at room temperature. The reaction mixture was stirred for 24 h at room temperature. Then, the mixture was filtered and the precipitate was washed with ethanol to afford pure product **S10** as white solid. The obtained crude product **S10** is proceeded directly to the next step without purification.

Step 2:

To a stirring solution of **S10** (2.3 g, 11 mmol, 1.0 equiv) was dissolved in dry ethanol (15 mL), sodium borohydrate (0.5 g, 13.2 mmol, 1.2 equiv) was slowly added dropwise for 10 min at 0 °C. After completion of the reaction, as indicated by TLC. The reaction was quenched with aq. NH₄Cl and extracted with ethyl acetate. The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under vacuum. Then the residue was purified by column chromatography (PE/EA 10:1) to afford the compound **2a** as a colorless oil.

2a: ¹**H NMR (400 MHz, CDCl₃)** δ 7.38 – 7.33 (m, 1H), 7.34 – 7.23 (m, 4H), 4.23 (q, *J* = 7.2 Hz, 2H), 3.72 (dd, *J* = 8.4, 5.8 Hz, 1H), 3.28 (dd, *J* = 13.8, 5.8 Hz, 1H), 3.19 (dd, *J* = 13.8, 8.4 Hz, 1H), 1.26 (t, *J* = 7.2 Hz, 3H).

2b: ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.38 (m, 1H), 7.36 – 7.32 (m, 1H), 7.28 – 7.25 (m, 2H), 4.27 (qd, *J* = 7.2, 1.5 Hz, 2H), 3.91 (dd, *J* = 9.5, 6.3 Hz, 1H), 3.52 (dd, *J* = 13.8, 6.3 Hz, 1H), 3.21 (dd, *J* = 13.8, 9.5 Hz, 1H), 1.30 (t, *J* = 7.1 Hz, 3H).

2c: ¹**H NMR (400 MHz, CDCl₃)** δ 7.31 – 7.24 (m, 3H), 7.21 – 7.14 (m, 1H), 4.24 (qd, *J* = 7.1, 0.8 Hz, 2H), 3.73 (dd, *J* = 8.3, 5.9 Hz, 1H), 3.29 – 3.11 (m, 2H), 1.27 (t, *J* = 7.2 Hz, 3H).

2d: ¹**H NMR (400 MHz, CDCl₃)** δ 7.33 – 7.28 (m, 2H), 7.24 – 7.19 (m, 2H), 4.23 (q, *J* = 7.1 Hz, 2H), 3.71 (dd, *J* = 8.2, 5.8 Hz, 1H), 3.20 (qd, *J* = 13.9, 7.0 Hz, 2H), 1.26 (t, *J* = 7.2 Hz, 3H).

2e: ¹**H NMR (400 MHz, CDCl₃)** δ 7.49 – 7.44 (m, 2H), 7.18 – 7.13 (m, 2H), 4.23 (q, *J* = 7.2 Hz, 2H), 3.70 (dd, *J* = 8.2, 5.8 Hz, 1H), 3.19 (qd, *J* = 14.0, 7.0 Hz, 2H), 1.27 (t, *J* = 7.2 Hz, 3H).

2f: ¹H NMR (400 MHz, CDCl₃) δ 8.21 – 8.13 (m, 2H), 7.66 (dt, *J* = 7.8, 1.4 Hz, 1H), 7.55 (t, *J* = 7.9 Hz, 1H), 4.27 (q, *J* = 7.1 Hz, 2H), 3.81 (dd, *J* = 8.0, 5.9 Hz, 1H), 3.43 – 3.29 (m, 2H), 1.29 (t, *J* = 7.1 Hz, 3H).

2g: ¹**H NMR (400 MHz, CDCl₃)** δ 7.25 (t, *J* = 7.9 Hz, 1H), 6.87 – 6.80 (m, 3H), 4.28 – 4.19 (m, 2H), 3.80 (s, 3H), 3.72 (dd, *J* = 8.5, 5.8 Hz, 1H), 3.25 (dd, *J* = 13.8, 5.8 Hz, 1H), 3.15 (dd, *J* = 13.8, 8.4 Hz, 1H), 1.27 (t, *J* = 7.2 Hz, 3H).

2h: ¹H NMR (400 MHz, CDCl₃) δ 7.21 – 7.14 (m, 2H), 6.93 – 6.80 (m, 2H), 4.23 (q, *J* = 7.2 Hz, 2H), 3.79 (s, 3H), 3.68 (dd, *J* = 8.2, 5.8 Hz, 1H), 3.21 (dd, *J* = 13.9, 5.8 Hz, 1H), 3.14 (dd, *J* = 13.9, 8.2 Hz, 1H), 1.27 (t, *J* = 7.2 Hz, 3H).

2i:¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.16 (m, 4H), 4.26 (qd, *J* = 7.2, 0.8 Hz, 2H), 3.68 (dd, *J* = 9.4, 6.0 Hz, 1H), 3.34 (dd, *J* = 14.1, 6.0 Hz, 1H), 3.19 (dd, *J* = 14.1, 9.4 Hz, 1H), 2.37 (s, 3H), 1.29 (t, *J* = 7.1 Hz, 3H).

2j: ¹**H NMR (400 MHz, CDCl₃)** δ 7.23 (td, *J* = 7.4, 0.9 Hz, 1H), 7.13 – 7.04 (m, 3H), 4.24 (qd, *J* = 7.2, 0.7 Hz, 2H), 3.71 (dd, *J* = 8.5, 5.8 Hz, 1H), 3.24 (dd, *J* = 13.8, 5.8 Hz, 1H), 3.15 (dd, *J* = 13.8, 8.5 Hz, 1H), 2.34 (d, *J* = 0.9 Hz, 3H), 1.27 (t, *J* = 7.1 Hz, 3H).

2k: ¹H NMR (400 MHz, CDCl₃) δ 7.15 (d, *J* = 1.1 Hz, 4H), 4.24 (q, *J* = 7.1 Hz, 2H), 3.69 (dd, *J* = 8.4, 5.8 Hz, 1H), 3.24 (dd, *J* = 13.8, 5.8 Hz, 1H), 3.15 (dd, *J* = 13.8, 8.4 Hz, 1H), 2.33 (s, 3H), 1.28 (t, *J* = 7.1 Hz, 3H).

21: ¹**H NMR (400 MHz, CDCl₃)** δ 6.81 (dd, *J* = 9.9, 1.3 Hz, 3H), 4.23 (q, *J* = 7.2 Hz, 2H), 3.87 (d, *J* = 5.0 Hz, 6H), 3.69 (dd, *J* = 8.3, 5.7 Hz, 1H), 3.30 – 3.02 (m, 2H), 1.28 (t, *J* = 7.1 Hz, 3H).

2m: ¹**H NMR (400 MHz, CDCl₃)** δ 7.10 (d, *J* = 7.6 Hz, 1H), 7.05 – 6.98 (m, 2H), 4.25 (q, *J* = 7.1 Hz, 2H), 3.70 (dd, *J* = 8.5, 5.8 Hz, 1H), 3.25 – 3.08 (m, 2H), 2.25 (d, *J* = 4.1 Hz, 6H), 1.29 (t, *J* = 7.2 Hz, 3H).

2n: ¹**H NMR (400 MHz, CDCl₃)** δ 7.23 (dd, *J* = 5.1, 1.3 Hz, 1H), 7.02 – 6.95 (m, 2H), 4.27 (q, *J* = 7.1 Hz, 2H), 3.76 (dd, *J* = 7.4, 6.0 Hz, 1H), 3.50 – 3.45 (m, 2H), 1.30 (t, *J* = 7.2 Hz, 3H).

20: ¹**H NMR (400 MHz, CDCl₃)** δ δ 7.87 – 7.77 (m, 3H), 7.74 (s, 1H), 7.52 – 7.44 (m, 2H), 7.38 (dd, *J* = 8.4, 1.8 Hz, 1H), 4.23 (q, *J* = 7.1 Hz, 2H), 3.81 (dd, *J* = 8.4, 5.9 Hz, 1H), 3.45 (dd, *J* = 13.9, 5.9 Hz, 1H), 3.36 (dd, *J* = 13.9, 8.4 Hz, 1H), 1.24 (t, *J* = 7.1 Hz, 3H).

2p: ¹**H NMR** (**400 MHz**, **CDCl**₃) δ 7.37 – 7.28 (m, 2H), 7.27 – 7.18 (m, 3H), 4.24 (q, *J* = 7.1 Hz, 2H), 3.44 (dd, *J* = 8.0, 6.5 Hz, 1H), 2.95 – 2.76 (m, 2H), 2.31 – 2.23 (m, 2H), 1.31 (t, *J* = 7.1 Hz, 3H).

2q: ¹**H NMR (400 MHz, CDCl₃)** δ 7.54 – 7.34 (m, 5H), 4.72 (s, 1H), 4.29 – 4.17 (m, 2H), 1.28 (t, *J* = 7.1 Hz, 3H).

References:

[1] Allen, B. D. W.; Connolly, M. J.; Harrity, J. P. A. Chem.-Eur. J. 2016, 22, 13000.

[2] Yuan S P, Bao Q, Sun T J, et al. Organic Letters, 2022, 24(45): 8348-8353.

[3] Reddy S N, Reddy V R, Dinda S, et al. Organic Letters, 2018, 20(9): 2572-2575.

[4] Zhang D, Lian M, Liu J, et al. Organic Letters, 2019, 21(8): 2597-2601.

4. General experimental procedures for asymmetric synthesis of compounds 3

To a flame-dried reaction tube was added $Pd_2(dba)_3 \cdot CHCl_3$ (2.6 mg, 2.5 mol%), L3 (4.5 mg, 7.5 mol%), 1a (26.7 mg, 0.1 mmol) and 2a (24.3 mg, 0.12 mmol) respectively. Then replaced argon three times quickly, and the reaction mixture was cooled to -30 °C followed by adding butanone (1.0 mL) for stirring 15 h. After completion of the reaction, as indicated by TLC, then the residue was purified by column chromatography (PE/EA 3:1) to afford the compound **3a** as a colorless oil

ethyl (R)-2-benzyl-2-cyano-4-(((4-methylphenyl)sulfonamido)methyl)pent-4-enoate (3a)

The product **3a** was purified by flash column chromatography (ethyl acetate /petroleum ether = 3:1); Colorless oil; 47.7 mg, 99% yield; 93% ee; $[\alpha]_D^{20} = +12.7$ (*c* 1.00, CH₂Cl₂);

The ee was determined by HPLC (Chiralpak IC, ⁱPrOH/hexane = 30/70, flow rate 1.0 mL/min, $\lambda = 220$ nm, $t_{major} = 19.2$ min, $t_{minor} = 21.7$ min);

¹**H NMR** (400 MHz, CDCl₃) δ 7.74 (d, J = 7.9 Hz, 2H), 7.36 – 7.28 (m, 5H), 7.25 (q, J = 4.6, 3.7 Hz, 2H), 5.19 (s, 1H), 5.11 (s, 1H), 4.82 (t, J = 6.6 Hz, 1H), 4.08 (q, J = 7.1 Hz, 2H), 3.65 (dd, J = 15.3, 7.0 Hz, 1H), 3.54 (dd, J = 15.4, 6.1 Hz, 1H), 3.17 (d, J = 13.4 Hz, 1H), 3.03 (d, J = 13.4 Hz, 1H), 2.77 (d, J = 14.7 Hz, 1H), 2.54 (d, J = 14.7 Hz, 1H), 2.42 (s, 3H), 1.10 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.3, 143.7, 138.7, 136.8, 133.7, 130.0, 129.9, 128.7, 128.1, 127.3, 119.0, 118.3, 63.1, 50.8, 48.3, 44.0, 40.2, 21.7, 13.9;

HRMS (ESI-TOF) calcd. for $C_{23}H_{27}N_2O_4S$ [M + H]⁺ 427.1686; found: 427.1696.

ethyl (R)-2-benzyl-4-(((4-bromophenyl)sulfonamido)methyl)-2-cyanopent-4-enoate (3b)

The product **3b** was purified by flash column chromatography (ethyl acetate /petroleum ether = 3:1); Colorless oil; 41.4 mg, 99% yield; 93% ee; $[\alpha]_D^{20} = +14.2$ (*c* 1.00, CH₂Cl₂);

The ee was determined by HPLC (Chiralpak IC, 'PrOH/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 220$ nm, $t_{major} = 29.6$ min, $t_{minor} = 32.5$ min);

¹**H NMR (400 MHz, CDCl₃)** δ 7.79 (d, J = 7.7 Hz, 2H), 7.54 – 7.48 (m, 1H), 7.48 – 7.40 (m, 2H), 7.24 (d, J = 5.6 Hz, 3H), 7.17 (d, J = 7.8 Hz, 2H), 5.12 (s, 1H), 5.03 (s, 1H), 4.88 (t, J = 6.5 Hz, 1H), 4.00 (q, J = 7.0 Hz, 2H), 3.60 (dd, J = 15.3, 6.0 Hz, 1H), 3.50 (dd, J = 15.3, 4.8 Hz, 1H), 3.09 (d, J = 13.4 Hz, 1H), 2.96 (d, J = 13.4 Hz, 1H), 2.68 (d, J = 14.7 Hz, 1H), 2.46 (d, J = 14.7 Hz, 1H), 1.03 (t, J = 7.1 Hz, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 168.3, 139.9, 138.7, 133.7, 132.9, 130.0, 129.3, 128.7, 128.1, 127.2, 119.0, 118.4, 63.1, 50.8, 48.2, 44.0, 40.2, 13.9;

HRMS (ESI-TOF) calcd. for $C_{22}H_{25}N_2O_4S$ [M + H]⁺ 413.1530; found: 413.1537.

ethyl (R)-2-benzyl-2-cyano-4-(((4-nitrophenyl)sulfonamido)methyl)pent-4-enoate (3c)

The product **3c** was purified by flash column chromatography (ethyl acetate /petroleum ether = 3:1); Colorless oil; 44.7 mg, 98% yield; 91% ee; $[\alpha]_D^{20} = +4.0$ (*c* 1.00, CH₂Cl₂);

The ee was determined by HPLC (Chiralpak IB EtOH/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 220 \text{ nm}, t_{\text{minor}} = 21.5 \text{ min}, t_{\text{major}} = 22.9 \text{ min}$);

¹**H NMR (400 MHz, CDCl₃)** δ 8.27 (d, J = 8.3 Hz, 2H), 7.97 (d, J = 8.3 Hz, 2H), 7.25 (d, J = 5.1 Hz, 3H), 7.19 – 7.12 (m, 2H), 5.13 (s, 1H), 5.08 (t, J = 6.7 Hz, 1H), 5.05 (s, 1H), 4.03 (q, J = 7.2 Hz, 2H), 3.69 (dd, J = 15.7, 6.7 Hz, 1H), 3.58 (dd, J = 15.6, 5.7 Hz, 1H), 3.11 (d, J = 13.4 Hz, 1H), 2.98 (d, J = 13.3 Hz, 1H), 2.69 (d, J = 14.5 Hz, 1H), 2.44 (d, J = 14.5 Hz, 1H), 1.05 (t, J = 7.2 Hz, 3H);

¹³C NMR (101 MHz, CDCl₃)δ 168.2, 150.2, 145.9, 138.3, 133.5, 130.0, 128.8, 128.5, 128.3, 124.6, 119.0, 118.9, 63.2, 50.8, 48.1, 44.0, 40.1, 14.0;

HRMS (ESI-TOF) calcd. for $C_{22}H_{24}N_3O_6S$ [M + H]⁺ 458.1380; found: 458.1381.

ethyl (R)-4-(benzamidomethyl)-2-benzyl-2-cyanopent-4-enoate (3d)

The product **3d** was purified by flash column chromatography (ethyl acetate /petroleum ether = 3:1); Colorless oil; 31.4 mg, 84% yield; 89% ee; $[\alpha]_D^{20} = +12.3$ (*c* 1.00, CH₂Cl₂);

The ee was determined by HPLC (Chiralpak IB EtOH/hexane = 7/93, flow rate 0.8 mL/min, $\lambda = 254$ nm, $t_{minor} = 15.6$ min, $t_{major} = 16.7$ min);

¹**H NMR (400 MHz, CDCl₃)** δ 7.72 (d, *J* = 7.6 Hz, 2H), 7.47 – 7.40 (m, 1H), 7.40 – 7.32 (m, 2H), 7.22 (d, *J* = 6.0 Hz, 5H), 6.52 (t, *J* = 6.0 Hz, 1H), 5.19 (s, 1H), 5.10 (s, 1H), 4.07 (dq, *J* = 14.3, 7.1, 6.6 Hz, 3H), 3.98 (dd, *J* = 15.9, 5.7 Hz, 1H), 3.15 (d, *J* = 13.4 Hz, 1H), 3.03 (d, *J* = 13.4 Hz, 1H), 2.82 (d, *J* = 14.6 Hz, 1H), 2.55 (d, *J* = 14.6 Hz, 1H), 1.05 (t, *J* = 7.2 Hz, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 168.4, 167.4, 139.8, 134.2, 133.7, 131.7, 130.1, 128.7, 128.6, 128.1, 127.1, 119.3, 117.1, 63.1, 51.0, 44.8, 44.1, 40.9, 13.9;

HRMS (ESI-TOF) calcd. for $C_{23}H_{25}N_2O_3$ [M + H]⁺ 377.1860; found: 377.1861.

ethyl (R)-2-benzyl-4-(((tert-butoxycarbonyl)amino)methyl)-2-cyanopent-4-enoate (3e)

The product **3e** was purified by flash column chromatography (ethyl acetate /petroleum ether = 3:1); Colorless oil; 34.8 mg, 94% yield; 82% ee; $[\alpha]_D^{20} = +15.7$ (*c* 1.00, CH₂Cl₂);

The ee was determined by HPLC (Chiralpak IC, ^{*i*}PrOH/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 220$ nm, $t_{major} = 9.2$ min, $t_{minor} = 10.0$ min);

¹**H** NMR (400 MHz, CDCl₃) δ 7.28 – 7.19 (m, 5H), 5.12 (s, 1H), 5.04 (s, 1H), 4.72 (s, 1H), 4.05 (d, J = 6.8 Hz, 2H), 3.78 – 3.62 (m, 2H), 3.15 (d, J = 13.4 Hz, 1H), 3.02 (d, J = 13.4 Hz, 1H), 2.76 (d, J = 14.6 Hz, 1H), 2.51 (d, J = 14.6 Hz, 1H), 1.38 (s, 9H), 1.06 (t, J = 7.1 Hz, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 168.4, 155.9, 140.4, 133.9, 130.1, 128.7, 128.1, 119.1, 116.1, 79.7, 77.5, 77.2, 76.8, 63.0, 50.9, 45.5, 44.0, 40.8, 28.5, 14.0;

HRMS (ESI-TOF) calcd. for $C_{21}H_{29}N_2O_4$ [M + H]⁺ 373.2122; found: 373.2122.

ethyl (*R*)-2-(2-chlorobenzyl)-2-cyano-4-(((4-methylphenyl)sulfonamido)methyl)pent-4-enoate (3f)

The product **3f** was purified by flash column chromatography (ethyl acetate /petroleum ether = 3:1); Colorless oil; 48.4 mg, 99% yield; 83% ee; $[\alpha]_D^{20} = +19.5$ (*c* 1.00, CH₂Cl₂);

The ee was determined by HPLC (Chiralpak IA, EtOH/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 220$ nm, $t_{minor} = 13.1$ min, $t_{major} = 16.8$ min);

¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 7.9 Hz, 2H), 7.30 (dd, J = 15.8, 7.3 Hz, 4H), 7.23 – 7.12 (m, 2H), 5.21 (s, 1H), 5.11 (s, 1H), 4.92 (t, J = 6.5 Hz, 1H), 4.11 (q, J = 7.2 Hz, 2H), 3.65 (dd, J = 15.3, 6.9 Hz, 1H), 3.55 (dd, J = 15.4, 6.1 Hz, 1H), 3.15 (d, J = 13.4 Hz, 1H), 3.00 (d, J = 13.5 Hz, 1H), 2.77 (d, J = 14.6 Hz, 1H), 2.57 (d, J = 14.6 Hz, 1H), 2.43 (s, 3H), 1.13 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.0, 143.7, 138.6, 136.8, 135.8, 134.4, 130.0 (2C), 129.9 (2C), 128.4, 128.3, 127.3 (2C), 118.6, 118.5, 63.2, 50.7, 48.2, 43.4, 40.3, 21.6, 14.0;

HRMS (ESI-TOF) calcd. for $C_{23}H_{26}CIN_2O_4S$ [M + H]⁺ 463.1296; found: 463.1304.

ethyl (*R*)-2-(3-chlorobenzyl)-2-cyano-4-(((4-methylphenyl)sulfonamido)methyl)pent-4-enoate (3g)

The product **3g** was purified by flash column chromatography (ethyl acetate /petroleum ether = 3:1); Colorless oil; 48.6 mg, 99% yield; 91% ee; $[\alpha]_D^{20} = +11.3$ (*c* 1.00, CH₂Cl₂);

The ee was determined by HPLC (Chiralpak IA, EtOH/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 220$ nm, $t_{minor} = 15.2$ min, $t_{major} = 22.6$ min);

¹**H NMR (400 MHz, CDCl₃)** δ 7.74 (d, *J* = 7.9 Hz, 2H), 7.44 – 7.34 (m, 2H), 7.30 (d, *J* = 7.9 Hz, 2H), 7.25 (q, *J* = 4.1 Hz, 2H), 5.21 (s, 1H), 5.11 (s, 1H), 4.90 (t, *J* = 6.5 Hz, 1H), 4.17 (q, *J* = 7.2 Hz, 2H), 3.65 (dd, *J* = 15.4, 7.0 Hz, 1H), 3.55 (dd, *J* = 15.4, 6.2 Hz, 1H), 3.38 (d, *J* = 14.0 Hz, 1H), 3.32 (d, *J* = 14.0 Hz, 1H), 2.84 (d, *J* = 14.7 Hz, 1H), 2.52 (d, *J* = 14.7 Hz, 1H), 2.42 (s, 3H), 1.18 (t, *J* = 7.2 Hz, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 168.1, 143.6, 138.7, 136.9, 135.0, 131.9, 131.7, 130.0, 129.8, 129.5, 127.2, 127.1, 118.6, 118.5, 63.4, 49.8, 48.2, 39.8, 39.7, 21.6, 13.9;

HRMS (ESI-TOF) calcd. for $C_{23}H_{26}ClN_2O_4S$ [M + H]⁺ 461.1296; found: 461.1305.

ethyl (*R*)-2-(4-chlorobenzyl)-2-cyano-4-(((4-methylphenyl)sulfonamido)methyl)pent-4-enoate (3h)

The product **3h** was purified by flash column chromatography (ethyl acetate /petroleum ether = 3:1); Colorless oil; 38.7 mg, 84% yield; 92% ee; $[\alpha]_D^{20} = +17.2$ (*c* 1.00, CH₂Cl₂);

The ee was determined by HPLC (Chiralpak AS-H, EtOH/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 220$ nm, $t_{minor} = 17.8$ min, $t_{major} = 26.2$ min);

¹**H NMR (400 MHz, CDCl₃)** δ 7.74 (d, *J* = 7.9 Hz, 2H), 7.34 – 7.27 (m, 4H), 7.19 (d, *J* = 8.0 Hz, 2H), 5.20 (s, 1H), 5.10 (s, 1H), 4.86 (t, *J* = 6.5 Hz, 1H), 4.14 – 4.04 (m, 2H), 3.65 (dd, *J* = 15.4, 6.9 Hz, 1H), 3.54 (dd, *J* = 15.3, 6.1 Hz, 1H), 3.15 (d, *J* = 13.5 Hz, 1H), 3.00 (d, *J* = 13.5 Hz, 1H), 2.76 (d, *J* = 14.6 Hz, 1H), 2.56 (d, *J* = 14.7 Hz, 1H), 2.43 (s, 3H), 1.13 (t, *J* = 7.1 Hz, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 168.1, 143.8, 138.6, 136.8, 134.2, 132.3, 131.4, 129.9, 128.9, 127.3, 118.8, 118.5, 63.2, 50.7, 48.2, 43.1, 40.2, 21.7, 14.0;

HRMS (ESI-TOF) calcd. for $C_{23}H_{26}CIN_2O_4S$ [M + H]⁺ 461.1296; found: 461.1301.

ethyl (*R*)-2-(4-bromobenzyl)-2-cyano-4-(((4-methylphenyl)sulfonamido)methyl)pent-4-enoate (3i)

The product **3i** was purified by flash column chromatography (ethyl acetate /petroleum ether = 3:1); Colorless oil; 45.2 mg, 89% yield; 92% ee; $[\alpha]_D^{20} = +30.4$ (*c* 1.00, CH₂Cl₂);

The ee was determined by HPLC (Chiralpak IA, EtOH/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 220$ nm, $t_{minor} = 15.7$ min, $t_{major} = 21.5$ min);

¹**H** NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 7.8 Hz, 2H), 7.45 (d, J = 7.9 Hz, 2H), 7.31 (d, J = 7.9 Hz, 2H), 7.13 (d, J = 8.0 Hz, 2H), 5.20 (s, 1H), 5.10 (s, 1H), 4.16 – 4.04 (m, 2H), 3.65 (dd, J = 15.4, 7.0 Hz, 1H), 3.54 (dd, J = 15.4, 6.2 Hz, 1H), 3.14 (d, J = 13.5 Hz, 1H), 2.99 (d, J = 13.5 Hz, 1H), 2.76 (d, J = 14.6 Hz, 1H), 2.56 (d, J = 14.7 Hz, 1H), 2.43 (s, 3H), 1.14 (t, J = 7.2 Hz, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 168.1, 143.7, 138.6, 136.7, 132.8, 131.9, 131.7, 129.9, 127.2, 122.4, 118.8, 118.5, 63.2, 50.6, 48.2, 43.2, 40.2, 21.7, 14.0;

HRMS (ESI-TOF) calcd. for $C_{23}H_{26}BrN_2O_4S$ [M + H]⁺ 505.0791; found: 505.0797.

$ethyl\ (R) - 2 - cyano - 4 - (((4 - methyl phenyl) sulfon a mido) methyl) - 2 - (3 - nitrobenzyl) pent - 4 - enoate$

The product **3i** was purified by flash column chromatography (ethyl acetate /petroleum ether = 3:1); Colorless oil; 49.4 mg, 99% yield; 89% ee; $[\alpha]_D^{20} = +30.4$ (*c* 1.00, CH₂Cl₂);

The ee was determined by HPLC (Chiralpak IA, EtOH/hexane = 40/60, flow rate 1.0 mL/min, $\lambda = 220$ nm, $t_{minor} = 16.3$ min, $t_{major} = 21.1$ min);

¹**H NMR (400 MHz, CDCl₃)** δ 8.23 – 8.14 (m, 1H), 8.09 (s, 1H), 7.75 (d, *J* = 8.2 Hz, 2H), 7.66 (d, *J* = 7.6 Hz, 1H), 7.57 – 7.50 (m, 1H), 7.32 (d, *J* = 7.9 Hz, 2H), 5.23 (s, 1H), 5.20 – 5.07 (m, 2H), 4.20 – 4.08 (m, 2H), 3.67 (dd, *J* = 15.4, 6.8 Hz, 1H), 3.57 (dd, *J* = 15.4, 6.2 Hz, 1H), 3.33 (d, *J* = 15.4, 6.2 Hz, 1H), 3.33 (d, *J* = 15.4, 6.8 Hz, 1H), 3.57 (dd, *J* = 15.4, 6.2 Hz, 1H), 3.33 (d, *J* = 15.4, 6.8 Hz, 1H), 3.57 (dd, *J* = 15.4, 6.2 Hz, 1H), 3.33 (d, *J* = 15.4, 6.8 Hz, 1H), 3.57 (dd, *J* = 15.4, 6.2 Hz, 1H), 3.57 (dd, *J* = 15.4, 6.8 Hz, 1H), 3.57 (dd, *J* = 15.4, 6.2 Hz, 1H), 3.58 (dd, *J* = 15.4, 6.8 Hz, 1H), 3.57 (dd, *J* = 15.4, 6.2 Hz, 1H), 3.58 (dd, *J* = 15.4, 6.8 Hz, 1H), 3.58 (dd, J = 15.

13.7 Hz, 1H), 3.16 (d, *J* = 13.6 Hz, 1H), 2.82 (d, *J* = 14.6 Hz, 1H), 2.67 (d, *J* = 14.6 Hz, 1H), 2.42 (s, 3H), 1.15 (t, *J* = 7.1 Hz, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 167.7, 148.3, 143.7, 138.4, 136.7, 136.3, 135.9, 129.8, 129.7, 127.2, 124.8, 123.2, 118.7, 118.3, 63.4, 50.7, 48.2, 42.8, 40.2, 21.6, 13.9;

HRMS (ESI-TOF) calcd. for $C_{23}H_{26}N_3O_6S$ [M + H]⁺ 472.1537; found: 472.1544.

ethyl (*R*)-2-cyano-2-(3-methoxybenzyl)-4-(((4-methylphenyl)sulfonamido)methyl)pent-4enoate (3k)

The product **3k** was purified by flash column chromatography (ethyl acetate /petroleum ether = 3:1); Colorless oil; 45.7 mg, 99% yield; 88% ee; $[\alpha]_D^{20} = +12.3$ (*c* 1.00, CH₂Cl₂);

The ee was determined by HPLC (Chiralpak IA, EtOH/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 220$ nm, $t_{minor} = 15.9$ min, $t_{major} = 20.3$ min);

¹**H NMR (400 MHz, CDCl₃)** δ 7.74 (d, *J* = 7.9 Hz, 2H), 7.31 (d, *J* = 7.9 Hz, 2H), 7.26 – 7.18 (m, 1H), 6.88 – 6.77 (m, 3H), 5.19 (s, 1H), 5.10 (s, 1H), 4.86 (t, *J* = 6.6 Hz, 1H), 4.10 (q, *J* = 7.2 Hz, 2H), 3.79 (s, 3H), 3.65 (dd, *J* = 15.4, 7.0 Hz, 1H), 3.54 (dd, *J* = 15.4, 6.1 Hz, 1H), 3.15 (d, *J* = 13.4 Hz, 1H), 3.00 (d, *J* = 13.4 Hz, 1H), 2.76 (d, *J* = 14.7 Hz, 1H), 2.54 (d, *J* = 14.7 Hz, 1H), 2.43 (s, 3H), 1.13 (t, *J* = 7.1 Hz, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 168.3, 159.7, 143.7, 138.8, 136.9, 135.1, 129.9, 129.7, 127.3, 122.3, 119.0, 118.4, 115.6, 113.7, 63.1, 55.3, 50.8, 48.3, 44.0, 40.2, 21.6, 14.0;

HRMS (ESI-TOF) calcd. for $C_{24}H_{29}N_2O_5S$ [M + H]⁺ 457.1792; found: 457.1782.

ethyl (*R*)-2-cyano-2-(4-methoxybenzyl)-4-(((4-methylphenyl)sulfonamido)methyl)pent-4enoate (3l)

The product **31** was purified by flash column chromatography (ethyl acetate /petroleum ether = 3:1); Colorless oil; 46.5 mg, 99% yield; 88% ee; $[\alpha]_D^{20} = +13.9$ (*c* 1.00, CH₂Cl₂);

The ee was determined by HPLC (Chiralpak IA, EtOH/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 220$ nm, $t_{minor} = 16.1$ min, $t_{major} = 20.9$ min);

¹**H NMR (400 MHz, CDCl₃)** δ 7.74 (d, *J* = 7.9 Hz, 2H), 7.31 (d, *J* = 7.9 Hz, 2H), 7.17 (d, *J* = 8.2 Hz, 2H), 6.85 (d, *J* = 8.1 Hz, 2H), 5.18 (s, 1H), 5.10 (s, 1H), 4.74 (t, *J* = 6.5 Hz, 1H), 4.16 – 4.05 (m, 2H), 3.79 (s, 3H), 3.65 (dd, *J* = 15.4, 7.0 Hz, 1H), 3.54 (dd, *J* = 15.3, 6.1 Hz, 1H), 3.13 (d, *J* = 13.6 Hz, 1H), 2.97 (d, *J* = 13.6 Hz, 1H), 2.74 (d, *J* = 14.7 Hz, 1H), 2.52 (d, *J* = 14.7 Hz, 1H), 2.43 (s, 3H), 1.14 (t, *J* = 7.1 Hz, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 168.4, 159.5, 143.7, 138.8, 136.9, 131.2, 129.9, 127.3, 125.7, 119.1, 118.3, 114.1, 63.0, 55.4, 51.1, 48.3, 43.3, 40.1, 21.7, 14.0;

HRMS (ESI-TOF) calcd. for $C_{24}H_{29}N_2O_5S$ [M + H]⁺ 457.1792; found: 457.1797.

ethyl (*R*)-2-cyano-2-(2-methylbenzyl)-4-(((4-methylphenyl)sulfonamido)methyl)pent-4enoate (3m)

The product 3m was purified by flash column chromatography (ethyl acetate /petroleum ether = 3:1);

Colorless oil; 42.2 mg, 96% yield; 92% ee; $[\alpha]_D^{20} = +139$ (*c* 1.00, CH₂Cl₂);

The ee was determined by HPLC (Chiralpak IC, ^{*i*}PrOH/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 220$ nm, $t_{major} = 32.9$ min, $t_{minor} = 36.4$ min);

¹**H** NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 7.9 Hz, 2H), 7.30 (d, *J* = 7.9 Hz, 2H), 7.23 – 7.11 (m, 4H), 5.20 (s, 1H), 5.11 (s, 1H), 4.85 (t, *J* = 6.5 Hz, 1H), 4.11 (q, *J* = 7.2 Hz, 2H), 3.66 (dd, *J* = 15.3, 7.0 Hz, 1H), 3.54 (dd, *J* = 15.3, 6.1 Hz, 1H), 3.22 (d, *J* = 14.0 Hz, 1H), 3.16 (d, *J* = 14.0 Hz, 1H), 2.82 (d, *J* = 14.6 Hz, 1H), 2.58 (d, *J* = 14.6 Hz, 1H), 2.42 (s, 3H), 2.37 (s, 3H), 1.13 (t, *J* = 7.1 Hz, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 168.7, 143.7, 138.8, 137.3, 136.9, 132.3, 131.1, 130.2, 129.9, 128.1, 127.3, 126.2, 119.2, 118.4, 63.1, 50.1, 48.3, 40.4, 40.1, 21.6, 20.0, 13.9;

HRMS (ESI-TOF) calcd. for $C_{24}H_{29}N_2O_4S$ [M + H]⁺ 441.1843; found: 441.1847.

ethyl (*R*)-2-cyano-2-(3-methylbenzyl)-4-(((4-methylphenyl)sulfonamido)methyl)pent-4enoate (3n)

The product **3n** was purified by flash column chromatography (ethyl acetate /petroleum ether = 3:1); Colorless oil; 42.9 mg, 97% yield; 91% ee; $[\alpha]_D^{20} = +11.4$ (*c* 1.00, CH₂Cl₂);

The ee was determined by HPLC (Chiralpak IC, 'PrOH/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 220$ nm, $t_{major} = 34.1$ min, $t_{minor} = 40.0$ min);

¹**H NMR (400 MHz, CDCl₃)** δ 7.74 (d, *J* = 7.9 Hz, 2H), 7.31 (d, *J* = 7.9 Hz, 2H), 7.23 – 7.17 (m, 1H), 7.11 (d, *J* = 7.7 Hz, 1H), 7.04 (d, *J* = 6.5 Hz, 2H), 5.19 (s, 1H), 5.10 (s, 1H), 4.86 (t, *J* = 6.6 Hz, 1H), 4.09 (q, *J* = 7.2 Hz, 2H), 3.64 (dd, *J* = 15.3, 7.0 Hz, 1H), 3.54 (dd, *J* = 15.4, 6.1 Hz, 1H), 3.13 (d, *J* = 13.4 Hz, 1H), 2.99 (d, *J* = 13.4 Hz, 1H), 2.76 (d, *J* = 14.7 Hz, 1H), 2.53 (d, *J* = 14.7 Hz, 1H), 2.42 (s, 3H), 2.33 (s, 3H), 1.15 – 1.08 (m, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 168.3, 143.7, 138.8, 138.3, 136.9, 133.6, 130.7, 129.9, 128.8, 128.6, 127.3, 127.0, 119.0, 118.3, 63.0, 50.8, 48.3, 44.0, 40.2, 21.6, 21.4, 13.9;

HRMS (ESI-TOF) calcd. for $C_{24}H_{29}N_2O_4S$ [M + H]⁺ 441.1843; found: 441.1850.

ethyl (*R*)-2-cyano-2-(4-methylbenzyl)-4-(((4-methylphenyl)sulfonamido)methyl)pent-4enoate (30)

The product **30** was purified by flash column chromatography (ethyl acetate /petroleum ether = 3:1); Colorless oil; 40.4 mg, 92% yield; 91 % ee; $[\alpha]_D^{20} = +2.0$ (*c* 1.00, CH₂Cl₂);

The ee was determined by HPLC (Chiralpak IA, EtOH/hexane = 15/85, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{minor} = 16.7$ min, $t_{major} = 20.0$ min);

¹**H NMR (400 MHz, CDCl**₃) δ 7.74 (d, J = 7.8 Hz, 2H), 7.30 (d, J = 7.9 Hz, 2H), 7.12 (s, 4H), 5.18 (s, 1H), 5.09 (s, 1H), 4.89 (t, J = 6.6 Hz, 1H), 4.14 – 4.04 (m, 2H), 3.63 (dd, J = 15.4, 7.0 Hz, 1H), 3.53 (dd, J = 15.4, 6.1 Hz, 1H), 3.13 (d, J = 13.4 Hz, 1H), 2.98 (d, J = 13.5 Hz, 1H), 2.74 (d, J = 14.7 Hz, 1H), 2.52 (d, J = 14.7 Hz, 1H), 2.42 (s, 3H), 2.32 (s, 3H), 1.12 (t, J = 7.2 Hz, 3H); ¹³**C NMR (101 MHz, CDCl**₃) δ 168.4, 143.7, 138.8, 137.8, 136.9, 130.6, 129.9, 129.8, 129.4, 127.3, 119.0, 118.2, 63.0, 50.9, 48.2, 43.6, 40.1, 21.6, 21.2, 13.9;

HRMS (ESI-TOF) calcd. for $C_{24}H_{29}N_2O_4S$ [M + H]⁺ 441.1843; found: 441.1851.

ethyl (*R*)-2-cyano-2-(3,4-dimethoxybenzyl)-4-(((4-methylphenyl)sulfonamido)methyl)pent-4enoate (3p)

The product **3p** was purified by flash column chromatography (ethyl acetate /petroleum ether = 3:1); Colorless oil; 43.4 mg, 89% yield; 89% ee; $[\alpha]_D^{20} = +2.0$ (*c* 1.00, CH₂Cl₂);

The ee was determined by HPLC (Chiralpak IA, EtOH/hexane = 30/70, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{minor} = 11.6$ min, $t_{major} = 13.7$ min);

¹**H NMR (400 MHz, CDCl₃)** δ 7.74 (d, *J* = 8.3 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 6.85 – 6.76 (m, 3H), 5.19 (s, 1H), 5.10 (s, 1H), 5.02 – 4.90 (m, 1H), 4.18 – 4.03 (m, 2H), 3.86 (d, *J* = 2.3 Hz, 6H), 3.64 (dd, *J* = 15.3, 6.8 Hz, 1H), 3.54 (dd, *J* = 15.3, 6.1 Hz, 1H), 3.14 (d, *J* = 13.6 Hz, 1H), 2.99 (d, *J* = 13.6 Hz, 1H), 2.76 (d, *J* = 14.7 Hz, 1H), 2.55 (d, *J* = 14.7 Hz, 1H), 2.42 (s, 3H), 1.14 (t, *J* = 7.1 Hz, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 168.4, 148.8, 148.8, 143.6, 138.8, 136.9, 129.8, 127.2, 126.2, 122.3, 119.2, 118.1, 113.1, 111.1, 63.0, 55.9, 55.8, 51.0, 48.2, 43.7, 40.1, 21.6, 14.0;

HRMS (ESI-TOF) calcd. for $C_{25}H_{31}N_2O_6S$ [M + H]⁺ 487.1897; found: 487.1902.

ethyl (*R*)-2-cyano-2-(3,4-dimethylbenzyl)-4-(((4-methylphenyl)sulfonamido)methyl)pent-4enoate (3q)

The product **3q** was purified by flash column chromatography (ethyl acetate /petroleum ether = 3:1); Colorless oil; 45.5 mg, 99% yield; 91% ee; $[\alpha]_D^{20} = +15.1$ (*c* 1.00, CH₂Cl₂);

The ee was determined by HPLC (Chiralpak AS-H, EtOH/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 220$ nm, $t_{minor} = 13.3$ min, $t_{major} = 15.4$ min);

¹**H NMR (400 MHz, CDCl₃)** δ 7.74 (d, *J* = 7.9 Hz, 2H), 7.31 (d, *J* = 7.9 Hz, 2H), 7.07 (d, *J* = 7.6 Hz, 1H), 7.01 – 6.94 (m, 2H), 5.18 (s, 1H), 5.10 (s, 1H), 4.82 (t, *J* = 6.5 Hz, 1H), 4.10 (q, *J* = 7.1 Hz, 2H), 3.64 (dd, *J* = 15.4, 6.9 Hz, 1H), 3.54 (dd, *J* = 15.3, 6.1 Hz, 1H), 3.12 (d, *J* = 13.4 Hz, 1H), 2.95 (d, *J* = 13.4 Hz, 1H), 2.74 (d, *J* = 14.7 Hz, 1H), 2.51 (d, *J* = 14.7 Hz, 1H), 2.42 (s, 3H), 2.23 (s, 6H), 1.14 (t, *J* = 7.2 Hz, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 168.5, 143.7, 138.8, 136.9, 136.8, 136.5, 131.2, 131.0, 129.9, 129.8, 127.4, 127.3, 119.0, 118.2, 63.0, 50.9, 48.2, 43.6, 40.1, 21.6, 19.8, 19.5, 14.0;

HRMS (ESI-TOF) calcd. for $C_{25}H_{31}N_2O_4S$ [M + H]⁺ 455.1999; found: 455.2006.

ethyl (*R*)-2-cyano-4-(((4-methylphenyl)sulfonamido)methyl)-2-(thiophen-2-ylmethyl)pent-4enoate (3r)

The product **3r** was purified by flash column chromatography (ethyl acetate /petroleum ether = 3:1); Colorless oil; 34.5 mg, 80% yield; 89% ee; $[\alpha]_D^{20} = +8.7$ (*c* 1.00, CH₂Cl₂);

The ee was determined by HPLC (Chiralpak IA, EtOH/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 220$ nm, $t_{minor} = 15.2$ min, $t_{major} = 25.5$ min);

¹**H** NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 7.9 Hz, 2H), 7.32 (d, *J* = 7.9 Hz, 2H), 7.23 (d, *J* = 5.1 Hz, 1H), 7.04 – 6.94 (m, 2H), 5.21 (s, 1H), 5.12 (s, 1H), 4.74 (t, *J* = 6.5 Hz, 1H), 4.16 (q, *J* = 7.2 Hz, 2H), 3.66 (dd, *J* = 15.4, 7.0 Hz, 1H), 3.56 (dd, *J* = 15.4, 6.2 Hz, 1H), 3.43 (d, *J* = 14.5 Hz, 1H), 3.27 (d, *J* = 14.5 Hz, 1H), 2.74 (d, *J* = 14.5 Hz, 1H), 2.59 (d, *J* = 14.6 Hz, 1H), 2.43 (s, 3H), 1.20 (t, *J* = 7.2 Hz, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 168.1, 143.8, 138.7, 136.9, 134.9, 129.9, 128.5, 127.3 (2C), 125.9, 118.9, 118.7, 63.3, 51.2, 48.2, 40.0, 38.1, 21.7, 14.0;

HRMS (ESI-TOF) calcd. for $C_{21}H_{25}N_2O_4S_2$ [M + H]⁺ 433.1250; found: 433.1257.

ethyl (*R*)-2-cyano-4-(((4-methylphenyl)sulfonamido)methyl)-2-(naphthalen-2-ylmethyl)pent-4-enoate (3s)

The product **3s** was purified by flash column chromatography (ethyl acetate /petroleum ether = 3:1); Colorless oil; 53.3 mg, 99% yield; 89% ee; $[\alpha]_D^{20} = +11.7$ (*c* 1.00, CH₂Cl₂);

The ee was determined by HPLC (Chiralpak IC, 'PrOH/hexane = 30/70, flow rate 1.0 mL/min, $\lambda = 220$ nm, $t_{major} = 22.5$ min, $t_{minor} = 25.1$ min);

¹**H NMR (400 MHz, CDCl**₃) δ 7.84 – 7.77 (m, 3H), 7.76 – 7.68 (m, 3H), 7.47 (dd, J = 6.3, 3.2 Hz, 2H), 7.37 (d, J = 8.4 Hz, 1H), 7.27 (d, J = 11.8 Hz, 2H), 5.20 (s, 1H), 5.12 (s, 1H), 4.93 (t, J = 6.5 Hz, 1H), 4.12 – 3.99 (m, 2H), 3.65 (dd, J = 15.4, 6.9 Hz, 1H), 3.55 (dd, J = 15.4, 6.1 Hz, 1H), 3.34 (d, J = 13.4 Hz, 1H), 3.19 (d, J = 13.4 Hz, 1H), 2.81 (d, J = 14.7 Hz, 1H), 2.58 (d, J = 14.7 Hz, 1H), 2.40 (s, 3H), 1.04 (t, J = 7.1 Hz, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 168.3, 143.7, 138.7, 136.8, 133.3, 132.9, 131.3, 129.8, 129.2, 128.4, 127.9, 127.7, 127.7, 127.2, 126.4, 126.3, 119.0, 118.3, 63.1, 50.9, 48.2, 44.0, 40.3, 21.6, 13.9; HRMS (ESI-TOF) calcd. for C₂₇H₂₉N₂O₄S [M + H]⁺ 477.1843; found: 477.1852.

ethyl (R)-2-cyano-4-(((4-methylphenyl)sulfonamido)methyl)-2-phenethylpent-4-enoate (3t)

The product **3t** was purified by flash column chromatography (ethyl acetate /petroleum ether = 3:1); Colorless oil; 43.0 mg, 98% yield; 81% ee; $[\alpha]_D^{20} = +1.6$ (*c* 1.00, CH₂Cl₂);

The ee was determined by HPLC (Chiralpak IA, EtOH/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 220$ nm, $t_{minor} = 11.9$ min, $t_{major} = 20.8$ min);

¹**H** NMR (400 MHz, CDCl₃) δ 7.79 – 7.72 (m, 2H), 7.33 – 7.27 (m, 4H), 7.23 (d, *J* = 7.2 Hz, 1H), 7.17 (d, *J* = 7.5 Hz, 2H), 5.19 (s, 1H), 5.09 (s, 1H), 4.86 (t, *J* = 6.5 Hz, 1H), 4.18 (q, *J* = 7.2 Hz, 2H), 3.65 (dd, *J* = 15.4, 6.9 Hz, 1H), 3.55 (dd, *J* = 15.4, 6.2 Hz, 1H), 2.88 (td, *J* = 12.8, 4.7 Hz, 1H), 2.69 – 2.51 (m, 3H), 2.40 (s, 3H), 2.21 (td, *J* = 12.7, 5.2 Hz, 1H), 2.03 (td, *J* = 12.8, 4.7 Hz, 1H), 1.29 (t, *J* = 7.1 Hz, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 168.5, 143.7, 139.5, 138.8, 136.8, 129.9, 128.7, 128.5, 127.2, 126.7, 119.1, 118.3, 63.2, 49.1, 48.2, 40.3, 39.9, 31.7, 21.6, 14.1;

HRMS (ESI-TOF) calcd. for $C_{24}H_{29}N_2O_4S$ [M + H]⁺ 441.1843; found: 441.1850.

ethyl (*R*)-2-cyano-4-(((4-methylphenyl)sulfonamido)methyl)-2-phenylpent-4-enoate (3u)

The product **3u** was purified by flash column chromatography (ethyl acetate /petroleum ether = 3:1); Colorless oil; 31.1 mg, 75% yield; 23% ee; $[\alpha]_D^{20} = -8.1$ (*c* 1.00, CH₂Cl₂);

The ee was determined by HPLC (Chiralpak IC EtOH/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 220$ nm, $t_{major} = 26.8$ min, $t_{minor} = 29.3$ min);

¹**H NMR (400 MHz, CDCl₃)** δ 7.73 – 7.65 (m, 2H), 7.50 (dd, *J* = 7.8, 1.9 Hz, 2H), 7.44 – 7.34 (m, 3H), 7.28 (d, *J* = 8.0 Hz, 2H), 5.18 (s, 1H), 5.09 (s, 1H), 4.76 – 4.68 (m, 1H), 4.29 – 4.14 (m, 2H), 3.47 – 3.30 (m, 2H), 3.10 (d, *J* = 14.8 Hz, 1H), 2.77 (d, *J* = 14.8 Hz, 1H), 2.42 (s, 3H), 1.22 (t, *J* = 7.1 Hz, 3H);

¹³C NMR (101 MHz, CDCl₃)δ 167.4, 143.6, 138.5, 136.9, 134.2, 129.8, 129.4, 129.2, 127.3, 126.1, 119.1, 118.3, 63.7, 53.7, 48.6, 40.9, 21.6, 13.9;

HRMS (ESI-TOF) calcd. for $C_{22}H_{25}N_2O_4S$ [M + H]⁺ 413.1530; found: 413.1537.

5. Scale-up experiment

In a flame-dried round bottom flask equipped with a magnetic stirring bar, the solution of 5methylene-3-tosyl-1,3-oxazinan-2-one **1a** (667mg, 2.5 mmol, 1.0 equiv), ethyl 2-cyano-3phenylpropanoate **2a** (607 mg, 3 mmol, 1.2 equiv) in butanone (30.0 mL) was stirred at -30 °C. And then, the mixture was stirred at the same temperature for the specified time (about 15 h). After completion of the reaction, as indicated by TLC, the solvent was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel with PE/EA = 3:1 to give the desired product **3a** (1.06 g, 99% yield, 92% ee).

6. The procedure for the synthesis of compound 5.

In an ordinary vial equipped with a magnetic stirring bar, **3a** (42.6 mg, 0.1 mmol, 1.0 equiv) was dissolved in THF/H₂O (2 mL/0.5 mL) and the mixture was cooled to 0 °C. LiOH·H₂O (8.1 mg, 0.39 mmol, 1.1 equiv) was added and the mixture was stirred at 0 °C for 30 min. After the reaction was completed, the reaction mixture was added 1M HCl until pH = 2 and then extracted with EA (10 mL \times 2). The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, and removed under reduced pressure. Then the crude product was purified by flash column chromatography (DCM /MeOH = 20:1) to afford the desired products **5** as a colorless oil (77% yield, 96% ee).

(R)-2-benzyl-2-cyano-4-(((4-methylphenyl)sulfonamido)methyl)pent-4-enoic acid (5)

The product 5 was purified by flash column chromatography (DCM /MeOH = 20:1);

Colourless oil; 30.7 mg, 77% yield; 96% ee; $[\alpha]_D^{20} = -10.1$ (*c* 1.00, CH₂Cl₂);

The ee was determined by HPLC (Chiralpak AD-H, ^{*i*}PrOH/hexane = 15/85, flow rate 1.0 mL/min, $\lambda = 220$ nm, $t_{major} = 23.4$ min, $t_{minor} = 33.7$ min);

¹**H** NMR (400 MHz, D_2O) δ 7.73 – 7.61 (m, 2H), 7.42 – 7.28 (m, 5H), 7.25 – 7.15 (m, 2H), 5.11 (s, 1H), 5.02 (s, 1H), 3.63 – 3.44 (m, 2H), 3.03 (d, *J* = 13.4 Hz, 1H), 2.74 (d, *J* = 13.5 Hz, 1H), 2.49 (d, *J* = 14.9 Hz, 1H), 2.32 (s, 3H), 2.13 (d, *J* = 14.9 Hz, 1H);

¹³C NMR (101 MHz, D₂O) δ 171.0, 142.5, 137.2, 133.3, 133.2, 127.8, 127.7, 126.2, 125.3, 124.6, 120.1, 114.4, 51.8, 45.6, 40.7, 37.0, 18.5;

HRMS (**ESI-TOF**) calcd. for C₂₁H₂₃N₂O₄S [M + H]⁺ 399.1373; found: 399.1379.

7. The procedure for the synthesis of compound 6.

A freshly prepared stock solution of trimethylaluminum amine complex was prepared by adding trimethylaluminum (0.5 mL, 2M in toluene) to methyl anmine hydrochloride (67.5 mg, 1 mmol) in toluene (4.5 mL) at 0 °C and allowed to warm to ambient temperature. After the methane evolution ceased (about 1 hour), the aluminum amine complex solution (0.9 mL, 0.18 mmol, 3.0 equiv) was then added to ester **3a** (25.6 mg, 0.06 mmol, 1.0 equiv) in toluene (2 mL) at room temperature and immediately heated to 50 °C. The reaction was maintained at 50 °C for three days. After completion of the reaction (confirmed by TLC analysis). The reaction was quenched with aq. NH4Cl and extracted with CH₂Cl₂.The organic layer was dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with (PE/EA 2:1) to afford compound **6** as a white solid (77% yield, 90% ee).

(R)-3-benzyl-5-methylene-2-oxo-1-tosylpiperidine-3-carbonitrile (6)

The product **6** was purified by flash column chromatography (ethyl acetate /petroleum ether = 4:1); White solid; 17.6 mg, 77% yield; 90% ee; $[\alpha]_D^{20} = +9.2$ (*c* 1.00, CH₂Cl₂); m.p. 127.6-128.4 °C **The ee was determined by HPLC** (Chiralpak IC, EtOH/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 220$ nm, $t_{minor} = 21.8$ min, $t_{major} = 23.2$ min);

¹**H NMR (400 MHz, CDCl₃)** δ 7.90 – 7.82 (m, 2H), 7.30 (d, *J* = 8.3 Hz, 2H), 7.22 (dd, *J* = 5.0, 2.0 Hz, 3H), 7.12 – 7.06 (m, 2H), 5.26 (s, 1H), 5.10 (s, 1H), 4.58 (dt, *J* = 14.6, 1.5 Hz, 1H), 4.40 (dt, *J* = 14.6, 1.6 Hz, 1H), 3.21 (d, *J* = 13.9 Hz, 1H), 3.02 (d, *J* = 13.9 Hz, 1H), 2.57 (d, *J* = 14.4 Hz, 1H), 2.48 (d, *J* = 14.4 Hz, 1H), 2.40 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 164.9, 145.9, 134.7, 133.3, 132.5, 130.5, 129.8, 129.1, 128.9, 128.2, 117.9, 117.4, 47.9, 41.0, 37.1, 29.8, 21.9;

HRMS (ESI-TOF) calcd. for $C_{21}H_{21}N_2O_3S$ [M + H]⁺ 381.1267; found: 381.1273.

8. X-ray crystal structure of compounds 6

Single crystals of $C_{21}H_{20}N_2O_3S$ **6** was prepared from the mixture solvent of EtOH at room temperature by slow evaporation of solvent. A suitable crystal was selected for structure determination on a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer. The crystal was kept at 170.1(3) K during data collection. Using Olex2 ^[1], the structure was solved with the SHELXS ^[2] structure solution program using Direct Methods and refined with the SHELXL ^[3] refinement package using Least Squares minimisation.

- Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J, Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.
- [2] Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122.
- [3] Sheldrick, G. M. Acta Cryst. 2015, C71, 3-8.

ORTEP of 6 (at 50% level)

Crystal data and structure refinement for 6					
6					
$C_{21}H_{20}N_2O_3S$					
380.45					
99.96(16)					
orthorhombic					
$P2_{1}2_{1}2_{1}$					
7.46283(5)					
13.94255(10)					
18.09638(13)					
90					
90					
90					

Volume/Å ³	1882.94(2)
Z	4
$ ho_{cale}g/cm^3$	1.342
μ/mm^{-1}	1.727
F(000)	800.0
Crystal size/mm ³	$0.16 \times 0.12 \times 0.1$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	8.006 to 148.658
Index ranges	$-9 \le h \le 4, 16 \le k \le 17, 22 \le l \le 15$
Reflections collected	9403
Independent reflections	3718 [$R_{int} = 0.0136$, $R_{sigma} = 0.0135$]
Data/restraints/parameters	3718/0/254
Goodness-of-fit on F ²	1.051
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0230, wR_2 = 0.0620$
Final R indexes [all data]	$R_1 = 0.0231, wR_2 = 0.0621$
Largest diff. peak/hole / e Å $^{-3}$	0.21/-0.23
Flack/Hooft parameter	0.009(5)/-0.005(3)

9. The copies of ¹H NMR, ¹³C NMR and HPLC spectra for compounds 3, 5, 6

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (101 MHz, CDCl₃) of 3a

Detector A Ch1 220nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	19.208	7201606	179866	49.974	53.304	
2	21.557	7209198	157568	50.026	46.696	
Total		14410804	337435	100.000	100.000	

1 Det.A Ch1 / 220nm

1	Detector A Ch1 220nm							
ſ	Peak#	Ret. Time	Area	Height	Area %	Height %		
ſ	1	19.181	23710053	562554	96.281	96.432		
ſ	2	21.650	915844	20812	3.719	3.568		
ſ	Total		24625898	583365	100.000	100.000		

 $^1\mathrm{H}$ NMR (400 MHz, CDCl_3) and $^{13}\mathrm{C}$ NMR (101 MHz, CDCl_3) of 3b

7.8039 7.7847 7.5291 7.5113 7.5113 7.54626 7.4439 7.4439 7.4439 7.2468 7.2468 7.2328 7.2468 7.1805 7.1805	5.1192 5.80311 4.8787 4.8787 4.8787 4.8757 5.9715 5	1.0431 1.0254 1.0076
		\checkmark

1 Det.A Ch1 / 220nm

Detector A Ch1 220nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	29.636	2500643	42706	50.118	52.872		
2	32.535	2488913	38067	49.882	47.128		
Total		4989556	80773	100.000	100.000		

Detector A Ch1 220nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	29.602	3821516	64644	96.386	96.331		
2	32.539	143283	2462	3.614	3.669		
Tota	1	3964799	67106	100.000	100.000		

$^1\mathrm{H}$ NMR (400 MHz, CDCl_3) and $^{13}\mathrm{C}$ NMR (101 MHz, CDCl_3) of 3c

1 Det.A Ch1 / 220nm

Detector A Ch1 220nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	21.590	4547190	147614	50.583	52.080	
2	23.156	4442299	135823	49.417	47.920	
Total		8989489	283436	100.000	100.000	

1	Detector A Ch1 220nm							
	Peak#	Ret. Time	Area	Height	Area %	Height %		
	1	21.480	431654	15003	4.700	5.413		
	2	22.905	8752835	262178	95.300	94.587		
	Total		9184489	277181	100.000	100.000		

1H NMR (400 MHz, CDCl₃) and ^{13}C NMR (101 MHz, CDCl₃) of 3d

1 Det.A Ch1 / 254nm

Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	14.269	2897619	125117	49.994	52.162		
2	15.550	2898265	114743	50.006	47.838		
Total		5795884	239861	100.000	100.000		

1 Det.A Ch1 / 254nm

Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	15.556	141871	7246	5.426	6.727		
2	16.747	2472612	100461	94.574	93.273		
Total		2614484	107706	100.000	100.000		

^1H NMR (400 MHz, CDCl₃) and ^{13}C NMR (101 MHz, CDCl₃) of 3e

Ľ	Detector A Ch1 220nm								
	Peak#	Ret. Time	Area	Height	Area %	Height %			
	1	9.199	1673505	91361	91.046	91.201			
	2	10.035	164589	8814	8.954	8.799			
Γ	Total		1838094	100176	100.000	100.000			

S29

Detector A	Ch1 220nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	13.570	5398472	177735	50.245	57.268
2	17.228	5345857	132621	49.755	42.732
Total		10744329	310356	100.000	100.000

Detector A Ch1 220nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	13.125	1597926	59701	8.270	12.110			
2	16.814	17724268	433281	91.730	87.890			
Total		19322194	492982	100.000	100.000			

S31

Detector A	Ch1 220nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	15.198	1076455	34331	4.554	8.349
2	22.648	22560384	376864	95.446	91.651
Total		23636839	411196	100.000	100.000

Detector A Ch1 220nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	17.832	6117205	162843	49.228	65.648			
2	26.254	6309120	85213	50.772	34.352			
Total		12426324	248056	100.000	100.000			

]	Detector A Ch1 220nm									
	Peak#	Ret. Time	Area	Height	Area %	Height %				
	1	17.844	264684	7107	3.980	7.648				
	2	26.237	6386421	85815	96.020	92.352				
ĺ	Total		6651105	92922	100.000	100.000				

S35

Detector A Ch1 220nm Ret. Time 15.712 Area % 4.152 Height % Peak# Area Height 508554 15353 6.643 1 2 21.506 11740598 215769 95.848 93.357 Total 12249153 231122 100.000 100.000

Detector A	Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	16.295	185913	5612	5.381	7.763
2	21.159	3268852	66672	94.619	92.237
Total		3454765	72283	100.000	100.000

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (101 MHz, CDCl₃) of 3k

7.7517 7.7310 7.73209 7.72999 7.72999 7.72989 6.8005 6.8005 6.8015 7.517

Detector A Ch1 220nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	16.390	6271503	166496	49.871	55.933			
2	20.374	6303917	131174	50.129	44.067			
Total		12575420	297669	100.000	100.000			

Detector A	Ch1 220nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	15.910	734597	22745	6.106	8.928
2	20.281	11297085	232025	93.894	91.072
Total		12031682	254770	100.000	100.000

Detector A	Ch1 220nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	16.069	1472187	42669	6.220	9.489
2	20.892	22196615	406985	93.780	90.511
Total		23668803	449655	100.000	100.000

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (101 MHz, CDCl₃) of 3m

67 22 4 4 5 2 4 4 5 2 4 4 5 2 4 4 5 2 4 4 5 2 4 4 5 2 4 4 5 2 4 4 5 2 4 4 5 4 4 5 4 4 5 4 4 5 4 5	68 06 142 142	866 867 867 867 867 867 867 867
7.757.731 7.722 7.128 7.158 7.158 7.158	5.19 5.11 4.86 4.83 4.83	
Y Sherry		

HPLC spectra of 3m

1 Det.A Ch1 / 220nm

Detector A Ch1 220nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	32.681	9271417	139919	50.108	53.069			
2	36.053	9231593	123737	49.892	46.931			
Total		18503010	263655	100.000	100.000			

1 Det.A Ch1 / 220nm

|--|

	-				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	32.935	8472304	127283	95.843	95.959
2	36.432	367426	5360	4.157	4.041
Total		8839730	132643	100.000	100.000

Detector A Ch1 220nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	34.569	12162241	171079	49.948	54.227				
2	40.261	12187729	144409	50.052	45.773				
Total		24349971	315488	100.000	100.000				

Detector A Ch1 220nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	34.113	26363635	375058	95.711	96.096				
2	39.957	1181375	15236	4.289	3.904				
Total		27545010	390294	100.000	100.000				

S47

1 Det.A Ch1 / 254nm

Detector A Ch1 254nm									
Γ	Peak#	Ret. Time	Area	Height	Area %	Height %			
	1	16.741	1045289	27108	49.844	55.420			
	2	20.190	1051847	21806	50.156	44.580			
	Total		2097136	48914	100.000	100.000			

1 Det.A Ch1 / 254nm

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	16.652	34692	1012	4.527	6.232				
2	20.049	731572	15224	95.473	93.768				
Total		766264	16236	100.000	100.000				

Detector A Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	11.598	115301	4984	5.314	7.617				
2	13.740	2054549	60443	94.686	92.383				
Total		2169850	65427	100.000	100.000				

 $^1\mathrm{H}$ NMR (400 MHz, CDCl_3) and $^{13}\mathrm{C}$ NMR (101 MHz, CDCl_3) of 3q

 $\begin{array}{c} 7.7515\\ 7.7315\\ 7.7315\\ 7.7315\\ 7.7315\\ 7.73062\\ 6.9724\\ 6.9724\\ 6.9724\\ 6.9724\\ 6.9724\\ 6.9724\\ 6.9723\\ 6.9724\\ 1.1205\\ 6.9723$

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl(ppm)

Ľ	Detector A Ch1 220nm									
	Peak#	Ret. Time	Area	Height	Area %	Height %				
	1	13.297	5377928	192660	49.243	58.038				
	2	15.519	5543201	139295	50.757	41.962				
	Total		10921129	331955	100.000	100.000				

De	Detector A Ch1 220nm									
	Peak#	Ret. Time	Area	Height	Area %	Height %				
	1	13.302	702035	26066	4.337	6.650				
	2	15.384	15486907	365925	95.663	93.350				
	Total		16188942	391991	100.000	100.000				

 $^1\mathrm{H}$ NMR (400 MHz, CDCl₃) and $^{13}\mathrm{C}$ NMR (101 MHz, CDCl₃) of 3r

Detector A Ch1 220nm										
Peak#	Ret. Time	Area	Height	Area %	Height %					
1	15.241	587678	19109	5.559	11.092					
2	25.507	9984005	153166	94.441	88.908					
Total		10571683	172275	100.000	100.000					

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (101 MHz, CDCl₃) of 3s

Detector A Ch1 220nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	22.737	50448071	897963	49.208	51.747				
2	25.355	52071016	837328	50.792	48.253				
Total		102519087	1735291	100.000	100.000				

1 Det.A Ch1 / 220nm

Detector A Ch1 220nm									
Peak#	Ret. Time	Area	Height	Area %	Height %				
1	22.499	37429411	713036	94.243	94.177				
2	25.137	2286579	44089	5.757	5.823				
Total		39715990	757125	100.000	100.000				

1 Det.A Ch1 / 220nm

Detector A Ch1 220nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	11.940	1283714	48054	9.653	19.758		
2	20.761	12015199	195164	90.347	80.242		
Total		13298914	243218	100.000	100.000		

 1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (101 MHz, CDCl_3) of 3u

100 90 f1 (ppm)

HPLC spectra of 3u

Detector A Ch1 220nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	26.817	16525680	384628	61.369	63.364		
2	29.282	10402732	222381	38.631	36.636		
Total		26928412	607009	100.000	100.000		

Detector A Ch1 220nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	24.191	3837259	19910	50.660	55.895		
2	34.181	3737205	15711	49.340	44.105		
Total		7574463	35621	100.000	100.000		

Detector A Ch1 220nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	23.392	6442667	36662	98.174	97.824		
2	33.685	119800	816	1.826	2.176		
Total		6562467	37477	100.000	100.000		

$^1\mathrm{H}$ NMR (400 MHz, CDCl_3) and $^{13}\mathrm{C}$ NMR (101 MHz, CDCl_3) of 6

$\begin{array}{c} 7.8710\\ 7.8710\\ 7.8867\\ 7.8867\\ 7.8867\\ 7.8867\\ 7.8867\\ 7.8867\\ 7.8865\\ 7.78567\\ 7.78566\\ 7.71916\\ 7.72331\\ 7.72331\\ 7.72333\\ 7.72998\\ 7.71998\\ 7.71998\\ 7.72998\\ 7.71998\\ 7.72998\\ 7.72998\\ 7.72998\\ 7.72998\\ 7.72985\\ 7.70965\\ 7.70965\\ 7.72998\\ 7.72998\\ 7.72985\\ 7.729$

Detector A Ch1 220nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	21.813	8706508	275862	49.996	51.730		
2	23.299	8707851	257407	50.004	48.270		
Total		17414359	533269	100.000	100.000		

1 Det.A Ch1 / 220nm

Detector A Ch1 220nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	21.790	583646	19785	5.246	6.127		
2	23.216	10541408	303154	94.754	93.873		
Total		11125054	322939	100.000	100.000		