Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supporting Information

Effect of Internal Oxygen Substituents on the Properties of Bowl-Shaped Aromatic Hydrocarbons

Yoshihiro Takeo,¹ Junichiro Hirano,¹ Daiki Shimizu,² Norihito Fukui,^{1,3*} and Hiroshi Shinokubo^{1*}

¹Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

² Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan)

³PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012 (Japan)

E-mail: fukui@chembio.nagoya-u.ac.jp, hshino@chembio.nagoya-u.ac.jp

Table of Contents

1.	Instrumentation and materials	3
2.	Experimental procedures and compound data	4
3.	NMR spectra	6
4.	Mass spectra	. 14
5.	Crystal data	. 16
6.	Cyclic voltammograms	. 19
7.	DFT calculations	. 20
8.	Fullerene binding	. 35
9.	References	. 44

1. Instrumentation and materials

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra were recorded on a Bruker Varian INOVA-500 spectrometer. ¹H NMR (600 MHz) and ¹³C NMR (151 MHz) spectra were recorded on a JEOL JNM-ECA600II spectrometer. Chemical shifts were reported as the delta scale in ppm relative to CHCl₃ (δ = 7.26 ppm) for ¹H NMR and CDCl₃ (δ = 77.16 ppm) for ¹³C NMR. UV/vis absorption spectra were recorded on a JASCO V 670 spectrometer. High-resolution atmospheric pressure chemical ionization time-of-flight (APCI-TOF) mass spectra was taken on a Bruker micrOTOF instrument using a positive ionization mode. X-ray data were obtained using a Rigaku CCD diffractometer (Saturn 724 with MicroMax-007) with Varimax Mo optics. Cyclic voltammograms were obtained under the following conditions; solvent: CH₂Cl₂, electrolyte: 0.1 M Bu₄NPF₆, working electrode: Pt, counter electrode: Pt, reference electrode: Ag/AgNO₃, scan rate: 0.01 V/s.

Compounds **5** and **6** were prepared according to the literature.⁴⁾ TfOH and iodomethane were purchased from Tokyo Chemical Industry Co., Ltd. Anisole was purchased from FUJIFILM Wako Pure Chemical Co. *n*-Butyllithium in hexane was purchased from Kanto Chemical Co., INC. Fullerene C_{60} was purchased from Materials Technologies Research Ltd. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Dimethyl-as-indaceno[3,2,1,8,7,6-ghijklm]terrylene (7)

Compound 6 (21 mg, 46 μ mol) was placed in a two-necked 50 mL glass flask filled with N₂. To the flask, Et₂O (6.0 mL) were added. After stirring at 0 °C, *n*-BuLi (1.6 M, 0.4 mL) was added. The reaction mixture was stirred at 0 °C for 30 min. MeI (0.4 mL, 6.4 mmol) was added to the mixture. The reaction mixture was stirred at room temperature for 30 min. The reaction was quenched with water (2.0 mL). Et₂O was removed by rotary evaporator. The reaction mixture was extracted with EtOAc. The organic phase was washed with brine and dried over Na₂SO₄. After removing the solvent, purification by silica-gel column chromatography (CH₂Cl₂/hexane as eluent) afforded 7 (11.4 mg, 25.1 µmol, 54%) as a yellow solid.

¹H NMR (500 MHz, CDCl₃, 295 K): $\delta = 7.73$ (d, J = 7.2 Hz, 2H), 7.55 (d, J = 8.2 Hz, 2H), 7.54 (d, J = 8.5 Hz, 2H), 7.52 (d, J = 8.5 Hz, 2H), 7.50 (s, 2H), 7.30 (s, 2H), 7.25 (dd, J = 7.2 Hz, J = 8.2 Hz, 2H), 2.39 (s, 6H) ppm; ¹³C NMR (126 MHz, CDCl₃, 296 K): $\delta = 154.3$, 151.1, 138.8, 138.3, 137.5, 132.5 132.1, 131.6, 127.6, 126.9, 126.7, 125.0, 123.7, 120.6, 120.3, 49.1, 31.0 ppm (One signal due to sp² carbons is missing due to overlapping.); HRMS (APCI-TOF): [M+H]⁺ Calcd for C₃₆H₂₁ 453.1638; Found 453.1633; IR v_{max} (neat): 2957 (w), 1576 (w), 1504 (w), 1446 (w), 1182 (w), 826 (s), 810 (s), 779 (s), 754 (s), 697 (w), 613 (w), 547 (w), 455 (w), 431 (m) cm⁻¹; m.p. >250 °C (dec.).

Di(p-methoxyphenyl)-as-indaceno[3,2,1,8,7,6-ghijklm]terrylene (8)

Compound 5 (25 mg, 52 μ mol) was placed in a two-necked 50 mL glass flask filled with N₂. To the flask, CH₂Cl₂ (1.0 mL) and anisole (5.0 mL) were added. After the mixture was stirred at room temperature for 1 min, TfOH (0.02 mL, 0.23 mmol) was added. After the mixture was stirred at room temperature for 1.5 h, the reaction was quenched with NEt₃. The reaction mixture was extracted with CH_2Cl_2 . The organic phase was washed with brine and dried over Na_2SO_4 . After removing the solvent, purification by silica-gel column chromatography (CH_2Cl_2 /hexane as eluent) afforded **8** (14 mg, 22 µmol, 41%) as a yellow solid.

¹H NMR (600 MHz, CDCl₃, 297 K): $\delta = 7.75$ (d, J = 6.6 Hz, 2H), 7.65 (s, 2H), 7.48–7.54 (m, 6H), 7.35–7.36 (m, 6H), 7.22 (dd, $J_1 = 8.3$ Hz, $J_2 = 7.2$ Hz, 2H), 6.50 (d, J = 9.0 Hz, 4H), 3.61 (s, 6H) ppm; ¹³C NMR (151 MHz, CDCl₃, 295 K): $\delta = 158.1$, 153.3, 149.9, 138.9, 138.5, 137.2, 133.4, 133.3, 132.7, 131.9, 128.6, 127.6, 127.3, 127.2, 126.6, 125.1, 123.5, 120.7, 120.2, 113.5, 55.3 ppm; HRMS (APCI-TOF): [M+H]⁺ Calcd for C₄₈H₂₉O₂ 637.2162; Found 637.2137; IR v_{max} (neat): 2960 (w), 1606 (w), 1505 (m), 1461 (w), 1248 (m), 1181 (w), 1096 (w), 1031 (m), 794 (m), 756 (w) cm⁻¹; m.p. 208 °C.

Figure S1. ¹H NMR spectrum of 7 in CDCl₃ at 22 °C (* indicates solvent peaks).

Figure S2. ¹³C NMR spectrum of 7 in CDCl₃ at 23 °C (* indicates solvent peaks).

Figure S3. ¹H NMR spectrum of 8 in CDCl₃ at 24 °C (* indicates solvent and impurity peaks).

Figure S4. ¹³C NMR spectrum of 8 in CDCl₃ at 22 °C (* indicates solvent peaks).

Figure S5. 1D selective NOESY of 5 in toluene- d_8 (yellow boxes indicate irradiated signals.).

Figure S6. 1D selective NOESY of 6 in toluene- d_8 (yellow boxes indicate irradiated signals.).

Figure S7. 1D selective NOESY of 7 in toluene- d_8 (yellow boxes indicate irradiated signals.).

signals.).

4. Mass spectra

Figure S10. APCI-TOF MS spectrum of 8.

Figure S11. X-ray crystal structure of 7. Thermal ellipsoids are shown at the 50% probability level. All hydrogen atoms are omitted for clarity.

Figure S12. Bowl depths of 5, 6, and 7.

Figure S13. X-ray crystal structure of C₆₀@5. Thermal ellipsoids are shown at the 50% probability level. All hydrogen atoms are omitted for clarity.

Figure S14. X-ray crystal structure of $C_{60}@6$. Thermal ellipsoids are shown at the 50% probability level. All hydrogen atoms are omitted for clarity.

compound	7	C ₆₀ @5	C ₆₀ @6
Formula	C ₃₆ H ₂₀	C ₉₆ H ₂₀ O ₂	C94H16
Formula weight	452.56	1205.21	1145.16
Crystal system	Orthorhombic	Monoclinic	Monoclinic
Space group	<i>Aba2</i> (No. 41)	<i>P</i> 2 ₁ / <i>c</i> (No. 14)	<i>P</i> 2 ₁ / <i>m</i> (No. 11)
Crystal color	yellow	brown	black
Crystal description	prism	prism	plate
<i>a</i> [Å]	26.9226(9)	13.3342(2)	9.7684(2)
<i>b</i> [Å]	23.7598(8)	19.0108(3)	17.8451(4)
<i>c</i> [Å]	6.8227(2)	22.7010(4)	13.4530(3)
α [°]	_	—	_
β [°]	—	91.784(1)	96.000(2)
γ [°]	—	—	—
<i>V</i> [Å ³]	4364.3(2)	5751.77(16)	2332.25(9)
Ζ	8	4	4
$d_{\rm calcd} [{ m g \ cm^{-3}}]$	1.377	1.551	1.631
$R_1 \left(I > 2\sigma(I) \right)$	0.0653	0.0488	0.0573
wR_2 (all data)	0.1655	0.1289	0.1604
Goodness-of-fit	1.036	1.010	1.056
Temperature [K]	93	93	93
Solvent	CH ₂ Cl ₂ /hexane	toluene	toluene/hexane
CCDC No	2270014	2270012	2270013

Table S1. Crystallographic data of 7, C_{60} (25, and C_{60} (26).

6. Cyclic voltammograms

Figure S15. Cyclic voltammograms and differential pulse voltammograms of 5, 6, 7, and 8.

7. DFT calculations

Figure S16. Calculated molecular orbitals of 5 at the B3LYP/6-31G(d) level.

Figure S17. Calculated molecular orbitals of 6 at the B3LYP/6-31G(d) level.

Figure S18. Calculated molecular orbitals of 7 at the B3LYP/6-31G(d) level.

Figure S19. Calculated molecular orbitals of 8 at the B3LYP/6-31G(d) level.

	6 3		
С	1 424552	-2 489398	-0 467886
č	0.710386	-3 409505	-1 2466
н	1 221367	-4.042086	-1.2400
C II	0.710368	3 400406	1 246583
U U	-0.710508	4.041010	-1.240303
	-1.221552	-4.041919	-1.900372
C	-1.424528	-2.489455	-0.40/834
C	-0.0/9014	-1./04/55	0.440/52
C	-1.440563	-0.500562	0.935/21
C	-0.69/533	0.797863	0./09611
C	-1.442/93	1.964414	0.431318
C	-0.698416	3.148385	0.268313
H	-1.208772	4.081417	0.047319
C	0.698478	3.148383	0.268314
Н	1.208826	4.081422	0.047318
С	1.442869	1.964419	0.431304
С	0.697621	0.797869	0.709593
С	1.440536	-0.500621	0.935836
С	0.678974	-1.704675	0.44056
С	2.623445	-0.571394	0.024095
С	2.739302	-1.785326	-0.644677
С	3.885796	-1.970742	-1.456655
Η	4.053344	-2.904121	-1.987556
С	4.806484	-0.936803	-1.576848
Η	5.703099	-1.092341	-2.172494
С	4.582511	0.359177	-1.019523
С	5.407946	1.496531	-1.236303
Η	6.341341	1.390574	-1.783792
С	5.004035	2.7332	-0.775166
Η	5.63777	3.600098	-0.941777
С	3.738982	2.926064	-0.157816
Н	3.427723	3.940638	0.075106
С	2.896288	1.85697	0.092351
С	3.401392	0.551147	-0.245356
С	-2.623274	-0.571326	0.023716
С	-2.739266	-1.785337	-0.64479
С	-3.885893	-1.970802	-1.456597
Η	-4.053625	-2.904238	-1.987336
С	-4.806538	-0.936821	-1.576777
Η	-5.703222	-1.092386	-2.172316
С	-4.582492	0.359198	-1.019568
С	-5.407952	1.496559	-1.23623
Η	-6.341411	1.390636	-1.783621
С	-5.00402	2.733202	-0.775037
Η	-5.637799	3.600085	-0.941558
С	-3.738958	2.926085	-0.157714
Н	-3.427759	3.94064	0.075382
С	-2.896214	1.856988	0.092302
С	-3.401291	0.55122	-0.245543
Ō	1.789317	-0.504528	2.332223
Č	2.485668	-1.649784	2.79814
Ĥ	3.465694	-1.768482	2.315979
H	1.905998	-2.571667	2.649458
H	2.633704	-1.49123	3.869359
Ö	-1,790366	-0.504059	2.331887
č	-2 485127	-1.650123	2.331007
Ĥ	-1 903943	-2.571154	2.650246
Ĥ	-3 464773	-1.770654	2.030240
Ĥ	-2 633971	-1 491197	3 869179
11	-2.033771	1.1/11//	5.007177

 Table S2. Cartesian coordinate and geometry of 5.

Negative frequency = zero

Sum of electronic and thermal free energies = -1533.907478 Hartree

С	-1.427137	2.646742	0.308425
С	-0.708149	3.6872	-0.30739
Η	-1.219781	4.436151	-0.906808
С	0.70823	3.687203	-0.307371
Н	1.219909	4.436248	-0.906639
С	1.42722	2.646758	0.308498
С	0.679823	1.732544	1.079928
С	1.434948	0.476525	1.384193
С	0.698355	-0.79143	1.005625
С	1.44304	-1.898378	0.542663
С	0.698192	-3.043458	0.196353
Н	1.209173	-3.929981	-0.167985
С	-0.698181	-3.043444	0.196307
Н	-1.209168	-3.929948	-0.16805
С	-1.443017	-1.898359	0.542626
С	-0.698336	-0.791423	1.005613
С	-1.434955	0.476521	1.384131
С	-0.679806	1.732537	1.079933
С	-2.630095	0.67925	0.522506
С	-2.739528	1.979714	0.034195
С	-3.890545	2.280827	-0.738689
Н	-4.059411	3.282986	-1.123796
С	-4.809218	1.276705	-1.013581
Н	-5.706658	1.518304	-1.578333
С	-4.58231	-0.088543	-0.657882
С	-5.405547	-1.182246	-1.040667
Н	-6.338444	-0.99682	-1.567531
С	-5.003475	-2.474257	-0.765967
Н	-5.637789	-3.306155	-1.060155
С	-3.740751	-2.757366	-0.18125
Н	-3.42938	-3.795185	-0.100531
С	-2.898039	-1.736608	0.225371
С	-3.402662	-0.392753	0.082939
С	2.630169	0.679255	0.522707
С	2.739586	1.979704	0.034259
С	3.890507	2.280775	-0.738766
Н	4.0593	3.282932	-1.123922
С	4.809159	1.276648	-1.013694
Н	5.706551	1.518191	-1.578537
С	4.582275	-0.088574	-0.657863
С	5.405497	-1.182268	-1.040704
Н	6.338341	-0.996799	-1.567641
С	5.003412	-2.474283	-0.766054
Н	5.637653	-3.306203	-1.060335
С	3.740701	-2.757355	-0.181268
Н	3.429277	-3.795165	-0.100686
С	2.898056	-1.736609	0.225479
С	3.402685	-0.392737	0.083057
Н	1.739554	0.424272	2.444554
Н	-1.739741	0.424252	2.444428

Table S3. Cartesian coordinate and geometry of 6.

Negative frequency = zero

Sum of electronic and thermal free energies = -1304.944077 Hartree

	0 2		
С	-1.422303	2.620234	0.039775
С	-0.707879	3.643723	-0.604436
Н	-1.221351	4.370188	-1.229507
С	0.708015	3.643716	-0.604438
Н	1.221482	4.370192	-1.229502
С	1.422416	2.620195	0.039757
С	0.680582	1.725897	0.843246
С	1.450711	0.4847	1.200656
С	0.699771	-0.787225	0.839671
С	1.440154	-1.910215	0.403146
С	0.697671	-3.065787	0.091843
Н	1.209723	-3.96042	-0.250573
С	-0.697733	-3.065777	0.091849
Н	-1.2098	-3.960386	-0.250595
С	-1.440187	-1.910195	0.403171
С	-0.699777	-0.787219	0.839678
С	-1.450722	0.484711	1.200643
С	-0.680555	1.725898	0.843279
С	-2.617262	0.657715	0.284302
С	-2.728439	1.944315	-0.234846
С	-3.87136	2.224471	-1.027109
Н	-4.036857	3.216442	-1.439342
C	-4.787286	1.213167	-1.28467
Н	-5.679049	1.439027	-1.864767
C	-4.563932	-0.14102	-0.88766
C	-5.384826	-1.245471	-1.243034
H	-6.312056	-1.076297	-1.785246
C	-4.988246	-2.528516	-0.921156
H	-5.621343	-3.368594	-1.194137
C	-3./328/4	-2./94507	-0.313205
H	-3.425818	-3.829/6/	-0.19246
C	-2.891/9/	-1./6164	0.06607
C	-3.390657	-0.423579	-0.128394
C	2.61/325	0.65/6/1	0.28445
C	2./28556	1.944245	-0.234/2
U U	5.8/1404	2.224415	-1.02/013
H C	4.030900	5.210399	-1.439233
U	4.787303	1.213117	-1.204304
п	5.079155	0.14109	-1.004/
C	5 384802	-0.14108	-0.00739
ч	6 312036	1.076331	-1.243033
II C	4 088103	2 528584	-1.785249
н	5 621256	-3 368666	-0.921233
II C	3 732819	-2 794557	-1.1)+275 -0.313207
ч	3 425722	3 820800	0.102601
C	2 891776	-1 761677	0.066044
C	3 390696	-0.423629	-0 128314
C	1 931892	0.455345	2 680263
Ĥ	2 497313	1.363825	2.000205
H	1 081733	0.389827	3 365429
H	2 578296	-0.411513	2 850738
Ċ	-1.932163	0.45522	2.680115
Ĥ	-1.082151	0.3894	3.365444
H	-2.497405	1.363799	2.912461
H	-2.578773	-0.411533	2.850364

 Table S4. Cartesian coordinate and geometry of 7.

Negative frequency = zero

Sum of electronic and thermal free energies = -1383.518601 Hartree

Table S5. Cartesian coordinate and geometry of a	8.
--	----

С	1.421376	-0.962456	2.664568
С	0.707979	-1.38412	3.798041
Н	1.222749	-1.842116	4.63903
Ĉ	-0.707947	-1.384085	3,79806
Ĥ	-1 222717	-1 842052	4 639063
C	-1 421353	-0.96239	2 664605
C	0.670286	0.266081	1 621287
C	-0.079280	-0.300981	1.021367
C	-1.449994	-0.233209	0.330963
C	-0./00135	-0.914141	-0.818883
C	-1.439533	-1.602274	-1.809604
С	-0.697336	-2.182039	-2.856423
Н	-1.210421	-2.7248	-3.644858
С	0.6972	-2.182049	-2.856447
Н	1.21025	-2.724812	-3.644902
С	1.439441	-1.602299	-1.80965
С	0.700085	-0.91416	-0.818901
Ċ	1.449995	-0.255263	0.330947
Č	0.67931	-0.367007	1 621372
Č	2 628781	-1 110017	0.600583
C	2.028781	1 252285	2.066105
C	2.734994	-1.552565	2.000195
U II	5.878845	-2.060995	2.514171
H	4.03/034	-2.254351	3.5/19/4
C	4.803306	-2.519971	1.586079
Н	5.697677	-3.03206	1.933243
С	4.579282	-2.42649	0.178505
С	5.399342	-3.016767	-0.820997
Н	6.330284	-3.501809	-0.537406
С	4.995859	-2.997522	-2.14142
Н	5.627683	-3.449437	-2.90137
С	3,732834	-2.477846	-2.529228
Ĥ	3 417557	-2 601481	-3 561637
C	2 895865	-1 877752	-1 603621
C C	3 402864	1 752873	0.262586
C	2 628908	1 100015	-0.202380
C	-2.028808	-1.109915	0.09903
C	-2./33002	-1.332201	2.000207
C	-3.8/88/3	-2.060815	2.514276
H	-4.03/049	-2.254148	3.572085
С	-4.80337	-2.519769	1.58621
Н	-5.697757	-3.031816	1.9334
С	-4.579367	-2.426325	0.178632
С	-5.399465	-3.016594	-0.820844
Н	-6.33042	-3.501596	-0.537227
С	-4.996003	-2.997395	-2.141274
H	-5.627856	-3.449305	-2.901203
C	-3 732965	-2 477774	-2 529114
н	-3 417709	-2 601448	-3 561524
II C	2 80506	1 877687	1 603535
C	-2.09590	-1.877087	-1.003333
C	-3.402931	-1./52/0	-0.262494
C	-1.904139	1.193/88	0.010953
C	-2.34354	2.030147	1.041/22
С	-1.937607	1.698071	-1.296497
С	-2.800446	3.325401	0.793668
Н	-2.331073	1.673187	2.067244
С	-2.389249	2.986258	-1.56118
Н	-1.603144	1.083303	-2.124762
С	-2.825451	3.811698	-0.518379
Ĥ	-3.127646	3.938939	1.625515
H	-2 408579	3 374548	-2 574819
C	1 00/179	1 103773	0 010025
č	2 2 A A 1 5 Q	2 020851	1 0/1626
C	2.344130	2.029031	1.041030
C	1.93/063	1.098243	-1.296445
C	2.8010/1	3.325106	0.793607
Н	2.332155	1.6727	2.067097

С	2.388702	2.986438	-1.5611
Н	1.602143	1.083662	-2.124663
С	2.825493	3.811652	-0.51836
Н	3.12874	3.938436	1.625424
Н	2.407578	3.374917	-2.574675
0	3.249521	5.059806	-0.879879
0	-3.24952	5.059842	-0.879892
С	-3.698862	5.93444	0.140716
Н	-2.905313	6.148766	0.869304
Н	-3.985082	6.860472	-0.361861
Н	-4.570406	5.526151	0.670122
С	3.699367	5.934268	0.14062
Н	3.985507	6.860307	-0.361993
Н	2.906134	6.148646	0.869531
Н	4.571072	5.525839	0.669652

Negative frequency = zero

Sum of electronic and thermal free energies = -1995.873522 Hartree

Ŋ 5 .
1

		-	
0	6 091628	-1 69025	-0.06737
Ő	5 972871	2 176723	0 105725
Č	3 407435	-2 755633	-1 908954
C	3 720034	1 305011	2 071870
C	3 861505	2 516754	-2.071879
C	2 260801	2 280617	0.479933
C	5.500691	-5.280017	-0.308813
C	4.728303	-1.320272	0.232144
C	4.509/48	-0.581/15	1.52/21/
C	4.237/69	-0.566909	-0.9/949
C	2.633/12	-4.458192	-0.227801
C	2.896247	-3.568913	-2.905546
H	2.891943	-3.23/1/5	-3.939652
С	3.48095	-2.654544	1.810432
С	3.321918	-0.550761	-3.188409
Н	2.913151	-1.05234	-4.060062
С	3.676942	1.578962	-2.025502
С	4.489296	0.776013	1.549092
С	3.807666	-1.354782	2.482409
С	3.287892	3.006823	-1.814974
С	3.294691	0.84475	-3.164531
Н	2.862499	1.358297	-4.017771
С	4.21731	0.829507	-0.95508
С	3.238049	-0.673284	3.563613
Н	2.667125	-1.209928	4.316689
C	2 307735	-4 825095	-2 599532
Ĥ	1 923602	-5 430395	-3 415861
C	2 368291	-4 699669	1 154058
н	1 801027	-5 588681	1 418728
C	2 140118	-5.25203	_1 297943
н	1 606477	-6.174436	-1.083556
II C	2 21/16	2 481522	-1.0655550
C C	2 741170	2 929404	-0.437033
U U	2.741179	2 522602	-2.76323
II C	2.750052	2.222002	-3.63038
U U	2.334007	5.00520	2.277998
П	2.22/0/1	4.008943	3.300219
C	3./54383	1.486208	2.528//2
C II	/.0620/3	1.209852	-0.009116
H	/.94//1	1.892034	-0.163239
H	7.191326	0.6/3462	0.90449
H	6.943532	0.578959	-0.851466
C	3.211195	0.746898	3.585/66
Н	2.617606	1.236666	4.353137
C	2.43258	4.611854	-0.079089
С	3.368519	2.788842	1.899925
С	4.677968	1.576418	0.282632
С	3.75004	2.709439	0.566206
С	2.720976	-3.79896	2.15227
Н	2.398646	-3.972481	3.175007
С	6.770862	-2.412084	0.950623
Н	7.782208	-2.58118	0.572847
Н	6.826032	-1.840996	1.88827
Н	6.29688	-3.381137	1.15719
С	1.904106	5.417459	-1.123432
Н	1.329263	6.30714	-0.879197
С	2.093134	5.044104	-2.438414
Н	1.683101	5.659021	-3.234727
Ĉ	2 156963	4.796806	1 309119
Ĥ	1 548589	5 649142	1 601589
 C	-1 807883	0.003535	-3 426741
č	-0 529688	0.003333	-2.420741
Č	_0.07105	1 211602	-2.000390
C	_0.006202	2 322/02	-2.13300/ 2.022270
C	-0.900505	2.322492 2.204761	-2.0352/9
C	-2.230242	2.274/01	-2.015095

-2.679596	1.15982	-3.297682
-4.037583	0.678617	-3.104752
-4.005135	-0.774723	-3.114154
-2.626985	-1.192181	-3.312889
-2.135191	-2.315115	-2.645022
-0.80322	-2.290677	-2.06314
-0.018722	-1.141819	-2.170114
0.750422	-0.680293	-1.027048
0.718351	0.770217	-1.017798
0.646478	1.458112	0.191908
-0.223465	2.614713	0.318818
-0.982588	3.040528	-0.770518
-2.36174	3.455511	-0.57243
-3.137613	2.995441	-1.712559
-4.441538	2.533475	-1.528617
-4.90075	1.351598	-2.239204
-5.766947	0.599382	-1.346655
-5.735808	-0.795558	-1.35565
-4.837174	-1.496708	-2.25758
-4.3254	-2.666026	-1.562247
-3.002124	-3.066699	-1.751734
-2.206179	-3.50629	-0.617405
-0.847011	-3.02764	-0.809785
-0.107416	-2.582307	0.285225
0.709974	-1.386533	0.173552
0.634934	-0.670289	1.433484
0.603796	0.72296	1.442419
-0.290412	1.425507	2.347614
-0.803907	2.594949	1.651055
-2.126022	2.996325	1.841203
-2.921655	3.435571	0.706158
-4.27912	2.952863	0.897205
-5.024123	2.512006	-0.19725
-5.843132	1.316429	-0.084653
-5.885599	0.609881	1.117785
-5.85308	-0.843137	1.108395
-5.779567	-1.531541	-0.10304
-4.907909	-2.687764	-0.230842
-4.143655	-3.108965	0.858067
-2.766033	-3.528131	0.66121
-1.990503	-3.068464	1.802142
-0.687686	-2.605808	1.617551
-0.226669	-1.423785	2.329365
-1.088169	-0.750798	3.19704
-1.120606	0.703737	3.20651
-2.500186	1.12055	3,401943
-2.992123	2.242996	2.733769
-4.322883	2.216482	2.150139
-5.109578	1.069004	2.25806
-4.597723	-0.100058	2,953346
-5.057047	-1.281843	2.242908
-4.219895	-2.391479	2.120349
-2.889087	-2.366008	2.703949
-2.44758	-1.231333	3 386573
-3.319347	-0.075055	3.513251

Table S7. Cartesian coordinate and geometry of C_{60}
--

		-	
С	4.616438	-0.698719	-0.884041
Č	4 82546	-0 679789	1 63384
Č	3 726946	-0.697632	-3 105171
н	3 324084	-1 206087	-3 075538
II C	5 052355	1 /30078	0.363124
ч	6 10/255	1 75/218	0.303124
	0.104255	-1./34318	1 06206
C	4.100/95	-1.441102	-1.90890
C	3.002389	-5.585114	-0.434030
C	3.740305	-2.8814/5	-1./84204
C	4.18/038	-2.626868	0.610503
C	4.096128	-1.421769	2.58/528
С	3.759377	-2.720756	1.934015
C	3.532733	-0.707773	3.658606
Н	2.957205	-1.223025	4.422845
С	2.947572	-3.830143	2.279327
Н	2.596488	-3.967849	3.298134
С	2.577077	-4.732673	1.29321
Н	1.968657	-5.593324	1.559812
С	2.877161	-4.522347	-0.087738
С	3.215726	-3.693091	-2.776343
Н	3.235736	-3.376314	-3.814933
С	2.37102	-5.314298	-1.152635
Н	1.797726	-6.210832	-0.930545
C	2.577393	-4.920175	-2.459439
Ĥ	2 183601	-5 526044	-3 270814
C	4 616387	0.69888	-0.884037
Č	4 825407	0.679937	1 633843
C	3 726896	0.69775	-3 105167
н	3 323007	1 206181	-3.07553
II C	5.052261	1.200181	0 363132
U	6 104140	1.440131	0.303132
	4 100680	1./34341	1.068051
C	4.100089	2 202220	-1.908931
C	2 740126	2 991504	-0.43403
C	5.740120	2.881394	-1./8419
C	4.180888	2.020995	0.010311
C	4.09602	1.421863	2.58/53
C	3./591/1	2.72082	1.934011
C	3.532676	0.70782	3.65860/
H	2.95/111	1.223024	4.42285
C	2.947338	3.83019	2.279333
H	2.596065	3.967773	3.29809
С	2.576867	4.732739	1.293229
Н	1.968396	5.593356	1.559826
С	2.876994	4.522463	-0.087711
С	3.215449	3.693172	-2.776313
Н	3.235413	3.37638	-3.814898
С	2.370745	5.314366	-1.152588
Н	1.79745	6.210896	-0.930484
С	2.577064	4.920225	-2.459396
Н	2.183178	5.526048	-3.270761
С	-0.262889	-1.426363	2.641698
С	-3.111946	-0.698444	-3.335135
С	-0.887663	-2.602939	2.058098
С	0.70664	-0.726687	1.924265
С	-1.279977	-0.697466	3.383579
Ē	-3,735568	-0.725983	3,138673
č	-0 512312	-3 032454	0 784078
č	-2 532614	-1 423605	3 257070
Č	_4 127044	-1 424037	-2 501602
č	_7 200257	-1.727257	-2.591092
C	2 261075	-2.00050	2.7303/0
C	-5.2010/5	-3.032137	1.333324
C	-1.322824	-3.482483	-0.1392/6
U	-3.493403	-1.1/3910	-0.553236

-1.859537	-1.426325	-3.211887
-3.879862	-3.032325	-0.736106
-2.101243	-2.602414	-2.392309
-2.869433	-3.481919	0.207769
0.121293	-2.306399	-1.361775
-3.503575	-2.601323	-2.008895
1.099802	-1.176361	0.599577
-4.513105	-2.304493	1.408941
-4.745837	-1.175474	2.195258
-4.895505	-2.304649	0.006477
0.501294	-2.304251	0.040767
-5.103793	-0.727071	-1.879039
-1.130558	-3.033565	-1.486462
-5.737569	0.000149	0.265815
-0.657088	-0.728016	-3.091564
-5.370299	0.000389	1.611928
0.352316	-1.176747	-2.146896
1.343605	-0.000205	-0.219302
0.972513	-0.000445	-1.562329
-0.262781	1.427134	2.641159
-3.111891	0.69719	-3.335395
-0.887471	2.603539	2.057108
0.706691	0.727115	1.923991
-1.279924	0.698597	3.383318
-3.735513	0.727208	3.138397
-0.512092	3.032543	0.782929
-2.532506	1.424785	3.257438
-4.127835	1.424041	-2.592232
-2.290062	2.601207	2.43759
-3.260848	3.032728	1.532177
-1.522565	3.482312	-0.160591
-5.495323	1.175891	-0.553682
-1.859429	1.425024	-3.212428
-3.8/9639	3.032108	-0.737252
-2.101048	2.601447	-2.393295
-2.869171	3.48197	0.206455
0.121446	2.305643	-1.362639
-3.503383	2.600603	-2.009883
1.099912	1.1/6286	0.599145
-4.512936	2.305131	1.4080/3
-4./45/44	1.1/6422	2.194812
-4.895334	2.304/88	0.005606
0.501458	2.303972	0.039885
-5.103/42	0./26518	-1.8/9316
-1.130333	3.03286	-1.48/609
-0.05/034	0./20009	-3.09184
0.352411	1.1/3681	-2.14/349

F c ^r c ^r c ^r c ^r c ^r c ^r b	$A \xrightarrow{C-C} R \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C}$			
	5 (R = OCH ₃)	6 (R = H)	7 (R = CH ₃)	8 (R = $C_6H_4OCH_3$)
bowl-depth (Å)	2.00	1.97	2.02	2.05

Figure S20. Bowl-depths of 5, 6, 7, and 8 in their optimized structures.

Figure S21. Calculated electron potential maps of 5, 6, 7, and 8.

Figure S22. Experimental absorption spectrum (red line) and calculated oscillator strengths (blue bars) of 5.

Figure S23. Experimental absorption spectrum (red line) and calculated oscillator strengths (blue bars) of 5.

Figure S24. Experimental absorption spectrum (red line) and calculated oscillator strengths (blue bar) of 7.

Figure S25. Experimental absorption spectrum (red line) and calculated oscillator strengths (blue bars) of 8.

h H b d H b g f	e (concave		(convex)
Position	$\Delta\delta/ppm$		
	Exp.	Calc. (concave)	Calc. (convex)
a	0.03	0.05	0.03
b	—	-0.11	0.03
c	—	0.07	0.02
d	—	0.21	0.03
e		0.04	0.01
f	0.01	-0.01	-0.03
g	0.07	0.18	-0.06
h	0.03	0.13	0.16

Table S8. Experimental and calculated chemical shift changes ($\Delta\delta$) of 6 upon fullerene binding.

Figure S26. The change of ¹H NMR chemical shifts of 5 in toluene- d_8 at 303 K.

Table S9. Parameters given by the curve fitting of the change of 1 H NMR chemical shifts of **5**.

	Peripheral proton		
T/K	K _{assoc} /M⁻¹	Δδ _{max} /ppm	R ²
303	884 ± 46	0.1240	0.9973
313	745 ± 44	0.1181	0.9971
323	638 ± 44	0.1118	0.9968
333	532 ± 44	0.1086	0.9963
343	477 ± 40	0.0999	0.9966

Figure S27. The change of ¹H NMR chemical shifts of **6** in toluene- d_8 at 303 K.

Table S10. Parameters given by the curve fitting of the change of ${}^{1}H$ NMR chemical shifts of 6.

	Peripheral proton		
T/K	K _{assoc} /M⁻¹	$\Delta \delta_{max}/ppm$	R ²
303	918 ± 72	0.1350	0.9950
313	713 ± 60	0.1335	0.9956
323	606 ± 56	0.1258	0.9956
333	518 ± 55	0.1194	0.9952
343	425 ± 51	0.1148	0.9952

Figure S28. The change of ¹H NMR chemical shifts of 7 in toluene- d_8 at 303 K.

Table S11. Parameters given by the curve fitting of the change of ${}^{1}H$ NMR chemical shifts of 7.

	Peripheral proton		
T/K	K _{assoc} /M⁻¹	Δδ _{max} /ppm	R ²
303	865 ± 15	0.1363	0.9998
313	710 ± 15	0.1324	0.9997
323	584 ± 14	0.1296	0.9997
333	489 ± 14	0.1264	0.9997
343	406 ± 12	0.1231	0.9998

Figure S29. The change of ¹H NMR chemical shifts of 8 in toluene- d_8 at 303 K.

Table S12. Parameters given by the curve fitting of the change of ${}^{1}H$ NMR chemical shifts of 8.

	Peripheral proton		
T/K	K _{assoc} /M⁻¹	Δδ _{max} /ppm	R ²
303	964 ± 14	0.1488	0.9998
313	777 ± 12	0.1468	0.9998
323	646 ± 12	0.1434	0.9998
333	530 ± 10	0.1414	0.9998
343	431 ± 10	0.1400	0.9998

Figure S30. van't Hoff plots of 5, 6, 7, and 8.

9. References

- Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2016**.
- (a) Becke, A. D. *Phys. Rev. A* 1988, *38*, 3098. (b) Lee, C.; Yang, W.; Parr, R. G. *Phys. Rev. B* 1988, *37*, 785.
- E. Epifanovsky, A. T. B. Gilbert, X. Feng, J. Lee, Y. Mao, N. Mardirossian, P. Pokhilko, A. 3. F. White, M. P. Coons, A. L. Dempwolff, Z. Gan, D. Hait, P. R. Horn, L. D. Jacobson, I. Kaliman, J. Kussmann, A. W. Lange, K. U. Lao, D. S. Levine, J. Liu, S. C. McKenzie, A. F. Morrison, K. D. Nanda, F. Plasser, D. R. Rehn, M. L. Vidal, Z.-Q. You, Y. Zhu, B. Alam, B. J. Albrecht, A. Aldossary, E. Alguire, J. H. Andersen, V. Athavale, D. Barton, K. Begam, A. Behn, N. Bellonzi, Y. A. Bernard, E. J. Berquist, H. G. A. Burton, A. Carreras, K. Carter-Fenk, R. Chakraborty, A. D. Chien, K. D. Closser, V. Cofer-Shabica, S. Dasgupta, M. de Wergifosse, J. Deng, M. Diedenhofen, H. Do, S. Ehlert, P.-T. Fang, S. Fatehi, Q. Feng, T. Friedhoff, J. Gayvert, Q. Ge, G. Gidofalvi, M. Goldey, J. Gomes, C. E. González-Espinoza, S. Gulania, A. O. Gunina, M. W. D. Hanson-Heine, P. H. P. Harbach, A. Hauser, M. F. Herbst, M. H. Vera, M. Hodecker, Z. C. Holden, S. Houck, X. Huang, K. Hui, B. C. Huynh, M. Ivanov, Á. Jász, H. Ji, H. Jiang, B. Kaduk, S. Kähler, K. Khistyaev, J. Kim, G. Kis, P. Klunzinger, Z. Koczor-Benda, J. H. Koh, D. Kosenkov, L. Koulias, T. Kowalczyk, C. M. Krauter, K. Kue, A. Kunitsa, T. Kus, I. Ladjánszki, A. Landau, K. V. Lawler, D. Lefrancois, S. Lehtola, R. R. Li, Y.-P. Li, J. Liang, M. Liebenthal, H.-H. Lin, Y.-S. Lin, F. Liu, K.-Y. Liu, M. Loipersberger, A. Luenser, A. Manjanath, P. Manohar, E. Mansoor, S. F. Manzer, S.-P. Mao, A. V. Marenich, T. Markovich, S. Mason, S. A. Maurer, P. F. McLaughlin, M. F. S. J.

Menger, J.-M. Mewes, S. A. Mewes, P. Morgante, J. W. Mullinax, K. J. Oosterbaan, G. Paran, A. C. Paul, S. K. Paul, F. Pavošević, Z. Pei, S. Prager, E. I. Proynov, Á. Rák, E. Ramos-Cordoba, B. Rana, A. E. Rask, A. Rettig, R. M. Richard, F. Rob, E. Rossomme, T. Scheele, M. Scheurer, M. Schneider, N. Sergueev, S. M. Sharada, W. Skomorowski, D. W. Small, C. J. Stein, Y.-C. Su, E. J. Sundstrom, Z. Tao, J. Thirman, G. J. Tornai, T. Tsuchimochi, N. M. Tubman, S. P. Veccham, O. Vydrov, J. Wenzel, J. Witte, A. Yamada, K. Yao, S. Yeganeh, S. R. Yost, A. Zech, I. Y. Zhang, X. Zhang, Y. Zhang, D. Zuev, A. Aspuru-Guzik, A. T. Bell, N. A. Besley, K. B. Bravaya, B. R. Brooks, D. Casanova, J.-D. Chai, S. Coriani, C. J. Cramer, G. Cserey, A. E. DePrince, R. A. DiStasio, A. Dreuw, B. D. Dunietz, T. R. Furlani, W. A. Goddard, S. Hammes-Schiffer, T. Head-Gordon, W. J. Hehre, C.-P. Hsu, T.-C. Jagau, Y. Jung, A. Klamt, J. Kong, D. S. Lambrecht, W. Liang, N. J. Mayhall, C. W. McCurdy, J. B. Neaton, C. Ochsenfeld, J. A. Parkhill, R. Peverati, V. A. Rassolov, Y. Shao, L. V. Slipchenko, T. Stauch, R. P. Steele, J. E. Subotnik, A. J. W. Thom, A. Tkatchenko, D. G. Truhlar, T. V. Voorhis, T. A. Wesolowski, K. B. Whaley, H. L. Woodcock, P. M. Zimmerman, S. Faraji, P. M. W. Gill, M. Head-Gordon, J. M. Herbert, A. I. Krylov, *J. Chem. Phys.* 2021, *155*, 084801.

4. Tanaka, Y.; Fukui, N.; Shinokubo, H. Nat. Commun. 2020, 11, 3873.