## Supporting Information

## Contents

Contents ..... 1
General methods ..... 2
Preparation of the starting materials ..... 3
Conditional filter supplement ..... 7
General procedure for the synthesis of compounds $\mathbf{3}$ and 4 ..... 9
Gram-scale reaction ..... 12
Cyclic voltammetry study ..... 13
The reaction promoted by external oxidants ..... 21
Control experiments ..... 22
Late-stage transformations ..... 26
Proposed Mechanism of bissulfonylation ..... 27
Absorption and emission spectra ..... 28
Characterization of products ..... 42
References ..... 103

## General methods

Unless noted, all commercial reagents and solvents were used without further purification. NMR spectra were recorded in $\mathrm{CDCl}_{3}$ or DMSO on 500 MHz spectrometers. The following abbreviations are used for multiplicities: $\mathrm{s}=\operatorname{singlet}, \mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dd}=$ doublet of doublets, and $\mathrm{m}=$ multiplet. Mass spectra were obtained on an Ultima Global spectrometer with an ESI source. Silica gel (200-300 mesh) for column chromatography and silica GF254 for TLC were produced by Qingdao Marine Chemical Company (China). DC power supply DPS-305CF was used for all experiments.

## Preparation of the starting materials

Preparation of substrates $1^{1}$


S1 to 1: Under nitrogen atmosphere and in no light conditions, synthesis of S1 (7.5 $\mathrm{mmol})$ and 2,4-dimethylpyrrole $1.8 \mathrm{~g}(22.5 \mathrm{mmol})$ were dissolved in THF ( 30 mL ), to this, TFA drop was added and stirred for 16 hours under room temperature. To the reaction mixture, 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) $1.87 \mathrm{~g}(8.3 \mathrm{mmol})$ was added, after stirring for 3 hours at room temperature. Finally, the mixture was then
added a solution of TEA $(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, stir for one minute and then added $\mathrm{BF}_{3} \mathrm{OEt}_{2}$ $(20 \mathrm{~mL})$. The reaction was kept stirring at $0{ }^{\circ} \mathrm{C}$ for 2 h . The resulting mixture was allowed to warm to room temperature and was stirred for 12 h .


Synthesis of Aza-BODIPY 11 ${ }^{[2]}$ : Prepare a solution of $\mathbf{s 1 1 - 1}(1.0 \mathrm{~g}, 4.80 \mathrm{mmol})$ in nitromethane ( 10 mL ). Add 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU, $146 \mathrm{mg}, 0.96$ mmol ) dropwise to the above solution at room temperature. Stir the resulting solution for 2 h at room temperature, Concentrate under vacuum. Purify the residue by flash chromatography [(petroleum ether/EtOAc 9:1)] to afford s11-2.

A 100 mL round-bottomed flask was charged with $\mathbf{~ s 1 1 - 2}(1.0 \mathrm{~g}, 3.71 \mathrm{mmol}$ ), ammonium acetate $(10.0 \mathrm{~g}, 0.13 \mathrm{~mol})$, and ethanol $(40 \mathrm{~mL})$ and heated under reflux for 24 h . During the course of the reaction, the product precipitated from the reaction mixture. The reaction was cooled to room temperature and filtered and the isolated solid washed with ethanol $(2 \times 10 \mathrm{~mL})$ to yield the product $\mathbf{s 1 1}-\mathbf{3}$ as a blue black solid $(0.30$ g, 35\%).
s11-3 $(0.2 \mathrm{~g}, 0.45 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$, treated with diisopropylethylamine ( $0.8 \mathrm{~mL}, 4.6 \mathrm{mmol}$ ) and boron trifluoride diethyl etherate ( 1 mL , 8.13 mmol ), and stirred at room temperature under $\mathrm{N}_{2}$ for 24 h . The mixture was washed with water $(2 \times 50 \mathrm{~mL})$, and organic layer was dried over sodium sulfate and evaporated to dryness. Purification by column chromatography on silica eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane (1:1) gave the product 11 as a metallic brown solid ( $0.19 \mathrm{~g}, 86 \%$ ).


Synthesis of BODIPY $\mathbf{1 m}{ }^{[3]}$ : To a solution of the corresponding aromatic aldehyde (1 eq.) in pyrrole (4 eq.) was added a catalytic amount of trifluoroacetic acid (TFA). The mixture was stirred at room temperature until the total consumption of the aldehyde. The crude product was washed with brine, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness under vacuum. This crude was then purified using column chromatography on silica gel using hexane/ethyl acetate.

Into the corresponding dipyrromethane dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{DDQ}$ (1 eq.) was added and the solution was stirred for 1 h at room temperature. To this oxidized product, $\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}$ (6 eq.) was added under a nitrogen atmosphere and stirred for another 15 min , then, triethylamine ( 3 eq .) was added dropwise and stirring was continued till the completion of the reaction which was monitored by TLC. The reaction mixture was then washed with brine and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the organic layer was combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness under vacuum to give the crude product. This was further purified by silica gel column chromatography to afford the corresponding BODIPY $\mathbf{1 m}$.

## Preparation of substrates $2^{3}$

The compound $\mathbf{2 b} \mathbf{- 2 r}$ according to previously described methods. ${ }^{[3]}$



2a


2e

$2 i$


2m


2q


2n

$2 g$

2k


2h


2j

$2 r$


20


2s

The hydrazine hydrate $(80 \%, 30 \mathrm{mmol})$ was added dropwise into the solution of sulfonyl chloride ( 10 mmol ) in THF ( 50 mL ) under air at $0{ }^{\circ} \mathrm{C}$. Subsequently, the mixture was further stirred at $0^{\circ} \mathrm{C}$ for 5 minutes. After the completion of the reaction, the residue was extracted with DCM , and the combined organic layer was ashed with water, and brine, and dried over $\mathrm{MgSO}_{4}$. Concentration in vacuum followed by silica gel column purification with petroleum ether/ethyl acetate eluent gave the desired products 2.

## Conditional filter supplement

## Other sulfone-based compounds

Table S1 Screening of sulfone-based compounds

Entry

In an undivided Schlenk flask ( 10 mL ) equipped with a stir bar, substrate $\mathbf{1}(0.1 \mathrm{mmol}$, 1 equiv.), Sulfone-based compound Bx ( $0.3 \mathrm{mmol}, 3$ equiv.) and $\mathrm{NaCl}(0.15 \mathrm{mmol})$, were combined and added. The flask was equipped with a rubber stopper, a graphite felt anode ( $1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 0.5 \mathrm{~cm}$ ) and a graphite felt cathode ( $1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 0.5 \mathrm{~cm}$ ) and then flushed with nitrogen. Then HFIP $(2.5 \mathrm{~mL}), \mathrm{CH}_{3} \mathrm{NO}_{2}(2.5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.2$ mL ) were injected respectively into the flask via syringes. The reaction mixture was stirred and electrolyzed at a constant current of 6.0 mA at room temperature until the end of the reaction. Only sodium p-toluenesulfinate has a corresponding product point by TLC point plate. When the reaction was finished, the residue was chromatographed through silica gel eluting with petroleum ether/ ethyl acetate eluent, and the final yield was $10 \%$.

## Conditional screening of bissulonylated BODIPYs

Table S2 Optimization of disulfonylation reaction conditions ${ }^{a}$

${ }^{a}$ Standard reaction conditions: $1 \mathbf{1 a}(0.1 \mathrm{mmol}), \mathbf{2 a}(0.3 \mathrm{mmol}), \mathrm{NaCl}(0.15 \mathrm{mmol}), \mathrm{HFIP}(2.5$ $\mathrm{mL}), \mathrm{CH}_{3} \mathrm{NO}_{2}(2.5 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~mL})$, graphite felt anode ( $10 \mathrm{~mm} \times 10 \mathrm{~mm} \times 5 \mathrm{~mm}$ ), graphite felt cathode ( $10 \mathrm{~mm} \times 10 \mathrm{~mm} \times 5 \mathrm{~mm}$ ), constant current $=6.0 \mathrm{~mA}$, under $\mathrm{N}_{2}$, RT, 2.5 h , undivided cell. ${ }^{b}$ Isolated yield. n.p. = no product.

## Side reaction

Table S3 Side reaction-related screening


| entry | conditions | Yield ${ }_{3 a a}(\%)$ | Yield $\mathbf{0}(\%)$ |
| :---: | :---: | :---: | :---: |
| 1 | $\mathbf{1 a}, \mathbf{2 a}, \mathrm{NaCl}, \mathrm{HFIP}: \mathrm{MeNO}_{2}: \mathrm{H}_{2} \mathrm{O}=2.5: 2.5: 0.2$ | 71 | trace |
| 2 | $\mathbf{1 a}, \mathrm{NaCl}, \mathrm{HFIP}: \mathrm{MeNO}_{2}: \mathrm{H}_{2} \mathrm{O}=2.5: 2.5: 0.2$ | 0 | trace |
| 3 | $\mathbf{1 a}, \mathrm{NaCl}, \mathrm{HFIP}=5.0 \mathrm{ml}$ | 0 | $<10$ |
| 4 | $\mathbf{1 a}, \mathrm{Et}_{4} \mathrm{NPF}_{6}, \mathrm{HFIP}=5.0 \mathrm{ml}$ | 0 | 19 |

graphite felt anode ( $10 \mathrm{~mm} \times 10 \mathrm{~mm} \times 5 \mathrm{~mm}$ ), graphite felt cathode $(10 \mathrm{~mm} \times 10 \mathrm{~mm} \times 5 \mathrm{~mm})$, constant current $=$ 6.0 mA , under $\mathrm{N}_{2}$, RT, undivided cell.

## General procedure for the synthesis of compounds 3 and 4

## Monosulfonylaed BODIPYs 3



In an undivided Schlenk flask ( 10 mL ) equipped with a stir bar, substrate $\mathbf{1}(0.1 \mathrm{mmol}$, 1 equiv.), sulfonyl hydrazide 2 ( $0.3 \mathrm{mmol}, 3$ equiv.) and $\mathrm{NaCl}(0.15 \mathrm{mmol})$, were combined and added. The flask was equipped with a rubber stopper, a graphite felt anode ( $1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 0.5 \mathrm{~cm}$ ) and a graphite felt cathode ( $1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 0.5 \mathrm{~cm}$ ) and then flushed with nitrogen. Then HFIP ( 2.5 mL ), $\mathrm{CH}_{3} \mathrm{NO}_{2}(2.5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~mL})$ were injected respectively into the flask via syringes. The reaction mixture was stirred and electrolyzed at a constant current of 6.0 mA at room temperature for 2.5 h . When the reaction was finished, the residue was chromatographed through silica gel eluting with petroleum ether/ ethyl acetate eluent to give the product 3

## Disulfonylated BODIPYs 3



In an undivided Schlenk flask ( 10 mL ) equipped with a stir bar, substrate $\mathbf{1}(0.1 \mathrm{mmol}$, 1 equiv.), sulfonyl hydrazide 2 ( $0.5 \mathrm{mmol}, 5$ equiv.) and NaCl ( 0.15 mmol ), were combined and added. The flask was equipped with a rubber stopper, a graphite felt anode ( $1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 0.5 \mathrm{~cm}$ ) and a graphite felt cathode ( $1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 0.5 \mathrm{~cm}$ ) and then flushed with nitrogen. Then HFIP $(2.5 \mathrm{~mL}), \mathrm{CH}_{3} \mathrm{NO}_{2}(2.5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~mL})$ were injected respectively into the flask via syringes. The reaction mixture was stirred and electrolyzed at a constant current of 8.0 mA at room temperature for 6 h . When the reaction was finished, the residue was chromatographed through silica gel eluting with
petroleum ether/ ethyl acetate eluent to give the disulfonylated product 4.

## Electrochemical attempts at other BODIPYs



11
2a


In an undivided Schlenk flask ( 10 mL ) equipped with a stir bar, substrate $\mathbf{1 1}(0.1$ mmol, 1 equiv.), sulfonyl hydrazide 2a ( $0.3 \mathrm{mmol}, 3$ equiv.) and $\mathrm{NaCl}(0.15 \mathrm{mmol})$, were combined and added. The flask was equipped with a rubber stopper, a graphite felt anode ( $1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 0.5 \mathrm{~cm}$ ) and a graphite felt cathode ( $1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 0.5 \mathrm{~cm}$ ) and then flushed with nitrogen. Then HFIP $(2.5 \mathrm{~mL}), \mathrm{CH}_{3} \mathrm{NO}_{2}(2.5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.2$ mL ) were injected respectively into the flask via syringes. The reaction mixture was stirred and electrolyzed at a constant current of 6.0 mA at room temperature for 2.0 h . By TLC observation, the raw materials had been completely consumed, and no product points had been observed.

In an undivided Schlenk flask ( 10 mL ) equipped with a stir bar, substrate $\mathbf{1 m}(0.1$ mmol, 1 equiv.), sulfonyl hydrazide 2a ( 0.3 mmol , 3 equiv.) and $\mathrm{NaCl}(0.15 \mathrm{mmol}$ ), were combined and added. The flask was equipped with a rubber stopper, a graphite felt anode ( $1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 0.5 \mathrm{~cm}$ ) and a graphite felt cathode ( $1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 0.5 \mathrm{~cm}$ ) and then flushed with nitrogen. Then HFIP $(2.5 \mathrm{~mL}), \mathrm{CH}_{3} \mathrm{NO}_{2}(2.5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.2$ mL ) were injected respectively into the flask via syringes. The reaction mixture was stirred and electrolyzed at a constant current of 6.0 mA at room temperature for 4.5 h .

When the reaction was finished, the residue was chromatographed through silica gel eluting with petroleum ether/ ethyl acetate eluent to give the product 3ma.

## Gram-scale reaction



In a round bottom three-necked flask ( 250 mL ) equipped with a stir bar, substrate 1a (4 mmol, 1.30 g ), sulfonyl hydrazides 2a ( $8 \mathrm{mmol}, 1.49 \mathrm{~g}, 2$ equiv.), and NaCl ( 6 mmol , $0.348 \mathrm{~g}, 1.5$ equiv.) were combined and added. Then add HFIP ( 50 mL ), $\mathrm{CH}_{3} \mathrm{NO}_{2}$ ( 50 $\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ to the flask separately. The flask was equipped with a rubber stopper, a graphite felt anode ( $1 \mathrm{~cm} \mathrm{x} 3 \mathrm{~cm} \times 1 \mathrm{~cm}$ ) and a graphite felt cathode ( $1 \mathrm{~cm} \times$ $3 \mathrm{~cm} \times 1 \mathrm{~cm}$ ) and then flushed with nitrogen. The reaction mixture was stirred and electrolyzed at a constant current of 12 mA at room temperature for 64 h . When the reaction was finished, the residue was chromatographed through silica gel eluting with petroleum ether/ ethyl acetate eluent to give the product $\mathbf{3 a a}(1.15 \mathrm{~g}, 60 \%$ ).


Figure S1. Components required for gram-scale reaction

## Cyclic voltammetry study

The cyclic votammetry experiments were carried out with a computer-controlled electrochemical analyzer for electrochemical measurements. The cyclic voltammetry experiments were measured at room temperature. The data was collected with the CS300H potentiostat (Wuhan COster Instrument Co., LTD). The experiment was performed in a three-electrode cell with HFIP ( 2.5 mL ) and $\mathrm{MeNO}_{2}(2.5 \mathrm{~mL})$ as the solvent, $\mathrm{Et}_{4} \mathrm{NPF}_{6}(0.030 \mathrm{M})$ as the supporting electrolyte, and the concentration of the $\mathbf{1 a}$ was 0.020 M ; the concentration of the $\mathbf{2 a}$ was 0.060 M . The scan speed was 100 $\mathrm{mV} / \mathrm{s}$. The potential ranges investigated were 0 V to 3.0 V vs. SCE (saturated aqueous $\mathrm{KCl})$. CV plotting convention is Origin.

Working electrode: The working electrode is a 3 mm diameter glassy carbon working electrode. Polished with $0.05 \mu \mathrm{~m}$ aluminum oxide and then sonicated in distilled water and ethanol before measurements.

Reference electrode: The reference electrode is SCE (saturated aqueous KCl ) that was washed with water and ethanol before measurements.

Counter electrode: The counter electrode is a platinum wire that was polished with $0.05 \mu \mathrm{~m}$ aluminum oxide and then sonicated in distilled water and ethanol before measurements.


Figure S2. Cyclic voltammogram
General procedure for cyclic voltammetry (CV): Cyclic voltammograms of $\mathbf{1 a}$ ( 0.1 $\mathrm{mmol})$, $\mathbf{2 a}(0.3 \mathrm{mmol})$, were performed in a three-electrode cell at room temperature. The working electrode was a steady glassy carbon, the counter electrode was a platinum wire, and the reference was an $\mathrm{Ag} / \mathrm{AgCl}$ electrode submerged in saturated aqueous KCl solution. Mixed solvent (HFIP ( 2.5 mL ), and $\mathrm{CH}_{3} \mathrm{NO}_{2}(2.5 \mathrm{~mL})$ containing $\mathrm{Et}_{4} \mathrm{NPF}_{6}$ ( 0.15 mmol ) were poured into the electrochemical cell in cyclic voltammetry experiments. The scan rate was $100 \mathrm{mV} / \mathrm{s}$, ranging from 0.0 V to 3.0 V .


Figure S3. Cyclic voltammogram
General procedure for cyclic voltammetry (CV): Cyclic voltammograms of background was performed in a three-electrode cell at room temperature. The working electrode was a steady glassy carbon, the counter electrode was a platinum wire, and the reference was an $\mathrm{Ag} / \mathrm{AgCl}$ electrode submerged in saturated aqueous KCl solution. Mixed solvent (HFIP ( 2.5 mL ), and $\mathrm{CH}_{3} \mathrm{NO}_{2}(2.5 \mathrm{~mL})$ containing $\mathrm{Et}_{4} \mathrm{NPF}_{6}(0.15 \mathrm{mmol})$ were poured into the electrochemical cell in cyclic voltammetry experiments. The scan rate was $100 \mathrm{mV} / \mathrm{s}$, ranging from 0.0 V to 3.0 V .


Figure S4. Cyclic voltammogram
General procedure for cyclic voltammetry (CV): Cyclic voltammograms of $\mathbf{1 a}$ ( 0.1 mmol ) was performed in a three-electrode cell at room temperature. The working electrode was a steady glassy carbon, the counter electrode was a platinum wire, and the reference was an $\mathrm{Ag} / \mathrm{AgCl}$ electrode submerged in saturated aqueous KCl solution. Mixed solvent (HFIP ( 2.5 mL ), and $\mathrm{CH}_{3} \mathrm{NO}_{2}(2.5 \mathrm{~mL})$ containing $\mathrm{Et}_{4} \mathrm{NPF}_{6}(0.15 \mathrm{mmol})$ were poured into the electrochemical cell in cyclic voltammetry experiments. The scan rate was $100 \mathrm{mV} / \mathrm{s}$, ranging from 0.0 V to 3.0 V .


Figure S5. Cyclic voltammogram
General procedure for cyclic voltammetry (CV): Cyclic voltammograms of 2a (0.3 $\mathrm{mmol})$ was performed in a three-electrode cell at room temperature. The working electrode was a steady glassy carbon, the counter electrode was a platinum wire, and the reference was an $\mathrm{Ag} / \mathrm{AgCl}$ electrode submerged in saturated aqueous KCl solution. Mixed solvent (HFIP ( 2.5 mL ), and $\mathrm{CH}_{3} \mathrm{NO}_{2}(2.5 \mathrm{~mL})$ containing $\mathrm{Et}_{4} \mathrm{NPF}_{6}(0.15 \mathrm{mmol})$ were poured into the electrochemical cell in cyclic voltammetry experiments. The scan rate was $100 \mathrm{mV} / \mathrm{s}$, ranging from 0.0 V to 3.0 V .


Figure S6. Cyclic voltammogram
General procedure for cyclic voltammetry (CV): Cyclic voltammograms of $\mathbf{1 a}$ ( 0.1 $\mathrm{mmol})$ and $\mathbf{2 a}(0.3 \mathrm{mmol})$ were performed in a three-electrode cell at room temperature. The working electrode was a steady glassy carbon, the counter electrode was a platinum wire, and the reference was an $\mathrm{Ag} / \mathrm{AgCl}$ electrode submerged in saturated aqueous KCl solution. Mixed solvent (HFIP ( 2.5 mL ), and $\mathrm{CH}_{3} \mathrm{NO}_{2}(2.5 \mathrm{~mL})$ containing $\mathrm{Et}_{4} \mathrm{NPF}_{6}$ ( 0.15 mmol ) were poured into the electrochemical cell in cyclic voltammetry experiments. The scan rate was $100 \mathrm{mV} / \mathrm{s}$, ranging from 0.0 V to 3.0 V .


Figure S7. Cyclic voltammogram
General procedure for cyclic voltammetry (CV): Cyclic voltammograms of the single solvent was performed in a three-electrode cell at room temperature. The working electrode was a steady glassy carbon, the counter electrode was a platinum wire, and the reference was an $\mathrm{Ag} / \mathrm{AgCl}$ electrode submerged in saturated aqueous KCl solution. single solvent (HFIP ( 5 mL ), or $\mathrm{CH}_{3} \mathrm{NO}_{2}(5 \mathrm{~mL})$, orMeCN ( 5 mL ) containing $\mathrm{Et}_{4} \mathrm{NPF}_{6}(0.15 \mathrm{mmol})$ were poured into the electrochemical cell in cyclic voltammetry experiments. The scan rate was $100 \mathrm{mV} / \mathrm{s}$, ranging from 0.0 V to 3.0 V .


Table S4 CV study of sulfonated BODIPYs

| Entry | Eox(V) | Ered(V) | HOMO | LUMS |
| :---: | :---: | :---: | :---: | :---: |
| 3 aa | 1.51 | -0.70 | -5.91 | -3.70 |
| 3 ai | 1.50 | -0.73 | -5.90 | -3.67 |
| 3 ak | 1.58 | -0.69 | -5.98 | -3.71 |
| 1 a | 1.10 | -0.64 | -5.50 | -3.76 |

Еномо $=-\left(\mathrm{E}_{\text {ox }}+4.4 \mathrm{eV}\right)$, Elumo $=-\left(\mathrm{E}_{\text {red }}+4.4 \mathrm{eV}\right)$

## The reaction promoted by external oxidants

Table S5 The reaction promoted by external oxidants

Entry Conditions $\quad$ Yield
$1 \quad \mathrm{TBAI}(20 \mathrm{~mol} \%)$, TBHP ( 2.0 equiv. $)$, $\mathrm{HFIP}(2.5 \mathrm{~mL})$, $\mathrm{CH}_{3} \mathrm{NO}_{2}(2.5 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}, \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} 0(5 \mathrm{~mol} \%), 80^{\circ} \mathrm{C}$ $\mathrm{I}_{2}$ ( $50 \mathrm{~mol} \%$ ), TBHP ( 2.0 equiv.), HFIP ( 2.5 mL ), $\mathrm{CH}_{3} \mathrm{NO}_{2}(2.5 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}, \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} 0(5 \mathrm{~mol} \%), 80^{\circ} \mathrm{C}$
$\mathrm{FeCl}_{3}(10 \mathrm{~mol} \%)$, air, HFIP ( 2.5 mL ), $\mathrm{CH}_{3} \mathrm{NO}_{2}(2.5 \mathrm{~mL})$, $\mathrm{H}_{2} \mathrm{O}, \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} 0(5 \mathrm{~mol} \%), 8{ }^{\circ} \mathrm{C}$

CAN (2.0 equiv.), air, $\operatorname{HFIP}(2.5 \mathrm{~mL}), \mathrm{CH}_{3} \mathrm{NO}_{2}(2.5 \mathrm{~mL})$, $\mathrm{H}_{2} \mathrm{O}, \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} 0(5 \mathrm{~mol} \%), 80^{\circ} \mathrm{C}$

5
PCC ( 2.0 equiv.), air, $\operatorname{HFIP}(2.5 \mathrm{~mL}), \mathrm{CH}_{3} \mathrm{NO}_{2}(2.5 \mathrm{~mL})$, $\mathrm{H}_{2} \mathrm{O}, \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} 0(5 \mathrm{~mol} \%), 80^{\circ} \mathrm{C}$
$\mathrm{KMnO}_{4}(10 \mathrm{~mol} \%)$, air, $\operatorname{HFIP}(2.5 \mathrm{~mL}), \mathrm{CH}_{3} \mathrm{NO}_{2}(2.5$ $\mathrm{mL}), \mathrm{H}_{2} \mathrm{O}, \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} 0(5 \mathrm{~mol} \%), 80^{\circ} \mathrm{C}$

## Control experiments

a)




7, 28\%, yield
b)



8, detected by HPLC-MS


9, detected by HPLC-MS
a) In a undivided Schlenk flask ( 10 mL ) equipped with a stir bar, substrate $\mathbf{1 a}$ ( 0.1 mmol, 32.4 mg , 1 equiv.), sulfonyl hydrazides $\mathbf{2 a}$ ( $0.3 \mathrm{mmol}, 55.9 \mathrm{mg}, 3$ equiv.), $\mathrm{NaCl}(0.15 \mathrm{mmol}, 8.7 \mathrm{mg})$ and 1,1-diphenylethylene ( $54.1 \mathrm{mg}, 3$ equiv.) were combined and added. The flask was equipped with a rubber stopper, a graphite felt anode ( $1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 0.5 \mathrm{~cm}$ ) and a graphite felt cathode ( $1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 0.5 \mathrm{~cm}$ ) and then flushed with nitrogen. Then HFIP ( 2.5 mL ), $\mathrm{CH}_{3} \mathrm{NO}_{2}(2.5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}$ $(0.2 \mathrm{~mL})$ were injected respectively into the flask via syringes. The reaction mixture was stirred and electrolyzed at a constant current of 6 mA at room temperature for 2.5 h . After the reaction was completed, the reaction system was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO} 4$, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography and eluted with petroleum ether and ethyl acetate and the white solid was obtained in 7 ( $28.3 \mathrm{mg} 28 \%$ ). No product 3aa was isolated. Meanwhile, the reaction mixtures were subjected to the HPLCMS analysis and the adducts of the reaction intermediates with the radical trap reagents were observed.
b) In an undivided Schlenk flask ( 10 mL ) equipped with a stir bar, substrate $\mathbf{1 a}$ ( 0.1 mmol, 32.4 mg , 1 equiv.), sulfonyl hydrazides 2a ( $0.3 \mathrm{mmol}, 55.9 \mathrm{mg}, 3$ equiv.), $\mathrm{NaCl}(0.15 \mathrm{mmol}, 8.7 \mathrm{mg})$ and BHT ( $66.1 \mathrm{mg}, 3$ equiv.) were combined and added. The flask was equipped with a rubber stopper, a graphite felt anode ( 1 cm x 1 cm x
0.5 cm ) and a graphite felt cathode ( $1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 0.5 \mathrm{~cm}$ ) and then flushed with nitrogen. Then HFIP $(2.5 \mathrm{~mL}), \mathrm{CH}_{3} \mathrm{NO}_{2}(2.5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~mL})$ were injected respectively into the flask via syringes. The reaction mixture was stirred and electrolyzed at a constant current of 6 mA at room temperature for 2.5 h . After the reaction was completed, no product 3aa was isolated. Meanwhile, the reaction mixtures were subjected to the HPLC-MS analysis and the adducts of the reaction intermediates with the radical trap reagents were observed.


Figure S8 HPLC-MS Spectra of 6


Figure S9. HPLC-MS Spectra of 7


Figure S10. HPLC-MS Spectra of $\mathbf{8}$


Figure S11. HPLC-MS Spectra of 9

## Late-stage transformations



3 ea

$1 i$


5, 55\%

The electrochemical products $\mathbf{3 e a}(0.3 \mathrm{mmol}, 181.4 \mathrm{mg}), \mathbf{1 i}(0.36 \mathrm{mmol}, 113.4 \mathrm{mg})$, $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(2 \mathrm{~mol} \%, 4.2 \mathrm{mg}), \mathrm{CuI}(6 \mathrm{~mol} \%, 3.6 \mathrm{mg})$, TEA $(1.0 \mathrm{~mL})$ and dry THF $(2.0 \mathrm{~mL})$ were charged into a thick-walled pressure pipe. And stir the reaction mixture at the room temperature for 12 h . Add saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extract the mixture with ethyl acetate. The combined organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure. The solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using petroleum ether/ ethyl acetate eluent to afford compound 5 ( $140.1 \mathrm{mg}, 55 \%$ )

Proposed Mechanism of bissulfonylation

Disulfonylation:


## Photophysical properties

Table S6 Absorption maxima, emission maxima, stokes shifts and relative fluorescence quantum yields ( $\Phi$ )
of products.

| BODIPYs | $\lambda_{\text {abs }}$ max ( nm ) | $\lambda_{\text {em }} \max (\mathrm{nm})$ | Stokes Shift (nm) | $\Phi^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1a | 488 | 521 | 33 | 0.26 |
| 3 aa | 492 | 517 | 15 | 0.16 |
| 3 ba | 490 | 505 | 15 | 0.27 |
| 3 ca | 491 | 508 | 17 | 0.30 |
| 3 da | 494 | 513 | 19 | 0.31 |
| 3 a | 493 | 513 | 20 | 0.30 |
| 3 fa | 492 | 514 | 22 | 0.28 |
| 3 ga | 495 | 522 | 27 | 0.15 |
| 3ha | 490 | 521 | 31 | 0.09 |
| 3ia | 492 | 511 | 19 | 0.34 |
| 3ja | 502 | 527 | 25 | 0.55 |
| 3 ka | 493 | 509 | 16 | 0.89 |
| 3 ab | 490 | 510 | 20 | 0.36 |
| 3 ac | 492 | 509 | 17 | 0.33 |
| 3 ad | 492 | 511 | 19 | 0.40 |
| 3 ae | 490 | 515 | 25 | 0.16 |
| 3 af | 489 | 508 | 19 | 0.24 |
| 3 ag | 491 | 507 | 16 | 0.28 |
| 3ah | 487 | 508 | 29 | 0.23 |
| 3ai | 492 | 517 | 25 | 0.14 |
| 3aj | 492 | 512 | 20 | 0.36 |
| 3 ak | 486 | 512 | 26 | 0.18 |
| 3 al | 487 | 517 | 30 | 0.11 |
| 3 am | 493 | 512 | 19 | 0.29 |
| 3 an | 490 | 508 | 18 | 0.35 |
| 3 ao | 490 | 508 | 18 | 0.36 |
| 3ap | 491 | 509 | 18 | 0.31 |
| 3 aq | 493 | 508 | 15 | 0.25 |
| 3 ar | 490 | 505 | 15 | 0.22 |
| 4 aa | 494 | 523 | 29 | 0.39 |
| 4 ab | 498 | 517 | 19 | 0.33 |
| 4ai | 502 | 518 | 16 | 0.46 |
| 4 ca | 499 | 517 | 18 | 0.34 |
| 4fa | 491 | 524 | 34 | 0.03 |
| 4 ga | 498 | 529 | 31 | 0.07 |
| 4 ja | 503 | 538 | 35 | 0.62 |
| 5 | 486 | 524 | 38 | 0.23 |

${ }^{a}$ Fluorescence quantum yields of these BODIPY dyes were calculated using calculated using Rhodamine 6G ( $\Phi=$ 0.95 in water) as the standard.

UV-visible absorption and fluorescence emission spectra were recorded on commercial spectrophotometers (Shimadzu UV-2600 and Shimadzu RF-6000 spectrometers). All measurements were made at $25^{\circ} \mathrm{C}$, using $5 \times 10 \mathrm{~mm}$ cuvettes. Preliminary spectroscopic properties of these BODIPYs were investigated in dichloromethane. The concentration of the samples to be measured is $2.5 \times 10^{-5} \mathrm{M}$. The following measured UV absorption absorbance intensity $1 / 10$ as the ordinate. The following measured fluorescence emission intensity is $1 / 1000000$ as the ordinate. The data was as follows.


Figure S12 Absorption (left) and emission (right) spectra of compound 1a recorded in dichloromethane (Excited at 500 nm )


Figure S13 Absorption (left) and emission (right) spectra of compound 3aa recorded in dichloromethane (Excited at 490 nm )


Figure S14 Absorption (left) and emission (right) spectra of compound 3ba recorded in dichloromethane (Excited at 490 nm )


Figure S15 Absorption (left) and emission (right) spectra of compound 3ca recorded in dichloromethane (Excited at 490 nm )


Figure S16 Absorption (left) and emission (right) spectra of compound 3da recorded in dichloromethane (Excited at 490 nm )


Figure S17 Absorption (left) and emission (right) spectra of compound 3ea recorded in dichloromethane (Excited at 490 nm )


Figure S18 Absorption (left) and emission (right) spectra of compound 3fa recorded in dichloromethane (Excited at 490 nm )


Figure S19 Absorption (left) and emission (right) spectra of compound 3ga recorded in dichloromethane (Excited at 490 nm )


Figure S20 Absorption (left) and emission (right) spectra of compound 3ha recorded in dichloromethane (Excited at 500 nm )


Figure S21 Absorption (left) and emission (right) spectra of compound 3ia recorded in dichloromethane (Excited at 490 nm )


Figure S22 Absorption (left) and emission (right) spectra of compound 3ja recorded in dichloromethane (Excited at 500 nm )


Figure S23 Absorption (left) and emission (right) spectra of compound 3ka recorded in dichloromethane (Excited at 490 nm )


Figure S24 Absorption (left) and emission (right) spectra of compound 3ab recorded in dichloromethane (Excited at 490 nm )


Figure S25 Absorption (left) and emission (right) spectra of compound 3ac recorded in dichloromethane (Excited at 490 nm )


Figure S26 Absorption (left) and emission (right) spectra of compound 3ad recorded in dichloromethane (Excited at 490 nm )


Figure S27 Absorption (left) and emission (right) spectra of compound 3ae recorded in dichloromethane (Excited at 490 nm )


Figure S28 Absorption (left) and emission (right) spectra of compound 3af recorded in dichloromethane (Excited at 490 nm )


Figure S29 Absorption (left) and emission (right) spectra of compound 3ag recorded in dichloromethane (Excited at 490 nm )


Figure S30 Absorption (left) and emission (right) spectra of compound 3ah recorded in dichloromethane (Excited at 490 nm )


Figure S31 Absorption (left) and emission (right) spectra of compound 3ai recorded in dichloromethane (Excited at 490 nm )


Figure S32 Absorption (left) and emission (right) spectra of compound 3aj recorded in dichloromethane (Excited at 490 nm )


Figure S33 Absorption (left) and emission (right) spectra of compound 3ak recorded in dichloromethane (Excited at 490 nm )


Figure S34 Absorption (left) and emission (right) spectra of compound 3al recorded in dichloromethane (Excited at 490 nm )


Figure S35 Absorption (left) and emission (right) spectra of compound 3am recorded in dichloromethane (Excited at 490 nm )


Figure S36 Absorption (left) and emission (right) spectra of compound 3an recorded in dichloromethane (Excited at 490 nm )


Figure S37 Absorption (left) and emission (right) spectra of compound 3ao recorded in dichloromethane (Excited at 490 nm )


Figure S38 Absorption (left) and emission (right) spectra of compound 3ap recorded in dichloromethane (Excited at 490 nm )


Figure S39 Absorption (left) and emission (right) spectra of compound 3aq recorded in dichloromethane (Excited at 490 nm )


Figure S40 Absorption (left) and emission (right) spectra of compound 3ar recorded in dichloromethane (Excited at 490 nm )


Figure S41 Absorption (left) and emission (right) spectra of compound 4aa recorded in dichloromethane (Excited at 500 nm )


Figure S42 Absorption (left) and emission (right) spectra of compound 4ab recorded in dichloromethane (Excited at 500 nm )


Figure S43 Absorption (left) and emission (right) spectra of compound 4ai recorded in dichloromethane (Excited at 500 nm )


Figure S44 Absorption (left) and emission (right) spectra of compound 4ca recorded in dichloromethane (Excited at 500 nm )



Figure S45 Absorption (left) and emission (right) spectra of compound 4fa recorded in dichloromethane (Excited at 500 nm )


Figure S46 Absorption (left) and emission (right) spectra of compound 4garecorded in dichloromethane (Excited at 500 nm )


Figure S47 Absorption (left) and emission (right) spectra of compound $\mathbf{4} \mathbf{j} \mathbf{a}$ recorded in dichloromethane (Excited at 510 nm )


Figure S48 Absorption (left) and emission (right) spectra of compound $\mathbf{5}$ recorded in dichloromethane (Excited at 490 nm )

## Characterization of products

$1 i$

$\mathbf{1 i}$ was obtained in $38 \%(1.08 \mathrm{~g})$ as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=30 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z , ~ C D C l} 3$ ) $\delta 7.20(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.98$ ( $\mathrm{s}, 2 \mathrm{H}$ ), $4.76(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 6 \mathrm{H}), 1.42(\mathrm{~s}, 6 \mathrm{H})$.

3aa


3aa was obtained in $71 \%$ ( 34.1 mg ) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=8 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 7.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}$, $3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 162.6,148.1,143.6,143.5,140.6,140.2,134.4,134.1$, $129.74,129.68,129.59,129.2,127.7,126.6,124.5,21.6,15.2,15.0,13.8,12.4$.

HRMS (ESI-TOF, [M + Na] ${ }^{+}$): Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}$, 501.1590, Found: 501.1597.

3ba


3ba was obtained in $56 \%(27.8 \mathrm{mg})$ as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=8 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.25$ $(\mathrm{s}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$, $2.39(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl3) $\delta 162.4,152.6,148.1,144.0,143.6,140.7,140.3,139.8$, $134.5,131.1,130.3,129.8,129.4,127.6,126.6,124.3,21.7,21.6,15.1,12.5$.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{N a}]^{+}$): Calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}, 515.1747$ Found: 515.1758.

3ca


3ca was obtained in $54 \%(27.5 \mathrm{mg})$ as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=8 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl3) $\delta 7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.25$ $(\mathrm{d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{q}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl3) $\delta 162.4,152.5,148.1,146.2,144.0,143.6,140.7,140.3$, $134.5,131.3,129.8,129.4,129.0,127.6,126.6,124.3,28.8,21.6,15.7,15.2,15.0,13.8$, 12.5.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{N a}]^{+}$): Calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}$, 529.1903, Found: 529.1913.

3da


3da was obtained in $57 \%(31.3 \mathrm{mg})$ as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=8 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 7.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.26$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.12 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.16$ (s, 1H), 2.86 (s, 3H), 2.59 (s, 3H), $2.39(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 163.1,153.1,147.7,143.8,141.8,140.6,140.1,134.2$, 133.1, 133.0, 129.8, 129.7, 129.0, 127.0, 126.7, 124.8, 124.1, 21.7, 15.3, 13.9, 12.8.

HRMS (ESI-TOF, [M + Na] ${ }^{+}$): Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{BBrF}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}$, 579.0695, Found: 579.0702.

3ea


3ea was obtained in $58 \%(35.3 \mathrm{mg})$ as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=8 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{D M S O}-\boldsymbol{d}_{\mathbf{6}}$ ) $\delta 7.93(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, 7.38 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{~s}$, $3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ( 125 MHz , DMSO-d $\boldsymbol{d}_{6}$ ) $\delta$ 164.0, 150.4, 148.2, 143.9, 142.1, 140.0, 138.4, 138.1, 133.9, 132.7, 130.1, 130.0, 128.1, 125.4, 96.5, 21.1, 14.9, 14.8, 13.3, 12.0.

HRMS (ESI-TOF, [M + Na] ${ }^{+}$): Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{BF}_{2} \mathrm{IN}_{2} \mathrm{O}_{2} \mathrm{SNa}$, 627.0556, Found: 627.0560 .


3fa was obtained in $60 \%(30.7 \mathrm{mg})$ as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=8 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 7.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.10$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.00(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H})$, $2.58(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 162.4,160.7,152.6,148.1,143.7,143.6,140.7,140.3$, $134.8,129.8,129.7,129.1,128.6,126.6,126.1,124.4,115.0,55.5,21.7,15.3,13.8$, 12.7.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{N a}]^{+}$): Calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}$, 531.1696, Found: 531.1705.

3ga


3ga was obtained in $63 \%(31.9 \mathrm{mg})$ as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=4 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{1} \mathbf{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta 7.82(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.41$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.26 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H})$, 2.39 (s, 3H), 1.56 (s, 3H), 1.36 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 163.9,153.4,147.3,143.9,140.4,139.7,139.0,133.8$, 133.3, 129.8, 129.2, 128.4, 127.3, 126.6, 125.1, 117.8, 114.0, 21.6, 15.3, 15.2, 13.8,
12.7.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{N a}]^{+}$): Calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{BF}_{2} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{SNa}$, 526.1543, Found: 526.1551.

3ha


3ha was obtained in $68 \%(36.6 \mathrm{mg})$ as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=6 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{1} \mathbf{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 8.18(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.35$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.26 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H})$, $2.60(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 166.3,163.2,153.2,147.6,143.8,142.0,140.6,140.1$, 1389 , 133.9, 131.5, 130.8, 129.8, 128.7, 128.3, 127.0, 126.7, 124.8, 52.6, 21.6, 15.3, 15.2, 13.9, 12.6.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{N a}]^{+}$): Calcd for $\mathrm{C}_{28} \mathrm{H}_{2} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SNa}$, 559.1645, Found: 559.1659.

3ia


3ia was obtained in $57 \%$ ( 30.4 mg ) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=8 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{1} \mathbf{H}$ NMR ( $500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.25 ( $\mathrm{s}, 2 \mathrm{H}$ ), 7.13 ( $\mathrm{d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.09$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.14$ (s, 1H), 4.75 (d, $J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.85$ (s, 3H), $2.58(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 162.5,158.6,152.6,148.0,143.6,143.5,140.7,140.2$,
134.7, 129.8, 129.6, 129.1, 127.0, 126.6, 124.4, 116.2, 77.9, 76.21, 56.2, 21.6, 15.24, 15.21, 13.8, 12.6.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{N a}]^{+}$): Calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}$, 559.1696, Found: 555.1706.

3ja

$\mathbf{3 j a}$ was obtained in $70 \%(38.3 \mathrm{mg})$ as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=8 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ $(\mathrm{s}, 1 \mathrm{H}), 7.41(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H})$, 2.39 (s, 3H), 1.75 (s, 3H), 1.49 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 163.9,153.4,146.7,143.7,140.6,139.0,136.8,134.6$, $133.8,132.2,131.8,129.8,129.0,127.8,126.6,124.8,21.6,15.4,14.0,13.9,11.0$.

HRMS (ESI-TOF, [M + Na] ${ }^{+}$): Calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{BCl}_{2} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}$, 569.0811, Found: 569.0818 .

## 3ka



3ka was obtained in $65 \%(34 \mathrm{mg})$ as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=8 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{1} \mathbf{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z , ~ C D C l} 3$ ) $\delta 7.71$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.26 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$ ), 6.95 $(\mathrm{s}, 2 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 6 \mathrm{H})$, 1.64 (s, 3H), 1.38 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 162.2,152.6,147.3,143.8,143.6,140.8,139.5,134.8$, 133.7, 130.4, 129.8, 129.5, 128.3, 126.6, 126.3, 124.1, 21.7, 21.3, 19.7, 15.3, 14.1, 13.9,
11.1.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{H}]^{+}$): Calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$, 521.2240, Found: 521.2239 .

## 3ma



3ma was obtained in $38 \%$ ( 16.0 mg ) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=6 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 8.17(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.58(\mathrm{~m}$, $1 \mathrm{H}), 7.54(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=$ $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.40 ( $\mathrm{s}, 3 \mathrm{H}$ ).
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 151.5,149.3,144.6,138.2,137.5,137.3,135.5,133.13$, 131.5, 130.6, 129.6, 129.1, 128.8, 127.8, 122.6, 121.8, 21.8.

HRMS (ESI-TOF, $\left[\mathbf{M}+\mathbf{N a}^{+}\right]^{+}$: Calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}, 445.0964$, Found: 445.0972.
3ab


3ab was obtained in $70 \%$ ( 32.7 mg ) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=8 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{1} H$ NMR ( 500 MHz, DMSO-d $\left.\boldsymbol{d}_{6}\right) \delta 7.86(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.61(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{~m}, 2 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H})$, $2.55(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ( 125 MHz , DMSO- $\boldsymbol{d}_{6}$ ) $\delta 163.7,150.2,148.4,143.3,142.7,138.1,134.0$, 133.3, 133.1, 129.7, 129.6, 129.5, 128.3, 127.6, 126.1, 125.6, 125.2, 14.8, 14.4, 13.2,

## 11.7.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{N a}]^{+}$): Calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}$, 487.1434, Found: 487.1438.
$3 a c$


3ac was obtained in $68 \%$ ( 34.6 mg ) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=8 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~m}, 2 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 2.65-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.59(\mathrm{~s}$, $3 \mathrm{H}), 1.63(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 162.6,152.7,148.3,143.5,140.8,140.3,134.3,134.1$, 129.7, 129.6, 129.2, 127.74, 126.67, 126.6, 124.5, 38.0, 24.3, 15.2, 15.0, 13.8, 12.4.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{N a}]^{+}$): Calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}$, 529.1903, Found: 529.1913.

3ad


3ad was obtained in $67 \%$ ( 35.0 mg ) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=10 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{1} H$ NMR ( 500 MHz, DMSO-d $_{6}$ ) $\delta 7.76(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.58(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 2 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H})$, $1.35(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR ( 125 MHz , DMSO- $\boldsymbol{d}_{\boldsymbol{6}}$ ) $\delta 163.75,156.52,150.23,148.45,143.47,140.07$, 138.21, 134.12, 133.22, 129.86, 129.64, 128.41, 127.73, 126.64, 126.10, 125.30, 35.00, 30.78, 14.95, 14.57, 13.36, 11.83.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{H}]^{+}$): Calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$, 521.2240, Found:
521.2247.

3ae


3ae was obtained in $64 \%$ ( 30.9 mg ) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=8 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 7.83(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 2 \mathrm{H})$, $7.14(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}$, $3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 2 5 ~ M H z}_{\mathbf{~ M H C l}}^{3}$ ) $\delta 166.2,164.2,163.2,152.4,148.4,143.5,139.9,139.68$, $139.65,134.6,134.0,129.8,129.7,129.4,129.3,127.7,126.0,124.74,124.71,116.5$, 116.3, 15.3, 15.1, 13.8, 12.4.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{N a}]^{+}$): Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}$, 505.1339, Found: 505.1332.

3af


3af was obtained in $59 \%$ ( 29.5 mg ) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=8 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{1}$ H NMR ( 500 MHz, DMSO-d $\mathbf{d}_{6}$ ) $\delta 7.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.59-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{~m}, 2 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H})$, 1.36 (s, 3H).
${ }^{13}$ C NMR ( 125 MHz , DMSO- $\boldsymbol{d}_{6}$ ) $\delta$ 164.2, 150.3, 148.7, 143.4, 141.6, 138.4, 138.1, $134.3,133.2,129.91,129.88,129.6,128.5,128.3,127.7,125.5,125.2,15.0,14.6,13.3$, 11.8.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{H}]^{+}$): Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$, 499.1224, Found: 499.1229.
$3 a g$


3ag was obtained in $62 \%$ ( 36.6 mg ) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=8 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 7.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.52$ $-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}$, $3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 163.3,152.5,148.5,143.5,143.3,139.9,138.4,134.6$, $134.0,129.8,129.7,129.3,128.0,127.8,125.6,124.8,100.3,15.3,15.0,13.8,12.4$.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{H}]^{+}$): Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{BF}_{2} \mathrm{IN}_{2} \mathrm{O}_{2} \mathrm{~S}$, 591.0581, Found: 591.0583.

3ah


3ah was obtained in $43 \%$ ( 23.1 mg ) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=10 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{D M S O}-\boldsymbol{d}_{\mathbf{6}}$ ) $\delta 8.06(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.97(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, 7.57 (m, 3H), $7.40(\mathrm{~m}, 2 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.36$ ( $\mathrm{s}, 3 \mathrm{H}$ ).
${ }^{13}$ C NMR ( 125 MHz , DMSO- $\boldsymbol{d}_{6}$ ) $\delta 164.5,150.4,148.9,146.5,143.4,138.2,134.4$, 133.1, 129.9, 129.6, 128.5, 127.7, 127.3, 127.1, 127.03, 127.00, 126.97, 125.6, 124.5, 124.4, 122.3, 15.0, 14.6, 13.3, 11.8 .

HRMS (ESI-TOF, [M + Na] ${ }^{+}$): Calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{BF}_{5} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}$, 555.1307, Found: 555.1311.


3ai was obtained in $65 \%(32.2 \mathrm{mg})$ as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=8 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{1} \mathbf{H}$ NMR ( $\left.500 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.75(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.25-$ $7.19(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~s}$, $3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl3) $\delta 163.0,162.5,152.6,148.0,143.5,140.1,134.3,134.2$, $129.7,129.6,128.8,127.8,124.4,114.3,55.7,15.3,15.0,13.8,12.4$.
HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{N a}]^{+}$): Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}, 517.1539$, Found: 517.1549.

3aj


3aj was obtained in $66 \%(35.3 \mathrm{mg})$ as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=8 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{1} H$ NMR (500 MHz, DMSO-d6) $\delta 7.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.69(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~m}, 3 \mathrm{H}), 7.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 1 \mathrm{H})$, $7.40-7.34(\mathrm{~m}, 2 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (125 MHz, DMSO-d6) $\delta 163.8,150.3,148.5,144.9,143.4,141.5,138.3$, $138.2,134.2,133.2,129.8,129.6,129.2,128.7,128.4,127.9,127.7,127.2,126.9,125.8$, $125.3,14.9,14.5,13.3,11.8$.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{H}]^{+}$): Calcd for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$, 541.1927, Found: 541.1920.


3ak was obtained in $54 \%(26.6 \mathrm{mg})$ as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=8 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{1} \mathbf{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 7.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.51$ $(\mathrm{m}, 3 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.39$ ( $\mathrm{s}, 3 \mathrm{H}$ ).
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 164.1,152.4,148.9,147.7,143.4,139.5,133.9,133.0$, 129.9, 129.7, 129.3, 127.7, 127.2, 125.1, 124.3, 117.4, 116.5, 15.4, 15.1, 13.7, 12.3.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{N a}]^{+}$): Calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{BF}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{SNa}$, 512.1386, Found: 512.1390.

3al


3al was obtained in $53 \%(27.8 \mathrm{mg}$ ) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=8 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{1} \mathbf{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta 8.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.57$
$-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{~m}, 2 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 1.55$ (s, 3H), 1.38 ( $\mathrm{s}, 3 \mathrm{H}$ ).
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 165.7,163.5,152.6,148.5,147.3,143.5,139.9,134.7$, $134.0,133.9,130.4,129.8,129.7,129.3,127.7,126.6,125.2,124.9,52.7,15.3,15.0$, 13.8, 12.4.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{N a}]^{+}$): Calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SNa}$, 545.1488, Found: 545.1497.

3am


3am was obtained in $74 \%(37.6 \mathrm{mg})$ as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=10 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{1} \mathrm{H}$ NMR ( $\mathbf{5 0 0} \mathrm{MHz}$, DMSO-d $\boldsymbol{d}_{6}$ ) $\delta 7.56$ - $7.52(\mathrm{~m}, 3 \mathrm{H}), 7.37(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~s}, 2 \mathrm{H})$, $6.46(\mathrm{~s}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ( 125 MHz , DMSO- $\boldsymbol{d}_{\boldsymbol{6}}$ ) $\delta$ 163.5, 149.8, 148.3, 143.4, 142.9, 138.3, 137.5, $135.8,134.0,133.2,132.2,129.8,129.6,128.1,127.7,125.1,21.4,20.5,14.9,14.6$, 13.0, 11.1.

HRMS (ESI-TOF, [M + Na] ${ }^{+}$): Calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}$, 529.1903, Found: 529.1914.

3an


3an was obtained in $46 \%(23.1 \mathrm{mg})$ as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=8 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl3) $\delta 8.20(\mathrm{~d}, J=7.8,1 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.36$ $(\mathrm{m}, 2 \mathrm{H}), 7.23(\mathrm{~m}, 2 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}$, 3H).
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 162.8,153.9,148.2,143.5,140.7,139.9,134.5,134.1$, $134.0,133.2,132.1,130.5,129.7,129.6,129.1,127.8,126.9,124.6,124.3,15.3,15.12$, 14.0, 12.5 .

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{N a}]^{+}$): Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{BClF}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}$, 521.1044, Found: 521.1050 .


3ao was obtained in $59 \%(31.9 \mathrm{mg})$ as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=8 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl $\left.\mathbf{C D}_{3}\right) \delta 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.52-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~m}, 2 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 2.86$ $(\mathrm{s}, 3 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl3) $\delta 163.5,148.5,145.5,143.5,139.9,135.9,134.7,134.0$, $130.7,129.8,129.7,129.5,129.3,127.8,125.3,125.2,124.8,123.1,15.3,15.0,13.8$, 12.4.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{N a}]^{+}$): Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{BBrF}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}$, 565.0539, Found: 565.0549.

3ap


3ap was obtained in $61 \%(29.3 \mathrm{mg})$ as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=8 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.62(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H})$, $7.22(\mathrm{~m}, 2 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 23), 1.38(\mathrm{~s}$, $3 \mathrm{H})$.
${ }^{13} \mathbf{C ~ N M R ~ ( 1 2 6 ~ M H z , ~} \mathbf{C D C l}_{3}$ ) $\delta 162.6,152.7,148.0,143.4,143.2,140.2,139.3,134.3$, $134.0,133.5,129.6,129.1,128.9,126.8,126.3,124.4,123.7,21.4,15.2,14.9,13.7$, 12.3.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{H}]^{+}$): Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}, 479.1171$, Found: 479.1176 . $3 \mathbf{a q}$


3aq was obtained in $53 \%(27.4 \mathrm{mg})$ as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=8 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl3) $\delta 8.43(\mathrm{~s}, 1 \mathrm{H}), 7.96-7.85(\mathrm{~m}, 3 \mathrm{H}), 7.74(\mathrm{dd}, J=8.7,1.9$
$\mathrm{Hz}, 1 \mathrm{H}), 7.65-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{dd}, J=4.9,1.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.20(\mathrm{~m}, 2 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H})$, $2.94(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 162.9,152.8,148.2,143.5,140.3,140.2,135.0,134.5$, $134.1,132.2,129.7,129.63,129.60,129.5,129.3,129.0,128.0,127.8,127.62,127.57$, $126.2,124.6,122.1,15.3,15.0,13.9,12.5$.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{N a}]^{+}$): Calcd for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}$, 537.1590, Found: 537.1600.

3ar


3ar was obtained in $38 \%(16.4 \mathrm{mg})$ as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=8 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 7.53(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 2.82$ $(\mathrm{s}, 3 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.27-1.21(\mathrm{~m}, 2 \mathrm{H}), 1.01$ $-0.91(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 162.7,152.6,148.1,143.6,140.4,134.4,134.2,129.78$, $129.70,129.2,127.8,126.4,124.5,34.4,15.3,15.0,13.8,12.5,5.3$.
HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{N a}]^{+}$): Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SNa}$, 451.1434, Found: 451.1439 .


3as was obtained in $48 \%(22.6 \mathrm{mg})$ as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=8 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl3) $\delta 7.57(\mathrm{ddd}, \mathrm{J}=10.9,4.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.48(\mathrm{~m}$, $3 \mathrm{H}), 7.24(\mathrm{dd}, \mathrm{J}=6.6,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.07-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 2.60$ $(\mathrm{s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 163.0,152.5,148.3,145.7,143.5,140.1,135.7,134.7$, 134.5, 134.1, 132.4, 131.4, 129.8, 129.7, 127.8, 127.6, 124.6, 15.3, 15.0, 13.9, 12.5.

HRMS (ESI-TOF, [M + Na] ${ }^{+}$): Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Na}$, 493.0998, Found: 493.0997.
$4 a \mathrm{a}$


4aa was obtained in $48 \%$ ( 30.3 mg ) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=4 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.53(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0$
Hz, 4H), 7.20 - 7.16 (m, 2H), 2.87 (s, 6H), 2.40 (s, 6H), 1.63 (s, 6H).
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 158.1,147.8,146.7,144.4,139.7,133.4,131.4,130.4$, $130.3,130.1,130.0,127.3,126.8,21.7,14.5,14.0$.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{H}]^{+}$): Calcd for $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}, 633.1859$, Found: 633.1866.

4ab


4ab was obtained in $50 \%$ ( 30.5 mg ) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=4 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 7.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.56(\mathrm{~m}, 5 \mathrm{H}), 7.50(\mathrm{t}, J=7.7$
$\mathrm{Hz}, 4 \mathrm{H}), 7.20-7.17$ (dd, $J=7.7,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{~s}, 6 \mathrm{H}), 1.65(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 158.3,148.0,147.0,142.6,133.4,131.5,130.5,130.2$, $130.0,129.5,129.0,127.3,126.8,14.5,13.3$.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{H}]^{+}$): Calcd for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$, 605.1546, Found: 605.1540 .

4ai


4ai was obtained in $46 \%$ ( 30.6 mg ) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=8 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.05$
(q, $J=8.7 \mathrm{~Hz}, 4 \mathrm{H}$ ), $3.87(\mathrm{~s}, 3 \mathrm{H}), 2.87(\mathrm{~s}, 6 \mathrm{H}), 2.40(\mathrm{~s}, 6 \mathrm{H}), 1.70(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 161.2,157.9,148.1,146.7,144.4,139.8,131.8,130.0$, $128.8,127.6,126.8,125.2,115.5,55.6,21.7,14.4,13.5$.
HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{N a}]^{+}$): Calcd for $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2} \mathrm{Na}, 687.1577$, Found: 687.1598.

4ca


4ca was obtained in $42 \%(27.8 \mathrm{mg})$ as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=4 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{1} \mathbf{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.34(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.07(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{~s}, 6 \mathrm{H}), 2.73(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.40$ (s, 6H), $1.65(\mathrm{~s}, 6 \mathrm{H}), 1.27(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 157.9,148.3,147.1,146.8,144.4,139.8,131.6,130.6$, 130.1, 130.0, 129.5, 127.3, 126.8, 28.8, 21.7, 15.6, 14.4, 13.3.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{N a}]^{+}$): Calcd for $\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}$, 683.1992, Found: 683.1982.

4fa


4fa was obtained in $50 \%(32.9 \mathrm{mg})$ as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=4 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta 7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.05$ ( $\mathrm{q}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}$ ), $3.87(\mathrm{~s}, 3 \mathrm{H}), 2.87(\mathrm{~s}, 6 \mathrm{H}), 2.40(\mathrm{~s}, 6 \mathrm{H}), 1.70(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 161.2,157.9,148.1,146.7,144.4,139.8,131.8,130.0$, $128.8,127.6,126.8,125.2,115.5,55.6,21.7,14.4,13.5$.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{N a}]^{+}$): Calcd for $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2} \mathrm{Na}$, 685.1784, Found: 685.1785.

4ga


4ga was obtained in $45 \%$ ( 29.6 mg ) as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=4 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 7.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.39$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 2.87(\mathrm{~s}, 6 \mathrm{H}), 2.41(\mathrm{~s}, 6 \mathrm{H}), 1.62(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 159.1,146.0,144.7,144.5,139.5,138.2,133.7,131.0$, $130.7,130.1,128.9,126.8,117.5,114.7,21.7,14.6,13.5$.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{N a}]^{+}$): Calcd for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{BF}_{2} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}$, 680.1631, Found: 680.1637.

4ja

$4 \mathbf{j a}$ was obtained in $50 \%(34.8 \mathrm{mg})$ as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=4 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 7.71$ (d, $J=6.9 \mathrm{~Hz}, 4 \mathrm{H}$ ), 7.48 ( $\mathrm{m}, 3 \mathrm{H}$ ), 7.30 (d, $J=7.0$ $\mathrm{Hz}, 4 \mathrm{H}), 2.85$ (s, 6H), 2.41 (s, 6H), 1.81 ( $\mathrm{s}, 6 \mathrm{H}$ ).
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 159.1,145.4,144.5,141.1,139.6,134.2,132.4,131.6$, $130.5,130.4,130.1,129.3,126.8,21.7,14.7,11.7$.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{H}]^{+}$): Calcd for $\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{BCl}_{2} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$, 701.1080, Found: 701.1089.

5


5 was obtained in $55 \%(140.1 \mathrm{mg})$ as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=10 / 1 \mathrm{v} / \mathrm{v})$.
${ }^{1} \mathbf{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z , ~ C D C l} 3$ ) $\delta 7.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.26$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~s}$, 2H), $5.01(\mathrm{~s}, 2 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 6 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H})$, $1.43(\mathrm{~s}, 6 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 163.1,158.3,155.6,153.1,147.6,143.8,143.1,142.3$,
$141.6,140.6,140.1,134.7,134.1,132.9,131.9,129.8,129.5,128.9,128.3,128.2,127.0$, $126.7,124.7,123.8,121.3,115.9,86.6,85.5,56.9,21.7,15.3,15.2,14.70,14.66,13.9$, 12.7.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{N a}]^{+}$): Calcd for $\mathrm{C}_{48} \mathrm{H}_{44} \mathrm{~B}_{2} \mathrm{~F}_{4} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{SNa}$, 877.3149, Found: 877.3154.

7


7 was obtained in $28 \%(28.3 \mathrm{mg})$ as a white solid after column chromatography (eluent: petroleum ether/ethyl acetate $=10 / 1 \mathrm{v} / \mathrm{v})$.
${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 7.48(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{t}, \mathrm{J}=7.6$ $\mathrm{Hz}, 4 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, 6.99 ( $\mathrm{s}, 1 \mathrm{H}$ ), 2.38 ( $\mathrm{s}, 3 \mathrm{H}$ ).

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{H}]^{+}$): Calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~S}, 335.1100$, Found: 335.1100.
10

$\mathbf{1 0}$ was obtained in $19 \%(9.0 \mathrm{mg})$ as an orange-red solid after column chromatography (eluent: petroleum ether/ethyl acetate $=50 / 1 \mathrm{v} / \mathrm{v}$ ).
${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 7.72-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~m}, 2 \mathrm{H}), 6.00(\mathrm{~s}, 2 \mathrm{H}), 4.11-$ $3.63(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 6 \mathrm{H}), 1.39(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 156.8,143.6,141.8,134.8,131.7,129.4,129.3,128.2$, $127.9,123.5,121.88,121.85,121.2,70.89,70.83,70.63,70.57,70.38,70.31,70.12$, 70.06, 69.86, 69.80, 14.92, 14.88, 14.6.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{N a}]^{+}$): Calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{BF}_{7} \mathrm{~N}_{2} \mathrm{ONa}, 495.1449$, Found: 495.1456 .
















[^0]



$3 a b$

ハヴ
${ }^{1} \mathrm{H}$ NMR
500 MHz
DMSO－$d_{6}$

ハー・



$3 a c$










3af



m N
m N


3ai



| $\bar{\sim}$ | N | へ「す |
| :---: | :---: | :---: |
| へぺ | if | ம் ¢ ¢ ¢ |
| $\xrightarrow{+}$ | ｜ | ， |



3ai



3ak



लิㅇN~N


3ak

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | $\begin{gathered} 100 \\ \text { f1 } \end{gathered}$ | $\begin{array}{r} 90 \\ (\mathrm{ppm}) \end{array}$ | 80 | 70 | 60 | 50 | 40 | 30 | 20 |



3am




3an



3an
${ }^{13}$ C NMR
125 MHz
$\mathrm{CDCl}_{3}$
$\mathrm{DCl}_{3}$

$3 a 0$



$3 a q$

$3 a q$





${ }^{1} \mathrm{H}$ NMR
500 MHz
$\mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR
125 MHz
$\mathrm{CDCl}_{3}$


##  <br> NヘNNへNへNへNへN



4ab
${ }^{1} \mathrm{H}$ NMR
500 MHz
$\mathrm{CDCl}_{3}$

${ }^{3}$ C NMR
125 MHz
$\mathrm{CDCl}_{3}$


ヘヘヘN人N人NへNo
$\stackrel{+}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \stackrel{\infty}{\infty}$

4ai
${ }^{1} \mathrm{H}$ NMR
500 MHz
$\mathrm{CDCl}_{3}$



4ai
${ }^{13}$ C NMR
125 MHz
$\mathrm{CDCl}_{3}$


| 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | f1 |  |  |  |  |  |  |  |  |  |  |




${ }^{1} \mathrm{H}$ NMR
500 MHz
$\mathrm{CDCl}_{3}$

$: 00$
$\begin{array}{lllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & \begin{array}{l}90 \\ \mathrm{f} 1\end{array} & \end{array}$
「


${ }^{1}$ H NMR
500 MHz
$\mathrm{CDCl}_{3}$


${ }^{13}$ C NMR
125 MHz
$\mathrm{CDCl}_{3}$


${ }^{13} \mathrm{C}$ NMR
125 MHz
$\mathrm{CDCl}_{3}$


${ }^{13} \mathrm{C} \mathrm{NMR}$


| 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## 





## References

1. 1(a) M.-Z. Wang, Y.-Y. Zhang, T, Wang, C. Wang, D. Xue and J.-L. Xiao, Story of an Age-Old Reagent: An Electrophilic Chlorination of Arenes and Heterocycles by 1-Chloro-1,2-benziodoxol-3-one, Org. Lett., 2016, 18, 1976-1979. (b) A. Vazquez-Romero, N. Kielland, M. J. Arevalo, S. Preciado, R. J. Mellanby, Y. Feng, R. Lavilla and M. Vendrell, Multicomponent Reactions for de Novo Synthesis of BODIPY Probes: In Vivo Imaging of Phagocytic Macrophages, J. Am. Chem. Soc., 2013, 135, 16018-16021.
2. A. Gorman, J. Killoran, C. O'Shea, T. Kenna, W. M. Gallagher and D. F. O'Shea, In Vitro Demonstration of the Heavy-Atom Effect for Photodynamic Therapy, J. Am. Chem. Soc., 2004, 126, 10619-10631.
3. M. Farfa'n-Paredes, O. Gonza'lez-Antonio, D. E. Tahuilan-Anguiano, J. Peo'n, A. Ariza, P. G. Lacroix, R. Santillan and N. Farfa'n, Physicochemical and computational insight of 19F NMR and emission properties of meso-(o-aryl)-BODIPYs, New J. Chem., 2020, 44, 19459-19471.
4. Y. Yuan, Y. M. Cao, Y. P. Lin, Y. L. Li, Z. L. Huang and A. W. Lei, Electrochemical Oxidative Alkoxysulfonylation of Alkenes Using Sulfonyl Hydrazines and Alcohols with Hydrogen Evolution, ACS Catal., 2018, 8, 10871-10875.

[^0]:    $\begin{array}{llllllllllll}300 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 \\ \mathrm{f1} & & & (\mathrm{ppm})\end{array}$

