Supporting Information

Regio- and Stereoselective Hydrosilylation of Alkynes with Alkoxysilanes for β -(Z) Vinylsilanes Catalyzed by Dirhodium (II)/XantPhos Complex

Liqun Yang, Wenkui Lu, Xiaoyu Wu, Yan Lu, Xiaomin Xie* and Zhaoguo Zhang*

Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China. E-mail: xiaominxie@sjtu.edu.cn, zhaoguo@sjtu.edu.cn

Table of Contents

Table of Contents
1. General Information ······S3
2. Optimization of the Reaction Conditions
3. General Procedures of Hydrosilylation for β -(Z) Vinylsilanes and the Analytical Data for Products S4
4. Mechanism Experiments ······ S11
4.1 Time monitoring ····· S11
4.2 The complexes of $Rh_2(OAc)_4$ and XantPhos in MeCN S11
4.3 Synthesis of dirhodium complexes and crystallographic data S12
4.4 The hydrosilylation catalyzed by complex A S14
4.5 The monitoring for dirhodium hydride species in the model hydrosilylation catalyzed by
Rh ₂ (OAc) ₄ /XantPhos
4.6 The capture of (EtO) ₃ SiOAc and alkene ······ S15
4.7 Deuterium labeling experiments
References S19
Copies of ¹ H, ¹³ C, ¹⁹ F, ³¹ P NMR Spectra S20

1. General Information

Unless otherwise noted, all hydrosilylation reactions were carried out under an atmosphere of N₂. Materials were purchased from commercial suppliers and used without further purification. ¹H NMR, ¹³C NMR, ¹⁹F and ³¹P NMR spectra were recorded on 400 MHz, 500 MHz, 600 MHz or 700 MHz spectrometers. The chemical shifts for ¹H NMR were recorded in ppm downfield from tetramethylsilane (TMS) with the solvent resonance as the internal standard. The chemical shifts for ¹³C NMR were recorded in ppm downfield using the central peak of deuterochloroform (77.16 ppm) as the internal standard. Coupling constants (*J*) are reported in Hz and refer to apparent peak multiplications. HRMS were obtained on an ESI-TOF mass spectrometer. Flash column chromatography was performed on silica gel.

2. Optimization of the Reaction Conditions

Table S1. The effects of solvent on the formation β -(*Z*) vinylsilanes ^{*a*}

^{*a*} Rh₂(OAc)₄ (2.2 mg, 1.0 mol%), XantPhos (3.5 mg, 1.2 mol%), **1a** (0.50 mmol, 68.3 mg, 1.0 equiv), **2a** (0.6 mmol, 98.5 mg, 1.2 equiv) in solvent (2 mL) at 80 °C for 4 h, and yields were determined by GC (1,2,4,5-tetramethylbenzene as an internal standard).

Table S2. The effects of temperature on the formation β -(Z) vinyl silanes ^a

2	70	44	31 (97:3)	trace
3	90	99	91 (91:9)	trace

^{*a*} Rh₂(OAc)₄ (2.2 mg, 1.0 mol%), XantPhos (3.5 mg, 1.2mol%), **1a** (0.50 mmol, 68.3 mg, 1.0 equiv), **2a** (0.6 mmol, 98.5 mg, 1.2 equiv) in MeCN (2 mL) at T $^{\circ}$ C for 4 h, and yields were determined by GC (1,2,4,5-tetramethylbenzene as an internal standard).

CI	+ HSi(OEt) ₃	x mol% [Rł y mol% XantF MeCN, 80 °C	$\frac{h}{hos}$, 4 h CI	Si(OEt) ₃ +	Si(OEt) ₃ + Ar Si(OEt) ₃
1a	2a		3a	a 4a	a 5aa
entry	X	у	conv.%	yield%	
				3 aa+4aa	5aa
1	1.0	1.2	85	80 (97:3)	trace
2	1.0	2.4	84	84 (92:8)	trace
3	2.0	2.4	99	93 (97:3)	trace
4	0.5	0.6	34	32 (93:7)	trace

Table S3. The effects of catalyst loading on the formation β -(Z) vinyl silanes ^a

^{*a*} **1a** (0.50 mmol, 68.3 mg, 1.0 equiv), **2a** (0.6 mmol, 98.5 mg, 1.2 equiv), 80 °C, in MeCN (2 mL); and yields were determined by GC (1,2,4,5-tetramethylbenzene as an internal standard).

3. General Procedures of Hydrosilylation for β -(Z) Vinylsilanes and the

Analytical Data for Products

In an oven-dried 25 mL sealed tube containing a stirring bar, $Rh_2(OAc)_4$ (4.4 mg, 1.0 mol %), XantPhos (6.9 mg, 1.2 mol %), alkynes (1.2 mmol) and R_3SiH (1.0 mmol) were added in MeCN (2.0 mL. Then the above mixture was reacted for 6 h at 80 °C. After the reaction, the resulting red brown mixture was cooled to room temperature and the solvent was concentrated. Then the crude production was purified by column chromatography to afford the corresponding products **3**.

(*Z*)-(4-Chlorostyryl)triethoxysilane (3aa). Purified by flash column chromatography (300-400 mesh silica gel, petroleum ether : ethyl acetate: Et₃N = 100:2:1) obtained **3aa** as light yellow liquid (240.0 mg, 80% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.55 – 7.49 (m, 2H), 7.34 (d, *J* = 15.6 Hz, 1H), 7.32 – 7.28 (m, 2H), 5.61 (d, *J* = 15.6 Hz, 1H), 3.76 (q, *J* = 7.0 Hz, 6H), 1.16 (t, *J* = 7.0 Hz, 9H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 149.7, 137.1, 134.2, 129.9, 128.4, 121.3, 58.6, 18.2. HRMS-ESI (m/z): Calcd for C₁₄H₂₁³⁵ClO₃Si Na [M + Na]⁺: 323.0835, Found: 323.0842.

(Z)-Triethoxy(styryl)silane (3ba).¹ Purified by flash column chromatography (300-400 mesh silica gel, petroleum ether : ethyl acetate: Et₃N = 100:1:1) obtained **3ba** as light yellow liquid (204.8 mg, 77% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 – 7.55 (m, 2H), 7.43 (d, *J* = 15.6 Hz, 1H), 7.36 – 7.31 (m, 2H), 7.30 – 7.27 (m, 1H), 5.59 (d, *J* = 15.6 Hz, 1H), 3.76 (q, *J* = 7.0 Hz, 6H), 1.15 (t, *J* = 7.0 Hz, 9H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 151.3, 138.6, 128.5, 128.4, 128.2, 120.2, 58.5, 18.2.

(*Z*)-Triethoxy(4-methylstyryl)silane (3ca).² Purified by flash column chromatography (300-400 mesh silica gel, petroleum ether : ethyl acetate : $Et_3N = 100:2:1$) obtained 3ca as light yellow liquid (218.4 mg, 78% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 (d, J = 7.6 Hz, 2H), 7.39 (d, J = 15.6 Hz, 1H), 7.14 (d, J = 8.0 Hz, 2H), 5.52 (d, J = 15.2 Hz, 1H), 3.77 (q, J = 7.2 Hz, 6H), 2.35 (s, 3H), 1.16 (t, J = 7.2 Hz, 9H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 151.3, 138.3, 135.8, 128.9, 128.5, 118.8, 58.5, 21.4, 18.2.

(*Z*)-Triethoxy(3-methylstyryl)silane (3da). Purified by flash column chromatography (300-400 mesh silica gel, petroleum ether : ethyl acetate : Et₃N = 100:2:1) obtained **3da** as light yellow liquid (243.8 mg, 87% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 – 7.35 (m, 3H), 7.22 (t, *J* = 7.6 Hz, 1H), 7.10 (d, *J* = 7.6 Hz, 1H), 5.56 (d, *J* = 15.6 Hz, 1H), 3.76 (q, *J* = 7.0 Hz, 6H), 2.36 (s, 3H), 1.15 (t, *J* = 7.0 Hz, 9H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 151.5, 138.6, 137.7, 129.2, 129.1, 128.1, 125.6, 119.9, 58.5, 21.5, 18.2. HRMS-ESI (m/z): Calcd for C₁₅H₂₄O₃Si Na [M + Na)⁺: 303.1387, Found: 303.1388.

(*Z*)-Triethoxy(4-methoxystyryl)silane (3ea). Purified by flash column chromatography (300-400 mesh silica gel, petroleum ether : ethyl acetate : $Et_3N = 100:2:1$) obtained **3ea** as light yellow liquid (157.1 mg, 53% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.58 – 7.53 (m, 2H), 7.35 (d, *J* = 15.6 Hz, 1H), 6.89 – 6.84 (m, 2H), 5.44 (d, *J* = 15.6 Hz, 1H), 3.82 (s, 3H), 3.77 (q, *J* = 7.0 Hz, 6H), 1.16 (t, *J* = 7.0 Hz, 9H). ¹³C NMR {¹H} (100 MHz, CDCl₃) δ 160.3, 148.8, 130.7, 128.3, 114.8, 114.0, 58.7, 55.4, 18.4. HRMS-ESI (m/z): Calcd for C₁₅H₂₄O₄Si Na [M + Na]⁺: 319.1336, Found: 319.1342.

(*Z*)-Triethoxy(3-methoxystyryl)silane (3fa). Purified by flash column chromatography (300-400 mesh silica gel, petroleum ether : ethyl acetate : Et₃N = 100:2:1) obtained **3fa** as light yellow liquid (234.2 mg, 79% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 (d, *J* = 15.6 Hz, 1H), 7.30 – 7.19 (m, 2H), 7.11 (d, *J* = 7.6 Hz, 1H), 6.85 (dd, *J* = 8.0, 2.8 Hz, 1H), 5.59 (d, *J* = 15.6 Hz, 1H), 3.84 (s, 3H), 3.77 (q, *J* = 7.0 Hz, 6H), 1.15 (t, *J* = 7.0 Hz, 9H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 159.6, 151.2, 140.0, 129.2, 121.4, 120.4, 115.0, 112.8, 58.5, 55.5, 18.2. HRMS-ESI (m/z): Calcd for C₁₅H₂₄O₄Si Na [M + Na]⁺: 319.1336, Found: 319.1340.

(Z)-Triethoxy(4-(trifluoromethyl)styryl)silane (3ga). Purified by flash column chromatography (300-400 mesh silica gel, petroleum ether : ethyl acetate : $Et_3N = 100:2:1$) obtained 3ga as light yellow liquid

(200.6 mg, 60% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 (d, *J* = 8.0 Hz, 2H), 7.59 (d, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 15.6 Hz, 1H), 5.74 (d, *J* = 15.6 Hz, 1H), 3.75 (q, *J* = 7.0 Hz, 6H), 1.14 (t, *J* = 7.0 Hz, 9H). ¹³C {¹H} NMR (150 MHz, CDCl₃) δ 149.4, 142.1, 130.0 (q, ²*J*_{C-F} = 32.1 Hz), 128.8, 125.1 (q, ³*J*_{C-F} = 3.9 Hz), 124.3 (q, ¹*J*_{C-F} = 272.0 Hz), 123.7, 58.6, 18.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.6. HRMS-ESI (m/z): Calcd for C₁₅H₂₁F₃O₃Si Na [M + Na]⁺: 357.1104, Found: 357.1104.

(*Z*)-Triethoxy(2-methylstyryl)silane (3ha). Purified by flash column chromatography (300-400 mesh silica gel, petroleum ether : ethyl acetate : Et₃N = 100:2:1) obtained **3ha** as light yellow liquid (235.5 mg, 84% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.63 – 7.50 (m, 2H), 7.22 – 7.10 (m, 3H), 5.66 (d, *J* = 15.2 Hz, 1H), 3.67 (q, *J* = 7.0 Hz, 6H), 2.30 (s, 3H), 1.10 (t, *J* = 7.0 Hz, 9H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 150.3, 138.6, 135.9, 129.6, 128.5, 128.4, 125.9, 121.4, 58.5, 20.0, 18.2. HRMS-ESI (m/z): Calcd for C₁₅H₂₄O₃Si Na [M + Na]⁺: 303.1387, Found: 303.1384.

(*Z*)-Triethoxy(2-methoxystyryl)silane (3ia). Purified by flash column chromatography (300-400 mesh silica gel, petroleum ether : ethyl acetate : Et₃N = 100:2:1) obtained **3ia** as light yellow liquid (82% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 – 7.60 (m, 2H), 7.31 – 7.23 (m, 1H), 6.94 (t, *J* = 7.5 Hz, 1H), 6.84 (d, *J* = 8.4 Hz, 1H), 5.60 (d, *J* = 15.6 Hz, 1H), 3.83 (s, 3H), 3.72 (q, *J* = 7.0 Hz, 6H), 1.12 (t, *J* = 7.0 Hz, 9H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 157.3, 146.7, 129.7, 129.4, 127.9, 120.3, 120.0, 110.1, 58.4, 55.6, 18.2. HRMS-ESI (m/z): Calcd for C₁₅H₂₄O₄Si Na [M + Na]⁺: 319.1336, Found: 319.1335.

(*Z*)-Triethoxy(4-fluorostyryl)silane (3ja). Purified by flash column chromatography (300-400 mesh silica gel, petroleum ether : ethyl acetate : Et₃N = 100:2:1) obtained **3**ja as light yellow liquid (224.6 mg, 79% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 – 7.53 (m, 2H), 7.37 (d, *J* = 15.6 Hz, 1H), 7.05 – 6.98 (m, 2H), 5.56 (d, *J* = 15.6 Hz, 1H), 3.76 (q, *J* = 7.0 Hz, 6H), 1.15 (t, *J* = 7.0 Hz, 9H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 162.9 (d, ¹*J*_{C-F} = 248.9 Hz), 149.9, 134.8 (d, ⁴*J*_{C-F} = 3.2 Hz), 130.4 (d, ³*J*_{C-F} = 8.3 Hz), 120.0, 115.1 (d, ²*J*_{C-F} = 21.7 Hz), 58.6, 18.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.43. HRMS-ESI (m/z): Calcd for C₁₄H₂₁FO₃Si Na [M + Na]⁺: 307.1136, Found: 307.1138.

(*Z*)-(4-Bromostyryl)triethoxysilane (3ka). Purified by flash column chromatography (300-400 mesh silica gel, petroleum ether : ethyl acetate : Et₃N = 100:2:1) obtained **3ka** as light yellow liquid (252.0 mg, 73% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 (s, 4H), 7.32 (d, *J* = 15.6 Hz, 1H), 5.63 (d, *J* = 15.6 Hz, 1H), 3.76 (q, *J* = 7.0 Hz, 6H), 1.16 (t, *J* = 7.0 Hz, 9H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 149.8, 137.5, 131.3, 130.2, 122.5, 121.4, 58.6, 18.2. HRMS-ESI (m/z): Calcd for C₁₄H₂₁⁷⁹BrO₃Si Na [M + Na]⁺: 367.0336, Found: 367.0336.

(Z)-4-(2-(Triethoxysilyl)vinyl)aniline (3la). Purified by flash column chromatography (300-400 mesh

silica gel, petroleum ether : ethyl acetate : $Et_3N = 100:10:1$) obtained **31a** as light yellow liquid (247.1 mg, 88% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 – 7.41 (m, 2H), 7.29 (d, J = 15.6 Hz, 1H), 6.67 – 6.61 (m, 2H), 5.32 (d, J = 15.6 Hz, 1H), 3.78 (q, J = 7.0 Hz, 6H), 1.17 (t, J = 7.0 Hz, 9H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 151.4, 146.9, 130.1, 129.2, 114.7, 114.6, 58.4, 18.2. HRMS-ESI (m/z): Calcd for C₁₄H₂₃NO₃Si Na [M + Na]⁺: 304.1339, Found: 304.1340.

(*Z*)-N,N-Dimethyl-4-(2-(triethoxysilyl)vinyl)aniline (3ma). Purified by flash column chromatography (300-400 mesh silica gel, petroleum ether : ethyl acetate : Et₃N =100:10:1) obtained **3ma** as light yellow liquid (229.0 mg, 88% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 – 7.49 (m, 2H), 7.31 (d, *J* = 15.6 Hz, 1H), 6.72 – 6.65 (m, 2H), 5.28 (d, *J* = 15.6 Hz, 1H), 3.79 (q, *J* = 7.0 Hz, 6H), 2.98 (s, 7H), 1.18 (t, *J* = 7.0 Hz, 9H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 151.5, 130.0, 128.1, 113.5, 111.8, 58.4, 40.5, 18.3. HRMS-ESI (m/z): Calcd for C₁₆H₂₇NO₃Si H [M + H]⁺: 310.1833, Found: 310.1833.

(*Z*)-4-(2-(Triethoxysilyl)vinyl)benzonitrile (3na). Purified by flash column chromatography (300-400 mesh silica gel, petroleum ether : ethyl acetate : Et₃N = 100:5:1) obtained **3na** as light yellow liquid (183.6 mg, 63% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.66 (d, *J* = 8.4 Hz, 2H), 7.62 (d, *J* = 8.4 Hz, 2H), 7.38 (d, *J* = 15.6 Hz, 1H), 5.80 (d, *J* = 15.6 Hz, 1H), 3.75 (q, *J* = 7.0 Hz, 6H), 1.14 (t, *J* = 7.0 Hz, 9H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 148.8, 143.0, 132.0, 129.1, 125.2, 119.1, 111.6, 58.7, 18.2. HRMS-ESI (m/z): Calcd for C₁₅H₂₁NO₃Si Na [M + Na]⁺: 314.1183, Found: 314.1183.

(*Z*)-1-(4-(2-(Triethoxysilyl)vinyl)phenyl)ethan-1-one (3oa). Purified by flash column chromatography (300-400 mesh silica gel, petroleum ether : ethyl acetate : Et₃N = 100:10:1) obtained **3oa** as light yellow liquid (182.0 mg, 59% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 – 7.91 (m, 2H), 7.66 (d, *J* = 8.2 Hz, 2H), 7.43 (d, *J* = 15.6 Hz, 1H), 5.75 (d, *J* = 15.6 Hz, 1H), 3.76 (q, *J* = 7.0 Hz, 6H), 2.60 (s, 3H), 1.15 (t, *J* = 7.0 Hz, 9H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 149.7, 143.2, 136.5, 128.7, 128.3, 123.8, 58.6, 26.8, 18.2. HRMS-ESI (m/z): Calcd for C₁₆H₂₄O₄Si Na [M + Na]⁺: 331.1336, Found: 331.1337.

Methyl (Z)-4-(2-(triethoxysilyl)vinyl)benzoate (3pa). Purified by flash column chromatography (300-400 mesh silica gel, petroleum ether : ethyl acetate : $Et_3N = 100:10:1$) obtained **3pa** as colorless liquid (152.5 mg, 47% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.03 – 7.98 (m, 2H), 7.66 – 7.61 (m, 2H), 7.42 (d, J = 15.6 Hz, 1H), 5.73 (d, J = 15.6 Hz, 1H), 3.92 (s, 3H), 3.76 (q, J = 7.0 Hz, 6H), 1.14 (t, J = 7.0 Hz, 9H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 167.1, 149.8, 143.1, 129.6, 129.5, 128.5, 123.5, 58.6, 52.2, 18.2. HRMS-ESI (m/z): Calcd for C₁₆H₂₄O₅Si Na [M + Na]⁺: 347.1285, Found: 347.1286.

(Z)-Triethoxy(4-nitrostyryl)silane (3qa). Purified by flash column chromatography (300-400 mesh

silica gel, petroleum ether : ethyl acetate : Et₃N = 100:2:1) obtained **3na** as light yellow liquid (73.4 mg, 23% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.22 – 8.17 (m, 2H), 7.76 – 7.70 (m, 2H), 7.43 (d, *J* = 15.6 Hz, 1H), 5.85 (d, *J* = 15.6 Hz, 1H), 3.77 (q, *J* = 7.0 Hz, 6H), 1.15 (t, *J* = 7.0 Hz, 9H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 148.2, 147.4, 145.0, 129.3, 126.1, 123.4, 58.7, 18.2. HRMS-ESI (m/z): Calcd for C₁₄H₂₁NO₅Si Na [M + Na]⁺: 334.1081, Found: 334.1084.

Si(OEt)3

(*Z*)-Triethoxy(2-(naphthalen-2-yl)vinyl)silane (3ra). Purified by flash column chromatography (300-400 mesh silica gel, petroleum ether : ethyl acetate : $Et_3N = 100:2:1$) obtained **3na** as light yellow liquid (269.0 mg, 85% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 (s, 1H), 7.86 – 7.78 (m, 4H), 7.57 (d, J = 15.6 Hz, 1H), 7.47 (dd, J = 6.4, 3.2 Hz, 2H), 5.68 (d, J = 15.6 Hz, 1H), 3.79 (q, J = 7.0 Hz, 6H), 1.15 (t, J = 7.0 Hz, 9H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 151.2, 136.2, 133.3, 128.5, 128.4, 127.7 (2 C), 126.4, 126.2, 126.1, 120.6, 58.6, 18.2. HRMS-ESI (m/z): Calcd for C₁₈H₂₄O₃Si Na [M + Na]⁺: 339.1387, Found: 339.1387.

(*Z*)-Triethoxy(2-(thiophen-2-yl)vinyl)silane (3sa). Purified by flash column chromatography (300-400 mesh silica gel, petroleum ether : ethyl acetate : Et₃N = 100:5:1) obtained **3na** as light yellow liquid (185.1 mg, 68% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 – 7.30 (m, 2H), 7.25 – 7.22 (m, 1H), 6.94 (dd, *J* = 5.0, 3.6 Hz, 1H), 5.38 (d, *J* = 15.6 Hz, 1H), 3.76 (q, *J* = 7.0 Hz, 6H), 1.14 (t, *J* = 7.0 Hz, 9H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 142.3, 141.9, 128.3, 127.4, 126.9, 117.7, 58.5, 18.1. HRMS-ESI (m/z): Calcd for C₁₂H₂₀O₃SSi Na [M + Na]⁺: 295.0795, Found: 295.0795.

Si(OEt)₃

(*Z*)-Triethoxy(2-(thiophen-3-yl)vinyl)silane (3ta). Purified by flash column chromatography (300-400 mesh silica gel, petroleum ether : ethyl acetate : Et₃N = 100:2:1) obtained as light yellow liquid (171.7 mg, 63% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 – 7.54 (m, 1H), 7.46 (dd, *J* = 5.2, 1.2 Hz, 1H), 7.36 (d, *J* = 15.6 Hz, 1H), 7.24 (dd, *J* = 5.2, 3.2 Hz, 1H), 5.48 (d, *J* = 15.6 Hz, 1H), 3.80 (q, *J* = 7.2 Hz, 6H), 1.18 (t, *J* = 6.8 Hz, 9H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 144.4, 140.9, 128.1, 125.8, 125.3, 118.2, 58.6, 18.2. HRMS-ESI (m/z): Calcd for C₁₂H₂₀O₃SSi Na [M + Na]⁺: 295.0795, Found: 295.0795.

Si(OEt)₃

(*Z*)-3-(2-(Triethoxysilyl)vinyl)pyridine (3ua). Purified by flash column chromatography (300-400 mesh silica gel, petroleum ether : ethyl acetate : $Et_3N = 100:10:1$) obtained **3ua** as light yellow liquid (195.1 mg, 73% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.67 (d, J = 2.2 Hz, 1H), 8.51 (dd, J = 5.0, 1.8 Hz, 1H), 8.02 (dt, J = 8.0, 2.0 Hz, 1H), 7.38 (d, J = 15.6 Hz, 1H), 7.29 – 7.25 (m, 1H), 5.77 (d, J = 15.6 Hz, 1H), 3.77 (q, J = 7.0 Hz, 6H), 1.16 (t, J = 7.0 Hz, 9H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 149.8, 149.1, 145.5, 133.2, 133.1, 123.6, 121.2, 58.8, 18.4. HRMS-ESI (m/z): Calcd for C₁₃H₂₁NO₃Si H [M + H]⁺: 268.1363, Found: 268.1363.

Si(OEt)3

(Z)-Triethoxy(oct-1-en-1-yl)silane (3va).³ Purified by flash column chromatography (300-400 mesh

silica gel, petroleum ether : ethyl acetate : Et₃N = 100:2:1) obtained **3va** as light yellow liquid (233.3 mg, 85% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.51 (dt, *J* = 14.4, 7.6 Hz, 1H), 5.28 (d, *J* = 14.0 Hz, 1H), 3.81 (q, *J* = 7.0 Hz, 6H), 2.27 (q, *J* = 7.2 Hz, 2H), 1.44 – 1.26 (m, 8H), 1.22 (t, *J* = 7.0 Hz, 9H), 0.88 (t, *J* = 7.2 Hz, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 155.3, 118.4, 58.3, 34.0, 31.9, 29.6, 29.2, 22.7, 18.4, 14.2.

(*Z*)-(3-Cyclohexylprop-1-en-1-yl)triethoxysilane (3wa). Purified by flash column chromatography (300-400 mesh silica gel, petroleum ether : ethyl acetate : $Et_3N = 100:2:1$) obtained **3wa** as light yellow liquid (249.3 mg, 87% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.53 (dt, *J* = 14.6, 7.4 Hz, 1H), 5.31 (dt, *J* = 14.2, 1.4 Hz, 1H), 3.80 (q, *J* = 7.0 Hz, 6H), 2.18 (td, *J* = 7.2, 1.4 Hz, 2H), 1.75 – 1.57 (m, 6H), 1.40 – 1.28 (m, 1H), 1.22 (t, *J* = 7.0 Hz, 9H), 1.19 – 1.10 (m, 2H), 0.99 – 0.87 (m, 2H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 154.1, 119.1, 58.3, 41.4, 38.2, 33.2, 26.6, 26.5, 18.3. HRMS-ESI (m/z): Calcd for C₁₅H₃₀O₃Si Na [M + Na]⁺: 309.1856, Found: 309.1856.

Si(OEt)₃

(*Z*)-Triethoxy(3-(oxiran-2-ylmethoxy)prop-1-en-1-yl)silane (3xa). Purified by flash column chromatography (300-400 mesh silica gel, petroleum ether : ethyl acetate : $Et_3N = 100:2:1$) obtained 3xa as light yellow liquid (171.3 mg, 62% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.60 (dt, J = 14.8, 6.2 Hz, 1H), 5.54 (dt, J = 14.8, 1.6 Hz, 1H), 4.31 – 4.20 (m, 2H), 3.82 (q, J = 7.0 Hz, 6H), 3.71 (dd, J = 11.4, 3.2 Hz, 1H), 3.43 (dd, J = 11.4, 5.8 Hz, 1H), 3.19 – 3.14 (m, 1H), 2.80 (dd, J = 5.2, 4.2 Hz, 1H), 2.62 (dd, J = 5.0, 2.8 Hz, 1H), 1.23 (t, J = 7.0 Hz, 9H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 149.9, 122.2, 71.7, 71.1, 58.6, 50.8, 44.7, 18.3. HRMS-ESI (m/z): Calcd for C₁₂H₂₄O₅Si Na [M + Na]⁺: 299.1285, Found: 299.1285.

(EtO)₃Si OEt

(*Z*)-(3,3-Diethoxyprop-1-en-1-yl)triethoxysilane (3ya). Purified by flash column chromatography (300-400 mesh silica gel, petroleum ether : ethyl acetate : $Et_3N = 100:4:1$) obtained **3ya** as colorless liquid (193.1 mg, 66% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 6.45 (dd, *J* = 15.0, 8.0 Hz, 1H), 5.59 (dd, *J* = 15.0, 1.0 Hz, 1H), 5.21 (dd, *J* = 8.0, 1.0 Hz, 1H), 3.83 (q, *J* = 7.0 Hz, 6H), 3.69 (dq, *J* = 9.5, 7.0 Hz, 2H), 3.55 (dq, *J* = 9.5, 7.0 Hz, 2H), 1.23 (q, *J* = 7.0 Hz, 15H). ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 149.4, 123.0, 101.1, 61.9, 58.6, 18.3, 15.4. HRMS-ESI (m/z): Calcd for C₁₃H₂₈O₅Si Na [M + Na]⁺: 315.1598, Found: 315.1599.

EtO O Si(OEt)₃

Ethyl (*Z*)-3-(triethoxysilyl)acrylate (3za). Purified by flash column chromatography (300-400 mesh silica gel, petroleum ether : ethyl acetate : Et₃N = 100:4:1) obtained **3ya** and **4ya** as colorless liquid (52.0 mg, 20% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 6.96 (d, *J* = 3.5 Hz, 1H), 6.42 (d, *J* = 3.5 Hz, 1H), 4.23 (q, *J* = 7.0 Hz, 2H), 3.86 (q, *J* = 7.0 Hz, 6H), 1.31 (t, *J* = 7.0 Hz, 3H), 1.22 (t, *J* = 7.0 Hz, 9H). ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 168.3, 145.0, 136.1, 60.7, 58.9, 18.2, 14.2. HRMS-ESI (m/z): Calcd for C₁₁H₂₂O₅Si Na [M + Na]⁺: 285.1129, Found: 285.1130.

Si(OEt)₃

Triethoxy((1*Z*,3*E*)-4-phenylbuta-1,3-dien-1-yl)silane (3a'a). Purified by flash column chromatography (300-400 mesh silica gel, petroleum ether : ethyl acetate : $Et_3N = 100:4:1$) obtained 3a'a and 4a'a as yellow liquid (169.7 mg, 58% yield).¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 – 7.42 (m, 2H), 7.35 – 7.30 (m, 3H), 7.28 – 7.25 (m, 1H), 7.12 (dd, *J* = 14.0, 11.2 Hz, 1H), 6.64 (d, *J* = 15.6 Hz, 1H), 5.48 (d, *J* = 14.0 Hz, 1H), 3.87 (q, *J* = 7.0 Hz, 6H), 1.27 (t, *J* = 7.0 Hz, 9H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 150.3, 137.1, 136.6, 129.5, 128.8, 128.2, 126.9, 121.4, 58.6, 18.4. HRMS-ESI (m/z): Calcd for C₁₆H₂₄O₃Si Na [M + Na]⁺: 315.1387, Found:315.1392.

Ph

si(OEt)₃

(*Z*)-(1,2-Diphenylvinyl)triethoxysilane (3b'a). Purified by flash column chromatography (300-400 mesh silica gel, petroleum ether : ethyl acetate : $Et_3N = 100:2:1$) obtained **3b'a** as light yellow liquid (308.2 mg, 90% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 – 7.23 (m, 2H), 7.23 – 7.14 (m, 4H), 7.13 – 7.08 (m, 3H), 7.06 – 7.00 (m, 2H), 3.83 (q, J = 7.0 Hz, 6H), 1.20 (t, J = 7.0 Hz, 9H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 142.6, 140.9, 137.2, 137.0, 130.0, 128.6, 128.4, 128.0, 127.6, 126.2, 59.0, 18.3. HRMS-ESI (m/z): Calcd for C₂₀H₂₆O₃Si Na [M + Na]⁺: 365.1543, Found: 365.1543.

Si(OEt)₃

(Z)-Triethoxy(oct-4-en-4-yl)silane (3c'a).⁴ Purified by flash column chromatography (300-400 mesh silica gel, petroleum ether : ethyl acetate : Et₃N = 100:2:1) obtained 3c'a as light yellow liquid (200.5 mg, 73% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.09 (t, J = 7.0 Hz, 1H), 3.80 (q, J = 7.0 Hz, 6H), 2.15 – 2.05 (m, 4H), 1.45 – 1.35 (m, 4H), 1.22 (t, J = 7.0 Hz, 9H), 0.95 – 0.87 (m, 6H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 146.0, 132.9, 58.4, 31.5, 30.5, 23.1, 22.6, 18.3, 14.4, 14.0.

SiMe(OEt)2

(*Z*)-Diethoxy(methyl)(styryl)silane (3bb). Purified by flash column chromatography (300-400 mesh silica gel, petroleum ether : ethyl acetate : $Et_3N = 100:2:1$) obtained **3bb** as light yellow liquid (153.8 mg, 65% yield).¹H NMR (400 MHz, Chloroform-*d*) δ 7.52 – 7.48 (m, 2H), 7.40 (d, *J* = 15.6 Hz, 1H), 7.36 – 7.25 (m, 4H), 5.71 (d, *J* = 15.6 Hz, 1H), 3.76 (qd, *J* = 7.0, 3.2 Hz, 4H), 1.20 (t, *J* = 7.0 Hz, 6H), 0.10 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 149.8, 139.1, 128.4, 128.2, 128.2, 125.7, 58.4, 18.4, - 3.4. HRMS-ESI (m/z): Calcd for C₁₃H₂₀O₂Si Na [M + Na]⁺: 259.1125, Found: 259.1126.

SiMe(OTMS)₂

(*Z*)-1,1,1,3,5,5,5-Heptamethyl-3-styryltrisiloxane (3bc). Purified by flash column chromatography (300-400 mesh silica gel, petroleum ether : Et₃N = 100:1) obtained **3bc** as light yellow liquid (191.0 mg, 59% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.50 – 7.46 (m, 2H), 7.33 – 7.26 (m, 3H), 7.26 – 7.23 (m, 1H), 5.65 (d, *J* = 15.6 Hz, 1H), 0.13 (s, 3H), 0.06 (s, 18H). ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 147.3, 139.4, 129.9, 128.6, 128.0, 127.8, 1.9, 1.3. HRMS-ESI (m/z): Calcd for C₁₅H₂₈O₂Si₃ Na [M + Na]⁺: 347.1289, Found: 347.1291.

SiEt₃

(Z)-Triethyl(styryl)silane (3bd).¹ Purified by flash column chromatography (300-400 mesh silica gel, petroleum ether : $Et_3N = 100:1$) obtained 3bd as light-yellow liquid (113.6 mg, 52% yield). ¹H NMR

(400 MHz, Chloroform-*d*) δ 7.45 (d, J = 15.2 Hz, 1H), 7.34 – 7.21 (m, 5H), 5.76 (d, J = 15.2 Hz, 1H), 0.87 (t, J = 8.0 Hz, 9H), 0.55 (q, J = 8.0 Hz, 6H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 147.8, 140.5, 129.5, 127.9, 127.3, 126.3, 7.5, 4.8.

Si(n-Bu)₃

(*Z*)-Tributyl(styryl)silane (3be). Purified by flash column chromatography (300-400 mesh silica gel, petroleum ether : Et₃N = 100:1) obtained **3be** as light-yellow liquid (221.0 mg, 73% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.41 (d, *J* = 15.2 Hz, 1H), 7.32 – 7.22 (m, 5H), 5.76 (d, *J* = 15.2 Hz, 1H), 1.26 – 1.14 (m, 12H), 0.80 (t, *J* = 6.8 Hz, 9H), 0.57 – 0.48 (m, 6H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 147.4, 140.7, 130.5, 128.0, 128.0, 127.4, 26.8, 26.3, 13.9, 13.6. HRMS-ESI (m/z): Calcd for C₂₀H₃₄Si H [M + H]⁺: 303.2503, Found: .303.2490.

SiPh₃

(*Z*)-Triphenyl(styryl)silane (3bf).¹ Purified by flash column chromatography (300-400 mesh silica gel, petroleum ether : ethyl acetate : $Et_3N = 100:1:1$) obtained **3bf** as light yellow liquid (210.3 mg, 58% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 (d, *J* = 15.2 Hz, 1H), 7.59 – 7.52 (m, 6H), 7.38 – 7.34 (m, 2H), 7.34 (t, *J* = 1.5 Hz, 1H), 7.32 – 7.30 (m, 2H), 7.30 – 7.28 (m, 3H), 7.28 – 7.27 (m, 1H), 7.18 – 7.14 (m, 2H), 7.03 – 6.97 (m, 1H), 6.95 – 6.88 (m, 2H), 6.34 (d, *J* = 15.2 Hz, 1H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 150.5, 138.1, 135.9, 135.1, 129.5, 128.8, 127.9, 127.8, 127.6, 125.4.

4. Mechanism Experiments

4.1 Time monitoring

Figure S1. Time monitoring for hydrosilylation of 1a in MeCN (nine parallel reactions).

Curve 2a: the concentration of 2a in the reaction system. Curve 3aa: the concentration of 3aa in the reaction system. Curve 4aa: the concentration of 4aa in the reaction system.

4.2 The complexes of Rh2(OAc)4 and XantPhos in MeCN

In an oven-dried 25 mL sealed tube containing a stirring bar, $Rh_2(OAc)_4$ (4.4 mg, 2.0 mol %), XantPhos (6.9 mg, 2.4 mol %) and CD₃CN (1.0 mL) were adde. The reaction mixture was measured after 2 h and

monitored via ³¹P NMR as Figure S2.

Figure S2. ³¹P NMR for the reaction mixture of Rh₂(OAc)₄/XantPhos in CD₃CN

4.3 Synthesis of dirhodium complexes and crystallographic data

Rh₂(OAc)₄ (44.2 mg, 0.10 mol, 1.0 equiv.) and XantPhos (63.6 mg, 0.11 mol, 1.1 equiv.) were placed in a Schlenk tube under a nitrogen atmosphere followed by the addition of degassed toluene (5 mL). After the reaction mixture was stirred at 80 °C for 4 hours, the resulting red brown mixture was allowed to cool to room temperature and then the solvent was concentrated. The residue was purified by column chromatography with eluent (DCM/AcOH = 30:1) under nitrogen atmosphere to afford the corresponding green solid **A** (61.2 mg, 64% yield). ¹H NMR (700 MHz, Chloroform-*d*) δ 8.21 (dd, *J* = 8.4, 4.2 Hz, 1H), 7.55 (dd, *J* = 8.4, 1.4 Hz, 1H), 7.47 (d, *J* = 7.7 Hz, 1H), 7.40 – 7.44 (m, 1H), 7.35 – 7.30 (m, 4H), 7.19 (t, *J* = 9.1 Hz, 2H), 7.17 – 7.13 (m, 2H), 7.11 – 7.06 (m, 2H), 7.04 – 6.98 (m, 3H), 6.94 (td, *J* = 7.7, 2.1 Hz, 2H), 6.84 (td, *J* = 7.7, 2.1 Hz, 2H), 6.81 – 6.78 (m, 1H), 6.78 – 6.74 (m, 2H), 6.34 (ddd, *J* = 9.8, 7.7, 1.4 Hz, 1H), 2.13 (s, 3H), 1.85 (s, 3H), 1.74 (s, 3H), 1.52 (s, 3H), 0.47 (s, 3H). ¹³C NMR (176 MHz, CDCl₃) δ 190.5, 189.8 (d, *J* = 2.6 Hz), 182.3 (t, *J* = 3.7 Hz), 171.2 – 170.7 (m), 154.9 (d, *J* = 4.0 Hz), 154.8 (d, *J* = 9.3 Hz), 147.7 (d, *J* = 73.9 Hz), 137.5 (d, *J* = 15.5 Hz), 135.5 (d, *J* = 9.2 Hz), 132.8 (d, *J* = 9.7 Hz), 132.6, 132.5 (d, *J* = 40.8 Hz), 132.49 (d, *J* = 6.5 Hz), 132.42 (d, *J* = 41.7 Hz), 131.9, 131.6 (d, J = 3.7 Hz), 131.3 (d, J = 3.5 Hz), 130.9 (d, J = 25.3 Hz), 130.2 (d, J = 22.4 Hz), 129.4 (d, J = 2.3 Hz), 129.1 (d, J = 42.7 Hz), 128.2 (d, J = 9.0 Hz), 127.7 (d, J = 10.9 Hz), 127.4 (d, J = 2.8 Hz), 127.2 (d, J = 8.8 Hz), 126.8 (d, J = 114.4 Hz), 124.6 (d, J = 8.8 Hz), 124.3 (d, J = 5.1 Hz), 121.7 (d, J = 8.8 Hz), 120.4 (d, J = 51.4 Hz), 118.5 (d, J = 26.2 Hz), 35.9, 33.2, 25.0, 23.74, 23.70 (d, J = 4.6 Hz), 22.0. ³¹P NMR (283 MHz, Chloroform-*d*) δ 1.6 (dd, J = 140.4, 8.2 Hz), -58.4 (dd, J = 80.4, 69.0 Hz). HRMS-ESI (m/z): Calcd for C₄₅H₄₀O₇P₂Rh₂ Na [M + Na]⁺: 983.0252, Found: 983.0259.

The relative configuration of the complex **A** was determined by X-ray. The crystal was obtained by slow evaporation of the solution of complex **A** in MeOH/ DCM (3:1) at room temperature. The single-crystal X-ray diffraction data were collected on a Bruker D8 VENTURE CMOS Photon II diffractometer with helios mx multilayer monochrmator Cu K α radiation ($\lambda = 1.54178$ Å) in the Instrumental Analysis Center of Shanghai Jiao Tong University. Data collection, unit cell refinement and data reduction were performed using APEX3 v2019.11-0. The structure was solved by Intrinsic Phasing method and refined by full-matrix least-squares on F2 with anisotropic displacement parameters for the non-H atoms using SHELXTL program package. The hydrogen atoms on carbon were calculated in ideal positions with isotropic displacement parameters set to 1.2xUeq of the attached atom (1.5xUeq for methyl hydrogen atoms). The hydrogen atoms bound to nitrogen were located in a Δ F map and refined with isotropic displacement parameters.

CCDC number of A: 2194134

Figure S3. X-ray Crystal Diffraction of Complex A

Table S5. Crystal Data and Structure Refinement for Complex A

Empirical formula	$C_{47}H_{46}Cl_2O_8P_2Rh_2$
Formula weight	1077.50
Temperature/K	173(2)
Crystal system	Monoclinic
space group	C2/c
a/Å	27.2748(8)
b/Å	19.7988(6)
c/Å	20.4678(5)
alpha/°	90
beta/°	119.2820(10)
gamma/°	90
Volume/Å ³	9640.5(5)

Z	8
$ ho_{calc} Mg/m^3$	1.485
μ/mm^{-1}	7.595
F(000)	4368
Crystal size/mm ³	0.200 x 0.180 x 0.160
Theta range for data collection/°	2.904 to 68.530
Limiting indice	-32<=h<=32, -23<=k<=23, -18<=l<=24
Reflections collected / unique	46709 / 8834 [R(int) = 0.0686]
Data / restraints / parameters	8834 / 1 / 556
Goodness-of-fit on F ²	1.042
Final R indices [I>2sigma(I)]	$R_1 = 0.0490, wR_2 = 0.1226$
R indices (all data)	$R_1 = 0.0617, wR_2 = 0.1300$
Largest diff. peak and hole/e Å ⁻³	2.050 / -1.093

4.4 The hydrosilylation catalyzed by complex A.

In an oven-dried 25 mL sealed tube containing a stirring bar, complex A (4.8 mg, 1.0 mol %), 1-chloro-4-ethynylbenzene (**1a**) (82.0 mg, 0.6 mmol, 1.2 equvi) and (EtO)₃SiH (**2a**) (82.1 mg, 0.5 mmol, 1.0 equvi) were added in MeCN (2.0 mL). Then the above mixture and reacted at 80 °Cfor 6 h. After the reaction, the mixture was cooled to room temperature and detected by GC with 1,2,4,5-tetramethylbenzene as an internal standard. HOAc was prepared into 60 mg/mL acetonitrile solution, then added 10 uL this solution in the reaction system.

Scheme S1. The hydrosilylation catalyzed by complex A/Complex A and HOAc

4.5 The monitoring for dirhodium hydride species in the model hydrosilylation catalyzed by Rh₂(OAc)₄/XantPhos.

In an oven-dried 25 mL sealed tube containing a stirring bar, $Rh_2(OAc)_4$ (4.4 mg, 2.0 mol %), XantPhos (6.9 mg, 2.4 mol %), 1-chloro-4-ethynylbenzene (**1a**) (82.0 mg, 0.6 mmol, 1.2 equiv), (EtO)₃SiH (**2a**) (82.1 mg, 0.5 mmol, 1.0 equiv), and CD₃CN (2.0 mL) were added and the above mixture was reacted at 80 °C. After 0.5 h, we have measured the reaction mixture ¹H NMR and observed the dirhodium hydride species as Figure S4.

Figure S4. Dirhodium hydride species in ¹H NMR (CD₃CN, 500 MHz) of model hydrosilylation.

4.6 The capture of (EtO)₃SiOAc and alkene

After the reaction under standard condition, the resulting mixture was allowed to cool to room temperature and then monitored by GC-MS. It is confirmed that (EtO)₃SiOAc and alkene was observed in the reaction mixture.

Figure S6. The mass of alkene monitored by GC-MS.

m/z=138.0: Chemical Formula: $C_8H_7^{35}$ Cl, Exact Mass: 138.0236 m/z=140.0: Chemical Formula: $C_8H_7^{37}$ Cl, Exact Mass: 138.0236

4.7 Deuterium labeling experiments

4.7.1 In an oven-dried 25 mL sealed tube containing a stirring bar, $Rh_2(OAc)_4$ (2.2 mg, 1.0 mol %), XantPhos (3.5 mg, 1.2 mol %), **1a-d** (61.9 mg, 0.6 mmol, 1.2 eq), (EtO)₃SiH (82.1 mg, 0.5 mmol, 1.0 eq) and dried MeCN (2.0 mL) were and the above mixture and reacted for 6 h at 80 °C. After the reaction, the resulting red brown mixture was allowed to cool to room temperature and the solvent was concentrated. Then the crude production was purified by column chromatography to afford the corresponding products **3ba-d** (122.0 mg, 91% yield).

3ba-d: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 – 7.55 (m, 2H), 7.41 – 7.45 (m, *J* = 2.2 Hz, 0.87 H), 7.37 – 7.31 (m, 2H), 7.31 – 7.27 (m, 1H), 5.59 (d, *J* = 15.6 Hz, 0.13H), 3.75 (q, *J* = 7.0 Hz, 6H), 1.15 (t, *J* = 7.0 Hz, 9H). ²H NMR (77 MHz, Chloroform-*d*) 5.61 (br, 0.87 D), 7.46 (br, 0.13 D).

Figure S7. The ¹H NMR of **3ba-d**.

4.7.2 In an oven-dried 25 mL sealed tube containing a stirring bar, $Rh_2(OAc)_4$ (2.2 mg, 1.0 mol %), XantPhos (3.5 mg, 1.2 mol %), **1b** (61.3 mg, 0.6 mmol, 1.2 eq), **2d-d** Et₃SiD (58.8 mg, 0.5 mmol, 1.0 eq) and dried MeCN (2.0 mL) were and the above mixture and reacted for 6 h at 80 °C. After the reaction, the resulting red brown mixture was allowed to cool to room temperature and the solvent was concentrated. Then the crude production was purified by column chromatography to afford the corresponding products **3bd-d** (15.0 mg, 14% yield), accompanied by 80% **1b-d**.

3bd-*d*: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.48 – 7.43 (m, 0.8H), 7.33 – 7.25 (m, 5H), 5.79 – 5.74 (m, 0.45H), 0.87 (t, *J* = 8.0 Hz, 9H), 0.58 – 0.52 (m, 6H). ²H NMR (77 MHz, Chloroform-*d*) 7.50 (br, 0.29 D), 5.82 (br, 0.55 D).

Figure S9. The ¹H NMR of **3bd-***d*.

The recycled 1b-*d*: ¹H NMR (500 MHz, Chloroform-*d*) δ 7.52 – 7.47 (m, 2H), 7.37 – 7.30 (m, 3H), 3.08 (s, 0.83H). ²H NMR (77 MHz, Chloroform-*d*) 3.09 (br, 0.17 D).

Figure S11. The ¹H NMR of recycled 1b-d.

References

- 1. X. Zhao, D. Yang, Y. Zhang, B. Wang and J. Qu, Org. Lett., 2018, 20, 5357.
- 2. J. Dong, X. A. Yuan, Z. Yan, L. Mu, J. Ma, C. Zhu and J. Xie, Nat. Chem., 2021, 13, 182.
- 3. A. Monge-Marcet, R. Pleixats, X. Cattoën and M. Wong Chi Man, Tetrahedron, 2013, 69, 341.
- 4. B. M. Trost and Z. T. Ball, J. Am. Chem. Soc., 2001, 123, 12726.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

--113.431 Śi(OEt)₃ 3ja F ¹⁹F NMR (376 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 f1 (ppm)