Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supporting Information

Contents

Contents	1
General methods	2
Preparation of the starting materials	
Conditional filter supplement	7
General procedure for the synthesis of compounds 3 and 4	9
Gram-scale reaction	
Cyclic voltammetry study	
The reaction promoted by external oxidants	
Control experiments	
Late-stage transformations	
Proposed Mechanism of bissulfonylation	
Absorption and emission spectra	
Characterization of products	
References	

General methods

Unless noted, all commercial reagents and solvents were used without further purification. NMR spectra were recorded in CDCl₃ or DMSO on 500 MHz spectrometers. The following abbreviations are used for multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, and m = multiplet. Mass spectra were obtained on an Ultima Global spectrometer with an ESI source. Silica gel (200–300 mesh) for column chromatography and silica GF254 for TLC were produced by Qingdao Marine Chemical Company (China). DC power supply DPS-305CF was used for all experiments.

Preparation of the starting materials

Preparation of substrates 1¹

S1 to 1: Under nitrogen atmosphere and in no light conditions, synthesis of **S1** (7.5 mmol) and 2,4-dimethylpyrrole 1.8 g (22.5 mmol) were dissolved in THF (30 mL), to this, TFA drop was added and stirred for 16 hours under room temperature. To the reaction mixture, 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) 1.87 g (8.3 mmol) was added, after stirring for 3 hours at room temperature. Finally, the mixture was then

added a solution of TEA (20 mL) at 0 °C, stir for one minute and then added BF₃OEt₂ (20 mL). The reaction was kept stirring at 0 °C for 2 h. The resulting mixture was allowed to warm to room temperature and was stirred for 12 h.

Synthesis of Aza-BODIPY $1l^{[2]}$: Prepare a solution of s1l-1 (1.0 g, 4.80 mmol) in nitromethane (10 mL). Add 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU, 146 mg, 0.96 mmol) dropwise to the above solution at room temperature. Stir the resulting solution for 2 h at room temperature,Concentrate under vacuum. Purify the residue by flash chromatography [(petroleum ether/EtOAc 9:1)] to afford s1l-2.

A 100 mL round-bottomed flask was charged with **s1l-2** (1.0 g, 3.71 mmol), ammonium acetate (10.0 g, 0.13 mol), and ethanol (40 mL) and heated under reflux for 24 h. During the course of the reaction, the product precipitated from the reaction mixture. The reaction was cooled to room temperature and filtered and the isolated solid washed with ethanol (2×10 mL) to yield the product **s1l-3** as a blue black solid (0.30 g, 35%).

s11-3 (0.2 g, 0.45 mmol) was dissolved in dry CH_2Cl_2 (80 mL), treated with diisopropylethylamine (0.8 mL, 4.6 mmol) and boron trifluoride diethyl etherate (1 mL, 8.13 mmol), and stirred at room temperature under N₂ for 24 h. The mixture was washed with water (2 × 50 mL), and organic layer was dried over sodium sulfate and evaporated to dryness. Purification by column chromatography on silica eluting with CH_2Cl_2 /hexane (1:1) gave the product 11 as a metallic brown solid (0.19 g, 86%).

Synthesis of BODIPY $1m^{[3]}$: To a solution of the corresponding aromatic aldehyde (1 eq.) in pyrrole (4 eq.) was added a catalytic amount of trifluoroacetic acid (TFA). The mixture was stirred at room temperature until the total consumption of the aldehyde. The crude product was washed with brine, extracted with CH₂Cl₂, dried over anhydrous Na₂SO₄ and evaporated to dryness under vacuum. This crude was then purified using column chromatography on silica gel using hexane/ethyl acetate.

Into the corresponding dipyrromethane dissolved in CH_2Cl_2 , DDQ (1 eq.) was added and the solution was stirred for 1 h at room temperature. To this oxidized product, BF₃Et₂O (6 eq.) was added under a nitrogen atmosphere and stirred for another 15 min, then, triethylamine (3 eq.) was added dropwise and stirring was continued till the completion of the reaction which was monitored by TLC. The reaction mixture was then washed with brine and extracted with CH_2Cl_2 , and the organic layer was combined, dried over Na₂SO₄ and evaporated to dryness under vacuum to give the crude product. This was further purified by silica gel column chromatography to afford the corresponding BODIPY **1m**.

Preparation of substrates 2³

The compound **2b** - **2r** according to previously described methods.^[3]

$$\begin{array}{c} O \\ R-S-CI \\ O \\ O \\ O \\ \end{array} \xrightarrow{NH_2NH_2 \cdot H_2O} \qquad O \\ R-S-NHNH_2 \\ \hline THF, 0 \ ^{\circ}C \\ \end{array} \xrightarrow{O} \\ R-S-NHNH_2 \\ O \\ \end{array}$$

The hydrazine hydrate (80%, 30 mmol) was added dropwise into the solution of sulfonyl chloride (10 mmol) in THF (50 mL) under air at 0 °C. Subsequently, the mixture was further stirred at 0 °C for 5 minutes. After the completion of the reaction, the residue was extracted with DCM, and the combined organic layer was ashed with water, and brine, and dried over MgSO₄. Concentration in vacuum followed by silica gel column purification with petroleum ether/ethyl acetate eluent gave the desired products **2**.

Conditional filter supplement

Other sulfone-based compounds

Table S1 Screening of sulfone-based compounds

In an undivided Schlenk flask (10 mL) equipped with a stir bar, substrate 1 (0.1 mmol, 1 equiv.), Sulfone-based compound **Bx** (0.3 mmol, 3 equiv.) and NaCl (0.15 mmol), were combined and added. The flask was equipped with a rubber stopper, a graphite felt anode (1 cm x 1 cm x 0.5 cm) and a graphite felt cathode (1 cm x 1 cm x 0.5 cm) and then flushed with nitrogen. Then HFIP (2.5 mL), CH₃NO₂ (2.5 mL) and H₂O (0.2 mL) were injected respectively into the flask via syringes. The reaction mixture was stirred and electrolyzed at a constant current of 6.0 mA at room temperature until the end of the reaction. Only sodium p-toluenesulfinate has a corresponding product point by TLC point plate. When the reaction was finished, the residue was chromatographed through silica gel eluting with petroleum ether/ ethyl acetate eluent, and the final yield was 10%.

Conditional screening of bissulonylated BODIPYs

Table S2 Optimization of disulfonylation reaction conditions^a

$\begin{array}{c} & & \\$	O=S=O NH NH2	
1a	2a	4aa
Entry	Variation from standard condi	tions Yield $(\%)^b$
1	none	trace
2	5 h	11
3	7.5 h	18
4	10 h	n.p.
5	4 equiv. 2a , 8 h	18
6	5 equiv. 2a , 8 h	29
7	6 equiv. 2a , 8 h	28
8	8.0 mA, 6 h	48
9	10.0 mA, 5 h	39

^{*a*}Standard reaction conditions: **1a** (0.1 mmol), **2a** (0.3 mmol), NaCl (0.15 mmol), HFIP (2.5 mL), CH₃NO₂ (2.5 mL), H₂O (0.2 mL), graphite felt anode (10 mm x 10 mm x 5 mm), graphite felt cathode (10 mm x 10 mm x 5 mm), constant current = 6.0 mA, under N₂, RT, 2.5 h, undivided cell. ^{*b*}Isolated yield. n.p. = no product.

Side reaction

Table S3 Side reaction-related screening

graphite felt anode (10 mm x 10 mm x 5 mm), graphite felt cathode (10 mm x 10 mm x 5 mm), constant current = 6.0 mA, under N₂, RT, undivided cell.

General procedure for the synthesis of compounds 3 and 4

Monosulfonylaed BODIPYs 3

In an undivided Schlenk flask (10 mL) equipped with a stir bar, substrate 1 (0.1 mmol, 1 equiv.), sulfonyl hydrazide 2 (0.3 mmol, 3 equiv.) and NaCl (0.15 mmol), were combined and added. The flask was equipped with a rubber stopper, a graphite felt anode (1 cm x 1 cm x 0.5 cm) and a graphite felt cathode (1 cm x 1 cm x 0.5 cm) and then flushed with nitrogen. Then HFIP (2.5 mL), CH₃NO₂ (2.5 mL) and H₂O (0.2 mL) were injected respectively into the flask via syringes. The reaction mixture was stirred and electrolyzed at a constant current of 6.0 mA at room temperature for 2.5 h. When the reaction was finished, the residue was chromatographed through silica gel eluting with petroleum ether/ ethyl acetate eluent to give the product **3**.

Disulfonylated BODIPYs 3

In an undivided Schlenk flask (10 mL) equipped with a stir bar, substrate **1** (0.1 mmol, 1 equiv.), sulfonyl hydrazide **2** (0.5 mmol, 5 equiv.) and NaCl (0.15 mmol), were combined and added. The flask was equipped with a rubber stopper, a graphite felt anode (1 cm x 1 cm x 0.5 cm) and a graphite felt cathode (1 cm x 1 cm x 0.5 cm) and then flushed with nitrogen. Then HFIP (2.5 mL), CH₃NO₂ (2.5 mL) and H₂O (0.2 mL) were injected respectively into the flask via syringes. The reaction mixture was stirred and electrolyzed at a constant current of 8.0 mA at room temperature for 6 h. When the reaction was finished, the residue was chromatographed through silica gel eluting with

petroleum ether/ ethyl acetate eluent to give the disulfonylated product 4.

Electrochemical attempts at other BODIPYs

In an undivided Schlenk flask (10 mL) equipped with a stir bar, substrate **11** (0.1 mmol, 1 equiv.), sulfonyl hydrazide **2a** (0.3 mmol, 3 equiv.) and NaCl (0.15 mmol), were combined and added. The flask was equipped with a rubber stopper, a graphite felt anode (1 cm x 1 cm x 0.5 cm) and a graphite felt cathode (1 cm x 1 cm x 0.5 cm) and then flushed with nitrogen. Then HFIP (2.5 mL), CH₃NO₂ (2.5 mL) and H₂O (0.2 mL) were injected respectively into the flask via syringes. The reaction mixture was stirred and electrolyzed at a constant current of 6.0 mA at room temperature for 2.0 h. By TLC observation, the raw materials had been completely consumed, and no product points had been observed.

In an undivided Schlenk flask (10 mL) equipped with a stir bar, substrate **1m** (0.1 mmol, 1 equiv.), sulfonyl hydrazide **2a** (0.3 mmol, 3 equiv.) and NaCl (0.15 mmol), were combined and added. The flask was equipped with a rubber stopper, a graphite felt anode (1 cm x 1 cm x 0.5 cm) and a graphite felt cathode (1 cm x 1 cm x 0.5 cm) and then flushed with nitrogen. Then HFIP (2.5 mL), CH₃NO₂ (2.5 mL) and H₂O (0.2 mL) were injected respectively into the flask via syringes. The reaction mixture was stirred and electrolyzed at a constant current of 6.0 mA at room temperature for 4.5 h.

When the reaction was finished, the residue was chromatographed through silica gel eluting with petroleum ether/ ethyl acetate eluent to give the product **3ma**.

Gram-scale reaction

In a round bottom three-necked flask (250 mL) equipped with a stir bar, substrate **1a** (4 mmol, 1.30 g), sulfonyl hydrazides **2a** (8 mmol, 1.49 g, 2 equiv.), and NaCl (6 mmol, 0.348 g, 1.5 equiv.) were combined and added. Then add HFIP (50 mL), CH₃NO₂ (50 mL) and H₂O (4 mL) to the flask separately. The flask was equipped with a rubber stopper, a graphite felt anode (1 cm x 3 cm x 1 cm) and a graphite felt cathode (1 cm x 3 cm x 1 cm) and electrolyzed at a constant current of 12 mA at room temperature for 64 h. When the reaction was finished, the residue was chromatographed through silica gel eluting with petroleum ether/ ethyl acetate eluent to give the product **3aa** (1.15 g, 60%).

Figure S1. Components required for gram-scale reaction

Cyclic voltammetry study

The cyclic votammetry experiments were carried out with a computer-controlled electrochemical analyzer for electrochemical measurements. The cyclic voltammetry experiments were measured at room temperature. The data was collected with the CS300H potentiostat (Wuhan COster Instrument Co., LTD). The experiment was performed in a three-electrode cell with HFIP (2.5 mL) and MeNO₂ (2.5 mL) as the solvent, Et₄NPF₆ (0.030 M) as the supporting electrolyte, and the concentration of the **1a** was 0.020 M; the concentration of the **2a** was 0.060 M. The scan speed was 100 mV/s. The potential ranges investigated were 0 V to 3.0 V vs. SCE (saturated aqueous KCl). CV plotting convention is Origin.

Working electrode: The working electrode is a 3 mm diameter glassy carbon working electrode. Polished with 0.05 μ m aluminum oxide and then sonicated in distilled water and ethanol before measurements.

Reference electrode: The reference electrode is SCE (saturated aqueous KCl) that was washed with water and ethanol before measurements.

Counter electrode: The counter electrode is a platinum wire that was polished with $0.05 \ \mu m$ aluminum oxide and then sonicated in distilled water and ethanol before measurements.

Figure S2. Cyclic voltammogram

General procedure for cyclic voltammetry (CV): Cyclic voltammograms of **1a** (0.1 mmol), **2a** (0.3 mmol), were performed in a three-electrode cell at room temperature. The working electrode was a steady glassy carbon, the counter electrode was a platinum wire, and the reference was an Ag/AgCl electrode submerged in saturated aqueous KCl solution. Mixed solvent (HFIP (2.5 mL), and CH₃NO₂ (2.5 mL) containing Et₄NPF₆ (0.15 mmol) were poured into the electrochemical cell in cyclic voltammetry experiments. The scan rate was 100 mV/s, ranging from 0.0 V to 3.0 V.

Figure S3. Cyclic voltammogram

General procedure for cyclic voltammetry (CV): Cyclic voltammograms of background was performed in a three-electrode cell at room temperature. The working electrode was a steady glassy carbon, the counter electrode was a platinum wire, and the reference was an Ag/AgCl electrode submerged in saturated aqueous KCl solution. Mixed solvent (HFIP (2.5 mL), and CH₃NO₂ (2.5 mL) containing Et₄NPF₆ (0.15 mmol) were poured into the electrochemical cell in cyclic voltammetry experiments. The scan rate was 100 mV/s, ranging from 0.0 V to 3.0 V.

Figure S4. Cyclic voltammogram

General procedure for cyclic voltammetry (CV): Cyclic voltammograms of **1a** (0.1 mmol) was performed in a three-electrode cell at room temperature. The working electrode was a steady glassy carbon, the counter electrode was a platinum wire, and the reference was an Ag/AgCl electrode submerged in saturated aqueous KCl solution. Mixed solvent (HFIP (2.5 mL), and CH₃NO₂ (2.5 mL) containing Et₄NPF₆ (0.15 mmol) were poured into the electrochemical cell in cyclic voltammetry experiments. The scan rate was 100 mV/s, ranging from 0.0 V to 3.0 V.

Figure S5. Cyclic voltammogram

General procedure for cyclic voltammetry (CV): Cyclic voltammograms of **2a** (0.3 mmol) was performed in a three-electrode cell at room temperature. The working electrode was a steady glassy carbon, the counter electrode was a platinum wire, and the reference was an Ag/AgCl electrode submerged in saturated aqueous KCl solution. Mixed solvent (HFIP (2.5 mL), and CH₃NO₂ (2.5 mL) containing Et₄NPF₆ (0.15 mmol) were poured into the electrochemical cell in cyclic voltammetry experiments. The scan rate was 100 mV/s, ranging from 0.0 V to 3.0 V.

Figure S6. Cyclic voltammogram

General procedure for cyclic voltammetry (CV): Cyclic voltammograms of **1a** (0.1 mmol) and **2a** (0.3 mmol) were performed in a three-electrode cell at room temperature. The working electrode was a steady glassy carbon, the counter electrode was a platinum wire, and the reference was an Ag/AgCl electrode submerged in saturated aqueous KCl solution. Mixed solvent (HFIP (2.5 mL), and CH₃NO₂ (2.5 mL) containing Et₄NPF₆ (0.15 mmol) were poured into the electrochemical cell in cyclic voltammetry experiments. The scan rate was 100 mV/s, ranging from 0.0 V to 3.0 V.

Figure S7. Cyclic voltammogram

General procedure for cyclic voltammetry (CV): Cyclic voltammograms of the single solvent was performed in a three-electrode cell at room temperature. The working electrode was a steady glassy carbon, the counter electrode was a platinum wire, and the reference was an Ag/AgCl electrode submerged in saturated aqueous KCl solution. single solvent (HFIP (5 mL), or CH₃NO₂ (5 mL), orMeCN (5 mL) containing Et_4NPF_6 (0.15 mmol) were poured into the electrochemical cell in cyclic voltammetry experiments. The scan rate was 100 mV/s, ranging from 0.0 V to 3.0 V.

Table S4 CV study of sulfonated BODIPYs

Entry	Eox(V)	Ered(V)	НОМО	LUMS
3aa	1.51	-0.70	-5.91	-3.70
3ai	1.50	-0.73	-5.90	-3.67
3ak	1.58	-0.69	-5.98	-3.71
1a	1.10	-0.64	-5.50	-3.76

 $E_{HOMO} =$ - (E_{ox} + 4.4 eV), $E_{LUMO} =$ - (E_{red} + 4.4 eV)

The reaction promoted by external oxidants

Table S5 The reaction promoted by external oxidants

	$\left \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	conc + TsNHNH ₂	ditions	
	1a	2a	3aa	
Entry		Conditions	5	Yield
1	TBAI (20 CH ₃ NO ₂ (2	mol%), TBHP (2.0 ec 2.5 mL), H ₂ O, CoCl ₂ ·	puiv.), HFIP (2.5 mL), 6H ₂ 0 (5 mol%), 80 °C	0
2	I ₂ (50 m CH ₃ NO ₂ (2	ol%), TBHP (2.0 equ 2.5 mL), H ₂ O, CoCl ₂ ·	iv.), HFIP (2.5 mL), 6H20 (5 mol%), 80 °C	0
3	FeCl ₃ (10 m I	nol%), air, HFIP (2.5 r H2O, CoCl2·6H20 (5 n	nL), CH ₃ NO ₂ (2.5 mL), nol%), 80 °C	0
4	CAN (2.0 e I	quiv.), air, HFIP (2.5 n H2O, CoCl2·6H20 (5 n	nL), CH ₃ NO ₂ (2.5 mL), nol%), 80 °C	0
5	PCC (2.0 ec I	quiv.), air, HFIP (2.5 r H ₂ O, CoCl ₂ ·6H ₂ 0 (5 n	nL), CH3NO2 (2.5 mL), nol%), 80 °C	0
6	KMnO4 (1 mL	10 mol%), air, HFIP (2), H2O, CoCl2 ^{.6} H20 (2.5 mL), CH ₃ NO ₂ (2.5 5 mol%), 80 °C	0

Control experiments

- a) In a undivided Schlenk flask (10 mL) equipped with a stir bar, substrate 1a (0.1 mmol, 32.4 mg, 1 equiv.), sulfonyl hydrazides 2a (0.3 mmol, 55.9 mg, 3 equiv.), NaCl (0.15 mmol, 8.7 mg) and 1,1-diphenylethylene (54.1 mg, 3 equiv.) were combined and added. The flask was equipped with a rubber stopper, a graphite felt anode (1 cm x 1 cm x 0.5 cm) and a graphite felt cathode (1 cm x 1 cm x 0.5 cm) and then flushed with nitrogen. Then HFIP (2.5 mL), CH₃NO₂ (2.5 mL) and H₂O (0.2 mL) were injected respectively into the flask via syringes. The reaction mixture was stirred and electrolyzed at a constant current of 6 mA at room temperature for 2.5 h. After the reaction was completed, the reaction system was dried with anhydrous Na₂SO4, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography and eluted with petroleum ether and ethyl acetate and the white solid was obtained in 7 (28.3 mg 28%). No product 3aa was isolated. Meanwhile, the reaction mixtures were subjected to the HPLC-MS analysis and the adducts of the reaction intermediates with the radical trap reagents were observed.
- b) In an undivided Schlenk flask (10 mL) equipped with a stir bar, substrate 1a (0.1 mmol, 32.4 mg, 1 equiv.), sulfonyl hydrazides 2a (0.3 mmol, 55.9 mg, 3 equiv.), NaCl (0.15 mmol, 8.7 mg) and BHT (66.1 mg, 3 equiv.) were combined and added. The flask was equipped with a rubber stopper, a graphite felt anode (1 cm x 1 cm x

0.5 cm) and a graphite felt cathode (1 cm x 1 cm x 0.5 cm) and then flushed with nitrogen. Then HFIP (2.5 mL), CH₃NO₂ (2.5 mL) and H₂O (0.2 mL) were injected respectively into the flask via syringes. The reaction mixture was stirred and electrolyzed at a constant current of 6 mA at room temperature for 2.5 h. After the reaction was completed, no product **3aa** was isolated. Meanwhile, the reaction mixtures were subjected to the HPLC-MS analysis and the adducts of the reaction intermediates with the radical trap reagents were observed.

Figure S8 HPLC-MS Spectra of 6

Figure S10. HPLC-MS Spectra of 8

Figure S11. HPLC-MS Spectra of 9

Late-stage transformations

The electrochemical products **3ea** (0.3 mmol, 181.4 mg), **1i** (0.36 mmol, 113.4 mg), $PdCl_2(PPh_3)_2$ (2 mol%, 4.2 mg), CuI (6 mol%, 3.6 mg), TEA (1.0 mL) and dry THF (2.0 mL) were charged into a thick-walled pressure pipe. And stir the reaction mixture at the room temperature for 12 h. Add saturated NH₄Cl solution and extract the mixture with ethyl acetate. The combined organic layer was dried with Na₂SO₄, and evaporated under reduced pressure. The solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ ethyl acetate eluent to afford compound **5** (140.1 mg, 55%)

Proposed Mechanism of bissulfonylation

Photophysical properties

Table S6 Absorption maxima, emission maxima, stokes shifts and relative fluorescence quantum yields (Φ)

BODIPYs	λ _{abs} max (nm)	λ _{em} max (nm)	Stokes Shift (nm)	Φ^{a}
1a	488	521	33	0.26
3aa	492	517	15	0.16
3ba	490	505	15	0.27
3ca	491	508	17	0.30
3da	494	513	19	0.31
3ea	493	513	20	0.30
3fa	492	514	22	0.28
3ga	495	522	27	0.15
3ha	490	521	31	0.09
3ia	492	511	19	0.34
3ja	502	527	25	0.55
3ka	493	509	16	0.89
3ab	490	510	20	0.36
3ac	492	509	17	0.33
3ad	492	511	19	0.40
3ae	490	515	25	0.16
3af	489	508	19	0.24
3ag	491	507	16	0.28
3ah	487	508	29	0.23
3ai	492	517	25	0.14
Зај	492	512	20	0.36
3ak	486	512	26	0.18
3al	487	517	30	0.11
3am	493	512	19	0.29
3an	490	508	18	0.35
3ao	490	508	18	0.36
Зар	491	509	18	0.31
3aq	493	508	15	0.25
3ar	490	505	15	0.22
4aa	494	523	29	0.39
4ab	498	517	19	0.33
4ai	502	518	16	0.46
4ca	499	517	18	0.34
4fa	491	524	34	0.03
4ga	498	529	31	0.07
4ja	503	538	35	0.62
5	486	524	38	0.23

of products.

^aFluorescence quantum yields of these BODIPY dyes were calculated using calculated using Rhodamine 6G ($\Phi = 0.95$ in water) as the standard.

UV-visible absorption and fluorescence emission spectra were recorded on commercial spectrophotometers (Shimadzu UV-2600 and Shimadzu RF-6000 spectrometers). All measurements were made at 25 °C, using 5×10 mm cuvettes. Preliminary spectroscopic properties of these BODIPYs were investigated in dichloromethane. The concentration of the samples to be measured is 2.5×10^{-5} M. The following measured UV absorption absorbance intensity 1/10 as the ordinate. The following measured fluorescence emission intensity is 1/100000 as the ordinate. The data was as follows.

Figure S12 Absorption (left) and emission (right) spectra of compound 1a recorded in dichloromethane (Excited at 500 nm)

Figure S13 Absorption (left) and emission (right) spectra of compound 3aa recorded in dichloromethane (Excited at 490 nm)

Figure S14 Absorption (left) and emission (right) spectra of compound 3ba recorded in dichloromethane (Excited at 490 nm)

Figure S15 Absorption (left) and emission (right) spectra of compound 3ca recorded in dichloromethane (Excited at 490 nm)

Figure S16 Absorption (left) and emission (right) spectra of compound 3da recorded in dichloromethane (Excited at 490 nm)

Figure S17 Absorption (left) and emission (right) spectra of compound **3ea** recorded in dichloromethane (Excited at 490 nm)

Figure S18 Absorption (left) and emission (right) spectra of compound 3fa recorded in dichloromethane (Excited at 490 nm)

Figure S19 Absorption (left) and emission (right) spectra of compound 3ga recorded in dichloromethane (Excited at 490 nm)

Figure S20 Absorption (left) and emission (right) spectra of compound **3ha** recorded in dichloromethane (Excited at 500 nm)

Figure S21 Absorption (left) and emission (right) spectra of compound 3ia recorded in dichloromethane (Excited at 490 nm)

Figure S22 Absorption (left) and emission (right) spectra of compound 3ja recorded in dichloromethane (Excited at 500 nm)

Figure S23 Absorption (left) and emission (right) spectra of compound 3ka recorded in dichloromethane (Excited at 490 nm)

Figure S24 Absorption (left) and emission (right) spectra of compound 3ab recorded in dichloromethane (Excited at 490 nm)

Figure S25 Absorption (left) and emission (right) spectra of compound **3ac** recorded in dichloromethane (Excited at 490 nm)

Figure S26 Absorption (left) and emission (right) spectra of compound 3ad recorded in dichloromethane (Excited at 490 nm)

Figure S27 Absorption (left) and emission (right) spectra of compound **3ae** recorded in dichloromethane (Excited at 490 nm)

Figure S28 Absorption (left) and emission (right) spectra of compound 3af recorded in dichloromethane (Excited at 490 nm)

Figure S29 Absorption (left) and emission (right) spectra of compound 3ag recorded in dichloromethane (Excited at 490 nm)

Figure S30 Absorption (left) and emission (right) spectra of compound 3ah recorded in dichloromethane (Excited at 490 nm)

Figure S31 Absorption (left) and emission (right) spectra of compound 3ai recorded in dichloromethane (Excited at 490 nm)

Figure S32 Absorption (left) and emission (right) spectra of compound 3aj recorded in dichloromethane (Excited at 490 nm)

Figure S33 Absorption (left) and emission (right) spectra of compound 3ak recorded in dichloromethane (Excited at 490 nm)

Figure S34 Absorption (left) and emission (right) spectra of compound 3al recorded in dichloromethane (Excited at 490 nm)

Figure S35 Absorption (left) and emission (right) spectra of compound **3am** recorded in dichloromethane (Excited at 490 nm)

Figure S36 Absorption (left) and emission (right) spectra of compound 3an recorded in dichloromethane (Excited at 490 nm)

Figure S37 Absorption (left) and emission (right) spectra of compound 3ao recorded in dichloromethane (Excited at 490 nm)

Figure S38 Absorption (left) and emission (right) spectra of compound 3ap recorded in dichloromethane (Excited at 490 nm)

Figure S39 Absorption (left) and emission (right) spectra of compound 3aq recorded in dichloromethane (Excited at 490 nm)

Figure S40 Absorption (left) and emission (right) spectra of compound **3ar** recorded in dichloromethane (Excited at 490 nm)

Figure S41 Absorption (left) and emission (right) spectra of compound 4aa recorded in dichloromethane (Excited at 500 nm)

Figure S42 Absorption (left) and emission (right) spectra of compound 4ab recorded in dichloromethane (Excited at 500 nm)

Figure S43 Absorption (left) and emission (right) spectra of compound 4ai recorded in dichloromethane (Excited at 500 nm)

Figure S44 Absorption (left) and emission (right) spectra of compound 4ca recorded in dichloromethane (Excited at 500 nm)

Figure S45 Absorption (left) and emission (right) spectra of compound 4fa recorded in dichloromethane (Excited at 500 nm)

Figure S46 Absorption (left) and emission (right) spectra of compound 4garecorded in dichloromethane (Excited at 500 nm)

Figure S47 Absorption (left) and emission (right) spectra of compound 4ja recorded in dichloromethane (Excited at 510 nm)

Figure S48 Absorption (left) and emission (right) spectra of compound 5 recorded in dichloromethane (Excited at 490 nm)

Characterization of products

1i

1i was obtained in 38% (1.08 g) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 30/1 v/v).

¹H NMR (500 MHz, CDCl₃) δ 7.20 (d, J = 8.6 Hz, 2H), 7.09 (d, J = 8.6 Hz, 2H), 5.98 (s, 2H), 4.76 (d, J = 2.4 Hz, 2H), 2.55 (s, 1H), 1.55 (s, 6H), 1.42 (s, 6H).

3aa

3aa was obtained in 71% (34.1 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 8/1 v/v).

¹**H NMR (500 MHz, CDCl₃)** δ 7.71 (d, *J* = 8.2 Hz, 2H), 7.52 – 7.47 (m, 3H), 7.26 (d, *J* = 8.0 Hz, 2H), 7.26 – 7.20 (m, 2H), 6.14 (s, 1H), 2.86 (s, 3H), 2.60 (s, 3H), 2.40 (s, 3H), 1.58 (s, 3H), 1.38 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 162.6, 148.1, 143.6, 143.5, 140.6, 140.2, 134.4, 134.1, 129.74, 129.68, 129.59, 129.2, 127.7, 126.6, 124.5, 21.6, 15.2, 15.0, 13.8, 12.4.

HRMS (ESI-TOF, $[M + Na]^+$): Calcd for C₂₅H₂₃BF₂N₂O₂SNa, 501.1590, Found: 501.1597.

3ba

3ba was obtained in 56% (27.8 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 8/1 v/v).

¹**H NMR (500 MHz, CDCl₃)** δ 7.70 (d, *J* = 8.2 Hz, 2H), 7.29 (d, *J* = 7.7 Hz, 2H), 7.25 (s, 2H), 7.08 (d, *J* = 8.2 Hz, 2H), 6.13 (s, 1H), 2.86 (s, 3H), 2.59 (s, 3H), 2.43 (s, 3H), 2.39 (s, 3H), 1.60 (s, 3H), 1.40 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 162.4, 152.6, 148.1, 144.0, 143.6, 140.7, 140.3, 139.8, 134.5, 131.1, 130.3, 129.8, 129.4, 127.6, 126.6, 124.3, 21.7, 21.6, 15.1, 12.5.

HRMS (ESI-TOF, $[M + Na]^+$): Calcd for C₂₇H₂₇BF₂N₂O₂SNa, 515.1747 Found: 515.1758.

3ca

3ca was obtained in 54% (27.5 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 8/1 v/v).

¹**H** NMR (500 MHz, CDCl₃) δ 7.70 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 7.9 Hz, 2H), 7.25 (d, J = 7.7 Hz, 2H), 7.11 (d, J = 8.1 Hz, 2H), 6.13 (s, 1H), 2.86 (s, 3H), 2.72 (q, J = 7.6 Hz, 2H), 2.59 (s, 3H), 2.39 (s, 3H), 1.59 (s, 3H), 1.40 (s, 3H), 1.27 (t, J = 7.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 162.4, 152.5, 148.1, 146.2, 144.0, 143.6, 140.7, 140.3, 134.5, 131.3, 129.8, 129.4, 129.0, 127.6, 126.6, 124.3, 28.8, 21.6, 15.7, 15.2, 15.0, 13.8, 12.5.

HRMS (ESI-TOF, $[M + Na]^+$): Calcd for C₂₈H₂₉BF₂N₂O₂SNa, 529.1903, Found: 529.1913.

3da was obtained in 57% (31.3 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 8/1 v/v).

¹**H NMR (500 MHz, CDCl₃)** δ 7.71 (d, *J* = 8.2 Hz, 2H), 7.66 (d, *J* = 8.3 Hz, 2H), 7.26 (d, *J* = 8.1 Hz, 2H), 7.12 (d, *J* = 8.3 Hz, 2H), 6.16 (s, 1H), 2.86 (s, 3H), 2.59 (s, 3H), 2.39 (s, 3H), 1.62 (s, 3H), 1.42 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 163.1, 153.1, 147.7, 143.8, 141.8, 140.6, 140.1, 134.2, 133.1, 133.0, 129.8, 129.7, 129.0, 127.0, 126.7, 124.8, 124.1, 21.7, 15.3, 13.9, 12.8.

HRMS (ESI-TOF, [M + Na]⁺): Calcd for C₂₆H₂₄BBrF₂N₂O₂SNa, 579.0695, Found: 579.0702.

3ea

3ea was obtained in 58% (35.3 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 8/1 v/v).

¹H NMR (500 MHz, DMSO-*d*₆) δ 7.93 (d, *J* = 7.7 Hz, 2H), 7.73 (d, *J* = 7.7 Hz, 2H),
7.38 (d, *J* = 7.9 Hz, 2H), 7.22 (d, *J* = 7.9 Hz, 2H), 6.48 (s, 1H), 2.73 (s, 3H), 2.54 (s, 3H), 2.35 (s, 3H), 1.55 (s, 3H), 1.39 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 164.0, 150.4, 148.2, 143.9, 142.1, 140.0, 138.4, 138.1, 133.9, 132.7, 130.1, 130.0, 128.1, 125.4, 96.5, 21.1, 14.9, 14.8, 13.3, 12.0.

HRMS (ESI-TOF, $[M + Na]^+$): Calcd for C₂₆H₂₄BF₂IN₂O₂SNa, 627.0556, Found: 627.0560.

3fa was obtained in 60% (30.7 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 8/1 v/v).

¹**H NMR (500 MHz, CDCl₃)** δ 7.70 (d, *J* = 8.3 Hz, 2H), 7.25 (d, *J* = 8.3 Hz, 2H), 7.10 (d, *J* = 8.6 Hz, 2H), 7.00 (d, *J* = 8.6 Hz, 2H), 6.13 (s, 1H), 3.86 (s, 3H), 2.85 (s, 3H), 2.58 (s, 3H), 2.39 (s, 3H), 1.63 (s, 3H), 1.43 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 162.4, 160.7, 152.6, 148.1, 143.7, 143.6, 140.7, 140.3, 134.8, 129.8, 129.7, 129.1, 128.6, 126.6, 126.1, 124.4, 115.0, 55.5, 21.7, 15.3, 13.8, 12.7.

HRMS (ESI-TOF, $[M + Na]^+$): Calcd for C₂₇H₂₇BF₂N₂O₃SNa, 531.1696, Found: 531.1705.

3ga

3ga was obtained in 63% (31.9 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 4/1 v/v).

¹**H NMR (500 MHz, CDCl₃)** δ 7.82 (d, *J* = 7.9 Hz, 2H), 7.69 (d, *J* = 8.3 Hz, 2H), 7.41 (d, *J* = 8.3 Hz, 2H), 7.26 (d, *J* = 7.9 Hz, 2H), 6.18 (s, 1H), 2.84 (s, 3H), 2.59 (s, 3H), 2.39 (s, 3H), 1.56 (s, 3H), 1.36 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 163.9, 153.4, 147.3, 143.9, 140.4, 139.7, 139.0, 133.8, 133.3, 129.8, 129.2, 128.4, 127.3, 126.6, 125.1, 117.8, 114.0, 21.6, 15.3, 15.2, 13.8,

12.7.

HRMS (ESI-TOF, [M + Na]^+): Calcd for C₂₇H₂₄BF₂N₃O₂SNa, 526.1543, Found: 526.1551.

3ha was obtained in 68% (36.6 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 6/1 v/v).

¹**H NMR (500 MHz, CDCl₃)** δ 8.18 (d, *J* = 7.6 Hz, 2H), 7.69 (d, *J* = 8.3 Hz, 2H), 7.35 (d, *J* = 8.3 Hz, 2H), 7.26 (d, *J* = 7.5 Hz, 2H), 6.15 (s, 1H), 3.97 (s, 3H), 2.86 (s, 3H), 2.60 (s, 3H), 2.39 (s, 3H), 1.56 (s, 3H), 1.36 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 166.3, 163.2, 153.2, 147.6, 143.8, 142.0, 140.6, 140.1, 1389, 133.9, 131.5, 130.8, 129.8, 128.7, 128.3, 127.0, 126.7, 124.8, 52.6, 21.6, 15.3, 15.2, 13.9, 12.6.

HRMS (ESI-TOF, $[M + Na]^+$): Calcd for C₂₈H₂₇BF₂N₂O₄SNa, 559.1645, Found: 559.1659.

3ia

3ia was obtained in 57% (30.4 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 8/1 v/v).

¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, J = 8.2 Hz, 2H), 7.25 (s, 2H), 7.13 (d, J = 8.6 Hz, 2H), 7.09 (d, J = 8.7 Hz, 2H), 6.14 (s, 1H), 4.75 (d, J = 2.4 Hz, 2H), 2.85 (s, 3H), 2.58 (s, 3H), 2.56 (t, J = 2.4 Hz, 1H), 2.38 (s, 3H), 1.63 (s, 3H), 1.43 (s, 3H).
¹³C NMR (125 MHz, CDCl₃) δ 162.5, 158.6, 152.6, 148.0, 143.6, 143.5, 140.7, 140.2,

134.7, 129.8, 129.6, 129.1, 127.0, 126.6, 124.4, 116.2, 77.9, 76.21, 56.2, 21.6, 15.24,

15.21, 13.8, 12.6.

HRMS (ESI-TOF, [M + Na]⁺): Calcd for C₂₉H₂₇BF₂N₂O₃SNa, 559.1696, Found: 555.1706. 3ja

3ja was obtained in 70% (38.3 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 8/1 v/v).

¹**H NMR (500 MHz, CDCl₃)** δ 7.72 (d, *J* = 8.0 Hz, 2H), 7.47 (d, *J* = 1.7 Hz, 1H), 7.46 (s, 1H), 7.41 (m, 1H), 7.27 (d, *J* = 8.1 Hz, 2H), 6.18 (s, 1H), 2.84 (s, 3H), 2.61 (s, 3H), 2.39 (s, 3H), 1.75 (s, 3H), 1.49 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 163.9, 153.4, 146.7, 143.7, 140.6, 139.0, 136.8, 134.6, 133.8, 132.2, 131.8, 129.8, 129.0, 127.8, 126.6, 124.8, 21.6, 15.4, 14.0, 13.9, 11.0.

HRMS (ESI-TOF, [M + Na]⁺): Calcd for C₂₆H₂₃BCl₂F₂N₂O₂SNa, 569.0811, Found: 569.0818.

3ka

3ka was obtained in 65% (34 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 8/1 v/v).

¹**H NMR (500 MHz, CDCl**₃) δ 7.71 (d, *J* = 8.2 Hz, 2H), 7.26 (d, *J* = 8.3 Hz, 2H), 6.95 (s, 2H), 6.13 (s, 1H), 2.84 (s, 3H), 2.60 (s, 3H), 2.40 (s, 3H), 2.33 (s, 3H), 2.02 (s, 6H), 1.64 (s, 3H), 1.38 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 162.2, 152.6, 147.3, 143.8, 143.6, 140.8, 139.5, 134.8, 133.7, 130.4, 129.8, 129.5, 128.3, 126.6, 126.3, 124.1, 21.7, 21.3, 19.7, 15.3, 14.1, 13.9,

11.1.

HRMS (ESI-TOF, [M + H]^+): Calcd for C₂₉H₃₂BF₂N₂O₂S, 521.2240, Found: 521.2239.

3ma

3ma was obtained in 38% (16.0 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 6/1 v/v).

¹**H NMR (400 MHz, CDCl₃)** δ 8.17 (s, 1H), 8.00 (d, J = 8.1 Hz, 2H), 7.65 – 7.58 (m, 1H), 7.54 (t, J = 7.6 Hz, 2H), 7.50 – 7.47 (m, 2H), 7.31 (d, J = 8.1 Hz, 2H), 7.17 (d, J = 4.2 Hz, 1H), 7.06 (d, J = 4.5 Hz, 1H), 6.79 (d, J = 4.2 Hz, 1H), 6.68 (d, J = 4.2 Hz, 1H), 2.40 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 151.5, 149.3, 144.6, 138.2, 137.5, 137.3, 135.5, 133.13, 131.5, 130.6, 129.6, 129.1, 128.8, 127.8, 122.6, 121.8, 21.8.

HRMS (ESI-TOF, [M + Na]⁺): Calcd for C₂₂H₁₇BF₂N₂O₂SNa, 445.0964, Found: 445.0972.

3ab

3ab was obtained in 70% (32.7 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 8/1 v/v).

¹**H NMR (500 MHz, DMSO-***d*₆) δ 7.86 (d, *J* = 7.5 Hz, 2H), 7.67 (t, *J* = 7.0 Hz, 1H), 7.61 (d, *J* = 7.0 Hz, 2H), 7.59 – 7.55 (m, 3H), 7.38 (m,, 2H), 6.47 (s, 1H), 2.76 (s, 3H), 2.55 (s, 3H), 1.53 (s, 3H), 1.35 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 163.7, 150.2, 148.4, 143.3, 142.7, 138.1, 134.0, 133.3, 133.1, 129.7, 129.6, 129.5, 128.3, 127.6, 126.1, 125.6, 125.2, 14.8, 14.4, 13.2,

11.7.

HRMS (ESI-TOF, $[M + Na]^+$): Calcd for C₂₄H₂₀BF₂N₂O₂SNa, 487.1434, Found: 487.1438.

3ac

3ac was obtained in 68% (34.6 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 8/1 v/v).

¹**H NMR (500 MHz, CDCl₃)** δ 7.72 (d, J = 8.0 Hz, 2H), 7.52 – 7.48 (m, 3H), 7.26 (d, J = 8.1 Hz, 2H), 7.22 (m, 2H), 6.14 (s, 1H), 2.86 (s, 3H), 2.65 – 2.59 (m, 2H), 2.59 (s, 3H), 1.63 (m, 2H), 1.59 (s, 3H), 1.37 (s, 3H), 0.92 (t, J = 7.3 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 162.6, 152.7, 148.3, 143.5, 140.8, 140.3, 134.3, 134.1, 129.7, 129.6, 129.2, 127.74, 126.67, 126.6, 124.5, 38.0, 24.3, 15.2, 15.0, 13.8, 12.4.
HRMS (ESI-TOF, [M + Na]⁺): Calcd for C₂₈H₂₉BF₂N₂O₂SNa, 529.1903, Found: 529.1913.

3ad

3ad was obtained in 67% (35.0 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 10/1 v/v).

¹**H NMR (500 MHz, DMSO-***d*₆) δ 7.76 (d, *J* = 8.5 Hz, 2H), 7.62 (d, *J* = 8.5 Hz, 2H), 7.58 (m, 3H), 7.43 – 7.37 (m, 2H), 6.48 (s, 1H), 2.73 (s, 3H), 2.55 (s, 3H), 1.54 (s, 3H), 1.35 (s, 3H), 1.27 (s, 9H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 163.75, 156.52, 150.23, 148.45, 143.47, 140.07, 138.21, 134.12, 133.22, 129.86, 129.64, 128.41, 127.73, 126.64, 126.10, 125.30, 35.00, 30.78, 14.95, 14.57, 13.36, 11.83.

HRMS (ESI-TOF, [M + H]^+): Calcd for C₂₉H₃₂BF₂N₂O₂S, 521.2240, Found:

521.2247. **3ae**

3ae was obtained in 64% (30.9 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 8/1 v/v).

¹**H NMR (500 MHz, CDCl**₃) δ 7.83 (m,, 2H), 7.52 – 7.49 (m, 3H), 7.24 – 7.21 (m, 2H), 7.14 (t, *J* = 8.5 Hz, 2H), 6.16 (s, 1H), 2.86 (s, 3H), 2.60 (s, 3H), 1.56 (s, 3H), 1.38 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 166.2, 164.2, 163.2, 152.4, 148.4, 143.5, 139.9, 139.68, 139.65, 134.6, 134.0, 129.8, 129.7, 129.4, 129.3, 127.7, 126.0, 124.74, 124.71, 116.5, 116.3, 15.3, 15.1, 13.8, 12.4.

HRMS (ESI-TOF, [M + Na]⁺): Calcd for C₂₅H₂₂BF₂N₂O₂SNa, 505.1339, Found: 505.1332. **3af**

3af was obtained in 59% (29.5 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 8/1 v/v).

¹**H NMR (500 MHz, DMSO-***d*₆) δ 7.85 (d, *J* = 8.7 Hz, 2H), 7.66 (d, *J* = 8.6 Hz, 2H), 7.59 – 7.56 (m, 3H), 7.41 (m, 2H), 6.50 (s, 1H), 2.73 (s, 3H), 2.55 (s, 3H), 1.50 (s, 3H), 1.36 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 164.2, 150.3, 148.7, 143.4, 141.6, 138.4, 138.1, 134.3, 133.2, 129.91, 129.88, 129.6, 128.5, 128.3, 127.7, 125.5, 125.2, 15.0, 14.6, 13.3, 11.8.

HRMS (ESI-TOF, [M + H]^+): Calcd for C₂₅H₂₃BF₂N₂O₂S, 499.1224, Found: 499.1229.

3ag was obtained in 62% (36.6 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 8/1 v/v).

¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, J = 8.5 Hz, 2H), 7.53 (d, J = 8.4 Hz, 2H), 7.52 - 7.50 (m, 3H), 7.25 - 7.19 (m, 3H), 6.17 (s, 1H), 2.86 (s, 3H), 2.61 (s, 3H), 1.55 (s, 3H), 1.39 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 163.3, 152.5, 148.5, 143.5, 143.3, 139.9, 138.4, 134.6, 134.0, 129.8, 129.7, 129.3, 128.0, 127.8, 125.6, 124.8, 100.3, 15.3, 15.0, 13.8, 12.4.

HRMS (ESI-TOF, [M + H]^+): Calcd for C₂₅H₂₃BF₂IN₂O₂S, 591.0581, Found: 591.0583.

3ah

3ah was obtained in 43% (23.1 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 10/1 v/v).

¹H NMR (500 MHz, DMSO- d_6) δ 8.06 (d, J = 8.3 Hz, 2H), 7.97 (d, J = 8.3 Hz, 2H), 7.57 (m, 3H), 7.40 (m, 2H), 6.51 (s, 1H), 2.75 (s, 3H), 2.56 (s, 3H), 1.52 (s, 3H), 1.36 (s, 3H).

¹³C NMR (125 MHz, DMSO-d₆) δ 164.5, 150.4, 148.9, 146.5, 143.4, 138.2, 134.4, 133.1, 129.9, 129.6, 128.5, 127.7, 127.3, 127.1, 127.03, 127.00, 126.97, 125.6, 124.5, 124.4, 122.3, 15.0, 14.6, 13.3, 11.8.

HRMS (ESI-TOF, [M + Na]^+): Calcd for C₂₆H₂₂BF₅N₂O₂SNa, 555.1307, Found: 555.1311. 3ai

3ag

3ai was obtained in 65% (32.2 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 8/1 v/v).

¹**H NMR (500 MHz, CDCl₃)** δ 7.75 (d, *J* = 8.9 Hz, 2H), 7.55 – 7.43 (m, 3H), 7.25 – 7.19 (m, 2H), 6.93 (d, *J* = 8.9 Hz, 2H), 6.13 (s, 1H), 3.83 (s, 3H), 2.86 (s, 3H), 2.59 (s, 3H), 1.57 (s, 3H), 1.37 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 163.0, 162.5, 152.6, 148.0, 143.5, 140.1, 134.3, 134.2, 129.7, 129.6, 128.8, 127.8, 124.4, 114.3, 55.7, 15.3, 15.0, 13.8, 12.4.

HRMS (ESI-TOF, $[M + Na]^+$): Calcd for C₂₆H₂₅BF₂N₂O₃SNa,517.1539, Found: 517.1549.

3aj was obtained in 66% (35.3 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 8/1 v/v).

¹H NMR (500 MHz, DMSO-d₆) δ 7.92 (d, J = 8.5 Hz, 2H), 7.86 (d, J = 8.5 Hz, 2H), 7.69 (d, J = 7.4 Hz, 2H), 7.56 (m, 3H), 7.48 (t, J = 7.5 Hz, 2H), 7.46 – 7.38 (m, 1H), 7.40 – 7.34 (m, 2H), 6.45 (s, 1H), 2.78 (s, 3H), 2.54 (s, 3H), 1.55 (s, 3H), 1.33 (s, 3H).
¹³C NMR (125 MHz, DMSO-d₆) δ 163.8, 150.3, 148.5, 144.9, 143.4, 141.5, 138.3, 138.2, 134.2, 133.2, 129.8, 129.6, 129.2, 128.7, 128.4, 127.9, 127.7, 127.2, 126.9, 125.8, 125.3, 14.9, 14.5, 13.3, 11.8.

HRMS (ESI-TOF, [M + H]^+): Calcd for C₃₁H₂₈BF₂N₂O₃S, 541.1927, Found: 541.1920. **3ak**

3ak was obtained in 54% (26.6 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 8/1 v/v).

¹**H NMR (500 MHz, CDCl₃)** δ 7.92 (d, *J* = 8.4 Hz, 2H), 7.76 (d, *J* = 8.4 Hz, 2H), 7.51 (m, 3H), 7.24 – 7.20 (m, 2H), 6.18 (s, 1H), 2.85 (s, 3H), 2.61 (s, 3H), 1.54 (s, 3H), 1.39 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 164.1, 152.4, 148.9, 147.7, 143.4, 139.5, 133.9, 133.0,

129.9, 129.7, 129.3, 127.7, 127.2, 125.1, 124.3, 117.4, 116.5, 15.4, 15.1, 13.7, 12.3.

HRMS (ESI-TOF, [M + Na]^+): Calcd for C₂₆H₂₂BF₂N₃O₃SNa, 512.1386, Found: 512.1390.

3al

3al was obtained in 53% (27.8 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 8/1 v/v).

¹**H NMR (500 MHz, CDCl₃)** δ 8.11 (d, *J* = 8.0 Hz, 2H), 7.88 (d, *J* = 8.0 Hz, 2H), 7.57 – 7.45 (m, 3H), 7.22 (m, 2H), 6.16 (s, 1H), 3.93 (s, 3H), 2.86 (s, 3H), 2.60 (s, 3H), 1.55 (s, 3H), 1.38 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 165.7, 163.5, 152.6, 148.5, 147.3, 143.5, 139.9, 134.7, 134.0, 133.9, 130.4, 129.8, 129.7, 129.3, 127.7, 126.6, 125.2, 124.9, 52.7, 15.3, 15.0, 13.8, 12.4.

HRMS (ESI-TOF, $[M + Na]^+$): Calcd for C₂₇H₂₅BF₂N₂O₄SNa, 545.1488, Found: 545.1497.

3am

3am was obtained in 74% (37.6 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 10/1 v/v).

¹**H NMR (500 MHz, DMSO-***d*₆) δ 7.56 – 7.52 (m, 3H), 7.37 (m, 2H), 7.03 (s, 2H), 6.46 (s, 2H), 2.57 (s, 3H), 2.55 (s, 3H), 2.24 (s, 3H), 1.35 (s, 3H), 1.22 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 163.5, 149.8, 148.3, 143.4, 142.9, 138.3, 137.5, 135.8, 134.0, 133.2, 132.2, 129.8, 129.6, 128.1, 127.7, 125.1, 21.4, 20.5, 14.9, 14.6, 13.0, 11.1.

HRMS (ESI-TOF, $[M + Na]^+$): Calcd for C₂₈H₂₉BF₂N₂O₂SNa, 529.1903, Found: 529.1914.

3an

3an was obtained in 46% (23.1 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 8/1 v/v).

¹**H NMR (500 MHz, CDCl₃)** δ 8.20 (d, *J* = 7.8, 1H), 7.51 – 7.45 (m, 4H), 7.44 – 7.36 (m, 2H), 7.23 (m, 2H), 6.15 (s, 1H), 2.79 (s, 3H), 2.60 (s, 3H), 1.44 (s, 3H), 1.38 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 162.8, 153.9, 148.2, 143.5, 140.7, 139.9, 134.5, 134.1, 134.0, 133.2, 132.1, 130.5, 129.7, 129.6, 129.1, 127.8, 126.9, 124.6, 124.3, 15.3, 15.12, 14.0, 12.5.

HRMS (ESI-TOF, [M + Na]⁺): Calcd for C₂₅H₂₂BClF₂N₂O₂SNa, 521.1044, Found: 521.1050.

3ao

3ao was obtained in 59% (31.9 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 8/1 v/v).

¹**H NMR (500 MHz, CDCl₃)** δ 7.95 (s, 1H), 7.74 (d, *J* = 7.9 Hz, 1H), 7.65 (d, *J* = 7.9 Hz, 1H), 7.52 – 7.50 (m, 3H), 7.34 (t, *J* = 7.9 Hz, 1H), 7.23 (m, 2H), 6.17 (s, 1H), 2.86 (s, 3H), 2.61 (s, 3H), 1.57 (s, 3H), 1.39 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 163.5, 148.5, 145.5, 143.5, 139.9, 135.9, 134.7, 134.0, 130.7, 129.8, 129.7, 129.5, 129.3, 127.8, 125.3, 125.2, 124.8, 123.1, 15.3, 15.0, 13.8, 12.4.

HRMS (ESI-TOF, $[M + Na]^+$): Calcd for C₂₅H₂₂BBrF₂N₂O₂SNa, 565.0539, Found: 565.0549.

3ap

3ap was obtained in 61% (29.3 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 8/1 v/v).

¹**H NMR (500 MHz, CDCl₃)** δ 7.62 (m, 2H), 7.55 – 7.48 (m, 3H), 7.36 – 7.32 (m, 2H), 7.22 (m, 2H), 6.14 (s, 1H), 2.87 (s, 3H), 2.60 (s, 3H), 2.39 (s, 3H), 1.58 (s, 23), 1.38 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 162.6, 152.7, 148.0, 143.4, 143.2, 140.2, 139.3, 134.3, 134.0, 133.5, 129.6, 129.1, 128.9, 126.8, 126.3, 124.4, 123.7, 21.4, 15.2, 14.9, 13.7, 12.3.

HRMS (ESI-TOF, [M + H]⁺): Calcd for C₂₅H₂₄BF₂N₂O₂S, 479.1171, Found: 479.1176. **3aq**

3aq was obtained in 53% (27.4 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 8/1 v/v).

¹**H NMR (500 MHz, CDCl₃)** δ 8.43 (s, 1H), 7.96 – 7.85 (m, 3H), 7.74 (dd, *J* = 8.7, 1.9 Hz, 1H), 7.65 – 7.55 (m, 2H), 7.48 (dd, *J* = 4.9, 1.9 Hz, 3H), 7.20 (m, 2H), 6.14 (s, 1H), 2.94 (s, 3H), 2.60 (s, 3H), 1.60 (s, 3H), 1.37 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 162.9, 152.8, 148.2, 143.5, 140.3, 140.2, 135.0, 134.5, 134.1, 132.2, 129.7, 129.63, 129.60, 129.5, 129.3, 129.0, 128.0, 127.8, 127.62, 127.57, 126.2, 124.6, 122.1, 15.3, 15.0, 13.9, 12.5.

HRMS (ESI-TOF, [M + Na]^+): Calcd for C₂₉H₂₅BF₂N₂O₂SNa, 537.1590, Found: 537.1600.

3ar

3ar was obtained in 38% (16.4 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 8/1 v/v).

¹H NMR (500 MHz, CDCl₃) δ 7.53 (m, 3H), 7.31 – 7.26 (m, 2H), 6.16 (s, 1H), 2.82 (s, 3H), 2.62 (s, 3H), 2.43 (m, 1H), 1.63 (s, 3H), 1.41 (s, 3H), 1.27 – 1.21 (m, 2H), 1.01 – 0.91 (m, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 162.7, 152.6, 148.1, 143.6, 140.4, 134.4, 134.2, 129.78, 129.70, 129.2, 127.8, 126.4, 124.5, 34.4, 15.3, 15.0, 13.8, 12.5, 5.3.

HRMS (ESI-TOF, $[M + Na]^+$): Calcd for C₂₂H₂₂BF₂N₂O₂SNa, 451.1434, Found: 451.1439.

3as

3as was obtained in 48% (22.6 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 8/1 v/v).

¹**H NMR (400 MHz, CDCl**₃) δ 7.57 (ddd, J = 10.9, 4.4, 1.3 Hz, 2H), 7.54 – 7.48 (m, 3H), 7.24 (dd, J = 6.6, 2.9 Hz, 2H), 7.07 – 7.00 (m, 1H), 6.15 (s, 1H), 2.87 (s, 3H), 2.60 (s, 3H), 1.64 (s, 3H), 1.39 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 163.0, 152.5, 148.3, 145.7, 143.5, 140.1, 135.7, 134.7,

134.5, 134.1, 132.4, 131.4, 129.8, 129.7, 127.8, 127.6, 124.6, 15.3, 15.0, 13.9, 12.5. **HRMS (ESI-TOF, [M + Na]⁺):** Calcd for C₂₃H₂₁BF₂N₂O₂S₂Na, 493.0998, Found: 493.0997.

4aa was obtained in 48% (30.3 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 4/1 v/v).

¹**H NMR (500 MHz, CDCl₃)** δ 7.70 (d, *J* = 8.0 Hz, 4H), 7.53 (m, 3H), 7.28 (d, *J* = 8.0 Hz, 4H), 7.20 – 7.16 (m, 2H), 2.87 (s, 6H), 2.40 (s, 6H), 1.63 (s, 6H).

¹³C NMR (125 MHz, CDCl₃) δ 158.1, 147.8, 146.7, 144.4, 139.7, 133.4, 131.4, 130.4,

130.3, 130.1, 130.0, 127.3, 126.8, 21.7, 14.5, 14.0.

HRMS (ESI-TOF, $[M + H]^+$): Calcd for C₃₃H₃₂BF₂N₂O₄S₂, 633.1859, Found: 633.1866.

4ab

4ab was obtained in 50% (30.5 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 4/1 v/v).

¹**H NMR (500 MHz, CDCl₃)** δ 7.82 (d, *J* = 7.6 Hz, 4H), 7.56 (m, 5H), 7.50 (t, *J* = 7.7 Hz, 4H), 7.20 – 7.17 (dd, *J* = 7.7, 2.0 Hz, 2H), 2.88 (s, 6H), 1.65 (s, 6H).

¹³C NMR (125 MHz, CDCl₃) δ 158.3, 148.0, 147.0, 142.6, 133.4, 131.5, 130.5, 130.2, 130.0, 129.5, 129.0, 127.3, 126.8, 14.5, 13.3.

HRMS (ESI-TOF, [M + H]^+): Calcd for $C_{31}H_{28}BF_2N_2O_4S_2$, 605.1546, Found: 605.1540.

4ai

4ai was obtained in 46% (30.6 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 8/1 v/v).

¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, J = 8.2 Hz, 4H), 7.28 (d, J = 8.2 Hz, 4H), 7.05

(q, J = 8.7 Hz, 4H), 3.87 (s, 3H), 2.87 (s, 6H), 2.40 (s, 6H), 1.70 (s, 6H).

¹³C NMR (125 MHz, CDCl₃) δ 161.2, 157.9, 148.1, 146.7, 144.4, 139.8, 131.8, 130.0,

128.8, 127.6, 126.8, 125.2, 115.5, 55.6, 21.7, 14.4, 13.5.

HRMS (ESI-TOF, [M + Na]^+): Calcd for C₃₄H₃₃BF₂N₂O₅S₂Na, 687.1577, Found: 687.1598.

4ca

4ca was obtained in 42% (27.8 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 4/1 v/v).

¹**H NMR (500 MHz, CDCl**₃) δ 7.70 (d, *J* = 8.0 Hz, 4H), 7.34 (d, *J* = 7.8 Hz, 2H), 7.28 (d, *J* = 7.9 Hz, 4H), 7.07 (d, *J* = 7.8 Hz, 2H), 2.87 (s, 6H), 2.73 (q, *J* = 7.7 Hz, 2H), 2.40 (s, 6H), 1.65 (s, 6H), 1.27 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 157.9, 148.3, 147.1, 146.8, 144.4, 139.8, 131.6, 130.6, 130.1, 130.0, 129.5, 127.3, 126.8, 28.8, 21.7, 15.6, 14.4, 13.3.

HRMS (ESI-TOF, $[M + Na]^+$): Calcd for C₃₅H₃₅BF₂N₂O₄S₂Na, 683.1992, Found: 683.1982.

4fa

4fa was obtained in 50% (32.9 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 4/1 v/v).

¹**H NMR (500 MHz, CDCl₃)** δ 7.70 (d, *J* = 8.2 Hz, 4H), 7.28 (d, *J* = 8.2 Hz, 4H), 7.05 (q, *J* = 8.7 Hz, 4H), 3.87 (s, 3H), 2.87 (s, 6H), 2.40 (s, 6H), 1.70 (s, 6H).

¹³C NMR (125 MHz, CDCl₃) δ 161.2, 157.9, 148.1, 146.7, 144.4, 139.8, 131.8, 130.0, 128.8, 127.6, 126.8, 125.2, 115.5, 55.6, 21.7, 14.4, 13.5.

HRMS (ESI-TOF, $[M + Na]^+$): Calcd for C₃₄H₃₃BF₂N₂O₅S₂Na, 685.1784, Found: 685.1785.

4ga

4ga was obtained in 45% (29.6 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 4/1 v/v).

¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 8.2 Hz, 2H), 7.69 (d, J = 8.3 Hz, 4H), 7.39 (d, J = 8.2 Hz, 2H), 7.30 (d, J = 8.3 Hz, 4H), 2.87 (s, 6H), 2.41 (s, 6H), 1.62 (s, 6H).
¹³C NMR (125 MHz, CDCl₃) δ 159.1, 146.0, 144.7, 144.5, 139.5, 138.2, 133.7, 131.0, 130.7, 130.1, 128.9, 126.8, 117.5, 114.7, 21.7, 14.6, 13.5.

HRMS (ESI-TOF, $[M + Na]^+$): Calcd for C₃₄H₃₀BF₂N₃O₄S₂Na, 680.1631, Found: 680.1637.

4ja

4ja was obtained in 50% (34.8 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 4/1 v/v).

¹**H NMR (500 MHz, CDCl₃)** δ 7.71 (d, *J* = 6.9 Hz, 4H), 7.48 (m, 3H), 7.30 (d, *J* = 7.0 Hz, 4H), 2.85 (s, 6H), 2.41 (s, 6H), 1.81 (s, 6H).

¹³C NMR (125 MHz, CDCl₃) δ 159.1, 145.4, 144.5, 141.1, 139.6, 134.2, 132.4, 131.6, 130.5, 130.4, 130.1, 129.3, 126.8, 21.7, 14.7, 11.7.

HRMS (ESI-TOF, [M + H]^+): Calcd for $C_{33}H_{30}BCl_2F_2N_2O_4S_2$, 701.1080, Found: 701.1089.

5

5 was obtained in 55% (140.1 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 10/1 v/v).

¹**H NMR (500 MHz, CDCl**₃) δ 7.70 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 7.8 Hz, 2H), 7.26 (d, *J* = 7.8 Hz, 2H), 7.25 – 7.18 (m, 4H), 7.15 (d, *J* = 8.5 Hz, 2H), 6.15 (s, 1H), 5.98 (s, 2H), 5.01 (s, 2H), 2.85 (s, 3H), 2.59 (s, 3H), 2.55 (s, 6H), 2.39 (s, 3H), 1.60 (s, 3H), 1.43 (s, 6H), 1.39 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 163.1, 158.3, 155.6, 153.1, 147.6, 143.8, 143.1, 142.3,

141.6, 140.6, 140.1, 134.7, 134.1, 132.9, 131.9, 129.8, 129.5, 128.9, 128.3, 128.2, 127.0, 126.7, 124.7, 123.8, 121.3, 115.9, 86.6, 85.5, 56.9, 21.7, 15.3, 15.2, 14.70, 14.66, 13.9, 12.7.

HRMS (ESI-TOF, $[M + Na]^+$): Calcd for C₄₈H₄₄B₂F₄N₄O₃SNa, 877.3149, Found: 877.3154.

7

7 was obtained in 28% (28.3 mg) as a white solid after column chromatography (eluent:

petroleum ether/ethyl acetate = 10/1 v/v).

¹**H NMR (500 MHz, CDCl**₃) δ 7.48 (d, J = 8.0 Hz, 2H), 7.37 (m, 2H), 7.30 (t, J = 7.6 Hz, 4H), 7.20 (d, J = 7.6 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 7.10 (d, J = 7.3 Hz, 2H), 6.99 (s, 1H), 2.38 (s, 3H).

HRMS (ESI-TOF, [M + H]⁺): Calcd for C₂₁H₁₉O₂S, 335.1100, Found: 335.1100. 10

10 was obtained in 19% (9.0 mg) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate = 50/1 v/v).

¹H NMR (500 MHz, CDCl₃) δ 7.72 – 7.44 (m, 3H), 7.26 (m, 2H), 6.00 (s, 2H), 4.11 – 3.63 (m, 1H), 2.53 (s, 6H), 1.39 (s, 6H).

¹³C NMR (125 MHz, CDCl₃) δ 156.8, 143.6, 141.8, 134.8, 131.7, 129.4, 129.3, 128.2, 127.9, 123.5, 121.88, 121.85, 121.2, 70.89, 70.83, 70.63, 70.57, 70.38, 70.31, 70.12, 70.06, 69.86, 69.80, 14.92, 14.88, 14.6.

HRMS (ESI-TOF, [M + Na]⁺): Calcd for C₂₂H₂₀BF₇N₂ONa, 495.1449, Found: 495.1456.

CDCl₃

Ĭ

— 1.62 — 1.42

100 90 f1 (ppm)

100 90 f1 (ppm) -

.90 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 f1 (ppm)

3ae

- 2.86 - 2.61 - 1.55 - 1.39

3ai

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

3al

3an

— 2.79 — 2.60

√ 1.44√ 1.38

3ao

3aq

140 130 120 110 100 90 f1 (ppm) 80 70 0 -10 190 180 170 160 150 60 50 40 30 20 10

¹H NMR 500 MHz CDCl₃

— 1.65

¹H NMR 500 MHz CDCl₃

¹H NMR 500 MHz CDCl₃

- 2.85 - 2.41 - 1.81

100 90 f1 (ppm) -10

References

- 1(a) M.-Z. Wang, Y.-Y. Zhang, T, Wang, C. Wang, D. Xue and J.-L. Xiao, Story of an Age-Old Reagent: An Electrophilic Chlorination of Arenes and Heterocycles by 1-Chloro-1,2benziodoxol-3-one, *Org. Lett.*, 2016, **18**, 1976–1979. (b) A. Vazquez-Romero, N. Kielland, M. J. Arevalo, S. Preciado, R. J. Mellanby, Y. Feng, R. Lavilla and M. Vendrell, Multicomponent Reactions for de Novo Synthesis of BODIPY Probes: In Vivo Imaging of Phagocytic Macrophages, *J. Am. Chem. Soc.*, 2013, **135**, 16018–16021.
- A. Gorman, J. Killoran, C. O'Shea, T. Kenna, W. M. Gallagher and D. F. O'Shea, In Vitro Demonstration of the Heavy-Atom Effect for Photodynamic Therapy, *J. Am. Chem. Soc.*, 2004, 126, 10619-10631.
- M. Farfa'n-Paredes, O. Gonza'lez-Antonio, D. E. Tahuilan-Anguiano, J. Peo'n, A. Ariza, P. G. Lacroix, R. Santillan and N. Farfa'n, Physicochemical and computational insight of 19F NMR and emission properties of meso-(o-aryl)-BODIPYs, *New J. Chem.*, 2020, 44, 19459-19471.
- Y. Yuan, Y. M. Cao, Y. P. Lin, Y. L. Li, Z. L. Huang and A. W. Lei, Electrochemical Oxidative Alkoxysulfonylation of Alkenes Using Sulfonyl Hydrazines and Alcohols with Hydrogen Evolution, ACS Catal., 2018, 8, 10871-10875.