Supporting Information

Synthesis of 2-Acyl Benzofurans and Indoles Based on Nucleophile–Intercepted Meyer–Schuster Rearrangement of *o*-Hydroxyphenyl and *o*-Aminophenyl Propargylic Alcohols

Zhao-Zhao Li,^a Si-Jing Jiang,^a Shu-Yun He,^a Yu-Ning Gao,^{*a} Ming Bian,^a Hui-Yu Chen^{*a} and Zhen-Jiang Liu^{*a,b}

^a School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China

Fax: (+86)-21-60877231; Tel: (+86)-21-60877227; E-mail: gaoyuning@sit.edu.cn;

chenhuiyu@sit.edu.cn; zjliu@sit.edu.cn

^b Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.

Table of Contents

General information	2
Screening of reaction conditions	2
General procedure for the synthesis of o-hydroxyphenyl propargylic alcohols	3
General procedure for the synthesis of o-aminophenyl propargylalcohols	4
General procedure for the synthesis of 2-acyl benzofurans	5
General procedure for the synthesis of 2-acyl indoles	6
Attempt to synthesize benzothiophene	6
Control experiments	6
Scale-up preparation of 13a	11
Scale-up preparation and transformation of 14k	11
Spectra data of compounds 13a-13y, 14a-14v, 14v', 19c, and 3	12
References	22
Copies of NMR spectra	24

General information

All moisture or oxygen-sensitive reactions were carried out in a nitrogen atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. The solvents used were purified by distillation over the drying agents indicated and were transferred under nitrogen: THF (Na), CH₂Cl₂ (CaH₂), toluene (Na), ClCH₂CH₂Cl (CaH₂). Reagents were purchased at commercial quality and used without further purification. All reactions were monitored by thin-layer chromatography carried out on 0.25 mm Rushan silica gel plates (GF254) and visualized by exposure to UV light (254 nm) or KMnO₄. The products were purified by column chromatography on silica gel (200-300 meshes) from Qing Dao Hai Yang Chemical Industry Company in China. ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ or DMSO-d₆ on a Bruker Advance III 500 MHz instrument (resonance frequencies 500 MHz for ¹H and 125 MHz for ¹³C), Bruker Advance III 400 MHz instrument (resonance frequencies 400 MHz for ¹H and 100 MHz for ¹³C), China Qone AS400 MHz instrument (resonance frequencies 400 MHz for ¹H and 100 MHz for ¹³C), or Bruker ascend 600 MHz (resonance frequencies 600 MHz for ¹H and 100 MHz for ¹³C). Chemical shifts were reported in δ value (ppm) relative to CDCl₃ (¹H NMR: 7.26 ppm, ¹³CNMR: 77.00 ppm), DMSO (¹H NMR: 2.50 ppm, ¹³CNMR: 39.5 ppm) or TMS (0.00 ppm). ¹⁹F NMR was recorded on a China Qone AS400 MHz instrument (CFCl3 as an external standard and low field is positive). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, br = broad, td = triple doublet, dt = double triplet, m = multiplet. Mass spectrometric data were obtained using a Bruker Solaril X70 high resolution mass spectrometer (samples were dissolved in CH₃OH and the ion source was ESI). The IR spectra were recorded on a Nicolet iN10.

Screening of reaction conditions

To a 10 mL Schlenk tube, equipped with a magnetic stir bar, was added *o*-hydroxyphenyl propargylic alcohols **11a** (45 mg, 0.2 mmol) or *o*-aminophenyl propargylic alcohol **12a** (75 mg, 0.2 mmol), pyridine *N*-oxide **18** or isoquinoline *N*-oxide **18a**, and solvent (3 mL) followed by acid catalyst. The reaction mixture was heated in an oil bath at indicated temperature and monitored by TLC. Upon completion, the reaction mixture was cooled to room temperature and quenched with saturated aqueous NaHCO₃ solution. The aqueous phase was extracted with EtOAc (10 mL × 3). The organic extracts were combined and washed with brine, dried over anhydrous Na₂SO₄, and evaporated under vacuum. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 3:1 or 3:1) to give the final product.

Table S1 Severation of reaction conditions

Table S1. Screening of reaction conditions								
entry	solvent	catalyst	temp (°C)	t (h)	yield (%) ^b			
1	THF	TFA	50	25	55			
2	THF	TsOH	50	24	80			
3	1,2-DCE	TsOH	50	24	98			

^aReaction conditions: compounds **11a** (0.2 mmol) and **18a** (0.3 mmol), solvent (3 mL), catalyst (0.02 mmol); ^bYield of the isolated product.

Table S2. Screening of reaction conditions^a

entry	Х	solvent	т	п	temp (°C)	t (h)	yield $(\%)^b$
1	0	1,2-DCE	2.0	0.1	50	24	73
2	Ο	1,2-DCE	2.0	0.1	70	22	80
3	Ο	1,2-DCE	2.0	0.1	reflux	1	98
4	0	1,2-DCE	1.0	0.1	reflux	4	93
5	0	1,2-DCE	1.2	0.1	reflux	1.5	95
6	0	CH ₃ CN	1.2	0.1	reflux	3	90
7	0	toluene	1.2	0.1	85	3	83
8	0	DMF	1.2	0.1	85	2	84
9	NTs	1,2-DCE	1.2	0.1	reflux	24	50
10	NTs	1,2-DCE	1.2	0.2	reflux	24	51
11	NTs	1,2-DCE	1.2	1.0	reflux	24	49
12	NTs	CH ₃ CN	1.2	0.2	reflux	14	48
13	NTs	toluene	1.2	0.2	reflux	12	91
14	NTs	toluene	1.2	0.1	reflux	16	72

^aReaction conditions: compounds **11a** or **12a** (0.2 mmol) and **18** (0.02-0.2 mmol), solvent (3 mL), catalyst; ^bYield of the isolated product.

General procedure for the synthesis of o-hydroxyphenyl propargylic alcohols

o-Hydroxyphenyl propargylic alcohols **11a-11y** were prepared according to the reported literature.^[1]General synthetic route of propargylic alcohols **11a-11y** is shown below.

To the solution of S_2 (22 mmol, 2.2 equiv.) in dry THF (30 mL) was slowly added *n*-BuLi (21 mmol, 2.5 M in THF, 2.1 equiv.) at -78 °C under nitrogen atmosphere. The reaction mixture was stirred at this temperature for 1 h, then a solution of the corresponding salicylaldehyde or *o*-hydroxyphenyl ketone S_1 (10 mmol, 1.0 equiv.) in 4 mL of THF was added dropwise via a cannula. The reaction mixture was stirred at -78 °C for another 1-1.5 h until the disappearance of the starting material indicated by TLC (thin-layer chromatography) analysis. Then the reaction mixture was quenched with saturated aqueous NH₄Cl solution and THF was removed under vacuum. The resulting aqueous phase was extracted with EtOAc (30 mL × 3). The combined organic layers were washed with water (30 mL) and brine (30 mL), dried over anhydrous Na₂SO₄, and evaporated under vacuum. The residue was purified by column chromatography (petroleum ether/EtOAc = 10/1) or by crystallization with petroleum ether to give **11a**-

11y. The spectral data was in accordance with the reported data.^[1]

General procedure for the synthesis of o-aminophenyl propargylalcohols

o-Aminophenyl propargylalcohols were prepared according to known procedures.^[2] To an eggshaped flask was added 2-aminobenzaldehydes or ketones S_3 (10 mmol, 1.0 equiv.), DCM (25 mL) and pyridine (13 mmol, 1.3 equiv.). Then TsCl or NsCl (12 mmol, 1.2 equiv.) was added to the above mixture under 0 °C and stirred at room temperature for about 4 h. The reaction was monitored by TLC. Upon completion, the mixture was quenched with water and extracted with DCM (30 mL × 3). The combined organic extracts were washed with water (30 mL) and brine (30 mL), dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1) to afford S₄.

To an egg-shaped flask was added 2-aminobenzaldehydes S_3 (10 mmol, 1.0 equiv.), DMF (25 mL) and Et₃N (30 mmol, 3 equiv.). Then Boc₂O (12 mmol, 1.2 equiv.) was added to the above mixture under 0 °C and stirred at room temperature for 12 h. The reaction was monitored by TLC. Upon completion, the mixture was quenched with water and extracted with DCM (30 mL × 4). The combined organic extracts were washed with water (30 mL × 3) and brine (30 mL), dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 5:1) to afford S_4 .

To an egg-shaped flask was added 2-aminobenzaldehydes S_3 (10 mmol, 1.0 equiv.), THF (25 mL) and Et₃N (20 mmol, 2 equiv.). Then acyl chloride (10 mmol, 1.0 equiv.) was added to the above mixture under 0 °C and stirred at room temperature for 5 h. The reaction was monitored by TLC. Upon completion, the mixture was quenched with water and THF was removed under reduced pressure. The resulting aqueous phase was extracted with DCM (30 mL × 3). The combined organic extracts were

washed with water (30 mL) and brine (30 mL), dried over Na_2SO_4 and concentrated in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 3:1) to afford S_4 .

To a solution of S_2 (5.5 mmol, 2.2 equiv.) in THF (5 mL) was added *n*-BuLi dropwise (5.5 mmol, 2.5 M in THF, 2.2 equiv.) at -78 °C under nitrogen atmosphere. Then the mixture was stirred for 10 min at -78 °C. The mixture was warmed to -40 °C and allowed to continue for another 1 h. After that, the system was cooled down to -78 °C and a solution of S_4 (2.5 mmol, 1.0 equiv.) in THF (4 mL) was added slowly to the above mixture. The reaction was stirred for 1 h at -78 °C and warmed to room temperature while stirring for another 1 h (monitored by TLC). Upon completion, the reaction mixture was quenched with saturated NH₄Cl solution, and extracted with EtOAc (20 mL×3) after removal of THF under vacuum. The combined organic extracts were washed with water (20 mL) and brine (20 mL), dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 5:1) to afford **12a-12v**. The spectral data was in accordance with the reported data.^[2]

General procedure for the synthesis of 2-acyl benzofurans

For 0.2 mmol Scale:

To a 10 mL Schlenk tube, equipped with a magnetic stir bar, was added *o*-hydroxyphenyl propargylic alcohols **11** (0.2 mmol), pyridine *N*-oxide **18** (0.24 mmol), and 1,2-DCE (3 mL) followed by TsOH (0.02 mmol). The reaction mixture was stirred at reflux and monitored by TLC. Upon completion, the reaction mixture was cooled to room temperature and quenched with saturated aqueous NaHCO₃ solution. The aqueous phase was extracted with EtOAc (10 mL \times 3). The organic extracts were combined and washed with brine, dried over anhydrous Na₂SO₄, and evaporated under vacuum. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 3:1 or 3:1) to give products **13a-y**.

General procedure for the synthesis of 2-acyl indoles

For 0.2 mmol Scale:

To a 10 mL Schlenk tube, equipped with a magnetic stir bar, was added *o*-aminophenyl propargylalcohols **12** (0.2 mmol), pyridine *N*-oxide **18** (0.24 mmol), and toluene (3 mL) followed by TsOH (0.04 mmol). The reaction mixture was stirred at reflux and monitored by TLC. Upon completion, the reaction mixture was cooled to room temperature and quenched with saturated aqueous NaHCO₃ solution. The aqueous phase was extracted with EtOAc (10 mL \times 3). The organic extracts were combined and washed with brine, dried over anhydrous Na₂SO₄, and evaporated under vacuum. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 3:1) to give products **14a-v**.

Attempt to synthesize benzothiophene

To a 10 mL Schlenk tube was added 1-(2-mercaptophenyl)-3-phenylprop-2-yn-1-ol S_5 ^[3] (48 mg, 0.2 mmol, 1.0 equiv.), pyridine *N*-oxide **18** (23 mg, 0.24 mmol, 1.2 equiv.) and 1,2-DCE (3 mL) followed by TsOH (4 mg, 0.02 mmol, 0.1 equiv.). The reaction mixture was stirred at reflux and monitored by TLC. No desired product (S_7) was formed according to NMR and mass spectrometry analysis and benzo[*b*]thiophen-2-yl(phenyl)methanol S_6 (32 mg, 0.13 mmol) was obtained instead. The spectral data was in accordance with the reported data^[4]. The investigation of this transformation is underway in our laboratory. Compound S_6 (67% yield, white solid, melting point: 80.0 – 82.0 °C): ¹H NMR (500 MHz, CDCl₃) δ 7.74 (d, *J* = 8.0 Hz, 1H), 7.65 (d, *J* = 7.5 Hz, 1H), 7.44 (d, *J* = 7.5 Hz, 2H), 7.35 (t, *J* = 7.5 Hz, 2H), 7.32 – 7.20 (m, 3H), 7.07 (s, 1H), 6.04 (s, 1H), 2.71 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 148.6, 142.5, 139.8, 139.4, 128.6, 128.2, 126.4, 124.2, 124.2, 123.6, 122.4, 121.2, 72.9. IR: \bar{v} = 3450, 1620, 1043, 777, 599 cm⁻¹; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₅H₁₂NaOS⁺ 263.0502; found: 263.0502.

Control experiments

Synthesis of 5-phenylpent-4-yn-1-ol 19a

PdCl₂(PPh₃)₂ (70 mg, 0.1 mmol, 0.01 equiv.) and CuI (38 mg, 0.2 mmol, 0.02 equiv.) were dissolved in Et₃N (27.80 ml, 200.0 mmol, 20.0 equiv.). 4-Pentyn-1-ol **S**₉ (0.93 ml, 10.0 mmol, 1.0 equiv.) and iodobenzene **S**₈ (2.24 ml, 20.0 mmol, 2.0 equiv.) were added at the same time to the mixture. The reaction was stirred over night at room temperature and monitored by TLC. The reaction was quenched with saturated aqueous NH₄Cl solution and the aqueous layer was extracted with EtOAc (30 mL × 3). The combined organic phase was washed with H₂O and brine and was then dried over Na₂SO₄. After removing the solvent in vacuo, the residue was purified by flash column chromatography (petroleum ether/EtOAc = 6:1 to 2:1). The title product **19a** was obtained as a yellowish liquid (1.35 g, 8.4 mmol, 84% yield). The spectra were in accordance with the literature. ^[5]

Synthesis of 5-phenylpent-4-yne-1,3-diol 19b

Step I: LDA (5.50 ml, 11.0 mmol, 2.0 M in THF, 1.1 equiv.) was added dropwise to a solution of *tert*-butyl acetate S_{11} (1.48 ml, 11.0 mmol, 1.1 equiv.) at -78 °C in THF (25 mL). The reaction mixture was stirred for 1 h and a solution of 3-phenylpropiolaldehyde S_{10} (1.22 ml, 10.0 mmol, 1.0 equiv.) in THF (20 mL) was slowly added. After 30 minutes, the reaction was quenched with saturated NH₄Cl solution. Most of the organic solvent was evaporated in vacuo. The residue was taken up in ethyl acetate (30 mL) and washed with water (30 mL). The aqueous layer was extracted with EtOAc (15 mL × 2). The organic extracts were combined and dried over Na₂SO₄. Evaporation of the solvent afforded the desired compound as a yellow oil, which was used in the next step without purification.

Step II: NaBH₄ (0.47 g, 12.5 mmol, 2.5 equiv.) was added to a solution of *tert*-butyl-3-hydroxy-5phenylpent-4-ynoate S_{12} (1.23 g, 5.0 mmol, 1.0 equiv.) in THF (20 mL). Methanol (4.05 ml, 100.0 mmol, 20.0 equiv.) was then added. The reaction mixture was allowed to stir at room temperature and monitored by TLC. Upon completion, the reaction was quenched with water. Most of the organic solvent was evaporated in vacuo. The residue was extracted from EtOAc (30 mL × 3). The combined organic layers were dried over anhydrous Na₂SO₄ and evaporated under vacuum. The residue was purified by column chromatography (petroleum ether/EtOAc = 10:1) on silica gel to give the title compound **19b** as a yellow oil (0.39 g, 2.3 mmol, 45% yield). All spectra were in accordance with the literature.^[6]

Synthesis of 3,5-diphenylpent-4-yne-1,3-diol 19c^[6]

Step I: LDA (5.50 ml, 11.0 mmol, 2.0 M in THF, 1.1 equiv.) was added dropwise to a solution of *tert*-butyl acetate S_{11} (1.48 ml, 11 mmol, 1.1 equiv.) at -78 °C (20 mL). The reaction mixture was stirred for 1 h and a solution of 1,3-diphenylprop-2-yn-1-one S_{13} (2.06 g, 10 mmol, 1.0 equiv.) in THF (20 mL) was added slowly. After 30 minutes, the reaction was quenched with a solution of saturated ammonium chloride (25 mL). Most of the organic solvents were evaporated in vacuo. The residue was taken up in ethyl acetate (30 mL) and washed with water (30 mL). The aqueous layer was extracted with ethyl acetate (15 mL × 2). The organic extracts were combined and dried over Na₂SO₄. Evaporation of the solvent afforded the desired compound S_{14} as a yellow oil, which was used in the next step without purification.

Step II: DIBAL (10.00 ml, 20 mmol, 2.0 M in THF, 2.0 equiv.) was added to a solution of *tert*-butyl 3,5-diphenylpent-4-ynoate S_{14} (3.22 g, 10 mmol, 1.0 equiv.) in THF (30 mL) at 0 °C. The reaction mixture was allowed to stir at 0 °C and monitored by TLC. Upon completion, the reaction was quenched with a 10% NaOH solution and most of the organic solvents were evaporated in vacuo. The residue was extracted with ethyl acetate (30 mL × 3). The combined organic layers were dried over Na₂SO₄ and evaporated under vacuum. The residue was purified by column chromatography (petroleum ether/EtOAc = 10:1) on silica gel to give the title compound **19c** as a white solid (1.14 g, 4.5 mmol, 45% yield).

Control experiment 1:

To a 10 mL Schlenk tube was added 5-phenylpent-4-yn-1-ol **19a** (32 mg, 0.2 mmol, 1.0 equiv.), pyridine *N*-oxide **18** (23 mg, 0.24 mmol, 1.2 equiv.) and toluene (3 mL) followed by TsOH (4 mg, 0.02 mmol, 0.1 equiv.). The reaction mixture was stirred at reflux and monitored by TLC. No desired product was formed according to NMR and mass spectrometry analysis.

Control experiment 2:

To a 10 mL Schlenk tube was added 5-phenylpent-4-yne-1,3-diol **19b** (35 mg, 0.2 mmol, 1.0 equiv.), pyridine *N*-oxide **18** (23 mg, 0.24 mmol, 1.2 equiv.) and toluene (3 mL) followed by TsOH (4 mg, 0.02 mmol, 0.1 equiv.). The reaction mixture was stirred at reflux and monitored by TLC. No desired

product was formed according to NMR and mass spectrometry analysis.

Control experiment 3:

To a 10 mL Schlenk tube was added 3,5-diphenylpent-4-yne-1,3-diol **19c** (50 mg, 0.2 mmol, 1.0 equiv.), pyridine *N*-oxide **18** (23 mg, 0.24 mmol, 1.2 equiv.) and toluene (3 mL) followed by TsOH (4 mg, 0.02 mmol, 0.1 equiv.). The reaction mixture was stirred at reflux and monitored by TLC. The desired product was isolated in 65% yield after work up and column chromatography. Compound **20c** (65% yield, yellow oil): ¹**H NMR** (400 MHz, CDCl₃) δ 7.91 – 7.86 (m, 2H), 7.51 – 7.45 (m, 1H), 7.34 (t, *J* = 7.6 Hz, 2H), 7.27 – 7.22 (m, 2H), 7.21 – 7.11 (m, 3H), 4.61 (t, *J* = 10.0 Hz, 2H), 3.30 (t, *J* = 10.0 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 189.4, 147.7, 136.3, 133.3, 133.0, 129.7, 128.2, 128.1, 127.5, 127.3, 121.6, 69.1, 35.2. **IR**: \bar{v} = 3416, 1617, 1400, 1156 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₁₇H₁₄NaO₂⁺ 273.0886; found: 273.0889.

Control experiment 4:

To probe the probable reaction pathway, we set up an experiment to try to capture the intermediate. To a 10 mL Schlenk tube, equipped with a stir bar, was added *o*-hydroxyphenyl propargylic alcohol **11a** (0.2 mmol, 1.0 equiv.), pyridine *N*-oxide **18** (0.4 mmol, 2 equiv.), and CDCl₃ (3 ml) followed by TsOH (0.02 mmol, 0.1 equiv.). The reaction mixture was then transferred into an NMR tube and subjected to NMR analysis after 0.5 hours and 3 hours. We could observe peaks of product **13a** and pyridine according to NMR analysis, but no useful information of possible intermediate was found.

after 3 h

Scale-up preparation of 13a

To a 100 mL round-bottom flask, equipped with a stir bar and condenser, was added *o*-hydroxyphenyl propargylic alcohol **11a** (1.121 g, 5.00 mmol, 1.0 equiv.), pyridine *N*-oxide **18** (0.571 g, 6.00 mmol, 1.2 equiv.), and 1,2-DCE (20 ml) followed by TsOH (86 mg, 0.50 mmol, 0.1 equiv.). The reaction mixture was stirred at reflux and monitored by TLC. Upon completion, the reaction mixture was cooled to room temperature and quenched with saturated aqueous NaHCO₃ solution. The aqueous phase was extracted with DCM (20 mL × 3). The organic extracts were combined and washed with brine, dried over anhydrous Na₂SO₄, and evaporated under vacuum. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 3:1) to give product **13a** in 92% yield (1.024 g, 4.61 mmol).

Scale-up preparation and transformation of 14k and 3

To a 100 mL round-bottom flask, equipped with a stir bar and condenser, was added *o*-aminophenyl propargylalcohol **12k** (1.276 g, 3.00 mmol, 1.0 equiv.), pyridine *N*-oxide **18** (0.342 g, 3.60 mmol, 1.2 equiv.), and toluene (20 mL) followed by TsOH (103 mg, 0.60 mmol, 0.2 equiv.). The reaction mixture was stirred at reflux and monitored by TLC. Upon completion, the reaction mixture was cooled to room temperature and quenched with saturated aqueous NaHCO₃ solution. The aqueous phase was extracted with EtOAc (20 mL × 3). The organic extracts were combined and washed with brine, dried over anhydrous Na₂SO₄, and evaporated under vacuum. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1 to 3:1) to give product **14k** in 79% yield (1.010 g, 2.38 mmol).

To a 100 mL round-bottom flask, equipped with a stir bar and condenser, was added **14k** (0.999 g, 2.36 mmol, 1.0 equiv.) and EtOH (20 mL) followed by NaOH (0.187 g, 4.72 mmol, 2.0 equiv.). The reaction mixture was stirred at reflux and monitored by TLC. Upon completion, the reaction mixture was cooled to room temperature and quenched with saturated aqueous NH₄Cl solution. The aqueous phase was extracted with EtOAc (20 mL \times 3) after removal of CH₃OH. The organic extracts were combined and washed with brine, dried over anhydrous Na₂SO₄, and evaporated under vacuum. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 10:1) to give product **3** in 91% yield (0.577 g, 2.15 mmol).

Spectra data of compounds 13a-13y, 14a-14v, 14v', 19c, and 3

benzofuran-2-yl(phenyl)methanone (13a)

Compound **13a** (95% yield, white solid, Melting point: 79.2 – 83.6 °C): ¹H NMR (400 MHz, CDCl₃) δ 8.06 – 8.02 (m, 2H), 7.72 (d, J = 8.0 Hz, 1H), 7.63 (t, J = 8.0 Hz, 2H), 7.56 – 7.47 (m, 4H), 7.33 (t, J = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 184.4, 156.0, 152.2, 137.2, 132.9, 129.4, 128.5, 128.4, 127.0, 124.0, 123.3, 116.5, 112.6. IR: \bar{v} = 3062, 1649, 1329, 1186, 972 cm⁻¹;

HRMS (ESI) m/z: $[M + H]^+$ calcd for $C_{15}H_{11}O_2^+$ 223.0754; found: 223.0758.

(7-methylbenzofuran-2-yl)(phenyl)methanone (13b)

Compound **13b** (>99% yield, white solid, Melting point: 115.2 – 119.6 °C): ¹H NMR (400 MHz, CDCl₃) δ 8.08 – 8.01 (m, 2H), 7.65 – 7.60 (m, 1H), 7.57 -7.49 (m, 4H), 7.29 (d, J = 7.2, 1H), 7.22 (t, J = 7.6 Hz, 1H), 2.61 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 184.4, 155.2, 152.0, 137.3, 132.7, 129.4, 129.0, 128.4, 126.4, 124.0, 122.8, 120.6, 117.0, 15.1. **IR**: $\bar{v} =$ 3451, 2065, 1600, 1398, 1156 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₁₆H₁₂NaO₂⁺ 259.0730; found: 259.0736.

(5-methylbenzofuran-2-yl)(phenyl)methanone (13c)

Compound **13c** (99% yield, yellow solid, Melting point: 130.7 – 133.0 °C): ¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, J = 7.5 Hz, 2H), 7.63 (t, J = 7.0 Hz, 1H), 7.57 – 7.47 (m, 4H), 7.45 (s, 1H), 7.31 (d, J = 8.5 Hz, 1H), 2.46 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 184.3, 165.6, 154.5, 152.3, 137.3, 133.6, 132.8, 130.0, 129.4, 128.5, 127.1, 122.7, 116.3, 112.0, 21.3. **IR**: \bar{v} = 3130, 1709, 1380, 1130 cm⁻¹; **HRMS** (ESI) m/z: [M + K]⁺

calcd for $C_{16}H_{12}KO_2^+$ 275.0469; found: 275.0467.

(6-methylbenzofuran-2-yl)(phenyl)methanone (13d)

Compound **13d** (>99% yield, yellow solid, Melting point: 88.0 – 90.1 °C): ¹**H NMR** (500 MHz, CDCl₃) δ 8.02 (d, J = 7.5 Hz, 2H), 7.64 – 7.57 (m, 2H), 7.52 (t, J = 7.5 Hz, 2H), 7.45 (d, J = 19.5 Hz, 2H), 7.15 (d, J = 8.0 Hz, 1H), 2.51 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 184.3, 156.5, 151.8, 139.4, 137.4, 132.7, 129.3, 128.4, 125.7, 124.5, 122.7, 116.8, 112.4, 22.1. **IR**: \bar{v} = 3099, 2053, 1589, 1399, 1152 cm⁻¹; **HRMS** (ESI)

m/z: $[M + K]^+$ calcd for $C_{16}H_{12}KO_2^+$ 275.0469; found: 275.0467.

(7-methoxybenzofuran-2-yl)(phenyl)methanone (13e)

Compound **13e** (98% yield, yellow oil): ¹**H NMR** (500 MHz, CDCl₃) ¹H NMR (500 MHz, CDCl₃) δ 8.10 – 8.06 (m, 2H), 7.62 (t, *J* = 7.0, 1H), 7.53 (t, *J* = 8.0 Hz, 3H), 7.30 – 7.27 (m, 1H), 7.23 (t, *J* = 7.5 Hz, 1H), 6.97 – 6.94 (m, 1H), 4.03 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 183.9, 152.5, 146.0, 145.7, 137.1, 132.8, 129.5, 128.5 (d, *J* = 7.9 Hz), 124.6, 116.3, 114.9, 109.6, 56.1. **IR**: \bar{v} = 2942, 1648, 1265, 1131, 731 cm⁻¹; **HRMS** (ESI) m/z: [M + K]⁺ calcd for C₁₆H₁₂KO₃⁺ 291.0419 ; found: 291.0416.

(5-methoxybenzofuran-2-yl)(phenyl)methanone (13f)

Compound **13f** (>99% yield, white solid, Melting point: 120.4 – 121.4 °C): ¹**H** NMR (500 MHz, CDCl₃) δ 8.04 (d, J = 8.0, 1.5 Hz, 2H), 7.63 (tt, J = 7.0, 1.4 Hz, 1H), 7.50 (t, J = 7.5, 3H), 7.47 (s, 1H), 7.11 (m, 2H), 3.86 (s, 3H). ¹³C NMR (125MHz, CDCl₃) δ 184.2, 156.6, 152.9, 151.2, 137.2, 132.8, 129.4, 128.5, 127.4, 118.5, 116.5, 113.2, 103.9, 55.8. **IR**: \bar{v} = 3098, 2038, 1653, 1405, 1284, 1161 cm⁻¹; **HRMS** (ESI)

m/z: $[M + K]^+$ calcd for $C_{16}H_{12}KO_3^+$ 291.0419; found: 291.0415.

(6-chlorobenzofuran-2-yl)(phenyl)methanone (13g)

13g

Compound **13g** (99% yield, white solid, Melting point: 134.2 - 136.6 °C): **¹H NMR** (500 MHz, CDCl₃) δ 8.06 – 8.00 (m, 2H), 7.69 (d, J = 2.0 Hz, 1H), 7.67 – 7.62 (m, 1H), 7.55 (td, J = 8.3, 7.8, 4.3 Hz, 3H), 7.47 – 7.42 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 184.0, 154.1, 153.2, 136.7, 133.1, 129.5, 129.4, 128.6 (d, J = 4.2 Hz), 128.1, 122.5, 115.4, 113.6. **IR**: $\bar{v} = 3161$, 1719, 1610, 1400, 1130, 770cm⁻¹; **HRMS** (ESI) m/z: [M + K]⁺ calcd for C₁₅H₉ClKO₂⁺ 294.9923 (100%), 296.9894 (32%) found: 294.9921, 296.9893.

(7-bromobenzofuran-2-yl)(phenyl)methanone (13h)

Compound **13h** (98% yield, white solid, Melting point: 114.0 – 115.6 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 8.04 (d, J = 8.0 Hz, 2H), 7.66 (t, J = 7.6 Hz, 1H), 7.56 (q, J = 8.0 Hz, 3H), 7.52 – 7.47 (m, 2H), 7.36 (t, J = 8.0 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 184.0, 155.5, 152.1, 136.8, 133.1, 129.4, 129.1, 128.7 (d, J = 4.9 Hz), 126.9, 116.3, 116.0, 111.6. **IR**: $\bar{v} = 3168$, 2060, 1640, 1044, 1150 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₁₅H₉BrNaO₂⁺

322.9679 (100%), 324.9658 (98%); found: 322.9680, 324.9658.

(5-bromobenzofuran-2-yl)(phenyl)methanone (13i)

Compound **13i** (99% yield, white solid, Melting point: 135.9 - 136.3 °C): ¹**H NMR** (500 MHz, CDCl₃) δ 8.04 (d, J = 8.0 Hz, 2H), 7.86 (d, J = 2.5 Hz, 1H), 7.65 (t, J = 7.5 Hz, 1H), 7.66 – 7.51 (m, 4H), 7.46 (s, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 184.0, 154.6, 153.2, 136.8, 133.1, 131.3, 129.5, 128.8, 128.6, 125.7, 117.0, 115.2, 114.0. **IR**: $\bar{v} = 3570$, 2296, 1620, 1400 ,1160, 546 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for

C₁₅H₉BrNaO₂⁺ 322.9679 (100%), 324.9658 (98%); found: 322.9679, 324.9657.

(6-nitrobenzofuran-2-yl)(phenyl)methanone (13j)

Compound **13j** (91% yield, white solid, Melting point: 195.4 – 198.6 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 8.69 (d, J = 2.4 Hz, 1H), 8.42 (dd, J = 9.4, 2.4 Hz, 1H), 8.06 (d, J = 7.6 Hz, 2H), 7.76 (d, J = 9.2 Hz, 1H), 7.72 – 7.64 (m, 2H), 7.58 (t, J = 7.6 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 183.7, 158.2, 154.7, 144.9, 136.4, 133.6, 129.5, 128.8, 127.2, 123.5, 119.9, 116.0, 113.2. **IR**: \bar{v} = 3420, 2252, 1631, 1400, 1048 cm⁻¹;

HRMS (ESI) m/z: $[M + H]^+$ calcd for $C_{15}H_{10}NO_4^+$ 268.0605; found: 268.0606.

benzofuran-2-yl(p-tolyl)methanone (13k)

Compound **13k** (97% yield, yellow solid, Melting point: 95.3 – 97.7 °C): ¹**H NMR** (500 MHz, CDCl₃) δ 8.00 – 7.94 (m, 2H), 7.72 (d, *J* = 7.5 Hz, 1H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.53 – 7.46 (m, 2H), 7.32 (t, *J* = 7.5 Hz, 3H), 2.46 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 184.0, 155.9, 152.4, 143.8, 134.5, 129.6, 129.2, 128.2, 127.0, 123.9, 123.2, 116.1, 112.5, 21.7. **IR**: \bar{v} = 3010, 1737, 1620, 1420, 1172cm⁻¹; **HRMS** (ESI) m/z: [M + K]⁺ calcd for C₁₆H₁₂KO₂⁺ 275.0469; found: 275.0467.

benzofuran-2-yl(4-methoxyphenyl)methanone (13l)

Compound **131** (97% yield, yellow solid, Melting point: 95.7 – 97.7 °C): ¹H NMR (500 MHz, CDCl₃) δ 8.13 – 8.09 (m, 2H), 7.72 (d, J = 10.0 Hz, 1H), 7.63 (d, J = 10.0 Hz, 1H), 7.52 (s, 1H), 7.50 – 7.46 (m, 1H), 7.32 (t, J = 10.0 Hz, 1H), 7.04 – 7.00 (m, 2H), 3.90 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 182.8, 163.5, 155.7, 152.6, 131.9, 129.7, 128.0, 127.0, 123.8, 123.1, 115.5, 113.8, 112.4, 55.5. **IR**: $\bar{v} = 3102$, 2059, 1634, 1394, 1288, 1150 cm⁻¹; **HRMS** (ESI) m/z: [M + K]⁺ calcd for C₁₆H₁₃KO₃⁺ 291.0419; found: 291.0415.

benzofuran-2-yl(4-chlorophenyl)methanone (13m)

Compound **13m** (98% yield, white solid, Melting point: 148.3 – 148.9 °C): ¹**H** NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.4 Hz, 2H), 7.73 (d, *J* = 8.0 Hz, 1H), 7.63 (d, *J* = 8.4 Hz, 1H), 7.54 – 7.49 (m, 4H), 7.34 (t, *J* = 7.2 Hz, 1H). ¹³**C** NMR (100 MHz, CDCl₃) δ 182.9, 155.9, 152.0, 139.4, 135.3, 130.9, 128.8, 128.5, 126.8, 124.1, 123.3, 116.5, 112.5. **IR**: \bar{v} = 3086, 2077, 1570, 1386, 1154, 672 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₁₅H₉ClNaO₂⁺ 279.0184 (100%), 281.0154 (33%); found: 279.0190, 281.0161.

benzofuran-2-yl(4-bromophenyl)methanone (13n)

Compound **13n** (93% yield, white solid, Melting point: 135.6 – 137.3 °C): ¹**H** NMR (500 MHz, CDCl₃) δ 7.95 (d, J = 8.5 Hz, 2H), 7.74 (d, J = 7.5 Hz, 1H), 7.69 (d, J = 8.5 Hz, 2H), 7.64 (d, J = 8.5 Hz, 1H), 7.55 (s, 1H), 7.52 (t, J = 7.5 Hz, 1H), 7.35 (t, J = 7.5 Hz, 1H). ¹³**C** NMR (125 MHz, CDCl₃) δ 183.1, 156.0, 152.0, 135.8, 131.8, 131.0, 128.6, 128.1, 126.9, 124.1, 123.3, 116.5, 112.5. **IR**: $\bar{v} = 3140$, 1766, 1288, 1016, 794 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₁₅H₉BrNaO₂⁺ 322.9679 (100%), 324.9658 (98%);

found: 322.9679, 324.9657.

benzofuran-2-yl(4-(trifluoromethyl)phenyl)methanone (130)

Compound **130** (89% yield, white solid, Melting point: 149.5 – 158.0 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 8.15 (d, J = 8.0 Hz, 2H), 7.80 (d, J = 8.0 Hz, 2H), 7.74 (d, J = 8.0 Hz, 1H), 7.64 (d, J = 8.4 Hz, 1H), 7.57 (s, 1H), 7.53 (t, J = 7.6 Hz, 1H) 7.35 (t, J = 7.6 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 183.1, 156.1, 151.8, 140.1, δ 134.2 (q, J = 33.2 Hz), 129.7, 128.8, 126.8, 125.5 (q, J = 4.0 Hz), 123.6 (q, J = 271.0 Hz), 124.2, 123.5, 117.0, 112.6. ¹⁹**F NMR** (376 MHz, DMSO- d_6) δ -61.55. **IR**: \bar{v} = 3060, 1747, 1670,

1335, 1090,791cm⁻¹; **HRMS** (ESI) m/z: $[M + K]^+$ calcd for $C_{16}H_9F_3KO_2^+$ 329.0187; found: 329.0182.

naphthalen-2-yl(naphtho[2,1-b]furan-2-yl)methanone (13p)

Compound **13p** (95% yield, yellow solid, Melting point: 180.2 – 181.8 °C): ¹**H** NMR (500 MHz, CDCl₃) δ 8.66 (s, 1H), 8.19 (d, J = 8.0 Hz, 1H), 8.14 (d, J = 8.5, 1H), 8.08 (s, 1H), 8.06 – 7.92 (m, 5H), 7.78 (d, J = 9.0 Hz, 1H), 7.68 – 7.54 (m, 4H). ¹³**C** NMR (125 MHz, CDCl₃) δ 183.7, 154.6, 152.1, 135.4, 134.7, 132.4, 131.0, 130.6, 130.1, 129.5, 129.1, 128.5, 128.5, 128.2, 127.9, 127.5, 126.9, 125.6, 125.3, 123.4, 122.9, 115.6, 112.9. **IR**: \bar{v} = 3146, 2063, 1635, 1399, 1161 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for

 $C_{23}H_{14}NaO_2^+$ 345.0886; found: 345.0884.

benzofuran-2-yl(thiophen-2-yl)methanone (13q)

Compound 13q (88% yield, yellow solid, Melting point: 69.7 – 71.9 °C): ¹H

13q

NMR (500 MHz, CDCl₃) δ 8.31 (d, J = 3.8 Hz, 1H), 7.77 – 7.69 (m, 3H), 7.62 (d, J = 8.5 Hz, 1H), 7.49 (t, J = 8.0 Hz, 1H), 7.32 (t, J = 7.5 Hz, 1H), 7.23 (t, J = 4.0 Hz, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 174.9, 155.7, 152.5, 142.2, 134.5, 134.4, 128.3, 128.1, 126.9, 124.0, 123.2, 114.5, 112.3. **IR**: \bar{v} = 3140, 1755, 1326, 1180 cm⁻¹; **HRMS** (ESI) m/z:[M + Na]⁺ calcd for C₁₃H₈NaO₂S⁺ 251.0138; found: 251.0144.

1-(benzofuran-2-yl)pentan-1-one (13r)

Compound **13r** (98% yield, yellow solid, Melting point: 46.1 – 48.4 °C): ¹**H NMR** (500 MHz, CDCl₃) δ 7.70 (d, J = 7.5 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.51 – 7.45 (m, 2H), 7.31 (t, J = 7.5 Hz, 1H), 2.95 (t, J = 7.5 Hz, 2H), 1.76 (m, 2H), 1.44 (m, 2H), 0.97 (t, J = 7.0 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 191.6, 155.5, 152.5, 128.1, 127.0, 123.8, 123.2, 112.6, 112.4, 38.6, 26.3, 22.4, 13.8. **IR**: \bar{v} = 2668, 1702, 1304, 1051, 788, 617 cm⁻¹; **HRMS** (ESI) m/z: [M + K]⁺ calcd for C₁₃H₁₄KO₂⁺ 241.0626; found: 241.0625.

1-(benzofuran-2-yl)-2,2-dimethylpropan-1-one (13s)

Compound **13s** (>99% yield, yellow oil): ¹**H NMR** (500 MHz, CDCl₃) δ 7.70 (d, J = 7.5 Hz, 1H), 7.60 – 7.52 (m, 2H), 7.46 (t, J = 8.0, 1H), 7.30 (t, J = 7.5 Hz, 1H), 1.43 (s, 9H). ¹³**C NMR** (125 MHz, CDCl₃) δ 196.7, 155.0, 152.6, 127.7, 126.7, 123.7, 123.0, 113.6, 112.2, 43.5, 26.7. **IR**: $\bar{v} = 3150, 1753, 1286, 1027, 783$ cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₁₃H₁₄NaO₂⁺ 225.0886; found: 225.0888.

benzofuran-2-carbaldehyde (13t)

Compound **13t** (97% yield, yellow oil): ¹**H NMR** (500 MHz, CDCl₃) δ 9.88 (s, 1H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.62 (d, *J* = 8.5 Hz, 1H), 7.58 (s, 1H), 7.53 (t, *J* = 8.0 Hz, 1H), 7.36 (t, *J* = 7.5 Hz, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 179.8, 156.2, 152.6, 129.2, 126.6, 124.2, 123.6, 117.9, 112.7. **IR**: \bar{v} = 3420, 1640, 1400, 1150 cm⁻¹; **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₉H₇O₂⁺ 147.0441; found: 147.0444.

5-methylbenzofuran-2-carbaldehyde (13u)

Compound **13u** (90% yield, yellow oil): ¹**H NMR** (400 MHz, CDCl₃) δ 9.83 (s, 1H), 7.49 (t, J = 9.2 Hz, 3H), 7.33 (d, J = 8.5 Hz, 1H), 2.46 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 179.7, 154.7, 152.7, 133.8, 130.8, 126.7, 123.0, 117.7, 112.1, 21.2. **IR**: $\bar{v} = 3365$, 1731, 1457, 1186 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₁₀H₈NaO₂⁺ 183.0417; found: 183.0418.

5-chlorobenzofuran-2-carbaldehyde (13v)

Compound **13v** (97% yield, white solid, Melting point: 128.4 - 133.1 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 9.88 (s, 1H), 7.72 (s, 1H), 7.53 (d, J = 10.1 Hz, 2H), 7.47 (d, J = 8.8 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 179.6, 154.4, 153.5, 129.8, 129.4, 127.8, 122.9, 116.6, 113.7. **IR**: $\bar{v} = 3298$, 1649, 1445, 1257, 970 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₉H₅ClNaO₂⁺

202.9871 (100%), 204.9841 (32%); found: 202.9870, 204.9843.

5-bromobenzofuran-2-carbaldehyde (13w)

Compound **13w** (93% yield, yellow solid, Melting point: 129.9 – 132.8 °C): ¹**H** NMR (400 MHz, CDCl₃) δ 9.86 (s, 1H), 7.87 (s, 1H), 7.58 – 7.57 (m, 1H), 7.49 – 7.46 (m, 2H). ¹³**C** NMR (100 MHz, CDCl₃) δ 179.6, 154.7, 153.3, 132.1, 128.4, 126.0, 117.2, 116.3, 114.2. **IR**: \bar{v} = 3266, 1643, 1287, 1186 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₉H₅BrNaO₂⁺ 246.9366 (100%),

248.9345 (98%); found: 246.9361, 248.9342.

(3-methylbenzofuran-2-yl)(phenyl)methanone (13x)

Compound **13x** (99% yield, yellow oil): ¹**H NMR** (600 MHz, CDCl₃) δ 8.11 - 8.08 (d, J = 7.2 Hz, 2H), 7.71 (d, J = 7.8 Hz, 1H), 7.61 (t, J = 7.8 Hz, 1H), 7.56 - 7.48 (m, 5H), 7.34 (t, J = 7.8 Hz, 1H), 2.65 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 186.0, 154.2, 148.2, 137.8, 132.6, 129.7, 129.2, 128.3, 128.2, 126.9, 123.3, 121.4, 112.2, 10.0. **IR**: $\bar{v} = 3198$, 1748, 1672, 1296, 1258, 756 cm⁻¹: **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₁₆H₁₂NaO₂⁺ 259.0730; found:

259.0733.

phenyl(3-phenylbenzofuran-2-yl)methanone (13y)

Compound **13y** (>99% yield, yellow oil): ¹**H NMR** (500 MHz, CDCl₃) δ 7.87 (d, J = 7.5 Hz, 2H), 7.70 (d, J = 7.5 Hz, 1H), 7.64 (d, J = 8.5 Hz, 1H), 7.54 – 5.45 (m, 4H), 7.38 – 7.32 (m, 6H). ¹³**C NMR** (125 MHz, CDCl₃) δ 185.7, 154.6, 147.1, 137.2, 132.6, 130.9, 130.0, 129.8, 129.3, 128.3 (d, J = 6.3 Hz), 128.2, 128.1 (d, J = 6.2 Hz), 123.9, 122.4, 112.4. **IR**: $\bar{v} = 3140$, 1720, 1660, 1390, 1141 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₂₁H₁₄NaO₂⁺

321.0886; found: 321.0887.

phenyl(1-tosyl-1*H*-indol-2-yl)methanone(14a)

Compound **14a** (91% yield, yellow solid, Melting point: 170.2–172.6 °C): **¹H NMR** (400 MHz, CDCl₃) δ 8.15 – 8.12 (m, 1H), 7.99 – 7.93 (m, 4H), 7.61 (t, J = 7.2, 1H), 7.56 (d, J = 7.6, 1H), 7.51 – 7.43 (m, 3H), 7.31 – 7.25 (m, 3H), 6.92 (s, 1H), 2.36 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 187.7, 145.2, 138.0, 137.7, 137.6, 135.2, 133.6, 130.1, 129.7, 128.7, 128.6, 127.7, 127.0, 124.3, 122.6, 116.7, 115.2, 77.4, 77.1, 76.8, 21.7. **IR**: $\bar{v} = 3138, 3180, 1269, 1044,$ 788 cm⁻¹; **HRMS** (ESI) m/z: [M + H]⁺ calcd for C₂₂H₁₈NO₃S⁺ 376.1002;

found: 376.1000.

(5-methyl-1-tosyl-1*H*-indol-2-yl)(phenyl)methanone (14b)

Compound **14b** (88% yield, yellow solid, Melting point: 140.9 – 141.2 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 7.91 (d, J = 8.4 Hz, 1H), 7.90 – 7.82 (m, 2H), 7.80 (d, J = 8.4 Hz, 2H), 7.51 – 7.46 (m, 1H), 7.36 (t, J = 8.0 Hz, 2H), 7.22 (s, 1H), 7.17 (d, J = 1.7 Hz, 1H), 7.15 – 7.11 (m, 3H), 6.75 (s, 1H), 2.30 (s, 3H), 2.23 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 187.5, 144.9, 137.9, 137.5, 135.9, 135.0, 133.9, 133.4, 129.9, 129.5, 128.8,

128.4, 128.4, 127.4, 122.2, 116.7, 114.7, 21.5, 21.1. **IR**: $\bar{v} = 2970$, 1807, 1262, 1036, 794 cm⁻¹; **HRMS** (ESI) m/z: $[M + H]^+$ calcd for $C_{23}H_{20}NO_3S^+$ 390.1159; found: 390.1161.

(6-methyl-1-tosyl-1*H*-indol-2-yl)(phenyl)methanone (14c)

Compound **14c** (76% yield, yellow solid, Melting point: 182.3 – 183.5 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 7.87 (m, 5H), 7.51 (t, *J* = 7.6 Hz 1H), 7.41 – 7.32 (m, 3H), 7.20 – 7.15 (m, 2H), 7.03 (d, *J* = 8.0, 1H), 6.80 (s, 1H), 2.44 (s, 3H), 2.28 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 187.3, 144.9, 138.3, 137.6, 137.5, 137.4, 135.4, 133.3, 129.9, 129.5, 128.4, 127.4, 126.2, 125.8, 122.1, 117.2, 115.1, 22.2, 21.5. **IR**: \bar{v} = 3410, 1764,

1265, 1035, 805 cm⁻¹; **HRMS** (ESI) m/z: [M + K]⁺ calcd for C₂₃H₁₉NKO₃S⁺ 428.0718; found: 428.0719.

(4-bromo-1-tosyl-1*H*-indol-2-yl)(phenyl)methanone (14d)

Compound **14d** (93% yield, yellow solid, Melting point: 153.0 – 155.4 °C): ¹**H** NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 8.8 Hz, 1H), 7.95 (m, J = 7.6 Hz, 2H), 7.90 (d, J = 8.4 Hz, 2H), 7.68 (d, J = 2.0 Hz, 1H), 7.61 (t, J = 7.6 Hz, 1H), 7.54 – 7.45 (m, 3H), 7.26 (d, J = 8.0 Hz, 2H), 6.82 (s, 1H), 2.36 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 187.3, 145.4, 138.7, 137.1, 136.0, 134.7, 133.7, 130.3, 129.9, 129.6 (d, J = 14.0 Hz), 128.5,

127.5, 124.9, 117.4, 116.4, 114.7, 21.6. **IR**: $\bar{v} = 3174$, 1636, 1398, 1156, 762 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₂₂H₁₆BrNNaO₃S⁺ 475.9927 (100%), 477.9906 (94%); found: 475.9925, 477.9906.

(5-chloro-1-tosyl-1*H*-indol-2-yl)(phenyl)methanone (14e)

Compound **14e** (91% yield, yellow solid, Melting point: 128.5 – 131.1 °C): ¹**H NMR** (500 MHz, CDCl₃) δ 8.04 (d, *J* = 8.0 Hz, 1H), 7.97 (dd, *J* = 11.0, 7.5 Hz, 4H), 7.62 (t, *J* = 7.5 Hz, 1H), 7.50 (t, *J* = 7.5 Hz, 2H), 7.36 (t, *J* = 8.0 Hz, 1H), 7.29 – 7.27 (m, 3H), 7.01 (s, 1H), 2.36 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 187.3, 145.4, 138.0, 137.9, 137.0, 134.9, 133.7, 130.0, 129.7, 128.5, 127.6, 127.5, 127.5, 127.4, 123.8, 113.5, 113.4, 21.6. **IR**: \bar{v} = 2870, 2184, 1708,

1275, 1080, 736 cm⁻¹; **HRMS** (ESI) m/z: $[M + Na]^+$ calcd for $C_{22}H_{16}CINNaO_3S^+$ 432.0432 (100%), 433.0464 (25%); found: 432.0428, 433.0463.

p-tolyl(1-tosyl-1*H*-indol-2-yl)methanone (14f)

Compound **14f** (75% yield, yellow solid, Melting point: 165.5 – 167.6 °C): ¹**H** NMR (500 MHz, CDCl₃) δ 8.12 (d, *J* = 8.5 Hz, 1H), 7.90 (dd, *J* = 26.5, 7.5 Hz, 4H), 7.53 (d, *J* = 7.5, 1H), 7.42 (t, *J* = 7.5 Hz, 1H), 7.28 – 7.22 (m, 5H), 6.88 (s, 1H), 2.42 (s, 3H), 2.33 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 187.3, 145.0, 144.4, 138.0, 137.4, 135.1, 135.0, 130.1, 129.5, 129.2, 128.6, 127.5, 126.6, 124.1, 122.4, 116.0, 115.0, 21.7, 21.5. IR: \bar{v} = 3485, 1605, 1400, 1172 cm⁻¹; HRMS (ESI) m/z: [M + K]⁺ calcd for C₂₃H₁₉NKO₃S⁺ 428.0718; found: 428.0714.

(4-methoxyphenyl)(1-tosyl-1H-indol-2-yl)methanone (14g)

Compound **14g** (75% yield, yellow solid, Melting point: 158.9 – 159.1 °C): ¹**H NMR** (500 MHz, CDCl₃) δ 8.12 (d, *J* = 8.5 Hz, 1H), 7.95 (dd, *J* = 15.5, 8.5 Hz, 4H), 7.54 (d, *J* = 8.0 Hz, 1H), 7.42 (t, *J* = 8.0 Hz, 1H), 7.30 – 7.22 (m, 3H), 6.96 (d, *J* = 9.0 Hz, 2H), 6.87 (s, 1H), 3.87 (s, 3H), 2.34 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 186.4, 164.0, 145.0, 138.0, 137.3,

135.1, 132.4, 130.4, 129.5, 128.7, 127.5, 126.5, 124.1, 122.3, 115.4, 115.0, 113.8, 55.5, 21.6. **IR**: $\bar{v} =$ 3421, 1602, 1399, 1294, 1155 cm⁻¹; **HRMS** (ESI) m/z: [M + K]⁺ calcd for C₂₃H₁₉NKO₄S⁺ 444.0667; found: 444.0668.

m-tolyl(1-tosyl-1H-indol-2-yl)methanone (14h)

Compound **14h** (90% yield, brown solid, Melting point: 108.8 - 111.7 °C): **¹H NMR** (500 MHz, CDCl₃) δ 8.14 (d, J = 8.5 Hz, 1H), 7.95 (d, J = 8.0 Hz, 2H), 7.80 (s, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.54 (d, J = 8.0 Hz, 1H), 7.46 – 7.38 (m, 2H), 7.35 (t, J = 8.0 Hz, 1H), 7.29 – 7.20 (m, 3H), 6.89 (s, 1H), 2.39 (s, 3H), 2.33 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 187.7, 145.0, 138.2, 137.9, 137.5, 137.4, 135.1, 134.3, 130.2, 129.5, 128.5, 128.3, 127.5, 127.4, 126.8, 124.1, 122.4, 116.3, 115.0, 21.5, 21.2. **IR**: $\bar{v} = 3440$, 1271, 1043, 783 cm⁻¹; **HRMS**

(ESI) m/z: $[M + K]^+$ calcd for $C_{23}H_{19}NKO_3S^+$ 428.0718; found: 428.0716.

(1-tosyl-1*H*-indol-2-yl)(4-(trifluoromethyl)phenyl)methanone (14i)

Compound **14i** (83% yield, yellow solid, Melting point: 173.9 – 174.7 °C): ¹**H** NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 8.4 Hz, 1H), 8.06 (d, J = 8.0Hz, 2H), 7.87 (d, J = 8.4 Hz, 2H), 7.74 (d, J = 8.0 Hz, 2H), 7.56 (d, J = 8.0Hz, 1H), 7.46 (t, J = 8.0 Hz, 1H), 7.29 (t, J = 7.6 Hz, 1H), 7.24 (d, J = 8.0Hz, 2H), 6.98 (s, 1H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.4, 145.3, 140.4, 137.8, 137.4, 134.7, 134.4 (q, J = 32.7 Hz), 130.1, 129.6, 128.6, 127.4, 127.3, 125.5 (q, J = 3.8 Hz), 123.6 (q, J = 272.8 Hz), 124.4, 122.7, 117.5, 115.2, 21.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.00. **IR**: $\bar{v} =$

3424, 1661, 1400, 1175 cm⁻¹; **HRMS** (ESI) m/z: $[M + K]^+$ calcd for $C_{23}H_{16}F_3NKO_3S^+$ 482.0435; found: 482.0434.

(3-chlorophenyl)(1-tosyl-1*H*-indol-2-yl)methanone (14j)

14j

Compound **14j** (85% yield, brown solid, Melting point: 134.6 – 136.6 °C): ¹**H NMR** (500 MHz, CDCl₃) δ 8.13 (d, *J* = 8.5 Hz, 1H), 8.00 – 7.78 (m, 4H), 7.61 – 7.37 (m, 4H), 7.34 – 7.21 (m, 3H), 6.95 (s, 1H), 2.35 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 186.2, 145.2, 139.1, 137.7, 137.3, 134.9, 134.8, 133.3, 129.8, 129.6, 129.6, 128.5, 128.1, 127.5, 127.2, 124.3, 122.6, 117.1, 115.2, 21.6. **IR**: \bar{v} = 3397, 1615, 1398, 1156, 614 cm⁻¹; **HRMS** (ESI) m/z: [M + K]⁺ calcd for C₂₂H₁₆ClNKO₃S⁺ 448.0171 (100%), 449.0204 (25%); found: 448.0177,

449.0210.

(3-fluorophenyl)(5-methoxy-1-tosyl-1*H*-indol-2-yl)methanone (14k)

Compound **14k** (81% yield, brown solid, Melting point: 151.0 - 152.5°C): **¹H NMR** (400 MHz, CDCl₃) δ 8.01 (d, J = 9.2 Hz, 1H), 7.81 (d, J = 8.0 Hz, 2H), 7.71 (d, J = 7.6 Hz, 1H), 7.65 (d, J = 8.4 Hz, 1H), 7.43 (m, 1H), 7.27 (t, J = 8.0, 1H), 7.21 (d, J = 8.0 Hz, 2H), 7.06 (d, J = 8.8 Hz, 1H), 6.96 (s, 1H), 6.89 (s, 1H), 3.79 (s, 3H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.2, 162.6 (d, J = 246.0 Hz), 157.0, 145.1, 139.6 (d, J = 6.5 Hz), 138.1, 134.5, 132.3, 130.1 (d, J = 7.7 Hz), 129.7

(d, J = 11.9 Hz), 129.6, 127.3, 125.8 (d, J = 2.9 Hz), 120.4 (d, J = 21.0 Hz), 117.3, 116.7, 116.4, 116.2, 104.1, 55.6, 21.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.88. IR: $\bar{v} = 3450$, 1620, 1035, 787 cm⁻¹; HRMS

(ESI) m/z: $[M + Na]^+$ calcd for $C_{23}H_{18}FNNaO_4S^+446.0833$; found: 446.0824.

thiophen-2-yl(1-tosyl-1*H*-indol-2-yl)methanone (14l)

Compound **14I** (78% yield, yellow solid, Melting point: 202.5 – 204.5 °C): **¹H NMR** (500 MHz, CDCl₃) δ 8.14 – 8.11 (m, 1H), 8.00 – 7.98 (m, 2H), 7.78 – 7.74 (m, 2H), 7.58 – 7.56 (m, 1H), 7.47 – 7.43 (m, 1H), 7.31 – 7.26 (m, 3H), 7.18 – 7.15 (m, 1H), 7.05 (s, 1H), 2.35 (s, 3H). ¹³C **NMR** (125 MHz, CDCl₃) δ 179.1, 145.1, 144.1, 137.7, 137.2, 135.3, 135.1 (d, *J* = 8.8 Hz), 129.6, 128.3, 128.2, 127.7, 126.9, 124.1, 122.5, 116.3, 115.1, 21.6. **IR**: \bar{v} = 3194, 1637, 1397, 1149 cm⁻¹; **HRMS** (ESI) m/z: [M + K]⁺ calcd for C₂₀H₁₅NKO₃S₂⁺ 420.0125;

found: 420.0128.

1-(1-tosyl-1*H*-indol-2-yl)pentan-1-one (14m)

14m

Compound **14m** (68% yield, yellow solid, Melting point: 49.4 – 51.6 °C): ¹**H** NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 8.4 Hz, 1H), 7.84 (t, J = 8.0 Hz, 2H), 7.53 (d, J = 7.6 Hz, 1H), 7.42 (t, J = 7.2 Hz, 1H), 7.27 – 7.20 (m, 3H), 7.02 (s, 1H), 2.96 (m, J= 8.0 Hz, 2H), 2.32 (s, 3H), 1.77 – 1.68 (m, 2H), 1.46 – 1.36 (m, 2H), 0.93 (t, J = 7.2, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 195.4, 144.8, 139.9, 138.4, 135.1, 129.4, 128.5, 127.4, 127.1, 124.2, 122.6, 115.9, 115.5, 42.3, 26.7, 22.3, 21.5, 13.8. **IR**: \bar{v} = 3209, 1752, 1234, 1044, 787, 760 cm⁻¹; **HRMS** (ESI) m/z: [M + K]⁺ calcd for

 $C_{20}H_{21}NKO_3S^+$ 394.0874; found: 394.0879.

cyclopropyl(1-tosyl-1*H*-indol-2-yl)methanone (14n)

Compound **14n** (74% yield, white solid, Melting point: 112.7 – 114.7 °C): **¹H NMR** (500 MHz, CDCl₃) δ 8.12 (d, J = 8.5 Hz, 1H), 7.81 (d, J = 7.5 Hz, 2H), 7.54 (d, J = 7.5 Hz, 1H), 7.42 (t, J = 7.5 Hz, 1H), 7.27 – 7.19 (m, 1H), 7.20 (d, J= 7.5 Hz, 2H), 7.13 (s, 1H), 2.62 – 2.57 (m, 1H), 2.32 (s, 3H), 1.32 – 1.29 (m, 2H), 1.12 – 1.08 (m, 2H). ¹³C **NMR** (125 MHz, CDCl₃) δ 194.7, 144.8, 140.5, 138.5, 135.0, 129.4, 128.6, 127.3, 127.2, 124.2, 122.6, 116.5, 115.7, 21.8, 21.5,

12.6. **IR**: $\bar{v} = 3413$, 1598, 1399, 1156 cm⁻¹; **HRMS** (ESI) m/z: $[M + K]^+$ calcd for $C_{19}H_{17}NKO_3S^+$ 378.0561; found: 378.0567.

1-tosyl-1*H*-indole-2-carbaldehyde (14o)

Compound **140** (78% yield, yellow solid, Melting point: 121.0 – 122.1 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 10.44 (s, 1H), 8.13 (d, J = 8.4 Hz, 1H), 7.56 (d, J = 2.8, 2H), 7.51 (d, J = 8.0, 1H), 7.42 (t, J = 8.0 Hz, 1H), 7.36 (d, J = 2.8 Hz, 1H), 7.21 (t, J = 7.6 Hz, 1H), 7.08 (d, J = 8.0 Hz, 2H), 2.21 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 183.2, 145.5, 138.3, 137.7, 134.5, 129.9, 128.7, 128.0, 126.5, 124.7,

123.5, 118.8, 115.2, 21.5. **IR**: \bar{v} = 3448, 1674, 1401, 1173 cm⁻¹; **HRMS** (ESI) m/z: [M + K]⁺ calcd for C₁₆H₁₃NKO₃S⁺ 338.0248; found: 338.0241.

5-chloro-1-tosyl-1*H*-indole-2-carbaldehyde (14p)

Compound **14p** (91% yield, white solid, Melting point: 129.2 - 130.6 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 10.53 (s, 1H), 8.18 (d, J = 9.0 Hz, 1H), 7.64 (d, J = 7.7 Hz, 2H), 7.60 (s, 1H), 7.47 (d, J = 9.0 Hz, 1H), 7.39 (s, 1H), 7.22 (d, J = 7.7 Hz, 2H), 7.60 (s, 1H), 7.47 (d, J = 9.0 Hz, 1H), 7.39 (s, 1H), 7.22 (d, J = 7.7 Hz, 2H), 7.60 (s, 1H), 7.47 (d, J = 9.0 Hz, 1H), 7.47 (d, J = 9.0 Hz, 1H), 7.49 (s, 1H), 7.20 (d, J = 9.0 Hz, 1H), 7.47 (d, J = 9.0 Hz, 1H), 7.49 (s, 1H), 7.47 (d, J = 9.0 Hz, 1H), 7.49 (s, 1H), 7.49 (s, 1H), 7.47 (d, J = 9.0 Hz, 1H), 7.49 (s, 1H), 7.49 (s, 1H), 7.49 (s, 1H), 7.49 (s, 1H) = 7.8 Hz, 3H), 2.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 183.1, 145.9, 138.6, 136.6, 134.3, 130.6, 130.1, 129.2, 129.0, 126.6, 122.9, 117.5, 116.5, 21.6. **IR**: \bar{v} = 3412, 1771, 1429, 1165cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₁₆H₁₂ClNNaO₃S⁺ 356.0119 (100%), 358.0090 (38%); found: 356.0120, 358.0091.

5-methoxy-1-tosyl-1*H*-indole-2-carbaldehyde (14q)

Compound **14q** (83% yield, yellow oil): ¹**H** NMR (400 MHz, CDCl₃) δ 10.52 (s, 1H), 8.13 (d, J = 9.2 Hz, 1H), 7.62 (d, J = 8.0 Hz, 2H), 7.40 (s, 1H), 7.19 – 7.13 (m, 3H), 6.99 (s, 1H), 3.83 (s, 3H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 183.4, 157.2, 145.5, 138.2, 134.4, 133.2, 129.9, 129.2, 126.5, 119.1, 118.7, 116.4, 104.1, 77.3, 77.0, 76.7, 55.6, 21.6. **IR**: $\bar{v} = 3445$,

 $1697, 1386, 1153 \text{ cm}^{-1}; \textbf{HRMS} (ESI) \text{ m/z: } [M + K]^{+} \text{ calcd for } C_{17}H_{15}KNO_{4}S^{+} 368.0353; \text{ found: } 368.0358.$

(3-methyl-1-tosyl-1*H*-indol-2-yl)(phenyl)methanone (14r)

Compound **14r** (71% yield, brown oil): ¹**H NMR** (400 MHz, CDCl₃) δ 8.09 (d, J = 8.4 Hz, 1H), 7.91 (d, J = 8.0 Hz, 2H), 7.70 (d, J = 8.0 Hz, 2H), 7.57 (t, J = 7.2 Hz, 1H), 7.50 – 7.38 (m, 4H), 7.29 (t, J = 7.6 Hz, 1H), 7.14 (d, J = 8.0Hz, 2H), 2.28 (s, 3H), 2.16 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 189.5, 144.9, 138.4, 136.4, 133.7, 133.6, 133.3, 131.2, 129.5, 129.5, 128.5, 127.3, 126.6, 124.5, 124.2, 120.3, 115.3, 21.5, 9.3. **IR**: $\bar{v} = 3160$, 1650, 1036, 1170,

764 cm⁻¹; **HRMS** (ESI) m/z: [M + Na]⁺ calcd for C₂₃H₁₉NNaO₃S⁺ 412.0978; found: 412.0971.

phenyl(3-phenyl-1-tosyl-1*H*-indol-2-yl)methanone (14s)

Compound **14s** (75% yield, yellow solid, Melting point: 196.7 – 198.5 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 8.26 – 8.22 (m, 1H), 7.96 – 7.89 (m, 4H), 7.64 (d, J = 7.9 Hz, 1H), 7.53 (td, J = 7.6, 6.0 Hz, 2H), 7.44 (dd, J = 9.3, 7.5 Hz, 4H), 7.41 – 7.31 (m, 4H), 7.29 (d, J = 9.4 Hz, 2H), 2.38 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 189.6, 145.2, 137.9, 135.9, 134.3, 133.4, 132.7, 130.9, 129.7, 129.6, 129.6 (2C), 128.4, 128.4, 128.0, 127.5, 126.8, 126.4, 124.4, 121.2,

114.9, 21.6. **DEPT** (135°)(100 MHz, CDCl₃) δ 133.5, 129.8, 129.7, 128.6, 128.6, 128.2, 127.6, 126.6, 124.5, 121.3, 115.0, 21.7. **IR**: $\bar{v} = 3061$, 1646, 1455, 1121, 978, 756, 696 cm⁻¹; **HRMS** (ESI) m/z: [M + K]⁺ calcd for C₂₈H₂₁NKO₃S⁺ 490.0874; found: 490.0882.

(1-((4-nitrophenyl)sulfonyl)-1*H*-indol-2-yl)(phenyl)methanone (14t)

Compound **14t** (97% yield, white solid, Melting point: 190.2 – 193.6 °C): **¹H NMR** (400 MHz, CDCl₃) δ 8.32 (q, J = 8.9 Hz, 4H), 8.17 (d, J = 8.5 Hz, 1H), 7.97 (d, J = 7.4 Hz, 2H), 7.67 – 7.57 (m, 3H), 7.55 – 7.47 (m, 3H), 7.35 (t, J = 7.5 Hz, 1H), 7.01 (s, 1H). ¹³C **NMR** (100 MHz, CDCl₃) δ 186.9, 150.5, 144.0, 137.9, 137.6, 136.9, 133.8, 130.0, 128.8, 128.6, 128.3, 127.7, 124.7, 124.1, 123.0, 118.4, 114.8. **IR**: \bar{v} = 3451 1646, 1372, 1142 cm⁻¹; **HRMS** (ESI) m/z:

 $[M + K]^+$ calcd for $C_{21}H_{14}KN_2O_5S^+$ 445.0255; found: 445.0254.

1-(2-benzoyl-1*H*-indol-1-yl)ethan-1-one (14u)

Compound **14u** (56% yield, white solid, Melting point: 117 – 129 °C): ¹**H NMR** (400 MHz, CDCl₃) δ 8.24 (d, J = 8.5 Hz, 1H), 8.03 (d, J = 7.3 Hz, 2H), 7.69 – 7.62 (m, 2H), 7.57 - 7.48 (m, 4H), 7.31 (t, J = 7.5 Hz, 1H), 7.07 (s, 1H), 2.56 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 187.1, 170.7, 138.6, 137.2, 137.0, 133.5, 129.7, 128.7, 128.3, 127.3, 124.0, 122.6, 119.9, 115.6, 27.3. **IR**: \bar{v} = 3274, 3069, 1703, 1529, 1276 cm⁻¹; **HRMS** (ESI) m/z: [M + H]⁺ calcd for

 $C_{17}H_{14}NO_2^+$ 264.1019; found: 264.1027.

tert-butyl 2-benzoyl-1H-indole-1-carboxylate (14v)

Compound **14v** (43% yield, 43% of **14v** and 44% of **14v**' were isolated, yellow solid, Melting point: 123.6 – 129.4 °C): ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.4 Hz, 1H), 7.92 (d, *J* = 7.7 Hz, 2H), 7.65 – 7.58 (m, 2H), 7.50 – 7.44 (m, 3H), 7.31 (t, *J* = 7.5 Hz, 1H), 6.94 (s, 1H), 1.36 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 187.7, 149.1, 137.4, 137.3, 137.0, 133.2, 129.5, 128.5, 127.9, 126.6, 123.5, 122.1, 115.1, 114.2, 85.0, 27.5. **IR**: \bar{v} = 3451, 2071, 1620, 1363

cm⁻¹; **HRMS** (ESI) m/z: $[M + K]^+$ calcd for $C_{20}H_{19}KNO_3^+$ 360.0997; found: 360.1000.

(1*H*-indol-2-yl)(phenyl)methanone (14v')

Compound **14v'** (44% yield, yellow solid, Melting point: 149.0–151.2 °C): **¹H NMR** (400 MHz, CDCl₃) δ 10.02 (s, 1H), 8.01 (d, *J* = 7.7 Hz, 2H), 7.70 (d, *J* = 8.1 Hz, 1H), 7.60 (t, *J* = 7.3 Hz, 1H), 7.52 (t, *J* = 8.9 Hz, 3H), 7.35 (t, *J* = 7.6 Hz, 1H), 7.16 – 7.13 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 187.4, 138.0, 137.8, 134.3, 132.3, 129.2, 128.4, 127.6, 126.4, 123.1, 120.9, 113.0, 112.4. **IR**:

14v $\bar{v} = 3444, 3064, 1630, 1524, 1340, 1125 \text{ cm}^{-1};$ **HRMS** (ESI) m/z: [M + K]⁺ calcd for C₁₅H₁₁KNO⁺ 260.0473; found: 260.0470.

3,5-diphenylpent-4-yne-1,3-diol (19c)

Compound **19c** (45% yield, white solid, Melting point: 138.6 – 141.3 °C): ¹**H** NMR (500 MHz, DMSO- d_6) δ 7.62 (d, J = 7.5 Hz, 2H), 7.47 (dd, J = 7.5, 4.0 Hz, 2H), 7.43 – 7.35 (m, 5H), 7.29 (t, J = 7.0 Hz, 1H), 6.20 (s, 1H), 4.50 (t, J = 5.0 Hz, 1H), 3.68 – 3.68 (m, 1H), 3.57 – 3.51 (m, 1H), 2.17 – 2.03 (m, 2H). ¹³C NMR (125 MHz, DMSO- d_6) δ 145.5, 131.3, 128.7, 128.6, 127.9, 127.1, 125.1, 122.3, 93.0, 84.1, 70.5, 57.8, 47.8. **IR**: $\bar{v} = 3172$, 2910,

1646, 1044, 1160 cm⁻¹; **HRMS** (ESI) m/z: $[M + Na]^+$ calcd for $C_{17}H_{16}NaO_2^+ 275.1043$; found: 275.1045.

(3-fluorophenyl)(5-methoxy-1H-indol-2-yl)methanone (3)

Compound **3** (91% yield, brown oil): ¹**H** NMR (400 MHz, CDCl₃) δ 9.72 (s, 1H), 7.78 (dt, J = 8.0, 1.2Hz, 1H), 7.69 – 7.66 (m, 1H), 7.50 (td, J = 8.0, 5.6 Hz, 1H), 7.41 – 7.37 (m, 1H), 7.31 (td, J = 8.4, 2.8 Hz, 1H), 7.10 – 7.05 (m, 3H), 3.84 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 185.5, 162.5 (d, J = 246.0 Hz), 154.9, 140.0 (d, J = 6.7 Hz), 134.3, 133.4, 130.1 (d, J = 7.8 Hz), 127.9, 125.0 (d, J = 2.7 Hz), 119.2 (d, J = 21.0 Hz), 118.8, 116.1 (d, J = 20.0 Hz), 113.3, 112.7, 102.6, 55.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.82 (q, J = 8.5 Hz). **IR**: $\bar{v} = 3319$, 1630,

1519, 1234, 752 cm⁻¹; HRMS (ESI) m/z: $[M + Na]^+$ calcd for $C_{16}H_{12}FNNaO_2^+$ 292.0745; found: 292.0746.

References

[1] (a) Li, Y.; Xue, J.; Li, X.; Chen, R. Synlett 2012, 23, 1043-1046. (b) Ranjith Kumar, G.; Kiran Kumar,
Y.; Kant, R.; Sridhar Reddy, M. Org. Biomol. Chem. 2016, 14, 4077-4088. (c) Saha, S.; Schneider, C.
Org. Lett. 2015, 17, 648-651. (d) Yoshida, M.; Fujino, Y.; Doi, T. Org. Lett. 2011, 13, 4526-4529. (e)
Zhang, M.; Yang, J.; Xu, Q.; Dong, C.; Han, L.-B.; Shen, R. Adv. Synth. Catal. 2018, 360, 334-345.

[2] (a) Susanti, D.; Koh, F.; Kusuma, J. A.; Kothandaraman, P.; Chan, P. W. J. Org. Chem. 2012, 77, 7166-7175. (b) Ueda, J. I.; Enomoto, Y.; Seki, M.; Konishi, T.; Ogasawara, M.; Yoshida, K. J. Org. Chem. 2020, 85, 6420-6428. (c) Wang, A.; Hu, X.; Xie, X.; Liu, Y. Adv. Synth. Catal. 2021, 363, 3769-3774.

[3] Yang, L.; Zhou, S.; Zhao, J. Q.; You, Y.; Wang, Z. H.; Zhou, M. Q.; Yuan, W. C. *Org. Biomol. Chem.* **2021**, *19*, 3678-3686.

[4] Sangeetha, S.; Sekar, G. Org. Lett. 2017, 19, 1670-1673.

[5] Geffers, F. J.; Kurth, F. R.; Jones, P. G.; Werz, D. B. Chemistry 2021, 27, 14846-14850.

[6] Allart, E. A.; Christie, S. D.; Pritchard, G. J.; Elsegood, M. R. Chem. Commun. 2009, 7339-7341.

Copies of NMR spectra

¹³C NMR (100 MHz, CDCl₃) spectroscopy of **13a**

¹³C NMR (100 MHz, CDCl₃) spectroscopy of **13b**

¹H NMR (500 MHz, CDCl₃) spectroscopy of **13d**

¹H NMR (500 MHz, CDCl₃) spectroscopy of **13e**

¹H NMR (500 MHz, CDCl₃) spectroscopy of 13f

¹³C NMR (125 MHz, CDCl₃) spectroscopy of 13g

¹H NMR (400 MHz, CDCl₃) spectroscopy of 13h

¹H NMR (500 MHz, CDCl₃) spectroscopy of **13i**

¹³C NMR (125 MHz, CDCl₃) spectroscopy of 13i

¹H NMR (500 MHz, CDCl₃) spectroscopy of **13**k

¹H NMR (400 MHz, CDCl₃) spectroscopy of 13m

¹H NMR (500 MHz, CDCl₃) spectroscopy of 13n

¹H NMR (400 MHz, CDCl₃) spectroscopy of 130

¹⁹F NMR (376 MHz, DMSO-*d*₆) spectroscopy of **130**

 ^{13}C NMR (125 MHz, CDCl_3) spectroscopy of 13p

¹³C NMR (125 MHz, CDCl₃) spectroscopy of **13**q

¹³C NMR (125 MHz, CDCl₃) spectroscopy of 13r

5.0 4.0 f1 (ppm)

3.0

2.0

7.0

6.0

8.0

1.0

0.0

-1

). O

9.0

¹³C NMR (125 MHz, CDCl₃) spectroscopy of 13s

 ^{13}C NMR (125 MHz, CDCl_3) spectroscopy of 13t

¹³C NMR (100 MHz, CDCl₃) spectroscopy of **13u**

¹H NMR (400 MHz, CDCl₃) spectroscopy of 13v

¹H NMR (400 MHz, CDCl₃) spectroscopy of 13w

¹H NMR (600 MHz, CDCl₃) spectroscopy of 13x

¹³C NMR (125 MHz, CDCl₃) spectroscopy of **13**x

¹³C NMR (125 MHz, CDCl₃) spectroscopy of **13**y

¹³C NMR (100 MHz, CDCl₃) spectroscopy of 14a

¹H NMR (400 MHz, CDCl₃) spectroscopy of 14b

¹³C NMR (100 MHz, CDCl₃) spectroscopy of 14b

¹³C NMR (100 MHz, CDCl₃) spectroscopy of 14c

 ^{13}C NMR (125 MHz, CDCl_3) spectroscopy of 14d

¹³C NMR (125 MHz, CDCl₃) spectroscopy of 14e

¹³C NMR (125 MHz, CDCl₃) spectroscopy of 14f

 1H NMR (500 MHz, CDCl_3) spectroscopy of 14g

¹³C NMR (125 MHz, CDCl₃) spectroscopy of 14g

¹H NMR (500 MHz, CDCl₃) spectroscopy of 14h

¹³C NMR (125 MHz, CDCl₃) spectroscopy of 14h

¹³C NMR (100 MHz, CDCl₃) spectroscopy of 14i

¹H NMR (500 MHz, CDCl₃) spectroscopy of 14j

¹H NMR (400 MHz, CDCl₃) spectroscopy of 14k

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of 14k

¹³C NMR (125 MHz, CDCl₃) spectroscopy of 14l

¹H NMR (400 MHz, CDCl₃) spectroscopy of 14m

¹³C NMR (125 MHz, CDCl₃) spectroscopy of 14m

¹H NMR (500 MHz, CDCl₃) spectroscopy of 14n

¹³C NMR (125 MHz, CDCl₃) spectroscopy of 14n

¹H NMR (400 MHz, CDCl₃) spectroscopy of 140

¹³C NMR (100 MHz, CDCl₃) spectroscopy of 140

¹³C NMR (100 MHz, CDCl₃) spectroscopy of 14p

¹H NMR (400 MHz, CDCl₃) spectroscopy of 14q

¹H NMR (400 MHz, CDCl₃) spectroscopy of 14r

¹³C NMR (100 MHz, CDCl₃) spectroscopy of 14r

¹³C NMR (125 MHz, CDCl₃) spectroscopy of 14s

¹H NMR (400 MHz, CDCl₃) spectroscopy of 14t

¹H NMR (400 MHz, CDCl₃) spectroscopy of 14u

¹H NMR (400 MHz, CDCl₃) spectroscopy of 14v

¹H NMR (400 MHz, CDCl₃) spectroscopy of 14v'

¹⁹F NMR (376 MHz, CDCl₃) spectroscopy of **3**

 ^{13}C NMR (125 MHz, CDCl₃) spectroscopy of S_6

