Enantio- and Diastereoselective Conjugate Addition of Pyridyl Alkyl Ketones to Enones by Cu(II)-Lewis Acid/Brønsted Base Catalysis

Soojin Kwak, Minhyeok Lee, Eunji Sim* and Sarah Yunmi Lee* Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea

Supporting Information

Table of Contents

I.	General Information	S02
II.	Preparation of 2-Pyridyl Alkyl Ketones	S03
III.	Preparation of Cu(II) Complexes	S04
IV.	H/D Exchange Experiments by Lewis Acid/Brønsted Base Catalysis	S06
V.	Development of the Conjugate Addition of 2-Pyridyl Alkyl Ketones to Enones	S07
VI.	Catalytic Conjugate Addition of 2-Pyridyl Alkyl Ketones to Enones	S11
VII.	Determination of Absolute Configurations	S47
VIII.	Kinetic Studies	S49
IX.	Computational Studies	S52
X.	NMR Spectra of Isolated Compounds	S76
XI.	References	S109

I. General Information

Unless otherwise specified, all reactions were conducted with stirring under nitrogen atmosphere. All reagents including anhydrous solvents were purchased from Alfa Aesar, Sigma Aldrich, and TCI were used as received. Enones were synthesized by aldol reactions of corresponding aldehydes or Meyer-Schuster rearrangement of the corresponding propargyl alcohol.¹ Pyridyl alkyl ketones were produced by the Grignard reaction with the corresponding alkyl magnesium bromide and 2-cyanopyridines.² Flash column chromatography was performed on silica gel 60 (40–63 µm) as a stationary phase. Diastereomeric ratios were determined by ¹H NMR spectroscopy from the crude mixtures.

NMR spectra were recorded with a Bruker AVANCE III HD 300 (300 MHz) or a Bruker AVANCE III HD 400 (400 MHz) at Yonsei University with CDCl₃ as the solvent. Chemical shifts were expressed in parts per million (ppm, δ), referenced to the residual signal of CDCl₃ (7.26 ppm for ¹H, 77.16 ppm for ¹³C). All coupling constants (*J*) were expressed in Hertz (Hz). The following abbreviations were used for the descriptions of splitting patterns: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets, qd = quartet of doublets, ddd = doublet of doublets, dtd = doublet of dou

High resolution mass spectra were obtained using an Agilent 6530 Accurate-Mass Q-TOF.

GC analyses were carried out on a Shimadzu Nexis GC-2030 system with HP-5 (19091j-433) column.

HPLC analyses were carried out on a Shimadzu LC-20A chromatograph with Daicel CHIRALCEL® columns (internal diameter 4.6mm, column length 250 mm, particle size 5μ).

FT-IR analyses were recorded on Bruker VERTEX 70 and employing PIKE MIRacle[™] Single Reflection ATR accessory. Optical rotations were measured on A. Krüss Optronic GmbH P8000-TF Polarimeter.

II. Preparation of 2-Pyridyl Alkyl ketones

General Procedure A

$$\begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \end{array}$$

Under nitrogen atmosphere, the corresponding alkyl halides (24 mmol, 1.2 equiv) in THF (50 mL) were treated with magnesium [7439-95-4] (30 mmol, 1.5 equiv) and a piece of I_2 in a 250 mL round-bottom flask equipped with a stir bar. The resulting solution was stirred vigorously at room temperature for 1 h. This reaction mixture was then cooled to 0 °C. A solution of 2-cyano-substituted pyridine (20 mmol, 1.0 equiv) in THF (10 mL) was added dropwise into the reaction mixture at 0 °C. Subsequently, the resulting mixture was stirred vigorously at room temperature for 16 h. The reaction was quenched by addition of sat. NH₄Cl solution and subsequently basified by adding sat. NaHCO₃ solution, and extracted with EtOAc/water. The organic layers were collected, dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography with hexanes and EtOAc.

*Note: Pyridyl alkyl ketones 1a-1k were synthesized according to General Procedure A.

1g

5-phenyl-1-(pyridin-2-yl)pentan-1-one (Table 4, 1g). The title compound was prepared according to **General Procedure A**, using 1-bromo-4-phenylbutane [13633-25-5] (5.1 g, 24 mmol, 1.2 equiv) and 2-cyanopyridine [100-70-9] (2.1 g, 20 mmol, 1.0 equiv). The title compound was afforded as a yellowish sticky liquid (3.25 g, 68%).

¹**H** NMR (300 MHz, CDCl₃) δ 8.68 (d, J = 4.6 Hz, 1H), 8.03 (d, J = 7.8 Hz, 1H), 7.83 (td, J = 7.8, 1.6 Hz, 1H), 7.53 – 7.39 (m, 1H), 7.33 – 7.25 (m, 2H), 7.18 (dd, J = 7.5, 3.7 Hz, 3H), 3.25 (t, J = 7.0 Hz, 2H), 2.67 (t, J = 7.3 Hz, 2H), 1.84 – 1.64 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 201.80, 153.42, 148.85, 142.36, 136.86, 128.41, 128.25, 127.00, 125.66, 121.72, 37.44, 35.77, 31.09, 23.66.

HRMS (ESI) m/z calcd for C₁₆H₁₈NO [M + H]⁺: 240.1388, found: 240.1383.

1-(3-chloropyridin-2-yl)pentan-1-one (Table 4, 1j). The title compound was prepared according to **General Procedure A**, using 1-bromobutane [109-65-9] (3.29 g, 24.0 mmol, 1.20 equiv) and 3-chloro-2-pyridinecarbonitrile [38180-46-0] (2.77 g, 20.0 mmol, 1.00 equiv). The title compound was afforded as a yellowish sticky liquid (1.62 g, 41%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.52 (d, *J* = 4.5 Hz, 1H), 7.78 (d, *J* = 8.1 Hz, 1H), 7.35 (dd, *J* = 8.1, 4.6 Hz, 1H), 3.08 (t, *J* = 7.4 Hz, 2H), 1.74 – 1.66 (m, 2H), 1.49 – 1.37 (m, 2H), 0.94 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 201.79, 152.56, 146.79, 139.03, 129.61, 126.26, 40.18, 25.84, 22.40, 13.98.

HRMS (ESI) m/z calcd for $C_{10}H_{13}CINO [M + H]^+$: 198.0686, found: 198.0687.

III. Preparation of Cu(II) Complexes

Procedure for preparation of Cu(II) complexes

In a nitrogen-filled glovebox, sodium hydride (60% dispersion in mineral oil) [7646-69-7] (0.80 mg, 0.022 mmol, 2.2 equiv) and the corresponding carboxylic acid (0.02 mmol, 2 equiv) were combined in a dram vial. CuBr₂ [7789-45-9] (2.2 mg, 0.010 mmol, 1.0 equiv) in MeCN (50 μ L) was added to a dram vial. After 3 minutes, the mixture was filtered through a cotton filter with MeCN (50 μ L) and concentrated under reduced pressure. <u>The copper complex was characterized by FT-IR spectroscopy and used without further purification.</u>

*Note: Cu(II) carboxylates F, G, and I have been reported in the literature.³

Table S1. Synthesis of Cu(II) Complexes^a

^{*a*}Reaction conditions: sodium hydride (60% dispersion in mineral oil) [7646-69-7] (0.80 mg, 0.022 mmol, 2.2 equiv), the corresponding carboxylic acids (0.02 mmol, 2 equiv), and CuBr₂ [7789-45-9] (2.2 mg, 0.010 mmol, 1.0 equiv) in MeCN (50 μ L) at r.t. for 3 minutes.

Cu(II) 5,5-dimethylhexanoate (Table 2, B). The title compound was prepared using 5,5-dimethylhexanoic acid [24499-80-7] (2.88 mg, 0.0200 mmol, 2.00 equiv) and CuBr₂ [7789-45-9] (2.2 mg, 0.010 mmol, 1.0 equiv). The title compound was afforded as a blue powder.

 $IR \; (ATR, \; \tilde{\upsilon} \; (cm^{-1})) \; 2953.73, \; 2925.16, \; 2854.45, \; 1562.30, \; 1408.64, \; 1365.01, \; 1309.39, \; 1081.45, \; 763.54, \; 728.73.$

HRMS (ESI) m/z calcd for $C_{16}H_{31}CuO_4$ [M + H]⁺: 350.1518, found: 350.1510.

Cu(II) 4-(trimethylsilyl)butanoate (Table 2, C). The title compound was prepared using 4-(trimethylsilyl)butanoic acid [2345-40-6] (3.2 mg, 0.020 mmol, 2.0 equiv) and CuBr₂ [7789-45-9] (2.2 mg, 0.010 mmol, 1.0 equiv). The title compound was afforded as a blue powder.

IR (ATR, \tilde{v} (cm⁻¹)) 3513.51, 1754.72, 1627.04, 1381.70, 1280.36, 1238.40, 1185.50, 1035.51, 990.08, 931.10, 874.81, 802.36, 681.70.

HRMS (ESI) m/z calcd for C14H30CuO4Si2 [M]: 381.0976, found: 381.0964.

Cu(II) 4-(adamantan-1-yl)butanoate (Table 2, D). The title compound was prepared using 1-adamantanebutyric acid [6240-17-1] (4.4 mg, 0.020 mmol, 2.0 equiv) and CuBr₂ [7789-45-9] (2.2 mg, 0.010 mmol, 1.0 equiv). The title compound was afforded as a blue powder.

IR (ATR, \tilde{v} (cm⁻¹)) 2910.82, 2851.22, 1763.52, 1621.28, 1543.95, 1445.84, 1416.96, 1375.88, 1183.56, 1035.97, 990.81, 736.60.

HRMS (ESI) m/z calcd for C₂₈H₄₃CuO₂ [M + H]⁺: 506.2457, found: 506.2452.

Cu(II) 4-(adamantan-2-yl)butanoate (Table 2, E). The title compound was prepared using 2-adamantanebutyric acid [1693982-88-5] (4.4 mg, 0.020 mmol, 2.0 equiv) and CuBr₂ [7789-45-9] (2.2 mg, 0.010 mmol, 1.0 equiv). The title compound was afforded as a blue powder.

IR (ATR, \tilde{v} (cm⁻¹)) 2912.58, 2852.70, 1667.16, 1571.79, 1416.25, 1188.71, 736.49. **HRMS** (ESI) m/z calcd for **C₂₈H₄₃CuO₂** [M + H]⁺: 506.2457, found: 506.2452.

Cu(II) 4-cyclohexylbutan-1-olate (Table 2, H). The title compound was prepared using cyclohexanebutanol [4441-57-0] (3.2 mg, 0.020 mmol, 2.0 equiv) and CuBr₂ [7789-45-9] (2.2 mg, 0.010 mmol, 1.0 equiv). The title compound was afforded as a blue powder.

IR (ATR, \tilde{v} (cm⁻¹)) 3376.24, 2921.26, 2850.91, 1665.38, 1604.14, 1446.98, 1309.18, 1072.31, 731.97. **HRMS** (ESI) m/z calcd for **C**₂₀**H**₃₉**CuO**₂ [M + H]⁺: 374.2246, found: 374.2241.

IV. H/D Exchange Experiments by Lewis Acid/Brønsted Base Catalysis

General Procedure B

In a nitrogen-filled glovebox, 1-(2-pyridinyl)-1-pentanone (1a) [7137-97-5] (8.2 mg, 0.050 mmol, 1.0 equiv), the corresponding Lewis acid (0.01 mmol, 0.2 equiv), the corresponding base (0.010 mmol, 0.20 equiv), and D₂O [7789-20-0] (2 mg, 0.1 mmol, 2 equiv) in CDCl₃ (0.14 M) were combined in a dram vial. Deuterium incorporation was determined by ¹H-NMR analysis.

^{*a*}Reaction conditions: 1-(2-pyridinyl)-1-pentanone (**1a**) [7137-97-5] (8.2 mg, 0.050 mmol, 1.0 equiv), the corresponding Lewis acid (0.01 mmol, 0.2 equiv), BTMG [29166-72-1] (1.8 mg, 0.010 mmol, 0.20 equiv), and D₂O [7789-20-0] (2 mg, 0.1 mmol, 2 equiv) in CDCl₃ (0.14 M) at r.t. for 10 minutes. ^{*b*}Deuterium incorporation was determined by ¹H NMR analysis, with full deuteration at both α -protons of **1a** considered as 100%. ^{*c*}After 16 h.

^{*a*}Reaction conditions: 1-(2-pyridinyl)-1-pentanone (**1a**) [7137-97-5] (8.2 mg, 0.050 mmol, 1.0 equiv), Cu(OAc)₂ [142-71-2] (1.8 mg, 0.010 mmol, 0.20 equiv), the corresponding base (0.01 mmol, 0.2 equiv), and D₂O [7789-20-0] (2 mg, 0.1 mmol, 2 equiv) in CDCl₃ (0.14 M) at r.t. for 10 minutes. ^{*b*}Deuterium incorporation was determined by ¹H NMR analysis, with full deuteration at both α -protons of **1a** considered as 100%. ^{*c*}After 16 h.

V. Development of the Conjugate Addition of 2-Pyridyl Alkyl Ketones to Enones

General Procedure C

In a nitrogen-filled glovebox, Cu(II) cyclohexanebutyrate A [2218-80-6] (2 mg, 0.005 mmol, 0.1 equiv) and the corresponding chiral ligand (0.0055 mmol, 0.11 equiv) in MeCN (50 μ L) were combined in a dram vial equipped with a stir bar. After stirring for 3 minutes, 1-(2-pyridinyl)-1-pentanone (**1a**) [7137-97-5] (16.3 mg, 0.100 mmol, 2.00 equiv), (2*E*)-3-phenyl-1-(2-pyridinyl)-2-propen-1-one (**2a**) [53940-12-8] (10.5 mg, 0.0500 mmol, 1.00 equiv), and the corresponding base (0.005 mmol, 0.1 equiv) were added. The resulting mixture was stirred vigorously at room temperature for 16 h. The mixture was then exposed to air. Yields and drs of the products were determined by ¹H NMR spectroscopy with 1,1,2,2-tetrachloroethane as an internal standard. The ee of the products was determined by chiral HPLC analysis (Table 2 in the main paper; 99% yield, 5.4:1 dr, and 98% ee with (*R*,*R*)-Ph-BPE).

^{*a*}Reaction conditions: 1-(2-pyridinyl)-1-pentanone (**1a**) [7137-97-5] (16.3 mg, 0.100 mmol, 2.00 equiv), (2*E*)-3-phenyl-1-(2-pyridinyl)-2-propen-1-one (**2a**) [53940-12-8] (10.5 mg, 0.0500 mmol, 1.00 equiv), Cu(II) **A** [2218-80-6] (2 mg, 0.005 mmol, 0.1 equiv), the corresponding chiral ligand (0.0055 mmol, 0.11 equiv), and BTMG [29166-72-1] (0.9 mg, 0.005 mmol, 0.1 equiv) in MeCN (1 M) at r.t. for 16 h. ^{*b*}Yields and drs of the products were determined by ¹H NMR analysis with 1,1,2,2-tetrachloroethane as an internal standard. ^{*c*}The ee of the products was determined by chiral HPLC analysis.

^{*a*}Reaction conditions: 1-(2-pyridinyl)-1-pentanone (**1a**) [7137-97-5] (16.3 mg, 0.100 mmol, 2.00 equiv), (*2E*)-3-phenyl-1-(2-pyridinyl)-2-propen-1-one (**2a**) [53940-12-8] (10.5 mg, 0.0500 mmol, 1.00 equiv), Cu(II) **A** [2218-80-6] (2 mg, 0.005 mmol, 0.1 equiv), (*R*,*R*)-Ph-BPE [528565-79-9] (2.8 mg, 0.0055 mmol, 0.11 equiv), and corresponding bases (0.005 mmol, 0.1 equiv) in MeCN (1 M) at r.t. for 16 h. ^{*b*}Yields and drs of the products were determined by ¹H NMR analysis with 1,1,2,2-tetrachloroethane as an internal standard. ^{*c*}The ee of the products was determined by chiral HPLC analysis.

^{*a*}Reaction conditions: the corresponding heteroaryl-substituted ketone (0.1 mmol, 2 equiv), (*2E*)-3-phenyl-1-(2-pyridinyl)-2-propen-1-one (**2a**) [53940-12-8] (10.5 mg, 0.0500 mmol, 1.00 equiv), Cu(II) **A** [2218-80-6] (2 mg, 0.005 mmol, 0.1 equiv), (*R*,*R*)-Ph-BPE [528565-79-9] (2.8 mg, 0.0055 mmol, 0.11 equiv), and BTMG [29166-72-1] (0.9 mg, 0.005 mmol, 0.1 equiv) in MeCN (1 M) at r.t. for 16 h. ^{*b*}Yields and drs of the products were determined by ¹H NMR analysis with 1,1,2,2-tetrachloroethane as an internal standard. ^{*c*}The ee of the products was determined by chiral HPLC analysis.

Table S7. Unsuccessful Multi-Substituted Enones for the Conjugate Addition^{a,b,c}

^{*a*}Reaction conditions: 1-(2-pyridinyl)-1-pentanone (**1a**) [7137-97-5] (16.3 mg, 0.100 mmol, 2.00 equiv), the corresponding enone (0.05 mmol, 1 equiv), Cu(II) **A** [2218-80-6] (2 mg, 0.005 mmol, 0.1 equiv), (*R*,*R*)-Ph-BPE [528565-79-9] (2.8 mg, 0.0055 mmol, 0.11 equiv), and BTMG [29166-72-1] (0.9 mg, 0.005 mmol, 0.1 equiv) in MeCN (1 M) at r.t. for 16 h. ^{*b*}Yields and drs of the products were determined by ¹H NMR analysis with 1,1,2,2-tetrachloroethane as an internal standard. ^{*c*}The ee of the products was determined by chiral HPLC analysis.

Procedure for Scheme S1b on page S10.

In a nitrogen-filled glovebox, sodium hydride (60% dispersion in mineral oil) [7646-69-7] (0.40 mg, 0.011, 0.22 equiv) and 4cyclohexylbutanoic acid [4441-63-8] (1.7 mg, 0.010 mmol, 0.20 equiv) were combined in a dram vial. CuBr₂ [7789-45-9] (1.1 mg, 0.0050 mmol, 0.10 equiv) in MeCN (50 μ L) was then added to this dram vial. After 3 minutes, the mixture was filtered through a cotton filter with MeCN (50 μ L) and concentrated under reduced pressure. (*R*,*R*)-Ph-BPE [528565-79-9] (2.8 mg, 0.0055 mmol, 0.11 equiv) in MeCN (50 μ L) was then added to this vial with a stir bar. Following an additional 3 minutes of stirring, 1-(2-pyridinyl)-1pentanone (1a) [7137-97-5] (16.3 mg, 0.100 mmol, 2.00 equiv), (2*E*)-3-phenyl-1-(2-pyridinyl)-2-propen-1-one (2a) [53940-12-8] (10.5 mg, 0.0500 mmol, 1.00 equiv), and BTMG [29166-72-1] (0.9 mg, 0.005 mmol, 0.1 equiv) were combined into the mixture. The resulting mixture was stirred vigorously at room temperature for 16 h. The mixture was then exposed to air. Yields and drs of the products were determined by ¹H NMR spectroscopy with 1,1,2,2-tetrachloroethane as an internal standard. The ee of the products was determined by chiral HPLC analysis.

Procedure for Scheme S1c on page S10.

In a nitrogen-filled glovebox, sodium cyclohexanebutyrate [61886-29-1] (1.92 mg, 0.0100 mmol, 0.200 equiv) and CuBr₂ [7789-45-9] (1.1 mg, 0.0050 mmol, 0.10 equiv) in MeCN (50 μ L) were combined in a dram vial. After 3 minutes, the mixture was filtered through a cotton filter with MeCN (50 μ L) and concentrated under reduced pressure. (*R*,*R*)-Ph-BPE [528565-79-9] (2.8 mg, 0.0055 mmol, 0.11 equiv) in MeCN (50 μ L) was then added to this vial with a stir bar. Following an additional 3 minutes of stirring, 1-(2-pyridinyl)-1-pentanone (**1a**) [7137-97-5] (16.3 mg, 0.100 mmol, 2.00 equiv), (2*E*)-3-phenyl-1-(2-pyridinyl)-2-propen-1-one (**2a**) [53940-12-8] (10.5 mg, 0.0500 mmol, 1.00 equiv), and BTMG [29166-72-1] (0.9 mg, 0.005 mmol, 0.1 equiv) were added. The resulting mixture was stirred vigorously at room temperature for 16 h. The mixture was then exposed to air. Yields and drs of the products were determined by ¹H NMR spectroscopy with 1,1,2,2-tetrachloroethane as an internal standard. The ee of the products was determined by chiral HPLC analysis.

Scheme S1. Comparison of the Effect of Cu(II) Carboxylate Catalysts: Commercial vs. In-Situ Prepared^{a,b}

^aYields and drs of the products were determined by ¹H NMR analysis with 1,1,2,2-tetrachloroethane as an internal standard. ^bThe ee of the products was determined by chiral HPLC analysis.

VI. Catalytic Conjugate Addition of 2-Pyridyl Alkyl Ketones to Enones

General Procedure D for the Preparation of Racemic Products 3

In a nitrogen-filled glovebox, Cu(OAc)₂ [142-71-2] (3.6 mg, 0.020 mmol, 0.10 equiv) and DPPF [12150-46-8] (12 mg, 0.022 mmol, 0.11 equiv) or DPPE [1663-45-2] (8.8 mg, 0.022 mmol, 0.11 equiv) in MeCN (0.2 mL) were combined in a dram vial equipped with a stir bar. The corresponding pyridyl alkyl ketone (0.4 mmol, 2 equiv), the corresponding enone (0.2 mmol, 1 equiv), and BTMG [29166-72-1] (3.6 mg, 0.020 mmol, 0.10 equiv) were added to this vial. The resulting mixture was stirred vigorously at room temperature for 16 h. The mixture was then exposed to air. The residue was purified by flash column chromatography (Hex:EtOAc).

General Procedure E

In a nitrogen-filled glovebox, Cu(II) A [2218-80-6] (8 mg, 0.02 mmol, 0.1 equiv) and the corresponding chiral ligand (0.022 mmol, 0.11 equiv) in MeCN (0.2 mL) were combined in a dram vial equipped with a stir bar. After stirring 3 minutes, the corresponding pyridyl alkyl ketone (0.4 mmol, 2 equiv), the corresponding enone (0.2 mmol, 1 equiv), and BTMG [29166-72-1] (3.6 mg, 0.020 mmol, 0.10 equiv) were added to this vial. The mixture was stirred vigorously at room temperature for 16 h. The mixture was then exposed to air. The residue was purified by flash column chromatography (Hex:EtOAc). Diastereomeric ratios (drs) of the crude mixtures and drs of the isolated compounds were determined by ¹H NMR analysis.

General Procedure F

In a nitrogen-filled glovebox, sodium hydride (60% dispersion in mineral oil) [7646-69-7] (1.6 mg, 0.044, 0.22 equiv), the corresponding salt (0.04 mmol, 0.2 equiv), and CuBr₂ [7789-45-9] (4.4 mg, 0.020 mmol, 0.10 equiv) in MeCN (0.1 mL) were added to a dram vial. After 3 minutes, the mixture was filtered through a cotton filter with MeCN (0.1 mL). The corresponding chiral ligand was then combined with a stir bar. Following an additional 3 minutes of stirring, the corresponding pyridyl alkyl ketone (0.4 mmol, 2 equiv), enones (0.2 mmol, 1 equiv), and BTMG [29166-72-1] (3.6 mg, 0.020 mmol, 0.10 equiv) were added. The mixture was stirred vigorously at room temperature for 16 h. The mixture was then exposed to air. The residue was purified by flash column chromatography (Hex:EtOAc). The diastereomeric ratios (drs) of the crude sample and drs of the isolated compounds were determined by ¹H NMR analysis.

(2S,3S)-3-phenyl-2-propyl-1,5-di(pyridin-2-yl)pentane-1,5-dione (Table 4, 3aa). The title compound was prepared according to General Procedure E, using Cu(II) A [2218-80-6] (8 mg, 0.02 mmol, 0.1 equiv), (R,R)-Ph-BPE [528565-79-9] (11.2 mg, 0.0220 mmol, 0.110 equiv), 1-(2-pyridinyl)-1-pentanone (1a) [7137-97-5] (65.2 mg, 0.400 mmol, 2.00 equiv), (2E)-3-phenyl-1- (2-pyridinyl)-2-propen-1-one (2a) [53940-12-8] (42 mg, 0.20 mmol, 1.0 equiv), and BTMG [29166-72-1] (3.6 mg, 0.020 mmol, 0.10 equiv) in MeCN (0.2 mL). The diastereometric ratio was determined to be 5.4:1 from the crude sample. After purification by flash column chromatography (Hex:EtOAc), 3aa was afforded as a yellowish sticky liquid (62.6 mg, 84% yield, >20:1 dr (after isolation)).

¹**H** NMR (300 MHz, CDCl₃) δ 8.63 (d, J = 3.9 Hz, 2H), 7.84 (dd, J = 12.6, 7.9 Hz, 2H), 7.80 – 7.66 (m, 2H), 7.48 – 7.34 (m, 2H), 7.34 – 7.22 (m, 2H), 7.10 (t, J = 7.4 Hz, 2H), 7.00 (t, J = 7.2 Hz, 1H), 4.67 (ddd, J = 10.2, 7.0, 3.0 Hz, 1H), 4.02 – 3.90 (m, 1H), 3.84 (dd, J = 17.1, 9.9 Hz, 1H), 3.58 (dd, J = 17.1, 4.2 Hz, 1H), 1.98 (ddd, J = 20.7, 10.4, 5.0 Hz, 1H), 1.70 – 1.54 (m, 1H), 1.34 – 1.08 (m, 2H), 0.83 (t, J = 7.3 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 204.69, 200.41, 153.93, 153.56, 148.89, 148.78, 143.00, 136.89, 136.81, 128.55, 128.02, 127.09, 126.80, 126.25, 122.23, 121.91, 49.73, 42.43, 39.52, 30.89, 21.04, 14.47.

HRMS (ESI) m/z calcd for C₂₄H₂₅N₂O₂ [M + H]⁺: 373.1916, found: 373.1899.

HPLC analysis: The ee of the product was determined by chiral HPLC analysis to be 97% [OD-H, 5% i-PrOH in hexanes, 0.3 mL/min], $t_R = 23.87 \text{ min}$ (*anti* minor), $t_R = 24.82 \text{ min}$ (*anti* major), $t_R = 29.22$ (*syn* major), and $t_R = 47.65$ (*syn* minor). $[\alpha]_D^{20} = +24^\circ$ (c = 1.4, CHCl₃).

<Chromatogram>

(*S*,*S*)-**3aa** >20:1 dr, 97% ee

<Peak Table>

Detecto	or A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	23.872	463804	15949	1.730		M	1111-111
2	24.819	26344882	466394	98.270		M	
Total		26808686	482342				

<Chromatogram>

(*R*,*R*)-**3aa** 10:1 dr, 97% ee

<Peak Table>

<Chromatogram>

<Peak Table>

Deleci	ULA 2041111						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	22.130	6489099	162506	25.079		M	
2	23.794	6492675	143280	25.092		M	
3	27.116	6430808	124598	24.853		M	
4	43.690	6462391	84229	24.975		M	
Total		25874973	514614				

(*rac*)-**3aa** 4:1 dr

(2R,3R)-2-methyl-3-phenyl-1,5-di(pyridin-2-yl)pentane-1,5-dione (Table 4, 3ba). The title compound was prepared according to General Procedure E, using Cu(II) A [2218-80-6] (8 mg, 0.02 mmol, 0.1 equiv), (*S*,*S*)-Ph-BPE [824395-67-7] (11.2 mg, 0.0220 mmol, 0.110 equiv), 1-(pyridin-2-yl)propan-1-one (1b) [3238-55-9] (54 mg, 0.40 mmol, 2.0 equiv), (2*E*)-3-phenyl-1-(2-pyridinyl)-2-propen-1-one (2a) [53940-12-8] (42 mg, 0.20 mmol, 1.0 equiv), and BTMG [29166-72-1] (3.6 mg, 0.020 mmol, 0.10 equiv) in MeCN (0.2 mL). The diastereometric ratio was determined to be 3.3:1 from the crude sample. After purification by flash column chromatography (Hex:EtOAc), 3ba was afforded as a yellowish sticky liquid (59 mg, 82% yield, 3.3:1 dr (after isolation)).

¹**H** NMR (300 MHz, CDCl₃) δ 8.73 (d, *J* = 4.2 Hz, 1H of major, 77%), 8.68 (d, *J* = 3.9 Hz, 1H of minor, 23%), 8.12 (d, *J* = 7.8 Hz, 1H of major, 77%), 7.94 – 7.77 (m, 2H), 7.75 – 7.69 (m, 1H of minor, 23%), 7.57 – 7.45 (m, 2H), 7.40 (dd, *J* = 15.1, 7.4 Hz, 2H), 7.28 (d, *J* = 3.9 Hz, 3H), 7.19 (dt, *J* = 10.0, 6.0 Hz, 2H of major, 77%), 7.08 (d, *J* = 7.3 Hz, 1H of minor, 23%), 6.93 (d, *J* = 6.2 Hz, 1H of minor, 23%), 4.73 – 4.66 (m, 1H of minor, 23%), 4.66 – 4.51 (m, 1H of major, 77%), 4.07 – 3.99 (m, 1H of minor, 23%), 3.86 (td, *J* = 9.9, 4.4 Hz, 1H of major, 77%), 3.48 – 3.42 (m, 2H of minor, 23%), 3.41 – 3.19 (m, 2H of major, 77%), 1.29 (d, *J* = 6.9 Hz, 3H of minor, 23%), 0.99 (d, *J* = 6.9 Hz, 3H of minor, 77%).

¹³C NMR (75 MHz, CDCl₃) δ 204.95, 204.09, 198.64, 153.03, 149.03, 148.72, 142.01, 137.31, 137.06, 132.97, 132.82, 128.54, 128.47, 128.44, 128.20, 128.06, 127.37, 127.08, 126.73, 126.40, 44.39, 44.31, 44.25, 42.61, 40.32, 16.59, 13.75.

HRMS (ESI) m/z calcd for C₂₂H₂₁N₂O₂ [M + H]⁺: 345.1603, found: 345.1587.

HPLC analysis: The ee of the product was determined by chiral HPLC analysis to be 83% [OD-H, 20% i-PrOH in hexanes, 0.3 mL/min], $t_R = 16.00 \text{ min}$ (*anti* major), $t_R = 17.92 \text{ min}$ (*anti* minor), $t_R = 23.37$ (*syn* major), and $t_R = 24.56$ (*syn* minor). $[\alpha]_D^{20} = -141^\circ$ (c = 0.39, CHCl₃).

(*R*,*R*)-**3ba** 3.3:1 dr, 83% ee

Ŵе

(rac)-3ba

1.0:1 dr

(2S,3S)-2-heptyl-3-phenyl-1,5-di(pyridin-2-yl)pentane-1,5-dione (Table 4, 3ca). The title compound was prepared according to General Procedure E, using Cu(II) A [2218-80-6] (8 mg, 0.02 mmol, 0.1 equiv), (*R*,*R*)-Ph-BPE [528565-79-9] (11.2 mg, 0.0220 mmol, 0.110 equiv), 1-(pyridin-2-yl)nonan-1-one (1c) [143773-13-1] (87.7 mg, 0.400 mmol, 2.00 equiv), (2*E*)-3-phenyl-1-(2-pyridinyl)-2-propen-1-one (2a) [53940-12-8] (42 mg, 0.20 mmol, 1.0 equiv), and BTMG [29166-72-1] (3.6 mg, 0.020 mmol, 0.10 equiv) in MeCN (0.2 mL). The diastereomeric ratio was determined to be 3.2:1 from the crude sample. After purification by flash column chromatography (Hex:EtOAc), 3ca was afforded as a yellowish sticky liquid (74.6 mg, 87% yield, 6.1:1 dr (after isolation)).

¹**H NMR** (300 MHz, CDCl₃) δ 8.64 (s, 1H), 7.90 – 7.78 (m, 2H), 7.73 (dd, J = 15.9, 8.0 Hz, 2H), 7.47 – 7.33 (m, 2H), 7.32 – 7.23 (m, 3H of major, 86%), 7.22 – 7.16 (m, 3H of minor, 14%), 7.09 (t, J = 7.3 Hz, 2H), 7.00 (d, J = 7.2 Hz, 1H), 4.66 (dd, J = 12.3, 5.1 Hz, 1H), 3.90 (d, J = 15.5 Hz, 1H), 3.80 (d, J = 9.7 Hz, 1H), 3.59 (dd, J = 17.0, 3.9 Hz, 1H), 2.08 – 1.89 (m, 1H), 1.72 – 1.55 (m, 1H), 1.32 – 1.09 (m, 10H), 0.81 (t, J = 6.7 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 204.49, 200.28, 153.77, 153.41, 148.73, 148.63, 144.83, 142.87, 136.73, 136.65, 130.56, 128.85, 128.39, 127.87, 126.95, 126.64, 126.09, 122.09, 121.76, 49.75, 42.28, 39.34, 31.72, 29.78, 29.03, 28.49, 27.58, 22.56, 14.04. HRMS (ESI) m/z calcd for C₂₈H₃₃N₂O₂ [M + H]⁺: 429.2542, found: 429.2525.

HPLC analysis: The ee of the product was determined by chiral HPLC analysis to be >99% [IC, 20% i-PrOH in hexanes, 1 mL/min], $t_R = 5.14 \text{ min}$ (*anti* major), $t_R = 7.20 \text{ min}$ (*syn* isomer A), $t_R = 16.69$ (*anti* minor), and $t_R = 32.70$ (*syn* isomer B). $[\alpha]_D^{20} = +66^\circ$ (c = 1.0, CHCl₃).

(S,S)-**3ca** 6.1:1 dr, >99% ee

(*rac*)-**3ca** 1.0:1 dr

(2S,3S)-2-isopropyl-3-phenyl-1,5-di(pyridin-2-yl)pentane-1,5-dione (Table 4, 3da). The title compound was prepared according to General Procedure E, using Cu(II) A [2218-80-6] (8 mg, 0.02 mmol, 0.1 equiv), (*R*,*R*)-Ph-BPE [528565-79-9] (11.2 mg, 0.0220 mmol, 0.110 equiv), 3-methyl-1-(pyridin-2-yl)butan-1-one (1d) [6952-53-0] (65 mg, 0.40 mmol, 2.0 equiv), (2*E*)-3-phenyl-1-(2-pyridinyl)-2-propen-1-one (2a) [53940-12-8] (42 mg, 0.20 mmol, 1.0 equiv), and BTMG [29166-72-1] (3.6 mg, 0.020 mmol, 0.10 equiv) in MeCN:DCE (1:1, 0.8 mL). The diastereomeric ratio was determined to be 5.0:1 from the crude sample. After purification by flash column chromatography (Hex:EtOAc), 3da was afforded as a white crystal (53.6 mg, 72% yield, 12:1 dr (after isolation), mp: 90–95 °C).

¹**H NMR** (300 MHz, CDCl₃) δ 8.62 (s, 1H), 8.50 (d, *J* = 4.0 Hz, 1H), 7.99 (d, *J* = 7.7 Hz, 1H of minor, 8%), 7.87 (d, *J* = 7.3 Hz, 1H of major, 92%), 7.80 – 7.69 (m, 2H), 7.63 (t, *J* = 7.3 Hz, 1H), 7.55 – 7.49 (m, 1H of minor, 8%), 7.41 (s, 1H), 7.36 – 7.28 (m, 1H of major, 92%), 7.20 (d, *J* = 7.4 Hz, 2H), 7.00 (t, *J* = 7.4 Hz, 2H), 6.90 (t, *J* = 7.2 Hz, 1H), 4.98 – 4.90 (m, 1H of major, 92%), 4.90 – 4.81 (m, 1H of minor, 8%), 4.34 – 4.22 (m, 1H of minor, 8%), 4.02 (td, *J* = 9.8, 5.1 Hz, 1H of major, 92%), 3.77 – 3.54 (m, 1H and 1H of major, 92%), 3.16 (d, *J* = 16.6 Hz, 1H of minor, 8%), 2.41 – 2.22 (m, 1H), 1.08 (d, *J* = 6.7 Hz, 3H of major, 92%), 0.97 (d, *J* = 6.9 Hz, 3H of major, 92%), 0.86 (d, *J* = 6.7 Hz, 1H of minor, 8%), 0.80 (d, *J* = 7.1 Hz, 1H of minor, 8%).

¹³C NMR (75 MHz, CDCl₃) δ 204.49, 200.36, 154.54, 153.50, 148.71, 148.36, 142.56, 136.77, 136.62, 128.79, 128.57, 128.11, 127.68, 126.93, 126.43, 126.04, 121.79, 121.53, 52.29, 41.80, 41.25, 28.87, 21.85, 17.92.

HRMS (ESI) m/z calcd for C₂₄H₂₅N₂O₂ [M + H]⁺: 373.1916, found: 373.1899.

HPLC analysis: The ee of the product was determined by chiral HPLC analysis to be 92% [IC, 20% i-PrOH in hexanes, 1 mL/min], $t_R = 4.99 \text{ min}$ (*anti* major), $t_R = 7.27 \text{ min}$ (*anti* minor), $t_R = 13.86$ (*syn* major), and $t_R = 27.58$ (*syn* minor). $[\alpha]_D^{20} = +84^\circ$ (c = 0.59, CHCl₃).

3ea

(2S,3S)-2-isobutyl-3-phenyl-1,5-di(pyridin-2-yl)pentane-1,5-dione (Table 4, 3ea). The title compound was prepared according to General Procedure F, using 5,5-dimethylhexanoic acid [24499-80-7] (5.8 mg, 0.040 mmol, 0.20 equiv), CuBr₂ [7789-45-9] (4.4 mg, 0.020 mmol, 0.10 equiv), (*R*,*R*)-Ph-BPE [528565-79-9] (11.2 mg, 0.0220 mmol, 0.110 equiv), 4-methyl-1-(pyridin-2-yl)pentan-1-one (1e) [95188-18-4] (71 mg, 0.40 mmol, 2.0 equiv), (2*E*)-3-phenyl-1-(2-pyridinyl)-2-propen-1-one (2a) [53940-12-8] (42 mg, 0.20 mmol, 1.0 equiv), and BTMG [29166-72-1] (3.6 mg, 0.020 mmol, 0.10 equiv) in MeCN (0.2 mL). The diastereomeric ratio was determined to be 2.0:1 from the crude sample. After purification by flash column chromatography (Hex:EtOAc), 3ea was afforded as a yellowish sticky liquid (46.4 mg, 60% yield, 13:1 dr (after isolation)).

¹**H NMR** (400 MHz, CDCl₃) δ 8.74 – 8.65 (m, 1H of major, 93%), 8.63 (d, *J* = 4.4 Hz, 2H of minor, 7%), 8.56 (d, *J* = 4.2 Hz, 1H of major, 93%), 8.04 (d, *J* = 7.8 Hz, 1H), 7.83 – 7.71 (m, 2H), 7.67 (td, *J* = 7.7, 1.6 Hz, 1H), 7.43 (ddd, *J* = 7.4, 4.8, 1.2 Hz, 1H), 7.38 – 7.31 (m, 1H), 7.29 – 7.23 (m, 2H), 7.19 (t, *J* = 7.5 Hz, 2H), 7.09 (dd, *J* = 10.2, 4.3 Hz, 1H), 4.82 – 4.72 (m, 1H), 3.94 – 3.87 (m, 1H), 3.87 – 3.76 (m, 1H), 3.23 (dd, *J* = 16.0, 3.4 Hz, 1H), 1.73 (td, *J* = 13.1, 4.0 Hz, 1H), 1.34 – 1.19 (m, 1H), 1.19 – 1.10 (m, 1H), 0.80 (dd, *J* = 5.8, 3.0 Hz, 6H of minor, 7%), 0.71 (dd, *J* = 10.8, 6.5 Hz, 6H of major, 93%).

¹³C NMR (101 MHz, CDCl₃) δ 206.08, 200.22, 154.37, 153.57, 149.12, 148.79, 142.79, 136.93, 136.70, 128.70, 128.22, 127.04, 126.85, 126.49, 122.25, 121.86, 47.14, 44.64, 42.26, 40.63, 26.36, 23.90, 21.85.

HRMS (ESI) m/z calcd for C₂₅H₂₇N₂O₂ [M + H]⁺: 387.2072, found: 387.2055.

HPLC analysis: The ee of the product was determined by chiral HPLC analysis to be 88% [OD-H, 5% i-PrOH in hexanes, 0.5 mL/min], $t_R = 11.42 \text{ min} (syn \text{ isomer A})$, $t_R = 12.36 \text{ min} (syn \text{ isomer B})$, $t_R = 13.03 (anti \text{ major})$, and $t_R = 26.71 (anti \text{ minor})$.

$$[\alpha]_D^{20} = +114^\circ (c = 0.22, CHCl_3)$$

(2*S*,3*S*)-3-phenyl-1,5-di(pyridin-2-yl)-2-(2-(trimethylsilyl)ethyl)pentane-1,5-dione (Table 4, 3fa). The title compound was prepared according to General Procedure E, using Cu(II) A [2218-80-6] (8 mg, 0.02 mmol, 0.1 equiv), (*R*,*R*)-Ph-BPE [528565-79-9] (11.2 mg, 0.0220 mmol, 0.110 equiv), 1-(pyridin-2-yl)-4-(trimethylsilyl)butan-1-one (1f) (89 mg, 0.40 mmol, 2.0 equiv), (2*E*)-3-phenyl-1-(2-pyridinyl)-2-propen-1-one (2a) [53940-12-8] (42 mg, 0.20 mmol, 1.0 equiv), and BTMG [29166-72-1] (3.6 mg, 0.020 mmol, 0.10 equiv) in MeCN:DCE (1:1, 0.8 mL). The diastereomeric ratio was determined to be 11:1 from the crude sample. After purification by flash column chromatography (Hex:EtOAc), 3fa was afforded as a yellowish sticky liquid (70 mg, 81% yield, >20:1 dr (after isolation)).

¹**H NMR** (300 MHz, CDCl₃) δ 8.67 – 8.59 (m, 2H), 7.88 (d, J = 7.8 Hz, 1H), 7.83 – 7.67 (m, 3H), 7.48 – 7.31 (m, 2H), 7.28 (dd, J = 4.8, 3.7 Hz, 2H), 7.09 (t, J = 7.4 Hz, 2H), 7.00 (d, J = 7.3 Hz, 1H), 4.76 – 4.64 (m, 1H), 3.96 (dd, J = 7.9, 4.9 Hz, 1H), 3.78 (dd, J = 17.1, 9.6 Hz, 1H), 3.63 (dd, J = 17.1, 4.9 Hz, 1H), 2.08 – 1.92 (m, 1H), 1.83 – 1.61 (m, 1H), 0.51 – 0.33 (m, 2H), -0.08 (s, 9H of major, 98%), -0.25 (s, 9H of minor 2%).

¹³C NMR (75 MHz, CDCl₃) δ 204.46, 200.46, 153.97, 153.54, 148.85, 148.70, 142.98, 136.91, 136.83, 128.59, 127.98, 127.08, 126.73, 126.22, 122.17, 121.93, 52.46, 42.39, 40.01, 23.16, 13.97, -1.77.

HRMS (ESI) m/z calcd for $C_{26}H_{31}N_2O_2Si [M + H]^+: 431.2155$, found: 431.2135.

HPLC analysis: The ee of the product was determined by chiral HPLC analysis to be 97% [OD-H, 20% i-PrOH in hexanes, 0.3 mL/min], $t_R = 10.71 \text{ min}$ (*anti* major), $t_R = 13.62 \text{ min}$ (*anti* minor).

 $[\alpha]_D^{20} = +49^\circ (c = 0.90, CHCl_3).$

3ga

(2*S*,3*S*)-3-phenyl-2-(3-phenylpropyl)-1,5-di(pyridin-2-yl)pentane-1,5-dione (Table 4, 3ga). The title compound was prepared according to General Procedure F, using 2-adamantanebutyric acid [1693982-88-5] (8.8 mg, 0.040 mmol, 0.20 equiv), CuBr₂ [7789-45-9] (4.4 mg, 0.020 mmol, 0.10 equiv), (*R*,*R*)-Ph-BPE [528565-79-9] (11.2 mg, 0.0220 mmol, 0.110 equiv), 5-phenyl-1-(pyridin-2-yl)pentan-1-one (1g) (96 mg, 0.40 mmol, 2.0 equiv), (2*E*)-3-phenyl-1-(2-pyridinyl)-2-propen-1-one (2a) [53940-12-8] (42 mg, 0.20 mmol, 1.0 equiv), and BTMG [29166-72-1] (3.6 mg, 0.020 mmol, 0.10 equiv) in MeCN (0.2 mL). The diastereomeric ratio was determined to be 6.7:1 from the crude sample. After purification by flash column chromatography (Hex:EtOAc), 3ga was afforded as a yellowish sticky liquid (77.2 mg, 86% yield, 13:1 dr (after isolation)).

¹**H NMR** (400 MHz, CDCl₃) δ 8.69 (d, *J* = 4.5 Hz, 1H of minor, 7%), 8.62 (t, *J* = 4.2 Hz, 2H of major, 93%), 8.56 (d, *J* = 4.7 Hz, 1H of minor, 7%), 8.05 (d, *J* = 7.9 Hz, 1H of minor, 7%), 7.84 (dd, *J* = 18.6, 7.8 Hz, 1H and 1H of major, 93%), 7.73 (dtd, *J* = 9.3, 7.7, 1.6 Hz, 2H), 7.45 – 7.33 (m, 2H), 7.23 – 7.14 (m, 2H), 7.14 – 7.07 (m, 3H), 7.04 (dd, *J* = 7.8, 4.4 Hz, 3H of major, 92%), 6.96 – 6.91 (m, 3H of minor, 8%), 4.73 (ddd, *J* = 10.3, 7.0, 3.0 Hz, 1H), 4.02 – 3.90 (m, 1H), 3.81 (dd, *J* = 17.4, 9.8 Hz, 1H), 3.58 (dd, *J* = 17.4, 4.6 Hz, 1H of major, 93%), 3.24 (d, *J* = 13.3 Hz, 1H of minor, 7%), 2.66 – 2.50 (m, 2H of major, 93%), 2.42 – 2.34 (m, 2H of minor, 7%), 2.18 (d, *J* = 11.2 Hz, 1H of minor, 7%), 2.17 – 1.99 (m, 1H of major, 93%), 1.81 – 1.66 (m, 1H), 1.62 – 1.41 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 204.33, 200.14, 153.66, 153.32, 148.69, 148.61, 142.66, 142.25, 136.65, 136.58, 128.34, 128.25, 128.07, 127.85, 126.89, 126.64, 126.09, 125.46, 122.02, 121.69, 49.36, 42.22, 39.21, 35.89, 29.40, 28.09.

HRMS (ESI) m/z calcd for $C_{30}H_{29}N_2O_2$ [M + H]⁺: 449.2229, found: 449.2212.

HPLC analysis: The ee of the product was determined by chiral HPLC analysis to be 94% [IC, 30% i-PrOH in hexanes, 1.1 mL/min], $t_R = 3.98 \text{ min } (anti \text{ major})$, $t_R = 11.82 \text{ min } (anti \text{ minor})$, $t_R = 22.76 (syn \text{ isomer A})$, and $t_R = 26.41 (syn \text{ isomer B})$. $[\alpha]_D^{20} = +42^\circ (c = 1.4, \text{ CHCl}_3)$.

3ha

(2S,3S)-2-(hex-5-en-1-yl)-3-phenyl-1,5-di(pyridin-2-yl)pentane-1,5-dione (Table 4, 3ha). The title compound was prepared according to General Procedure E, using Cu(II) A [2218-80-6] (8 mg, 0.02 mmol, 0.1 equiv), (*R*,*R*)-Ph-BPE [528565-79-9] (11.2 mg, 0.0220 mmol, 0.110 equiv), 1-(pyridin-2-yl)oct-7-en-1-one (1h) [1697904-52-1] (81 mg, 0.40 mmol, 2.0 equiv), (2*E*)-3-phenyl-1-(2-pyridinyl)-2-propen-1-one (2a) [53940-12-8] (42 mg, 0.20 mmol, 1.0 equiv), and BTMG [29166-72-1] (3.6 mg, 0.020 mmol, 0.10 equiv) in MeCN (0.2 mL). The diastereomeric ratio was determined to be 2.3:1 from the crude sample. After purification by flash column chromatography (Hex:EtOAc), 3ha was afforded as a yellowish sticky liquid (55.3 mg, 67% yield, 9.0:1 dr (after isolation)).

¹**H NMR** (300 MHz, CDCl₃) δ 8.64 (d, *J* = 4.4 Hz, 2H), 7.85 (dd, *J* = 9.6, 8.6 Hz, 2H), 7.74 (qd, *J* = 7.7, 1.6 Hz, 2H), 7.47 – 7.32 (m, 2H), 7.29 (d, *J* = 7.4 Hz, 2H), 7.10 (t, *J* = 7.4 Hz, 2H), 7.02 (d, *J* = 7.2 Hz, 1H), 5.70 (ddd, *J* = 17.0, 6.7, 3.5 Hz, 1H), 4.87 (t, *J* = 12.4 Hz, 2H), 4.71 – 4.57 (m, 1H), 4.00 – 3.90 (m, 1H), 3.83 (dd, *J* = 17.2, 9.8 Hz, 1H), 3.57 (dd, *J* = 17.2, 4.3 Hz, 1H), 2.33 (t, *J* = 7.5 Hz, 2H of minor, 10%), 2.08 – 1.85 (m, 2H), 1.75 – 1.59 (m, 2H of major, 90%), 1.38 – 1.27 (m, 2H), 1.26 – 1.15 (m, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 204.00, 199.86, 153.34, 153.02, 148.40, 148.29, 142.51, 138.62, 136.57, 136.51, 128.10, 127.63, 126.71, 126.43, 125.86, 121.89, 121.54, 113.88, 49.51, 41.95, 38.98, 33.20, 28.77, 27.87, 26.79.

HRMS (ESI) m/z calcd for $C_{27}H_{29}N_2O_2$ [M + H]⁺: 413.2229, found: 413.2212.

HPLC analysis: The ee of the product was determined by chiral HPLC analysis to be 92% [AD-H, 5.0% i-PrOH in hexanes, 0.5 mL/min], $t_R = 23.65 \text{ min} (syn \text{ major})$, $t_R = 26.04 \text{ min} (syn \text{ minor})$, $t_R = 27.70 (anti \text{ minor})$, and $t_R = 29.38 (anti \text{ major})$. [α] $_D^{20} = +88^\circ$ (c = 0.30, CHCl₃).

(rac)-<mark>3ha</mark>

1.5:1 dr

<Peak Table>

etecto	or A 254nm						
'eak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	28.066	104551	2650	3.824		М	
2	29.748	2629285	55740	96.176		М	
Total		2733836	58391				

<Chromatogram>

3ia

(2S,3S)-1-(3-methylpyridin-2-yl)-3-phenyl-2-propyl-5-(pyridin-2-yl)pentane-1,5-dione (Table 4, 3ia). The title compound was prepared according to General Procedure E, using Cu(II) A [2218-80-6] (8 mg, 0.02 mmol, 0.1 equiv), (*R*,*R*)-Ph-BPE [528565-79-9] (11.2 mg, 0.0220 mmol, 0.110 equiv), 1-(3-methylpyridin-2-yl)pentan-1-one (1i) [1249752-31-5] (71 mg, 0.40 mmol, 2.0 equiv), (2*E*)-3-phenyl-1-(2-pyridinyl)-2-propen-1-one (2a) [53940-12-8] (42 mg, 0.20 mmol, 1.0 equiv), and BTMG [29166-72-1] (3.6 mg, 0.020 mmol, 0.10 equiv) in MeCN (0.2 mL). The diastereomeric ratio was determined to be 7.2:1 from the crude sample. After purification by flash column chromatography (Hex:EtOAc), **3ia** was afforded as a yellowish sticky liquid (64.9 mg, 84% yield, >20:1 dr (after isolation)).

¹**H** NMR (300 MHz, CDCl₃) δ 8.63 (dd, J = 4.7, 0.7 Hz, 1H), 8.46 (dd, J = 4.6, 1.0 Hz, 1H), 7.85 (d, J = 7.8 Hz, 1H), 7.74 (d, J = 1.7 Hz, 1H), 7.47 – 7.34 (m, 2H), 7.25 – 7.15 (m, 3H), 7.02 (dt, J = 14.5, 7.0 Hz, 3H), 4.65 – 4.54 (m, 1H), 3.79 (dd, J = 17.9, 6.8 Hz, 2H), 3.60 (t, J = 7.3 Hz, 1H), 2.25 (s, 3H), 2.06 – 1.90 (m, 1H), 1.69 – 1.57 (m, 1H), 1.35 – 1.20 (m, 2H), 0.87 (t, J = 7.3 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 206.74, 200.42, 153.52, 152.72, 148.87, 145.85, 142.92, 139.92, 136.88, 134.83, 128.54, 127.96, 127.09, 126.22, 125.66, 121.90, 51.48, 43.03, 40.31, 31.42, 21.05, 20.04, 14.55.

HRMS (ESI) m/z calcd for C₂₅H₂₇N₂O₂ [M + H]⁺: 387.2073, found: 387.2057.

HPLC analysis: The ee of the product was determined by chiral HPLC analysis to be >99% [OX-H, 20% i-PrOH in hexanes, 0.3 mL/min], $t_R = 15.58 \text{ min}$ (*anti* minor), $t_R = 19.96 \text{ min}$ (*anti* major), $t_R = 30.66$ (*syn* isomer A), and $t_R = 42.14$ (*syn* isomer B).

 $[\alpha]_D^{20} = +34^\circ (c = 0.63, CHCl_3).$

3ja

(2S,3S)-1-(3-chloropyridin-2-yl)-3-phenyl-2-propyl-5-(pyridin-2-yl)pentane-1,5-dione (Table 4, 3ja). The title compound was prepared according to General Procedure E, using Cu(II) A [2218-80-6] (8 mg, 0.02 mmol, 0.1 equiv), (*R*,*R*)-Ph-BPE [528565-79-9] (11.2 mg, 0.0220 mmol, 0.110 equiv), 1-(3-chloropyridin-2-yl)pentan-1-one (1j) [1249752-31-5] (79 mg, 0.40 mmol, 2.0 equiv), (2*E*)-3-phenyl-1-(2-pyridinyl)-2-propen-1-one (2a) [53940-12-8] (42 mg, 0.20 mmol, 1.0 equiv), and BTMG [29166-72-1] (3.6 mg, 0.020 mmol, 0.10 equiv) in MeCN (0.2 mL). The diastereomeric ratio was determined to be 3.5:1 from the crude sample. After purification by flash column chromatography (Hex:EtOAc), **3ja** was afforded as a yellowish sticky liquid (60.2 mg, 74% yield, 5.2:1 dr (after isolation)).

¹**H NMR** (400 MHz, CDCl₃) δ 8.68 – 8.63 (m, 1H of major, 84%), 8.60 (d, *J* = 4.7 Hz, 1H of minor, 16%), 8.53 (dd, *J* = 4.6, 1.3 Hz, 1H of minor, 16%), 8.49 (dd, *J* = 4.5, 1.3 Hz, 1H of major, 84%), 7.86 (d, *J* = 7.8 Hz, 1H), 7.74 (td, *J* = 7.7, 1.7 Hz, 1H), 7.65 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.42 (ddd, *J* = 7.5, 4.8, 1.1 Hz, 1H), 7.30 – 7.19 (m, 3H), 7.11 (t, *J* = 7.5 Hz, 2H), 7.03 (t, *J* = 7.3 Hz, 1H), 4.43 – 4.31 (m, 1H), 4.03 – 3.74 (m, 2H), 3.61 – 3.51 (m, 1H of major, 84%), 3.46 – 3.35 (m, 1H of minor, 16%), 2.08 – 1.94 (m, 1H), 1.67 – 1.52 (m, 1H), 1.43 – 1.17 (m, 2H), 0.87 (t, *J* = 7.3 Hz, 3H of major, 84%), 0.71 (t, *J* = 7.2 Hz, 3H of minor, 16%).

¹³C NMR (101 MHz, CDCl₃) δ 203.11, 200.06, 153.35, 151.90, 151.82, 148.80, 146.36, 142.35, 139.05, 136.76, 130.58, 128.32, 128.00, 127.03, 126.24, 126.17, 121.78, 52.27, 42.26, 39.53, 30.46, 20.84, 14.32.

HRMS (ESI) m/z calcd for C₂₄H₂₄ClN₂O₂ [M + H]⁺: 407.1526, found: 407.1520.

HPLC analysis: The ee of the product was determined by chiral HPLC analysis to be 95% [OX-H, 20% i-PrOH in hexanes, 1 mL/min], $t_R = 6.79 \text{ min}$ (*anti* minor), $t_R = 8.91 \text{ min}$ (*anti* major), $t_R = 10.54$ (*syn* isomer A), and $t_R = 19.02$ (*syn* isomer B). $[\alpha]_D^{20} = +25^\circ$ (c = 0.84, CHCl₃).

(2S,3S)-1-(5-methylpyridin-2-yl)-3-phenyl-2-propyl-5-(pyridin-2-yl)pentane-1,5-dione (Table 4, 3ka). The title compound was prepared according to General Procedure E, using Cu(II) A [2218-80-6] (8 mg, 0.02 mmol, 0.1 equiv), (*R*,*R*)-Ph-BPE [528565-79-9] (11.2 mg, 0.0220 mmol, 0.110 equiv), 1-(5-methylpyridin-2-yl)pentan-1-one (1k) [2008303-13-5] (71 mg, 0.40 mmol, 2.0 equiv), (2*E*)-3-phenyl-1-(2-pyridinyl)-2-propen-1-one (2a) [53940-12-8] (42 mg, 0.20 mmol, 1.0 equiv), and BTMG [29166-72-1] (3.6 mg, 0.020 mmol, 0.10 equiv) in MeCN (0.2 mL). The diastereomeric ratio was determined to be 2.2:1 from the crude sample. After purification by flash column chromatography (Hex:EtOAc), 3ka was afforded as a yellowish sticky liquid (51.8 mg, 67% yield, 13:1 dr (after isolation)).

¹**H NMR** (400 MHz, CDCl₃) δ 8.64 (d, *J* = 4.7 Hz, 1H of major, 93%), 8.54 (dd, *J* = 11.7, 3.1 Hz, 2H of minor, 7%), 8.45 (s, 1H of major, 93%), 7.89 – 7.83 (m, 1H), 7.75 (d, *J* = 7.9 Hz, 2H), 7.52 (d, *J* = 8.0 Hz, 1H of major, 93%), 7.44 – 7.38 (m, 1H of major, 93%), 7.38 – 7.35 (m, 2H of minor, 7%), 7.29 (d, *J* = 7.9 Hz, 2H), 7.10 (t, *J* = 7.6 Hz, 2H), 7.04 – 6.96 (m, 1H), 4.74 – 4.60 (m, 1H), 3.99 – 3.88 (m, 1H), 3.83 (dd, *J* = 17.3, 9.9 Hz, 1H), 3.57 (dd, *J* = 17.4, 4.3 Hz, 1H), 2.37 (s, 3H), 2.07 (d, *J* = 6.4 Hz, 1H of minor, 7%), 2.02 – 1.93 (m, 1H of major, 93%), 1.70 – 1.52 (m, 1H), 1.26 – 1.09 (m, 2H), 0.82 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 204.39, 200.47, 153.62, 151.70, 149.29, 148.90, 143.15, 137.19, 136.85, 128.53, 128.01, 127.05, 126.19, 121.96, 121.89, 49.59, 42.34, 39.44, 30.87, 21.02, 18.79, 14.47.

HRMS (ESI) m/z calcd for C₂₅H₂₇N₂O₂ [M + H]⁺: 387.2073, found: 387.2055.

HPLC analysis: The ee of the product was determined by chiral HPLC analysis to be 91% [IC, 30% i-PrOH in hexanes, 1 mL/min], $t_R = 5.73 \text{ min}$ (*anti* major) $t_R = 9.03 \text{ min}$ (*syn* major), $t_R = 23.40$ (*anti* minor), and $t_R = 45.53$ (*syn* minor). $[\alpha]_D^{20} = +40^\circ$ (c = 0.78, CHCl₃).

(2S,3S)-3,5-diphenyl-2-propyl-1-(pyridin-2-yl)pentane-1,5-dione (Table 4, 3ab). The title compound was prepared according to General Procedure E, using Cu(II) A [2218-80-6] (8 mg, 0.02 mmol, 0.1 equiv), (*R*)-Tol-BINAP [99646-28-3] (15 mg, 0.0220 mmol, 0.110 equiv), 1-(2-pyridinyl)-1-pentanone (1a) [7137-97-5] (65.2 mg, 0.400 mmol, 2.00 equiv), (*E*)-chalcone (2b) [614-47-1] (42 mg, 0.20 mmol, 1.0 equiv), and BTMG [29166-72-1] (3.6 mg, 0.020 mmol, 0.10 equiv) in MeCN (0.2 mL). The diastereomeric ratio was determined to be 4.0:1 from the crude sample. After purification by flash column chromatography (Hex:EtOAc), 3ab was afforded as a yellowish sticky liquid (59.4 mg, 80% yield, 8.1:1 dr (after isolation)).

¹**H NMR** (400 MHz, CDCl₃) δ 8.73 (d, *J* = 4.3 Hz, 1H of major, 89%), 8.66 (d, *J* = 4.6 Hz, 1H of minor, 11%), 8.09 (d, *J* = 7.8 Hz, 1H of major, 89%), 7.95 (d, *J* = 7.7 Hz, 1H of minor, 11%), 7.85 (td, *J* = 7.7, 1.5 Hz, 1H), 7.81 – 7.67 (m, 2H), 7.51 – 7.44 (m, 2H), 7.42 (d, *J* = 7.9 Hz, 2H of minor, 11%), 7.37 (t, *J* = 7.7 Hz, 2H of major, 89%), 7.30 – 7.21 (m, 4H), 7.18 – 7.11 (m, 1H of major, 89%), 7.04 (t, *J* = 7.2 Hz, 1H of minor 11%), 4.68 (td, *J* = 9.8, 3.7 Hz, 1H), 4.02 – 3.90 (m, 1H of minor, 11%), 3.84 (td, *J* = 10.2, 3.9 Hz, 1H of major, 89%), 3.52 – 3.44 (m, 1H of minor, 11%), 3.43 – 3.32 (m, 1H of major, 89%), 3.15 (dd, *J* = 15.8, 3.9 Hz, 1H), 1.66 – 1.54 (m, 1H), 1.39 – 1.24 (m, 1H), 1.21 – 0.97 (m, 2H), 0.84 (t, *J* = 7.3 Hz, 3H of minor, 11%), 0.67 (t, *J* = 7.3 Hz, 3H of major, 89%).

¹³C NMR (101 MHz, CDCl₃) δ 205.87, 198.68, 154.20, 149.13, 142.29, 137.19, 137.16, 132.83, 128.52, 128.51, 128.45, 128.23, 127.28, 126.71, 122.34, 49.07, 44.06, 44.03, 33.47, 20.14, 14.30.

HRMS (ESI) m/z calcd for C₂₅H₂₆NO₂ [M + H]⁺: 372.1964, found: 372.1947.

HPLC analysis: The ee of the product was determined by chiral HPLC analysis to be >99% [AD-H, 20% i-PrOH in hexanes, 0.3 mL/min], $t_R = 15.69 \text{ min}$ (*anti* major), $t_R = 18.35 \text{ min}$ (*anti* minor), $t_R = 18.85$ (*syn* minor), and $t_R = 21.30$ (*syn* major). $[\alpha]_D^{20} = +121^\circ$ (c = 0.28, CHCl₃).

(2S,3S)-2-methyl-3,5-diphenyl-1-(pyridin-2-yl)pentane-1,5-dione (Table 4, 3bb). The title compound was prepared according to General Procedure E, using Cu(II) A [2218-80-6] (8 mg, 0.02 mmol, 0.1 equiv), (*R*,*R*)-Ph-BPE [528565-79-9] (11.2 mg, 0.0220 mmol, 0.110 equiv), 1-(pyridin-2-yl)propan-1-one (1b) [3238-55-9] (54 mg, 0.40 mmol, 2.0 equiv), (*E*)-chalcone (2b) [614-47-1] (42 mg, 0.20 mmol, 1.0 equiv), and BTMG [29166-72-1] (3.6 mg, 0.020 mmol, 0.10 equiv) in MeCN (0.2 mL). The diastereomeric ratio was determined to be 2.0:1 from the crude sample. After purification by flash column chromatography (Hex:EtOAc), 3bb was afforded as a yellowish sticky liquid (55.6 mg, 81% yield, 3.2:1 dr (after isolation)).

3bb

¹**H NMR** (300 MHz, CDCl₃) δ 8.72 (d, *J* = 4.0 Hz, 1H of major, 76%), 8.67 (d, *J* = 4.1 Hz, 1H of minor, 24%), 8.10 (d, *J* = 7.8 Hz, 1H of major, 76%), 7.91 – 7.81 (m, 3H), 7.79 – 7.72 (m, 1H of minor, 24%), 7.55 – 7.33 (m, 4H), 7.32 – 7.21 (m, 3H), 7.21 – 7.11 (m, 2H of major, 76%), 7.10 – 7.01 (m, 2H of minor), 4.73 – 4.48 (m, 1H), 4.07 – 3.95 (m, 1H of minor, 24%), 3.84 (td, *J* = 9.9, 4.4 Hz, 1H of major, 76%), 3.49 – 3.20 (m, 2H), 1.27 (d, *J* = 7.0 Hz, 3H of minor, 24%), 0.97 (d, *J* = 7.0 Hz, 3H of major, 76%).

¹³C NMR (75 MHz, CDCl₃) δ 204.98, 204.08, 199.40, 198.69, 153.11, 152.85, 149.03, 148.65, 143.13, 142.05, 137.38, 137.29, 137.12, 133.01, 132.85, 128.61, 128.59, 128.52, 128.49, 128.27, 128.23, 128.12, 127.40, 127.11, 126.78, 126.44, 122.77, 122.65, 44.49, 44.47, 44.36, 44.31, 42.69, 40.37, 16.65, 13.79.

HRMS (ESI) m/z calcd for $C_{23}H_{22}NO_2$ [M + H]⁺: 344.1651, found: 344.1633.

HPLC analysis: The ee of the product was determined by chiral HPLC analysis to be 90% [OX-H, 30% i-PrOH in hexanes, 0.3 mL/min], $t_R = 15.20 \text{ min}$ (*anti* minor), $t_R = 19.82 \text{ min}$ (*syn* minor), $t_R = 20.73$ (*anti* major), and $t_R = 25.18$ (*syn* major). $[\alpha]_D^{20} = +66^\circ$ (c = 0.89, CHCl₃).

3lb

(2S,3S)-2-ethyl-3,5-diphenyl-1-(pyridin-2-yl)pentane-1,5-dione (Table 4, 3lb). The title compound was prepared according to General Procedure F, using 5,5-dimethylhexanoic acid [24499-80-7] (5.8 mg, 0.040 mmol, 0.20 equiv), CuBr₂ [7789-45-9] (4.4 mg, 0.020 mmol, 0.10 equiv), (*R*,*R*)-Ph-BPE [528565-79-9] (11.2 mg, 0.0220 mmol, 0.110 equiv), 1-(pyridin-2-yl)butan-1-one (1l) [22971-32-0] (60 mg, 0.40 mmol, 2.0 equiv), (*E*)-chalcone (2b) [614-47-1] (42 mg, 0.20 mmol, 1.0 equiv), and BTMG [29166-72-1] (3.6 mg, 0.020 mmol, 0.10 equiv) in MeCN (0.2 mL). The diastereomeric ratio was determined to be 3.0:1 from the crude sample. After purification by flash column chromatography (Hex:EtOAc), 3lb was afforded as a yellowish sticky liquid (60.8 mg, 85% yield, 3.3:1 dr (after isolation)).

¹**H NMR** (300 MHz, CDCl₃) δ 8.72 (d, J = 4.7 Hz, 1H of major, 77%), 8.64 (d, J = 4.1 Hz, 1H of minor, 23%), 8.09 (d, J = 7.8 Hz, 1H of major, 77%), 7.89 – 7.74 (m, 3H), 7.72 (dd, J = 7.8, 1.6 Hz, 1H of minor, 23%), 7.54 – 7.32 (m, 4H), 7.31 – 7.20 (m, 3H), 7.14 – 7.03 (m, 2H), 4.62 (td, J = 10.1, 3.9 Hz, 1H), 4.00 – 3.92 (m, 1H of minor, 23%), 3.86 (td, J = 10.3, 3.9 Hz, 1H of major, 77%), 3.52 – 3.28 (m, 1H and 1H of minor, 23%), 3.16 (dd, J = 15.8, 3.9 Hz, 1H of major, 77%), 2.09 – 1.88 (m, 1H of minor, 23%), 1.75 – 1.66 (m, 1H of minor, 23%), 1.66 – 1.38 (m, 2H of major, 77%), 0.83 (t, J = 7.4 Hz, 3H of minor, 23%), 0.66 (t, J = 7.5 Hz, 3H of major 77%).

¹³C NMR (75 MHz, CDCl₃) δ 205.35, 198.69, 154.09, 149.07, 148.73, 142.88, 142.28, 137.37, 137.19, 133.04, 132.87, 128.65, 128.61, 128.55, 128.51, 128.42, 128.28, 128.23, 128.14, 127.35, 127.06, 126.76, 126.46, 122.44, 122.41, 51.19, 50.51, 44.26, 43.30, 42.21, 40.58, 24.03, 21.75, 12.13, 10.96.

HRMS (ESI) m/z calcd for C₂₄H₂₄NO₂ [M + H]⁺: 358.1807, found: 358.1787.

HPLC analysis: The ee of the product was determined by chiral HPLC analysis to be 87% [AD-H, 30% i-PrOH in hexanes, 0.3 mL/min], $t_R = 13.34 \text{ min}$ (*anti* minor), $t_R = 14.88 \text{ min}$ (*anti* major), $t_R = 15.83$ (*syn* major), and $t_R = 18.25$ (*syn* minor). $[\alpha]_D^{20} = +89^\circ$ (c = 0.43, CHCl₃).

(*S*)-1,3-diphenyl-5-(pyridin-2-yl)pentane-1,5-dione (Table 4, 3mb). The title compound was prepared according to General Procedure E, using Cu(II) A [2218-80-6] (8 mg, 0.02 mmol, 0.1 equiv), (*R*,*R*)-Ph-BPE [528565-79-9] (11.2 mg, 0.0220 mmol, 0.110 equiv), 1-(pyridin-2-yl)ethan-1-one (1m) [1122-62-9] (48.5 mg, 0.400 mmol, 2.00 equiv), (*E*)-chalcone (2b) [614-47-1] (42 mg, 0.20 mmol, 1.0 equiv), and BTMG [29166-72-1] (3.6 mg, 0.020 mmol, 0.10 equiv) in MeCN (0.2 mL). After purification by flash column chromatography (Hex:EtOAc), 3mb was afforded as a white crystal (65.2 mg, 99%, mp: 60–65 °C).

¹**H NMR** (300 MHz, CDCl₃) δ 8.66 (d, *J* = 4.2 Hz, 1H), 8.05 – 7.89 (m, 3H), 7.81 (td, *J* = 7.7, 1.7 Hz, 1H), 7.62 – 7.51 (m, 1H), 7.50 – 7.41 (m, 3H), 7.41 – 7.35 (m, 2H), 7.29 (dd, *J* = 10.0, 4.9 Hz, 2H), 7.23 – 7.10 (m, 1H), 4.27 – 4.10 (m, 1H), 3.74 (qd, *J* = 17.6, 7.1 Hz, 2H), 3.44 (qd, *J* = 16.7, 7.1 Hz, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 199.98, 198.54, 153.34, 148.86, 144.27, 137.05, 136.89, 132.98, 128.55, 128.51, 128.12, 127.61, 127.14, 126.51, 121.84, 45.23, 43.91, 36.59.

HRMS (ESI) m/z calcd for $C_{22}H_{20}NO_2$ [M + H]⁺: 330.1494, found: 330.1476.

HPLC analysis: The ee of the product was determined by chiral HPLC analysis to be >99% of major. [OD-H, 20% i-PrOH in hexanes, 0.3 mL/min], $t_R = 22.64 \text{ min} \text{ (major)}$ and $t_R = 24.21 \text{ min} \text{ (minor)}$.

 $[\alpha]_D^{20} = +52^\circ (c = 0.7, CHCl_3).$

(2S,3S)-2-propyl-1,5-di(pyridin-2-yl)-3-(o-tolyl)pentane-1,5-dione (Table 5, 3ac). The title compound was prepared according to General Procedure F, using 4-(trimethylsilyl)butanoic acid [2345-40-6] (6.4 mg, 0.040 mmol, 0.20 equiv), CuBr₂ [7789-45-9] (4.4 mg, 0.020 mmol, 0.10 equiv), (*R*,*R*)-Ph-BPE [528565-79-9] (11.2 mg, 0.0220 mmol, 0.110 equiv), 1-(2-pyridinyl)-1-pentanone (1a) [7137-97-5] (65.2 mg, 0.400 mmol, 2.00 equiv), (*E*)-1-(pyridin-2-yl)-3-(o-tolyl)prop-2-en-1-one (2c) [16212-59-2] (44.7 mg, 0.200 mmol, 1.00 equiv), and BTMG [29166-72-1] (3.6 mg, 0.020 mmol, 0.10 equiv) in MeCN (0.2 mL). The diastereomeric ratio was determined to be 2.5:1 from the crude sample. After purification by flash column chromatography (Hex:EtOAc), **3ac** was afforded as a yellowish sticky liquid (54.7 mg, 71% yield, 9.0:1 dr (after isolation)).

3ac (Ar = $2 - MeC_6H_4$)

¹**H NMR** (400 MHz, CDCl₃) δ 8.65 (dd, *J* = 4.0, 0.7 Hz, 1H of major), 8.61 (dd, *J* = 4.7, 1.1 Hz, 1H of major), 8.04 (d, *J* = 7.8 Hz, 2H of minor, 10%), 7.83 (d, *J* = 7.9 Hz, 1H), 7.69 (dddd, *J* = 11.2, 8.6, 7.3, 1.7 Hz, 3H), 7.41 (ddd, *J* = 7.5, 4.8, 1.2 Hz, 1H), 7.34 (ddd, *J* = 6.8, 4.8, 1.8 Hz, 1H), 7.20 (dd, *J* = 7.3, 1.7 Hz, 1H), 7.00 – 6.90 (m, 1H), 6.81 (td, *J* = 6.5, 1.6 Hz, 2H), 4.69 (ddd, *J* = 11.0, 8.3, 3.1 Hz, 1H), 4.13 – 4.03 (m, 1H), 3.88 (dd, *J* = 17.5, 9.7 Hz, 1H), 3.66 (dd, *J* = 17.5, 4.4 Hz, 1H of major, 90%), 3.21 (dd, *J* = 17.1, 9.7 Hz, 1H of minor, 10%), 2.47 (s, 3H of minor, 10%), 2.43 (s, 3H of major, 90%), 2.07 – 1.96 (m, 1H of major, 90%), 1.76 – 1.67 (m, 1H of major, 90%), 1.56 – 1.47 (m, 1H of minor, 10%), 1.47 – 1.39 (m, 1H of minor, 10%), 1.29 – 1.14 (m, 2H), 0.96 (t, *J* = 7.3 Hz, 3H of minor, 10%), 0.84 (t, *J* = 7.3 Hz, 3H of major, 90%). ¹³C NMR (101 MHz, CDCl₃) δ 205.33, 200.55, 154.21, 153.63, 148.92, 148.61, 141.23, 136.92, 136.86, 136.66, 130.20, 127.52,

127.05, 126.66, 125.98, 125.34, 121.87, 121.83, 48.64, 41.04, 37.74, 31.95, 20.96, 20.10, 14.53.

HRMS (ESI) m/z calcd for $C_{25}H_{27}N_2O_2$ [M + H]⁺: 387.2073, found:387.2058.

HPLC analysis: The ee of the product was determined by chiral HPLC analysis to be 94% [OX-H, 30% i-PrOH in hexanes, 0.3 mL/min], $t_R = 11.77 \text{ min}$ (*anti* minor), $t_R = 14.08 \text{ min}$ (*syn* major), $t_R = 15.06$ (*anti* major), and $t_R = 29.80$ (*syn* minor). $[\alpha]_D^{20} = +46^\circ$ (c = 0.82, CHCl₃).

(*S*,*S*)-**3ac** (Ar = 2-MeC₆H₄) 9.0:1 dr, 94% ee

<Chromatogram>

(*R*,*R*)-**3ac** (Ar = 2-MeC₆H₄) 9.0:1 dr, 94% ee

<Peak Table>

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	12.044	4169008	175842	96.730		M	110.00000
2	15.721	140929	4958	3.270		M	
Total		4309938	180800			S 81	

<Chromatogram>

(*rac*)-**3ac** (Ar = 2-MeC₆H₄) 0.5:1 dr

<Peak Table>

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	12.153	2425688	102825	13.947			1925 C 2017 - 2
2	14.530	6207534	240684	35.691			
3	15.845	2526297	74304	14.525		V	
4	29.810	6233148	97528	35.838		2	
Total	1	17392667	515341			8	

3ad (Ar = $2 - OMeC_6H_4$)

(2S,3S)-3-(2-methoxyphenyl)-2-propyl-1,5-di(pyridin-2-yl)pentane-1,5-dione (Table 5, 3ad). The title compound was prepared according to General Procedure F, using 1-adamantanebutyric acid [6240-17-1] (8.8 mg, 0.040 mmol, 0.20 equiv), CuBr₂ [7789-45-9] (4.4 mg, 0.020 mmol, 0.10 equiv), (*R*,*R*)-Ph-BPE [528565-79-9] (11.2 mg, 0.0220 mmol, 0.110 equiv), 1-(2-pyridinyl)-1-pentanone (1a) [7137-97-5] (65.2 mg, 0.400 mmol, 2.00 equiv), (*E*)-3-(2-methoxyphenyl)-1-(pyridin-2-yl)prop-2-en-1-one (2d) [16212-40-1] (47.9 mg, 0.200 mmol, 1.00 equiv), and BTMG [29166-72-1] (3.6 mg, 0.020 mmol, 0.10 equiv) in MeCN (0.2 mL). The diastereomeric ratio was determined to be 2.2:1 from the crude sample. After purification by flash column chromatography (Hex:EtOAc), 3ad was afforded as a brown crystal (79.7 mg, 83% yield, 2.2:1 dr (after isolation), mp: 90–93 °C).

¹**H NMR** (300 MHz, CDCl₃) δ 8.60 (dt, *J* = 10.1, 4.7 Hz, 2H), 8.02 (d, *J* = 7.8 Hz, 1H of major, 69%), 7.86 (d, *J* = 7.8 Hz, 1H of minor, 31%), 7.89 – 7.60 (m, 3H), 7.43 – 7.30 (m, 2H), 7.22 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.17 – 7.04 (m, 1H), 6.95 (d, *J* = 1.0 Hz, 1H of minor, 31%), 6.77 (dd, *J* = 13.5, 7.4 Hz, 1H), 6.68 – 6.55 (m, 1H of major, 69%), 4.85 – 4.77 (m, 1H of minor, 31%), 4.78 – 4.67 (m, 1H of major, 69%), 4.39 – 4.28 (m, 1H of major, 69%), 4.12 (dd, *J* = 14.5, 7.7 Hz, 1H of minor, 31%), 3.96 (dd, *J* = 16.8, 10.1 Hz, 1H of major, 69%), 3.75 (d, *J* = 7.0 Hz, 2H of minor, 31%), 3.67 (s, 3H of major, 69%), 3.63 (s, 3H of minor, 31%), 3.37 (dd, *J* = 16.8, 4.5 Hz, 1H of major, 69%), 2.03 – 1.90 (m, 1H of minor, 31%), 1.75 – 1.65 (m, 1H of minor, 31%), 1.61 – 1.49 (m, 1H of major, 69%), 1.49 – 1.35 (m, 1H of major, 69%), 1.29 – 0.99 (m, 2H), 0.84 (t, *J* = 7.3 Hz, 3H of minor, 31%), 0.71 (t, *J* = 7.3 Hz, 3H of major, 69%).

¹³C NMR (75 MHz, CDCl₃) δ 205.29, 204.72, 200.51, 200.32, 157.51, 157.10, 154.31, 154.09, 153.59, 153.51, 148.68, 148.61, 148.54, 148.31, 136.51, 136.46, 136.44, 136.32, 130.46, 130.18, 129.63, 128.97, 126.19, 121.81, 121.57, 120.07, 119.78, 110.41, 110.31, 55.03, 54.96, 47.57, 47.25, 40.81, 39.55, 37.93, 36.66, 32.12, 31.95, 20.73, 20.16, 14.33, 14.16. HRMS (ESI) m/z calcd for C₂₅H₂₇N₂O₃ [M + H]⁺: 403.2022, found: 403.2005.

HPLC analysis: The ee of the product was determined by chiral HPLC analysis to be 93% [IC, 30% i-PrOH in hexanes, 1 mL/min], $t_R = 6.29 \text{ min}$ (*anti* major), $t_R = 9.29 \text{ min}$ (*syn* major), $t_R = 28.33$ (*anti* minor), and $t_R = 40.16$ (*syn* minor). $[\alpha]_D^{20} = +52^\circ$ (c = 0.68, CHCl₃).

(S,S)-**3ad** (Ar = 2-OMeC₆H₄) 2.2:1 dr, 93% ee

(*rac*)-**3ad** (Ar = 2-OMeC₆H₄) 2.0:1 dr

(2S,3S)-3-(2-chlorophenyl)-2-propyl-1,5-di(pyridin-2-yl)pentane-1,5-dione (Table 5, 3ae). The title compound was prepared according to General Procedure F, using 5,5-dimethylhexanoic acid [24499-80-7] (5.8 mg, 0.040 mmol, 0.20 equiv), CuBr₂ [7789-45-9] (4.4 mg, 0.020 mmol, 0.10 equiv), (*R*)-Tol-BINAP [99646-28-3] (15 mg, 0.0220 mmol, 0.110 equiv), 1-(2-pyridinyl)-1-pentanone (1a) [7137-97-5] (65.2 mg, 0.400 mmol, 2.00 equiv), (*E*)-3-(2-chlorophenyl)-1-(pyridin-2-yl)prop-2-en-1-one (2e) [16212-55-8] (48.7 mg, 0.200 mmol, 1.00 equiv), and BTMG [29166-72-1] (3.6 mg, 0.020 mmol, 0.10 equiv) in MeCN (0.2 mL). The diastereomeric ratio was determined to be 3.0:1 from the crude sample. After purification by flash column chromatography (Hex:EtOAc), **3ae** was afforded as a black crystal (54.5 mg, 67% yield, 4.9:1 dr (after isolation), mp: 85–88 °C).

¹**H NMR** (300 MHz, CDCl₃) δ 8.64 (d, *J* = 4.1 Hz, 1H), 8.57 (d, *J* = 4.8 Hz, 1H), 8.03 (d, *J* = 7.8 Hz, 1H of major, 83%), 7.96 (d, *J* = 7.8 Hz, 1H of minor, 17%), 7.88 (d, *J* = 7.8 Hz, 2H of minor 17%), 7.83 – 7.73 (m, 2H of major, 83%), 7.73 – 7.64 (m, 1H), 7.45 – 7.27 (m, 4H), 7.12 – 6.98 (m, 2H of major, 83%), 6.91 (t, *J* = 3.7 Hz, 2H of minor, 17%), 4.87 – 4.69 (m, 1H), 4.54 – 4.42 (m, 1H of major, 83%), 4.41 – 4.33 (m, 1H of minor, 17%), 3.98 – 3.80 (m, 1H), 3.75 – 3.66 (m, 1H of minor, 17%), 3.39 (dd, *J* = 17.2, 4.1 Hz, 1H of major, 83%), 2.06 – 1.92 (m, 1H of minor, 17%), 1.79 – 1.62 (m, 1H of major, 83%), 1.47 – 1.33 (m, 1H), 1.26 – 1.00 (m, 2H), 0.83 (t, *J* = 7.3 Hz, 3H of minor, 17%), 0.71 (t, *J* = 7.3 Hz, 3H of major, 83%).

¹³C NMR (75 MHz, CDCl₃) δ 205.13, 200.00, 154.15, 153.43, 149.05, 148.86, 140.46, 137.02, 136.90, 135.28, 129.76, 127.56, 127.10, 127.06, 126.82, 122.31, 121.94, 41.48, 39.26, 33.03, 32.20, 20.54, 14.42.

HRMS (ESI) m/z calcd for $C_{24}H_{24}CIN_2O_2$ [M + H]⁺: 407.1526, found: 407.1509.

HPLC analysis: The ee of the product was determined by chiral HPLC analysis to be 91% [IC, 30% i-PrOH in hexanes, 0.5 mL/min], $t_R = 10.42 \text{ min} (syn \text{ minor})$, $t_R = 16.75 \text{ min} (syn \text{ major})$, $t_R = 17.56 (anti \text{ major})$, and $t_R = 39.95 (anti \text{ minor})$.

 $[\alpha]_D^{20} = +66^\circ (c = 0.78, CHCl_3).$

(*S*,*S*)-**3ae** (Ar = 2-CIC₆H₄) 4.9:1 dr, 91% ee

<Peak Table>

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	17.558	52781288	1313081	95.604			
2	39.948	2426934	28524	4.396		M	
Total		55208222	1341605				

<Chromatogram>

(*rac*)-**3ae** (Ar = 2-CIC₆H₄) 1.0:1 dr

<Peak Table>

Jeleci	or A 220nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	10.418	5064966	216803	12.386		M	10.10
2	16.752	5338775	147154	13.055		M	
3	18.111	15185518	380522	37.134		M	
4	40.385	15304513	166953	37.425		M	
Total		40893773	911432				

3af

(2S,3S)-3-(3-methoxyphenyl)-2-propyl-1,5-di(pyridin-2-yl)pentane-1,5-dione (Table 5, 3af). The title compound was prepared according to General Procedure F, using 2-adamantanebutyric acid [1693982-88-5] (8.8 mg, 0.040 mmol, 0.20 equiv), CuBr₂ [7789-45-9] (4.4 mg, 0.020 mmol, 0.10 equiv), (*R*,*R*)-Ph-BPE [528565-79-9] (11.2 mg, 0.0220 mmol, 0.110 equiv), 1-(2-pyridinyl)-1-pentanone (1a) [7137-97-5] (65.2 mg, 0.400 mmol, 2.00 equiv), (*E*)-3-(3-methoxyphenyl)-1-(pyridin-2-yl)prop-2-en-1-one (2f) [16212-43-4] (47.9 mg, 0.200 mmol, 1.00 equiv), and BTMG [29166-72-1] (3.6 mg, 0.020 mmol, 0.10 equiv) in MeCN (0.2 mL). The diastereomeric ratio was determined to be 3.6:1 from the crude sample. After purification by flash column chromatography (Hex:EtOAc), 3af was afforded as a yellowish sticky liquid (41.9 mg, 56% yield, >20:1 dr (after isolation)).

¹**H** NMR (300 MHz, CDCl₃) δ 8.70 – 8.57 (m, 2H), 7.85 (dd, J = 9.1, 8.2 Hz, 2H), 7.79 – 7.64 (m, 2H), 7.44 – 7.31 (m, 2H), 7.01 (t, J = 8.1 Hz, 1H), 6.94 – 6.79 (m, 2H), 6.60 – 6.52 (m, 1H), 4.67 (ddd, J = 10.2, 6.7, 3.1 Hz, 1H), 3.99 – 3.74 (m, 2H), 3.67 (s, 3H), 3.53 (dd, J = 16.5, 3.5 Hz, 1H), 2.08 – 1.86 (m, 1H), 1.69 – 1.53 (m, 1H), 1.32 – 1.10 (m, 2H), 0.83 (t, J = 7.3 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 204.61, 200.40, 159.26, 153.95, 153.57, 148.90, 148.80, 144.72, 136.87, 136.80, 128.95, 127.09, 126.80, 122.24, 121.92, 121.02, 113.96, 112.00, 55.13, 49.63, 42.46, 39.42, 30.86, 21.07, 14.48. HRMS (ESI) m/z calcd for C₂₅H₂₇N₂O₃ [M + H]⁺: 403.2022, found: 403.2010. **HPLC** analysis: The ee of the product was determined by chiral HPLC analysis to be 90% [AD-H, 5% i-PrOH in hexanes, 0.3 mL/min], $t_R = 59.03 \text{ min } (anti \text{ major})$, $t_R = 64.86 \text{ min } (anti \text{ minor})$, $t_R = 71.07 (syn \text{ isomer A})$, and $t_R = 76.05 (syn \text{ isomer B})$. $[\alpha]_D^{20} = +47^\circ (c = 0.52, \text{ CHCl}_3)$.

(2S,3S)-2-propyl-1,5-di(pyridin-2-yl)-3-(p-tolyl)pentane-1,5-dione (Table 5, 3ag). The title compound was prepared according to General Procedure F, using 5,5-dimethylhexanoic acid [24499-80-7] (5.8 mg, 0.040 mmol, 0.20 equiv), CuBr₂ [7789-45-9] (4.4 mg, 0.020 mmol, 0.10 equiv), (*R*,*R*)-Ph-BPE [528565-79-9] (11.2 mg, 0.0220 mmol, 0.110 equiv), 1-(2-pyridinyl)-1-pentanone (1a) [7137-97-5] (65.2 mg, 0.400 mmol, 2.00 equiv), (*E*)-1-(pyridin-2-yl)-3-(p-tolyl)prop-2-en-1-one (2g) [158014-83-6] (44.7 mg, 0.200 mmol, 1.00 equiv), and BTMG [29166-72-1] (3.6 mg, 0.020 mmol, 0.10 equiv) in MeCN (0.2 mL). The diastereomeric ratio was determined to be 5.2:1 from the crude sample. After purification by flash column chromatography (Hex:EtOAc), 3ag was afforded as a yellowish sticky liquid (64.2 mg, 83% yield, 6.7:1 dr (after isolation)).

¹**H** NMR (400 MHz, CDCl₃) δ 8.62 (s, 2H), 7.90 – 7.79 (m, 2H), 7.78 – 7.67 (m, 2H), 7.39 (dd, J = 11.5, 4.9 Hz, 2H), 7.16 (d, J = 7.7 Hz, 2H), 6.91 (d, J = 7.5 Hz, 2H), 4.63 (dd, J = 6.7, 3.2 Hz, 1H), 3.89 (d, J = 4.6 Hz, 1H), 3.85 – 3.72 (m, 1H), 3.57 (dd, J = 17.3, 4.3 Hz, 1H), 2.26 (s, 3H of minor, 13%), 2.17 (s, 3H of major, 87%), 2.06 – 1.84 (m, 1H), 1.61 (dd, J = 12.6, 6.8 Hz, 1H), 1.30 – 1.06 (m, 2H), 0.83 (t, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) & 205.54, 200.09, 154.13, 153.53, 149.05, 148.71, 139.63, 136.97, 136.70, 135.81, 128.95, 128.51, 127.05, 126.84, 122.25, 121.86, 49.13, 42.78, 42.63, 33.05, 21.13, 20.08, 14.32.

HRMS (ESI) m/z calcd for C₂₅H₂₇N₂O₂ [M + H]⁺: 387.2073, found: 387.2055.

HPLC analysis: The ee of the product was determined by chiral HPLC analysis to be 96% [IC, 30% i-PrOH in hexanes, 1 mL/min], $t_R = 4.63 \text{ min}$ (*anti* major), $t_R = 7.06 \text{ min}$ (*syn* isomer A), $t_R = 10.88$ (*anti* minor), and $t_R = 30.68$ (*syn* isomer B). $[\alpha]_D^{20} = +24^\circ$ (c = 0.69, CHCl₃).

(2S,3S)-3-(4-chlorophenyl)-2-propyl-1,5-di(pyridin-2-yl)pentane-1,5-dione (Table 5, 3ah). The title compound was prepared according to General Procedure E, using Cu(II) A [2218-80-6] (8 mg, 0.02 mmol, 0.1 equiv), (*R*,*R*)-Ph-BPE [528565-79-9] (11.2 mg, 0.0220 mmol, 0.110 equiv), 1-(2-pyridinyl)-1-pentanone (1a) [7137-97-5] (65.2 mg, 0.400 mmol, 2.00 equiv), (*E*)-3-(4-chlorophenyl)-1-(pyridin-2-yl)prop-2-en-1-one (2h) [16231-98-4] (48.7 mg, 0.200 mmol, 1.00 equiv), and BTMG [29166-72-1] (3.6 mg, 0.020 mmol, 0.10 equiv) in MeCN (0.2 mL). The diastereomeric ratio was determined to be 4.9:1 from the crude sample. After purification by flash column chromatography (Hex:EtOAc), **3ah** was afforded as a yellowish sticky liquid (74.9 mg, 92% yield, 4.9:1 dr (after isolation)).

¹**H NMR** (400 MHz, CDCl₃) δ 8.63 (s, 2H), 7.90 – 7.80 (m, 2H), 7.80 – 7.70 (m, 2H), 7.46 – 7.37 (m, 2H), 7.22 (d, *J* = 8.4 Hz, 2H), 7.05 (d, *J* = 8.4 Hz, 2H), 4.65 (t, *J* = 7.5 Hz, 1H), 3.94 – 3.87 (m, 1H), 3.87 – 3.75 (m, 1H), 3.56 (dd, *J* = 17.2, 3.9 Hz, 1H),

2.02 – 1.87 (m, 1H), 1.68 – 1.55 (m, 1H), 1.27 – 1.10 (m, 2H), 0.96 – 0.92 (m, 3H of minor 17%), 0.83 (t, *J* = 7.3 Hz, 3H of major, 83%).

¹³C NMR (101 MHz, CDCl₃) δ 204.38, 200.14, 153.63, 148.86, 148.77, 141.57, 137.03, 136.99, 131.91, 129.94, 128.14, 127.24, 126.99, 122.27, 121.94, 49.46, 41.98, 39.68, 31.16, 20.89, 14.44.

HRMS (ESI) m/z calcd for C₂₄H₂₄ClN₂O₂ [M + H]⁺: 407.1526, found: 407.1508.

HPLC analysis: The ee of the product was determined by chiral HPLC analysis to be 91% [IC, 30% i-PrOH in hexanes, 0.5 mL/min], $t_R = 6.76 \text{ min}$ (*anti* major), $t_R = 7.67 \text{ min}$ (*anti* minor), $t_R = 9.87$ (*syn* major), and $t_R = 20.47$ (*syn* minor). $[\alpha]_D^{20} = +39^\circ$ (c = 1.2, CHCl₃).

(S,S)-**3ah** 4.9:1 dr, 91% ee

h-P

(*rac*)-**3ah** 1.0:1 dr

3ai (Ar = $2 - BrC_6H_4$)

(2S,3S)-3-(2-bromophenyl)-5-phenyl-2-propyl-1-(pyridin-2-yl)pentane-1,5-dione (Table 5, 3ai). The title compound was prepared according to General Procedure E, using Cu(II) A [2218-80-6] (8 mg, 0.02 mmol, 0.1 equiv), (*R*,*R*)-Ph-BPE [528565-79-9] (11.2 mg, 0.0220 mmol, 0.110 equiv), 1-(2-pyridinyl)-1-pentanone (1a) [7137-97-5] (65.2 mg, 0.400 mmol, 2.00 equiv), (*E*)-3-(2-bromophenyl)-1-phenylprop-2-en-1-one (2i) [22966-10-5] (48.7 mg, 0.200 mmol, 1.00 equiv), and BTMG [29166-72-1] (3.6 mg, 0.020 mmol, 0.10 equiv) in MeCN (0.2 mL). The diastereomeric ratio was determined to be 5.0:1 from the crude sample. After purification by flash column chromatography (Hex:EtOAc), **3ai** was afforded as a yellowish sticky liquid (72 mg, 80% yield, 7.3:1 dr (after isolation)).

¹**H NMR** (300 MHz, CDCl₃) δ 8.68 – 8.64 (m, 1H of major, 88%), 8.64 – 8.59 (m, 1H of minor, 12%), 8.05 (d, *J* = 7.8 Hz, 1H of major, 88%), 7.86 (d, *J* = 7.1 Hz, 1H of minor, 12%), 7.80 (td, *J* = 7.7, 1.6 Hz, 3H of major, 88%), 7.69 (td, *J* = 7.7, 1.7 Hz,

3H of minor, 12%), 7.55 – 7.34 (m, 6H), 7.15 (td, *J* = 7.6, 1.1 Hz, 1H), 6.96 (td, *J* = 7.9, 1.7 Hz, 1H), 4.87 – 4.72 (m, 1H), 4.44 (dt, *J* = 9.5, 4.7 Hz, 1H of major, 88%), 4.40 – 4.28 (m, 1H of minor, 12%), 4.10 – 3.98 (m, 1H of minor, 12%), 3.61 (dd, *J* = 16.9, 4.9 Hz, 1H of minor, 12%), 3.50 – 3.20 (m, 2H of major, 88%), 2.31 – 2.16 (m, 1H of minor, 12%), 1.72 (ddd, *J* = 18.8, 9.8, 4.8 Hz, 1H of major, 88%), 1.44 – 1.29 (m, 1H), 1.25 – 1.03 (m, 2H), 0.84 (t, *J* = 7.3 Hz, 3H of minor, 12%), 0.71 (t, *J* = 7.3 Hz, 3H of major, 88%).

¹³C NMR (75 MHz, CDCl₃) δ 205.40, 204.62, 198.23, 154.00, 148.97, 141.46, 136.89, 136.83, 133.04, 132.80, 128.40, 128.18, 127.84, 127.37, 127.04, 122.07, 48.29, 42.48, 42.27, 33.07, 20.36, 14.17.

HRMS (ESI) m/z calcd for C₂₅H₂₅BrNO₂ [M + H]⁺: 450.1069, found: 450.1053.

HPLC analysis: The ee of the product was determined by chiral HPLC analysis to be >99% [IC, 10% i-PrOH in hexanes, 0.3 mL/min], $t_R = 23.24 \text{ min}$ (*anti* major), $t_R = 36.01 \text{ min}$ (*anti* minor), $t_R = 40.84$ (*syn* major), and $t_R = 46.10$ (*syn* minor). $[\alpha]_D^{20} = +20^\circ$ (c = 1.4, CHCl₃).

(*S*,*S*)-**3ai** (Ar = 2-BrC₆H₄) 7.3:1 dr, >99% ee

(*rac*)-**3ai** (Ar = 2-BrC₆H₄) 0.5:1 dr

1	23.555	5236396	120480	10.004		
2	37.079	5274891	82651	10.077		
3	40.468	21204857	301524	40.511	V	
4	46.100	20627547	266787	39.408		
Total		52343691	771442			

3aj

(2*S*,3*S*)-5-phenyl-2-propyl-1-(pyridin-2-yl)-3-(p-tolyl)pentane-1,5-dione (Table 5, 3aj). The title compound was prepared according to General Procedure F, using 2-adamantanebutyric acid [1693982-88-5] (8.8 mg, 0.040 mmol, 0.20 equiv), CuBr₂ [7789-45-9] (4.4 mg, 0.020 mmol, 0.10 equiv), (*R*,*R*)-Ph-BPE [528565-79-9] (11.2 mg, 0.0220 mmol, 0.110 equiv), 1-(2-pyridinyl)-1-
pentanone (1a) [7137-97-5] (65.2 mg, 0.400 mmol, 2.00 equiv), (*E*)-1-phenyl-3-(p-tolyl)prop-2-en-1-one (2j) [22252-14-8] (44.5 mg, 0.200 mmol, 1.00 equiv), and BTMG [29166-72-1] (3.6 mg, 0.020 mmol, 0.10 equiv) in MeCN (0.2 mL). The diastereomeric ratio was determined to be 3.3:1 from the crude sample. After purification by flash column chromatography (Hex:EtOAc), **3aj** was afforded as a yellowish sticky liquid (62.4 mg, 81% yield, 6.7:1 dr (after isolation)).

¹**H NMR** (300 MHz, CDCl₃) δ 8.72 (d, *J* = 4.1 Hz, 1H of major, 87%), 8.64 (d, *J* = 5.0 Hz, 1H of minor, 13%), 8.08 (d, *J* = 7.8 Hz, 1H), 7.84 (td, *J* = 7.8, 1.6 Hz, 1H), 7.80 – 7.74 (m, 1H), 7.52 – 7.33 (m, 5H), 7.24 – 7.17 (m, 1H), 7.13 (d, *J* = 8.0 Hz, 1H), 7.04 (d, *J* = 7.9 Hz, 1H), 6.95 – 6.89 (m, 1H), 4.63 (td, *J* = 9.7, 3.7 Hz, 1H of major, 87%), 4.09 – 4.04 (m, 1H of minor, 13%), 3.94 – 3.87 (m, 1H of minor, 13%), 3.79 (td, *J* = 10.1, 4.0 Hz, 1H of major, 87%), 3.33 (dd, *J* = 15.7, 10.3 Hz, 1H), 3.13 (dd, *J* = 15.7, 4.0 Hz, 1H), 2.27 (s, 3H of major, 87%), 2.20 (s, 3H of minor, 13%), 1.67 – 1.47 (m, 1H), 1.42 – 1.28 (m, 1H), 1.16 – 0.94 (m, 2H), 0.84 (t, *J* = 7.3 Hz, 3H of minor, 13%), 0.67 (t, *J* = 7.3 Hz, 3H of major, 87%).

¹³C NMR (75 MHz, CDCl₃) & 205.78, 198.59, 154.04, 148.97, 138.93, 137.03, 132.63, 129.00, 128.73, 128.57, 128.33, 128.18, 128.10, 127.09, 122.18, 49.00, 44.06, 43.56, 33.21, 21.04, 20.00, 14.15.

HRMS (ESI) m/z calcd for $C_{26}H_{28}NO_2$ [M + H]⁺: 386.2120, found: 386.2103.

HPLC analysis: The ee of the product was determined by chiral HPLC analysis to be 98% [AD-H, 20% i-PrOH in hexanes, 0.3 mL/min], $t_R = 17.29 \text{ min}$ (*syn* isomer A), $t_R = 18.53 \text{ min}$ (*syn* isomer B), $t_R = 23.39$ (*anti* major), and $t_R = 32.03$ (*anti* minor). $[\alpha]_D^{20} = +82^\circ$ (c = 0.18, CHCl₃).

(S,S)-**3aj** 6.7:1 dr, 98% ee

<Peak Table>

Delecti		10 SA	Contract Contract Contract Contract	Marco 10	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	A	100 C
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	23.391	81382270	1763250	99.059		M	
2	32.030	772679	15229	0.941		M	
Total		82154949	1778479			3 8	

<Chromatogram>

<Peak Table>

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	17.287	1024495	36023	20.668			
2	18.534	1065410	34644	21.494		V	
3	23.010	1428754	39416	28.824			
4	31.686	1438165	28587	29.014			
Total		4956825	138670				

(*rac*)-**3aj** 1.0:1 dr

(2S,3S)-5-(2-methoxyphenyl)-3-phenyl-2-propyl-1-(pyridin-2-yl)pentane-1,5-dione (Table 5, 3ak). The title compound was prepared according to General Procedure E, using Cu(II) A [2218-80-6] (8 mg, 0.02 mmol, 0.1 equiv), (*R*,*R*)-Ph-BPE [528565-79-9] (11.2 mg, 0.0220 mmol, 0.110 equiv), 1-(2-pyridinyl)-1-pentanone (1a) [7137-97-5] (65.2 mg, 0.400 mmol, 2.00 equiv), (*E*)-1-(2-methoxyphenyl)-3-phenylprop-2-en-1-one (2k) [40524-62-7] (47.7 mg, 0.200 mmol, 1.00 equiv), and BTMG [29166-72-1] (3.6 mg, 0.020 mmol, 0.10 equiv) in MeCN (0.2 mL). The diastereomeric ratio was determined to be 2.5:1 from the crude sample. After purification by flash column chromatography (Hex:EtOAc), **3ak** was afforded as a yellowish sticky liquid (67.5 mg, 84% yield, 3.3:1 dr (after isolation)).

¹**H NMR** (400 MHz, CDCl₃) δ 8.72 (dd, *J* = 4.7, 0.7 Hz, 1H of major, 77%), 8.63 (d, *J* = 4.1 Hz, 1H of minor 23%), 8.09 (d, *J* = 7.8 Hz, 1H of major, 77%), 7.82 (ddd, *J* = 12.9, 9.4, 4.8 Hz, 1H), 7.68 (td, *J* = 7.7, 1.7 Hz, 1H of minor, 23%), 7.46 (ddd, *J* = 7.5, 4.8, 1.1 Hz, 1H), 7.40 – 7.30 (m, 1H), 7.26 – 7.03 (m, 6H), 6.90 – 6.86 (m, 2H of minor, 23%), 6.86 – 6.79 (m, 2H of major, 77%), 4.70 – 4.56 (m, 1H), 3.83 (s, 3H of minor, 23%), 3.71 (s, 3H of major, 77%), 3.63 (td, *J* = 10.4, 4.1 Hz, 1H of major, 77%), 3.46 (dd, *J* = 16.6, 7.6 Hz, 2H of minor, 23%), 3.42 – 3.32 (m, 1H), 3.17 (dd, *J* = 16.2, 4.0 Hz, 1H of major, 77%), 1.93 (dd, *J* = 13.2, 5.3 Hz, 1H of minor, 23%), 1.65 (d, *J* = 5.2 Hz, 1H of major, 77%), 1.32 – 1.16 (m, 1H), 1.16 – 0.96 (m, 2H), 0.84 (t, *J* = 7.3 Hz, 3H of minor, 23%), 0.66 (t, *J* = 7.3 Hz, 3H of major, 77%).

¹³C NMR (101 MHz, CDCl₃) δ 205.82, 204.52, 201.49, 201.12, 157.95, 154.28, 149.00, 148.62, 142.84, 142.56, 137.02, 136.75, 133.05, 132.96, 130.22, 128.57, 128.44, 128.10, 127.82, 127.06, 126.72, 126.36, 126.08, 122.07, 122.01, 120.60, 120.43, 111.26, 111.13, 55.43, 55.28, 49.58, 48.91, 48.68, 46.05, 44.58, 42.86, 33.38, 31.05, 20.89, 20.37, 14.40, 14.19. HRMS (ESI) m/z calcd for C₂₆H₂₈NO₃ [M + H]⁺: 402.2069, found: 402.2053.

HPLC analysis: The ee of the product was determined by chiral HPLC analysis to be 80% [IC, 30% i-PrOH in hexanes, 0.5 mL/min], $t_R = 11.20 \text{ min} (syn \text{ major})$, $t_R = 11.96 \text{ min} (anti \text{ minor})$, $t_R = 31.50 (syn \text{ minor})$, and $t_R = 45.10 (anti \text{ major})$. [α] $_D^{20} = +47^\circ$ (c = 1.0, CHCl₃).

(S,S)-**3ak** 3.3:1 dr, 80% ee

<Peak Table>

Detect	Jetector A 254nm									
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name			
1	11.956	5199821	250419	9.782		М				
2	45.095	47955660	537898	90.218		М				
Total		53155480	788317							

<Peak Table>

eak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	11.329	1354201	59757	10.103			
2	12.096	5428379	225159	40.499		V	
3	32.045	1293731	21118	9.652			
4	45.802	5327448	60106	39.746			
Total		13403760	366140				

(2S,3S)-5-(2-chlorophenyl)-3-phenyl-2-propyl-1-(pyridin-2-yl)pentane-1,5-dione (Table 5, 3al). The title compound was prepared according to General Procedure F, using 5,5-dimethylhexanoic acid [24499-80-7] (5.8 mg, 0.040 mmol, 0.20 equiv), CuBr₂ [7789-45-9] (4.4 mg, 0.020 mmol, 0.10 equiv), (*R*,*R*)-Ph-BPE [528565-79-9] (11.2 mg, 0.0220 mmol, 0.110 equiv), 1-(2-pyridinyl)-1-pentanone (1a) [7137-97-5] (65.2 mg, 0.400 mmol, 2.00 equiv), (*E*)-1-(2-chlorophenyl)-3-phenylprop-2-en-1-one (2l) [144017-77-6] (48.5 mg, 0.200 mmol, 1.00 equiv), and BTMG [29166-72-1] (3.6 mg, 0.020 mmol, 0.10 equiv) in MeCN (0.2 mL). The diastereomeric ratio was determined to be 3.0:1 from the crude sample. After purification by flash column chromatography (Hex:EtOAc), 3al was afforded as a yellowish sticky liquid (57.6 mg, 71% yield, 8.1:1 dr (after isolation)).

¹**H NMR** (400 MHz, CDCl₃) δ 8.70 (d, *J* = 4.7 Hz, 1H of major, 89%), 8.64 (d, *J* = 4.8 Hz, 1H of minor, 11%), 8.08 (d, *J* = 7.8 Hz, 1H of major, 89%), 7.99 – 7.92 (m, 1H of minor, 11%), 7.85 (t, *J* = 7.8 Hz, 1H of major, 89%), 7.71 (t, *J* = 7.7 Hz, 1H of minor, 11%), 7.50 – 7.45 (m, 1H of major, 89%), 7.41 – 7.37 (m, 1H of minor, 11%), 7.27 – 7.12 (m, 7H), 7.03 (d, *J* = 7.4 Hz, 1H of minor, 11%), 6.93 (d, *J* = 7.7 Hz, 1H of major, 89%), 4.72 – 4.65 (m, 1H of minor, 11%), 4.61 (td, *J* = 9.8, 3.6 Hz, 1H of major, 89%), 3.84 – 3.77 (m, 1H of minor, 11%), 3.68 (td, *J* = 10.5, 3.9 Hz, 1H of major, 89%), 3.47 (dd, *J* = 17.1, 5.0 Hz, 1H of minor, 11%), 1.84 – 1.75 (m, 1H of minor, 11%), 1.63 – 1.52 (m, 1H of major, 89%), 1.33 – 1.24 (m, 1H of major 89%), 1.20 – 1.16 (m, 2H of minor, 11%), 1.12 – 0.95 (m, 2H of major, 89%), 0.82 (t, *J* = 7.3 Hz, 3H of minor, 11%), 0.65 (t, *J* = 7.3 Hz, 3H of major, 89%).

¹³C NMR (101 MHz, CDCl₃) & 205.73, 201.84, 154.08, 149.11, 141.83, 139.54, 137.21, 131.44, 130.77, 130.25, 129.06, 128.68, 128.43, 127.31, 126.80, 126.70, 122.29, 120.11, 48.87, 47.90, 45.29, 44.31, 42.98, 33.40, 20.22, 14.27.

HRMS (ESI) m/z calcd for C₂₅H₂₅ClNO₂ [M + H]⁺: 406.1574, found: 406.1558.

HPLC analysis: The ee of the product was determined by chiral HPLC analysis to be 83% [IC, 30% i-PrOH in hexanes, 0.3 mL/min], $t_R = 13.03 \text{ min} (syn \text{ minor})$, $t_R = 14.29 \text{ min} (syn \text{ major})$, $t_R = 15.83 (anti \text{ minor})$, and $t_R = 56.49 (anti \text{ major})$. [α]_D²⁰ = +140° (c = 0.37, CHCl₃).

(S,S)-3al 8.1:1 dr, 83% ee

(rac)-3al 1.5:1 dr

<Peak Table>

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name	
1	13.029	623506	20415	6.354				
2	14.287	733392	28245	7.473		V		
3	15.832	4151393	141466	42.303		V		
4	56.006	4305242	45723	43.870		8		3
Total		9813533	235850					

70

(2S,3S)-3-phenyl-2-propyl-1-(pyridin-2-yl)-5-(p-tolyl)pentane-1,5-dione (Table 5, 3am). The title compound was prepared according to General Procedure F, using 4-(trimethylsilyl)butanoic acid [2345-40-6] (6.4 mg, 0.040 mmol, 0.20 equiv), CuBr₂ [7789-45-9] (4.4 mg, 0.020 mmol, 0.10 equiv), (R,R)-Ph-BPE [528565-79-9] (11.2 mg, 0.0220 mmol, 0.110 equiv), 1-(2-pyridinyl)-1pentanone (1a) [7137-97-5] (65.2 mg, 0.400 mmol, 2.00 equiv), (E)-3-phenyl-1-(p-tolyl)prop-2-en-1-one (2m) [14802-30-3] (44.5 mg, 0.200 mmol, 1.00 equiv), and BTMG [29166-72-1] (3.6 mg, 0.020 mmol, 0.10 equiv) in MeCN (0.2 mL). The diastereometric ratio was determined to be 3.0:1 from the crude sample. After purification by flash column chromatography (Hex:EtOAc), 3am was afforded as a yellowish sticky liquid (51.7 mg, 67% yield, 9.0:1 dr (after isolation)).

¹**H NMR** (300 MHz, CDCl₃) δ 8.81 (d, *J* = 4.5 Hz, 1H), 8.14 (d, *J* = 7.8 Hz, 1H), 8.00 (d, *J* = 7.6 Hz, 1H), 7.68 (d, *J* = 8.1 Hz, 2H), 7.61 (dd, J = 6.7, 5.3 Hz, 1H), 7.25 (d, J = 12.7 Hz, 5H), 7.15 (d, J = 8.0 Hz, 2H), 4.70 (td, J = 9.5, 3.7 Hz, 1H), 4.06 -3.96 (m, 1H of minor, 10%), 3.83 (td, J = 9.8, 4.3 Hz, 1H of major, 90%), 3.41 (dd, J = 15.9, 9.9 Hz, 1H), 3.16 (dd, J = 15.9, 4.2 Hz, 1H), 2.35 (s, 3H), 1.66 - 1.51 (m, 1H), 1.43 - 1.31 (m, 1H), 1.15 - 1.01 (m, 2H), 0.89 - 0.81 (t, J = 7.2 Hz, 3H of minor, 10%), 0.67 (t, J = 7.2 Hz, 3H of 90% major).

¹³C NMR (75 MHz, CDCl₃) & 203.86, 198.36, 152.27, 147.78, 143.65, 142.11, 139.25, 134.62, 129.21, 128.51, 128.38, 127.76, 126.76, 123.20, 49.72, 43.98, 43.53, 33.45, 21.71, 20.14, 14.30.

HRMS (ESI) m/z calcd for C₂₆H₂₈NO₂ [M + H]⁺: 386.2120, found: 386.2103.

HPLC analysis: The ee of the product was determined by chiral HPLC analysis to be 82% [AD-H, 30% i-PrOH in hexanes, 1 mL/min], $t_R = 5.05 \text{ min}$ (anti major), $t_R = 5.73 \text{ min}$ (syn minor), $t_R = 6.52$ (anti minor), and $t_R = 9.30$ (syn minor). $[\alpha]_D^{20} = +145^\circ (c = 0.37, CHCl_3).$

(2S,3S)-5-(4-methoxyphenyl)-3-phenyl-2-propyl-1-(pyridin-2-yl)pentane-1,5-dione (Table 5, 3an). The title compound was prepared according to General Procedure E, using Cu(II) A [2218-80-6] (8 mg, 0.02 mmol, 0.1 equiv), (*R*,*R*)-Ph-BPE [528565-79-9] (11.2 mg, 0.0220 mmol, 0.110 equiv), 1-(2-pyridinyl)-1-pentanone (1a) [7137-97-5] (65.2 mg, 0.400 mmol, 2.00 equiv), (*E*)-1-(4-methoxyphenyl)-3-phenylprop-2-en-1-one (2n) [22966-19-4] (47.7 mg, 0.200 mmol, 1.00 equiv), and BTMG [29166-72-1] (3.6 mg, 0.020 mmol, 0.10 equiv) in MeCN (0.2 mL). The diastereomeric ratio was determined to be 2.6:1 from the crude sample. After purification by flash column chromatography (Hex:EtOAc), **3an** was afforded as a yellowish sticky liquid (52 mg, 65% yield, 12:1 dr (after isolation)).

¹**H NMR** (300 MHz, CDCl₃) δ 8.74 (d, *J* = 4.3 Hz, 1H of major, 92%), 8.68 (d, *J* = 4.3 Hz, 1H of minor 8%), 8.10 (d, *J* = 7.8 Hz, 1H), 7.95 – 7.84 (m, 1H), 7.77 (d, *J* = 8.9 Hz, 2H), 7.52 (dd, *J* = 6.5, 4.9 Hz, 1H), 7.30 – 7.21 (m, 5H of major, 92%), 7.17 – 7.08 (m, 5H of minor, 8%), 6.84 (d, *J* = 8.9 Hz, 2H), 4.73 – 4.60 (m, 1H), 3.90 – 3.74 (m, 4H), 3.32 (dd, *J* = 15.6, 10.2 Hz, 1H), 3.10 (dd, *J* = 15.6, 4.1 Hz, 1H), 1.66 – 1.49 (m, 1H), 1.40 – 1.24 (m, 1H), 1.16 – 0.98 (m, 2H), 0.84 (t, *J* = 7.3 Hz, 3H of minor, 8%), 0.66 (t, *J* = 7.3 Hz, 3H of major, 92%).

¹³C NMR (75 MHz, CDCl₃) δ 205.16, 197.06, 163.16, 153.47, 148.62, 142.13, 137.65, 130.39, 130.11, 128.37, 128.31, 127.28, 126.56, 122.46, 113.51, 55.39, 49.13, 44.13, 43.47, 33.33, 20.01, 14.17.

HRMS (ESI) m/z calcd for $C_{26}H_{28}NO_3$ [M + H]⁺: 402.2069, found: 402.2056.

HPLC analysis: The ee of the product was determined by chiral HPLC analysis to be 99% [OX-H, 30% i-PrOH in hexanes, 0.5 mL/min], $t_R = 10.72 \text{ min} (anti \text{ minor})$, $t_R = 11.92 \text{ min} (syn \text{ isomer A})$, $t_R = 14.08 (syn \text{ isomer B})$, and $t_R = 17.19 (anti \text{ major})$. $[\alpha]_D^{20} = +62^\circ (c = 0.51, \text{ CHCl}_3)$.

<Chromatogram>

12:1 dr, 99% ee

<Peak Table>

etecto	or A 254nm							
eak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name	- 3
1	10.717	10212	576	0.569		M		
2	17.194	1783706	44536	99.431				- D
Total		1793918	45111			1		- 0

<Chromatogram>

2.0:1 dr

<Peak Table>

Ļ	Jeleci	01 A 2341111							
ļ	Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name	
	1	10.722	9771411	491635	41.097				
	2	11.802	1981082	84816	8.332		V		
	3	14.083	2014530	61756	8.473		8 8		
	4	17.547	10009540	254262	42.098				
	Total		23776563	892469					

(2S,3S)-5-(4-chlorophenyl)-3-phenyl-2-propyl-1-(pyridin-2-yl)pentane-1,5-dione (Table 5, 3ao). The title compound was prepared according to General Procedure E, using Cu(II) A [2218-80-6] (8 mg, 0.02 mmol, 0.1 equiv), (*R*,*R*)-Ph-BPE [528565-79-9] (11.2 mg, 0.0220 mmol, 0.110 equiv), 1-(2-pyridinyl)-1-pentanone (1a) [7137-97-5] (65.2 mg, 0.400 mmol, 2.00 equiv), (*E*)-1-(4-chlorophenyl)-3-phenylprop-2-en-1-one (2o) [22966-22-9] (48.5 mg, 0.200 mmol, 1.00 equiv), and BTMG [29166-72-1] (3.6 mg, 0.020 mmol, 0.10 equiv) in MeCN (0.2 mL). The diastereomeric ratio was determined to be 3.0:1 from the crude sample. After purification by flash column chromatography (Hex:EtOAc), **3ao** was afforded as a dark crystal (59.3 mg, 73% yield, 8.1:1 dr (after isolation), mp: 92–96 °C).

¹**H NMR** (400 MHz, CDCl₃) δ 8.74 (d, *J* = 4.7 Hz, 1H of major, 89%), 8.65 (d, *J* = 4.7 Hz, 1H of minor, 11%), 8.10 (d, *J* = 7.8 Hz, 1H of major, 89%), 8.02 (d, *J* = 7.8 Hz, 1H of minor, 11%), 7.88 (td, *J* = 7.7, 1.6 Hz, 1H), 7.73 (d, *J* = 8.5 Hz, 2H), 7.51 (dd, *J* = 6.9, 4.8 Hz, 1H of major, 89%), 7.47 (dd, *J* = 7.0, 5.2 Hz, 1H of minor, 11%), 7.36 (d, *J* = 8.5 Hz, 2H), 7.28 (d, *J* = 6.1 Hz, 3H), 7.19 (dd, *J* = 8.8, 4.5 Hz, 1H), 4.69 (td, *J* = 9.7, 3.7 Hz, 1H), 3.82 (td, *J* = 10.2, 4.0 Hz, 1H), 3.32 (dd, *J* = 15.6, 10.3 Hz, 1H), 3.14 (dd, *J* = 15.6, 4.0 Hz, 1H), 1.63 – 1.53 (m, 1H), 1.43 – 1.29 (m, 1H), 1.25 – 0.99 (m, 2H), 0.78 (t, *J* = 7.3 Hz, 3H of minor, 11%), 0.68 (t, *J* = 7.3 Hz, 3H of major, 89%).

¹³C NMR (101 MHz, CDCl₃) & 205.51, 197.25, 153.80, 148.82, 148.55, 141.71, 138.93, 136.92, 135.12, 129.38, 128.52, 128.21, 128.14, 127.03, 126.53, 122.04, 48.74, 43.80, 33.17, 20.62, 19.72, 13.96.

HRMS (ESI) m/z calcd for C₂₅H₂₅CINO₂ [M + H]⁺: 406.1574, found: 406.1555.

HPLC analysis: The ee of the product was determined by chiral HPLC analysis to be 98% [IC, 30% i-PrOH in hexanes, 1 mL/min], $t_R = 3.88 \text{min}$ (*syn* isomer A), $t_R = 4.37 \text{ min}$ (*syn* isomer B), $t_R = 15.63$ (*anti* minor), and $t_R = 33.07$ (*anti* major). $[\alpha]_D^{20} = +60^\circ$ (c = 0.43, CHCl₃).

3ap

(2S,3S)-5-(furan-2-yl)-3-phenyl-2-propyl-1-(pyridin-2-yl)pentane-1,5-dione (Table 5, 3ap). The title compound was prepared according to General Procedure F, using 5,5-dimethylhexanoic acid [24499-80-7] (5.8 mg, 0.040 mmol, 0.20 equiv), CuBr₂ [7789-45-9] (4.4 mg, 0.020 mmol, 0.10 equiv), (*R*,*R*)-Ph-BPE [528565-79-9] (11.2 mg, 0.0220 mmol, 0.110 equiv), 1-(2-pyridinyl)-1-pentanone (1a) [7137-97-5] (65.2 mg, 0.400 mmol, 2.00 equiv), (*E*)-1-(furan-2-yl)-3-phenylprop-2-en-1-one (2p) [42811-81-4] (39.6 mg, 0.200 mmol, 1.00 equiv), and BTMG [29166-72-1] (3.6 mg, 0.020 mmol, 0.10 equiv) in MeCN (0.2 mL). The diastereomeric ratio was determined to be 2.0:1 from the crude sample. After purification by flash column chromatography (Hex:EtOAc), 3ap was afforded as a yellowish sticky liquid (49.2 mg, 68% yield, 3.3:1 dr (after isolation)).

¹**H NMR** (300 MHz, CDCl₃) δ 8.71 (d, *J* = 4.7 Hz, 1H of major, 77%), 8.65 (d, *J* = 4.7 Hz, 1H of minor, 23%), 8.08 (d, *J* = 7.8 Hz, 1H of major, 77%), 7.83 (dd, *J* = 7.6, 6.2 Hz, 1H), 7.71 (dd, *J* = 15.3, 5.9 Hz, 1H of minor, 23%), 7.63 – 7.52 (m, 1H), 7.52 – 7.43 (m, 2H of major, 77%), 7.42 – 7.34 (m, 2H of minor, 23%), 7.24 – 6.99 (m, 6H), 4.68 (td, *J* = 9.7, 3.6 Hz, 1H), 3.97 – 3.88 (m, 1H of minor, 23%), 3.83 (td, *J* = 10.3, 4.0 Hz, 1H of major, 77%), 3.43 (dd, *J* = 16.4, 9.5 Hz, 1H of minor, 23%), 3.30 (ddd, *J* = 19.6, 11.7, 6.7 Hz, 1H), 3.06 (dd, *J* = 15.2, 4.0 Hz, 1H of major, 77%), 2.04 – 1.87 (m, 1H of minor, 23%), 1.74 – 1.49 (m, 1H of major, 77%), 1.44 – 0.98 (m, 3H), 0.83 (t, *J* = 7.3 Hz, 3H of minor, 23%), 0.65 (t, *J* = 7.2 Hz, 3H of major, 77%).

¹³C NMR (75 MHz, CDCl₃) δ 205.50, 191.13, 153.88, 148.89, 141.61, 144.32, 141.77, 136.92, 136.64, 133.19, 131.73, 128.23, 128.10, 127.90, 127.76, 127.07, 126.73, 126.54, 122.06, 48.96, 48.60, 44.57, 44.22, 42.45, 41.19, 33.19, 20.69, 19.83, 14.21, 14.03.

HRMS (ESI) m/z calcd for C₂₃H₂₄NO₃ [M + H]⁺: 362.1756, found: 362.1740.

HPLC analysis: The ee of the product was determined by chiral HPLC analysis to be 97% [IC, 30% i-PrOH in hexanes, 1 mL/min], $t_R = 5.79 \text{ min}$ (*anti* major), $t_R = 7.71 \text{ min}$ (*anti* minor), $t_R = 30.34$ (*syn* isomer A), and $t_R = 37.69$ (*syn* isomer B). $[\alpha]_D^{20} = +59^\circ$ (c = 1.2, CHCl₃).

(2S,3S)-3-phenyl-2-propyl-1-(pyridin-2-yl)-5-(thiophen-2-yl)pentane-1,5-dione (Table 5, 3aq). The title compound was prepared according to General Procedure F, using 4-(trimethylsilyl)butanoic acid [2345-40-6] (6.4 mg, 0.040 mmol, 0.20 equiv), CuBr₂ [7789-45-9] (4.4 mg, 0.020 mmol, 0.10 equiv), (*R*,*R*)-Ph-BPE [528565-79-9] (11.2 mg, 0.0220 mmol, 0.110 equiv), 1-(2-pyridinyl)-1-pentanone (1a) [7137-97-5] (65.2 mg, 0.400 mmol, 2.00 equiv), (*E*)-3-phenyl-1-(thiophen-2-yl)prop-2-en-1-one (2q) [39078-33-6] (42.9 mg, 0.200 mmol, 1.00 equiv), and BTMG [29166-72-1] (3.6 mg, 0.020 mmol, 0.10 equiv) in MeCN (0.2 mL). The diastereomeric ratio was determined to be 3.3:1 from the crude sample. After purification by flash column chromatography (Hex:EtOAc), 3aq was afforded as a yellowish sticky liquid (69.5 mg, 92% yield, 3.3:1 dr (after isolation)).

¹**H NMR** (300 MHz, CDCl₃) δ 8.70 (d, *J* = 4.3 Hz, 1H of major, 77%), 8.63 (d, *J* = 4.5 Hz, 1H of minor, 23%), 8.06 (d, *J* = 7.8 Hz, 1H of major, 77%), 7.88 – 7.76 (m, 1H), 7.69 (td, *J* = 7.7, 1.4 Hz, 1H of minor, 23%), 7.50 – 7.40 (m, 2H of major, 77%),

7.37 (dd, J = 6.4, 5.1 Hz, 2H of minor, 23%), 7.31 – 7.21 (m, 4H), 7.17 – 7.08 (m, 1H), 7.08 – 6.98 (m, 1H), 6.43 (dd, J = 3.4, 1.5 Hz, 1H of minor, 23%), 6.38 (dd, J = 3.3, 1.4 Hz, 1H of major, 77%), 4.66 (td, J = 9.6, 3.5 Hz, 1H), 4.0 – 3.88 (m, 1H of minor, 23%), 3.81 (td, J = 10.4, 4.2 Hz, 1H of major, 77%), 3.34 – 3.17 (m, 1H and 1H of minor, 23%), 2.92 (dd, J = 15.4, 4.1 Hz, 1H of major, 77%), 2.02 – 1.85 (m, 1H of minor, 23%), 1.68 – 1.50 (m, 1H of major, 77%), 1.39 – 0.99 (m, 3H), 0.81 (t, J = 7.3 Hz, 3H of minor, 23%), 0.65 (t, J = 7.2 Hz, 3H of major, 77%).

¹³C NMR (75 MHz, CDCl₃) δ 205.56, 204.36, 187.74, 187.41, 154.02, 153.66, 152.93, 152.69, 149.02, 148.73, 146.06, 142.34, 141.94, 137.03, 136.76, 128.38, 128.32, 128.26, 128.00, 127.17, 126.83, 126.63, 126.31, 122.16, 117.02, 116.75, 112.16, 112.00, 49.17, 48.70, 43.88, 43.65, 42.24, 40.41, 33.30, 30.92, 20.80, 20.00, 14.34, 14.17.

HRMS (ESI) m/z calcd for C₂₃H₂₄NO₂S [M + H]⁺: 378.1528, found: 378.1511.

HPLC analysis: The ee of the product was determined by chiral HPLC analysis to be 92% [IC, 30% i-PrOH in hexanes, 1 mL/min], $t_R = 6.33 \text{ min}$ (*anti* major), $t_R = 10.98 \text{ min}$ (*syn* isomer A), $t_R = 22.20$ (*anti* minor), and $t_R = 26.86$ (*syn* isomer B). $[\alpha]_D^{20} = +43^\circ$ (c = 0.50, CHCl₃).

(2*S*,3*S*)-5-(benzo[b]thiophen-2-yl)-3-phenyl-2-propyl-1-(pyridin-2-yl)pentane-1,5-dione (Table 5, 3ar). The title compound was prepared according to General Procedure F, using 4-(trimethylsilyl)butanoic acid [2345-40-6] (6.4 mg, 0.040 mmol, 0.20 equiv), CuBr₂ [7789-45-9] (4.4 mg, 0.020 mmol, 0.10 equiv), (*R*,*R*)-Ph-BPE [528565-79-9] (11.2 mg, 0.0220 mmol, 0.110 equiv), 1-(2-pyridinyl)-1-pentanone (1a) [7137-97-5] (65.2 mg, 0.400 mmol, 2.00 equiv), (*E*)-1-(benzo[b]thiophen-2-yl)-3-phenylprop-2-en-

3ar

1-one (**2r**) [93486-61-4] (52.9 mg, 0.200 mmol, 1.00 equiv), and BTMG [29166-72-1] (3.6 mg, 0.020 mmol, 0.10 equiv) in MeCN:DCE (1:1, 0.8 mL). The diastereomeric ratio was determined to be 3.0:1 from the crude sample. After purification by flash column chromatography (Hex:EtOAc), **3ar** was afforded as a yellowish sticky liquid (63.3 mg, 74% yield, 4.0:1 dr (after isolation)).

¹**H NMR** (400 MHz, CDCl₃) δ 8.74 (d, *J* = 4.2 Hz, 1H of major, 80%), 8.68 (d, *J* = 4.6 Hz, 1H of minor, 20%), 8.11 (d, *J* = 7.9 Hz, 1H of major, 80%), 8.06 (d, *J* = 8.0 Hz, 1H of minor, 20%), 7.86 (ddd, *J* = 7.8, 7.3, 4.0 Hz, 3H), 7.81 – 7.72 (m, 1H), 7.51 – 7.36 (m, 3H), 7.34 – 7.24 (m, 3H), 7.20 – 7.09 (m, 2H of major, 80%), 7.04 (t, *J* = 7.3 Hz, 2H of minor, 20%), 4.73 (tt, *J* = 6.1, 3.9 Hz, 1H), 3.98 (dd, *J* = 4.7, 2.4 Hz, 1H of minor, 20%), 3.95 – 3.85 (m, 1H of major, 80%), 3.57 – 3.51 (m, 1H of minor, 20%), 3.50 – 3.34 (m, 1H), 3.30 – 3.10 (m, 1H of major, 80%), 2.00 (dtd, *J* = 13.3, 10.2, 5.4 Hz, 1H of minor, 20%), 1.70 – 1.56 (m, 1H), 1.45 – 1.30 (m, 1H of major, 80%), 1.31 – 1.02 (m, 2H), 0.86 (t, *J* = 7.3 Hz, 3H of minor, 21%), 0.69 (t, *J* = 7.3 Hz, 3H of major, 79%).

 $^{13}C \ NMR \ (101 \ MHz, CDCl_3) \ \delta \ 205.55, \ 192.96, \ 153.93, \ 149.02, \ 148.71, \ 143.99, \ 142.54, \ 142.35, \ 141.86, \ 139.21, \ 137.33, \ 129.14, \ 128.87, \ 128.54, \ 128.45, \ 128.34, \ 128.22, \ 127.40, \ 127.40, \ 127.36, \ 127.30, \ 127.05, \ 126.88, \ 126.54, \ 126.02, \ 125.03, \ 124.91, \ 123.03, \ 122.98, \ 122.42, \ 122.38, \ 49.36, \ 49.00, \ 44.68, \ 44.54, \ 42.78, \ 41.24, \ 33.47, \ 31.04, \ 20.98, \ 20.06, \ 14.46, \ 14.27.$

HRMS (ESI) m/z calcd for $C_{27}H_{26}NO_2S$ [M + H]⁺: 428.1684, found: 428.1670.

HPLC analysis: The ee of the product was determined by chiral HPLC analysis to be >99% [AD-H, 30% i-PrOH in hexanes, 0.3 mL/min], $t_R = 15.50 \text{ min}$ (*anti* major), $t_R = 18.72 \text{ min}$ (*syn* isomer A), $t_R = 20.05$ (*anti* minor), and $t_R = 26.94$ (*syn* isomer B). $[\alpha]_D^{20} = +70^\circ$ (c = 0.93, CHCl₃).

4.0:1 dr, >99% ee

<Peak Table>

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	16.790	7038711	244263	38.626			
2	19.260	2230877	67533	12.242		V	
3	20.802	6881373	201686	37.762		V	
4	26.945	2071947	47702	11.370			
Total		18222909	561184				

VII. Determination of Absolute Configurations

The Crystal (CCDC 2286253) of (2S,3S)-2-isopropyl-3-phenyl-1,5-di(pyridin-2-yl)pentane-1,5-dione (Table 4, **3da**) suitable for X-ray crystallography were grown from the saturated solution of hexanes/MeCN at room temperature. The absolute stereochemistry was determined to be (2S,3S) by X-ray crystallography. The configurations of other *anti*-products were assigned by analogy.

The crystal structures of the crystals were determined by standard crystallographic methods. A colorless needle-shaped crystal (0.320 x 0.138 x 0.128 mm³) was used for single-crystal Xray diffraction. The data were collected at 173(2) K using a Bruker D8 Venture equipped with IµS micro-focus sealed tube Cu K_{α} (λ = 1.54178 Å) and a PHOTON III M14 detector in Western Seoul Center of Korea Basic Science Institute. Data collection and integration were performed with SMART APEX3 software package (SAINT+).⁴ Absorption correction was performed by multiscan method implemented in SADABS.⁵ The structure was solved by direct methods and refined by full-matrix least-squares on F² using SHELXTL program package (version 6.14).⁶ All the non-hydrogen atoms were refined anisotropically, and hydrogen atoms were added to their geometrically ideal positions.

Table S8. Crystal Data and Structure Refinement for 3da

Rform a sq

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions

Volume Ζ Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient Largest diff. peak and hole

C24 H24 N2 O2 372.45 223(2) K 0.71073 Å Orthorhombic P212121 $a=90^{\circ}$ a = 5.8511(3) Åb= 90°. b = 18.1921(10) Åc = 21.3063(11) Å $g = 90^{\circ}$. 2267.9(2) Å³ 4 1.091 Mg/m³ 0.070 mm⁻¹ 792 0.320 x 0.138 x 0.128 mm³ 2.239 to 28.336°. -5<=h<=7, -24<=k<=24, -28<=l<=28 50659 5640 [R(int) = 0.0439]99.3 % Semi-empirical from equivalents 0.7457 and 0.6930 Full-matrix least-squares on F² 5640 / 0 / 255 1.025 R1 = 0.0380, wR2 = 0.0870 R1 = 0.0551, wR2 = 0.09640.1(4) n/a 0.142 and -0.113 e.Å-3

VIII. Kinetic Studies

Determination of the Rate Law: Conjugate Addition of Pyridyl Alkyl Ketone 1a to Enone 2a

In a nitrogen-filled glovebox, Cu(II) A [2218-80-6], (*R*,*R*)-Ph-BPE [528565-79-9] in MeCN (50 μ L) were combined in a dram vial equipped with a stir bar. After stirring 3 minutes, 1-(2-pyridinyl)-1-pentanone (**1a**) [7137-97-5] and (2*E*)-3-phenyl-1-(2-pyridinyl)-2-propen-1-one (**2a**) [53940-12-8] were added to this vial. One minute later, BTMG [29166-72-1] and *n*-dodecane (11.3 μ L, 0.0500 mmol, 1.00 equiv) as an internal standard were introduced into the mixture. The reaction mixture was stirred vigorously at room temperature. An aliquot (5.0 μ L) of the mixture was removed on time and diluted with EtOAc (95.0 μ L) under air. The amount of the product was determined by GC analysis.

		1	<i>Table S8</i> . Observed Initia	l Rates	
			[Cu(II)-Lewis acid] _{initial} (M) ^[a]	k _{obs} (M/min)	
		-	0.0031 0.0062 0.0094 0.012 0.019	0.00080 0.0014 0.0026 0.0036 0.0057	
	0.014		Order in Cu(II) l	Lewis acid	
n.)	0.012	-			
MI/IMI	0.01	-		y = 0.3217x	- 0
ate (I	0.008	_		K ² = 0.5	774.

[a] Reaction conditions: $[BTMG]_{initial} = 0.012 \text{ M}$, $[1-(2-pyridinyl)-1-pentanone 1a]_{initial} = 0.25 \text{ M}$, $[(2E)-3-phenyl-1-(2-pyridinyl)-2-propen-1-one 2a]_{initial} = 0.12 \text{ M}$.

[BTN (N	/IG] _{initial} 1) ^[a]	k _{obs} (M/min)
0.0	062	0.0038
0.0	094	0.0036
0.0	12	0.0036
0.0	16	0.0036
0.0	19	0.0037

Table S9. Observed Initial Rates

[a] Reaction conditions: [Cu(II)-Lewis acid]_{initial} = 0.012 M, [1-(2-pyridinyl)-1-pentanone (1a)]_{initial} = 0.25 M, [(2E)-3-phenyl-1-(2-pyridinyl)-2-propen-1-one (2a)]_{initial} = 0.12 M.

[pyridyl alkyl ketone 1a] _{initial} (M) ^[a]	k _{obs} (M/min)
0.050	0.0047
0.075	0.0047
0.10	0.0046
0.12	0.0047
0.15	0.0047

<i>Table S10</i> . Observed Initial Kates	Table S10.	Observed	Initial	Rates
---	------------	----------	---------	-------

[a] Reaction conditions: $[Cu(II)-Lewis acid]_{initial} = 0.01 \text{ M}$, $[BTMG]_{initial} = 0.01 \text{ M}$, $[(2E)-3-phenyl-1-(2-pyridinyl)-2-propen-1-one (2a)]_{initial} = 0.1 \text{ M}$.

	[enone 2a] _{initial} (M) ^[a]	k _{obs} (M/min)	_
	0.062	0.0015	-
	0.094	0.0025	
	0.12	0.0036	
	0.19	0.0056	
_	0.25	0.0077	_
	Order in e	none 2a	
)1 _		y = 0.033	2x - 0.0006

Table S11. Observed Initial Rates

 $[a] Reaction conditions: [Cu(II)-Lewis acid]_{initial} = 0.012 M, [BTMG]_{initial} = 0.012 M, [1-(2-pyridinyl)-1-pentanone (1a)]_{initial} = 0.25 M.$

IX. Computational Studies

All DFT calculations were conducted using the ORCA 5.0.4 software package.⁷ The ω B97X functional⁸ coupled with D4 dispersion⁹ was employed for geometry optimization, using def2-TZVP as the basis set for copper complexes and def2-SVP for all other atoms.¹⁰ The CPCM (Continuum Polarizable Charge Model)¹¹ was integrated in an MeCN setting for these computations. To confirm optimal structure of the main catalyst, a numerical hessian was calculated to verify the absence of imaginary frequency. The def2-TZVP basis set within the CPCM (MeCN) solvation model was applied to compute ω B97X-D4 single-point energies. The Resolution of Identity for Coulomb and Chain-of-Sphere for Hartree-Fock exchange integrals (RIJCOSX)¹² approximation was used for all these computations with the def2/J auxiliary basis set.¹³ Non-covalent interactions were examined through RDG (Reduced Density Gradient) analysis utilizing the Multiwfn.^{14,15} For graphical representations, VMD and CYLview were utilized.^{16,17}

Scheme S2. Analysis of the Optimized Structure of Chiral Enolates Derived from Cu(II) A, (R,R)-Ph-BPE, and 1a

Scheme S4. NCIPLOT Analysis of the Flipped (Z)-Enolate

Scheme S5. NCIPLOT Analysis of the Chiral (Z)-enolate (II)

Scheme S6. Analysis on the Optimized Structure of the Other Chiral (Z)-Enolates

Scheme S7. NCIPLOT Analysis of the Chiral (Z)-Enolate Derived from Cu(II) cyclohexanepropanoate I, (R,R)-Ph-BPE, and 1a

Scheme S8. NCIPLOT Analysis of the Chiral (Z)-Enolate Derived from Cu(OAc)2

Cartesian Coordinates (Å) and Energies of the Optimized Structures

(Z)-enolate (I)

4698.3330387	75767 a.u.	
17.259344	1.919388	6.738629
15.709074	3.650981	6.500594
15.392841	0.479287	6.249937
18.612119	3.385045	6.892434
18.043103	1.591916	8.765877
19.472953	3.315829	7.881488
19.183778	2.273449	8.934465
17.673130	0.670639	9.655188
18.428030	0.359923	10.777080
19.628060	1.047241	10.961787
20.010673	2.009688	10.036374
18.085044	-0.400125	11.482615
	4698.333038 17.259344 15.709074 15.392841 18.612119 18.043103 19.472953 19.183778 17.673130 18.428030 19.628060 20.010673 18.085044	4698.33303875767 a.u.17.2593441.91938815.7090743.65098115.3928410.47928718.6121193.38504518.0431031.59191619.4729533.31582919.1837782.27344917.6731300.67063918.4280300.35992319.6280601.04724120.0106732.00968818.085044-0.400125

Н	20.265070	0.833308	11.824680
С	20.547343	4.138562	8.006930
С	20.897214	5.219628	7.026422
Н	21.192317	4.047253	8.885194
С	22.382813	5.252707	6.662043
Н	20.619838	6.213038	7.434658
Н	20.294282	5.094153	6.109938
С	22.755015	6.428896	5.767793
Н	22.650966	4.301287	6.167495
Н	22.982369	5.289528	7.589553
Н	23.820949	6.410222	5.491339
Н	22.167062	6.419446	4.835099
Н	22.557427	7.388213	6.274227
0	18.711086	0.701478	6.066017
С	18.932510	-0.498975	6.425937
0	18.067925	-1.329587	6.744077
С	20.407076	-0.911776	6.507296
С	21.397364	0.076761	5.902525
Н	20.504637	-1.910914	6.049287
Н	20.609336	-1.058308	7.583291
С	21.319977	0.125956	4.376879
Н	22.423035	-0.192074	6.209885
Н	21.195906	1.074874	6.324564
С	21.941241	1.364237	3.726808
Н	20.261245	0.078261	4.073271
Н	21.799917	-0.781610	3.966246
С	21.084833	2.619318	3.945546
С	21.675089	3.854399	3.266550
Η	20.939234	2.811135	5.022552
Н	20.076156	2.424462	3.529727
С	22.163459	1.148944	2.224995
Н	22.933165	1.544163	4.189956
С	22.765883	2.375293	1.541326
Η	21.187104	0.913797	1.757980
Н	22.805906	0.265964	2.065584
С	21.909259	3.618828	1.774809
Η	22.888480	2.189716	0.461259
Н	23.779220	2.552458	1.946678
Н	22.636862	4.109897	3.748663
Н	21.011588	4.723708	3.421112
Н	22.377694	4.503791	1.312966
Η	20.933971	3.481854	1.270326
С	13.929827	1.614313	6.196411
С	14.306065	2.951342	5.546057
Н	13.446591	3.639647	5.523512
Н	14.647214	2.808782	4.506837
С	16.289460	5.207117	5.691502
С	15.347919	6.288127	6.234736
С	15.217785	6.020484	7.733977
Н	14.357151	6.223708	5.754043
Н	15.748723	7.294229	6.032685
C	14.885581	4.526517	7.939089
Н	14.445155	6.647808	8.204404
H	16.174568	6.261446	8.224029
C	15.274354	-0.428237	4.608092
C	15.292674	-1.914824	4.993411
C	14.421411	-2.056789	6.235379
H	16.319047	-2.226591	5.238059
H	14.932065	-2.531056	4.154537
C	14.926384	-1.02/017	7.264136
н	14.4/0469	-3.0/01/9	0.004079

Н	13.365308	-1.857430	5.983894
С	14.026170	-0.841137	8.463815
Н	15.913655	-1.370148	7.610186
С	14.504555	-1.144261	9.745708
С	13.691481	-1.014577	10.871706
С	12.372388	-0.585384	10.734506
С	11.871434	-0.306935	9.461766
С	12.687189	-0.441634	8.339121
Н	12.265607	-0.241919	7.350035
Η	15.529508	-1.509788	9.862448
Η	14.092478	-1.256346	11.860323
Н	11.731426	-0.480235	11.614514
Η	10.831792	0.010361	9.339026
С	16.209530	-0.012624	3.494293
Н	14.250568	-0.191879	4.273125
С	15.789359	0.947955	2.562859
С	16.598348	1.314178	1.488158
С	17.846318	0.714751	1.317935
С	18.273670	-0.245531	2.234518
С	17.467944	-0.600168	3.317128
Н	14.798031	1.402606	2.669306
Н	16.246686	2.065095	0.775179
Н	18.481043	0.987719	0.469374
Н	19.246639	-0.728575	2.105117
Н	17.824955	-1.346176	4.031683
С	16.498552	5.094864	4.201448
С	17.728668	4.618647	3.721672
С	17.964061	4.506537	2.353261
С	16.971972	4.865853	1.438904
С	15.742137	5.327066	1.905359
С	15.505987	5.439450	3.277327
Η	14.957062	5.607761	1.197072
Η	14.536638	5.807983	3.625561
Н	18.930287	4.135987	1.997343
Н	17.156587	4.781658	0.364038
Η	18.503718	4.336927	4.444147
С	15.202142	3.954716	9.304295
Н	13.807655	4.385234	7.757137
С	14.264688	3.137582	9.949573
С	14.532311	2.587684	11.203572
C	15.746457	2.850953	11.836822
C	16.688967	3.662237	11.203853
C	16.421518	4.204253	9.947849
Н	13.303548	2.933121	9.464092
H	13.784236	1.951569	11.685538
H	15.959358	2.421432	12.820147
H	17.185235	4.817839	9.458533
H	17.649761	3.864799	11.686817
H	16.723593	0.165892	9.459643
H	20.948891	2.550147	10.16/446
H	13.089/42	1.13/14/	5.008129
H	13.605060	1./82929	/.236/46
н	17.278291	5.541214	0.1011/5

(E)-enolate

E = -	-4698.3247656	66826 a.u.	
Cu	17.203549	2.101207	6.650864
Р	15.490453	3.671585	6.374594
Р	15.458840	0.472303	6.236756
0	18,402237	3.700821	6.770133
Ň	18.079650	1.885722	8.681482
C	19 445130	3 520855	7 564102
Č	19 159265	2.679383	8 780397
Č	17 736462	1 094369	9 693321
C	18 446918	1.023993	10 888320
C	19 542876	1 890299	11.026563
C	19.898465	2 723575	9 968636
н	18 128543	0.376253	11 692029
H	20 114703	1 913125	11.052025
C	20.114703	4 054604	7 283559
C	21.998/07	3 877585	7 957930
н	21.558407	1 659826	6 368/115
C	20.007420	3 082303	6 072782
ч	23.170323	1.627310	8 7500/6
н	22.158559	2 89//81	8.755940
C	22.051217	5 367147	6 360203
н	23.032090	3 235815	6 168778
н	23.032070	3 697207	7 / 09835
н	24.070713	5 305060	5 697414
H	27.237372	5 671708	5 758976
н	23 501483	6 129215	7 143913
0	18 763752	1.002293	5 988349
č	18 987981	-0 219144	6 268216
0	18 129673	-1.051661	6 599877
č	20 452888	-0 669492	6 238760
Č	21 435527	0 303666	5 599820
Ĥ	20 487937	-1 657375	5 748564
Н	20 718991	-0.854612	7 294464
C	21 284838	0 384301	4 081327
Ĥ	22 468321	0.004607	5 850728
Н	21 279818	1 297948	6 047719
C	21.915644	1.616978	3.431457
Ĥ	20.211428	0.379170	3.830647
Н	21.711064	-0.531135	3.630359
C	21.090787	2.881169	3.701222
Ċ	21.702773	4.123724	3.057222
Н	20.963127	3.036053	4.784205
Н	20.073960	2.720646	3.290241
С	22.094392	1.435602	1.920132
Н	22.923182	1.768389	3.871572
С	22.710081	2.668861	1.258957
Н	21.101471	1.235601	1.471699
Н	22.713176	0.544203	1.718889
С	21.897729	3.929903	1.553703
Н	22.799717	2.515331	0.170609
Н	23.738224	2.805057	1.642501
Н	22.681159	4.331801	3.529916
Η	21.068111	5.005716	3.253325

Н	22.382918	4.813981	1.107534
Η	20.905913	3.839963	1.070964
С	13.902017	1.477881	6.165958
С	14.146929	2.816171	5.461594
Н	13.229928	3.425538	5.433153
н	14 482821	2 669855	4 421846
C	15 995910	5 249111	5 409491
C	13.003019	5.246111	5.490401
C	14.//810/	6.205865	5.953584
C	14.656115	6.019578	7.466559
Н	13.821248	5.960115	5.462723
Η	15.022959	7.247334	5.690715
С	14.579326	4.507705	7.783465
Η	13.777337	6.537026	7.880675
Н	15.544998	6.455427	7.949246
С	15 380782	-0.504831	4 629777
\hat{c}	15 442026	-1 97/913	5.069777
C	14 504505	-1.77713	6 2 2 0 2 5 4
	14.394395	-2.090741	5 200(70
H	16.4/9315	-2.249/63	5.309679
Н	15.085325	-2.631347	4.260104
С	15.086692	-1.018249	7.313297
Η	14.678514	-3.093443	6.791759
Η	13.529363	-1.936001	6.089720
С	14.212668	-0.820804	8.530291
Н	16.094349	-1.308323	7.645980
C	14 755453	-0.992737	9 810713
c	13 075674	0.832662	10 956370
C	12.575074	-0.832002	10.930370
C	12.024645	-0.308218	10.641363
C	12.060172	-0.3664/4	9.5/2/96
C	12.843959	-0.529006	8.431148
Н	12.374477	-0.433469	7.448198
Η	15.807485	-1.276969	9.911190
Η	14.428172	-0.968710	11.943049
Η	12.009633	-0.380175	11.736776
Η	10.996448	-0.133557	9.468507
С	16.301710	-0.103438	3.497112
H	14 352033	-0.312625	4 282375
\hat{C}	15 887441	0.870705	2 586255
C	15.887441	1 222100	1 402205
C	10.070200	1.252100	1.492393
C	1/.89/249	0.592459	1.277045
C	18.31/5/6	-0.392128	2.170000
С	17.533921	-0.729599	3.274498
Η	14.913670	1.363482	2.720944
Η	16.327463	2.001752	0.798156
Η	18.514628	0.852400	0.411808
Η	19.270440	-0.904664	2.009071
Н	17 889823	-1 491269	3 972204
C	16 168546	5 094869	4 023325
c	17 458086	4 720851	2 615006
C	17.438980	4.720831	2.013090
C	1/./08849	4.392372	2.203134
C	16./91564	4.827785	1.293655
C	15.502921	5.181310	1.689324
С	15.192307	5.312888	3.045098
Η	14.729281	5.364893	0.937884
Η	14.177241	5.599661	3.334950
Н	18.783211	4.310100	1.963231
Н	17.034800	4.733613	0.231362
Н	18.218479	4.532934	4.382960
C	15 031950	4 103600	9 170209
й	13 53//55	4 1705/0	7 662496
C	14 257004	3 217/07	0 0202400
c	14.23/994	3.21/40/	7.750202
C	14.032339	∠.040099	11.213192

С	15.829906	3.348710	11.762178
С	16.615169	4.223321	11.010155
С	16.221953	4.592500	9.725758
Η	13.325387	2.819755	9.512919
Η	14.029832	2.149855	11.791406
Η	16.140207	3.058395	12.770127
Η	16.860145	5.264305	9.143022
Η	17.548218	4.617157	11.424138
Η	16.842857	0.482047	9.545390
Η	20.730663	3.418473	10.076876
Η	13.095090	0.910926	5.675931
Η	13.584456	1.660507	7.206364
Η	16.826170	5.550579	5.990073

C *n*-Pr 0= Су

flipped (Z)-enolate

E = -	-4698.3207918	81703 a.u.	
Cu	17.156616	2.008067	7.381660
Р	15.518301	3.635249	6.723261
Р	15.515229	0.409002	6.700034
0	17.314910	1.394064	9.339154
Ν	18.547620	3.353078	8.091866
С	18.319265	1.911902	9.999740
С	18.998919	3.074892	9.323304
С	19.092120	4.341087	7.372795
С	20.114543	5.139556	7.855955
С	20.585096	4.884821	9.147082
С	20.028366	3.848995	9.881537
Η	20.528617	5.937437	7.235986
Η	21.386611	5.492262	9.576374
С	18.773560	1.487092	11.209632
С	18.157332	0.374246	12.009369
Н	19.643218	1.981744	11.650225
С	18.855063	-0.987935	11.868840
Н	17.096223	0.265727	11.729032
Н	18.165383	0.656944	13.076967
С	18.687705	-1.630218	10.496811
Н	18.466054	-1.673683	12.642381
Н	19.930370	-0.861719	12.089593
Н	19.244144	-2.578225	10.425712
Н	17.626728	-1.852987	10.290833
Н	19.041766	-0.967118	9.691251
0	18.750477	1.278730	6.291218
С	19.162368	0.084877	6.449182
0	18.477519	-0.859370	6.877729
С	20.629632	-0.196286	6.110737
С	21.426086	0.968828	5.537740
Н	20.650797	-1.066498	5.431244
Н	21.082323	-0.552146	7.051950
С	21.105512	1.262942	4.075058
Н	22.505455	0.755011	5.630975
Н	21.230657	1.862508	6.152972
С	21.762201	2.530471	3.528370
Н	20.010307	1.350809	3.955225

Н	21.413998	0.395446	3.462118
С	21.222874	3.800788	4.227872
Č	21.236693	5.042225	3.323844
Ĥ	21.814990	4.001229	5.137398
Н	20.191222	3.611486	4.574330
C	21 597692	2 652259	2 010995
н	22.849347	2.458974	3 729506
C	22.402186	3 828838	1 436518
н	20 523961	2 781350	1 783164
н	21 901211	1 711879	1 521328
C	22 454052	5 028566	2 402052
н	21 957944	4 137347	0.475416
н	21.007044	3 /080/0	1 2050/0
н	21 21 0/50	5 957374	3 038170
н	21.219439	5.957574	2 709110
н	20.510555	1 070730	3 025724
п п	23.303039	4.970739	1 826061
п	12 055412	1 200206	6 572042
C	13.933413	1.390290	0.372043 5.905466
	14.255558	2.08//24	5.803400
п	13.310003	3.2808/9	3.089993
п	14.022332	2.4/8331	4./94303
C	13.888301	5.124293	5.081089
C	14./10814	6.069278	5.970585
U U	14.522/44	6.055/91	/.480/02
H	13.804558	5./13029	5.461679
Н	14.923420	/.085831	5.600221
C II	14.505304	4.590598	7.979153
H	13.598183	6.569/5/	7.790491
Н	15.360395	6.594085	7.957842
C	15.455357	-0.681648	5.171915
C	15.761318	-2.086604	5.712323
C	14.950398	-2.240219	6.994345
H	16.834622	-2.174215	5.936283
H	15.494767	-2.846917	4.960926
C	15.230541	-1.011878	7.880326
Н	15.202218	-3.163294	7.539722
Н	13.877959	-2.292211	6.744158
С	14.228370	-0.753846	8.982125
Н	16.224461	-1.137689	8.336688
С	14.682855	-0.474992	10.275439
С	13.789358	-0.239896	11.319825
С	12.415341	-0.271068	11.083714
С	11.947199	-0.542497	9.796617
С	12.844771	-0.785994	8.757273
Η	12.455790	-0.999172	7.756877
Η	15.760066	-0.421034	10.447464
Η	14.172246	-0.029221	12.323285
Η	11.709428	-0.086426	11.898691
Η	10.871494	-0.568132	9.599333
С	16.190600	-0.278496	3.913826
Η	14.380192	-0.661636	4.926348
С	15.493060	0.381918	2.891457
С	16.108943	0.684926	1.678144
С	17.439829	0.328415	1.462309
С	18.145860	-0.325627	2.471851
С	17.528099	-0.625731	3.686278
Н	14.439744	0.642666	3.043956
Н	15.543124	1.197173	0.894412
Н	17.925575	0.558430	0.509421
Н	19.190050	-0.611317	2.312593
Н	18.086475	-1.148350	4.466276

С	16.226344	4.808434	4.241906
С	17.258255	3.901714	3.946355
С	17.619232	3.635951	2.629085
С	16.950090	4.262626	1.575581
С	15.915737	5.151513	1.856355
С	15.557257	5.423458	3.179496
Η	15.380643	5.645988	1.040408
Η	14.749678	6.132741	3.377643
Η	18.421715	2.921311	2.424974
Η	17.229296	4.048590	0.539869
Η	17.782219	3.377729	4.754836
С	14.918654	4.372527	9.417946
Н	13.484412	4.193660	7.862641
С	14.142256	3.553847	10.246304
С	14.509167	3.321565	11.572897
С	15.660923	3.909791	12.093262
С	16.446873	4.722897	11.274552
С	16.080986	4.948466	9.948982
Η	13.233432	3.090726	9.844925
Η	13.886357	2.679005	12.202150
Н	15.949451	3.731169	13.133171
Η	16.719695	5.575461	9.317723
Н	17.359891	5.179269	11.668919
Н	18.696939	4.490037	6.363886
Η	20.388112	3.639790	10.889398
Η	13.159524	0.800834	6.090867
Н	13.616820	1.616963	7.597870
Н	16.784346	5.568031	6.152742

n-Pr ċу

(Z)-enolate (II)

E = -	4698.3204469	965585 a.u.	
Cu	16.757448	2.082694	7.549292
Р	15.530993	3.976508	6.720218
Р	15.115699	0.829508	6.407545
0	18.361040	3.279948	7.691489
Ν	16.817362	2.543078	9.732812
С	18.561617	3.926877	8.811716
С	17.791669	3.421052	10.006859
С	16.113854	1.996873	10.727176
С	16.347835	2.290749	12.063394
С	17.351259	3.211149	12.365811
С	18.077797	3.784175	11.330939
Η	15.752278	1.813268	12.844524
Н	17.573026	3.473108	13.404517
С	19.414622	4.980966	8.925381
С	20.237317	5.455619	7.759133
Η	19.543892	5.470650	9.893570
С	21.397423	4.517103	7.402967
Н	20.637937	6.464843	7.958968
Н	19.594417	5.549384	6.863326
С	22.148114	4.940465	6.146187
Н	20.985657	3.501238	7.271701

Н	22.093072	4.458464	8.259569
Η	21.473604	4.957915	5.272931
Η	22.572682	5.952455	6.254698
Η	22.976539	4.252979	5.913328
0	17.892819	0.414411	7.675903
С	17 916316	-0 512657	8 554492
0	17.000951	-0 788434	9 341 562
C C	10 108/04	1 247424	9.541502 8.562570
C	19.198404	-1.347424	8.303370
	20.477790	-0.3/2104	8.239328
H	19.058419	-2.130833	7.802996
H	19.262998	-1.8/1831	9.528082
С	20.741347	0.714093	9.029692
Η	20.453018	-0.301102	7.170177
Η	21.337894	-1.255121	8.359434
С	21.001869	0.598945	10.535099
Η	19.912233	1.424255	8.861447
Н	21.631068	1.189635	8.577726
С	21.691230	1.887852	11.034809
Ĉ	21 543164	2 117696	12 548993
н	21.256087	2 747494	10/192087
н Ц	21.250007	1 856178	10.492007
C	10 75 1097	0.254722	11 201002
	19.734267	0.554752	11.391993
Н	21.692955	-0.251991	10.695497
C	20.122393	0.061975	12.857229
Н	19.127498	1.261885	11.336206
Η	19.129430	-0.456691	10.995536
С	21.404133	0.791752	13.292434
Η	19.281831	0.361908	13.506899
Η	20.249417	-1.024316	13.002669
Η	22.398548	2.696487	12.933146
Н	20.644530	2.728379	12.748711
Н	22.287333	0.167167	13.070955
Н	21 405531	0 949871	14 383086
C	13 791039	2 006472	5 905124
c c	14 457452	3 287303	5 388604
с u	12 710666	1.026060	5.050676
п	15./10000	4.020900	5.059070
П	15.100388	5.06/464	4.522709
C	16.508636	5.363539	5.964866
C	15.589500	6.584234	6.084130
С	14.990127	6.520911	7.484920
Η	14.783847	6.543086	5.332078
Η	16.150865	7.517121	5.916584
С	14.379974	5.119476	7.676593
Η	14.225325	7.295094	7.652780
Η	15.795053	6.690567	8.217534
С	15.478113	-0.115698	4.830752
С	15.382946	-1.593727	5.253523
Ĉ	14 196546	-1 713572	6 204585
н	16 311914	-1 894925	5 768618
н	15 276743	-2 234208	4 364116
Γ	13.270743	-2.23+208	7 200000
С П	14.391934	-0.042383	6.662055
п	14.129208	-2./12/10	0.002933
H C	13.25/604	-1.53963/	5.052119
C	13.213679	-0.356129	8.188693
H	15.230323	-0.955628	7.934231
С	13.386407	-0.391215	9.578683
С	12.319574	-0.134031	10.439854
С	11.058141	0.159040	9.921642
С	10.872017	0.190421	8.538485
С	11.940317	-0.067053	7.679652
Η	11.776493	-0.043316	6.597591

Н	14.377104	-0.635012	9.977175
Η	12.474865	-0.166335	11.522364
Н	10.219163	0.360077	10.594195
Η	9.884991	0.413763	8.123222
С	16.709061	0.224110	4.021432
Н	14.597893	0.099495	4.202393
С	16.569854	0.580604	2.673898
С	17.689880	0.788054	1.867332
С	18.969730	0.645204	2.400148
С	19.119798	0.311834	3.747217
С	18.000818	0.103341	4.552577
Η	15.567028	0.681425	2.245433
Η	17.557798	1.059607	0.815748
Η	19.849697	0.805724	1.770392
Η	20.120737	0.212555	4.179086
Η	18.128449	-0.136657	5.612747
С	17.110876	5.048894	4.614851
С	18.261321	4.245727	4.554010
С	18.863568	3.960189	3.331490
С	18.319938	4.457027	2.144778
С	17.169260	5.240434	2.194042
С	16.569547	5.536992	3.420960
Η	16.733878	5.634729	1.271081
Η	15.673262	6.163076	3.436595
Η	19.763240	3.338987	3.304027
Η	18.792248	4.230660	1.184322
Η	18.672742	3.851207	5.490249
С	14.033897	4.731726	9.100159
Η	13.444218	5.079101	7.094770
С	12.949586	3.874980	9.338462
С	12.564626	3.540676	10.636270
С	13.256418	4.066037	11.727197
С	14.341775	4.911866	11.504565
С	14.729578	5.237735	10.205491
Η	12.379015	3.478264	8.490551
Η	11.711630	2.873970	10.792010
Η	12.953079	3.815005	12.747684
Η	15.587634	5.899763	10.062391
Η	14.898162	5.324069	12.351411
Н	15.332063	1.289972	10.436576
Н	18.883994	4.487010	11.547523
Н	13.131764	1.558616	5.145457
Н	13.171237	2.221241	6.791085
Н	17.338791	5.487918	6.681657

n-Pr н Су

Cu(II) H-enolate

E = -	4624.3200712	296098 a.u.	
Cu	17.281262	1.638797	6.994884
Р	15.734597	3.498728	6.921931
Р	15.352632	0.374920	6.079202
Ο	18.763373	3.099825	6.842626
Ν	17.938090	1.908548	9.118799
С	19.191021	3.615569	7.963051

С	18 943046	2 787895	9 203054
\tilde{c}	17 654609	1 119836	10 155459
c	18 37/532	1 1/8213	11 342652
C	10.374332	2 047012	11.342032
C	19.455109	2.04/913	11.442104
U U	19.722808	2.8/6/18	10.364548
H	18.109523	0.4/8098	12.163570
Н	20.040959	2.095796	12.351616
С	19.808227	4.825765	8.079128
С	20.127487	5.700152	6.895166
Η	20.119766	5.164652	9.070956
С	21.209725	5.139997	5.965272
Η	19.220381	5.869592	6.284594
Η	20.442560	6.699369	7.243441
С	21.457297	6.016963	4.743399
Η	20.905644	4.127168	5.647476
Η	22.147576	5.014171	6.535361
Н	22.273282	5.623883	4.116580
Н	20.553327	6.080235	4.113296
Н	21.727957	7.045077	5.037271
0	18.410815	0.095667	6.978620
Č	18.614792	-0.628145	5.819637
Ċ	19 123052	0 183828	4 630033
C	20 512120	0.795232	4 773282
н	18 390502	0.988969	4 431255
н	19 103631	-0 459340	3 731447
\hat{C}	22 269914	2 254307	3 525849
c	22.209914	3 236991	2 3 5 5 1 8 6
c	22.400907	3 850246	2.333100
ч	23.770345	1 020741	2.240070
и П	21.038223	2 606287	2.452807
п	22.170304	2.090207	1.41/150
C	23.308233	1.18/332	2.242102
U U	24.700556	1.798733	3.342103
н	23.1/8011	0.561/26	2.548061
П	23.310199	0.512965	4.312531
U U	24.8/3453	2.769430	2.100580
H	25.523791	1.002242	3.252420
H	24.9911/4	2.340915	4.2/9298
H	23.986227	4.480657	3.13/381
H	23.852544	4.518/88	1.3/3339
H	25.876492	3.226527	2.133878
Н	24.751762	2.208818	1.221362
С	13.922533	1.517901	6.336081
С	14.297103	2.940302	5.909296
Н	13.444079	3.627206	6.022267
Η	14.596077	2.970450	4.848242
С	16.333636	5.080991	6.156840
С	15.401199	6.158160	6.721871
С	15.279877	5.859292	8.210894
Η	14.407261	6.110364	6.246364
Η	15.807469	7.165234	6.535180
С	14.897918	4.375746	8.371272
Η	14.537853	6.499503	8.713161
Η	16.254715	6.053957	8.685051
С	14.992986	-0.366365	4.366961
С	14.719055	-1.855745	4.631561
С	14.033248	-1.984397	5.981495
Н	15.669890	-2.411260	4.673734
Н	14.125340	-2.288668	3.811338
С	14.907651	-1.207325	6.974424
Н	13.931936	-3.035562	6.294395
Н	13.019374	-1.552019	5.940007

С	14.353877	-1.100374	8.375167
Н	15.879609	-1.725927	7.042084
С	15.163447	-1.431115	9.469426
Č	14.661438	-1.408797	10.770875
Ĉ	13 331688	-1 058184	11 000109
Ĉ	12 512774	-0 726387	9 920057
c	13 018435	-0 749253	8 620736
н	12 3538/19	-0.747233	7 787257
и U	16 202808	1 726165	0.200804
и П	15 212720	-1.720105	11 608455
н Ц	12.021707	-1.075819	12 019154
п	12.951/0/	-1.040938	12.010134
П	11.400098	-0.454446	10.088625
U U	15.945255	-0.082670	3.218200
Н	14.033062	0.105849	4.09/688
C	16.126251	1.228324	2.753425
C	16.929452	1.497931	1.648149
С	17.578679	0.459681	0.978006
С	17.407059	-0.847262	1.425064
С	16.596663	-1.113957	2.530424
Η	15.624710	2.060681	3.259480
Η	17.042414	2.529285	1.306339
Η	18.206836	0.671689	0.108103
Η	17.902527	-1.675375	0.909757
Η	16.475069	-2.151853	2.846324
С	16.553182	5.062384	4.661564
С	17.777653	4.601235	4.150696
С	18.043901	4.658198	2.784289
С	17.082890	5.150705	1.898519
С	15.849311	5.572285	2.391320
Ċ	15.588213	5.532880	3,763031
H	15.084771	5,949201	1.705681
Н	14 622359	5 890697	4 130691
Н	19 012233	4 312189	2 407149
н	17 293320	5 199373	0.826021
н	18 516380	4 200129	4 853926
\hat{C}	15 092729	3 796734	9757678
ч	13.825032	1 270/59	8 135578
$\hat{\Gamma}$	14 103284	2 832626	10 232426
C	14.195284	2.852020	10.232420
C	14.298780	2.322397	12 275120
C	16 219430	2.770393	12.3/3129
C	10.218433	3.721330	11.911/04
	10.113103	4.223919	0.592401
н	13.3/9340	2.488450	9.585401
Н	15.200204	1.5/6934	11.8/2380
H	15.389284	2.3/6624	13.392544
H	16.844940	4.9638/1	10.2/6/86
H	17.023127	4.074079	12.563769
Н	16.812844	0.432213	10.028166
Н	20.564130	3.570633	10.406846
Н	13.028983	1.156165	5.803517
Η	13.685532	1.502198	7.413035
Η	17.318835	5.203688	6.635540
Η	19.345071	-1.446143	6.017785
Н	17.685060	-1.150248	5.479381
С	20.863397	1.655528	3.561366
Η	21.254313	-0.013305	4.903435
Н	20.549535	1.415634	5.685289
Н	20.129080	2.481849	3.501216
Н	20.714737	1.062202	2.637413
Н	22,425812	2.825882	4,462934

-Pr 0: Cv

Cu(II) I-enolate

E = -	-4585.0445375	58105 a.u.	
Cu	17.365882	1.695581	7.017647
Р	15.807084	3.554740	6.833847
Р	15.544445	0.427218	5.989991
0	18.829604	3.159277	6.983869
Ň	17.838214	1.986005	9.205645
C	19.173092	3.684089	8.130007
Č	18 834099	2 866913	9 354502
Č	17 483490	1 205858	10 226294
Č	18 120030	1 241964	11 460245
Č	19 170636	2 143087	11 627300
Č	19 530657	2.965805	10 566911
Ĥ	17.799872	0.576399	12.265110
Н	19 712444	2 197683	12.575957
C	19 785987	4 892733	8 277826
Č	20 219161	5 725147	7 102128
н	20.028491	5 244627	9 284363
C	21 517391	5 241728	6 441855
Ĥ	19 429601	5 722996	6 329731
Н	20 345046	6 779728	7 405029
C	21 842232	5 980592	5 148847
н	21.422719	4 160462	6 238958
Н	22 351470	5 345162	7 158177
Н	22.783299	5 624793	4 699488
Н	21.041566	5 835397	4 402373
Н	21.011300	7.065457	5 320663
0	18 495636	0 149467	7 118328
Ċ	18 816309	-0.643359	6.035168
C	19 608915	0.058284	4 931710
C	20.938730	0.630204	5 401457
Н	18 973346	0.856850	4 508363
Н	19 771298	-0.665084	4 112428
C	21 802109	1 292206	4 312757
C	21.002109	2 461094	3 610231
C	22.008109	3 137073	2 582485
н	20.754338	3 194553	4 359886
Н	20.195168	2 087631	3 097871
C	22 321858	0 290238	3 274154
C	22.521050	0.250250	2 240693
н	21 463262	-0 171992	2.210093
Н	22.856924	-0 531022	3 782613
C	22.030921	2 130812	1 556357
н	22.529219	0 219293	1 491969
Н	24 142531	1 327030	2 744174
Н	22 864686	3 604407	3 103359
н	21 471584	3 957644	2 075094
Н	23 211358	2 623649	0.843616
Н	21 676565	1 748735	0.963982
C	14 077715	1 545460	6 113484
č	14 460691	2 972841	5 714764
н	13 589188	3 644561	5 758019
Н	14 841537	3 005580	4 680067
C	16.423426	5.150285	6.107740
-			

C	15 437040	6 209355	6 611181
C	15 215990	5.006222	0.011101
	13.213000	5.900255	0.000515
H	14.4/8/89	6.144080	6.069546
Н	15.837509	7.223599	6.452556
С	14.852375	4.415341	8.219649
Η	14.427493	6.531421	8.534152
Н	16.149613	6.119137	8.630182
С	15.366526	-0.308100	4.249366
С	15.008637	-1.787157	4.480119
Ċ	14 209145	-1 902541	5 767983
Ĥ	15 930352	-2 378233	4 601042
н	14 472391	-2 194541	3 608941
C	14.472391	-2.194941	6 92 2775
U U	13.024/62	-1.13/833	0.052775
H	14.054342	-2.952898	6.061298
H	13.212927	-1.4439/8	5.650033
C	14.384838	-1.056533	8.196753
Η	15.982465	-1.692687	6.956199
С	15.132056	-1.376653	9.337504
С	14.555572	-1.353183	10.607621
С	13.212310	-1.011303	10.758192
С	12.454391	-0.691827	9.631004
С	13.034254	-0.716788	8.362788
H	12 416983	-0.480567	7 491167
н	16 183085	-1 661682	9 221097
и П	15 150572	1 611124	11 482706
11 11	13.139372	-1.011134	11.462/00
H	12./54524	-0.99/412	11./51555
Н	11.398444	-0.426650	9./3/46/
C	16.466869	-0.066522	3.228369
Н	14.467311	0.200130	3.861800
С	16.775014	1.236241	2.807793
С	17.712128	1.466736	1.803272
С	18.375207	0.399735	1.195637
С	18.085438	-0.898114	1.605813
С	17.138948	-1.126614	2.606774
Н	16.269732	2.093406	3.266875
Н	17 922731	2 491785	1 491044
н	19 109340	0 583249	0.405358
н	18 590549	-1 749301	1 139854
и П	16.076666	2 150186	2 800060
n C	16.720000	-2.139160	2.890009
C	10.722433	3.134911	4.020/04
C	1/.965319	4.659686	4.180230
C	18.306997	4.722878	2.831228
С	17.399951	5.226706	1.896639
С	16.146898	5.661109	2.324418
С	15.813117	5.621861	3.679867
Η	15.423718	6.048215	1.600676
Η	14.833548	5.990391	3.996346
Н	19.290860	4.371296	2.505732
Н	17.669143	5.275892	0.837455
Н	18 659993	4 244076	4 918878
C	14 962638	3 848524	9 620140
ч	13 801677	1 206701	7 000545
C	13.001077	2 90791	10 040193
C	14.043201	2.002201	10.049165
C	14.008223	2.392830	11.333232
C	15.01/292	2.803554	12.201285
C	15.947996	3.814271	11.842931
С	15.922859	4.297859	10.536110
Η	13.277778	2.520277	9.352653
Η	13.332470	1.645961	11.665791
Η	15.033367	2.487122	13.288312
Н	16.669092	5.036767	10.232266

Η	16.706155	4.183619	12.540019
Н	16.652233	0.517712	10.046170
Η	20.366061	3.661381	10.663368
Η	13.241475	1.165233	5.505919
Η	13.748181	1.528452	7.165918
Η	17.378240	5.293921	6.640764
Η	19.419363	-1.513399	6.385162
Η	17.913116	-1.096652	5.554944
Η	21.529290	-0.159698	5.886748
Η	20.727960	1.390401	6.182554
Η	22.692031	1.714278	4.821020

-Pr 0= Me

Cu(II) acetate-enolate

E = -	4385.3019139	99977 a.u.	
Cu	17.461961	1.810394	6.779055
Р	15.940859	3.622731	6.609212
Р	15.514456	0.454475	6.255948
Ο	18.874321	3.227387	6.914887
Ν	18.109022	1.600791	8.884960
С	19.397028	3.471313	8.092471
С	19.098225	2.459069	9.168065
С	17.748986	0.678744	9.779499
С	18.366204	0.546705	11.015330
С	19.413323	1.418102	11.316968
С	19.784759	2.380628	10.387585
Η	18.038711	-0.223463	11.717199
Η	19.940873	1.345036	12.272214
С	20.147810	4.573273	8.359019
С	20.457312	5.590798	7.294911
Η	20.559496	4.717158	9.360939
С	21.463812	5.110968	6.241800
Η	20.835626	6.519777	7.755656
Η	19.526089	5.869683	6.765313
С	21.660534	6.113260	5.110732
Η	21.105280	4.150232	5.834175
Η	22.429686	4.898773	6.733355
Η	22.402959	5.762740	4.376561
Η	20.713232	6.285163	4.571325
Η	22.004103	7.088199	5.495230
Ο	18.838514	0.575055	6.011782
С	18.866559	-0.695996	6.130804
Ο	17.969734	-1.391123	6.626229
С	20.134711	-1.350684	5.605292
Η	20.998376	-0.995039	6.187651
С	14.106531	1.656436	6.207472
С	14.555266	2.984047	5.587749
Н	13.723786	3.704615	5.538803
Н	14.933562	2.842450	4.562002
С	16.564007	5.184727	5.840060
С	15.603823	6.266286	6.346355
С	15.413430	5.991530	7.836682
Н	14.633060	6.206162	5.826013
Н	16.014468	7.272247	6.164419
С	15.053072	4.501704	8.013068

Н	14.631300	6.624975	8.282902
Н	16 354911	6 217426	8 362732
C	15 343127	-0 426446	4 598576
č	15 232409	-1 914504	4 960246
č	14 358321	-2 001265	6 205313
н	16 227234	-2 321927	5 191987
ц	14 811707	-2.521727 2 481784	1 11/68/
C	1/ 0/5001	1 031562	7 247042
с u	14.224602	2 021670	6 618847
н Ц	14.324092	-3.021070	5 061241
$\hat{\Gamma}$	13.321191	-1./12/0/	9.901241 9.459275
с u	14.008504	-0.611263	7 5 9 2 0 0 0
П	13.900303	-1.449105	7.383090
C	14.343394	-1.132/33	9./312//
C	13./40309	-1.013818	10.805/25
C	12.443006	-0.555486	10./46499
C	11.945329	-0.207612	9.484046
C	12.746900	-0.35268/	8.352324
H	12.3266/1	-0.11638/	/.3/0636
H	15.557018	-1.559294	9.832169
H	14.144365	-1.289588	11.846619
Н	11.812229	-0.422270	11.633185
Н	10.918657	0.154324	9.376416
С	16.322851	-0.064308	3.503726
Н	14.347403	-0.100571	4.254960
С	16.030757	1.003195	2.642529
С	16.894009	1.352753	1.605683
С	18.071308	0.632599	1.403598
С	18.367096	-0.441265	2.242491
С	17.501017	-0.786455	3.280441
Η	15.095036	1.558209	2.771250
Η	16.640198	2.189140	0.948418
Η	18.749812	0.899644	0.588297
Η	19.280673	-1.023516	2.086876
Н	17.747873	-1.634182	3.923430
С	16.844424	5.091221	4.359899
С	18.091856	4.608560	3.933321
С	18.396140	4.524592	2.576018
С	17.455810	4.916283	1.620866
С	16.208467	5.381571	2.034274
С	15.903853	5.467964	3.394641
Η	15.464025	5.687312	1.293249
Н	14.922908	5.842984	3.700972
Η	19.375979	4.153440	2.260506
Н	17.694498	4.855264	0.555001
Η	18.820715	4.300350	4.691621
С	15.259605	3.927983	9.398141
Н	13.987050	4.379993	7.761183
С	14.280878	3.095402	9.956455
С	14.434305	2.561753	11.236231
С	15.573172	2.857059	11.984112
С	16.555815	3.683535	11.438605
С	16.402992	4.209274	10.156629
Н	13.374816	2.868260	9.383049
Н	13.655491	1.913411	11.647313
Н	15.695777	2.441372	12.988580
Н	17.197816	4.837384	9.742226
Н	17.457299	3.915850	12.013247
Н	16.929699	0.016222	9.486940
Н	20.609431	3.062724	10.599902
Н	13.249919	1.227826	5.664145
Н	13.778562	1.822807	7.247177

Η	17.530490	5.315702	6.354261
Η	20.072036	-2.444362	5.676219
Η	20.301182	-1.051827	4.559286

Scheme S9. Plausible approaches for the formation of minor diastereomers (S,R)-3 and (R,S)-3

*Note: The minor diastereomer was obtained as racemates rather than in enantiomerically pure forms, as determined by chiral HPLC analysis.
<HPLC traces of the minor diastereomer of 3aa, 3ba, and 3ea>

HPLC analysis: The ee of the product was determined by chiral HPLC analysis to be <5% [OD-H, 5% i-PrOH in hexanes, 0.3 mL/min], $t_R = 23.87$ min (*anti* minor), $t_R = 24.82$ min (*anti* major), $t_R = 29.22$ (*syn* major), and $t_R = 47.65$ (*syn* minor).

Deleci	JI A 2341111							
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name	- 3
1	22.130	6489099	162506	25.079		M		
2	23.794	6492675	143280	25.092		M		
3	27.116	6430808	124598	24.853		M		
4	43.690	6462391	84229	24.975		M		1
Total	3	25874973	514614					- îi

HPLC analysis: The ee of the product was determined by chiral HPLC analysis to be 5% [OD-H, 20% i-PrOH in hexanes, 0.3 mL/min], $t_R = 16.00 \text{ min} (anti \text{ major}), t_R = 17.92 \text{ min} (anti \text{ minor}), t_R = 23.37 (syn \text{ major}), and t_R = 24.56 (syn \text{ minor}).$

HPLC analysis: The ee of the product was determined by chiral HPLC analysis to be <5% [OD-H, 5% i-PrOH in hexanes, 0.5 mL/min], $t_R = 11.42$ min (*syn* isomer A), $t_R = 12.36$ min (*syn* isomer B), $t_R = 13.03$ (*anti* major), and $t_R = 26.71$ (*anti* minor).

Table 4, (*R*,*R*)-**3ba** ¹H NMR (300 MHz, CDCl₃) 3.3:1 dr

S 86

S 95

 ${\bf A}^{8.82}_{8.80}$

Table 5, (*S*,*S*)-**3am** ¹H NMR (300 MHz, CDCl₃) 9.0:1 dr

4.70 4.68 4.67

-55.39 -49.13 -49.13 -43.47 -33.33 -33.33 -50.01

Table 5, (*S*,*S*)-**3an** ¹H NMR (300 MHz, CDCl₃) 12:1 dr

XI. References

- (a) G. Zhang, C. Zhu, D. Liu, J. Pan, J. Zhang, D. Hu and B. Song, Solvent-Free Enantioselective Conjugate Addition and Bioactivities of Nitromethane to Chalcone Containing Pyridine, *Tetrahedron*, 2017, **73**, 129; (b) M. Egi, M. Umemura, T. Kawai and S. Akai, Heteropoly Compound Catalyzed Synthesis of Both *Z*- and *E-α*,β-Unsaturated Carbonyl Compounds, *Angew. Chem., Int. Ed.*, 2011, **50**, 12197.
- H. Yang, N. Huo, P. Yang, H. Pei, H. Lv and X. Zhang, Rhodium Catalyzed Asymmetric Hydrogenation of 2-Pyridine Ketones, Org. Lett., 2015, 17, 4144.
- 3. D. A. Sable, A. Gholap, S. P. Kommyreddy, D. J. Fartade, S. J. Gharpure, C. Schulzke and A. R. Kapdi, Heteroatom-Assisted Regio- and Stereoselective Palladium-Catalyzed Carboxylation of 9-Allyl Adenine, *J. Org. Chem.*, 2022, **87**, 12574.
- 4. SMART, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA, 2016.
- 5. G. M. Sheldrick, SADABS v 2.03, University of Göttingen, Germany, 2002.
- 6. SHELXTL v 6.14; Bruker AXS, Inc: Madison, Wisconsin, USA, 2000.
- F. Neese, F. Wennmohs, U. Becker and C. Riplinger, The ORCA Quantum Chemistry Program Package, J. Chem. Phys., 2020, 152, 224108.
- 8. J.-D. Chai and M. Head-Gordon, Systematic Optimization of Long-Range Corrected Hybrid Density Functionals, *J. Chem. Phys.*, 2008, **128**, 084106.
- (a) E. Caldeweyher, C. Bannwarth and S. Grimme, Extension of the D3 Dispersion Coefficient Model, *J. Chem. Phys.*, 2017, 147, 034112; (b) E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, and C. Bannwarth and S. Grimme, A Generally Applicable Atomic-Charge Dependent London Dispersion Correction, *J. Chem. Phys.*, 2019, 150, 154122; (c) E. Caldeweyher, J.-M. Mewes, S. Ehlert and S. Grimme, Extension and Evaluation of the D4 London-Dispersion Model for Periodic Systems, *Phys. Chem. Chem. Phys.*, 2020, 22, 8499.
- 10. F. Weigend and R. Ahlrichs, Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297.
- 11. V. Barone and M. Cossi, Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model, *J. Phys. Chem. A*, 1998, **102**, 1995.
- 12. R. Izsák and F. Neese, An Overlap Fitted Chain of Spheres Exchange Method, J. Chem. Phys., 2011, 135, 144105.
- 13. F. Weigend, Accurate Coulomb-Fitting Basis Sets for H to Rn, Phys. Chem. Chem. Phys., 2006, 8, 1057.
- 14. E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-Gracía, A. J. Cohen and W. Yang, Revealing Noncovalent Interactions, J. Am. Chem. Soc., 2010, 132, 6498.
- 15. T. Lu and F. Chen, Multiwfn: A Multifunctional Wavefunction Analyzer, J. Comput. Chem., 2012, 33, 580.
- 16. W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual Molecular Dynamics, J. Molec. Graphics, 1996, 14, 33.
- 17. C. Y. Legault, Université de Sherbrooke, 2020, (http://www.cylview.org).