Electronic Supplementary Information for Gold Catalyzed Spirocyclization of 1-Ene-4,9- and 3-Ene-1,7-diyne Esters to Azaspiro[4.4]nonenones and Azaspiro[4.5]decadienones

Zhen Liu,^{a,‡} Mitch Mathiew,^{b,‡} Jichao Chen,^a Xiangdong Yu,^a Dandan Shang,^a Javey Khiapeng Tan,^b Philip Wai Hong Chan^{*,b} and Weidong Rao^{*,a}

^aJiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing,

210037, China

^bSchool of Chemistry, Monash University, Clayton, Victoria 3800, Australia

[‡]these authors contributed equally to this work

E-mail: weidong@njfu.edu.cn

phil.chan@monash.edu

Table of Contents

1. General information	S1
2. Preparation and characterization of starting materials	S2
3. General procedure for IPrAu(PhCN)SbF ₆ -catalyzed spirocyclization of 3-	S52
ene-1,7-diyne esters 1a-ai and 4a-w	
4. General procedure for IPrAuNTf ₂ -catalyzed spirocyclization of 1-ene-4,9-	S86
diyne esters 6a–s and 8a–e	
5. Gram-scale synthesis of 3a , 5a and 7m and further transformations	S99
6. ¹ H, ¹³ C and ¹⁹ F NMR spectra	S103
7. X-ray crystal structure of 3a , 3f' and 5a	S271
8. References	S276

1. General information

THF and toluene were dried using Na/benzophenone, DCE was dried using CaH₂. Analytical thin layer chromatography (TLC) was performed using pre-coated silica gel plate. Visualization was achieved by UV light (254 nm). Flash chromatography was performed using silica gel and gradient solvent system (Petroleum ether: EtOAc as eluent). ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded with either a Bruker AVQ-600 or 400 spectrometer instrument in CDCl₃. Chemical shifts (ppm) were recorded with tetramethylsilane (TMS) as the internal reference standard. Multiplicities are given as: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), td (triplet of doublets), dt (doublet of triplet) or m (multiplet). The number of protons (*n*) for a given resonance is indicated by *n*H and coupling constants are reported as a *J* value in Hz. High resolution mass spectra (HRMS) were obtained on a Finnigan MAT95XP LC/HRMS TOF spectrometer using simultaneous electrospray (ESI). Melting points were determined using a digital melting point apparatus (MPA-100).

2. Preparation and characterization of starting materials

2.1. General Procedure A

Step 1:^{S1} To an oven-dried round-bottom flask equipped with a stirring bar were added **S2** (3.3 mmol, 1.1 equiv), **S1** (3.0 mmol, 1.0 equiv, if solid, added at this time), $Pd(PPh_3)_2Cl_2$ (0.06 mmol, 2 mol %) and CuI (0.06 mmol, 2 mol %) in anhydrous THF (15 mL, 0.2 M) was added diisopropylamine (${}^{i}Pr_2NH$, 12.0 mmol, 4.0 equiv) under an argon atmosphere at 0 °C. **S1** (if liquid, dissolved in THF and added at last by a syringe). The reaction mixture was stirred at room temperature for 12 h until full consumption of the starting material (monitored by TLC). Upon completion, the reaction mixture was quenched with saturated NH₄Cl solution and extracted with EtOAc, the combined organic layers were washed with brine, dried over MgSO₄. After filtration and concentration, the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford **S3**.

Step 2: To a 50 mL round-bottom flask equipped with a stirring bar were added **S3** (1.5 mmol, 1.0 equiv) and K_2CO_3 (3.0 mmol, 2.0 equiv) in dry DMF (7.5 mL, 0.2 M) was added 1-bromo-2-butyne or propargylic bromide (3.0 mmol, 2.0 equiv) under an argon atmosphere. The reaction mixture was stirred at room temperature for 12 h until full consumption of the starting material (monitored by TLC). Upon completion, the reaction mixture was quenched with saturated NaCl solution and extracted with EtOAc, the combined organic layers were washed with brine, dried over MgSO₄. After filtration and concentration, the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford S4.

Step 3: To a 25 mL oven-dried round-bottom flask equipped with a stirring bar were added **S4** (1.2 mmol, 1.0 equiv), DMAP (0.12 mmol, 0.1 equiv), Et₃N (2.4 mmol, 2.0 equiv) and $(R^{3}CO)_{2}O$ (1.56 mmol, 1.3 equiv) in DCM (5 mL) under an air atmosphere. The reaction mixture was stirred at room temperature for 0.5-4 h until full consumption of the starting material (monitored by TLC). Upon completion, the reaction mixture was quenched with saturated NH₄Cl solution and extracted with DCM, the combined organic layers were washed with brine, dried over MgSO₄. After filtration and concentration, the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford **1a-1n, 1ad** and **4e-4g**.

To a 25 mL oven-dried round-bottom flask equipped with a stirring bar were added S4 (1.2 mmol, 1.0 equiv), R³COOH (1.56 mmol, 1.3 equiv) and DMAP (0.12 mmol, 0.1 equiv) in DCM (5 mL) was added EDCI (1.8 mmol, 1.5 equiv) under an air atmosphere at 0 °C. The reaction mixture was stirred at room temperature for 4-12 h until full consumption of the starting material (monitored by TLC). Upon completion, the reaction mixture was quenched with saturated NH₄Cl solution and extracted with DCM, the combined organic layers were washed with brine, dried over MgSO₄. After filtration and concentration, the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford **10-1ac** and **1ae-1ai**.

2.2. General Procedure B

Step 1: To an oven-dried round-bottom flask equipped with a stirring bar were added ArI (1.65 mmol, 1.1 equiv), S4 (1.5 mmol, 1.0 equiv, if solid, added at this time), $Pd(PPh_3)_2Cl_2$ (0.03 mmol, 2 mol %) and CuI (0.03 mmol, 2 mol %) in anhydrous THF (7.5 mL, 0.2 M) was added ${}^{i}Pr_2NH$ (6.0 mmol, 4.0 equiv) under an argon atmosphere at 0 °C. S4 (if liquid, dissolved in THF and added at last by a syringe). The reaction mixture was stirred at room temperature for 12 h until full consumption of the starting material (monitored by TLC). Upon completion, the reaction mixture was quenched with saturated NH₄Cl solution and extracted with EtOAc, the combined organic layers

were washed with brine, dried over MgSO₄. After filtration and concentration, the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford **S5**.

Step 2: To a 25 mL oven-dried round-bottom flask equipped with a stirring bar were added **S5** (0.8 mmol, 1.0 equiv), DMAP (0.08 mmol, 0.1 equiv), Et₃N (1.6 mmol, 2.0 equiv) and $(R^2CO)_2O$ (1.04 mmol, 1.3 equiv) in DCM (4 mL) under an air atmosphere. The reaction mixture was stirred at room temperature for 0.5-4 h until full consumption of the starting material (monitored by TLC). Upon completion, the reaction mixture was quenched with saturated NH₄Cl solution and extracted with DCM, the combined organic layers were washed with brine, dried over MgSO₄. After filtration and concentration, the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford **4a–4d**.

To a 25 mL oven-dried round-bottom flask equipped with a stirring bar were added **S5** (0.8 mmol, 1.0 equiv), R²COOH (1.04 mmol, 1.3 equiv) and DMAP (0.08 mmol, 0.1 equiv) in DCM (4 mL) was added EDCI (1.2 mmol, 1.5 equiv) under an air atmosphere at 0 °C. The reaction mixture was stirred at room temperature for 4-12 h until full consumption of the starting material (monitored by TLC). Upon completion, the reaction mixture was quenched with saturated NH₄Cl solution and extracted with DCM, the combined organic layers were washed with brine, dried over MgSO₄. After filtration and concentration, the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford **4h-4w**.

2.3. General Procedure C

Step 1:^{S2} To a stirring solution of diyne **S6** (3.0 mmol, 1.5 equiv) in THF (10 mL, 0.2 M) at -78 °C was added *n*-butyllithium (3.0 mmol, 1.5 equiv.) in a dropwise manner. The resulting solution was stirred for 1 h, and the corresponding vinyl ketone

derivatives (2.0 mmol, 1.0 equiv.) was subsequently added dropwise at -78 °C and stirred for 2 h. The reaction mixture was then allowed to warm to room temperature and stirred for 1 h. The reaction was quenched with saturated NH₄Cl solution and extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄. After filtration and concentration, the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford **S7**.

Step 2: To a 25 mL oven-dried round-bottom flask equipped with a stirring bar were added **S7** (1.0 mmol, 1.0 equiv), DMAP (0.1 mmol, 0.1 equiv), Et₃N (2.0 mmol, 2.0 equiv) and (R^5CO)₂O or R^5COCl (1.5 mmol, 1.5 equiv) in DCM (4 mL) under an air atmosphere. The reaction mixture was stirred at room temperature for 0.5-4 h until full consumption of the starting material (monitored by TLC). Upon completion, the reaction mixture was quenched with saturated NH₄Cl solution and extracted with DCM, the combined organic layers were washed with brine, dried over MgSO₄. After filtration and concentration, the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford **6a–6c**, **6j–6s and 8a–8e**.

Step 1: To a stirring solution of diyne **S6** (4.5 mmol, 1.5 equiv) in THF (15 mL, 0.2 M) at -78 °C was added *n*-butyllithium (4.5 mmol, 1.5 equiv.) in a dropwise manner. The resulting solution was stirred for 1 h, and the corresponding aldehyde (3.0 mmol, 1.0 equiv.) was subsequently added dropwise at -78 °C and stirred for 2 h. The reaction mixture was then allowed to warm to room temperature and stirred for 1 h (monitored by TLC). The reaction was then quenched with saturated NH₄Cl solution and extracted

with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, concentrated under reduced pressure, and purified by flash column chromatography on silica gel (eluent: petroleum benzene/EtOAc) to afford **S8**.

Step 2: To stirring solution of **S8** (2.0 mmol, 1.0 equiv) in DMSO (3.0 mL) was added IBX (2.6 mmol, 1.3 equiv.) portion-wise and the reaction mixture was stirred at for 2 h at room temperature (monitored by TLC). Subsequently, water (30 mL) and EtOAc (10 mL) were added, and the resulting solution was stirred for 15 min. After filtration through a layer of Celite, the filtrate was extracted with EtOAc. The combined organic layers were washed with water and brine, dried over MgSO₄, concentrated under reduced pressure, and purified by flash column chromatography on silica gel (eluent: petroleum benzene/EtOAc) to afford **S9**.

Step 3: Dropwise at -78 °C, vinylmagnesium bromide solution (3.75 mmol, 2.5 equiv.) was added dropwise into a stirring solution of **S9** (1.5 mmol, 1.0 equiv) in THF (7.5 mL, 0.2 M), over 10 min. The resulting reaction mixture was then stirred at -78 °C for 3 h (monitored by TLC) Upon completion, the reaction was quenched with saturated NH₄Cl solution in an ice bath and extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO₄, concentrated under reduced pressure, and purified by flash column chromatography on silica gel (eluent: petroleum benzene/EtOAc) to afford **S10**.

Step 4: To a 25 mL oven-dried round-bottom flask equipped with a stirring bar were added **S10** (1.0 mmol, 1.0 equiv), DMAP (0.1 mmol, 0.1 equiv), Et₃N (2.0 mmol, 2.0 equiv) and Ac₂O (1.5 mmol, 1.5 equiv) in DCM (4 mL) under an air atmosphere. The reaction mixture was stirred at room temperature for 0.5 h until full consumption of the starting material (monitored by TLC). Upon completion, the reaction mixture was quenched with saturated NH₄Cl solution and extracted with DCM, the combined organic layers were washed with brine, dried over MgSO₄. After filtration and concentration, the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford **6d–6i**.

4-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1-phenylpent-4-en-2-yn-1-yl acetate (1a)

The title compound was prepared according to general procedure **A** in 43% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 6:1) to afford **1a** as a pale-yellow oil; ¹**H NMR (600 MHz, CDCl**₃) δ 7.73 (d, *J* = 8.3 Hz, 2H), 7.55–7.53 (m, 2H), 7.41–7.35 (m, 3H), 7.27 (d, *J* = 8.3 Hz, 2H), 6.55 (s, 1H), 5.63 (s, 1H), 5.59 (d, *J* = 0.9 Hz, 1H), 4.11 (d, *J* = 2.0 Hz, 2H), 3.96–3.86 (m, 2H), 2.40 (s, 3H), 2.10 (s, 3H), 2.02 (t, *J* = 2.3 Hz, 1H); ¹³**C NMR** (**150 MHz, CDCl**₃) δ 169.7, 143.6, 136.5, 135.9, 129.4, 128.9, 128.6, 127.7, 127.6, 125.5, 124.9, 87.1, 84.7, 76.2, 74.0, 65.7, 50.5, 36.0, 21.4, 20.9; **HRMS (ESI)** calcd for C₂₄H₂₃NNaO₄S [M+Na]⁺: 444.1240; found: 444.1249.

1-(4-fluorophenyl)-4-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)methyl) pent-4-en-2-yn-1-yl acetate (1b)

The title compound was prepared according to general procedure **A** in 41% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1) to afford **1b** as a yellow oil; ¹**H NMR (600 MHz, CDCl₃)** δ 7.72 (d, *J* = 8.3 Hz, 2H), 7.50–7.46 (m, 2H), 7.36–7.33 (m, 2H), 7.28–7.23 (m, 2H), 6.51 (s, 1H), 5.62 (s, 1H), 5.59 (d, *J* = 1.0 Hz, 1H), 4.09 (d, *J* = 1.3 Hz, 2H), 3.96–3.86 (m, 2H), 2.39 (s, 3H), 2.09 (s, 3H), 2.01 (t, *J* = 2.4 Hz, 1H)); ¹³**C NMR (150 MHz, CDCl₃)** δ 169.7, 163.0 (d, *J* = 249.5 Hz), 143.7, 136.0, 132.6, 129.9 (d, *J* = 8.7 Hz), 129.5, 127.7, 125.9, 125.0, 115.6 (d, *J* = 21.7 Hz), 87.0, 84.9, 76.2, 74.0, 65.1, 50.6, 36.0, 21.5, 21.0; ¹⁹F NMR (565 MHz, CDCl₃) δ -112.40 – -112.45 (m).; HRMS (ESI) calcd for C₂₄H₂₂FKNO₄S [M+K]⁺: 478.0885; found: 478.0668.

1-(4-chlorophenyl)-4-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)methyl) pent-4-en-2-yn-1-yl acetate (1c)

The title compound was prepared according to general procedure **A** in 47% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 6:1) to afford **1c** as a pale-yellow oil; ¹**H NMR (600 MHz, CDCl₃)** δ 7.72 (d, *J* = 8.3 Hz, 2H), 7.48 (m, 2H), 7.39–7.32 (m, 2H), 7.28–7.23 (m, 2H), 6.51 (s, 1H), 5.62 (s, 1H), 5.59 (d, *J* = 1.0 Hz, 1H), 4.09 (d, *J* = 1.3 Hz, 2H), 3.96–3.86 (m, 2H), 2.39 (s, 3H), 2.09 (s, 3H), 2.01 (t, *J* = 2.4 Hz, 1H); ¹³**C NMR (150 MHz, CDCl₃)** δ 169.5, 143.6, 135.8, 135.1, 134.8, 129.4, 129.2, 128.8, 127.6, 125.89, 124.8, 86.6, 84.9, 76.0, 74.1, 64.9, 50.5, 35.9, 21.4, 20.9; **HRMS (ESI)** calcd for C₂₄H₂₂ClNNaO₄S [M+Na]⁺: 478.0850; found: 478.0865.

1-(4-bromophenyl)-4-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)methyl) pent-4-en-2-yn-1-yl acetate (1d)

The title compound was prepared according to general procedure **A** in 40% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 6:1) to afford **1d** as a yellow oil; ¹**H NMR (600 MHz, CDCl₃)** δ 7.73 (d, J = 8.1 Hz, 2H), 7.52 (d, J = 8.3 Hz, 2H), 7.42 (d, J = 8.3 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 6.50 (s, 1H), 5.63 (s, 1H), 5.60 (s, 1H), 4.10 (s, 2H), 3.96–3.86 (m, 2H), 2.41 (s, 3H), 2.11 (s, 3H), 2.00 (s, 1H); ¹³**C NMR (150 MHz, CDCl₃)** δ 169.7, 143.7, 135.9, 135.6, 131.8, 129.6, 129.5, 127.7, 126.0, 124.9, 123.2, 86.6, 85.0, 76.2, 74.1, 65.1, 50.6, 36.0, 21.50 21.0; **HRMS (ESI)** calcd for C₂₄H₂₂BrNNaO₄S [M+Na]⁺: 522.0345; found: 522.0353.

1-(4-isopropylphenyl)-4-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido) methyl)pent-4-en-2-yn-1-yl acetate (1e)

The title compound was prepared according to general procedure **A** in 47% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1) to afford **1e** as a pale-yellow oil; ¹**H NMR (600 MHz, CDCl**₃) δ 7.74 (d, *J* = 8.2 Hz, 2H), 7.46 (d, *J* = 8.1 Hz, 2H), 7.28 (d, *J* = 8.2 Hz, 2H), 7.25 (d, *J* = 8.0 Hz, 2H), 6.52 (s, 1H), 5.63 (s, 1H), 5.60 (s, 1H), 4.12 (d, *J* = 2.3 Hz, 2H), 3.99–3.88 (m, 2H), 2.94–2.89 (m, 1H), 2.41 (s, 3H), 2.10 (s, 3H), 2.02 (t, *J* = 2.4 Hz, 1H), 1.25 (d, *J* = 6.9 Hz, 6H); ¹³**C NMR (150 MHz, CDCl**₃) δ 169.8, 149.8, 143.6, 136.0, 134.0, 129.5, 127.9, 127.7, 126.7, 125.4, 125.0, 87.4, 84.6, 76.3, 74.0, 65.6, 50.5, 36.1, 33.9, 23.9, 23.8, 21.5, 21.1; **HRMS (ESI)** calcd for C₂₇H₂₉NNaO₄S [M+Na]⁺: 486.1710; found: 486.1717.

1-([1,1'-biphenyl]-4-yl)-4-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido) methyl)pent-4-en-2-yn-1-yl acetate (1f)

The title compound was prepared according to general procedure **A** in 32% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1) to afford **1f** as a pale-yellow oil; ¹**H NMR (600 MHz, CDCl₃)** δ 7.75 (d, *J* = 8.3 Hz, 2H), 7.62 (s, 4H), 7.61–7.58 (m, 2H), 7.45 (t, *J* = 7.7 Hz,

2H), 7.36 (t, J = 7.4 Hz, 1H), 7.28 (d, J = 8.1 Hz, 2H), 6.60 (s, 1H), 5.66 (s, 1H), 5.62 (d, J = 1.1 Hz, 1H), 4.14 (d, J = 2.0 Hz, 2H), 4.00–3.90 (m, 2H), 2.41 (s, 3H), 2.14 (s, 3H), 2.02 (t, J = 2.4 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 169.8, 143.6, 142.0, 140.5, 136.0, 135.6, 129.5, 128.8, 128.3, 127.7, 127.5, 127.4, 127.2, 125.6, 125.0, 87.2, 84.8, 76.3, 74.0, 65.6, 50.6, 36.1, 21.5, 21.1; HRMS (ESI) calcd for C₃₀H₂₇NNaO₄S [M+Na]⁺: 520.1553; found: 520.1565.

1-(2-bromophenyl)-4-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)methyl) pent-4-en-2-yn-1-yl acetate (1g)

The title compound was prepared according to general procedure **A** in 45% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 16:1 to 6:1) to afford **1g** as a pale-yellow oil; ¹**H NMR (600 MHz, CDCl**₃) δ 7.84 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.73 (d, *J* = 8.3 Hz, 2H), 7.57 (dd, *J* = 8.0, 0.9 Hz, 1H), 7.44–7.38 (m, 1H), 7.27 (d, *J* = 8.1 Hz, 2H), 7.25–7.21 (m, 1H), 6.77 (s, 1H), 5.64 (s, 1H), 5.60 (d, *J* = 0.9 Hz, 1H), 4.12 (s, 2H), 3.98–3.88 (m, 2H), 2.41 (s, 3H), 2.12 (s, 3H), 2.01 (t, *J* = 2.4 Hz, 1H); ¹³**C NMR (150 MHz, CDCl**₃) δ 169.4, 143.7, 136.1, 135.6, 133.0, 130.6, 130.2, 129.5, 128.0, 127.8, 125.9, 125.1, 123.3, 86.4, 85.2, 76.3, 74.1, 65.3, 50.7, 36.3, 21.5, 20.8; **HRMS (ESI)** calcd for C₂₄H₂₂BrNNaO4S [M+Na]⁺: 522.0345; found: 522.0352.

4-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1-(naphthalen-1-yl) pent-4-en-2-yn-1-yl acetate (1h)

The title compound was prepared according to general procedure A in 43% yield over

3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1) to afford **1h** as a pale-yellow oil; ¹H NMR (600 MHz, **CDCl₃**) δ 8.19 (d, *J* = 8.5 Hz, 1H), 7.93–7.88 (m, 2H), 7.86 (d, *J* = 7.0 Hz, 1H), 7.74 (d, *J* = 8.3 Hz, 2H), 7.63–7.57 (m, 1H), 7.57–7.39 (m, 2H), 7.28–7.25 (m, 2H), 7.18 (s, 1H), 5.62 (s, 1H), 5.60 (d, *J* = 1.0 Hz, 1H), 4.18–4.05 (m, 2H), 3.97–3.90 (m, 2H), 2.40 (s, 3H), 2.14 (s, 3H), 2.00 (t, *J* = 2.4 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 169.9, 143.6, 136.0, 133.2, 131.8, 130.5, 130.0, 129.4, 128.8, 127.7, 126.9, 126.7, 126.0, 125.6, 125.2, 125.1, 123.6, 87.3, 85.1, 76.3, 74.0, 64.1, 50.6, 36.1, 21.5, 21.0; HRMS (ESI) calcd for C₂₈H₂₅NNaO₄S [M+Na]⁺: 494.1397; found: 494.1409.

4-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1-(naphthalen-2-yl) pent-4-en-2-yn-1-yl acetate (1i)

The title compound was prepared according to general procedure **A** in 39% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 8:1 to 4:1) to afford **1i** as a yellow oil; ¹**H NMR (600 MHz, CDCl₃)** δ 8.04 (s, 1H), 7.94–7.91 (m, 1H), 7.88 (d, *J* = 8.5 Hz, 1H), 7.85–7.83 (m, 1H), 7.75 (d, *J* = 8.2 Hz, 2H), 7.63 (dd, *J* = 8.5, 1.7 Hz, 1H), 7.53–7.49 (m, 2H), 7.29–7.23 (m, 2H), 6.73 (s, 1H), 5.67 (s, 1H), 5.62 (s, 1H), 4.14 (s, 2H), 4.01–3.91 (m, 2H), 2.39 (s, 3H), 2.14 (s, 3H), 2.02 (t, *J* = 2.4 Hz, 1H); ¹³**C NMR (150 MHz, CDCl₃)** δ 169.8, 143.6, 136.0, 133.9, 133.4, 133.0, 129.5, 128.6, 128.4, 127.7, 127.6, 127.3, 126.6, 126.4, 125.8, 125.1, 125.0, 87.2, 85.0, 76.3, 74.0, 65.9, 50.6, 36.1, 21.5, 21.1; **HRMS (ESI)** calcd for C₂₈H₂₆NO₄S [M+H]⁺: 472.1577; found: 472.1583. 4-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1-(thiophen-2-yl) pent-4-en-2-yn-1-yl acetate (1j)

The title compound was prepared according to general procedure **A** in 41% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1) to afford **1j** as a yellow oil; ¹**H NMR (600 MHz, CDCl₃)** δ 7.73 (d, *J* = 8.2 Hz, 2H), 7.35–7.30 (m, 1H), 7.30–7.23 (m, 3H), 7.01–6.90 (m, 1H), 6.75 (s, 1H), 5.66 (s, 1H), 5.63 (s, 1H), 4.13 (d, *J* = 2.3 Hz, 2H), 3.93 (s, 2H), 2.40 (s, 3H), 2.10 (s, 3H), 2.03 (t, *J* = 2.4 Hz, 1H); ¹³**C NMR (150 MHz, CDCl₃)** δ 169.5, 143.6, 139.4, 136.0, 129.4, 127.9, 127.7, 127.0, 126.7, 125.9, 124.8, 86.4, 84.2, 76.3, 74.0, 60.8, 50.4, 36.1, 21.4, 20.9; **HRMS (ESI)** calcd for C₂₂H₂₁NNaO₄S₂ [M+Na]⁺: 450.0804; found: 450.0815.

4-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1-(thiophen-3-yl) pent-4-en-2-yn-1-yl acetate (1k)

The title compound was prepared according to general procedure **A** in 40% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1) to afford **1k** as a pale-yellow oil; ¹**H NMR (600 MHz, CDCl₃)** δ 7.73 (d, *J* = 8.3 Hz, 2H), 7.51 (d, *J* = 2.9 Hz, 1H), 7.31 (dd, *J* = 5.0, 3.0 Hz, 1H), 7.28 (d, *J* = 8.2 Hz, 2H), 7.19 (dd, *J* = 5.0, 1.1 Hz, 1H), 6.60 (s, 1H), 5.64 (s, 1H), 5.60 (d, *J* = 1.0 Hz, 1H), 4.12 (d, *J* = 2.3 Hz, 2H), 3.92 (s, 2H), 2.41 (s, 3H), 2.10 (s, 3H), 2.02 (t, *J* = 2.4 Hz, 1H); ¹³**C NMR (150 MHz, CDCl₃)** δ 169.7, 143.6, 137.3, 135.9, 129.5, 127.7, 126.8, 126.4, 125.8, 125.0, 124.9, 86.9, 83.9, 76.2, 74.0, 61.2, 50.5, 36.01, 21.5, 21.0; **HRMS (ESI)** calcd for $C_{22}H_{21}NNaO_4S_2$ [M+Na]⁺: 450.0804; found: 450.0810.

3-ethyl-7-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)methyl)oct-7-en-5yn-4-yl acetate (11)

The title compound was prepared according to general procedure **A** in 43% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 6:1) to afford **11** as a pale-yellow oil; ¹**H NMR (600 MHz, CDCl₃)** δ 7.72 (d, *J* = 8.3 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 5.55 (s, 1H), 5.53–5.51 (m, 2H), 4.11 (d, *J* = 2.4 Hz, 2H), 3.87 (s, 2H), 2.41 (s, 3H), 2.07 (s, 3H), 1.99 (t, *J* = 2.4 Hz, 1H), 1.59–1.52 (m, 2H), 1.51–1.38 (m, 3H), 0.92 (td, *J* = 7.4, 2.7 Hz, 6H); ¹³**C NMR (150 MHz, CDCl₃)** δ 170.0, 143.5, 136.1, 129.4, 127.7, 125.3, 124.8, 87.5, 83.5, 76.3, 73.9, 66.6, 50.2, 45.3, 36.0, 22.4, 22.1, 21.5, 21.0, 11.5, 11.4; **HRMS (ESI)** calcd for C₂₃H₃₀NO₄S [M+H]⁺:416.1890; found: 416.1899.

1-cyclopropyl-4-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)methyl) pent-4-en-2-yn-1-yl acetate (1m)

The title compound was prepared according to general procedure **A** in 46% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 6:1) to afford **1m** as a pale-yellow oil; ¹**H NMR (600 MHz, CDCl₃)** δ 7.72 (d, *J* = 8.2 Hz, 2H), 7.28 (d, *J* = 8.1 Hz, 2H), 5.56 (s, 1H), 5.54 (s, 1H), 5.30 (d, *J* = 6.9 Hz, 1H), 4.10 (d, *J* = 2.3 Hz, 2H), 3.86 (s, 2H), 2.40 (s, 3H), 2.09 (s, 3H), 2.01 (t, *J* = 2.4 Hz, 1H), 1.29–1.22 (m, 1H), 0.61–0.54 (m, 2H), 0.54–0.44 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 170.0, 143.6, 136.0, 129.4, 127.7, 125.1, 125.0, 86.3, 83.0, 76.3, 74,0, 67.6, 50.5, 36.0, 21.5, 21.0, 14.3, 3.5, 2.2; HRMS (ESI) calcd for C₂₁H₂₄NO₄S [M+H]⁺:386.1421; found: 386.1432.

1-cyclohexyl-4-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)methyl)pent-4-en-2-yn-1-yl acetate (1n)

The title compound was prepared according to general procedure **A** in 47% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 7:1) to afford **1n** as a pale-yellow oil; ¹**H NMR (600 MHz, CDCl**₃) δ 7.73 (d, *J* = 8.3 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 5.56 (s, 1H), 5.53 (d, *J* = 1.2 Hz, 1H), 5.29 (d, *J* = 6.2 Hz, 1H), 4.11 (d, *J* = 2.4 Hz, 2H), 3.87 (s, 2H), 2.41 (s, 3H), 2.08 (s, 3H), 1.99 (t, *J* = 2.4 Hz, 1H), 1.84 (d, *J* = 12.4 Hz, 1H), 1.78–1.73 (m, 3H), 1.71–1.63 (m, 2H), 1.28–1.06 (m, 6H); ¹³C **NMR (150 MHz, CDCl**₃) δ 170.0, 143.5, 136.1, 129.4, 127.7, 125.2, 124.9, 87.5, 83.5, 76.3, 73.9, 68.4, 50.6, 41.8, 36.0, 28.5, 28.0, 26.1, 25.7, 25.6, 21.5, 20.9; **HRMS (ESI)** calcd for C₂₄H₃₀NO4S [M+H]⁺:428.1890; found: 428.1899.

4-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1-phenylpent-4-en-2-yn-1-yl 3-phenylpropanoate (10)

The title compound was prepared according to general procedure **A** in 44% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1 to 10:1) to afford **10** as a pale-yellow oil; ¹**H NMR (600 MHz, CDCl₃)** δ 7.76 (d, *J* = 8.2 Hz, 2H), 7.51 (d, *J* = 6.8 Hz, 2H), 7.44–7.35 (m, 3H), 7.30–7.25 (m, 4H), 7.24–7.16 (m, 3H), 6.59 (s, 1H), 5.65 (s, 1H), 5.62 (s, 1H), 4.13 (d, *J* =

1.4 Hz, 2H), 4.01–3.90 (m, 2H), 2.99 (t, *J* = 7.7 Hz, 2H), 2.79–2.65 (m, 2H), 2.43 (s, 3H), 2.03 (t, *J* = 2.3 Hz, 1H); ¹³**C NMR (150 MHz, CDCl₃)** δ 171.6, 143.6, 140.2, 136.5, 136.0, 129.5, 128.9, 128.6, 128.4, 128.3, 127.8, 127.7, 126.2, 125.5, 125.0, 87.1, 84.8, 76.3, 74.0, 65.7, 50.5, 36.1, 35.8, 30.7, 21.5; **HRMS (ESI)** calcd for C₃₁H₂₉NNaO₄S [M+Na]⁺: 534.1710; found: 534.1717.

4-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1-phenylpen-4-en-2-yn-1-yl 4-phenylbutanoate (1p)

The title compound was prepared according to general procedure **A** in 42% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1 to 10:1) to afford **1p** as a pale-yellow oil; ¹**H NMR (600 MHz, CDCl**₃) δ 7.74 (d, *J* = 8.2 Hz, 2H), 7.54 (d, *J* = 7.1 Hz, 2H), 7.43–7.35 (m, 3H), 7.29– 7.25 (m, 4H), 7.21–7.17 (m, 1H), 7.15 (d, *J* = 7.3 Hz, 2H), 6.59 (s, 1H), 5.64 (s, 1H), 5.61 (d, *J* = 0.9 Hz, 1H), 4.11 (d, *J* = 1.8 Hz, 2H), 3.99–3.88 (m, 2H), 2.64 (t, *J* = 7.6 Hz, 2H), 2.48–2.32 (m, 5H), 2.02–1.91 (m, 3H); ¹³**C NMR (150 MHz, CDCl**₃) δ 172.2, 143.6, 141.2, 136.7, 136.0, 129.5, 129.0, 128.7, 128.5, 128.3, 127.8, 127.7, 125.9, 125.5, 125.0, 87.2, 84.8, 76.3, 74.00, 65.6, 50.5, 36.1, 34.9, 33.5, 26.4, 21.5; **HRMS (ESI)** calcd for C₃₂H₃₁NNaO₄S [M+Na]⁺: 548.1866; found: 548.1872.

4-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1-phenylpent-4-en-2-yn-1-yl cyclopropanecarboxylate (1q)

The title compound was prepared according to general procedure **A** in 44% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1 to 10:1) to afford **1q** as a pale-yellow solid, mp 58–60 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.74 (d, *J* = 8.3 Hz, 2H), 7.56–7.51 (m, 2H), 7.43–7.32 (m, 3H), 7.27 (d, J = 8.0 Hz, 2H), 6.57 (s, 1H), 5.63 (s, 1H), 5.60 (d, J = 1.2 Hz, 1H), 4.12 (d, J = 2.2 Hz, 2H), 3.97–3.88 (m, 2H), 2.41 (s, 3H), 2.02 (t, J = 2.4 Hz, 1H), 1.70–1.64 (m, 1H), 1.10–0.99 (m, 2H), 0.95–0.83 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 173.7, 143.6, 136.8, 136.0, 129.5, 128.9, 128.7, 127.8, 125.5, 125.1, 87.3, 84.7, 76.4, 74.0, 65.7, 50.5, 36.1, 21.52 13.0, 8.9, 8.9; HRMS (ESI) calcd for C₂₆H₂₅NNaO₄S [M+Na]⁺: 470.1397; found: 470.1403.

4-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1-phenylpent-4-en-2-yn-1-yl cyclobutanecarboxylate (1r)

The title compound was prepared according to general procedure **A** in 36% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1 to 12:1) to afford **1r** as a pale-yellow oil; ¹**H NMR (600 MHz, CDCl**₃) δ 7.74 (d, *J* = 8.3 Hz, 2H), 7.54–7.49 (m, 2H), 7.42–7.32 (m, 3H), 7.28–7.26 (m, 2H), 6.56 (s, 1H), 5.62 (s, 1H), 5.59 (d, *J* = 1.1 Hz, 1H), 4.11 (d, *J* = 2.3 Hz, 2H), 3.97–3.87 (m, 2H), 3.23–3.14 (m, 1H), 2.41 (s, 3H), 2.37–2.25 (m, 2H), 2.25–2.15 (m, 2H), 2.01 (t, *J* = 2.4 Hz, 1H), 1.99–1.94 (m, 1H), 1.94–1.87 (m, 1H); ¹³**C NMR (150 MHz, CDCl**₃) δ 174.2, 143.6, 136.2, 136.0, 129.5, 128.9, 128.6, 127.7, 127.7, 125.5, 125.1, 87.3, 84.7, 76.3, 74.0, 65.5, 50.5, 37.9, 36.1, 25.1, 25.1, 21.5, 18.3; **HRMS (ESI)** calcd for C₂₇H₂₇NNaO₄S [M+Na]⁺: 484.1553; found: 484.1559.

4-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1-phenylpent-4-en-2-yn-1-yl cyclopentanecarboxylate (1s)

The title compound was prepared according to general procedure A in 46% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum

ether/EtOAc = 20:1 to 12:1) to afford **1s** as a pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 7.74 (d, J = 8.3 Hz, 2H), 7.52 (d, J = 7.1 Hz, 2H), 7.42–7.36 (m, 2H), 7.37–7.34 (m, 1H), 7.27 (d, J = 8.9 Hz, 2H), 6.56 (s, 1H), 5.62 (s, 1H), 5.59 (d, J = 1.0 Hz, 1H), 4.11 (d, J = 2.3 Hz, 2H), 3.92 (s, 2H), 2.84–2.74 (m, 1H), 2.40 (s, 3H), 2.02 (t, J = 2.4 Hz, 1H), 1.95–1.81 (m, 3H), 1.80–1.74 (m, 1H), 1.73–1.66 (m, 2H), 1.60–1.53 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 175.4, 143.6, 136.2, 136.0, 129.4, 128.8, 128.6, 127.7, 127.5, 125.4, 125.0, 87.3, 84.6, 76.3, 74.0, 65.4, 50.5, 43.6, 36.1, 29.8, 29.7, 25.7, 25.7, 21.5; HRMS (ESI) calcd for C₂₈H₂₉NNaO₄S [M+Na]⁺: 498.1710; found: 498.1718.

4-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1-phenylpent-4-en-2-yn-1-yl 1-tosylpiperidine-4-carboxylate (1t)

The title compound was prepared according to general procedure **A** in 41% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1 to 8:1) to afford **1t** as a pale-yellow oil; ¹**H NMR (600 MHz, CDCl₃)** δ 7.72 (d, *J* = 8.2 Hz, 2H), 7.61 (d, *J* = 8.2 Hz, 2H), 7.49–7.45 (m, 2H), 7.39– 7.33 (m, 3H), 7.32–7.25 (m, 4H), 6.51 (s, 1H), 5.59 (s, 1H), 5.57 (d, *J* = 0.7 Hz, 1H), 4.09 (d, *J* = 2.3 Hz, 2H), 3.89 (s, 2H), 3.69–3.52 (m, 2H), 2.48–2.44 (m, 2H), 2.41 (d, *J* = 5.4 Hz, 6H), 2.35–2.27 (m, 1H), 2.04–1.98 (m, 2H), 1.97–1.93 (m, 1H), 1.89–1.75 (m, 2H); ¹³C **NMR (150 MHz, CDCl₃)** δ 172.6, 143.7, 143.5, 136.4, 135.9, 133.1, 129.6, 129.5, 129.0, 128.7, 127.7, 127.6, 127.6, 125.7, 125.0, 86.9, 84.9, 76.1, 74.1, 66.0, 50.6, 45.3, 45.2, 39.9, 36.0, 27.2, 27.2, 21.5, 21.5; **HRMS (ESI)** calcd for C₃₅H₃₆N2NaO₆S₂ [M+Na]⁺: 667.1907; found: 667.1919. 4-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1-phenylpent-4-en-2-yn-1-yl pivalate (1u)

The title compound was prepared according to general procedure **A** in 41% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 40:1 to 18:1) to afford **1u** as a pale-yellow oil; ¹**H NMR (600 MHz, CDCl**₃) δ 7.74 (d, *J* = 8.3 Hz, 2H), 7.53–7.48 (m, 2H), 7.41–7.37 (m, 2H), 7.36–7.34 (m, 1H), 7.28–7.26 (m, 2H), 6.53 (s, 1H), 5.61 (s, 1H), 5.59 (d, *J* = 1.2 Hz, 1H), 4.12 (d, *J* = 2.4 Hz, 2H), 3.92 (s, 2H), 2.41 (s, 3H), 2.01 (t, *J* = 2.4 Hz, 1H), 1.22 (s, 9H); ¹³**C NMR (150 MHz, CDCl**₃) δ 177.1, 143.6, 136.9, 136.0, 129.5, 128.7, 128.6, 127.7, 127.4, 125.3, 125.1, 87.4, 84.5, 76.3, 74.0, 65.5, 50.5, 38.7, 36.1, 26.9, 21.5; **HRMS (ESI)** calcd for C₂₇H₂₉NNaO4S [M+Na]⁺: 486.1710; found: 486.1719.

4-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1-phenylpent-4-en-2-yn-1--yl-adamantane-1-carboxylate (1v)

The title compound was prepared according to general procedure **A** in 44% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1 to 8:1) to afford **1v** as a pale-yellow oil; ¹**H NMR (600 MHz, CDCl₃)** δ 7.74 (d, *J* = 8.2 Hz, 2H), 7.50 (d, *J* = 7.3 Hz, 2H), 7.38 (t, *J* = 7.3 Hz, 2H), 7.36–7.32 (m, 1H), 7.27 (d, *J* = 8.6 Hz, 2H), 6.54 (s, 1H), 5.61 (s, 1H), 5.58 (s, 1H), 4.12 (d, *J* = 2.0 Hz, 2H), 3.92 (s, 2H), 2.40 (s, 3H), 2.01 (d, *J* = 2.3 Hz, 4H), 1.91 (s, 6H), 1.74–1.65 (m, 6H); ¹³**C NMR (150 MHz, CDCl₃)** δ 176.2, 143.6, 137.0, 136.0, 129.4, 128.6, 128.5, 127.7, 127.3, 125.3, 125.1, 87.5, 84.5, 76.3, 74.0, 65.1, 50.5, 40.7, 38.5, 36.4, 36.1, 27.8, 21.5; **HRMS (ESI)** calcd for C₃₃H₃₅NNaO₄S [M+Na]⁺: 564.2179; found: 564.2187.

4-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1-phenylpent-4-en-2-yn-1-yl 2-(adamantan-1-yl)acetate (1w)

The title compound was prepared according to general procedure **A** in 43% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1 to 8:1) to afford **1w** as a pale-yellow oil; ¹**H NMR (600 MHz, CDCl**₃) δ 7.73 (d, *J* = 8.2 Hz, 2H), 7.54 (d, *J* = 7.2 Hz, 2H), 7.39 (t, *J* = 7.3 Hz, 2H), 7.37–7.33 (m, 1H), 7.27 (d, *J* = 7.9 Hz, 2H), 6.55 (s, 1H), 5.61 (s, 1H), 5.60 (d, *J* = 0.9 Hz, 1H), 4.11 (d, *J* = 2.3 Hz, 2H), 3.95–3.88 (m, 2H), 2.41 (s, 3H), 2.10–2.12 (m, 2H), 2.02 (t, *J* = 2.4 Hz, 1H), 1.93 (s, 3H), 1.69–1.64 (m, 4H), 1.59 (s, 8H); ¹³**C NMR (150 MHz, CDCl**₃) δ 170.5, 143.6, 136.7, 136.0, 129.4, 128.8, 128.6, 127.8, 127.7, 125.2, 125.0, 87.4, 84.6, 76.3, 74.0, 65.2, 50.4, 48.6, 42.3, 36.6, 36.1, 33.2, 28.5, 21.5; **HRMS** (**ESI**) calcd for C₃₄H₃₇NNaO₄S [M+Na]⁺: 578.2336; found: 578.2348.

4-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1-phenylpent-4-en-2-yn-1-yl pent-4-enoate (1x)

The title compound was prepared according to general procedure **A** in 48% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1 to 8:1) to afford **1x** as a pale-yellow oil; ¹**H NMR (600 MHz, CDCl₃)** δ 7.74 (d, *J* = 8.1 Hz, 2H), 7.53 (d, *J* = 7.4 Hz, 2H), 7.41–7.33 (m, 3H), 7.27 (d, *J* = 8.0 Hz, 2H), 6.57 (s, 1H), 5.85–5.76 (m, 1H), 5.63 (s, 1H), 5.60 (s, 1H), 5.03 (d, *J* = 17.1 Hz, 1H), 4.98 (d, *J* = 10.2 Hz, 1H), 4.12 (d, *J* = 1.6 Hz, 2H), 3.97–3.87 (m, 2H), 2.53–2.44 (m, 2H), 2.43–2.37 (m, 5H), 2.01 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 171.8, 143.6, 136.6, 136.3, 136.0, 129.5, 128.9, 128.6, 127.8, 127.7, 125.5, 125.0, 115.6, 87.2, 84.8, 76.3, 74.0, 65.7, 50.5, 36.1, 33.4, 28.7, 21.5; HRMS (ESI) calcd for C₂₇H₂₇NNaO₄S [M+Na]⁺: 484.1553; found: 484.1564.

4-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1-phenylpent-4-en-2-yn-1-yl (E)-but-2-enoate (1y)

The title compound was prepared according to general procedure **A** in 18% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1 to 8:1) to afford **1y** as a yellow oil; ¹**H NMR (600 MHz, CDCl₃)** δ 7.73 (d, *J* = 8.2 Hz, 2H), 7.54 (d, *J* = 7.2 Hz, 2H), 7.39 (t, *J* = 7.3 Hz, 2H), 7.37–7.33 (m, 1H), 7.27 (d, *J* = 8.6 Hz, 2H), 7.11–7.00 (m, 1H), 6.62 (s, 1H), 5.88 (dd, *J* = 15.5, 1.7 Hz, 1H), 5.63 (s, 1H), 5.60 (d, *J* = 0.7 Hz, 1H), 4.11 (d, *J* = 1.8 Hz, 2H), 3.97–3.87 (m, 2H), 2.40 (s, 3H), 2.02 (t, *J* = 2.4 Hz, 1H), 1.88 (dd, *J* = 6.9, 1.6 Hz, 3H); ¹³C **NMR** (**150 MHz, CDCl₃)** δ 165.1, 146.1, 143.6, 136.7, 135.9, 129.4, 128.8, 128.6, 127.7, 127.7, 125.5, 125.0, 122.0, 87.2, 84.7, 76.3, 74.0, 65.4, 50.5, 36.1, 21.5, 18.0; **HRMS** (**ESI**) calcd for C₂₆H₂₅NNaO₄S [M+Na]⁺: 470.1397; found: 470.1405.

4-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1-phenylpent-4-en-2-yn-1-yl 3-methylbut-2-enoate (1z)

The title compound was prepared according to general procedure **A** in 46% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1 to 10:1) to afford **1z** as a pale-yellow oil; ¹**H NMR** (600 MHz, CDCl₃) δ 7.74 (d, *J* = 8.2 Hz, 2H), 7.54 (d, *J* = 7.4 Hz, 2H), 7.38 (t, *J* = 7.3 Hz, 2H), 7.34 (t, *J* = 7.2 Hz, 1H), 7.27 (d, *J* = 8.1 Hz, 2H), 6.60 (s, 1H), 5.73 (s, 1H), 5.62 (s, 1H), 5.59 (s, 1H), 4.12 (d, *J* = 2.1 Hz, 2H), 3.99–3.86 (m, 2H), 2.40 (s, 3H), 2.19 (s, 3H), 2.02 (t, *J* = 2.0 Hz, 1H), 1.90 (s, 3H); ¹³**C NMR (150 MHz, CDCl₃)** δ 165.0, 158.4, 143.6, 137.1, 136.1, 129.4, 128.7, 128.6, 127.7, 127.6, 125.3, 125.1, 115.4, 87.7, 84.5, 76.4, 73.2, 64.7, 50.5, 36.1, 27.4, 21.5, 20.4; **HRMS (ESI)** calcd for C₂₇H₂₇NNaO₄S [M+Na]⁺: 484.1553; found: 484.1559.

4-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1-phenylpent-4-en-2-yn-1-yl benzoate (1aa)

The title compound was prepared according to general procedure **A** in 45% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1 to 10:1) to afford **1aa** as a yellow oil; ¹**H NMR (600 MHz, CDCl₃)** δ 8.09 (dd, J = 8.3, 1.2 Hz, 2H), 7.74 (d, J = 8.3 Hz, 2H), 7.63 (d, J = 7.3 Hz, 2H), 7.60– 7.54 (m, 1H), 7.46–7.40 (m, 4H), 7.40–7.36 (m, 1H), 7.28–7.23 (m, 2H), 6.81 (s, 1H), 5.65 (s, 1H), 5.62 (d, J = 1.1 Hz, 1H), 4.13 (d, J = 1.7 Hz, 2H), 4.00–3.90 (m, 2H), 2.40 (s, 3H), 2.01 (t, J = 2.4 Hz, 1H); ¹³**C NMR (150 MHz, CDCl₃)** δ 165.4, 143.6, 136.7, 136.0, 133.3, 129.9, 129.7, 129.5, 129.0, 128.7, 128.4, 127.8, 127.7, 125.6, 125.0, 87.2, 85.0, 76.4, 74.0, 66.3, 50.5, 36.2, 21.5; **HRMS (ESI)** calcd for C₂₉H₂₅NNaO4S [M+Na]⁺: 506.1397; found: 506.1404.

4-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1-phenylpent-4-en-2-yn-1-yl 2-naphthoate (1ab)

The title compound was prepared according to general procedure **A** in 36% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1 to 12:1) to afford **1ab** as a yellow oil; ¹**H** NMR (600 MHz, CDCl₃)

δ 8.67 (s, 1H), 8.10 (dd, J = 8.6, 1.6 Hz, 1H), 7.96 (d, J = 8.1 Hz, 1H), 7.90–7.84 (m, 2H), 7.75 (d, J = 8.2 Hz, 2H), 7.70 (d, J = 7.4 Hz, 2H), 7.62–7.57 (m, 1H), 7.54 (t, J = 7.5 Hz, 1H), 7.45 (t, J = 7.5 Hz, 2H), 7.40 (t, J = 7.4 Hz, 1H), 7.29–7.22 (m, 2H), 6.90 (s, 1H), 5.68 (s, 1H), 5.63 (d, J = 0.8 Hz, 1H), 4.15 (s, 2H), 4.03–3.89 (m, 2H), 2.39 (s, 3H), 2.02 (t, J = 2.4 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 165.5, 143.6, 136.7, 136.0, 135.6, 132.4, 131.5, 129.5, 129.4, 129.0, 128.7, 128.4, 128.1, 127.9, 127.7, 126.8, 126.6, 125.7, 125.3, 125.0, 87.2, 85.1, 76.3, 74.0, 66.4, 50.6, 36.1, 21.5; HRMS (ESI) calcd for C₃₃H₂₇NNaO₄S [M+Na]⁺: 556.1553; found: 556.1566.

4-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1-phenylpent-4-en-2-yn-1-yl 1H-indole-2-carboxylate (1ac)

The title compound was prepared according to general procedure **A** in 36% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 6:1) to afford **1ac** as a pale-yellow oil; ¹**H NMR (600 MHz, CDCl**₃) δ 9.31–9.26 (m, 1H), 7.77 (d, *J* = 8.2 Hz, 2H), 7.68 (d, *J* = 7.7 Hz, 3H), 7.48– 7.41 (m, 3H), 7.39 (t, *J* = 7.2 Hz, 1H), 7.34–7.30 (m, 2H), 7.30–7.26 (m, 2H), 7.14 (t, *J* = 7.5 Hz, 1H), 6.86–6.84 (m, 1H), 5.65 (s, 1H), 5.61 (s, 1H), 4.15 (d, *J* = 2.1 Hz, 2H), 4.14–3.93 (m, 2H), 2.41 (s, 3H), 2.01 (t, *J* = 2.3 Hz, 1H); ¹³**C NMR (150 MHz, CDCl**₃) δ 160.5, 143.7, 137.1, 136.5, 136.1, 129.5, 129.1, 128.7, 127.9, 127.6, 127.3, 126.5, 125.6, 125.6, 125.1, 122.5, 120.8, 112.0, 109.9, 87.2, 85.3, 76.2, 74.0, 66.4, 50.7, 36.0, 21.5; **HRMS (ESI)** calcd for C₃₁H₂₆NNaO₄S [M+Na]⁺: 545.1505; found: 545.1513. 2-methyl-5-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)methyl)hex-5-en-3-yn-2-yl acetate (1ad)

The title compound was prepared according to general procedure **A** in 32% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 8:1 to 4:1) to afford **1ad** as a pale-yellow oil; ¹**H NMR (600 MHz, CDCl₃)** δ 7.72 (d, *J* = 8.1 Hz, 2H), 7.27 (d, *J* = 8.2 Hz, 2H), 5.51 (s, 1H), 5.48 (s, 1H), 4.12 (d, *J* = 2.1 Hz, 2H), 3.86 (s, 2H), 2.40 (s, 3H), 2.00 (s, 4H), 1.65 (s, 6H); ¹³**C NMR** (**150 MHz, CDCl₃)** δ 169.2, 143.5, 136.2, 129.4, 127.6, 125.3, 124.2, 92.0, 81.8, 76.5, 73.8, 72.0, 50.6, 36.0, 28.8, 21.8, 21.5; **HRMS (ESI)** calcd for C₂₀H₂₃NNaO₄S [M+Na]⁺: 396.1240; found: 396.1254.

4-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1-phenylpent-4-en-2-yn-1-yl dodecanoate (1ae)

The title compound was prepared according to general procedure **A** in 46% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1 to 12:1) to afford **1ae** as a pale-yellow oil; ¹**H NMR (600 MHz, CDCl**₃) δ 7.74 (d, *J* = 8.2 Hz, 2H), 7.52 (d, *J* = 7.2 Hz, 2H), 7.38 (t, *J* = 7.2 Hz, 2H), 7.37–7.33 (m, 1H), 7.27 (d, *J* = 8.2 Hz, 2H), 6.57 (s, 1H), 5.62 (s, 1H), 5.59 (s, 1H), 4.11 (d, *J* = 1.9 Hz, 2H), 3.99–3.84 (m, 2H), 2.41 (s, 3H), 2.38–2.32 (m, 2H), 2.01 (t, *J* = 2.3 Hz, 1H), 1.67–1.60 (m, 2H), 1.28–1.23 (m, 16H), 0.88 (t, *J* = 7.0 Hz, 3H); ¹³**C NMR (150 MHz, CDCl**₃) δ 172.5, 143.6, 136.8, 136.1, 129.5, 128.9, 128.6, 127.7, 125.4, 125.1, 87.4, 84.7, 76.4, 73.9, 65.5, 50.5, 36.1, 34.2, 31.9, 29.6, 29.5, 29.4, 29.3, 29.2, 29.0, 24.8, 22.6, 21.5, 14.1; **HRMS (ESI)** calcd for C₃₄H₄₃NNaO₄S [M+Na]⁺: 584.2805; found: 584.2811.

4-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1-phenylpent-4-en-2-yn-1-yl 3-(1H-indol-3-yl)propanoate (1af)

The title compound was prepared according to general procedure **A** in 41% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1 to 10:1) to afford **1af** as a yellow oil; ¹**H NMR (600 MHz, CDCl₃)** δ 8.14 (s, 1H), 7.75 (d, *J* = 7.9 Hz, 2H), 7.59 (d, *J* = 7.9 Hz, 1H), 7.55–7.47 (m, 2H), 7.40–7.33 (m, 4H), 7.28 (d, *J* = 8.1 Hz, 2H), 7.19 (t, *J* = 7.5 Hz, 1H), 7.13–7.09 (m, 1H), 6.98 (s, 1H), 6.61–6.56 (m, 1H), 5.63 (s, 1H), 5.61 (d, *J* = 0.9 Hz, 1H), 4.12 (s, 2H), 3.93 (s, 2H), 3.18–3.09 (m, 2H), 2.88–2.70 (m, 2H), 2.42 (s, 3H), 2.03–1.98 (m, 1H); ¹³C **NMR (150 MHz, CDCl₃)** δ 172.1, 143.7, 136.6, 136.2, 135.9, 129.5, 128.9, 128.6, 127.8, 127.7, 127.1, 125.6, 125.0, 121.9, 121.7, 119.2, 118.6, 114.4, 111.1, 87.3, 84.7, 76.3, 74.1, 65.7, 50.6, 36.2, 34.9, 21.5, 20.5; **HRMS (ESI)** calcd for C₃₃H₃₀N₂NaO₄S [M+Na]⁺: 573.1818; found: 573.1825.

4-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1-phenylpent-4-en-2-yn-1-yl 4-(*N*,*N*-dipropylsulfamoyl)benzoate (1ag)

The title compound was prepared according to general procedure **A** in 45% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 14:1 to 8:1) to afford **1ag** as a colorless oil; ¹**H NMR (600 MHz, CDCl₃)** δ 8.19 (d, *J* = 8.5 Hz, 2H), 7.86 (d, *J* = 8.5 Hz, 2H), 7.73 (d, *J* = 8.2 Hz, 2H), 7.64 (d, *J* = 7.1 Hz, 2H), 7.43 (t, J = 7.2 Hz, 2H), 7.41–7.37 (m, 1H), 7.27 (d, J = 8.2 Hz, 2H), 6.80 (s, 1H), 5.65 (s, 1H), 5.61 (s, 1H), 4.17–4.06 (m, 2H), 3.99–3.89 (m, 2H), 3.11– 3.04 (m, 4H), 2.40 (s, 3H), 1.99 (t, J = 2.1 Hz, 1H), 1.59–1.47 (m, 4H), 0.85 (t, J = 7.4 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 164.1, 144.4, 143.7, 136.3, 136.0, 133.0, 130.5, 129.5, 129.2, 128.8, 128.0, 127.7, 127.0, 125.9, 125.0, 86.7, 85.4, 76.2, 74.0, 67.1, 50.6, 49.9, 36.1, 21.889 21.5, 11.1; HRMS (ESI) calcd for C₃₅H₃₈N₂NaO₆S₂ [M+Na]⁺: 669.2063; found: 669.2069.

4-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1-phenylpent-4-en-2-yn-1-yl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1*H*-indol-3-yl)acetate (1ah)

The title compound was prepared according to general procedure **A** in 38% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 6:1) to afford **1ah** as a yellow solid, mp 70–72 °C; ¹**H NMR** (600 MHz, CDCl₃) ¹**H NMR** (600 MHz, CDCl₃) δ 7.72 (d, *J* = 8.3 Hz, 2H), 7.64–7.61 (m, 2H), 7.51–7.47 (m, 2H), 7.45–7.43 (m, 2H), 7.37–7.34 (m, 2H), 7.27–7.25 (m, 2H), 6.92 (d, *J* = 2.4 Hz, 1H), 6.90 (d, *J* = 9.0 Hz, 1H), 6.66 (dd, *J* = 9.0, 2.5 Hz, 1H), 6.56 (s, 1H), 5.58 (s, 2H), 4.08 (t, *J* = 1.8 Hz, 2H), 3.95–3.87 (m, 2H), 3.77–3.70 (m, 5H), 2.40 (s, 3H), 2.34 (s, 3H); ¹³C **NMR** (150 MHz, CDCl₃) δ 169.6, 168.2, 156.0, 143.6, 139.2, 136.4, 136.0, 136.0, 133.9, 131.1, 130.7, 130.5, 129.5, 129.1, 129.0, 128.6, 127.8, 127.7, 125.7, 125.0, 114.9, 112.2, 111.9, 101.1, 86.9, 85.1, 76.3, 74.0, 66.4, 55.6, 50.6, 36.0, 30.4, 21.5, 13.4; **HRMS** (ESI) calcd for C₄₁H₃₅ClN₂NaO₆S [M+Na]⁺: 741.1797; found: 741.1804. 4-(((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1-phenylpent-4-en-2-yn-1-yl 2-(11-oxo-6,11-dihydrodibenzo[b,e]oxepin-2-yl)acetate (1ai)

The title compound was prepared according to general procedure **A** in 43% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 14:1 to 8:1) to afford **1ai** as a colorless oil; ¹**H NMR (600 MHz, CDCl₃)** δ 8.11 (d, J = 2.3 Hz, 1H), 7.88 (dd, J = 7.7, 0.9 Hz, 1H), 7.73 (d, J = 8.3 Hz, 2H), 7.57– 7.55 (m, 1H), 7.53–7.50 (m, 2H), 7.47 (t, J = 7.6, 1.0 Hz, 1H), 7.42 (dd, J = 8.4, 2.4 Hz, 1H), 7.40–7.34 (m, 4H), 7.27 (d, J = 6.6 Hz, 3H), 7.02 (d, J = 8.4 Hz, 1H), 6.57 (s, 1H), 5.63 (s, 1H), 5.60 (d, J = 1.0 Hz, 1H), 5.18 (s, 2H), 4.11 (d, J = 2.3 Hz, 2H), 3.98–3.88 (m, 2H), 3.76 – 3.64 (m, 2H), 2.40 (s, 3H), 2.01 (t, J = 2.4 Hz, 1H); ¹³**C NMR (150 MHz, CDCl₃)** δ 190.7, 170.2, 160.5, 143.6, 140.4, 136.4, 136.0, 135.5, 132.7, 132.5, 129.5, 129.4, 129.2, 129.0, 128.7, 127.80, 127.76, 127.7, 127.3, 125.6, 125.1, 125.0, 121.0, 86.9, 85.1, 76.3, 74.0, 73.6, 66.3, 50.5, 40.0, 36.1, 21.5; **HRMS (ESI)** calcd for C₃₈H₃₁NNaO₆S [M+Na]⁺: 652.1764; found: 652.1776.

4-(((4-methyl-*N*-(3-phenylprop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1phenylpent-4-en-2-yn-1-yl acetate (4a)

The title compound was prepared according to general procedure **B** in 59% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 7:1) to afford **4a** as a pale-yellow solid, mp 76–78 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.79 (d, J = 8.1 Hz, 2H), 7.57 (d, J = 7.2 Hz, 2H), 7.42–7.35 (m, 3H), 7.30 – 7.27 (m, 1H), 7.26–7.22 (m, 4H), 7.06 (d, J = 7.4 Hz, 2H), 6.59 (s, 1H),

5.68 (s, 1H), 5.66 (s, 1H), 4.34 (s, 2H), 4.05–3.93 (m, 2H), 2.34 (s, 3H), 2.11 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 169.7, 143.5, 136.6, 136.0, 131.4, 129.5, 128.9, 128.6, 128.4, 128.1, 127.8, 127.7, 125.4, 125.1, 122.0, 87.18, 85.8, 84.9, 81.4, 65.7, 50.8, 37.0, 21.3, 21.0; HRMS (ESI) calcd for C₃₀H₂₇NNaO₄S [M+Na]⁺: 520.1553; found: 520.1559.

1-(4-isopropylphenyl)-4-(((4-methyl-*N*-(3-phenylprop-2-yn-1-yl)phenyl) sulfonamido)methyl)pent-4-en-2-yn-1-yl acetate (4b)

The title compound was prepared according to general procedure **B** in 48% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 12:1 to 7:1) to afford **4b** as a pale-yellow oil; ¹**H NMR (600 MHz, CDCl₃)** δ 7.80 (d, *J* = 8.1 Hz, 2H), 7.49 (d, *J* = 8.1 Hz, 2H), 7.29 (t, *J* = 7.4 Hz, 1H), 7.27–7.22 (m, 6H), 7.07 (d, *J* = 7.3 Hz, 2H), 6.57 (s, 1H), 5.67 (s, 1H), 5.66 (s, 1H), 4.35 (s, 2H), 4.05–3.93 (m, 2H), 2.92 (dt, *J* = 13.8, 6.9 Hz, 1H), 2.34 (s, 3H), 2.10 (s, 3H), 1.26 (d, *J* = 6.9 Hz, 6H); ¹³**C NMR (150 MHz, CDCl₃)** δ 169.8, 149.8, 143.5, 136.0, 134.0, 131.5, 129.5, 128.4, 128.1, 127.9, 127.7, 126.7, 125.3, 125.2, 122.0, 87.4, 85.8, 84.7, 81.5, 65.7, 50.8, 37.0, 33.8, 23.9, 23.8, 21.4, 21.1; **HRMS (ESI)** calcd for C₃₃H₃₄NO₄S [M+H]⁺: 540.2203; found: 540.2217.

1-(4-chlorophenyl)-4-(((4-methyl-*N*-(3-phenylprop-2-yn-1-yl)phenyl)sulfonamido) methyl)pent-4-en-2-yn-1-yl acetate (4c)

The title compound was prepared according to general procedure **B** in 60% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum

ether/EtOAc = 12:1 to 7:1) to afford **4c** as a yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 7.78 (d, J = 8.3 Hz, 2H), 7.53–7.47 (m, 2H), 7.37–7.32 (m, 2H), 7.31–7.27 (m, 1H), 7.27–7.21 (m, 4H), 7.07–7.02 (m, 2H), 6.54 (s, 1H), 5.67 (s, 1H), 5.65 (d, J = 1.1 Hz, 1H), 4.32 (s, 2H), 4.03–3.93 (m, 2H), 2.34 (s, 3H), 2.11 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 169.7, 143.6, 136.0, 135.2, 135.0, 131.5, 129.6, 129.3, 128.9, 128.5, 128.1, 127.7, 125.9, 125.1, 122.0, 86.8, 85.9, 85.2, 81.3, 65.1, 50.9, 37.0, 21.4, 21.0; HRMS (ESI) calcd for C₃₀H₂₆ClNNaO₄S [M+Na]⁺: 554.1163; found: 554.1173.

1-cyclohexyl-4-(((4-methyl-N-(3-phenylprop-2-yn-1-yl)phenyl)sulfonamido) methyl)pent-4-en-2-yn-1-yl acetate (4d)

The title compound was prepared according to general procedure **B** in 49% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 14:1 to 7:1) to afford **4d** as a pale-yellow solid, mp 67–69 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.77 (d, *J* = 8.2 Hz, 2H), 7.31–7.20 (m, 5H), 7.08–7.02 (m, 2H), 5.60 (d, *J* = 6.6 Hz, 2H), 5.33 (d, *J* = 6.1 Hz, 1H), 4.33 (s, 2H), 3.94 (s, 2H), 2.33 (s, 3H), 2.09 (s, 3H), 1.79–1.76 (m, 1H), 1.77 (d, *J* = 9.0 Hz, 3H), 1.73–1.63 (m, 2H), 1.30–1.08 (m, 5H); ¹³C NMR (150 MHz, CDCl₃) δ 170.1, 143.5, 136.1, 131.4, 129.5, 128.4, 128.1, 127.7, 125.3, 124.8, 122.1, 87.5, 85.8, 83.6, 81.4, 68.5, 51.0, 41.8, 36.9, 28.5, 28.0, 26.1, 25.7, 25.7, 21.4, 21.0; HRMS (ESI) calcd for C₃₀H₃₄NO₄S [M+H]⁺: 504.2203; found: 504.2208.

4-(((*N*-(but-2-yn-1-yl)-4-methylphenyl)sulfonamido)methyl)-1-phenylpent-4-en-2-yn-1-yl acetate (4e)

The title compound was prepared according to general procedure A in 54% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum

ether/EtOAc = 10:1 to 6:1) to afford **4e** as a pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 7.74 (d, J = 8.2 Hz, 1H), 7.56–7.52 (m, 2H), 7.42–7.34 (m, 3H), 7.28 (d, J = 8.3 Hz, 2H), 6.56 (s, 1H), 5.62 (s, 1H), 5.60 (d, J = 1.0 Hz, 1H), 4.04 (d, J = 2.2 Hz, 2H), 3.92–3.85 (m, 2H), 2.41 (s, 3H), 2.11 (s, 3H), 1.53 (t, J = 2.3 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 169.8, 143.3, 136.7, 136.3, 129.2, 129.0, 128.7, 127.8, 125.3, 125.1, 87.0, 85.0, 81.8, 71.5, 65.8, 50.5, 36.7, 21.5, 21.1, 3.2; HRMS (ESI) calcd for C₂₅H₂₆NO₄S [M+H]⁺: 436.1577; found: 436.1586.

4-(((N-(but-2-yn-1-yl)-4-methylphenyl)sulfonamido)methyl)-1-(4-

isopropylphenyl)pent-4-en-2-yn-1-yl acetate (4f)

The title compound was prepared according to general procedure **A** in 58% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 16:1 to 8:1) to afford **4f** as a yellow oil; ¹**H NMR (600 MHz, CDCl₃)** δ 7.75 (d, *J* = 8.2 Hz, 2H), 7.47 (d, *J* = 8.1 Hz, 2H), 7.28 (d, *J* = 8.1 Hz, 2H), 7.25 (d, *J* = 8.2 Hz, 2H), 6.54 (s, 1H), 5.61 (s, 1H), 5.59 (s, 1H), 4.05 (d, *J* = 2.1 Hz, 2H), 3.96–3.84 (m, 2H), 2.94–2.89 (m, 1H), 2.41 (s, 3H), 2.10 (s, 3H), 1.53 (t, *J* = 2.3 Hz, 3H), 1.25 (d, *J* = 7.0 Hz, 6H); ¹³C **NMR (150 MHz, CDCl₃)** δ 169.7, 149.7, 143.2, 136.2, 134.0, 129.2, 127.9, 127.8, 126.7, 125.3, 124.9, 87.1, 84.7, 81.8, 71.5, 65.6, 50.4, 36.7, 33.8, 23.8, 23.8, 21.4, 21.0, 3.1; **HRMS (ESI)** calcd for C₂₈H₃₂NO₄S [M+H]⁺: 478.2047; found: 478.2055.

4-(((*N*-(but-2-yn-1-yl)-4-methylphenyl)sulfonamido)methyl)-1-(4-chlorophenyl) pent-4-en-2-yn-1-yl acetate (4g)

The title compound was prepared according to general procedure **A** in 62% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 6:1) to afford **4g** as a yellow solid, mp 92–94 °C; ¹**H** NMR (600 MHz, CDCl₃) δ 7.73 (d, *J* = 8.3 Hz, 2H), 7.49 (d, *J* = 8.5 Hz, 2H), 7.37–7.34 (m, 1H), 7.28 (d, *J* = 8.1 Hz, 2H), 6.52 (s, 1H), 5.62 (s, 1H), 5.59 (d, *J* = 0.9 Hz, 1H), 4.03 (s, 2H), 3.92–3.83 (m, 2H), 2.41 (s, 3H), 2.10 (s, 3H), 1.51 (t, *J* = 2.3 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 169.6, 143.3, 136.2, 135.2, 134.9, 129.3, 129.2, 128.8, 127.8, 125.5, 125.2, 86.5, 85.2, 81.9, 71.3, 65.0, 50.6, 36.6, 21.4, 21.0, 3.2; HRMS (ESI) calcd for C₂₅H₂₄ClNNaO₄S [M+Na]⁺: 492.1007; found: 492.1014.

4-(((4-methyl-*N*-(3-(thiophen-3-yl)prop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1phenylpent-4-en-2-yn-1-yl acetate (4h)

The title compound was prepared according to general procedure **B** in 60% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 12:1 to 7:1) to afford **4h** as a yellow solid, mp 95–97 °C; ¹**H** NMR (600 MHz, CDCl₃) δ 7.78 (d, *J* = 8.2 Hz, 2H), 7.55 (d, *J* = 7.4 Hz, 2H), 7.41–7.34 (m, 3H), 7.27–7.24 (m, 2H), 7.21–7.18 (m, 1H), 7.13 (d, *J* = 2.3 Hz, 1H), 6.78 (dd, *J* = 5.0, 0.8 Hz, 1H), 6.58 (s, 1H), 5.66 (s, 1H), 5.64 (s, 1H), 4.31 (s, 2H), 4.03–3.92 (m, 2H), 2.36 (s, 3H), 2.11 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 169.7, 143.5, 136.6, 136.2, 129.5, 129.5, 128.9, 128.6, 127.8, 127.7, 125.3, 125.2, 125.1, 121.1, 87.2, 84.9, 81.2,

81.0, 65.8, 50.8, 37.1, 21.4, 21.0; **HRMS (ESI)** calcd for C₂₈H₂₅NNaO₄S₂ [M+Na]⁺: 526.1117; found: 526.1124.

4-(((*N*-(3-(1-acetyl-1H-indol-5-yl)prop-2-yn-1-yl)-4-methylphenyl)sulfonamido) methyl)-1-phenylpent-4-en-2-yn-1-yl acetate (4i)

The title compound was prepared according to general procedure **B** in 58% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 6:1 to 3:1) to afford **4i** as a yellow oil; ¹**H NMR (600 MHz, CDCl₃)** δ 8.31 (d, *J* = 8.5 Hz, 1H), 7.79 (d, *J* = 8.2 Hz, 2H), 7.58–7.54 (m, 2H), 7.43 (d, *J* = 3.7 Hz, 1H), 7.41–7.33 (m, 3H), 7.28 (d, *J* = 0.6 Hz, 1H), 7.27–7.23 (m, 2H), 7.01 (dd, *J* = 8.6, 1.3 Hz, 1H), 6.59 (s, 1H), 6.55 (d, *J* = 3.7 Hz, 1H), 5.67 (d, *J* = 3.8 Hz, 2H), 4.35 (s, 2H), 4.05–3.96 (m, 2H), 2.61 (s, 3H), 2.32 (s, 3H), 2.10 (s, 3H); ¹³C **NMR (150 MHz, CDCl₃)** δ 169.7, 168.5, 143.5, 136.5, 136.0, 135.0, 130.0, 129.5, 128.9, 128.6, 128.3, 127.8, 127.7, 126.2, 125.4, 125.1, 124.1, 117.1, 116.2, 108.5, 87.1, 86.2, 84.9, 80.3, 65.7, 50.8, 37.1, 23.8, 21.4, 21.0; **HRMS (ESI)** calcd for C₃₄H₃₀N₂NaO₅S [M+Na]⁺: 601.1768; found: 601.1774.

4-(((4-methyl-*N*-(3-phenylprop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1phenylpent-4-en-2-yn-1-yl benzoate (4j)

The title compound was prepared according to general procedure **B** in 57% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 14:1 to 10:1) to afford **4j** as a pale-yellow oil; ¹H NMR (600 MHz,

CDCl₃) δ 8.10 (d, J = 7.4 Hz, 2H), 7.79 (d, J = 8.2 Hz, 2H), 7.66 (d, J = 7.4 Hz, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.46–7.40 (m, 4H), 7.38 (t, J = 7.3 Hz, 1H), 7.28 (t, J = 7.4 Hz, 1H), 7.26–7.21 (m, 4H), 7.06 (d, J = 7.3 Hz, 2H), 6.85 (s, 1H), 5.69 (s, 1H), 5.68 (s, 1H), 4.35 (s, 2H), 4.07–3.96 (m, 2H), 2.33 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 165.4, 143.5, 136.7, 136.0, 133.2, 131.5, 129.9, 129.7, 129.5, 129.0, 128.7, 128.4, 128.3, 128.2, 127.8, 127.7, 125.5, 125.2, 122.0, 87.2, 85.9, 85.2, 81.5, 66.3, 50.8, 37.1, 21.4; HRMS (ESI) calcd for C₃₅H₂₉NNaO₄S [M+Na]⁺: 582.1710; found: 582.1716. 4-(((4-methyl-*N*-(3-phenylprop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1phenylpent-4-en-2-yn-1-yl 1H-indole-2-carboxylate (4k)

The title compound was prepared according to general procedure **B** in 60% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 6:1) to afford **4k** as a pale-yellow solid, mp 60–62 °C;¹**H NMR** (600 MHz, CDCl₃) δ 9.24 (s, 1H), 7.81 (d, *J* = 8.2 Hz, 2H), 7.70 (d, *J* = 7.3 Hz, 2H), 7.68 (d, *J* = 8.1 Hz, 1H), 7.45–7.41 (m, 3H), 7.41–7.38 (m, 1H), 7.33–7.29 (m, 2H), 7.29–7.25 (m, 3H), 7.22 (t, *J* = 7.5 Hz, 2H), 7.14 (t, *J* = 7.5 Hz, 1H), 7.08–7.04 (m, 2H), 6.87 (s, 1H), 5.68 (s, 1H), 5.66 (s, 1H), 4.37 (s, 2H), 4.09–4.02 (m, 2H), 2.34 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 160.5, 143.6, 137.1, 136.5, 136.1, 131.5, 129.6, 129.1, 128.7, 128.4, 128.1, 128.0, 127.7, 127.3, 126.6, 125.6, 125.5, 125.3, 122.5, 122.0, 120.8, 112.0, 109.9, 87.3, 85.9, 85.5, 81.4, 66.4, 51.1, 37.0, 21.4; HRMS (ESI) calcd for C₃₇H₃₁N₂O₄S [M+H]⁺: 599.1999; found:599.2006.

4-(((4-methyl-*N*-(3-phenylprop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1phenylpent-4-en-2-yn-1-yl cyclobutanecarboxylate (4l)

The title compound was prepared according to general procedure **B** in 59% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 15:1 to 10:1) to afford **4I** as a yellow oil; ¹**H NMR (600 MHz, CDCI₃)** δ 7.79 (d, *J* = 8.2 Hz, 2H), 7.55 (d, *J* = 7.2 Hz, 2H), 7.40–7.37 (m, 2H), 7.36–7.33 (m, 1H), 7.28 (t, *J* = 7.4 Hz, 1H), 7.27–7.22 (m, 4H), 7.07 (d, *J* = 7.3 Hz, 2H), 6.61 (s, 1H), 5.66 (d, *J* = 5.4 Hz, 2H), 4.34 (s, 2H), 4.03–3.94 (m, 2H), 3.19 (p, *J* = 8.5 Hz, 1H), 2.38–2.24 (m, 5H), 2.24–2.15 (m, 2H), 2.01–1.93 (m, 1H), 1.93–1.87 (m, 1H); ¹³**C NMR (150 MHz, CDCI₃)** δ 174.1, 143.5, 136.8, 136.1, 131.4, 129.5, 128.8, 128.6, 128.4, 128.1, 127.7, 127.6, 125.3, 125.2, 122.1, 87.4, 85.8, 84.80 81.5, 65.5, 50.8, 37.9, 37.1, 25.1, 21.3, 18.3; **HRMS (ESI)** calcd for C₃₃H₃₁NNaO₄S [M+Na]⁺: 560.1866; found: 560.1871.

4-(((4-methyl-*N*-(3-phenylprop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1phenylpent-4-en-2-yn-1-yl 1-tosylpiperidine-4-carboxylate (4m)

The title compound was prepared according to general procedure **B** in 57% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 8:1 to 5:1) to afford **4m** as a yellow solid, mp 100–102 °C;¹**H** NMR (600 MHz, CDCl₃) δ 7.76 (d, *J* = 8.3 Hz, 2H), 7.62 (d, *J* = 8.2 Hz, 2H), 7.50–7.47 (m, 2H), 7.39–7.34 (m, 3H), 7.32–7.28 (m, 2H), 7.28–7.21 (m, 5H), 7.05–7.01 (m, 2H), 6.53 (s, 1H), 5.62 (s, 2H), 4.30 (s, 2H), 3.96 (s, 2H), 3.64–3.55 (m, 2H), 2.48–2.40 (m,

5H), 2.35–2.28 (m, 4H), 2.04–1.99 (m, 1H), 1.98–1.92 (m, 1H), 1.88–1.75 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 172.6, 143.6, 143.5, 136.4, 136.0, 133.1, 131.4, 129.6, 129.5, 129.0, 128.7, 128.4, 128.1, 127.7, 127.6, 127.6, 125.6, 125.1, 122.0, 86.9, 85.9, 85.0, 81.3, 66.0, 50.9, 45.3, 45.2, 39.9, 36.9, 27.2, 21.5, 21.6; HRMS (ESI) calcd for C₄₁H₄₀N₂NaO₆S₂ [M+Na]⁺: 743.2220; found: 743.2234.

4-(((4-methyl-*N*-(3-phenylprop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1phenylpent-4-en-2-yn-1-yl (*E*)-but-2-enoate (4n)

The title compound was prepared according to general procedure **B** in 60% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 15:1 to 10:1) to afford **4n** as a yellow oil; ¹**H NMR (600 MHz, CDCl₃)** δ 7.78 (d, *J* = 8.3 Hz, 2H), 7.60–7.55 (m, 2H), 7.42–7.32 (m, 3H), 7.30–7.26 (m, 1H), 7.26–7.22 (m, 4H), 7.11–7.00 (m, 3H), 6.66 (s, 1H), 5.88 (dd, *J* = 15.5, 1.7 Hz, 1H), 5.67 (s, 1H), 5.66 (d, *J* = 1.1 Hz, 1H), 4.34 (s, 2H), 4.04–3.93 (m, 2H), 2.33 (s, 3H), 1.87 (dd, *J* = 6.9, 1.6 Hz, 3H); ¹³**C NMR (150 MHz, CDCl₃)** δ 165.1, 146.1, 143.5, 136.8, 136.0, 131.5, 129.5, 128.8, 128.6, 128.4, 128.1, 127.8, 127.7, 125.4, 125.2, 122.1, 122.1, 87.3, 85.8, 84.8, 81.5, 65.4, 50.8, 37.1, 21.4, 18.0; **HRMS (ESI)** calcd for C₃₂H₂₉NNaO₄S [M+Na]⁺: 546.1710; found: 546.1717.

4-(((4-methyl-*N*-(3-phenylprop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1phenylpent-4-en-2-yn-1-yl 3-methylbut-2-enoate (40)

The title compound was prepared according to general procedure **B** in 59% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum
ether/EtOAc = 15:1 to 10:1) to afford **40** as a yellow oil; ¹H NMR (**600** MHz, CDCl₃) δ 7.79 (d, J = 8.1 Hz, 2H), 7.57 (d, J = 7.4 Hz, 2H), 7.38 (t, J = 7.2 Hz, 2H), 7.36–7.32 (m, 1H), 7.30–7.22 (m, 5H), 7.08 (d, J = 7.4 Hz, 2H), 6.64 (s, 1H), 5.73 (s, 1H), 5.66 (d, J = 6.1 Hz, 2H), 4.34 (s, 2H), 4.03–3.93 (m, 2H), 2.33 (s, 3H), 2.19 (s, 3H), 1.89 (s, 3H); ¹³C NMR (**150** MHz, CDCl₃) δ 165.1, 158.4, 143.5, 137.1, 136.1, 131.5, 129.5, 128.7, 128.6, 128.4, 128.1, 127.8, 127.7, 125.3, 125.2, 122.1, 115.4, 87.7, 85.8, 84.6, 81.6, 64.7, 50.8, 37.1, 27.4, 21.4, 20.4; HRMS (ESI) calcd for C₃₃H₃₁NNaO₄S [M+Na]⁺: 560.1866; found: 560.1875.

4-(((4-methyl-*N*-(3-phenylprop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1phenylpent-4-en-2-yn-1-yl-adamantane-1-carboxylate (4p)

The title compound was prepared according to general procedure **B** in 47% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1 to 12:1) to afford **4p** as a yellow oil; ¹**H NMR (600 MHz, CDCl₃)** δ 7.78 (d, *J* = 8.2 Hz, 2H), 7.52 (d, *J* = 7.4 Hz, 2H), 7.41–7.31 (m, 3H), 7.31–7.20 (m, 5H), 7.09–7.03 (m, 2H), 6.57 (s, 1H), 5.65 (d, *J* = 1.3 Hz, 2H), 4.34 (s, 2H), 3.98 (s, 2H), 2.33 (s, 3H), 2.01 (s, 3H), 1.95–1.90 (m, 6H), 1.75–1.66 (m, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 176.2, 143.5, 137.0, 136.1, 131.5, 129.5, 128.6, 128.6, 128.4, 128.1, 127.7, 127.4, 125.2, 125.1, 122.1, 87.6, 85.8, 84.6, 81.5, 65.2, 50.8, 40.7, 38.5, 37.1, 36.4, 27.8, 21.4; HRMS (ESI) calcd for C₃₉H₃₉NNaO₄S [M+Na]⁺: 640.2492; found: 640.2503.

4-(((4-methyl-*N*-(3-phenylprop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1phenylpent-4-en-2-yn-1-yl 2-(adamantan-1-yl)acetate (4q)

The title compound was prepared according to general procedure **B** in 60% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 15:1 to 10:1) to afford **4q** as a pale-yellow oil; ¹**H NMR (600 MHz, CDCl₃)** δ 7.78 (d, *J* = 8.2 Hz, 2H), 7.56 (d, *J* = 7.1 Hz, 2H), 7.41–7.33 (m, 3H), 7.30–7.26 (m, 1H), 7.26–7.21 (m, 4H), 7.06 (d, *J* = 7.2 Hz, 2H), 6.58 (s, 1H), 5.65 (d, *J* = 1.6 Hz, 2H), 4.33 (s, 2H), 4.02–3.92 (m, 2H), 2.33 (s, 3H), 2.14–2.08 (m, 2H), 1.92 (s, 3H), 1.69–1.64 (m, 3H), 1.61–1.56 (m, 9H); ¹³C **NMR (150MHz, CDCl₃)** δ 170.5, 143.5, 136.8, 136.1, 131.5, 129.5, 128.9, 128.6, 128.4, 128.1, 127.9, 127.8, 125.2, 125.1, 122.1, 87.5, 85.8, 84.8, 81.5, 65.3, 50.7, 48.6, 42.3, 37.1, 36.7, 33.2, 28.6, 21.4; **HRMS (ESI)** calcd for C₄₀H₄₁NNaO₄S [M+Na]⁺:654.2649; found: 654.2654.

4-(((4-methyl-*N*-(3-phenylprop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1phenylpent-4-en-2-yn-1-yl dodecanoate (4r)

The title compound was prepared according to general procedure **B** in 49% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 15:1 to 10:1) to afford **4r** as a yellow oil; ¹**H** NMR (600 MHz, CDCl₃) δ 7.78 (d, *J* = 8.2 Hz, 2H), 7.55 (d, *J* = 7.3 Hz, 2H), 7.41–7.35 (m, 3H), 7.30–7.27 (m, 1H), 7.26–7.21 (m, 4H), 7.08–7.05 (m, 2H), 6.60 (s, 1H), 5.66 (d, *J* = 5.4 Hz, 2H), 4.33 (s, 2H), 4.02–3.94 (m, 2H), 2.41–2.34 (m, 2H), 2.33 (s, 3H), 1.66–1.60 (m, 2H), 1.35-1.21 (m, 16H), 0.88 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.6, 143.5,

136.8, 136.1, 131.5, 129.5, 128.9, 128.6, 128.4, 128.1, 127.8, 127.8, 125.3, 125.2, 122.1, 87.3, 85.9, 84.8, 81.5, 65.5, 50.8, 37.1, 34.2, 31.9, 29.6, 29.5, 29.4, 29.3, 29.2, 29.0, 24.8, 22.6, 21.4, 14.1; **HRMS (ESI)** calcd for C₄₀H₄₇NNaO₄S [M+Na]⁺:660.3118; found: 660.3123.

4-(((4-methyl-*N*-(3-phenylprop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1phenylpent-4-en-2-yn-1-yl cinnamate (4s)

The title compound was prepared according to general procedure **B** in 56% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 15:1 to 7:1) to afford **4s** as a yellow oil; ¹**H NMR (600 MHz, CDCl₃)** δ 7.80 (d, *J* = 8.3 Hz, 2H), 7.78–7.75 (m, 1H), 7.67–7.62 (m, 2H), 7.55–7.48 (m, 2H), 7.45–7.40 (m, 2H), 7.40–7.36 (m, 4H), 7.30–7.21 (m, 5H), 7.10–7.05 (m, 2H), 6.76 (s, 1H), 6.50–6.47 (m, 1H), 5.71 (s, 1H), 5.69 (d, *J* = 1.2 Hz, 1H), 4.40–4.32 (m, 2H), 4.07–3.97 (m, 2H), 2.33 (s, 3H); ¹³**C NMR (150 MHz, CDCl₃)** δ 165.6, 145.8, 143.5, 136.7, 136.0, 134.2, 131.4, 130.4, 129.5, 128.9, 128.8, 128.7, 128.4, 128.1, 128.0, 127.8, 127.7, 125.5, 125.1, 122.0, 117.4, 87.2, 85.8, 85.0, 81.5, 65.8, 50.8, 37.1, 21.3; **HRMS** (**ESI**) calcd for C₃₇H₃₁NNaO₄S [M+Na]⁺:608.1866; found: 608.1874.

4-(((4-methyl-*N*-(3-phenylprop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1phenylpent-4-en-2-yn-1-yl 3-(1H-indol-3-yl)propanoate (4t)

The title compound was prepared according to general procedure **B** in 57% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1) to afford **4t** as a pale-yellow oil; ¹H NMR (600 MHz,

CDCl₃) δ 8.17 (s, 1H), 7.80 (d, J = 8.2 Hz, 2H), 7.60 (d, J = 7.9 Hz, 1H), 7.53–7.49 (m, 2H), 7.40–7.33 (m, 4H), 7.29 (t, J = 7.4 Hz, 1H), 7.27–7.22 (m, 4H), 7.19 (t, J = 7.5 Hz, 1H), 7.11 (t, J = 7.5 Hz, 1H), 7.06 (d, J = 7.3 Hz, 2H), 6.99 (d, J = 1.6 Hz, 1H), 6.62 (s, 1H), 5.67 (s, 2H), 4.38–4.30 (m, 2H), 4.03 – 3.96 (m, 2H), 3.20–3.09 (m, 2H), 2.86–2.73 (m, 2H), 2.34 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.1, 143.7, 136.7, 136.2, 135.9, 131.5, 129.6, 128.9, 128.6, 128.4, 128.1, 127.8, 127.7, 127.1, 125.6, 125.2, 122.0, 121.9, 121.7, 119.2, 118.6, 114.4, 111.1, 87.3, 85.9, 84.8, 81.4, 65.7, 50.9, 37.1, 34.8, 21.4, 20.5; HRMS (ESI) calcd for C₃₉H₃₅N₂O₄S [M+H]⁺:627.2312; found: 627.2319.

4-(((4-methyl-*N*-(3-phenylprop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1phenylpent-4-en-2-yn-1-yl 4-(*N*,*N*-dipropylsulfamoyl)benzoate (4u)

The title compound was prepared according to general procedure **B** in 60% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1 to 6:1) to afford **4u** as a yellow oil; ¹**H NMR (600 MHz, CDCl₃)** δ 8.20 (d, J = 8.5 Hz, 2H), 7.86 (d, J = 8.5 Hz, 2H), 7.78 (d, J = 8.2 Hz, 2H), 7.66 (d, J= 7.1 Hz, 2H), 7.43 (t, J = 7.3 Hz, 2H), 7.39 (t, J = 7.2 Hz, 1H), 7.30–7.20 (m, 5H), 7.05–7.02 (m, 2H), 6.84 (s, 1H), 5.69 (s, 1H), 5.67 (s, 1H), 4.38–4.29 (m, 2H), 4.04– 3.97 (m, 2H), 3.09–3.06 (m, 4H), 2.33 (s, 3H), 1.57–1.50 (m, 4H), 0.86 (t, J = 7.4 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 164.1, 144.4, 143.6, 136.2, 136.0, 132.9, 131.4, 130.5, 129.5, 129.2, 128.8, 128.4, 128.1, 127.9, 127.7, 126.9, 125.8, 125.1, 121.9, 86.7, 85.9, 85.5, 81.3, 67.1, 50.9, 49.9, 37.0, 21.9, 21.3, 11.1; HRMS (ESI) calcd for C₄₁H₄₃N₂O₆S₂ [M+H]⁺:723.2557; found: 723.2568. 4-(((4-methyl-*N*-(3-phenylprop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1phenylpent-4-en-2-yn-1-yl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1*H*-indol-3-yl)acetate (4v)

The title compound was prepared according to general procedure **B** in 62% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 6:1) to afford **4v** as a pale-yellow solid, mp 72–74 °C; ¹H NMR (**600 MHz, CDCl₃**) δ 7.77 (d, *J* = 7.9 Hz, 2H), 7.62 (d, *J* = 8.2 Hz, 2H), 7.53–7.49 (m, 2H), 7.44 (d, *J* = 8.2 Hz, 2H), 7.35 (d, *J* = 3.6 Hz, 3H), 7.28 (t, *J* = 7.4 Hz, 1H), 7.25–7.21 (m, 4H), 7.05 (d, *J* = 7.7 Hz, 2H), 6.93 (s, 1H), 6.91 (d, *J* = 9.0 Hz, 1H), 6.66 (d, *J* = 8.9 Hz, 1H), 6.59 (s, 1H), 5.63 (s, 1H), 5.62 (s, 1H), 4.30 (s, 2H), 4.01–3.93 (m, 2H), 3.78–3.69 (m, 5H), 2.33 (d, *J* = 5.2 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 169.6, 168.2, 156.0, 143.5, 139.2, 136.2, 136.2, 136.0, 133.9, 131.5, 131.1, 130.8, 130.5, 129.5, 129.1, 129.0, 128.7, 128.4, 128.1, 127.8, 127.7, 125.6, 125.2, 122.1, 114.9, 112.3, 111.9, 101.2, 87.0, 85.9, 85.2, 81.5, 66.5, 55.6, 50.9, 37.0, 30.4, 21.4, 13.4; HRMS (ESI) calcd for C₄₇H_{40Cl}N₂O₆S [M+H]⁺:795.2290; found: 795.2299.

4-(((4-methyl-*N*-(3-phenylprop-2-yn-1-yl)phenyl)sulfonamido)methyl)-1phenylpent-4-en-2-yn-1-yl 2-(11-oxo-6,11-dihydrodibenzo[b,e]oxepin-2-yl)acetate (4w)

The title compound was prepared according to general procedure **B** in 49% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum

ether/EtOAc = 10:1 to 5:1) to afford **4w** as a pale-yellow solid, mp 62–64 °C; ¹H NMR (**600 MHz, CDCl**₃) δ 8.13 (s, 1H), 7.89 (d, *J* = 7.7 Hz, 1H), 7.78 (d, *J* = 8.1 Hz, 2H), 7.57–7.52 (m, 3H), 7.46 (t, *J* = 7.6 Hz, 1H), 7.43 (dd, *J* = 8.4, 1.9 Hz, 1H), 7.40–7.33 (m, 4H), 7.30–7.26 (m, 1H), 7.25–7.21 (m, 4H), 7.07 (d, *J* = 7.7 Hz, 2H), 7.02 (d, *J* = 8.4 Hz, 1H), 6.61 (s, 1H), 5.66 (d, *J* = 8.2 Hz, 2H), 5.17 (s, 2H), 4.33 (s, 2H), 4.03–3.96 (m, 2H), 3.71 (q, *J* = 15.9 Hz, 2H), 2.33 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 190.6, 170.2, 160.5, 143.5, 140.4, 136.4, 136.3, 136.1, 135.5, 132.7, 132.5, 131.5, 129.5, 129.4, 129.2, 129.0, 128.7, 128.4, 128.1, 128.0, 127.7, 127.3, 125.5, 125.2, 125.1, 122.1, 121.0, 87.0, 85.9, 85.2, 81.5, 73.7, 66.4, 50.9, 40.0, 37.0, 21.6; HRMS (ESI) calcd for C₄₄H₃₅NNaO₆S [M+Na]⁺:728.2077; found: 728.2083.

6-((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)hex-1-en-4-yn-3-yl acetate (6a)

The title compound was prepared according to general procedure C in 71% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 14:1 to 7:1) to afford **6a** as a pale-yellow oil; ¹H NMR (**400** MHz, **CDCl**₃) δ 7.76–7.66 (m, 2H), 7.32–7.28 (m, 2H), 5.79–5.64 (m, 2H), 5.41–5.31 (m, 1H), 5.30–5.20 (m, 1H), 4.23 (d, *J* = 1.4 Hz, 2H), 4.13 (d, *J* = 2.4 Hz, 2H), 2.42 (s, 3H), 2.14 (t, *J* = 2.5 Hz, 1H), 2.07 (s, 3H); ¹³C NMR (**100** MHz, **CDCl**₃) δ 169.4, 143.9, 135.2, 132.4, 129.6, 127.9, 119.0, 81.2, 79.6, 76.2, 74.0, 64.0, 36.5, 36.4, 21.6, 20.9; HRMS (ESI) calcd. for C₁₈H₁₉NO₄SNa [M+Na]⁺: 368.0927, found: 368.0933. **3-methyl-6-((4-methyl-***N***-(prop-2-yn-1-yl)phenyl)sulfonamido)hex-1-en-4-yn-3-yl**

acetate (6b)

The title compound was prepared according to general procedure C in 61% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum

ether/EtOAc = 15:1 to 8:1) to afford **6b** as a pale-yellow oil; ¹H NMR (400 MHz, **CDCl₃**) δ 7.75–7.70 (m, 2H), 7.31–7.26 (m, 2H), 5.88–5.78 (m, 1H), 5.35 (d, *J* = 17.1 Hz, 1H), 5.18–5.11 (m, 1H), 4.24 (s, 2H), 4.17 (d, *J* = 2.3 Hz, 2H), 2.41 (s, 3H), 2.12 (t, *J* = 2.5 Hz, 1H), 2.00–1.96 (m, 3H), 1.53–1.49 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 143.8, 138.3, 135.4, 129.6, 127.9, 115.5, 84.5, 79.2, 76.4, 73.8, 36.6, 36.2, 28.0, 21.7, 21.5; HRMS (ESI) calcd. for C₁₉H₂₁NO₄SNa [M+Na]⁺: 382.1089, found: 382.1097.

3-ethyl-6-((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)hex-1-en-4-yn-3-yl acetate (6c)

The title compound was prepared according to general procedure **C** in 66% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 16:1 to 9:1) to afford **6c** as a pale-yellow oil; ¹**H NMR (600 MHz, CDCl₃)** δ 7.74–7.68 (m, 2H), 7.32–7.26 (m, 2H), 5.77–5.67 (m, 1H), 5.34 (dd, *J* = 17.1, 0.8 Hz, 1H), 5.19 (dd, *J* = 10.4, 0.8 Hz, 1H), 4.26 (s, 2H), 4.18 (d, *J* = 2.4 Hz, 2H), 2.41 (s, 3H), 2.12 (t, *J* = 2.5 Hz, 1H), 1.99 (s, 3H), 1.89–1.80 (m, 1H), 1.76–1.63 (m, 1H), 0.86 (t, *J* = 7.4 Hz, 3H); ¹³**C NMR (150 MHz, CDCl₃)** δ 168.6, 143.7, 137.1, 135.5, 129.6, 127.8, 116.6, 83.4, 80.2, 77.9, 76.4, 73.8, 36.6, 36.2, 33.7, 21.6, 21.5, 8.1; **HRMS (ESI)** calcd. for C₂₀H₂₃NO₄SNa [M+Na]⁺: 396.1245, found: 396.1256. **3-isopropyl-6-((4-methyl-***N***-(prop-2-yn-1-yl)phenyl)sulfonamido)hex-1-en-4-yn-3-yl acetate (6d)**

The title compound was prepared according to general procedure **D** in 27% yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 16:1 to 9:1) to afford **6d** as a pale-yellow oil; ¹H NMR (400 MHz, **CDCl3**) δ 7.75–7.69 (m, 2H), 7.33–7.27 (m, 2H), 5.72–5.62 (m, 1H), 5.35 (dd, *J* = 17.2,

1.0 Hz, 1H), 5.24 (dd, J = 10.4, 1.0 Hz, 1H), 4.27 (s, 2H), 4.21 (d, J = 2.3 Hz, 2H), 2.41 (s, 3H), 2.12 (t, J = 2.5 Hz, 1H), 2.04–2.00 (m, 1H), 1.99 (s, 3H), 0.93 (d, J = 6.7 Hz, 3H), 0.83 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 143.7, 136.0, 135.4, 129.7, 127.8, 117.6, 82.3, 81.3, 80.8, 76.4, 73.9, 37.0, 36.6, 36.2, 21.7, 21.5, 17.1, 16.9; HRMS (ESI) calcd. for C₂₁H₂₆NO₄ [M+ H]⁺: 388.1577, found: 388.1583. 3-benzyl-6-((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)hex-1-en-4-yn-3-yl acetate (6e)

The title compound was prepared according to general procedure **D** in 25% yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 15:1 to 8:1) to afford **6e** as a pale-yellow oil; ¹**H NMR (400 MHz, CDCl₃)** δ 7.71–7.66 (m, 2H), 7.31–7.22 (m, 5H), 7.21–7.16 (m, 2H), 5.79–5.71 (m, 1H), 5.29 (dd, *J* = 17.1, 0.6 Hz, 1H), 5.18 (dd, *J* = 10.4, 0.6 Hz, 1H), 4.28–4.17 (m, 2H), 4.13–3.99 (m, 2H), 3.11 (d, *J* = 13.5 Hz, 1H), 3.02 (d, *J* = 13.5 Hz, 1H), 2.39 (s, 3H), 2.10 (t, *J* = 2.5 Hz, 1H), 1.99 (s, 3H); ¹³**C NMR (100 MHz, CDCl₃)** δ 168.5, 143.7, 136.9, 135.4, 134.7, 131.0, 129.6, 127.8, 127.8, 127.0, 116.9, 83.1, 81.5, 77.1, 76.4, 73.8, 46.8, 36.5, 36.1, 21.7, 21.5; **HRMS (ESI)** calcd. for C₂₅H₂₅NO₄SNa [M+Na]⁺: 458.1396, found: 458.1402.

3-cyclopropyl-6-((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)hex-1-en-4yn-3-yl acetate (6f)

The title compound was prepared according to general procedure **D** in 22% yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 16:1 to 9:1) to afford **6f** as a pale-yellow oil; ¹H **NMR (400 MHz, CDCl3)** δ 7.72–7.68 (m, 2H), 7.31–7.27 (m, 2H), 5.88–5.79 (m, 1H), 5.34 (dd, *J* = 17.1, 0.8 Hz, 1H), 5.16 (dd, *J* = 10.4, 0.8 Hz, 1H), 4.23 (s, 2H), 4.17 (d, *J* = 2.4 Hz, 2H), 2.41

(s, 3H), 2.12 (t, *J* = 2.5 Hz, 1H), 2.00 (s, 3H), 1.34–1.27 (m, 1H), 0.58–0.40 (m, 3H), 0.36–0.28 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 143.8, 136.8, 135.3, 129.6, 127.8, 116.1, 81.4, 80.3, 79.3, 76.3, 73.9, 36.5, 36.2, 21.7, 21.5, 19.1, 2.71, 2.0; HRMS (ESI) calcd. for C₂₁H₂₅NO₃S [M+H]⁺: 387.1399, found: 387.1405.

3-cyclopentyl-6-((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)hex-1-en-4-yn-3-yl acetate (6g)

The title compound was prepared according to general procedure **D** in 26% yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 17:1 to 9:1) to afford **6g** as a Yellow oil; ¹**H NMR (400 MHz, CDCl₃)** δ 7.74–7.69 (m, 2H), 7.32–7.27 (m, 2H), 5.77–5.68 (m, 1H), 5.34 (dd, *J* = 17.1, 0.9 Hz, 1H), 5.18 (dd, *J* = 10.4, 0.9 Hz, 1H), 4.26 (d, *J* = 1.0 Hz, 2H), 4.19 (d, *J* = 2.5 Hz, 2H), 2.42 (s, 3H), 2.29–2.19 (m, 1H), 2.11 (t, *J* = 2.5 Hz, 1H), 1.98 (s, 3H), 1.72–1.40 (m, 8H); ¹³**C NMR (100 MHz, CDCl₃)** δ 168.7, 143.7, 136.9, 135.4, 129.6, 127.8, 116.7, 82.9, 80.5, 80.3, 76.3, 73.8, 48.8, 36.6, 36.1, 27.7, 27.7, 25.8, 25.6, 21.7, 21.6; **HRMS (ESI)** calcd. for C₂₃H₂₈NO4S [M+H]⁺: 414.1734, found: 414.1742.

3-cyclohexyl-6-((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)hex-1-en-4-yn-3-yl acetate (6h)

The title compound was prepared according to general procedure **D** in 25% yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 18:1 to 9:1) to afford **6h** as a yellow oil; ¹**H NMR (400 MHz, CDCl₃)** δ 7.74–7.70 (m, 2H), 7.31–7.27 (m, 2H), 5.71–5.63 (m, 1H), 5.32 (dd, *J* = 17.2, 0.9 Hz, 1H), 5.22 (dd, *J* = 10.4, 0.9 Hz, 1H), 4.27 (s, 2H), 4.20 (d, *J* = 2.4 Hz, 2H), 2.42 (s, 3H), 2.12 (t, *J* = 2.5 Hz, 1H), 1.99 (s, 3H), 1.83–1.68 (m, 3H), 1.68–1.61 (m, 3H), 1.21–0.91

(m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 143.7, 136.3, 135.4, 129.6, 127.8, 117.4, 82.7, 80.9, 80.8, 76.4, 73.8, 46.6, 36.6, 36.2, 27.1, 26.9, 26.2, 26.2, 26.0, 21.7, 21.6; HRMS (ESI) calcd. for C₂₄H₃₀NO₄S [M+H]⁺: 428.1890, found: 428.1898.

6-((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)-3-(naphthalen-2-yl)hex-1en-4-yn-3-yl acetate (6i)

The title compound was prepared according to general procedure **D** in 21% yield over 4 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 14:1 to 7:1) to afford **6i** as a yellow oil; ¹**H NMR (400 MHz, CDCl₃)** δ 7.94 (d, *J* = 1.9 Hz, 1H), 7.84–7.78 (m, 3H), 7.75–7.71 (m, 2H), 7.51–7.45 (m, 3H), 7.23–7.20 (m, 2H), 6.05–5.97 (m, 1H), 5.40 (dd, *J* = 17.0, 0.6 Hz, 1H), 5.22 (dd, *J* = 10.3, 0.6 Hz, 1H), 4.39 (d, *J* = 0.9 Hz, 2H), 4.22 (d, *J* = 2.4 Hz, 2H), 2.32 (s, 3H), 2.17 (t, *J* = 2.5 Hz, 1H), 2.10 (s, 3H); ¹³**C NMR (100 MHz, CDCl₃)** δ 168.1, 143.8, 138.1, 137.2, 135.3, 133,0, 132.8, 129.7, 128.4, 128.2, 127.8, 127.6, 126.5, 126.44, 125.1, 123.4, 116.0, 83.1, 82.6, 78.1, 76.4, 74.0, 36.8, 36.4, 21.7, 21.5; **HRMS (ESI)** calcd. for C₂₈H₂₅NO4SNa [M+Na]⁺: 494.1397, found: 494.1402.

3-methyl-6-((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)hex-1-en-4-yn-3-yl 2-iodobenzoate (6j)

The title compound was prepared according to general procedure **C** in 42% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 12:1 to 6:1) to afford **6j** as a yellow oil; ¹**H NMR (600 MHz, CDCl₃)** δ 7.97 (dd, J = 8.0, 1.0 Hz, 1H), 7.73–7.70 (m, 2H), 7.69 (dd, J = 7.8, 1.7 Hz, 1H), 7.39 (td, J = 7.6, 1.2 Hz, 1H), 7.25–7.22 (m, 2H), 7.16–7.12 (m, 1H), 6.03–5.96 (m, 1H), 5.48 (dd, J = 17.1, 0.5 Hz, 1H), 5.23 (dd, J = 10.4, 0.5 Hz, 1H), 4.30 (s, 2H), 4.22 (d, J

= 2.5 Hz, 2H), 2.33 (s, 3H), 2.14 (t, J = 2.5 Hz, 1H), 1.68 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 164.3, 143.7, 141.2, 137.9, 135.7, 135.4, 132.5, 130.8, 129.6, 127.9, 127.8, 116.2, 93.8, 84.1, 80.0, 76.6, 75.5, 73.9, 36.6, 36.4, 28.1, 21.4; HRMS (ESI) calcd. for C₂₄H₂₂INO₄SNa [M+Na]⁺: 570.0206, found: 570.0212.

3-methyl-6-((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)hex-1-en-4-yn-3-yl pivalate (6k)

The title compound was prepared according to general procedure **C** in 48% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 16:1 to 8:1) to afford **6k** as a colorless oil; ¹**H NMR (600 MHz, CDCl₃)** δ 7.73–7.70 (m, 2H), 7.30–7.28 (m, 2H), 5.84–5.78 (m, 1H), 5.34 (dd, *J* = 17.1, 0.6 Hz, 1H), 5.12 (dd, *J* = 10.4, 0.7 Hz, 1H), 4.23 (s, 2H), 4.18 (d, *J* = 2.2 Hz, 2H), 2.41 (s, 3H), 2.10 (t, *J* = 2.5 Hz, 1H), 1.51 (s, 3H), 1.15 (s, 9H); ¹³**C NMR (150 MHz, CDCl₃)** δ 176.1, 143.7, 138.6, 135.5, 129.6, 127.9, 115.1, 84.9, 78.8, 76.5, 73.7, 73.4, 39.0, 36.6, 36.1, 28.0, 27.0, 21.5; HRMS (ESI) calcd. for C₂₂H₂₇NO₄SNa [M+Na]⁺: 424.1553, found: 424.1565.

2-methyl-6-((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)hex-1-en-4-yn-3-yl acetate (6l)

The title compound was prepared according to general procedure **C** in 69% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 16:1 to 8:1) to afford **6l** as a colorless oil; ¹**H NMR (400 MHz, CDCl₃)** δ 7.72–7.69 (m, 2H), 7.31–7.27 (m, 2H), 5.63 (s, 1H), 5.06 (s, 1H), 4.94 (s, 1H), 4.22 (d, *J* = 1.6 Hz, 2H), 4.12 (d, *J* = 2.4 Hz, 2H), 2.42 (s, 3H), 2.14 (t, *J* = 2.5 Hz, 1H), 2.08–2.06 (m, 3H), 1.71 (s, 3H); ¹³**C NMR (100 MHz, CDCl₃)** δ 169.4, 143.9, 139.7, 135.2, 129.6, 127.8, 115.0, 81.7, 78.9, 76.2, 74.0, 66.8, 36.5, 36.3, 21.6, 20.9, 18.2; **HRMS (ESI)** calcd. for C₁₉H₂₂NO₄S [M+H]⁺: 360.1264, found: 360.1270. 1-((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)-5-methylenehept-2-yn-4-yl acetate (6m)

The title compound was prepared according to general procedure **C** in 72% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 11:1 to 6:1) to afford **6m** as a colorless oil; ¹**H NMR (600 MHz, CDCl₃)** δ 7.70 (d, *J* = 8.3 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 5.68 (s, 1H), 5.14 (s, 1H), 4.95 (s, 1H), 4.22 (d, *J* = 1.5 Hz, 2H), 4.12 (d, *J* = 2.4 Hz, 2H), 2.42 (s, 3H), 2.13 (t, *J* = 2.5 Hz, 1H), 2.07 (s, 3H), 2.07–2.00 (m, 2H), 1.04 (t, *J* = 7.4 Hz, 3H); ¹³**C NMR (150 MHz, CDCl₃)** δ 169.4, 145.3, 143.8, 135.1, 129.5, 127.8, 112.8, 81.9, 78.8, 76.1, 74.0, 66.3, 36.5, 36.3, 24.5, 21.5, 20.8, 11.8; **HRMS (ESI)** calcd. for C₂₀H₂₄NO₄S [M+H]⁺: 374.1421, found: 374.1432.

2,3-dimethyl-6-((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)hex-1-en-4-yn-3-yl acetate (6n)

The title compound was prepared according to general procedure **C** in 75% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 17:1 to 8:1) to afford **6n** as a pale-yellow oil; ¹**H NMR (400 MHz, CDCl₃)** δ 7.73–7.70 (m, 2H), 7.31–7.27 (m, 2H), 5.13–5.11 (m, 1H), 4.90–4.87 (m, 1H), 4.24 (s, 2H), 4.17 (d, *J* = 2.4 Hz, 2H), 2.42 (s, 3H), 2.11 (t, *J* = 2.5 Hz, 1H), 2.01 (s, 3H), 1.72–1.69 (m, 3H), 1.53 (s, 3H); ¹³**C NMR (100 MHz, CDCl₃)** δ 168.6, 144.2, 143.7, 135.4, 129.6, 127.8, 112.4, 85.3, 78.9, 76.4, 76.1, 73.8, 36.6, 36.2, 27.6, 21.5, 21.5, 17.9; **HRMS (ESI)** calcd. for C₂₀H₂₅NO₄S [M+H]⁺: 374.1421, found: 374.1435.

(*E*)-3,4-dimethyl-7-((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)hept-2-en-5-yn-4-yl acetate (60)

The title compound was prepared according to general procedure **C** in 58% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 18:1 to 9:1) to afford **60** as a pale-yellow oil; ¹**H NMR (400 MHz, CDCl₃)** δ 7.73–7.69 (m, 2H), 7.30–7.26 (m, 2H), 5.79–5.72 (m, 1H), 4.23 (s, 2H), 4.17 (d, *J* = 2.4 Hz, 2H), 2.41 (s, 3H), 2.11 (t, *J* = 2.5 Hz, 1H), 1.98 (s, 3H), 1.62–1.58 (m, 3H), 1.57–1.56 (m, 3H), 1.49 (s, 3H); ¹³**C NMR (100 MHz, CDCl₃)** δ 168.6, 143.7, 135.4, 134.7, 129.6, 127.8, 121.2, 85.6, 79.1, 77.2, 76.4, 73.7, 36.7, 36.2, 27.5, 21.6, 21.5, 13.4, 11.4; **HRMS (ESI)** calcd. for C₂₁H₂₆NO₄S [M+H]⁺: 388.1577, found: 388.1583.

2-(cyclohex-1-en-1-yl)-5-((4-methyl-*N*-(prop-2-yn-1-yl)phenyl)sulfonamido)pent-3-yn-2-yl acetate (6p)

The title compound was prepared according to general procedure **C** in 62% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 18:1 to 9:1) to afford **6p** as a colorless oil; ¹**H NMR (400 MHz, CDCl₃)** δ 7.73–7.70 (m, 2H), 7.31–7.28 (m, 2H), 5.90–5.86 (m, 1H), 4.24 (s, 2H), 4.17 (d, *J* = 2.4 Hz, 2H), 2.41 (s, 3H), 2.11 (t, *J* = 2.5 Hz, 1H), 2.06–2.01 (m, 2H), 1.98 (s, 3H), 1.89–1.79 (m, 1H), 1.63–1.52 (m, 5H), 1.50 (s, 3H); ¹³**C NMR (100 MHz, CDCl₃)** δ 168.6, 143.7, 136.8, 135.4, 129.6, 127.8, 123.6, 85.7, 78.9, 77.2, 76.5, 73.7, 36.7, 36.2, 27.4, 25.0, 23.5, 22.7, 22.0, 21.6, 21.6; **HRMS (ESI)** calcd. for C₂₃H₂₇NO₄SNa [M+Na]⁺: 436.1553, found: 436.1559.

3-methyl-6-(prop-2-yn-1-yloxy)hex-1-en-4-yn-3-yl acetate (6q)

The title compound was prepared according to general procedure **C** in 49% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1 to 20:1) to afford **6q** as a colorless oil; ¹**H NMR (400 MHz, CDCl₃)** δ 6.03–5.93 (m, 1H), 5.53 (dd, *J* = 17.1, 0.4 Hz, 1H), 5.23 (dd, *J* = 10.4, 0.5 Hz, 1H), 4.34 (s, 2H), 4.26 (d, *J* = 2.4 Hz, 2H), 2.44 (t, *J* = 2.4 Hz, 1H), 2.04 (s, 3H), 1.70 (s, 3H); ¹³**C NMR (100 MHz, CDCl₃)** δ 168.9, 138.5, 115.5, 85.5, 81.8, 79.0, 74.9, 74.1, 56.8, 56.4, 28.3, 21.8; **HRMS (ESI)** calcd. for C₁₂H₁₅O₃ [M+H]⁺: 207.1016, found: 207.1025.

3-methyldeca-1-en-4,9-diyn-3-yl acetate (6r)

The title compound was prepared according to general procedure **C** in 42% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 50:1 to 30:1) to afford **6r** as a colorless oil; ¹**H NMR (400 MHz, CDCl₃)** δ 6.04–5.94 (m, 1H), 5.52 (dd, *J* = 17.1, 0.8 Hz, 1H), 5.19 (dd, *J* = 10.3, 0.9 Hz, 1H), 2.39 (t, *J* = 7.0 Hz, 2H), 2.31 (td, *J* = 7.1, 2.6 Hz, 2H), 2.03 (s, 3H), 1.95 (t, *J* = 2.6 Hz, 1H), 1.80–1.71 (m, 2H), 1.67 (s, 3H); ¹³**C NMR (100 MHz, CDCl₃)** δ 169.0, 139.3, 115.0, 86.1, 83.5, 79.5, 74.8, 68.8, 28.6, 27.4, 21.9, 17.9, 17.5; **HRMS (ESI)** calcd. for C₁₃H₁₆O₂Na [M+Na]⁺: 227.1043, found: 227.1048.

dimethyl 2-(4-acetoxy-4-methylhex-5-en-2-yn-1-yl)-2-(prop-2-yn-1-yl)malonate (6s)

The title compound was prepared according to general procedure C in 48% yield over

2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1 to 8:1) to afford **6s** as a colorless oil; ¹H NMR (**400 MHz, CDCl**₃) δ 5.98–5.88 (m, 1H), 5.48 (dd, J = 17.1, 0.7 Hz, 1H), 5.19 (dd, J = 10.4, 0.8 Hz, 1H), 3.76 (s, 6H), 3.05 (s, 2H), 2.99 (d, J = 2.6 Hz, 2H), 2.04–1.99 (m, 4H), 1.64 (s, 3H); ¹³C NMR (**100 MHz, CDCl**₃) δ 169.1, 168.7, 138.8, 115.4, 82.1, 81.3, 78.5, 74.3, 71.6, 56.8, 53.1, 28.6, 23.0, 22.8, 21.8; HRMS (ESI) calcd. for C₁₇H₂₀O₆Na [M+Na]⁺: 343.1152, found: 343.1158.

3-methyl-6-((4-methyl-*N*-(3-phenylprop-2-yn-1-yl)phenyl)sulfonamido)hex-1-en-4-yn-3-yl acetate (8a)

The title compound was prepared according to general procedure **C** in 73% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1 to 7:1) to afford **8a** as a pale-yellow oil; ¹**H NMR (400 MHz, CDCl₃)** δ 7.77–7.74 (m, 2H), 7.29–7.22 (m, 5H), 7.20–7.15 (m, 2H), 5.91–5.82 (m, 1H), 5.40 (dd, *J* = 17.1, 0.6 Hz, 1H), 5.15 (dd, *J* = 10.4, 0.7 Hz, 1H), 4.41 (s, 2H), 4.28 (s, 2H), 2.35 (s, 3H), 2.00–1.98 (m, 3H), 1.55 (s, 3H); ¹³**C NMR (100 MHz, CDCl₃)** δ 168.7, 143.7, 138.4, 135.4, 131.6, 129.6, 128.4, 128.1, 127.9, 122.3, 115.5, 85.7, 84.4, 81.6, 79.5, 73.9, 37.2, 36.9, 28.1, 21.7, 21.4; **HRMS (ESI)** calcd. for C₂₅H₂₆NO₄S [M+H]⁺: 436.1577, found: 436.1584.

6-((*N*-(3-(4-methoxyphenyl)prop-2-yn-1-yl)-4-methylphenyl)sulfonamido)-3methylhex-1-en-4-yn-3-yl acetate (8b)

The title compound was prepared according to general procedure C in 56% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 30:1 to 6:1) to afford **8b** as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.77–7.73 (m, 2H), 7.29–7.26 (m, 2H), 7.15–7.10 (m, 2H), 6.81–6.74 (m, 2H), 5.92–

5.81 (m, 1H), 5.40 (d, *J* = 17.1 Hz, 1H), 5.15 (d, *J* = 10.4 Hz, 1H), 4.39 (s, 2H), 4.27 (s, 2H), 3.80 (s, 2H), 2.37 (s, 3H), 1.99 (s, 3H), 1.55 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 159.7, 143.6, 138.4, 135.5, 133.1, 129.6, 127.9, 115.5, 114.4, 113.8, 85.6, 84.3, 80.1, 79.6, 74.0, 55.3, 37.3, 36.8, 28.1, 21.7, 21.5; HRMS (ESI) calcd. for C₂₆H₂₈NO₅S [M+H]⁺: 466.1683, found: 466.1688.

6-((*N*-(3-(4-fluorophenyl)prop-2-yn-1-yl)-4-methylphenyl)sulfonamido)-3methylhex-1-en-4-yn-3-yl acetate (8c)

The title compound was prepared according to general procedure **C** in 61% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 30:1 to 7:1) to afford **8c** as a Yellow oil; ¹**H NMR (400 MHz, CDCl₃)** δ 7.77–7.74 (m, 2H), 7.29–7.25 (m, 2H), 7.20–7.14 (m, 2H), 6.95 (t, *J* = 8.6 Hz, 2H), 5.90–5.81 (m, 1H), 5.39 (d, *J* = 17.1 Hz, 1H), 5.15 (d, *J* = 10.4 Hz, 1H), 4.39 (s, 2H), 4.27 (s, 2H), 2.37 (s, 3H), 1.99 (s, 3H), 1.54 (s, 3H); ¹³**C NMR (100 MHz, CDCl₃)** δ 168.7, 162.5 (d, *J* = 249.9 Hz), 143.7, 138.3, 135.4, 133.6 (d, *J* = 8.4 Hz), 129.6, 127.9, 118.3, 115.5 (d, *J* = 3.1 Hz), 115.3, 84.5, 84.5, 81.6, 79.4, 73.9, 37.1, 36.9, 28.1, 21.7, 21.5; **HRMS (ESI)** calcd. for C₂₅H₂₅FNO₄S [M+H]⁺: 454.1483, found: 454.1489. **6-((***N***-(hex-2-yn-1-yl)-4-methylphenyl)sulfonamido)hex-1-en-4-yn-3-yl acetate (8d)**

The title compound was prepared according to general procedure **C** in 68% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 30:1 to 8:1) to afford **8d** as a pale-yellow oil; ¹**H NMR (400 MHz, CDCl₃)** δ 7.73–7.69 (m, 2H), 7.30–7.27 (m, 2H), 5.79–5.69 (m, 2H), 5.42–5.35 (m, 1H), 5.27–5.22 (m, 1H), 4.21 (d, *J* = 1.4 Hz, 2H), 4.11 (t, *J* = 2.1 Hz, 2H), 2.42 (s, 3H), 2.07 (s, 3H), 2.02–1.95 (m, 2H), 1.42–1.31 (m, 2H), 0.87 (t, *J* = 7.4 Hz, 3H); ¹³**C NMR (100 MHz, CDCl₃)** δ 169.4, 143.6, 135.4, 132.4, 129.5, 127.9, 119.0, 86.5, 80.8, 80.0,

72.2, 64.0, 36.9, 36.4, 21.8, 21.5, 20.9, 20.5, 13.4; **HRMS (ESI)** calcd. for C₂₁H₂₆NO₄S [M+H]⁺: 388.1577, found: 388.1596.

3-methyl-6-((4-methyl-*N*-(4-methylpent-4-en-2-yn-1-yl)phenyl)sulfonamido)hex-1-en-4-yn-3-yl acetate (8e)

The title compound was prepared according to general procedure **C** in 52% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 30:1 to 7:1) to afford **8e** as a pale-yellow oil; ¹**H NMR (400 MHz, CDCl₃)** δ 7.74–7.69 (m, 2H), 7.31–7.27 (m, 2H), 5.90–5.81 (m, 1H), 5.39 (d, *J* = 17.1 Hz, 1H), 5.17–5.13 (m, 2H), 5.07 (s, 1H), 4.30 (s, 2H), 4.21 (s, 2H), 2.40 (s, 3H), 1.99 (s, 3H), 1.73–1.69 (m, 3H), 1.54 (s, 3H); ¹³**C NMR (100 MHz, CDCl₃)** δ 168.7, 143.6, 138.4, 135.5, 129.6, 127.9, 126.0, 122.3, 115.5, 86.8, 84.3, 80.6, 79.5, 73.9, 37.0, 36.7, 28.1, 23.1, 21.7, 21.5; **HRMS (ESI)** calcd. for C₂₂H₂₆NO₄S [M+H]⁺: 400.1577, found: 400.1597.

3. General procedure for IPrAu(PhCN)SbF₆-catalyzed spirocyclization of 3-ene-1,7-diyne esters 1a-ai and 4a-w

To a solution of **1** or **4** (0.2 mmol), MgO (0.4 mmol), and 4 Å MS (100 mg) in anhydrous DCE (2 mL) was addd IPrAu(PhCN)SbF₆ (5 mol %) under an argon atmosphere. The reaction mixture was stirred at room temperature for 6-24 h. Upon completion, filtered through celite, washed with CH_2Cl_2 and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: petroleum ether: EtOAc) to afford the product **3** or **3'** or **5**.

4-methylene-8-phenyl-2-tosyl-2-azaspiro[4.4]non-7-en-6-one (2a)

Column chromatography (petroleum ether/EtOAc = 20:1 to 5:1) to afford **2a** in 30% yield (22.8 mg; Table 1, entry 1); pale-yellow solid, mp 104–106 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.73 (d, J = 8.2 Hz, 2H), 7.65–7.59 (m, 2H), 7.54–7.42 (m, 3H), 7.35 (d, J = 8.1 Hz, 2H), 6.55 (t, J = 1.5 Hz, 1H), 4.96 (s, 1H), 4.76 (s, 1H), 4.24 (dt, J = 13.9, 1.7 Hz, 1H), 3.72 (dt, J = 13.9, 2.4 Hz, 1H), 3.57 (d, J = 9.6 Hz, 1H), 3.35 (d, J = 9.6 Hz, 1H), 3.23 (dd, J = 18.2, 1.6 Hz, 1H), 3.15 (dd, J = 18.2, 1.6 Hz, 1H), 2.45 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 205.8, 172.5, 148.9, 144.0, 133.1, 132.3, 131.9, 129.8, 129.0, 128.0, 127.0, 125.4, 107.2, 58.0, 57.6, 52.6, 45.3, 21.5; HRMS (ESI) calcd for C₂₂H₂₂NO₃S [M+H]⁺: 380.1315; found: 380.1322.

(Z)-4-(2-oxopropylidene)-8-phenyl-2-tosyl-2-azaspiro[4.4]non-7-en-6-one (3a)

Column chromatography (petroleum ether/EtOAc = 20:1 to 4:1) to afford **3a** in 83% yield (70.0 mg); colorless solid, mp 162–164 °C; ¹**H NMR (600 MHz, CDCl**₃) δ 7.73 (d, *J* = 8.2 Hz, 2H), 7.65 (d, *J* = 7.2 Hz, 2H), 7.54 (t, *J* = 7.3 Hz, 1H), 7.49 (t, *J* = 7.4 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 6.65 (s, 1H), 5.87 (t, *J* = 2.4 Hz, 1H), 4.79 (dd, *J* = 18.8, 2.3 Hz, 1H), 3.95 (dd, *J* = 18.8, 2.6 Hz, 1H), 3.59 (d, *J* = 9.5 Hz, 1H), 3.38 (dd, *J* = 18.4, 1.2 Hz, 1H), 3.19 (d, *J* = 9.5 Hz, 1H), 3.16 (dd, *J* = 18.5, 1.3 Hz, 1H), 2.44 (s, 3H), 2.11 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 204.7, 197.0, 173.1, 160.4, 144.2, 132.7, 132.4, 131.7, 129.9, 129.2, 128.0, 127.1, 126.0, 119.0, 59.3, 56.5, 53.7, 45.9, 31.2, 21.5; HRMS (ESI) calcd for C₂₄H₂₄NO₄S [M+H]⁺: 422.1421; found: 422.1427. (*Z*)-8-(4-fluorophenyl)-4-(2-oxopropylidene)-2-tosyl-2-azaspiro[4.4]non-7-en-6-one (3b)

Column chromatography (petroleum ether/EtOAc = 15:1 to 3:1) to afford **3b** in 88% yield (77.4 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 7.74 (d, *J* = 8.1 Hz, 2H), 7.69–7.64 (m, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.19 (t, *J* = 8.5 Hz, 2H), 6.60 (s, 1H), 5.87 (t, *J* = 2.4 Hz, 1H), 4.79 (dd, *J* = 18.8, 2.3 Hz, 1H), 3.94 (dd, *J* = 18.8, 2.6 Hz, 1H), 3.59 (d, *J* = 9.4 Hz, 1H), 3.38 (d, *J* = 18.3 Hz, 1H), 3.20–3.12 (m, 2H), 2.45 (s, 3H), 2.12 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 204.5, 197.0, 171.7, 165.03 (d, *J* = 255.3 Hz), 160.3, 144.2, 131.7, 129.9, 129.42 (d, *J* = 8.9 Hz), 129.1, 128.0, 125.8, 119.1, 116.5 (d, *J* = 22.1 Hz), 59.4, 56.5, 53.6, 46.0, 31.2, 21.5; ¹⁹F NMR (565 MHz, CDCl₃) δ -105.66–105.71 (m); HRMS (ESI) calcd for C₂₄H₂₃FNO₄S [M+H]⁺: 440.1326; found: 440.1333.

(Z)-8-(4-chlorophenyl)-4-(2-oxopropylidene)-2-tosyl-2-azaspiro[4.4]non-7-en-6one (3c)

Column chromatography (petroleum ether/EtOAc = 15:1 to 4:1) to afford **3c** in 79% yield (72.0 mg); yellow solid, mp 166–168 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.71 (d, J = 8.1 Hz, 2H), 7.58 (d, J = 8.5 Hz, 2H), 7.45 (d, J = 8.5 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 6.62 (s, 1H), 5.86 (t, J = 2.3 Hz, 1H), 4.76 (dd, J = 18.8, 2.2 Hz, 1H), 3.93 (dd, J = 18.8, 2.6 Hz, 1H), 3.57 (d, J = 9.5 Hz, 1H), 3.35 (dd, J = 18.4, 1.0 Hz, 1H), 3.17 (d, J = 9.5 Hz, 1H), 3.12 (dd, J = 18.4, 1.2 Hz, 1H), 2.43 (s, 3H), 2.11 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 204.5, 196.9, 171.5, 160.1, 144.2, 138.5, 131.7, 131.2, 129.9, 129.5, 128.4, 128.0, 126.3, 119.1, 59.3, 56.4, 53.6, 45.7, 31.1, 21.5; HRMS (ESI) calcd for C₂₄H₂₃ClNO₄S [M+H]⁺: 456.1031; found: 456.1038.

(Z)-8-(4-bromophenyl)-4-(2-oxopropylidene)-2-tosyl-2-azaspiro[4.4]non-7-en-6one (3d)

Column chromatography (petroleum ether/EtOAc = 15:1 to 4:1) to afford **3d** in 81% yield (81.1 mg); colorless solid, mp 176–178 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.72 (d, *J* = 8.2 Hz, 2H), 7.62 (d, *J* = 8.6 Hz, 2H), 7.51 (d, *J* = 8.6 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 6.64 (s, 1H), 5.86 (t, *J* = 2.5 Hz, 1H), 4.76 (dd, *J* = 18.8, 2.4 Hz, 1H), 3.93 (dd, *J* = 18.8, 2.7 Hz, 1H), 3.58 (d, *J* = 9.5 Hz, 1H), 3.35 (dd, *J* = 18.4, 1.4 Hz, 1H), 3.17 (d, *J* = 9.5 Hz, 1H), 3.13 (dd, *J* = 18.4, 1.5 Hz, 1H), 2.44 (s, 3H), 2.11 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 204.5, 196.9, 171.6, 160.1, 144.2, 132.5, 131.7, 131.6, 129.9, 128.5, 128.0, 127.0, 126.4, 119.1, 59.3, 56.5, 53.6, 45.7, 31.2, 21.5; HRMS (ESI) calcd

for C₂₄H₂₃BrNO₄S [M+H]⁺: 500.0526; found: 500.0536.

(*Z*)-8-(4-isopropylphenyl)-4-(2-oxopropylidene)-2-tosyl-2-azaspiro[4.4]non-7-en-6-one (3e)

Column chromatography (petroleum ether/EtOAc = 15:1 to 4:1) to afford **3e** in 73% yield (67.7 mg); yellow solid, mp 153–155 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.73 (d, J = 8.2 Hz, 2H), 7.59 (d, J = 8.3 Hz, 2H), 7.35 (d, J = 3.5 Hz, 2H), 7.34 (d, J = 3.3 Hz, 2H), 6.62 (s, 1H), 5.86 (t, J = 2.5 Hz, 1H), 4.79 (dd, J = 18.8, 2.3 Hz, 1H), 3.94 (dd, J = 18.8, 2.7 Hz, 1H), 3.58 (d, J = 9.5 Hz, 1H), 3.36 (dd, J = 18.4, 1.4 Hz, 1H), 3.20 (d, J = 9.5 Hz, 1H), 3.14 (dd, J = 18.4, 1.4 Hz, 1H), 3.00–2.95 (m, 1H), 2.44 (s, 3H), 2.11 (s, 3H), 1.28 (d, J = 6.9 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 204.7, 197.0, 173.1, 160.6, 154.1, 144.1, 131.7, 130.4, 129.9, 128.0, 127.33, 127.28, 125.1, 118.9, 59.2, 56.5, 53.7, 45.9, 34.2, 31.1, 23.6, 21.5; HRMS (ESI) calcd for C₂₇H₃₀NO₄S [M+H]⁺:464.1890; found: 464.1898.

8-([1,1'-biphenyl]-4-yl)-4-(2-oxopropyl)-2-tosyl-2-azaspiro[4.4]nona-3,7-dien-6one (3f')

Column chromatography (petroleum ether/EtOAc = 15:1 to 3:1) to afford **3f** in 72% yield (71.7 mg); yellow solid, mp 156–158 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.75 (d, J = 8.2 Hz, 2H), 7.67 (d, J = 8.3 Hz, 2H), 7.62 (d, J = 7.5 Hz, 2H), 7.58 (d, J = 8.4 Hz, 2H), 7.48 (t, J = 7.6 Hz, 2H), 7.44–7.38 (m, 3H), 6.62 (s, 1H), 6.54 (s, 1H), 3.79 (d, J = 11.0 Hz, 1H), 3.59 (d, J = 11.1 Hz, 1H), 2.95 (d, J = 17.6 Hz, 1H), 2.90 (dd, J = 18.5, 1.4 Hz, 1H), 2.84 (d, J = 17.5 Hz, 1H), 2.64 (dd, J = 18.6, 1.2 Hz, 1H), 2.51 (s, 3H),

2.06 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 206.9, 204.5, 171.7, 144.8, 144.2, 139.5, 132.6, 131.7, 130.8, 129.8, 129.0, 128.3, 127.9, 127.6, 127.5, 127.0, 125.6, 120.8, 60.6, 57.8, 42.3, 39.4, 29.4, 21.6; HRMS (ESI) calcd for C₃₀H₂₈NO₄S [M+H]⁺:498.1734; found: 498.1740.

(Z)-8-(2-bromophenyl)-4-(2-oxopropylidene)-2-tosyl-2-azaspiro[4.4]non-7-en-6one (3g)

Column chromatography (petroleum ether/EtOAc = 15:1 to 3:1) to afford **3g** in 83% yield (83.1 mg); colorless solid, mp 145–147 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.73 (d, *J* = 8.2 Hz, 2H), 7.69 (d, *J* = 8.0 Hz, 1H), 7.43–7.39 (m, 1H), 7.35–7.32 (m, 3H), 7.32–7.28 (m, 1H), 6.61 (d, *J* = 1.5 Hz, 1H), 6.00 (t, *J* = 2.5 Hz, 1H), 4.75 (dd, *J* = 18.7, 2.3 Hz, 1H), 3.96 (dd, *J* = 18.7, 2.7 Hz, 1H), 3.61 (d, *J* = 9.5 Hz, 1H), 3.35 (dd, *J* = 18.8, 1.7 Hz, 1H), 3.24 (d, *J* = 9.5 Hz, 1H), 3.18 (dd, *J* = 18.8, 1.6 Hz, 1H), 2.43 (s, 3H), 2.15 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 204.8, 196.9, 173.8, 159.8, 144.2, 135.4, 134.2, 132.0, 131.9, 131.4, 129.9, 128.9, 128.0, 127.8, 121.4, 119.0, 59.3, 56.1, 53.6, 48.5, 31.2, 21.5; HRMS (ESI) calcd for C₂₄H₂₃BrNO₄S [M+H]⁺: 500.0526; found: 500.0531. (*Z*)-8-(naphthalen-1-yl)-4-(2-oxopropylidene)-2-tosyl-2-azaspiro[4.4]non-7-en-6-one (3h)

Column chromatography (petroleum ether/EtOAc = 15:1 to 3:1) to afford **3h** in 83% yield (78.3 mg); yellow solid, mp 131–133 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.11– 8.06 (m, 1H), 7.96 (dd, J = 7.5, 1.5 Hz, 1H), 7.94 (dd, J = 7.0, 2.4 Hz, 1H), 7.75 (d, J = 8.2 Hz, 2H), 7.63–7.51 (m, 4H), 7.34 (d, J = 8.0 Hz, 2H), 6.62 (s, 1H), 6.02 (t, J = 2.5

Hz, 1H), 4.80 (dd, J = 18.7, 2.4 Hz, 1H), 4.01 (dd, J = 18.8, 2.7 Hz, 1H), 3.68 (d, J = 9.5 Hz, 1H), 3.49 (dd, J = 18.8, 1.5 Hz, 1H), 3.29 (d, J = 9.5 Hz, 1H), 3.26 (dd, J = 18.8, 1.6 Hz, 1H), 2.43 (s, 3H), 2.17 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 204.7, 196.9, 173.9, 160.1, 144.2, 133.9, 132.4, 131.9, 131.7, 131.4, 129.9, 129.9, 129.1, 128.0, 127.4, 126.6, 125.3, 125.0, 124.3, 118.9, 59.1, 56.5, 53.7, 49.2, 31.2, 21.5; HRMS (ESI) calcd for C₂₈H₂₆NO₄S [M+H]⁺: 472.1577; found: 472.1584.

(Z)-8-(naphthalen-2-yl)-4-(2-oxopropylidene)-2-tosyl-2-azaspiro[4.4]non-7-en-6one (3i)

Column chromatography (petroleum ether/EtOAc = 15:1 to 3:1) to afford **3i** in 80% yield (75.05mg); yellow solid, mp 177–179 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.11 (s, 1H), 7.95–7.91 (m, 2H), 7.88 (d, *J* = 7.9 Hz, 1H), 7.75 (d, *J* = 8.0 Hz, 3H), 7.65–7.54 (m, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 6.77 (s, 1H), 5.92 (t, *J* = 2.4 Hz, 1H), 4.83 (dd, *J* = 18.8, 2.2 Hz, 1H), 3.97 (dd, *J* = 18.8, 2.6 Hz, 1H), 3.64 (d, *J* = 9.5 Hz, 1H), 3.54 (d, *J* = 18.2 Hz, 1H), 3.32 (dd, *J* = 18.2, 1.0 Hz, 1H), 3.22 (d, *J* = 9.5 Hz, 1H), 2.45 (s, 3H), 2.12 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 204.7, 197.0, 172.8, 160.5, 144.2, 135.0, 132.9, 131.7, 130.1, 129.9, 129.2, 129.0, 128.4, 128.1, 127.9, 127.8, 127.3, 126.3, 123.6, 119.0, 59.4, 56.6, 53.7, 46.0, 31.2, 21.5; HRMS (ESI) calcd for C₂₈H₂₆NO4S [M+H]⁺: 472.1577; found: 472.1583.

(Z)-4-(2-oxopropylidene)-8-(thiophen-2-yl)-2-tosyl-2-azaspiro[4.4]non-7-en-6-one (3j)

Column chromatography (petroleum ether/EtOAc = 15:1 to 3:1) to afford 3j in 40%

yield (34.2 mg); yellow solid, mp 150–152 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.73 (d, J = 8.0 Hz, 2H), 7.65 (d, J = 5.0 Hz, 1H), 7.47 (d, J = 3.6 Hz, 1H), 7.35 (d, J = 8.0 Hz, 2H), 7.19 (t, J = 4.3 Hz, 1H), 6.42 (s, 1H), 5.89 (s, 1H), 4.78 (dd, J = 18.8, 1.9 Hz, 1H), 3.93 (dd, J = 18.8, 2.5 Hz, 1H), 3.59 (d, J = 9.5 Hz, 1H), 3.38 (d, J = 18.1 Hz, 1H), 3.18 (d, J = 9.5 Hz, 1H), 3.15 (d, J = 18.3 Hz, 1H), 2.44 (s, 3H), 2.13 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 203.8, 197.0, 165.6, 160.4, 144.2, 137.5, 132.0, 131.8, 130.0, 129.9, 128.8, 128.1, 124.3, 119.1, 59.3, 56.6, 53.7, 46.4, 31.2, 21.5; HRMS (ESI) calcd for C₂₂H₂₂NO₄S₂ [M+H]⁺: 428.0985; found: 428.0994.

(Z)-4-(2-oxopropylidene)-8-(thiophen-3-yl)-2-tosyl-2-azaspiro[4.4]non-7-en-6-one (3k)

Column chromatography (petroleum ether/EtOAc = 15:1 to 3:1) to afford **3k** in 57% yield (48.7 mg); colorless solid, mp 165–167 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.75–7.71 (m, 3H), 7.46 (dd, J = 5.1, 2.9 Hz, 1H), 7.38 (dd, J = 5.1, 1.2 Hz, 1H), 7.37 (d, J = 8.1 Hz, 2H), 6.44 (s, 1H), 5.87 (t, J = 2.6 Hz, 1H), 4.78 (dd, J = 18.8, 2.4 Hz, 1H), 3.93 (dd, J = 18.8, 2.7 Hz, 1H), 3.58 (d, J = 9.4 Hz, 1H), 3.36 (dd, J = 18.3, 1.5 Hz, 1H), 3.17 (d, J = 9.4 Hz, 1H), 3.13 (dd, J = 18.3, 1.5 Hz, 1H), 2.44 (s, 3H), 2.12 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 204.7, 197.0, 167.1, 160.4, 144.2, 136.1, 131.6, 129.9, 128.3, 128.0, 127.6, 125.9, 125.2, 119.0, 59.1, 56.5, 53.6, 46.3, 31.1, 21.5; HRMS (ESI) calcd for C₂₂H₂₂NO₄S₂ [M+H]⁺: 428.0985; found: 428.0993.

(Z)-4-(2-oxopropylidene)-8-(pentan-3-yl)-2-tosyl-2-azaspiro[4.4]non-7-en-6-one (31)

Column chromatography (petroleum ether/EtOAc = 20:1 to 4:1) to afford **31** in 71% yield (59.0 mg); colorless solid, mp 145–147 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.70 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.1 Hz, 2H), 6.03 (s, 1H), 5.78 (t, *J* = 2.5 Hz, 1H), 4.70 (dd, *J* = 18.8, 2.3 Hz, 1H), 3.88 (dd, *J* = 18.8, 2.7 Hz, 1H), 3.45 (d, *J* = 9.4 Hz, 1H), 3.10 (d, *J* = 9.4 Hz, 1H), 2.85 (dd, *J* = 18.9, 1.0 Hz, 1H), 2.65 (dd, *J* = 18.9, 1.0 Hz, 1H), 2.41 (s, 3H), 2.40–2.35 (m, 1H), 2.10 (s, 3H), 1.65–1.56 (m, 2H), 1.53–1.44 (m, 2H), 0.85 (t, *J* = 7.4 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 205.1, 196.8, 185.9, 160.6, 144.1, 131.7, 129.8, 128.0, 118.4, 58.9, 56.4, 53.6, 46.7, 46.2, 31.1, 25.8, 25.8, 21.5, 11.7, 11.6; HRMS (ESI) calcd for C₂₃H₃₀NO₄S [M+H]⁺: 416.1890; found: 416.1899. (*Z*)-8-cyclopropyl-4-(2-oxopropylidene)-2-tosyl-2-azaspiro[4.4]non-7-en-6-one (3m)

Column chromatography (petroleum ether/EtOAc = 15:1 to 3:1) to afford **3m** in 41% yield (31.6 mg); colorless solid, mp 147–149 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.70 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 6.01 (s, 1H), 5.80 (t, *J* = 2.5 Hz, 1H), 4.70 (dd, *J* = 18.7, 2.4 Hz, 1H), 3.86 (dd, *J* = 18.8, 2.7 Hz, 1H), 3.46 (d, *J* = 9.4 Hz, 1H), 3.06 (d, *J* = 9.4 Hz, 1H), 2.77 (dd, *J* = 18.6, 1.1 Hz, 1H), 2.53 (dd, *J* = 18.6, 1.2 Hz, 1H), 2.43 (s, 3H), 2.13 (s, 3H), 1.96–1.88 (m, 1H), 1.18 (dd, *J* = 8.2, 2.6 Hz, 2H), 0.96–0.88 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 204.2, 197.0, 185.4, 160.4, 144.2, 131.6, 129.9, 128.0, 126.3, 118.8, 58.9 56.4, 53.6, 45.8, 31.2, 21.5, 15.4, 10.9, 10.8; HRMS (ESI) calcd for C₂₁H₃₄NO₄S [M+H]⁺: 386.1421; found: 386.1432.

(Z)-8-cyclohexyl-4-(2-oxopropylidene)-2-tosyl-2-azaspiro[4.4]non-7-en-6-one (3n)

Column chromatography (petroleum ether/EtOAc = 15:1 to 4:1) to afford **3n** in 47% yield (40.2 mg); colorless solid, mp 153–155 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.70 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 5.99 (d, *J* = 1.0 Hz, 1H), 5.77 (t, *J* = 2.5 Hz, 1H), 4.70 (dd, *J* = 18.7, 2.4 Hz, 1H), 3.88 (dd, *J* = 18.7, 2.7 Hz, 1H), 3.45 (d, *J* = 9.3 Hz, 1H), 3.09 (d, *J* = 9.4 Hz, 1H), 2.93 (dd, *J* = 18.8, 0.8 Hz, 1H), 2.71 (dd, *J* = 18.8, 0.9 Hz, 1H), 2.42 (s, 3H), 2.38–2.31 (m, 1H), 2.12 (s, 3H), 1.89 (d, *J* = 12.1 Hz, 2H), 1.85–1.80 (m, 2H), 1.74 (dd, *J* = 9.8, 3.3 Hz, 1H), 1.37–1.31 (m, 2H), 1.30–1.20 (m, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 205.4, 197.0, 187.3, 160.4, 144.1, 131.7, 129.9, 128.0, 127.1, 118.5, 59.0, 56.3, 53.6, 47.1, 41.9, 31.1, 31.1, 31.1, 25.8, 25.8, 25.7, 21.5; HRMS (ESI) calcd for C₂₄H₃₀NO₄S [M+H]⁺: 428.1890; found: 428.1898.

(Z)-4-(2-oxo-4-phenylbutylidene)-8-phenyl-2-tosyl-2-azaspiro[4.4]non-7-en-6-one (30)

Column chromatography (petroleum ether/EtOAc = 15:1 to 4:1) to afford **30** in 76% yield (77.8 mg); pale-yellow solid, mp 128–130 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.75 (d, *J* = 8.2 Hz, 2H), 7.67–7.62 (m, 2H), 7.57–7.52 (m, 1H), 7.50 (t, *J* = 7.4 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.21 (t, *J* = 7.6 Hz, 2H), 7.14–7.07 (m, 3H), 6.64 (s, 1H), 5.81 (t, *J* = 2.6 Hz, 1H), 4.81 (dd, *J* = 18.8, 2.3 Hz, 1H), 3.96 (dd, *J* = 18.8, 2.7 Hz, 1H), 3.59 (d, *J* = 9.5 Hz, 1H), 3.37 (dd, *J* = 18.4, 1.4 Hz, 1H), 3.19 (d, *J* = 9.5 Hz, 1H), 3.11 (dd, *J* = 18.4, 1.5 Hz, 1H), 2.90–2.79 (m, 2H), 2.74–2.67 (m, 2H), 2.45 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 204.7, 198.5, 173.1, 160.4, 144.2, 140.6, 132.7, 132.4, 131.7, 129.9, 129.2, 128.4, 128.2, 128.1, 127.2, 126.1, 126.0, 118.6, 59.3, 56.5, 53.7,

45.9, 45.3, 29.6, 21.5; **HRMS (ESI)** calcd for C₃₁H₃₀NO₄S [M+H]⁺: 512.1890; found: 512.1899.

(Z)-4-(2-oxo-5-phenylpentylidene)-8-phenyl-2-tosyl-2-azaspiro[4.4]non-7-en-6one (3p)

Column chromatography (petroleum ether/EtOAc = 20:1 to 5:1) to afford **3p** in 82% yield (86.2 mg); colorless solid, mp 139–141 °C; **¹H NMR (600 MHz, CDCl₃)** δ 7.74 (d, *J* = 8.2 Hz, 2H), 7.68–7.63 (m, 2H), 7.56–7.52 (m, 1H), 7.50 (t, *J* = 7.4 Hz, 2H), 7.35 (d, *J* = 8.1 Hz, 2H), 7.23 (t, *J* = 7.5 Hz, 2H), 7.14 (t, *J* = 7.4 Hz, 1H), 7.11 (d, *J* = 7.2 Hz, 2H), 6.65 (s, 1H), 5.82 (t, *J* = 2.6 Hz, 1H), 4.80 (dd, *J* = 18.7, 2.3 Hz, 1H), 3.96 (dd, *J* = 18.7, 2.7 Hz, 1H), 3.59 (d, *J* = 9.4 Hz, 1H), 3.38 (dd, *J* = 18.4, 1.4 Hz, 1H), 3.19 (d, *J* = 9.4 Hz, 1H), 3.14 (dd, *J* = 18.4, 1.5 Hz, 1H), 2.56 (t, *J* = 7.2 Hz, 2H), 2.44 (s, 3H), 2.37 (td, *J* = 7.1, 2.0 Hz, 2H), 1.89–1.81 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 204.7, 199.2, 173.1, 160.1, 144.2, 141.3, 132.7, 132.3, 131.7, 129.9, 129.2, 128.4, 128.3, 128.1, 127.1, 126.0, 125.9, 118.7, 59.3, 56.6, 53.7, 46.0, 43.0, 34.9, 24.9, 21.5; HRMS (ESI) calcd for C₃₂H₃₂NO4S [M+H]⁺: 526.2047; found: 526.2052.

(Z)-4-(2-cyclopropyl-2-oxoethylidene)-8-phenyl-2-tosyl-2-azaspiro[4.4]non-7-en-6-one (3q)

Column chromatography (petroleum ether/EtOAc = 15:1 to 4:1) to afford **3q** in 82% yield (73.4 mg); colorless solid, mp 155–157 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.73 (d, *J* = 7.9 Hz, 2H), 7.67 (d, *J* = 7.7 Hz, 2H), 7.56–7.52 (m, 1H), 7.50 (t, *J* = 7.3 Hz, 2H), 7.34 (d, *J* = 7.9 Hz, 2H), 6.68 (s, 1H), 6.03 (s, 1H), 4.79 (d, *J* = 18.7 Hz, 1H), 3.94 (dd, *J* = 18.7, 2.5 Hz, 1H), 3.60 (d, *J* = 9.4 Hz, 1H), 3.40 (d, *J* = 18.4 Hz, 1H), 3.24–3.17 (m, 2H), 2.44 (s, 3H), 1.86–1.80 (m, 1H), 1.03–0.96 (m, 2H), 0.85 (dd, *J* = 7.7, 2.9

Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 204.9, 199.3, 173.1, 159.5, 144.1, 132.8, 132.3, 131.7, 129.9, 129.2, 128.1, 127.2, 126.1, 119.2, 59.4, 56.6, 53.8, 46.1, 22.2, 21.5, 11.8, 11.8; HRMS (ESI) calcd for C₂₆H₂₆NO₄S [M+H]⁺: 448.1577; found: 448.1586. (*Z*)-4-(2-cyclobutyl-2-oxoethylidene)-8-phenyl-2-tosyl-2-azaspiro[4.4]non-7-en-6-one (3r)

Column chromatography (petroleum ether/EtOAc = 15:1 to 4:1) to afford **3r** in 96% yield (88.6 mg); colorless solid, mp 156–158 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.74 (d, *J* = 8.2 Hz, 2H), 7.67–7.64 (m, 2H), 7.54 (t, *J* = 7.3 Hz, 1H), 7.50 (t, *J* = 7.3 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 6.65 (s, 1H), 5.77 (t, *J* = 2.6 Hz, 1H), 4.83 (dd, *J* = 18.7, 2.3 Hz, 1H), 3.98 (dd, *J* = 18.7, 2.7 Hz, 1H), 3.59 (d, *J* = 9.4 Hz, 1H), 3.40 (dd, *J* = 18.4, 1.4 Hz, 1H), 3.18 (d, *J* = 9.5 Hz, 2H), 3.16–3.13 (m, 1H), 2.45 (s, 3H), 2.16–2.09 (m, 2H), 2.09–2.02 (m, 2H), 1.93–1.86 (m, 1H), 1.80–1.73 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 204.8, 200.5, 173.1, 160.6, 144.2, 132.8, 132.3, 131.7, 129.9, 129.2, 128.1, 127.2, 126.1, 117.3, 59.4, 56.7, 53.8, 46.1, 46.1, 24.1, 23.9, 21.6, 17.5; HRMS (ESI) calcd for C₂₇H₂₈NO4S [M+H]⁺: 462.1734; found: 462.1746.

(Z)-4-(2-cyclopentyl-2-oxoethylidene)-8-phenyl-2-tosyl-2-azaspiro[4.4]non-7-en-6-one (3s)

Column chromatography (petroleum ether/EtOAc = 10:1 to 5:1) to afford **3s** in 97% yield (92.3 mg); colorless solid, mp 164–166 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.73 (d, *J* = 8.2 Hz, 2H), 7.69–7.63 (m, 2H), 7.56–7.52 (m, 1H), 7.50 (t, *J* = 7.4 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 6.66 (s, 1H), 5.89 (t, *J* = 2.6 Hz, 1H), 4.80 (dd, *J* = 18.6, 2.3 Hz, 1H), 3.96 (dd, *J* = 18.6, 2.7 Hz, 1H), 3.58 (d, *J* = 9.4 Hz, 1H), 3.40 (dd, *J* = 18.4, 1.4 Hz, 1H), 3.20–3.12 (m, 2H), 2.83–2.75 (m, 1H), 2.44 (s, 3H), 1.73–1.62 (m, 4H),

1.60–1.54 (m, 2H), 1.53–1.48 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 204.8, 201.8, 173.0, 160.2, 144.1, 132.8, 132.3, 131.7, 129.9, 129.2, 128.1, 127.1, 126.0, 118.6, 59.4, 56.7, 53.8, 52.0, 46.1, 28.6, 28.5, 25.9, 25.9, 21.5; HRMS (ESI) calcd for C₂₈H₃₀NO₄S [M+H]⁺: 476.1890; found: 476.1897.

(Z)-4-(2-oxo-2-(1-tosylpiperidin-4-yl)ethylidene)-8-phenyl-2-tosyl-2-azaspiro[4.4] non-7-en-6-one (3t)

Column chromatography (petroleum ether/EtOAc = 8:1 to 2:1) to afford **3t** in 97% yield (125.1 mg); colorless solid, mp 120–123 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.72 (d, *J* = 8.2 Hz, 2H), 7.66–7.63 (m, 2H), 7.59 (d, *J* = 8.2 Hz, 2H), 7.56–7.53 (m, 1H), 7.50 (t, *J* = 7.4 Hz, 2H), 7.35 (d, *J* = 8.1 Hz, 2H), 7.29 (d, *J* = 8.1 Hz, 2H), 6.63 (s, 1H), 5.84 (t, *J* = 2.5 Hz, 1H), 4.76 (dd, *J* = 18.9, 2.3 Hz, 1H), 3.91 (dd, *J* = 18.9, 2.7 Hz, 1H), 3.68–3.62 (m, 2H), 3.59 (d, *J* = 9.4 Hz, 1H), 3.40 (dd, *J* = 18.4, 1.4 Hz, 1H), 3.16 (d, *J* = 9.5 Hz, 1H), 3.13 (dd, *J* = 18.4, 1.5 Hz, 1H), 2.45 (s, 3H), 2.41 (s, 3H), 2.33 (td, *J* = 11.7, 9.0, 2.9 Hz, 2H), 2.22–2.17 (m, 1H), 1.79–1.73 (m, 2H), 1.64–1.61 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 204.5, 199.8, 173.1, 162.3, 144.2, 143.6, 132.9, 132.6, 132.4, 131.7, 129.9, 129.6, 129.2, 128.0, 127.5, 127.1, 125.8, 116.9, 59.5, 56.5, 53.8, 47.7, 45.9, 45.3, 45.3, 26.7, 26.6, 21.5, 21.4; HRMS (ESI) calcd for C₃₅H₃₇N₂O₆S₂ [M+H]⁺:645.2088; found: 645.2098.

(Z)-4-(3,3-dimethyl-2-oxobutylidene)-8-phenyl-2-tosyl-2-azaspiro[4.4]non-7-en-6one (3u)

Column chromatography (petroleum ether/EtOAc = 15:1 to 4:1) to afford **3u** in 63% yield (58.4 mg); colorless solid, mp 150–152 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.73 (d, *J* = 8.0 Hz, 2H), 7.66 (d, *J* = 7.7 Hz, 2H), 7.54 (t, *J* = 7.2 Hz, 1H), 7.50 (t, *J* = 7.5

Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 6.66 (s, 1H), 6.12 (t, J = 2.3 Hz, 1H), 4.79 (dd, J = 18.6, 2.1 Hz, 1H), 3.95 (dd, J = 18.6, 2.6 Hz, 1H), 3.58 (d, J = 9.4 Hz, 1H), 3.42 (d, J = 18.4 Hz, 1H), 3.19–3.13 (m, 2H), 2.44 (s, 3H), 1.04 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 204.8, 204.5, 173.0, 161.1, 144.1, 132.8, 132.3, 131.7, 129.9, 129.20 128.1, 127.1, 126.1, 115.0, 59.6, 56.8, 53.9, 46.2, 43.6, 26.1, 21.5; HRMS (ESI) calcd for C₂₇H₃₀NO₄S [M+H]⁺:464.1890; found: 464.1997.

(Z)-4-(2-(adamantan-1-yl)-2-oxoethylidene)-8-phenyl-2-tosyl-2-azaspiro[4.4]non-7-en-6-one (3v)

Column chromatography (petroleum ether/EtOAc = 10:1 to 5:1) to afford **3v** in 74% yield (80.2 mg); colorless solid, mp 128–130 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.73 (d, *J* = 8.2 Hz, 2H), 7.69–7.65 (m, 2H), 7.56–7.53 (m, 1H), 7.50 (t, *J* = 7.3 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 6.68 (s, 1H), 6.13 (t, *J* = 2.5 Hz, 1H), 4.78 (dd, *J* = 18.6, 2.3 Hz, 1H), 3.94 (dd, *J* = 18.7, 2.7 Hz, 1H), 3.57 (d, *J* = 9.3 Hz, 1H), 3.42 (dd, *J* = 18.4, 1.2 Hz, 1H), 3.16–3.13 (m, 2H), 2.44 (s, 3H), 1.97 (s, 3H), 1.71–1.64 (m, 9H), 1.64–1.56 (m, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 205.0, 204.1, 173.0, 161.0, 144.1, 132.8, 132.3, 131.6, 129.9, 129.2, 128.1, 127.2, 126.2, 114.6, 59.7, 56.9, 54.0, 46.3, 45.8, 37.7, 36.3, 27.7, 21.5; HRMS (ESI) calcd for C₃₃H₃₆NO₄S [M+H]⁺:542.2360; found: 542.2375.

(Z)-4-(3-(adamantan-1-yl)-2-oxopropylidene)-8-phenyl-2-tosyl-2azaspiro[4.4]non-7-en-6-one (3w)

Column chromatography (petroleum ether/EtOAc = 10:1 to 4:1) to afford **3w** in 92% yield (102.3 mg); colorless solid, mp 108–110 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.74 (d, *J* = 8.2 Hz, 2H), 7.65 (d, *J* = 7.2 Hz, 2H), 7.54 (t, *J* = 7.3 Hz, 1H), 7.49 (t, *J* = 7.3

Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 6.65 (s, 1H), 5.81 (t, J = 2.5 Hz, 1H), 4.79 (dd, J = 18.7, 2.2 Hz, 1H), 3.95 (dd, J = 18.7, 2.6 Hz, 1H), 3.58 (d, J = 9.4 Hz, 1H), 3.38 (dd, J = 18.4, 1.1 Hz, 1H), 3.19 (d, J = 9.4 Hz, 1H), 3.14 (dd, J = 18.4, 1.3 Hz, 1H), 2.44 (s, 3H), 2.15–2.08 (m, 2H), 1.88 (s, 3H), 1.66–1.61 (m, 3H), 1.58–1.53 (m, 3H), 1.52–1.47 (m, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 204.72, 199.41, 173.0, 159.2, 144.1, 132.8, 132.3, 131.8, 129.9, 129.2, 128.1, 127.1, 126.0, 120.7, 59.3, 57.5, 56.5, 53.7, 46.1, 42.4, 36.6, 34.0, 28.5, 21.5; HRMS (ESI) calcd for C₃₄H₃₈NO₄S [M+H]⁺:556.2516; found: 556.2528.

(Z)-4-(2-oxohex-5-en-1-ylidene)-8-phenyl-2-tosyl-2-azaspiro[4.4]non-7-en-6-one (3x)

Column chromatography (petroleum ether/EtOAc = 15:1 to 5:1) to afford **3x** in 80% yield (73.9 mg); colorless solid, mp 130–132 °C; ¹**H** NMR (600 MHz, CDCl₃) δ 7.73 (d, *J* = 7.9 Hz, 2H), 7.65 (d, *J* = 7.4 Hz, 2H), 7.53 (t, *J* = 6.9 Hz, 1H), 7.49 (t, *J* = 7.5 Hz, 2H), 7.34 (d, *J* = 7.9 Hz, 2H), 6.65 (s, 1H), 5.86 (t, *J* = 2.4 Hz, 1H), 5.78–5.67 (m, 1H), 4.95 (d, *J* = 17.1 Hz, 1H), 4.91 (d, *J* = 10.2 Hz, 1H), 4.79 (d, *J* = 18.8 Hz, 1H), 3.96 (dd, *J* = 18.7, 2.6 Hz, 1H), 3.59 (d, *J* = 9.5 Hz, 1H), 3.38 (d, *J* = 18.4 Hz, 1H), 3.19 (d, *J* = 9.5 Hz, 1H), 3.16 (d, *J* = 18.4 Hz, 1H), 2.47 (t, *J* = 7.4 Hz, 2H), 2.44 (s, 3H), 2.28–2.21 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 204.7, 198.6, 173.1, 160.3, 144.1, 136.7, 132.7, 132.3, 131.70 129.9, 129.2, 128.0, 127.1, 126.0, 118.5, 115.2, 59.3, 56.5, 53.7, 45.9, 42.8, 27.5, 21.5; HRMS (ESI) calcd for C₂₇H₂₈NO₄S [M+H]⁺:462.1734; found: 462.1745.

(Z)-4-((E)-2-oxopent-3-en-1-ylidene)-8-phenyl-2-tosyl-2-azaspiro[4.4]non-7-en-6one (3y)

Column chromatography (petroleum ether/EtOAc = 15:1 to 4:1) to afford **3y** in 65% yield (58.2 mg); yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 7.74 (d, *J* = 8.2 Hz, 2H), 7.66 (d, *J* = 7.2 Hz, 2H), 7.54 (t, *J* = 7.3 Hz, 1H), 7.52–7.48 (m, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 6.83–6.72 (m, 1H), 6.67 (s, 1H), 6.09 (dd, *J* = 15.6, 1.5 Hz, 1H), 6.04 (t, *J* = 2.5 Hz, 1H), 4.86 (dd, *J* = 18.8, 2.3 Hz, 1H), 4.01 (dd, *J* = 18.8, 2.7 Hz, 1H), 3.60 (d, *J* = 9.4 Hz, 1H), 3.40 (dd, *J* = 18.4, 1.2 Hz, 1H), 3.22–3.16 (m, 2H), 2.44 (s, 3H), 1.83 (dd, *J* = 6.9, 1.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 204.9, 188.4, 173.1, 160.9, 144.2, 143.7, 132.8, 132.4, 132.3, 131.8, 129.9, 129.2, 128.1, 127.2, 126.1, 117.5, 59.6, 56.6, 53.8, 46.0, 21.5, 18.3; HRMS (ESI) calcd for C₂₆H₂₆NO4S [M+H]⁺:448.1577; found: 448.1589.

(Z)-4-(4-methyl-2-oxopent-3-en-1-ylidene)-8-phenyl-2-tosyl-2-azaspiro[4.4]non-7en-6-one (3z)

Column chromatography (petroleum ether/EtOAc = 15:1 to 4:1) to afford **3z** in 83% yield (76.6 mg); pale-yellow solid, mp 71–73 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.75 (d, *J* = 8.2 Hz, 2H), 7.66–7.63 (m, 2H), 7.54–7.51 (m, 1H), 7.51–7.47 (m, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 6.64 (s, 1H), 5.96 (d, *J* = 1.1 Hz, 1H), 5.84 (t, *J* = 2.6 Hz, 1H), 4.88 (dd, *J* = 18.5, 2.4 Hz, 1H), 4.04 (dd, *J* = 18.5, 2.6 Hz, 1H), 3.58 (d, *J* = 9.5 Hz, 1H), 3.36 (dd, *J* = 18.4, 1.5 Hz, 1H), 3.22 (d, *J* = 9.5 Hz, 1H), 3.16 (dd, *J* = 18.4, 1.5 Hz, 1H), 2.44 (s, 3H), 2.13–2.11 (m, 3H), 1.83 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 204.9, 189.1, 173.0, 159.7, 157.4, 144.0, 132.9, 132.2, 132.1, 129.7, 129.2, 128.1, 127.1, 126.0, 125.0, 121.0, 59.4, 56.5, 53.5, 46.1, 27.70 21.5, 20.7; HRMS (ESI) calcd for

C₂₇H₂₈NO₄S [M+H]⁺:462.1734; found: 462.1743.

(*Z*)-4-(2-oxo-2-phenylethylidene)-8-phenyl-2-tosyl-2-azaspiro[4.4]non-7-en-6-one (3aa)

Column chromatography (petroleum ether/EtOAc = 15:1 to 5:1) to afford **3aa** in 67% yield (64.8 mg); yellow solid, mp 149–151 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.80–7.76 (m, 4H), 7.68 (d, *J* = 7.2 Hz, 2H), 7.57–7.53 (m, 1H), 7.50 (t, *J* = 7.4 Hz, 3H), 7.40 (t, *J* = 7.8 Hz, 2H), 7.36 (d, *J* = 8.1 Hz, 2H), 6.72 (s, 1H), 6.64 (t, *J* = 2.5 Hz, 1H), 4.97 (dd, *J* = 18.8, 2.3 Hz, 1H), 4.12 (dd, *J* = 18.8, 2.7 Hz, 1H), 3.65 (d, *J* = 9.4 Hz, 1H), 3.46 (dd, *J* = 18.5, 1.0 Hz, 1H), 3.28–3.24 (m, 2H), 2.44 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 204.8, 189.4, 173.2, 162.5, 144.2, 137.8, 133.0, 132.8, 132.4, 131.8, 130.0, 129.2, 128.6, 128.1, 128.1, 127.2, 126.2, 115.7, 59.9, 56.8, 54.0, 46.1, 21.5; HRMS (ESI) calcd for C₂₉H₂₅NNaO₄S [M+Na]⁺:506.1397; found: 506.1409.

4-(2-(naphthalen-2-yl)-2-oxoethyl)-8-phenyl-2-tosyl-2-azaspiro[4.4]nona-3,7dien-6-one (3ab')

Column chromatography (petroleum ether/EtOAc = 15:1 to 4:1) to afford **3ab** in 69% yield (73.6 mg); pale-yellow solid, mp 97–99 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.30 (s, 1H), 7.91–7.83 (m, 4H), 7.62 (t, *J* = 7.7 Hz, 1H), 7.55 (d, *J* = 8.1 Hz, 3H), 7.49–7.44 (m, 3H), 7.43–7.39 (m, 2H), 7.12 (d, *J* = 8.0 Hz, 2H), 6.55 (s, 1H), 6.49 (s, 1H), 3.77 (d, *J* = 11.0 Hz, 1H), 3.70 (d, *J* = 17.3 Hz, 1H), 3.59 (d, *J* = 11.1 Hz, 1H), 3.31 (dd, *J* = 16.7, 1.1 Hz, 1H), 2.94 (dd, *J* = 18.6, 1.2 Hz, 1H), 2.63 (dd, *J* = 18.6, 0.9 Hz, 1H), 2.38 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 207.2, 196.2, 172.4, 144.0, 135.6, 133.1, 132.8, 132.4, 132.2, 132.0, 130.9, 130.7, 129.7, 129.6, 129.0, 128.8, 128.5, 127.8, 127.7, 126.9, 126.8, 125.9, 123.8, 122.2, 60.9, 58.0, 42.2, 34.8, 21.5; HRMS (ESI) calcd for

C₃₃H₂₈NO₄S [M+H]⁺:534.1734; found: 534.1740.

(*Z*)-4-(2-(1H-indol-2-yl)-2-oxoethylidene)-8-phenyl-2-tosyl-2-azaspiro[4.4]non-7en-6-one (3ac)

Column chromatography (petroleum ether/EtOAc = 10:1 to 4:1) to afford **3ac** in 64% yield (66.9 mg); yellow solid, mp 171–173 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.12 (s, 1H), 7.78 (d, *J* = 7.8 Hz, 2H), 7.70 (d, *J* = 7.3 Hz, 2H), 7.62 (d, *J* = 7.9 Hz, 1H), 7.58–7.50 (m, 3H), 7.41 (d, *J* = 8.1 Hz, 1H), 7.38–7.32 (m, 3H), 7.11 (t, *J* = 7.4 Hz, 1H), 7.02 (s, 1H), 6.75 (s, 1H), 6.54 (s, 1H), 5.03 (d, *J* = 18.3 Hz, 1H), 4.18 (d, *J* = 18.6 Hz, 1H), 3.65 (d, *J* = 9.3 Hz, 1H), 3.45 (d, *J* = 18.6 Hz, 1H), 3.29–3.23 (m, 2H), 2.44 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 204.8, 180.8, 173.3, 161.2, 144.3, 137.7, 136.2, 132.8, 132.5, 131.8, 130.0, 129.3, 128.1, 127.6, 127.3, 126.7, 126.2, 123.2, 121.1, 115.8, 112.2, 109.4, 59.8, 56.8, 54.0, 46.1, 21.6; HRMS (ESI) calcd for C₃₁H₂₇N₂O₄S [M+H]⁺: 523.1686; found: 523.1698.

(Z)-4-(2-oxotridecylidene)-8-phenyl-2-tosyl-2-azaspiro[4.4]non-7-en-6-one (3ae)

Column chromatography (petroleum ether/EtOAc = 20:1 to 6:1) to afford **3ae** in 76% yield (85.4 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 7.74 (d, J = 8.2 Hz, 2H), 7.68–7.63 (m, 2H), 7.56–7.52 (m, 1H), 7.52–7.48 (m, 2H), 7.34 (d, J = 7.9 Hz, 2H), 6.65 (t, J = 1.6 Hz, 1H), 5.85 (t, J = 2.6 Hz, 1H), 4.80 (dd, J = 18.7, 2.4 Hz, 1H), 3.97 (dd, J = 18.7, 2.7 Hz, 1H), 3.59 (d, J = 9.5 Hz, 1H), 3.39 (dd, J = 18.4, 1.6 Hz, 1H), 3.20 (d, J = 9.5 Hz, 1H), 3.16 (dd, J = 18.4, 1.6 Hz, 1H), 2.44 (s, 3H), 2.36 (td, J = 7.0, 1.1 Hz, 2H), 1.53–1.44 (m, 2H), 1.32–1.25 (m, 3H), 1.24–1.20 (m, 13H), 0.87 (t, J = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 204.8, 199.7, 173.0, 156.0, 144.1, 132.8, 132.3, 131.9, 129.9, 129.2, 128.1, 127.1, 126.1, 118.7, 59.4, 56.6, 53.7, 46.0,

44.0, 31.8, 29.5, 29.5, 29.4, 29.3, 29.3, 29.1, 23.6, 22.6, 21.5, 14.1; **HRMS (ESI)** calcd for C₃₄H₄₄NO₄S [M+H]⁺:562.2986; found: 562.2993.

(Z)-4-(4-(1*H*-indol-3-yl)-2-oxobutylidene)-8-phenyl-2-tosyl-2-azaspiro[4.4]non-7en-6-one (3af)

Column chromatography (petroleum ether/EtOAc = 10:1 to 3:1) to afford **3af** in 78% yield (85.9 mg); yellow solid, mp 151–153 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.98 (s, 1H), 7.74 (d, *J* = 8.0 Hz, 2H), 7.60 (d, *J* = 7.5 Hz, 2H), 7.54 (t, *J* = 7.3 Hz, 1H), 7.49 (t, *J* = 7.5 Hz, 3H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.28 (d, *J* = 8.1 Hz, 1H), 7.13 (t, *J* = 7.6 Hz, 1H), 7.05 (t, *J* = 7.5 Hz, 1H), 6.90 (s, 1H), 6.58 (s, 1H), 5.78 (s, 1H), 4.80 (dd, *J* = 18.7, 1.7 Hz, 1H), 3.98 (dd, *J* = 18.7, 2.4 Hz, 1H), 3.56 (d, *J* = 9.5 Hz, 1H), 3.29 (d, *J* = 18.4 Hz, 1H), 3.20 (d, *J* = 9.5 Hz, 1H), 3.10–2.91 (m, 3H), 2.88–2.67 (m, 2H), 2.45 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 204.7, 199.3, 173.1, 159.9, 144.2, 136.2, 132.7, 132.3, 131.8, 129.9, 129.2, 128.1, 127.2, 127.0, 125.9, 122.0, 121.8, 119.2, 118.8, 118.5, 114.8, 111.1, 59.3, 56.5, 53.7, 45.8, 44.2, 21.6, 19.4; HRMS (ESI) calcd for C₃₃H₃₁N₂O4S [M+H]⁺:551.1999; found: 551.2007.

4-(2-(6-oxo-8-phenyl-2-tosyl-2-azaspiro[4.4]nona-3,7-dien-4-yl)acetyl)-N,Ndipropylbenzenesulfonamide (3ag')

Column chromatography (petroleum ether/EtOAc = 8:1 to 4:1) to afford **3ag** in 43% yield (55.6 mg); yellow solid, mp 123–125 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.92 (d, J = 8.5 Hz, 2H), 7.83 (d, J = 8.5 Hz, 2H), 7.63 (d, J = 8.2 Hz, 2H), 7.52–7.48 (m, 3H), 7.47–7.42 (m, 2H), 7.36 (d, J = 8.0 Hz, 2H), 6.53 (s, 1H), 6.48 (s, 1H), 3.76 (d, J = 11.0

Hz, 1H), 3.60 (d, J = 11.0 Hz, 1H), 3.56 (dd, J = 17.2, 1.3 Hz, 1H), 3.25 (dd, J = 17.2, 1.5 Hz, 1H), 3.12–3.05 (m, 4H), 2.94 (dd, J = 18.6, 1.6 Hz, 1H), 2.68 (dd, J = 18.7, 1.4 Hz, 1H), 2.51 (s, 3H), 1.59–1.49 (m, 4H), 0.86 (t, J = 7.4 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 207.1, 195.1, 172.5, 144.5, 144.4, 138.5, 132.8, 132.4, 132.2, 131.1, 129.9, 129.1, 129.1, 127.9, 127.3, 127.0, 125.9, 120.9, 60.8, 58.0, 50.0, 42.2, 35.0, 22.0, 21.6, 11.1; HRMS (ESI) calcd for C₃₅H₃₉N₂O₆S₂ [M+H]⁺:647.2244; found: 647.2253. (*Z*)-4-(3-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)-2-

oxopropylidene) -8-phenyl-2-tosyl-2-azaspiro[4.4]non-7-en-6-one (3ah)

Column chromatography (petroleum ether/EtOAc = 10:1 to 3:1) to afford **3ah** in 90% yield (129.5 mg); pale-yellow solid, mp 180–182 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.72 (d, *J* = 8.1 Hz, 2H), 7.60–7.56 (m, 4H), 7.53 (t, *J* = 7.3 Hz, 1H), 7.47 (t, *J* = 7.5 Hz, 2H), 7.43 (d, *J* = 8.4 Hz, 2H), 7.33 (d, *J* = 8.1 Hz, 2H), 6.81 (d, *J* = 9.0 Hz, 1H), 6.71 (d, *J* = 2.4 Hz, 1H), 6.61 (dd, *J* = 9.0, 2.5 Hz, 1H), 6.58 (s, 1H), 5.97 (t, *J* = 2.5 Hz, 1H), 4.79 (dd, *J* = 18.9, 2.2 Hz, 1H), 3.96 (dd, *J* = 18.9, 2.7 Hz, 1H), 3.74 (s, 3H), 3.67 (d, *J* = 1.7 Hz, 2H), 3.58 (d, *J* = 9.6 Hz, 1H), 3.31 (d, *J* = 18.4 Hz, 1H), 3.23 (d, *J* = 9.6 Hz, 1H), 3.06 (dd, *J* = 18.3, 1.2 Hz, 1H), 2.43 (s, 3H), 2.21 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 204.4, 195.5, 173.1, 168.1, 161.7, 156.1, 144.2, 139.2, 135.9, 133.7, 132.7, 132.3, 131.9, 131.1, 130.8, 130.5, 129.9, 129.2, 129.1, 128.1, 127.1, 125.8, 117.6, 115.0, 112.0, 111.8, 100.8, 59.5, 56.3, 55.6, 53.7, 45.8, 39.52, 21.5, 13.3; HRMS (ESI) calcd for C₄₁H₃₆ClN₂O₆S [M+H]⁺:719.1977; found: 719.1989.
(Z)-4-(2-oxo-3-(11-oxo-6,11-dihydrodibenzo[b,e]oxepin-2-yl)propylidene)-8phenyl-2-tosyl-2-azaspiro[4.4]non-7-en-6-one (3ai)

Column chromatography (petroleum ether/EtOAc = 10:1 to 3:1) to afford **3ai** in 83% yield (104.5 mg); pale-yellow solid, mp 149–151 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.93 (d, J = 2.2 Hz, 1H), 7.84 (d, J = 7.6 Hz, 1H), 7.71 (d, J = 8.2 Hz, 2H), 7.67–7.62 (m, 2H), 7.57–7.50 (m, 2H), 7.50–7.43 (m, 3H), 7.34 (t, J = 7.5 Hz, 3H), 7.21 (dd, J = 8.4, 2.3 Hz, 1H), 6.98 (d, J = 8.4 Hz, 1H), 6.65 (s, 1H), 5.96 (t, J = 2.5 Hz, 1H), 5.13 (s, 2H), 4.78 (dd, J = 19.0, 2.3 Hz, 1H), 3.95 (dd, J = 19.0, 2.7 Hz, 1H), 3.70 (s, 2H), 3.59 (d, J = 9.5 Hz, 1H), 3.38 (dd, J = 18.4, 1.2 Hz, 1H), 3.20 (d, J = 9.5 Hz, 1H), 3.15 (dd, J = 18.4, 1.3 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 206.9, 203.8, 190.5, 172.2, 160.4, 144.3, 140.3, 136.3, 135.5, 132.8, 132.5, 132.0, 131.2, 129.8, 129.4, 129.2, 129.0, 127.9, 127.8, 127.2, 126.9, 125.7, 125.1, 121.1, 120.5, 120.4, 73.5, 60.6, 57.8, 47.8, 42.2, 38.0, 21.6; HRMS (ESI) calcd for C₃₈H₃₂NNaO₆S [M+Na]⁺:652.1764; found: 652.1778.

9-acetyl-3,10-diphenyl-7-tosyl-7-azaspiro[4.5]deca-2,9-dien-1-one (5a)

Column chromatography (petroleum ether/EtOAc = 15:1 to 4:1) to afford **5a** in 90% yield (89.6 mg); pale-yellow solid, mp 222–224 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.67 (d, J = 8.2 Hz, 2H), 7.59–7.54 (m, 2H), 7.49–7.45 (m, 1H), 7.44–7.41 (m, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.28–7.22 (m, 3H), 7.11–7.07 (m, 2H), 6.40 (t, J = 1.4 Hz, 1H), 4.62 (dd, J = 16.6, 1.4 Hz, 1H), 3.67 (dd, J = 11.5, 1.4 Hz, 1H), 3.45 (dd, J = 18.8, 1.3 Hz, 1H), 3.27 (d, J = 16.6 Hz, 1H), 3.25 (d, J = 18.8 Hz, 1H), 2.84 (d, J = 11.5 Hz, 1H), 2.44 (s, 3H), 1.52 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 206.6, 200.8, 173.8,

145.3, 144.2, 137.0, 136.6, 132.9, 132.3, 132.0, 130.0, 129.5, 129.0, 128.7, 127.7, 127.1, 126.3, 55.8, 52.7, 46.1, 41.7, 30.6, 21.5; **HRMS (ESI)** calcd for C₃₀H₂₈NO₄S [M+H]⁺: 498.1734; found: 498.1745.

9-acetyl-3-(4-isopropylphenyl)-10-phenyl-7-tosyl-7-azaspiro[4.5]deca-2,9-dien-1one (5b)

Column chromatography (petroleum ether/EtOAc = 15:1 to 5:1) to afford **5b** in 61% yield (65.8 mg); yellow solid, mp 180–182 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.69 (d, J = 8.2 Hz, 2H), 7.53 (d, J = 8.3 Hz, 2H), 7.36 (d, J = 8.1 Hz, 2H), 7.32–7.27 (m, 3H), 7.27–7.23 (m, 3H), 7.11 (d, J = 6.8 Hz, 2H), 6.39 (s, 1H), 4.64 (d, J = 16.6 Hz, 1H), 3.68 (dd, J = 11.5, 0.8 Hz, 1H), 3.46 (d, J = 18.8 Hz, 1H), 3.29–3.23 (m, 2H), 2.98–2.92 (m, 1H), 2.85 (d, J = 11.5 Hz, 1H), 2.46 (s, 3H), 1.54 (s, 3H), 1.27 (d, J = 6.9 Hz, 6H); ¹³C NMR (150MHz, CDCl₃) δ 206.6, 200.8, 173.8, 153.7, 145.4, 144.1, 137.0, 136.7, 132.3, 130.5, 129.9, 129.5, 128.9, 128.6, 127.7, 127.3, 127.1, 125.5, 55.7, 52.7, 46.1, 41.7, 34.2, 30.6, 23.6, 21.5; HRMS (ESI) calcd for C₃₃H₃₄NO₄S [M+H]⁺: 540.2203; found: 540.2212.

9-acetyl-3-(4-chlorophenyl)-10-phenyl-7-tosyl-7-azaspiro[4.5]deca-2,9-dien-1-one (5c)

Column chromatography (petroleum ether/EtOAc = 12:1 to 6:1) to afford **5c** in 73%

yield (77.7 mg); colorless solid, mp 201–203 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.68 (d, J = 8.2 Hz, 2H), 7.52–7.47 (m, 2H), 7.40 (d, J = 8.6 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 7.30–7.23 (m, 3H), 7.11–7.07 (m, 2H), 6.38 (s, 1H), 4.62 (dd, J = 16.6, 1.3 Hz, 1H), 3.68 (dd, J = 11.5, 1.3 Hz, 1H), 3.42 (dd, J = 18.8, 1.2 Hz, 1H), 3.28 (d, J = 16.6 Hz, 1H), 3.22 (d, J = 18.8 Hz, 1H), 2.85 (d, J = 11.5 Hz, 1H), 2.45 (s, 3H), 1.53 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 206.4, 200.7, 172.1, 145.0, 144.2, 138.2, 137.0, 136.5, 132.3, 131.3, 130.0, 129.5, 129.3, 129.0, 128.9, 128.3, 127.7, 126.6, 55.8, 52.5, 46.0, 41.7, 30.6, 21.5; HRMS (ESI) calcd for C₃₀H₂₇ClNO₄S [M+H]⁺: 532.1344; found: 532.1356.

9-acetyl-3-cyclohexyl-10-phenyl-7-tosyl-7-azaspiro[4.5]deca-2,9-dien-1-one (5d)

Column chromatography (petroleum ether/EtOAc = 15:1 to 6:1) to afford **5d** in 42% yield (42.3 mg); colorless solid, mp 190–192 °C; ¹**H NMR (600 MHz, CDCl₃)** δ 7.66 (d, *J* = 8.2 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.31–7.28 (m, 1H), 7.27–7.23 (m, 2H), 7.06–7.01 (m, 2H), 5.73 (d, *J* = 1.0 Hz, 1H), 4.57 (dd, *J* = 16.5, 1.4 Hz, 1H), 3.55 (dd, *J* = 11.5, 1.4 Hz, 1H), 3.20 (d, *J* = 16.5 Hz, 1H), 2.93 (d, *J* = 19.4 Hz, 1H), 2.95–2.82 (m, 2H), 2.78 (d, *J* = 11.5 Hz, 1H), 2.43 (s, 3H), 2.22–2.13 (m, 1H), 1.68–1.63 (m, 3H), 1.50 (s, 3H), 1.27–1.22 (m, 3H), 1.16–1.08 (m, 2H), 1.02–0.94 (m, 1H), 0.89–0.81 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 207.4, 200.6, 188.0, 145.8, 144.1, 136.5, 136.4, 132.4, 129.0, 129.5, 128.8, 128.4, 127.7, 127.4, 55.3, 52.3, 45.9, 42.9, 41.7, 31.1, 30.77, 30.8, 25.8, 25.7, 25.7, 21.5; HRMS (ESI) calcd for C₃₀H₃₄NO₄S [M+H]⁺: 504.2203; found: 504.2216.

Column chromatography (petroleum ether/EtOAc = 10:1 to 4:1) to afford **5e** in 67% yield (58.4 mg); colorless solid, mp 146–148 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.71 (d, *J* = 7.2 Hz, 2H), 7.63 (d, *J* = 8.2 Hz, 2H), 7.53 (t, *J* = 7.2 Hz, 1H), 7.49 (t, *J* = 7.3 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 6.63 (s, 1H), 4.35 (d, *J* = 15.6 Hz, 1H), 3.58 (d, *J* = 11.4 Hz, 1H), 3.45 (d, *J* = 18.9 Hz, 1H), 3.23 (dd, *J* = 15.7, 2.1 Hz, 1H), 3.11 (d, *J* = 18.9 Hz, 1H), 2.57 (d, *J* = 11.4 Hz, 1H), 2.43 (s, 3H), 2.28 (s, 3H), 1.78 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 207.1, 199.6, 174.6, 144.2, 140.9, 132.9, 132.4, 132.2, 132.2, 129.9, 129.1, 127.6, 127.2, 126.3, 55.5, 51.7, 46.0, 41.9, 30.6, 21.5, 16.6; HRMS (ESI) calcd for C₂₅H₂₆NO4S [M+H]⁺: 436.1577; found: 436.1590.

9-acetyl-3-(4-isopropylphenyl)-10-methyl-7-tosyl-7-azaspiro[4.5]deca-2,9-dien-1one (5f)

Column chromatography (petroleum ether/EtOAc = 10:1 to 4:1) to afford **5f** in 58% yield (55.4 mg); pale-yellow solid, mp 82–84 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.67–7.61 (m, 4H), 7.37–7.31 (m, 4H), 6.59 (s, 1H), 4.35 (d, *J* = 15.6 Hz, 1H), 3.56 (d, *J* = 11.4 Hz, 1H), 3.43 (d, *J* = 18.8 Hz, 1H), 3.23 (dd, *J* = 15.7, 2.1 Hz, 1H), 3.09 (d, *J* = 18.8 Hz, 1H), 3.00–2.95 (m, 1H)2.56 (d, *J* = 11.4 Hz, 1H), 2.43 (s, 3H), 2.28 (s, 3H), 1.77 (s, 3H), 1.28 (d, *J* = 6.9 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 207.1, 199.5, 174.5, 153.9, 144.2, 141.1, 132.3, 132.2, 130.6, 129.9, 127.6, 127.4, 127.2, 125.5, 55.4,

51.7, 46.0, 41.9, 34.2, 30.6, 23.7, 21.5, 16.6; **HRMS (ESI)** calcd for C₂₈H₃₂NO₄S [M+H]⁺: 478.2047; found: 478.2056.

9-acetyl-3-(4-chlorophenyl)-10-methyl-7-tosyl-7-azaspiro[4.5]deca-2,9-dien-1-one (5g)

Column chromatography (petroleum ether/EtOAc = 8:1 to 4:1) to afford **5g** in 65% yield (61.1 mg); yellow solid, mp 110–112 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.66–7.60 (m, 4H), 7.49–7.45 (m, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 6.60 (t, *J* = 1.5 Hz, 1H), 4.39–4.30 (m, 1H), 3.57 (dd, *J* = 11.4, 1.1 Hz, 1H), 3.41 (dd, *J* = 18.8, 1.2 Hz, 1H), 3.25–3.20 (m, 1H), 3.07 (d, *J* = 18.9 Hz, 1H), 2.56 (d, *J* = 11.3 Hz, 1H), 2.43 (s, 3H), 2.28 (s, 3H), 1.77 (t, *J* = 1.9 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 206.8, 199.5, 172.8, 144.3, 140.6, 138.4, 132.5, 132.2, 131.4, 130.0, 129.4, 128.5, 127.6, 126.6, 55.5, 51.6, 45.9, 41.8, 30.6, 21.5, 16.6; HRMS (ESI) calcd for C₂₅H₂₅ClNO₄S [M+H]⁺: 470.1187; found: 470.1198.

9-acetyl-3-phenyl-10-(thiophen-3-yl)-7-tosyl-7-azaspiro[4.5]deca-2,9-dien-1-one (5h)

Column chromatography (petroleum ether/EtOAc = 10:1 to 5:1) to afford **5h** in 63% yield (63.5 mg); pale-yellow solid, mp 205–207 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.65 (d, *J* = 8.1 Hz, 2H), 7.59 (d, *J* = 7.4 Hz, 2H), 7.48 (t, *J* = 7.2 Hz, 1H), 7.43 (t, *J* = 7.5 Hz, 2H), 7.33 (d, *J* = 8.1 Hz, 2H), 7.24–7.20 (m, 1H), 7.05 (d, *J* = 1.9 Hz, 1H), 6.84

(d, J = 5.0 Hz, 1H), 6.47 (s, 1H), 4.61 (d, J = 16.6 Hz, 1H), 3.68 (d, J = 11.5 Hz, 1H), 3.46 (d, J = 18.7 Hz, 1H), 3.20 (d, J = 16.7 Hz, 1H), 3.15 (d, J = 18.7 Hz, 1H), 2.78 (d, J = 11.5 Hz, 1H), 2.43 (s, 3H), 1.63 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 206.9, 201.0, 174.1, 144.2, 140.4, 137.6, 136.3, 132.9, 132.2, 132.1, 129.9, 129.0, 128.4, 127.7, 127.1, 126.6, 126.2, 126.1, 55.6, 52.5, 46.1, 42.0, 29.8, 21.5; HRMS (ESI) calcd for C₂₈H₂₆NO₄S₂ [M+H]⁺: 504.1298; found: 504.1309.

9-acetyl-10-(1-acetyl-1H-indol-5-yl)-3-phenyl-7-tosyl-7-azaspiro[4.5]deca-2,9dien-1-one (5i)

Column chromatography (petroleum ether/EtOAc = 10:1 to 2:1) to afford **5i** in 65% yield (75.2 mg); colorless solid, mp 152–154 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.30 (d, *J* = 8.5 Hz, 1H), 7.67 (d, *J* = 8.2 Hz, 2H), 7.52 (d, *J* = 7.4 Hz, 2H), 7.43 (t, *J* = 7.3 Hz, 1H), 7.40–7.36 (m, 3H), 7.34 (d, *J* = 8.1 Hz, 2H), 7.30 (s, 1H), 7.09 (d, *J* = 8.6 Hz, 1H), 6.55 (d, *J* = 3.8 Hz, 1H), 6.40 (s, 1H), 4.66 (d, *J* = 16.7 Hz, 1H), 3.68 (d, *J* = 11.5 Hz, 1H), 3.45 (d, *J* = 18.9 Hz, 1H), 3.27 (d, *J* = 16.6 Hz, 1H), 3.25 (d, *J* = 18.8 Hz, 1H), 2.87 (d, *J* = 11.5 Hz, 1H), 2.57 (s, 3H), 2.44 (s, 3H), 1.47 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 206.8, 201,0, 173.8, 168.5, 145.6, 144.1, 137.3, 135.5, 132.8, 132.3, 132.0, 130.4, 129.9, 128.9, 127.7, 127.1, 126.3, 126.2, 126.2, 122.3, 116.7, 109.1, 56.0, 52.8, 46.2, 41.8, 30.6, 23.8, 21.5; HRMS (ESI) calcd for C₃₄H₃₁N₂O₄S [M+H]⁺: 579.1948; found: 579.1964.

9-benzoyl-3,10-diphenyl-7-tosyl-7-azaspiro[4.5]deca-2,9-dien-1-one (5j)

Column chromatography (petroleum ether/EtOAc = 14:1 to 8:1) to afford 5j in 63%

yield (70.5 mg); colorless solid, mp 181–183 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.71– 7.63 (m, 4H), 7.58 (d, *J* = 7.3 Hz, 2H), 7.47 (t, *J* = 7.3 Hz, 1H), 7.42 (t, *J* = 7.4 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.31 (t, *J* = 7.4 Hz, 1H), 7.19 (t, *J* = 7.7 Hz, 2H), 6.90 (d, *J* = 1.6 Hz, 5H), 6.48 (s, 1H), 4.59 (d, *J* = 16.4 Hz, 1H), 3.70 (d, *J* = 11.6 Hz, 1H), 3.54 (d, *J* = 16.4 Hz, 1H), 3.45 (d, *J* = 18.7 Hz, 1H), 3.22 (d, *J* = 18.7 Hz, 1H), 3.11 (d, *J* = 11.6 Hz, 1H), 2.44 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 206.8, 196.8, 173.5, 144.2, 140.6, 136.4, 135.9, 135.1, 133.0, 132.9, 132.4, 131.9, 130.0, 129.7, 129.2, 128.9, 128.1, 128.0, 127.9, 127.7, 127.1, 126.2, 55.0, 53.0, 47.0, 41.5, 21.5; HRMS (ESI) calcd for C₃₅H₃₀NO₄S [M+H]⁺: 560.1890; found: 560.1897.

9-(1*H*-indole-2-carbonyl)-3,10-diphenyl-7-tosyl-7-azaspiro[4.5]deca-2,9-dien-1one (5k)

Column chromatography (petroleum ether/EtOAc = 10:1 to 4:1) to afford **5k** in 73% yield (87.4 mg); pale-yellow solid, mp 244–246 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.01–8.83 (m, 1H), 7.67 (d, *J* = 8.2 Hz, 2H), 7.59 (t, *J* = 7.5 Hz, 3H), 7.48 (t, *J* = 7.3 Hz, 1H), 7.43 (t, *J* = 7.4 Hz, 2H), 7.33 (d, *J* = 8.1 Hz, 2H), 7.26 (d, *J* = 5.9 Hz, 2H), 7.10 (s, 1H), 7.09–7.04 (m, 3H), 6.99–6.89 (m, 3H), 6.54 (s, 1H), 4.59 (d, *J* = 16.3 Hz, 1H), 3.73 (d, *J* = 11.7 Hz, 1H), 3.54 (d, *J* = 16.3 Hz, 1H), 3.47 (d, *J* = 18.7 Hz, 1H), 3.23 (d, *J* = 18.7 Hz, 1H), 3.10 (d, *J* = 11.7 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 207.1, 187.5, 173.8, 144.2, 139.7, 137.8, 136.0, 135.0, 134.3, 133.0, 132.4, 132.0, 130.0, 129.7, 129.0, 128.2, 128.1, 127.7, 127.2, 127.2, 126.7, 126.2, 123.4, 120.9, 113.7, 112.1, 55.1, 53.2, 47.2, 41.4, 21.5; HRMS (ESI) calcd for C₃₇H₃₁N₂O₄S [M+H]⁺: 599.1999; found: 599.2013.

9-(cyclobutanecarbonyl)-3,10-diphenyl-7-tosyl-7-azaspiro[4.5]deca-2,9-dien-1one (5l)

Column chromatography (petroleum ether/EtOAc = 15:1 to 5:1) to afford **5l** in 83% yield (89.3 mg); colorless solid, mp 181–183 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.66 (d, *J* = 8.2 Hz, 2H), 7.57–7.53 (m, 2H), 7.46 (t, *J* = 7.3 Hz, 1H), 7.41 (t, *J* = 7.4 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 7.23–7.18 (m, 3H), 7.06–7.02 (m, 2H), 6.41 (s, 1H), 4.57 (dd, *J* = 16.5, 0.9 Hz, 1H), 3.64 (dd, *J* = 11.5, 0.9 Hz, 1H), 3.43 (dd, *J* = 18.8, 0.9 Hz, 1H), 3.27 (d, *J* = 16.5 Hz, 1H), 3.18 (d, *J* = 18.8 Hz, 1H), 2.83 (d, *J* = 11.5 Hz, 1H), 2.65–2.57 (m, 1H), 2.43 (s, 3H), 1.97–1.85 (m, 2H), 1.69–1.62 (m, 1H), 1.61–1.53 (m, 2H), 1.32–1.26 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 206.7, 206.5, 173.6, 144.1, 142.5, 136.7, 136.6, 132.9, 132.3, 132.0, 129.9, 129.5, 128.9, 128.7, 128.5, 127.7, 127.1, 126.3, 55.3, 52.7, 46.6, 45.3, 41.8, 25.8, 24.9, 21.5, 17.2; HRMS (ESI) calcd for C₃₃H₃₂NO₄S [M+H]⁺: 538.2047; found: 538.2054.

3,10-diphenyl-7-tosyl-9-(1-tosylpiperidine-4-carbonyl)-7-azaspiro[4.5]deca-2,9dien-1-one (5m)

Column chromatography (petroleum ether/EtOAc = 8:1 to 2:1) to afford **5m** in 70% yield (100.9 mg); colorless solid, mp 223–225 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.63 (d, *J* = 8.1 Hz, 2H), 7.53 (t, *J* = 8.1 Hz, 4H), 7.45 (t, *J* = 7.3 Hz, 1H), 7.40 (t, *J* = 7.5 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.18–7.09 (m, 3H), 6.99 (d, *J* = 7.1 Hz, 2H), 6.42 (s, 1H), 4.47 (d, *J* = 16.5 Hz, 1H), 3.62 (d, *J* = 11.6 Hz, 1H), 3.54 (d, *J* = 11.7 Hz, 1H), 3.48 (d, *J* = 11.9 Hz, 1H), 3.39 (d, *J* = 18.8 Hz, 1H), 3.19 (d, *J* = 10.5 Hz, 1H), 3.20 (d, J = 10.5 Hz, 1H), 3.

16.5 Hz, 1H), 3.12 (d, J = 18.8 Hz, 1H), 2.85 (d, J = 11.6 Hz, 1H), 2.43 (d, J = 11.0 Hz, 6H), 1.95–1.86 (m, 1H), 1.79–1.69 (m, 1H), 1.58–1.49 (m, 2H), 1.46–1.39 (m, 1H), 1.35–1.25 (m, 1H), 1.07 (d, J = 13.3 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 206.5, 205.9, 173.8, 144.3, 143.4, 142.1, 136.6, 136.3, 133.3, 132.7, 132.3, 132.1, 130.0, 129.5, 129.4, 128.9, 128.6, 127.6, 127.4, 127.1, 126.1, 55.2, 52.6, 47.1, 46.6, 45.4, 45.1, 41.5, 27.9, 26.3, 21.5, 21.4; HRMS (ESI) calcd for C₄₁H₄₁N₂O₆S₂ [M+H]⁺: 721.2401; found: 721.2414.

(E)-9-(but-2-enoyl)-3,10-diphenyl-7-tosyl-7-azaspiro[4.5]deca-2,9-dien-1-one (5n)

Column chromatography (petroleum ether/EtOAc = 10:1 to 4:1) to afford **5n** in 83% yield (87.0 mg); colorless solid, mp 202–204 °C; ¹**H NMR (600 MHz, CDCl₃)** δ 7.66 (d, *J* = 8.2 Hz, 2H), 7.60–7.54 (m, 2H), 7.48 – 7.45 (m, 1H), 7.41 (dd, *J* = 10.2, 4.6 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.19–7.12 (m, 3H), 7.05–7.89 (m, 2H), 6.66–6.59 (m, 1H), 6.47 (s, 1H), 5.53 (dd, *J* = 15.5, 1.6 Hz, 1H), 4.55 (dd, *J* = 16.5, 0.9 Hz, 1H), 3.64 (dd, *J* = 11.5, 0.9 Hz, 1H), 3.42 (dd, *J* = 18.8, 1.0 Hz, 1H), 3.34 (d, *J* = 16.5 Hz, 1H), 3.18 (d, *J* = 18.8 Hz, 1H), 2.93 (d, *J* = 11.5 Hz, 1H), 2.43 (s, 3H), 1.51 (dd, *J* = 6.9, 1.5 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 206.9, 194.2, 173.6, 144.5, 144.1, 141.9, 136.6, 136.22, 132.9, 132.4, 132.0, 130.9, 129.9, 129.6, 128.9, 128.6, 128.3, 127.7, 127.1, 126.2, 55.2, 52.8, 46.4, 41.7, 21.5, 17.9; HRMS (ESI) calcd for C₃₂H₃₀NO₄S [M+H]⁺: 524.1890; found: 524.1899.

9-(3-methylbut-2-enoyl)-3,10-diphenyl-7-tosyl-7-azaspiro[4.5]deca-2,9-dien-1-one (50)

Column chromatography (petroleum ether/EtOAc = 14:1 to 6:1) to afford **50** in 87% yield (93.6 mg); colorless solid, mp 233–235 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.66 (d, *J* = 8.2 Hz, 2H), 7.59–7.55 (m, 2H), 7.48–7.45 (m, 1H), 7.44–7.41 (m, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.17–7.14 (m, 3H), 7.07–7.03 (m, 2H), 6.43 (s, 1H), 5.45–5.42 (m, 1H), 4.63 (dd, *J* = 16.5, 1.2 Hz, 1H), 3.66 (dd, *J* = 11.5, 1.2 Hz, 1H), 3.44 (dd, *J* = 18.8, 1.2 Hz, 1H), 3.31 (d, *J* = 16.5 Hz, 1H), 3.22 (d, *J* = 18.8 Hz, 1H), 2.87 (d, *J* = 11.4 Hz, 1H), 2.43 (s, 3H), 1.84 (d, *J* = 0.7 Hz, 3H), 1.39 (d, *J* = 0.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 207.0, 193.5, 173.7, 154.6, 144.1, 142.1, 138.0, 136.8, 133.0, 132.4, 131.9, 129.9, 129.7, 128.9, 128.6, 128.2, 127.7, 127.1, 126.3, 125.5, 55.3, 52.8, 46.2, 41.8, 27.1, 21.5, 20.5; HRMS (ESI) calcd for C₃₃H₃₂NO₄S [M+H]⁺: 538.2047; found: 538.2059.

9-(adamantane-1-carbonyl)-3,10-diphenyl-7-tosyl-7-azaspiro[4.5]deca-2,9-dien-1one (5p)

Column chromatography (petroleum ether/EtOAc = 10:1 to 4:1) to afford **5p** in 55% yield (102.6 mg); colorless solid, mp 194–196 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.65 (d, *J* = 7.9 Hz, 2H), 7.61 (d, *J* = 7.6 Hz, 2H), 7.51–7.47 (m, 1H), 7.44 (t, *J* = 7.4 Hz, 2H), 7.35 (d, *J* = 7.9 Hz, 2H), 7.15 (d, *J* = 6.0 Hz, 3H), 7.04 (d, *J* = 5.9 Hz, 2H), 6.44 (s, 1H), 4.14 (d, *J* = 16.0 Hz, 1H), 3.56 (d, *J* = 11.5 Hz, 1H), 3.43 (d, *J* = 16.6 Hz, 2H), 3.27 (d, *J* = 18.9 Hz, 1H), 2.96 (d, *J* = 11.5 Hz, 1H), 2.45 (s, 3H), 1.82 (s, 3H), 1.60–

1.53 (m, 4H), 1.48–1.44 (m, 3H), 1.43–1.39 (m, 3H), 1.37–1.33 (m, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 213.9, 206.8, 172.9, 144.2, 136.7, 136.6, 133.6, 133.2, 132.6, 131.9, 130.0, 129.0, 128.3, 128.2, 127.6, 127.1, 126.4, 54.0, 52.5, 47.0, 46.4, 42.0, 38.4, 36.1, 27.8, 21.6; HRMS (ESI) calcd for C₃₉H₄₀NO₄S [M+H]⁺: 618.2673; found: 618.2691.

9-(2-(adamantan-1-yl)acetyl)-3,10-diphenyl-7-tosyl-7-azaspiro[4.5] deca-2,9-dien-1-one (5q)

Column chromatography (petroleum ether/EtOAc = 12:1 to 5:1) to afford **5q** in 84% yield (110.0 mg); colorless solid, mp 152–154 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.67 (d, *J* = 8.2 Hz, 2H), 7.60–7.55 (m, 2H), 7.49–7.45 (m, 1H), 7.44–7.41 (m, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.25–7.18 (m, 3H), 7.06–7.02 (m, 2H), 6.42 (s, 1H), 4.50 (dd, *J* = 16.4, 1.0 Hz, 1H), 3.63 (dd, *J* = 11.5, 1.0 Hz, 1H), 3.45 (dd, *J* = 18.8, 1.2 Hz, 1H), 3.35 (d, *J* = 16.5 Hz, 1H), 3.22 (d, *J* = 18.9 Hz, 1H), 2.86 (d, *J* = 11.5 Hz, 1H), 2.44 (s, 3H), 1.82 (s, 3H), 1.64 (s, 1H), 1.62–1.47 (m, 3H), 1.54 (s, 1H), 1.52–1.48 (m, 3H), 1.34–1.30 (m, 3H), 1.29–1.24 (m, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 206.7, 204.7, 173.4, 144.1, 141.5, 138.3, 136.7, 133.0, 132.5, 131.9, 129.9, 129.6, 129.0, 128.8, 128.6, 127.7, 127.1, 126.6, 56.0, 55.1, 52.6, 45.9, 42.2, 41.9, 36.6, 33.8, 28.4, 21.5; HRMS (ESI) calcd for C₄₀H₄₂NO₄S [M+H]⁺: 632.2829; found: 632.2842.

9-dodecanoyl-3,10-diphenyl-7-tosyl-7-azaspiro[4.5]deca-2,9-dien-1-one (5r)

Column chromatography (petroleum ether/EtOAc = 15:1 to 7:1) to afford **5r** in 80% yield (102.1 mg); colorless solid, mp 139–141 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.66

(d, J = 8.2 Hz, 2H), 7.59–7.55 (m, 2H), 7.49–7.45 (m, 1H), 7.42 (t, J = 7.4 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.25–7.19 (m, 3H), 7.09–7.05 (m, 2H), 6.41 (s, 1H), 4.54 (dd, J = 16.5, 1.1 Hz, 1H), 3.66 (dd, J = 11.5, 1.1 Hz, 1H), 3.44 (dd, J = 18.8, 1.1 Hz, 1H), 3.28 (d, J = 16.5 Hz, 1H), 3.23 (d, J = 18.8 Hz, 1H), 2.85 (d, J = 11.5 Hz, 1H), 2.44 (s, 3H), 1.84–1.77 (m, 1H), 1.75–1.68 (m, 1H), 1.31–1.25 (m, 3H), 1.24–1.20 (m, 6H), 1.17–1.12 (m, 3H), 1.11–1.06 (m, 2H), 1.01–0.95 (m, 2H), 0.89–0.81 (m, 5H); ¹³C **NMR (150 MHz, CDCI₃)** δ 206.7, 204.8, 173.6, 144.1, 142.3, 137.2, 136.6, 132.9, 132.3, 132.0, 129.9, 129.5, 128.9, 128.8, 128.5, 127.7, 127.1, 126.3, 55.3, 52.7, 46.3, 42.9, 41.8, 31.8, 29.5, 29.5, 29.3, 29.0, 28.8, 23.85, 22.6, 21.5, 14.1; **HRMS (ESI)** calcd for C₄₀H₄₈NO₄S [M+H]⁺: 638.3299; found: 638.3313.

9-cinnamoyl-3,10-diphenyl-7-tosyl-7-azaspiro[4.5]deca-2,9-dien-1-one (5s)

Column chromatography (petroleum ether/EtOAc = 15:1 to 5:1) to afford **5s** in 85% yield (99.6 mg); pale-yellow solid, mp 220–222 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.69 (d, *J* = 8.2 Hz, 2H), 7.60–7.56 (m, 2H), 7.49–7.45 (m, 1H), 7.42 (t, *J* = 7.4 Hz, 2H), 7.36–7.30 (m, 3H), 7.29–7.25 (m, 1H), 7.22 (t, *J* = 7.4 Hz, 2H), 7.19–7.12 (m, 5H), 7.12–7.09 (m, 2H), 6.50 (s, 1H), 6.14 (d, *J* = 15.8 Hz, 1H), 4.72 (dd, *J* = 16.5, 0.9 Hz, 1H), 3.70 (dd, *J* = 11.5, 1.0 Hz, 1H), 3.47 (dd, *J* = 18.8, 1.0 Hz, 1H), 3.40 (d, *J* = 16.5 Hz, 1H), 3.22 (d, *J* = 18.8 Hz, 1H), 2.97 (d, *J* = 11.5 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 206.9, 192.9, 173.8, 144.1, 143.6, 142.9, 137.0, 136.7, 134.4, 132.9, 132.3, 132.0, 130.2, 129.9, 129.8, 129.0, 128.9, 128.6, 128.6, 128.1, 127.7, 127.1, 126.3, 125.6, 55.55, 52.9, 46.5, 41.8, 21.5; HRMS (ESI) calcd for C₃₇H₃₂NO₄S [M+H]⁺: 586.2047; found: 586.2059.

9-(3-(1H-indol-3-yl)propanoyl)-3,10-diphenyl-7-tosyl-7-azaspiro[4.5]deca-2,9-

dien-1-one (5t)

Column chromatography (petroleum ether/EtOAc = 10:1 to 4:1) to afford **5t** in 83% yield (104.0 mg); pale-yellow solid, mp 184–186 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.01 (s, 1H), 7.62 (d, *J* = 8.2 Hz, 2H), 7.56 (d, *J* = 7.5 Hz, 2H), 7.49 (t, *J* = 7.3 Hz, 1H), 7.44 (t, *J* = 7.5 Hz, 2H), 7.34–7.30 (m, 3H), 7.28 (d, *J* = 7.9 Hz, 1H), 7.24–7.13 (m, 4H), 7.06–7.02 (m, 3H), 6.71 (d, *J* = 1.9 Hz, 1H), 6.39 (s, 1H), 4.37 (d, *J* = 16.4 Hz, 1H), 3.58 (d, *J* = 11.5 Hz, 1H), 3.33 (d, *J* = 19.0 Hz, 1H), 3.19 (d, *J* = 16.4 Hz, 1H), 3.05 (d, *J* = 19.0 Hz, 1H), 2.80–2.74 (m, 2H), 2.73–2.68 (m, 1H), 2.45 (s, 3H), 2.30–2.15 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 206.6, 205.1, 173.5, 144.1, 142.5, 137.1, 136.7, 136.2, 132.9, 132.3, 132.0, 129.9, 129.2, 128.9, 128.9, 128.6, 127.6, 127.1, 126.9, 126.2, 121.9, 121.5, 119.0, 118.8, 114.5, 111.1, 55.1, 52.6, 46.1, 43.2, 41.8, 21.5, 20.5; HRMS (ESI) calcd for C₃₉H₃₅N₂O₄S [M+H]⁺: 627.2312; found: 627.2330.

4-(1-oxo-3,10-diphenyl-7-tosyl-7-azaspiro[4.5]deca-2,9-diene-9-carbonyl)-*N*,*N*-dipropylbenzenesulfonamide (5u)

Column chromatography (petroleum ether/EtOAc = 10:1 to 4:1) to afford **5u** in 41% yield (62.2 mg); colorless solid, mp 194–196 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.71–7.65 (m, 4H), 7.57 (t, *J* = 8.7 Hz, 4H), 7.48 (t, *J* = 7.3 Hz, 1H), 7.43 (t, *J* = 7.5 Hz, 2H), 7.36 (d, *J* = 8.1 Hz, 2H), 6.93–6.84 (m, 5H), 6.53 (s, 1H), 4.66 (d, *J* = 16.5 Hz, 1H), 3.70 (d, *J* = 11.7 Hz, 1H), 3.53 (d, *J* = 16.5 Hz, 1H), 3.43 (d, *J* = 18.7 Hz, 1H), 3.15–3.09 (m, 2H), 3.01–2.91 (m, 4H), 2.46 (s, 3H), 1.50–1.41 (m, 4H), 0.84 (t, *J* = 7.4 Hz, 1H), 3.53 (d, *J* = 16.5 Hz, 1H), 3.50 (d, *J* = 7.4 Hz, 1H), 3.53 (d, *J* = 16.5 Hz, 1H), 3.50 (d, *J* = 7.4 Hz, 1H), 3.53 (d, *J* = 16.5 Hz, 1H), 3.50 (d, *J* = 7.4 Hz, 1H), 3.50 (d, *J* = 7.4 Hz), 3.50 (d, J = 7.4 Hz), 3.50 (d, J = 7.4 Hz), 3.50 (d, J = 7.4

6H); ¹³C NMR (150 MHz, CDCl₃) δ 206.6, 195.8, 173.8, 144.3, 143.3, 143.3, 139.8, 135.9, 134.8, 132.8, 132.4, 132.1, 130.0, 129.8, 129.5, 129.0, 128.6, 128.2, 127.7, 127.1, 126.5, 126.1, 55.3, 53.1, 49.8, 47.0, 41.4, 21.8, 21.5, 11.1; HRMS (ESI) calcd for C₄₁H₄₃N₂O₆S₂ [M+H]⁺: 723.2557; found: 723.2571.

9-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1*H*-indol-3-yl)acetyl)-3,10diphenyl-7-tosyl-7-azaspiro[4.5]deca-2,9-dien-1-one (5v)

Column chromatography (petroleum ether/EtOAc = 10:1 to 5:1) to afford **5v** in 83% yield (132.0 mg); pale-yellow solid, mp 144–146 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.63–7.55 (m, 6H), 7.49 (t, *J* = 7.2 Hz, 1H), 7.46–7.42 (m, 4H), 7.30 (d, *J* = 7.2 Hz, 5H), 7.23–7.18 (m, 2H), 6.95 (d, *J* = 9.0 Hz, 1H), 6.66 (dd, *J* = 9.0, 2.4 Hz, 1H), 6.58 (d, *J* = 2.3 Hz, 1H), 6.46 (s, 1H), 4.43 (d, *J* = 16.5 Hz, 1H), 3.82 (s, 3H), 3.66 (d, *J* = 11.6 Hz, 1H), 3.45 (d, *J* = 18.8 Hz, 1H), 3.25 (d, *J* = 18.9 Hz, 1H), 3.24 (dd, *J* = 16.5, 2.5 Hz, 1H), 3.07 (d, *J* = 16.5 Hz, 1H), 2.87 (d, *J* = 11.6 Hz, 1H), 2.41 (s, 3H), 2.03 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 206.3, 200.6, 173.5, 168.1, 156.0, 144.2, 141.9, 139.1, 137.3, 136.6, 135.8, 133.9, 132.9, 132.3, 132.0, 131.1, 130.8, 130.4, 129.9, 129.5, 129.2, 129.0, 129.0, 128.9, 127.6, 127.1, 126.3, 114.9, 112.0, 111.6, 101.2, 55.7, 55.2, 52.7, 46.7, 41.7, 38.5, 21.5, 13.4; HRMS (ESI) calcd for C₄₇H₃₉ClN₂NaO₆S [M+Na]⁺: 817.2110; found: 817.2127.

9-(2-(11-oxo-6,11-dihydrodibenzo[*b,e*]oxepin-2-yl)acetyl)-3,10-diphenyl-7-tosyl-7azaspiro[4.5]deca-2,9-dien-1-one (5w)

Column chromatography (petroleum ether/EtOAc = 10:1 to 4:1) to afford **5w** in 73% yield (103.1 mg); colorless solid, mp 198–200 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.87 (d, *J* = 7.6 Hz, 1H), 7.63 (d, *J* = 8.2 Hz, 2H), 7.60 (d, *J* = 7.3 Hz, 2H), 7.57 (d, *J* = 1.8 Hz, 1H), 7.56–7.52 (m, 1H), 7.50–7.45 (m, 2H), 7.45–7.41 (m, 2H), 7.36–7.28 (m, 6H), 7.17 (d, *J* = 7.2 Hz, 2H), 6.94–6.87 (m, 2H), 6.45 (s, 1H), 5.13 (s, 2H), 4.47 (d, *J* = 16.5 Hz, 1H), 3.67 (d, *J* = 11.5 Hz, 1H), 3.47 (d, *J* = 18.9 Hz, 1H), 3.29 (d, *J* = 18.7 Hz, 1H), 3.27 (d, *J* = 16.5 Hz, 1H), 3.18 (d, *J* = 16.9 Hz, 1H), 3.08 (d, *J* = 16.9 Hz, 1H), 2.87 (d, *J* = 11.5 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 206.5, 201.6, 190.5, 173.7, 160.3, 144.2, 143.0, 140.4, 137.1, 136.5, 136.5, 135.6, 133.0, 132.7, 132.6, 132.3, 132.0, 129.9, 129.6, 129.4, 129.3, 129.2, 129.0, 129.0, 127.7, 127.7, 127.3, 127.2, 126.3, 125.0, 120.7, 73.6, 55.4, 52.7, 48.2, 46.6, 41.9, 21.5; HRMS (ESI) calcd for C₄₄H₃₆NO₆S [M+H]⁺:706.2258; found: 706.2266.

4. General procedure for IPrAuNTf₂-catalyzed spirocyclization of 1-ene-4,9-diyne esters 6a–s and 8a–e

To a solution of **6 or 8** (0.2 mmol) and 4 Å MS (100 mg) in anhydrous DCM (2 mL) was added and IPrAuNTf₂ (5 mol%) under an argon atmosphere. The reaction mixture was stirred at room temperature for 24 h. Upon completion, filtered through celite, washed with CH_2Cl_2 and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: petroleum ether: EtOAc) to give the product **7** or **9**.

(Z)-4-(2-oxopropylidene)-2-tosyl-2-azaspiro[4.4]non-7-en-6-one (7a)

Column chromatography (petroleum ether/EtOAc = 15:1 to 5:1) to afford **7a** in 77% yield (53.2 mg); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.88–7.83 (m, 1H), 7.72–7.67 (m, 2H), 7.34–7.30 (m, 2H), 6.30–6.26 (m, 1H), 5.79 (t, *J* = 2.6 Hz, 1H), 4.68 (dd, *J* = 18.7, 2.5 Hz, 1H), 3.92 (dd, *J* = 18.7, 2.8 Hz, 1H), 3.45 (d, *J* = 9.4 Hz, 1H), 3.12 (d, *J* = 9.4 Hz, 1H), 3.01 (dt, *J* = 19.7, 2.4 Hz, 1H), 2.82 (dt, *J* = 19.7, 2.5 Hz, 1H), 2.41 (s, 3H), 2.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 205.9, 197.0, 164.2, 159.8, 144.2, 133.4, 131.6, 129.8, 127.9, 118.7, 57.7, 56.1, 53.5, 46.1, 31.1, 21.5; HRMS (ESI) calcd. for C₁₈H₁₉NO₄SNa [M+Na]⁺: 368.0927, found: 368.0933.

Column chromatography (petroleum ether/EtOAc = 15:1 to 5:1) to afford **7b** in 75% yield (53.9 mg); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.75–7.70 (m, 2H), 7.47–7.43 (m, 1H), 7.36–7.31 (m, 2H), 5.73 (t, *J* = 2.6 Hz, 1H), 4.72 (dd, *J* = 18.7, 2.5 Hz, 1H), 3.92 (dd, *J* = 18.7, 2.8 Hz, 1H), 3.47 (d, *J* = 9.3 Hz, 1H), 3.10 (d, *J* = 9.3 Hz, 1H), 2.96–2.88 (m, 1H), 2.74 – 2.66 (m, 1H), 2.44 (s, 3H), 2.13 (s, 3H), 1.86–1.83 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 205.9, 196.9, 160.4, 157.4, 144.2, 141.6, 131.8, 129.9, 128.1, 118.7, 58.2, 56.6, 53.7, 44.4, 31.2, 21.6, 10.5; HRMS (ESI) calcd. for C₁₉H₂₁NO₄SNa [M+Na]⁺: 382.1083, found: 382.1089.

(Z)-7-ethyl-4-(2-oxopropylidene)-2-tosyl-2-azaspiro[4.4]non-7-en-6-one (7c)

Column chromatography (petroleum ether/EtOAc = 14:1 to 6:1) to afford **7c** in 78% yield (58.3 mg); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.73–7.68 (m, 2H), 7.42–7.39 (m, 1H), 7.35–7.31 (m, 2H), 5.72 (t, *J* = 2.6 Hz, 1H), 4.70 (dd, *J* = 18.7, 2.4 Hz, 1H), 3.92 (dd, *J* = 18.7, 2.8 Hz, 1H), 3.45 (d, *J* = 9.3 Hz, 1H), 3.11 (d, *J* = 9.3 Hz, 1H), 2.95–2.86 (m, 1H), 2.74–2.64 (m, 1H), 2.42 (s, 3H), 2.26–2.18 (m, 2H), 2.12 (s, 3H), 1.12 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 205.5, 196.9, 160.4, 155.8, 147.5, 144.1, 131.8, 129.9, 128.0, 118.5, 58.5, 56.4, 53.6, 44.3, 31.1, 21.5, 18.4, 11.8; HRMS (ESI) calcd. for C₂₀H₂₃NO₄SNa [M+Na]⁺: 396.1240, found: 396.1245.

Column chromatography (petroleum ether/EtOAc = 13:1 to 5:1) to afford 7d in 83% yield (64.3 mg); pale-yellow oil; ¹H NMR (400 MHz, CD₂Cl₂) δ 7.65–7.61 (m, 2H), 7.32–7.28 (m, 2H), 5.66 (t, *J* = 2.6 Hz, 1H), 5.26–5.23 (m, 1H), 4.51 (dd, *J* = 18.5, 2.5 Hz, 1H), 3.89 (dd, *J* = 18.5, 2.8 Hz, 1H), 3.30 (d, *J* = 9.5 Hz, 1H), 3.11 (d, *J* = 9.5 Hz, 1H), 2.76–2.69 (m, 1H), 2.62–2.55 (m, 1H), 2.53–2.48 (m, 1H), 2.36 (s, 3H), 2.02 (s, 3H), 1.03 (s, 3H), 1.02 (s, 3H); ¹³C NMR (100 MHz, CD₂Cl₂) δ 191.2, 183.5, 146.4, 140.9, 138.0, 130.9, 118.7, 116.4, 114.5, 104.9, 45.1, 42.6, 30.2, 17.5, 11.8, 7.9, 7.9, 7.4, 7.3; HRMS (ESI) calcd. for C₂₁H₂₆NO₄ [M+H]⁺: 388.1577, found: 388.1583. (*Z*)-7-benzyl-4-(2-oxopropylidene)-2-tosyl-2-azaspiro[4.4]non-7-en-6-one (7e)

Column chromatography (petroleum ether/EtOAc = 12:1 to 5:1) to afford **7e** in 82% yield (71.24 mg); colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.73–7.67 (m, 2H), 7.35–7.27 (m, 5H), 5.60 (t, *J* = 2.6 Hz, 1H), 4.68 (dd, *J* = 18.7, 2.2 Hz, 1H), 3.90 (dd, *J* = 18.7, 2.8 Hz, 1H), 3.52 (s, 2H), 3.47 (d, *J* = 9.4 Hz, 1H), 3.15 (d, *J* = 9.4 Hz, 1H), 2.92–2.84 (m, 1H), 2.72–2.65 (m, 1H), 2.43 (s, 3H), 2.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 204.8, 196.8, 160.2, 157.6, 145.7, 144.1, 137.8, 131.7, 129.8, 128.8, 128.7, 128.0, 126.6, 118.4, 58.3, 56.0, 53.5, 44.2, 31.6, 31.1, 21.5; HRMS (ESI) calcd. for C₂₅H₂₅NO₄SNa [M+Na]⁺: 458.1397, found: 458.1402.

(Z)-7-cyclopropyl-4-(2-oxopropylidene)-2-tosyl-2-azaspiro[4.4]non-7-en-6-one (7f)

Column chromatography (petroleum ether/EtOAc = 15:1 to 5:1) to afford **7f** in 68% yield (52.4 mg); colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.72–7.67 (m, 2H), 7.35–7.30 (m, 2H), 7.10 (t, J = 2.7 Hz, 1H), 5.74 (t, J = 2.6 Hz, 1H), 4.69 (dd, J = 18.6, 2.5 Hz, 1H), 3.91 (dd, J = 18.7, 2.8 Hz, 1H), 3.44 (d, J = 9.3 Hz, 1H), 3.11 (d, J = 9.3 Hz, 1H), 2.84 (dd, J = 19.3, 2.4 Hz, 1H), 2.64 (dd, J = 19.3, 2.4 Hz, 1H), 2.42 (s, 3H), 2.12 (s, 3H), 1.65–1.55 (m, 1H), 0.88 (dd, J = 8.5, 2.3 Hz, 2H), 0.69–0.64 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 204.9, 196.9, 160.3, 152.1, 147.9, 144.1, 131.8, 129.8, 128.0, 118.6, 58.9, 56.4, 53.6, 43.8, 31.1, 21.5, 8.0, 7.8, 6.7; HRMS (ESI) calcd. for C₂₁H₂₅NO₄S [M+H]⁺: 386.1421, found: 386.1399.

(Z)-7-cyclopentyl-4-(2-oxopropylidene)-2-tosyl-2-azaspiro[4.4]non-7-en-6-one (7g)

Column chromatography (petroleum ether/EtOAc = 15:1 to 5:1) to afford **7g** in 71% yield (58.7 mg); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.74–7.70 (m, 2H), 7.38–7.35 (m, 1H), 7.33 (d, *J* = 7.9 Hz, 2H), 5.71 (t, *J* = 2.6 Hz, 1H), 4.71 (dd, *J* = 18.7, 2.4 Hz, 1H), 3.92 (dd, *J* = 18.7, 2.8 Hz, 1H), 3.47 (d, *J* = 9.3 Hz, 1H), 3.13 (d, *J* = 9.3 Hz, 1H), 2.89 (dt, *J* = 4.5, 2.1 Hz, 1H), 2.74–2.65 (m, 2H), 2.43 (s, 3H), 2.12 (s, 3H), 2.01–1.89 (m, 2H), 1.75–1.67 (m, 2H), 1.67–1.59 (m, 2H), 1.46–1.35 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 205.3, 196.9, 160.6, 154.4, 150.1, 144.1, 131.9, 129.9, 128.0, 118.4, 58.7, 56.3, 53.7, 44.2, 36.3, 31.6, 31.5, 31.1, 25.0; HRMS (ESI) calcd. for C₂₃H₂₈NO₄S [M+H]⁺: 414.1734, found: 414.1717.

(Z)-7-cyclohexyl-4-(2-oxopropylidene)-2-tosyl-2-azaspiro[4.4]non-7-en-6-one (7h)

Column chromatography (petroleum ether/EtOAc = 15:1 to 5:1) to afford **7h** in 83% yield (71.0 mg); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.74–7.70 (m, 2H), 7.37–7.32 (m, 3H), 5.70 (t, J = 2.6 Hz, 1H), 4.72 (dd, J = 18.7, 2.5 Hz, 1H), 3.91 (dd, J = 18.7, 2.8 Hz, 1H), 3.46 (d, J = 9.3 Hz, 1H), 3.12 (d, J = 9.3 Hz, 1H), 2.93–2.85 (m, 1H), 2.73–2.63 (m, 1H), 2.44 (s, 3H), 2.36–2.27 (m, 1H), 2.12 (s, 3H), 1.89–1.69 (m, 6H), 1.42–1.27 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 205.1, 196.9, 160.7, 154.8, 151.2, 144.1, 131.9, 129.9, 128.0, 118.4, 58.7, 56.3, 53.7, 44.3, 34.6, 31.8, 31.6, 31.2, 26.2, 26.2, 26.0, 21.6; HRMS (ESI) calcd. for C₂₄H₃₀NO4S [M+H]⁺: 428.1890, found: 428.1877.

(Z)-7-(naphthalen-2-yl)-4-(2-oxopropylidene)-2-tosyl-2-azaspiro[4.4]non-7-en-6one (7i)

Column chromatography (petroleum ether/EtOAc = 10:1 to 4:1) to afford **7i** in 65% yield (61.3 mg); pale-ellow solid, mp 131-133 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 8.09 (t, *J* = 3.0 Hz, 1H), 7.90–7.86 (m, 2H), 7.85–7.81 (m, 1H), 7.78–7.74 (m, 2H), 7.72 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.54–7.49 (m, 2H), 7.36 (d, *J* = 7.9 Hz, 2H), 5.88 (t, *J* = 2.6 Hz, 1H), 4.79 (dd, *J* = 18.7, 2.4 Hz, 1H), 4.00 (dd, *J* = 18.7, 2.8 Hz, 1H), 3.62 (d, *J* = 9.4 Hz, 1H), 3.28 (d, *J* = 9.4 Hz, 1H), 3.13 (dd, *J* = 20.0, 3.0 Hz, 1H), 2.92 (dd, *J* = 20.0, 3.1 Hz, 1H), 2.45 (s, 3H), 2.13 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 203.8, 197.0, 160.3, 157.5, 144.2, 142.3, 133.4, 133.1, 131.8, 129.9, 128.6, 128.4, 128.1, 127.6, 126.8, 126.7, 126.5, 124.2, 118.9, 59.6, 56.6, 53.7, 43.9, 31.2, 21.6; HRMS (ESI) calcd.

for C₂₈H₂₅NO₄SNa [M+Na]⁺: 494.1397, found: 494.1402.

(*Z*)-4-(2-(2-iodophenyl)-2-oxoethylidene)-7-methyl-2-tosyl-2-azaspiro[4.4]non-7en-6-one (7j)

Column chromatography (petroleum ether/EtOAc = 7:1 to 4:1) to afford **7j** in 74% yield (81.0 mg); yellow solid, mp 144-146 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 7.9 Hz, 1H), 7.78–7.73 (m, 2H), 7.47–7.45 (m, 1H), 7.40–7.33 (m, 3H), 7.30–7.27 (m, 1H), 7.13–7.07 (m, 1H), 6.17 (t, *J* = 2.6 Hz, 1H), 4.86 (dd, *J* = 18.8, 2.2 Hz, 1H), 4.05 (dd, *J* = 18.9, 2.8 Hz, 1H), 3.52 (d, *J* = 9.4 Hz, 1H), 3.22 (d, *J* = 9.4 Hz, 1H), 2.96 – 2.80 (m, 2H), 2.44 (s, 3H), 1.83–1.80 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 205.4, 192.9, 162.0, 157.4, 144.5, 144.2, 141.5, 140.2, 131.9, 131.8, 129.9, 129.0, 128.2, 128.1, 118.1, 91.7, 58.6, 56.4, 54.0, 43.8, 21.6, 10.5; HRMS (ESI) calcd. for C₂₄H₂₂INO₄SNa [M+Na]⁺: 570.0206, found: 570.0212.

(Z)-4-(3,3-dimethyl-2-oxobutylidene)-7-methyl-2-tosyl-2-azaspiro[4.4]non-7-en-6one (7k)

Column chromatography (petroleum ether/EtOAc = 15:1 to 4:1) to afford **7k** in 74% yield (59.4 mg); colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.74–7.70 (m, 2H), 7.47–7.44 (m, 1H), 7.35–7.31 (m, 2H), 5.98 (t, *J* = 2.6 Hz, 1H), 4.72 (dd, *J* = 18.5, 2.4 Hz, 1H), 3.93 (dd, *J* = 18.5, 2.8 Hz, 1H), 3.46 (d, *J* = 9.3 Hz, 1H), 3.11 (d, *J* = 9.3 Hz, 1H), 2.99–2.88 (m, 1H), 2.75–2.65 (m, 1H), 2.44 (s, 3H), 1.89–1.82 (m, 3H), 1.05 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 205.9, 204.4, 161.2, 157.3, 144.2, 141.6, 131.9, 129.9, 128.1, 114.5, 58.4, 56.7, 53.9, 44.6, 43.6, 26.1, 21.6, 10.5; HRMS (ESI) calcd. for

C₂₂H₂₇NO₄SNa [M+Na]⁺: 424.1553, found: 424.1568.

(Z)-8-methyl-4-(2-oxopropylidene)-2-tosyl-2-azaspiro[4.4]non-7-en-6-one (7l)

Column chromatography (petroleum ether/EtOAc = 10:1 to 5:1) to afford **7l** in 70% yield (50.3 mg); yellow solid, mp 89-91 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.72–7.67 (m, 2H), 7.34–7.29 (m, 2H), 6.04–6.00 (m, 1H), 5.80 (t, *J* = 2.6 Hz, 1H), 4.69 (dd, *J* = 18.7, 2.5 Hz, 1H), 3.88 (dd, *J* = 18.7, 2.8 Hz, 1H), 3.47 (d, *J* = 9.3 Hz, 1H), 3.08 (d, *J* = 9.3 Hz, 1H), 2.93 (d, *J* = 18.7 Hz, 1H), 2.70 (d, *J* = 19.0 Hz, 1H), 2.41 (s, 3H), 2.19 (d, *J* = 1.1 Hz, 3H), 2.12 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 205.3, 197.0, 178.6, 160.2, 144.1, 131.7, 129.9, 129.8, 128.0, 118.7, 59.7, 56.3, 53.6, 50.1, 31.1, 21.5, 19.6; HRMS (ESI) calcd. for C₁₉H₂₂NO₄S [M+H]⁺: 360.1264, found: 360.1270.

(Z)-8-ethyl-4-(2-oxopropylidene)-2-tosyl-2-azaspiro[4.4]non-7-en-6-one (7m)

Column chromatography (petroleum ether/EtOAc = 10:1 to 4:1) to afford **7m** in 88% yield (0.986 g, 3 mmol scale); yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 7.71 (d, *J* = 8.2 Hz, 2H), 7.33 (d, *J* = 8.1 Hz, 2H), 6.04 (s, 1H), 5.80 (t, *J* = 2.5 Hz, 1H), 4.72 (dd, *J* = 18.7, 2.3 Hz, 1H), 3.88 (dd, *J* = 18.7, 2.7 Hz, 1H), 3.49 (d, *J* = 9.3 Hz, 1H), 3.08 (d, *J* = 9.3 Hz, 1H), 2.96 (d, *J* = 18.9 Hz, 1H), 2.72 (d, *J* = 18.9 Hz, 1H), 2.51–2.46 (m, 2H), 2.43 (s, 3H), 2.13 (s, 3H), 1.24–1.21 (m, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 205.2, 197.0, 184.2, 160.2, 144.1, 131.6, 129.8, 127.9, 127.8, 118.6, 592, 56.3, 53.5, 48.6, 31.1, 26.8, 21.5, 11.2; HRMS (ESI) calcd. for C₂₀H₂₄NO₄S [M+H]⁺: 374.1421, found: 374.1433.

(Z)-7,8-dimethyl-4-(2-oxopropylidene)-2-tosyl-2-azaspiro[4.4]non-7-en-6-one (7n)

Column chromatography (petroleum ether/EtOAc = 15:1 to 5:1) to afford **7n** in 95% yield (71.0 mg); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.71–7.67 (m, 2H), 7.33–7.29 (m, 2H), 5.69 (t, *J* = 2.6 Hz, 1H), 4.69 (dd, *J* = 18.7, 2.5 Hz, 1H), 3.90 (dd, *J* = 18.7, 2.8 Hz, 1H), 3.42 (d, *J* = 9.2 Hz, 1H), 3.07 (d, *J* = 9.2 Hz, 1H), 2.88–2.81 (m, 1H), 2.66–2.58 (m, 1H), 2.41 (s, 3H), 2.10 (s,32H), 2.09 (d, *J* = 0.9 Hz, 3H), 1.74–1.72 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 205.2, 196.9, 169.8, 160.7, 144.1, 136.1, 131.9, 129.8, 128.0, 118.6, 58.3, 56.5, 53.6, 49.2, 31.1, 21.5, 17.2, 8.3; HRMS (ESI) calcd. for C₂₀H₂₅NO₄S [M+H]⁺: 374.1421, found: 374.1415.

(Z)-7,8,9-trimethyl-4-(2-oxopropylidene)-2-tosyl-2-azaspiro[4.4]non-7-en-6-one (70)

Column chromatography (petroleum ether/EtOAc = 15:1 to 6:1) to afford **70** in 58% yield (44.9 mg); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.75–7.69 (m, 2H), 7.33 (d, J = 7.9 Hz, 2H), 5.66 (t, J = 2.6 Hz, 1H), 4.68 (dd, J = 18.5, 2.4 Hz, 1H), 3.82 (dd, J = 18.6, 2.8 Hz, 1H), 3.61 (d, J = 9.8 Hz, 1H), 2.98 (d, J = 9.8 Hz, 1H), 2.73–2.65 (m, 1H), 2.43 (s, 3H), 2.10 (s, 3H), 2.09 (s, 3H), 1.76–1.74 (m, 3H), 1.29 (d, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 204.8, 197.0, 174.9, 162.4, 144.1, 135.4, 131.4, 129.9, 128.1, 117.8, 61.5, 53.3, 51.2, 50.8, 31.2, 21.6, 15.6, 14.8, 8.4; HRMS (ESI) calcd. for C₂₁H₂₆NO4S [M+H]⁺: 388.1577, found: 388.1583.

(Z)-3-methyl-4'-(2-oxopropylidene)-1'-tosyl-5,6,7,7a-tetrahydrospiro[indene-1,3'pyrrolidin]-2(4*H*)-one (7p)

Column chromatography (petroleum ether/EtOAc = 10:1 to 5:1) to afford **7p** in 67% yield (55.4 mg); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.72–7.68 (m, 2H), 7.32 (d, J = 7.9 Hz, 2H), 5.67 (t, J = 2.6 Hz, 1H), 4.67 (dd, J = 18.5, 2.4 Hz, 1H), 3.81 (dd, J = 18.6, 2.8 Hz, 1H), 3.61 (d, J = 9.6 Hz, 1H), 2.97–2.90 (m, 2H), 2.55–2.48 (m, 1H), 2.42 (s, 3H), 2.39–2.35 (m, 1H), 2.24–2.13 (m, 1H), 2.09 (s, 3H), 2.07–2.01 (m, 1H), 1.97–1.90 (m, 1H), 1.75–1.72 (m, 3H), 1.58–1.45 (m, 1H), 1.40–1.26 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 204.9, 197.0, 176.9, 162.4, 144.0, 132.2, 131.5, 129.8, 128.0, 117.8, 60.8, 54.3, 53.3, 50.4, 31.1, 30.9, 29.3, 26.9, 25.3, 21.5, 7.9; HRMS (ESI) calcd. for C₂₃H₂₇NO₄SNa [M+Na]⁺: 436.1553, found: 436.1558.

(Z)-7-methyl-4-(2-oxopropylidene)-2-oxaspiro[4.4]non-7-en-6-one (7q)

Column chromatography (petroleum ether/EtOAc = 10:1 to 5:1) to afford **7q** in 67% yield (27.6 mg); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.46–7.43 (m, 1H), 5.87 (t, J = 2.6 Hz, 1H), 5.00 (dd, J = 18.1, 2.5 Hz, 1H), 4.78 (dd, J = 18.2, 2.5 Hz, 1H), 3.98 (d, J = 8.6 Hz, 1H), 3.83 (d, J = 8.6 Hz, 1H), 2.87–2.79 (m, 1H), 2.75–2.68 (m, 1H), 2.18 (s, 3H), 1.87–1.84 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 206.6, 197.3, 165.4, 156.8, 141.4, 117.0, 76.2, 73.5, 59.5, 43.1, 31.0, 10.6; HRMS (ESI) calcd. for C₁₂H₁₅O₃ [M+H]⁺: 207.1016, found: 207.0998.

(E)-2-methyl-6-(2-oxopropylidene)spiro[4.4]non-2-en-1-one (7r)

Column chromatography (petroleum ether/EtOAc = 30:1 to 5:1) to afford **7r** in 63% yield (25.7 mg); colorless oil; ¹H NMR (**400 MHz, CDCl**₃) δ 7.39–7.36 (m, 1H), 5.78 (s, 1H), 3.07–2.95 (m, 1H), 2.93–2.81 (m, 1H), 2.68–2.54 (m, 2H), 2.16–2.12 (m, 3H), 2.11–1.98 (m, 2H), 1.83–1.80 (m, 3H), 1.80–1.72 (m, 1H), 1.71–1.61 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 210.1, 198.0, 170.1, 156.4, 140.8, 118.9, 60.0, 44.5, 37.5, 34.0, 31.4, 24.3, 10.5; HRMS (ESI) calcd. for C₁₃H₁₆O₂Na [M+Na]⁺: 227.1043, found: 227.1048.

dimethyl (*E*)-7-methyl-6-oxo-4-(2-oxopropylidene)spiro[4.4]non-7-ene-2,2dicarboxylate (7s)

Column chromatography (petroleum ether/EtOAc = 10:1 to 5:1) to afford **7s** in 60% yield (38.4 mg); colorless oil; ¹H NMR (**400 MHz, CDCl**₃) δ 7.43–7.39 (m, 1H), 5.77 (t, *J* = 2.5 Hz, 1H), 3.82 (dt, *J* = 19.9, 1.9 Hz, 1H), 3.77 (s, 3H), 3.73 (s, 3H), 3.36 (dd, *J* = 19.8, 2.9 Hz, 1H), 2.75 (d, *J* = 13.6 Hz, 1H), 2.72–2.65 (m, 2H), 2.40 (dd, *J* = 13.6, 1.7 Hz, 1H), 2.14 (s, 3H), 1.85–1.81 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 208.2, 197.5, 172.1, 170.8, 165.3, 157.3, 140.6, 119.2, 59.7, 58.7, 53.0, 45.3, 42.8, 41.2, 31.5, 10.6; HRMS (ESI) calcd. for C₁₇H₂₀O₆Na [M+Na]⁺: 343.1152, found: 343.1158.

Column chromatography (petroleum ether/EtOAc = 15:1 to 4:1) to afford **9a** in 90% yield (78.4 mg); colorless solid, mp 179–181 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.64–7.60 (m, 2H), 7.30 (d, J = 7.9 Hz, 2H), 7.25–7.19 (m, 3H), 7.17–7.14 (m, 1H), 6.99–6.95 (m, 2H), 4.54 (dd, J = 16.5, 1.6 Hz, 1H), 3.50 (dd, J = 11.5, 1.6 Hz, 1H), 3.19 (d, J = 16.5 Hz, 1H), 2.95–2.87 (m, 1H), 2.78–2.70 (m, 2H), 2.40 (s, 3H), 1.61–1.57 (m, 3H), 1.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 207.8, 200.6, 158.0, 145.4, 144.1, 141.6, 136.6, 136.5, 132.4, 129.9, 129.3, 128.9, 128.4, 127.7, 54.5, 52.3, 45.9, 40.1, 30.6, 21.5, 10.2; HRMS (ESI) calcd. for C₂₅H₂₅NO4S [M+H]⁺: 436.1577, found: 436.1584.

9-acetyl-10-(4-methoxyphenyl)-2-methyl-7-tosyl-7-azaspiro[4.5]deca-2,9-dien-1one (9b)

Column chromatography (petroleum ether/EtOAc = 10:1 to 3:1) to afford **9b** in 57% yield (53.1 mg); colorless solid, mp 185–187 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.62–7.57 (m, 2H), 7.27 (d, *J* = 6.8 Hz, 2H), 7.15 (s, 1H), 6.89–6.83 (m, 2H), 6.74–6.67 (m, 2H), 4.51 (d, *J* = 16.5 Hz, 1H), 3.73–3.68 (m, 3H), 3.46 (d, *J* = 11.4 Hz, 1H), 3.13 (d, *J* = 16.5 Hz, 1H), 2.88 (d, *J* = 19.7 Hz, 1H), 2.72–2.61 (m, 2H), 2.37 (s, 3H), 1.60 (s, 3H), 1.48–1.45 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 208.1, 200.9, 160.0, 158.3, 145.4, 144.1, 141.7, 136.7, 132.5, 130.7, 129.9, 128.8, 127.7, 113.9, 55.2, 54.7, 52.4, 46.1, 40.3, 30.6, 21.5, 10.3; HRMS (ESI) calcd. for C₂₆H₂₈NO₅S [M+H]⁺: 466.1683, found: 466.1678.

9-acetyl-10-(4-fluorophenyl)-2-methyl-7-tosyl-7-azaspiro[4.5]deca-2,9-dien-1-one (9c)

Column chromatography (petroleum ether/EtOAc = 15:1 to 4:1) to afford **9c** in 79% yield (71.7 mg); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.69–7.63 (m, 2H), 7.41–7.30 (m, 2H), 7.23 (s, 1H), 7.04–6.93 (m, 4H), 4.56 (d, *J* = 16.6 Hz, 1H), 3.54 (d, *J* = 11.4 Hz, 1H), 3.23 (dd, *J* = 16.5, 3.2 Hz, 1H), 2.97 (d, *J* = 19.6 Hz, 1H), 2.80–2.71 (m, 2H), 2.48–2.43 (m, 3H), 1.65 (s, 3H), 1.57–1.51 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 207.8, 200.4, 158.2, 144.2, 144.0, 141.8, 137.3, 132.4, 131.2 (d, *J* = 8.3 Hz), 130.0, 127.7, 115.7 (d, *J* = 21.5 Hz), 54.6, 52.4, 46.0, 40.1, 30.7, 21.5, 10.2; HRMS (ESI) calcd. for C₂₅H₂₅NO₄S [M+H]⁺: 454.1483, found: 436.1494.

9-acetyl-10-propyl-7-tosyl-7-azaspiro[4.5]deca-2,9-dien-1-one (9d)

Column chromatography (petroleum ether/EtOAc = 10:1 to 5:1) to afford **9d** in 71% yield (55.0 mg); colorless solid, mp 152–154 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.90–7.86 (m, 1H), 7.64–7.59 (m, 2H), 7.35–7.31 (m, 2H), 6.28 (d, *J* = 5.6 Hz, 1H), 4.19 (d, *J* = 15.5 Hz, 1H), 3.40 (d, *J* = 11.3 Hz, 1H), 3.28 (d, *J* = 15.5 Hz, 1H), 3.08 (d, *J* = 20.2 Hz, 1H), 2.84 (d, *J* = 20.2 Hz, 1H), 2.48 (d, *J* = 11.4 Hz, 1H), 2.43 (s, 3H), 2.25 (s, 3H), 2.15 (td, *J* = 12.9, 5.0 Hz, 1H), 1.82 (td, *J* = 13.1, 4.7 Hz, 1H), 1.41–1.21 (m, 2H), 0.80 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 208.3, 200.2, 165.4, 144.3, 143.7, 133.9, 132.5, 132.1, 130.0, 127.6, 53.8, 51.8, 46.1, 43.0, 33.2, 29.9, 23.1, 21.5, 14.8; HRMS (ESI) calcd. for C₂₁H₂₆NO₄S [M+H]⁺: 388.1577, found: 388.1583.

9-acetyl-2-methyl-10-(prop-1-en-2-yl)-7-tosyl-7-azaspiro[4.5]deca-2,9-dien-1-one (9e)

Column chromatography (petroleum ether/EtOAc = 10:1 to 5:1) to afford **9e** in 46% yield (36.8 mg); colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.64–7.59 (m, 2H), 7.42–7.37 (m, 1H), 7.32 (d, *J* = 8.0 Hz, 2H), 5.00 (s, 1H), 4.80 (s, 1H), 4.27 (d, *J* = 16.4 Hz, 1H), 3.38 (d, *J* = 11.4 Hz, 1H), 3.24 (d, *J* = 16.4 Hz, 1H), 2.96–2.76 (m, 2H), 2.59 (d, *J* = 11.4 Hz, 1H), 2.42 (s, 3H), 2.23 (s, 3H), 1.83–1.78 (m, 3H), 1.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 207.4, 201.9, 157.7, 145.3, 144.1, 141.9, 141.0, 135.2, 132.4, 129.9, 127.7, 121.0, 52.5, 45.8, 40.6, 30.4, 23.2, 21.5, 10.5; HRMS (ESI) calcd. for C₂₂H₂₆NO₄S [M+H[⁺: 400.1577, found: 400.1483.

5. Gram-scale synthesis of 3a, 5a and 7m and further transformations

5.1. Gram-scale synthesis of 3a

To a solution of **1a** (1.264 g, 3.0 mmol), MgO (0.242 g, 6.0 mmol), and 4 Å MS (1.5 g) in anhydrous DCE (30 mL) was added IPrAu(PhCN)SbF₆ (5 mol%) under an argon atmosphere. The reaction mixture was stirred at room temperature for 12 h. Upon completion, filtered through celite, washed with CH_2Cl_2 and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 20:1 to 4:1) to give the product **3a** (0.91 g,72%).

5.2. Gram-scale synthesis of 5a

To a solution of **4a** (1.493 g, 3.0 mmol), MgO (0.242 g, 6.0 mmol), and 4 Å MS (1.5 g) in anhydrous DCE (30 mL) was added IPrAu(PhCN)SbF₆ (5 mol%) under an argon atmosphere. The reaction mixture was stirred at room temperature for 20 h. Upon completion, filtered through celite, washed with CH_2Cl_2 and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel (etroleum ether/EtOAc = 15:1 to 4:1) to give the product **5a** (1.209g, 81%).

5.3. Gram-scale synthesis of 7m

To a solution of **6m** (1.12 g, 3.0 mmol), and 4 Å MS (1.5 g) in anhydrous DCE (30 mL) was added IPrAuNTf₂ (5 mol%) under an argon atmosphere. The reaction mixture was stirred at room temperature for 12 h. Upon completion, filtered through celite, washed with CH_2Cl_2 and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 4:1) to give the product **7m** (0.986 g, 88%).

5.4. Synthetic transformation of 3a

To a solution of **3a** (84.3 mg, 0.2 mmol) in EtOAc (4 mL) was added SiO₂ (1.2 g, 20.0 mmol) under an air atmosphere. The reaction mixture was stirred at 80 °C for 12 h. Upon completion, the reaction mixture was cooled down to room temperature and filtered through celite, washed with EtOAc and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: petroleum ether: EtOAc = 15:1 to 3:1) to afford the product **10a** in 83% yield (70.0 mg) as a colorless solid, mp 115–117 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.73 (d, *J* = 8.0 Hz, 2H), 7.52–7.47 (m, 2H), 7.46–7.41 (m, 2H), 7.39 (d, *J* = 8.0 Hz, 2H), 6.60 (s, 1H), 6.50 (s, 1H), 3.76 (d, *J* = 11.0 Hz, 1H), 3.56 (d, *J* = 11.1 Hz, 1H), 2.92 (d, *J* = 17.5 Hz, 1H), 2.88–2.78 (m, 2H), 2.59 (d, *J* = 18.6 Hz, 1H), 2.49 (s, 3H), 2.04 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 207.0, 204.4, 172.2, 144.2, 132.8, 132.6, 132.0, 130.8, 129.9, 129.0, 127.9, 126.9, 125.8, 120.8, 60.6, 57.7, 42.2, 39.4, 29.4, 21.6; HRMS (ESI) calcd

5.5. Synthetic transformation of 5a

To a solution of 5a (99.5 mg, 0.2 mmol) in anhydrous THF (4 mL) at -78 °C was added DIBAL-H (1.0 M in hexane, 1 mL, 5 equiv) dropwise and the reaction mixture was stirred -78 °C for 4 h, followed by addition of methanol and then warmed to room temperature. The reaction mixture was added saturated sodium potassium tartrate aqueous solution and stirred for 12 h. The mixture was extract with EtOAc, washed with brine and dried over MgSO4, then filtrated and concentrated under reduced pressure to give the crude diol product without further purification. The crude product was then dissolved in 2 mL DCE and added *p*-toluenesulfonic acid monohydrate (40 mol %) under an air atmosphere. The resulting reaction mixture was stirred at room temperature for 18 h. Upon completion, the reaction mixture was quenched with saturated NH₄Cl solution and extracted with DCM, the combined organic layers were washed with brine, dried over MgSO₄. After filtration and concentration, the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc = 20:1 to 10:1) to afford **11a** (55.9 mg) in 60% yield as colorless solid, mp 187–189 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.74 (d, J = 8.2 Hz, 2H), 7.39–7.33 (m, 4H), 7.30 (t, J = 7.5 Hz, 2H), 7.26-7.22 (m, 1H), 7.16-7.09 (m, 3H), 6.94-6.90 (m, 2H)2H), 6.57–6.54 (m, 2H), 6.44 (dd, *J* = 5.2, 2.3 Hz, 1H), 6.10 (dd, *J* = 17.9, 11.2 Hz, 1H), 5.09 (d, J = 17.8 Hz, 1H), 4.90 (d, J = 11.3 Hz, 1H), 4.00 (d, J = 15.3 Hz, 1H), 3.94 (d, J = 15.3 HJ = 15.3 Hz, 1H), 3.30–3.25 (m, 2H), 2.46 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 146.0, 143.8, 141.4, 138.3, 136.9, 134.7, 133.8, 133.5, 133.0, 132.9, 129.8, 128.5, 128.5, 127.8, 127.8, 127.1, 127.0, 126.1, 112.2, 61.3, 49.5, 45.1, 21.6; HRMS (ESI) calcd for C₃₀H₂₈NO₂S [M+H]⁺: 466,1835; found: 466,1846.

To a solution of 5a (99.5 mg, 0.2 mmol) in anhydrous THF (4 mL) was added PhMgBr (1 mL, 1.0 mmol, 5 equiv) under an argon atmosphere at 0 °C. The reaction mixture was stirred at room temperature for 4 h. Upon completion, the reaction mixture was quenched with saturated NH4Cl solution and extracted with EtOAc, the combined organic layers were washed with brine, dried over MgSO4, then filtrated and concentrated under reduced pressure without further purification. The crude product was then added *p*-toluenesulfonic acid monohydrate (40 mol%) in DCE (2 mL) under an air atmosphere and stirred at room temperature for 18 h. Upon completion, the reaction mixture was quenched with saturated NH₄Cl solution and extracted with DCM, the combined organic layers were washed with brine, dried over MgSO₄. After filtration and concentration, the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc = 15:1 to 7:1) to afford 12a (55.9 mg) in 51% yield as pale-yellow solid, mp 190–192 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.66–7.60 (m, 4H), 7.54–7.51 (m, 2H), 7.41–7.33 (m, 4H), 7.32–7.24 (m, 9H), 7.23–7.20 (m, 1H), 7.09 (d, J = 1.7 Hz, 1H), 7.06 (d, J = 1.7 Hz, 1H), 6.86 (t, J = 7.2 Hz, 1H), 6.80–6.78 (m, 2H), 6.75 (t, J = 7.6 Hz, 2H), 5.41 (s, 1H), 5.04 (s, 1H), 4.39 (dd, J = 16.5, 1.5 Hz, 1H), 3.67 (dd, *J* = 12.1, 1.5 Hz, 1H), 3.64 (d, *J* = 16.5 Hz, 1H), 3.35 (d, *J* = 12.0 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 148.7, 146.1, 144.2, 143.6, 139.1, 137.1, 136.7, 136.5, 134.6, 134.4, 133.9, 133.8, 130.3, 129.8, 128.6, 128.6, 128.4, 128.3, 127.8, 127.7, 127.6, 127.2, 126.6, 126.4, 126.3, 126.2, 126.0, 116.8, 61.2, 50.7, 48.9, 21.5; **HRMS (ESI)** calcd for C₄₂H₃₆NO₂S [M+H]⁺: 618.2461; found: 618.2475.

6. ¹H, ¹³C and ¹⁹F NMR spectra

Figure S1 ¹H NMR (600 MHz, CDCl₃) of 1a

Figure S3 ¹H NMR (600 MHz, CDCl₃) of 1b

Figure S5¹⁹F NMR (565 MHz, CDCl₃) of 1b

5.5 5.0 f1 (ppm) 1.97 <u>∎</u> 2.00 <u>−</u>

4.0

4.5

3.5

2.88 × 2.94 × 0.94 ×

1.5

1.0 0.5

0.0

3.0 2.5 2.0

2.08년 1.95 1.97년 2.45년

7.5

10.0

9.5 9.0

8.5 8.0

7.0

1.00

6.5

€.97 €.97

6.0

S106

Figure S11 ¹³C NMR (150 MHz, CDCl₃) of 1e

Figure S15 ¹³C NMR (150 MHz, CDCl₃) of 1g

Figure S17 ¹³C NMR (150 MHz, CDCl₃) of 1h

Figure S19 ¹³C NMR (150 MHz, CDCl₃) of 1i

Figure S23 ¹³C NMR (150 MHz, CDCl₃) of 1k

Figure S25 ¹³C NMR (150 MHz, CDCl₃) of 11

Figure S27 ¹³C NMR (150 MHz, CDCl₃) of 1m

Figure S29 ¹³C NMR (150 MHz, CDCl₃) of 1n

Figure S45 ¹³C NMR (150 MHz, CDCl₃) of 1v

Figure S47 ¹³C NMR (150 MHz, CDCl₃) of 1w

Figure S49 ¹³C NMR (150 MHz, CDCl₃) of 1x

Figure S51 ¹³C NMR (150 MHz, CDCl₃) of 1y

Figure S53 ¹³C NMR (150 MHz, CDCl₃) of 1z

Figure S55 ¹³C NMR (150 MHz, CDCl₃) of 1aa

Figure S57 ¹³C NMR (150 MHz, CDCl₃) of 1ab

Figure S65 ¹³C NMR (150 MHz, CDCl₃) of 1af

Figure S67 ¹³C NMR (150 MHz, CDCl₃) of 1ag

Figure S69 ¹³C NMR (150 MHz, CDCl₃) of 1ah

Figure S73 ¹³C NMR (150 MHz, CDCl₃) of 4a

Figure S75 ¹³C NMR (150 MHz, CDCl₃) of 4b

Figure S79 ¹³C NMR (150 MHz, CDCl₃) of 4d

Figure S81 ¹³C NMR (150 MHz, CDCl₃) of 4e

Figure S83 ¹³C NMR (150 MHz, CDCl₃) of 4f

Figure S85 ¹³C NMR (150 MHz, CDCl₃) of 4g

Figure S87 ¹³C NMR (150 MHz, CDCl₃) of 4h

Figure S89 ¹³C NMR (150 MHz, CDCl₃) of 4i

Figure S93 ¹³C NMR (150 MHz, CDCl₃) of 4k

3.0

2.5 2.0 1.5

1.0 0.5 0.0

7.0

7.5

8.5 8.0

10.0 9.5 9.0 6.0

Figure S99 ¹³C NMR (150 MHz, CDCl₃) of 4n

Figure S101 ¹³C NMR (150 MHz, CDCl₃) of 40

Figure S103 ¹³C NMR (150 MHz, CDCl₃) of 4p

Figure S105 ¹³C NMR (150 MHz, CDCl₃) of 4q

Figure S107 ¹³C NMR (150 MHz, CDCl₃) of 4r

Figure S113 ¹³C NMR (150 MHz, CDCl₃) of 4u

Figure S115 ¹³C NMR (150 MHz, CDCl₃) of 4v

Figure S119 ¹³C NMR (100 MHz, CDCl₃) of 6a

^{5.5} f1 (ppm) 7.5 7.0 2.0 1.5 1.0 0.5 8.5 8.0 6.5 6.0 4.5 4.0 3.5 3.0 2.5 0.0

10.0

Figure S126 ¹H NMR (400 MHz, CDCl₃) of 6e

Figure S125 ¹³C NMR (100 MHz, CDCl₃) of 6d

Figure S129 ¹³C NMR (100 MHz, CDCl₃) of 6f

160 150 140 130 120

Figure S130 ¹H NMR (400 MHz, CDCl₃) of 6g

77.7297 77.7247 77.7243 77.7084 77.7084 77.7084 77.7084 77.7084 77.7090 77.2990 77.2791 77.2791 77.2795

200 190

180 170

210

110 100 f1 (ppm)

5.7574 5.7574 5.7313 5.73145 5.73145 5.73519 5.5.1926 5.1926 5.1926 5.1926 5.1926 5.1926 5.1926 5.1926 5.1926 5.1926 5.1926 5.1926 5.1926 5.1927 5.1926 5.1927 5.1926 5.1927 5.19

90 80

70

50

40

2,4159 2,2468 2,2468 2,2468 1,2509 1,2509 1,570 1,57

60

20

30

10

Figure S132 ¹H NMR (400 MHz, CDCl₃) of 6h

Figure S133 ¹³C NMR (100 MHz, CDCl₃) of 6h

Figure S148 ¹H NMR (400 MHz, CDCl₃) of 6p

Figure S159 ¹³C NMR (100 MHz, CDCl₃) of 8b

Figure S161 ¹³C NMR (100 MHz, CDCl₃) of 8c

Figure S165 ¹³C NMR (100 MHz, CDCl₃) of 8e

Figure S167 ¹³C NMR (150 MHz, CDCl₃) of 2a

S187

Figure S171 ¹³C NMR (150 MHz, CDCl₃) of 3b

Figure S173 ¹H NMR (600 MHz, CDCl₃) of 3c

Figure S177 ¹H NMR (600 MHz, CDCl₃) of 3e 7.7717 7.73875 7.73875 7.73875 7.73875 7.73875 7.73875 7.73875 7.73875 7.33876 7.33876 5.8064 5.8064 5.8064 5.8063 5.8064 5.8063 5.8064 5.8064 5.8063 5.8064 Me 1.03 I 3.09 - 2.99 -- 1.01 2.08 <u>4</u> 2.09 <u>4</u> 2.03 <u>7</u> 0.98 6.04 1.00 1.03 6.5 6.0 5.5 5.0 4.5 ft (ppm) 7.5 7.0 4.0 10.0 2.5 8.5 8.0 3.5 3.0 2.0 9.5 9.0 1.5 1.0 0.5 0.0 Figure S178 ¹³C NMR (150 MHz, CDCl₃) of 3e -173.14 -- 196.99 144.13 131.72 130.35 129.87 129.87 128.02 127.33 127.33 118.85 HITT 12.12 12. Me

S191

110 100 f1 (ppm) 80

70 60 50 40

90

30 20 10

130 120

210

200

190 180

170 160 150 140

Figure S181 ¹H NMR (600 MHz, CDCl₃) of 3g

Contraction (Contraction) (Con

S194

Figure S185 ¹H NMR (600 MHz, CDCl₃) of 3i

S196

110 100 f1 (ppm) 90 80 70 60 50

20 10

40 30

0

150 140 130 120

170 160

210 200 190 180

Figure S189 ¹H NMR (600 MHz, CDCl₃) of 3k

Figure S191 ¹H NMR (600 MHz, CDCl₃) of 31

110 100 f1 (ppm) 90 80 70 60 50

20

10

30

40

120

150 140 130

210

200

190 180 170 160

Figure S193 ¹H NMR (600 MHz, CDCl₃) of 3m

Figure S195 ¹H NMR (600 MHz, CDCl₃) of 3n

110 100 f1 (ppm)

90 80 70 60 50 40 30 20 10

210 200

190 180 170

160 150 140 130 120

Figure S197 ¹H NMR (600 MHz, CDCl₃) of 30

Figure S199 ¹H NMR (600 MHz, CDCl₃) of 3p

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1477)

 (1

S203

110 100 f1 (ppm)

Figure S203 ¹H NMR (600 MHz, CDCl₃) of 3r

(1777) (1777) (1777) (1777) (1775) (1777) (1777) (1777) (1777) (1777) (1777) (1777) (1777)

Figure S205 ¹H NMR (600 MHz, CDCl₃) of 3s

Figure 1, 2014 <pFigure 1, 2014</p> Figure 1, 2014 Figure 1, 2014 Figure 1, 2014 Figure 1, 2014 <pFigure 1, 2014</p> <pFigure 1, 2014</p> <pFigure 1, 2014</p> <pFigure

Figure S207 ¹H NMR (600 MHz, CDCl₃) of 3t

7/7/2010 7/7/2000 7/7/2000 7/7/2000 7/7/2000 7/7/2000 7/7/2000 7/7/2000 7/7/2000 7/7/2000 7/7/2000 7/7/2000 7/7/2000 7/7/2000 7/7

Figure S209 ¹H NMR (600 MHz, CDCl₃) of 3u

S208

Figure S213 ¹H NMR (600 MHz, CDCl₃) of 3w

2.17.12 2.1

Figure S215 ¹H NMR (600 MHz, CDCl₃) of 3x

Figure S217 ¹H NMR (600 MHz, CDCl₃) of 3y

17.7514 17.7514 17.7514 17.7514 17.7514 17.1612 17.

Figure S219 ¹H NMR (600 MHz, CDCl₃) of 3z

Figure S221 ¹H NMR (600 MHz, CDCl₃) of 3aa

Figure S223 ¹H NMR (600 MHz, CDCl₃) of 3ab'

Figure S227 ¹H NMR (600 MHz, CDCl₃) of 3ae

Figure S229 ¹H NMR (600 MHz, CDCl₃) of 3af

Figure S231 ¹H NMR (600 MHz, CDCl₃) of 3ag'

Figure S239 ¹H NMR (600 MHz, CDCl₃) of 5b

Figure S243 ¹H NMR (600 MHz, CDCl₃) of 5d

Figure S246 ¹³C NMR (150 MHz, CDCl₃) of 5e

Figure S249 ¹H NMR (600 MHz, CDCl₃) of 5g

S229

Figure S259 ¹H NMR (600 MHz, CDCl₃) of 5l

Figure S261 ¹H NMR (600 MHz, CDCl₃) of 5m

Figure S263 ¹H NMR (600 MHz, CDCl₃) of 5n

7,4657 7,7502 7,7502 7,7425 7,7425 7,7425 7,7425 7,7425 7,7425 7,7425 7,7425 7,7425 7,7425 7,7425 7,7425 7,7425 7,7425 7,7425 7,7425 7,7425 7,7425 7,7425 7,7445 7,745777,

Figure S265 ¹H NMR (600 MHz, CDCl₃) of 50

Figure S267 ¹H NMR (600 MHz, CDCl₃) of 5p

Figure S269 ¹H NMR (600 MHz, CDCl₃) of 5q

Figure S271 ¹H NMR (600 MHz, CDCl₃) of 5r

(b) A (64) (b) A (64) (c) A (64

Figure S275 ¹H NMR (600 MHz, CDCl₃) of 5t

0 0.00 0.00 0 0.00

Figure S277 ¹H NMR (600 MHz, CDCl₃) of 5u

Figure S279 ¹H NMR (600 MHz, CDCl₃) of 5v

Figure S287 ¹H NMR (400 MHz, CDCl₃) of 7c

2011/1 2011/1

Figure S291 ¹H NMR (400 MHz, CDCl₃) of 7e

Figure S293 ¹H NMR (400 MHz, CDCl₃) of 7f

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

Figure S295 ¹H NMR (400 MHz, CDCl₃) of 7g

Control Con

Figure S297 ¹H NMR (400 MHz, CDCl₃) of 7h

Accession of the second s

Figure S301 ¹H NMR (400 MHz, CDCl₃) of 7j

7,1893 7,12893 7,12851551 7,12851551 7,12851 7,12851 7,12851 7,12851 7,12851

Figure S303 ¹H NMR (400 MHz, CDCl₃) of 7k

Figure S305 ¹H NMR (400 MHz, CDCl₃) of 7l

7,7002 7,6017 7,6017 7,6017 7,6017 7,2001 7,2001 7,2001 7,2001 6,0128 6,0128 6,0128 6,0128 6,0128 6,0128 6,0128 6,0128 6,0128 6,0128 7,2002 6,0128 6,0128 6,0128 7,2002 7,

Figure S307 ¹H NMR (600 MHz, CDCl₃) of 7m

110 100 f1 (ppm) 90

80 70

50

40

60

30 20 10

130 120

210 200

180 170 160 150 140

Figure S309 ¹H NMR (400 MHz, CDCl₃) of 7n 5.0004 5.6015 5.6016 5.6016 4.6019 4.4009 4.4009 7.4019 7.4019 7.4019 7.4019 7.4014 7. 7.7022 7.6859 7.6859 7.6815 7.6815 7.6767 7.6767 7.32237 7.32232 7.32232 7.32232 7.3224 7.3024 1.63-1.05-1 1.07-1 1.70-1 2.75-1.05 1.06 1.09 2.59 3.06 3.06 0.78-1.06 5.5 5.0 4.5 f1 (ppm) 8.0 7.5 4.0 10.0 9.5 8.5 7.0 6.5 6.0 3.5 3.0 2.5 2.0 1.0 . 9.0 1.5 0.5 . 0.0 Figure S310 ¹³C NMR (100 MHz, CDCl₃) of 7n —169.76 —160.66 66.77 60.77 76.89 16.69 16.69 16.69 16.69 16.19 16.11 16 Me Me

Figure S311 ¹H NMR (400 MHz, CDCl₃) of 70

Figure S313 ¹H NMR (400 MHz, CDCl₃) of 7p

Figure S315 ¹H NMR (400 MHz, CDCl₃) of 7q

Figure S317 ¹H NMR (400 MHz, CDCl₃) of 7r

¹²⁰ f1 (ppm) ¹⁰⁰

90 80

140 130

220 210 200

170 160 150

190 180

70 60

40 30 20 10

0

S262

Figure S321 ¹H NMR (400 MHz, CDCl₃) of 9a

Figure S323 ¹H NMR (400 MHz, CDCl₃) of 9b

Figure S325 ¹H NMR (400 MHz, CDCl₃) of 9c

Figure S327 ¹H NMR (400 MHz, CDCl₃) of 9d

Figure S329 ¹H NMR (400 MHz, CDCl₃) of 9e

Figure S331 ¹H NMR (600 MHz, CDCl₃) of 10a

S269

7. X-ray crystal structures of 2a, 3f' and 5a

Crystal preparation: Compound **3a**, **3f'** and **5a** (30 mg) were dissolved in hexane/EA = 9:1 (10 mL) in 25 mL round bottom flask and the resultant solution were allowed to slowly evaporate at room temperature to get pure crystals suitable for X-ray diffraction analysis. The intensity data were collected at 100 K or 150 K on a Rigaku Oxford Diffraction Supernova Dual Source, Cu at Zero equipped with an AtlasS2 CCD using Cu K α radiation. More information on crystal structures can also be obtained from the Cambridge Crystallographic Data Centre (CCDC) with deposition numbers CCDC 2287034 (**3a**), CCDC 2287035 (**3f'**), CCDC 2287036 (**5a**) respectively.

Figure S337. ORTEP Drawing of **3a** with Thermal Ellipsoids at 30% Probability

Levels (CCDC 2287034).

Table S1 Crystal data and structure refinement for 3a

Identification code	3 a
Empirical formula	$C_{24}H_{23}NO_4S$
Formula weight	421.49
Temperature/K	199.99(10)
Crystal system	triclinic
Space group	P-1
a/Å	9.0233(2)
b/Å	10.7494(2)
c/Å	10.9235(2)
α/°	93.559(2)
β/°	94.415(2)

$\gamma/^{\circ}$	95.578(2)
Volume/Å ³	1048.79(4)
Z	2
$\rho_{calc}g/cm^3$	1.335
μ/mm^{-1}	1.627
F(000)	444.0
Crystal size/mm ³	$0.16 \times 0.12 \times 0.09$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	8.138 to 143.354
Index ranges	$-10 \le h \le 11, -13 \le k \le 13, -11 \le 1 \le 13$
Reflections collected	10782
Independent reflections	$3963 [R_{int} = 0.0165, R_{sigma} = 0.0138]$
Data/restraints/parameters	3963/0/281
Goodness-of-fit on F ²	1.058
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0428, wR_2 = 0.1135$
Final R indexes [all data]	$R_1 = 0.0437, wR_2 = 0.1142$
Largest diff. peak/hole / e Å ⁻³	0.32/-0.48

Figure S338. ORTEP Drawing of **3f'** with Thermal Ellipsoids at 30% Probability Levels (CCDC 2287035).

Identification code	3f'
Empirical formula	C ₃₀ H ₂₇ NO ₄ S
Formula weight	497.58
Temperature/K	169.99(10)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	9.9272(8)
b/Å	18.3382(11)
c/Å	13.8851(9)
α/°	90
β/°	103.404(7)
$\gamma/^{\circ}$	90
Volume/Å ³	2458.9(3)
Z	4
$\rho_{calc}g/cm^3$	1.344
μ/mm^{-1}	0.170
F(000)	1048.0
Crystal size/mm ³	0.14 imes 0.12 imes 0.1
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/°	4.218 to 49.996
Index ranges	$\text{-}11 \le h \le 11, \text{-}20 \le k \le 21, \text{-}16 \le l \le 16$
Reflections collected	11677
Independent reflections	4337 [$R_{int} = 0.0293, R_{sigma} = 0.0395$]
Data/restraints/parameters	4337/0/335
Goodness-of-fit on F ²	1.075
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0507, wR_2 = 0.1094$
Final R indexes [all data]	$R_1 = 0.0666, wR_2 = 0.1184$
Largest diff. peak/hole / e Å ⁻³	0.46/-0.37

Table S2 Crystal data and structure refinement for 3f'

Figure S339. ORTEP Drawing of **5a** with Thermal Ellipsoids at 30% Probability

Levels (CCDC 2287036).

Table S3 Crystal data and structure refinement for 5a

Identification code	5a
Empirical formula	$C_{30}H_{27}NO_4S$
Formula weight	497.58
Temperature/K	170.00(10)
Crystal system	monoclinic
Space group	P21
a/Å	18.2577(16)
b/Å	6.2047(4)
c/Å	21.9318(17)
a/°	90
β/°	91.792(8)
$\gamma/^{\circ}$	90
Volume/Å ³	2483.3(3)
Z	4
$\rho_{calc}g/cm^3$	1.331
µ/mm ⁻¹	1.462
F(000)	1048.0
Crystal size/mm ³	$0.15 \times 0.13 \times 0.11$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	4.03 to 133.184
Index ranges	$-21 \le h \le 21, -7 \le k \le 7, 0 \le l \le 26$
Reflections collected	6575
Independent reflections	$6575 [R_{int} = 0.0867, R_{sigma} = 0.1040]$
Data/restraints/parameters	6575/599/654
	S274

Goodness-of-fit on F ²
Final R indexes [I>=2σ (I)]
Final R indexes [all data]
Largest diff. peak/hole / e Å ⁻³
Flack parameter

1.118 $R_1 = 0.1353$, $wR_2 = 0.3633$ $R_1 = 0.1488$, $wR_2 = 0.3736$ 1.23/-0.72 0.06(3)

8. References

S1. D. Wang, F. Wang, G. Song and X. Li, Diverse Reactivity in a Rhodium(III)-Catalyzed Oxidative Coupling of *N*-Allyl Arenesulfonamides with Alkyne, *Angew*. *Chem. Int. Ed.*, 2012, **124**, 12514-12518.

S2. (a) R. E. Geiger, M. Lalonde, H. Stoller and K. Schleich, Cobalt-Catalyzed Cycloaddition of Alkynes and Nitriles to Pyridines: A New Route to Pyridoxine (Vitamin B6), *Helvetica Chimica Acta*, 1984, **67**, 1274-1282; (b) Y. Shi and V. Gevorgyan, Intramolecular Transannulation of Alkynyl Triazoles via Alkyne–Carbene Metathesis Step: Access to Fused Pyrroles, *Org. Lett.*, **2013**, *15*, 5394-5396; (c) D. Llerena, O. Buisine, C. Aubert and M. Malacria, Synthesis of variously substituted allenediynes and their cobalt(I)-mediated [2+2+2] cycloaddition reactions.*Tetrahedron*, 1998, **54**, 9373-9392.