Supporting Information

Copper-Catalyzed Desymmetric Silylative-Cyclization of 1,6Diynes for Syntheis of Spirocyclic Compounds

Cui-Cui Shan, ${ }^{\dagger} \mathrm{Zi}-\mathrm{Lu}$ Wang, ${ }^{\dagger}$ and Yun-He Xu*
University of Science and Technology of China, Hefei, Anhui, P. R. 230026

E-mail: xyh0709@ustc.edu.cn

Table of Contents

I. General Information 3
II. Experimental Procedures 3
III. Screening of chiral ligands 6
IV. Characterization Data and Spectrums of Substrates and Products 7
V. Crystal Data for Compound 4 i 85
VI. References 86

I. General Information

Unless otherwise noted, all reagents and solvents were purchased from commercial suppliers and used without further purification (such as Shanghai Titan Scientific Co., Ltd., Energy Chemical Corporation, J\&K Scientific, Sinopharm Chemical Reagent Corporation etc.). ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{13} \mathrm{~F}$ NMR spectra were recorded at $25{ }^{\circ} \mathrm{C}$ on a Bruker Advance 400 M NMR spectrometers $\left(\mathrm{CDCl}_{3}\right.$ as solvent). Chemical shifts for ${ }^{1} \mathrm{H}$ NMR spectra are reported as δ in units of parts per million (ppm) downfield from $\mathrm{SiMe}_{4}(\delta 0.00)$ and relative to the signal of $\mathrm{SiMe}_{4}(\delta 0.00$ singlet). Multiplicities were given as: s (singlet); d (doublet); t (triplet); q (quartet); dd (doublet of doublets); dt (doublet of triplets); m (multiplets) etc. Coupling constants are reported as a J value in $\mathrm{Hz} .{ }^{13} \mathrm{C}$ NMR spectra are reported as δ in units of parts per million (ppm) downfield from $\operatorname{SiMe}_{4}(\delta 0.00)$ and relative to the signal of chloroform- d ($\delta 77.16$ triplet). High resolution mass spectral analysis (HRMS) was performed on Waters XEVO G2 Q-TOF using electrospray ionization (ESI) (Waters Corporation). Flash chromatography was performed using 200-300 mesh silica gel with the indicated solvent system. Enantiomeric excesses of chiral compounds were determined by chiral high-performance liquid chromatography analyses which were performed on an Agilent 1260. Infinity equipped with a Daicel Chiralpak IB, IC-3 or Chiralcel OJ-3 column. Optical rotations were recorded on an Anton Paar MCP 200 polarimeter at 589 nm in chloroform. Single crystal X-ray diffraction data was collected on the Rigaku Oxford Diffraction (ROD) SuperNova Diffraction System.

II. Experimental Procedures

Method A: Synthesis of oxindole-derivated 1,6-diynes

The 1,6-diynes were prepared according to the reported literature. ${ }^{1}$
3-Bromoprop-1-yne (5.0 mmol) was added dropwise to a mixture of N -protected 2-oxindole (2.0 mmol), potassium carbonate (6.0 mmol) in anhydrous acetonitrile (6.0 mL). Then, the mixture was stirred at $70^{\circ} \mathrm{C}$ for 6 h . After completion, the reaction mixture was cooled to room temperature and ethyl acetate was added, then the precipitate was removed by filtration. The resultant solution was concentrated, and the crude products were purified by column chromatography to give the desired products.

Method B: Synthesis of 3,3-di(prop-2-yn-1-yl)benzofuran-2(3H)-one (1ak)

The 1,6 -diyne $\mathbf{1 a k}$ were prepared according to the reported literature. ${ }^{2}$

The mixture of benzofuran-2(3H)-one ($5.0 \mathrm{mmol}, 670.7 \mathrm{mg}$), 3-bromoprop-1-yne ($15 \mathrm{mmol}, 1.784$ g) and 18 -crown- $6(1.25 \mathrm{mmol}, 646.8 \mathrm{mg})$ in THF $(60 \mathrm{~mL})$ was cooled to $-50^{\circ} \mathrm{C},{ }^{t} \mathrm{BuOK}(11 \mathrm{mmol}$, 1.234 g) was added slowly and the mixture was stirred at the same temperature for 1 h . Then, the mixture was warmed to room temperature and stirred for another 1 h . After completion, ethyl acetate was added, and the precipitate was removed by filtration. The resultant solution was concentrated, and the crude products were purified by column chromatography to give the desired product as white solid in 68% yield $(0.715 \mathrm{~g})$
Synthesis of 4,4-di(prop-2-yn-1-yl)isochroman-3-one (1al)

The mixture of isochroman-3-one ($5.0 \mathrm{mmol}, 740.8 \mathrm{mg}$), 3-bromoprop-1-yne ($15 \mathrm{mmol}, 1.784 \mathrm{~g}$) and 18-crown-6 ($1.25 \mathrm{mmol}, 646.8 \mathrm{mg}$) in THF (60 mL) was cooled to $-50^{\circ} \mathrm{C}$, ${ }^{\mathrm{t}} \mathrm{BuOK}$ (11 mmol , 1.234 g) was added slowly and the mixture was stirred at the same temperature for 1 h . Then, the mixture was warmed to room temperature and stirred for another 1 h . After completion, ethyl acetate was added, and the precipitate was removed by filtration. The resultant solution was concentrated, and the crude product was purified by column chromatography to give the desired product as white solid in 20% yield (0.224 g).

Method C: Synthesis of substituted 1,4-dihydroisoquinolin-3(2H)-one (1w)

$\mathrm{NaH}(60 \mathrm{wt} \%$ dispersion in mineral oil, $12 \mathrm{mmol}, 172.8 \mathrm{mg}$) was added to the mixture of 2-benzyl-1,4-dihydroisoquinolin- $3(2 H)$-one ($5.0 \mathrm{mmol}, 1.187 \mathrm{~g}$) in DMF $(0.75 \mathrm{M})$ at $0^{\circ} \mathrm{C}$. After 15 min , 3-bromoprop-1-yne ($15 \mathrm{mmol}, 1.784 \mathrm{~g}$) was added. Then the mixture was allowed to warm up to room temperature and stirred at room temperature until complete consumption of the starting material (monitored by TLC). The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$, extracted with ethyl acetate ($20 \mathrm{~mL} \times 3$). The combined organic layer was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The crude residue was purified by flash chromatography and afforded the desired product as colorless crystal in 88% yield (1.376 g)

Method D: Synthesis of 1,1-di(prop-2-yn-1-yl)-3,4-dihydronaphthalen-2(1H)-one (1s)

3,4-Dihydronaphthalen- $2(1 \mathrm{H})$-one ($5.0 \mathrm{mmol}, 730.9 \mathrm{mg}$) was added to the mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}(15$ mmol, 2.073 g) in DMF (25 mL) under argon atmosphere and the resulting solution was stirred at room temperature for 10 min . Then, a solution of 3-bromoprop-1-yne ($12.5 \mathrm{mmol}, 1.487 \mathrm{~g}$) in DMF $(5 \mathrm{~mL})$ was added dropwise, the resultant mixture was stirred at $80^{\circ} \mathrm{C}$ for 6 h . The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, extracted with ethyl acetate ($20 \mathrm{~mL} \times 3$). The combined organic layer was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The crude residue was purified by flash chromatography and afforded the desired product as yellow solid in 32% yield (354 mg).

Method E: Synthesis of products 3

An oven dried $10-\mathrm{mL}$ Schlenk tube equipped with a stirring bar, was charged with $\mathrm{CuTc}(0.01 \mathrm{mmol}$, 1.9 mg), dppe ($0.011 \mathrm{mmol}, 4.4 \mathrm{mg}$), $\mathrm{EtOH}(1.0 \mathrm{~mL}), \mathrm{Et}_{3} \mathrm{~N}(0.4 \mathrm{mmol} .40 .5 \mathrm{mg})$ and 1,6-diynes (0.2 mmol), in sequence. The reaction mixture was stirred at room temperature for 15 min . Then $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}\left(0.4 \mathrm{mmol}, 104.9 \mathrm{mg}\right.$) was added. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 6 h . Then, saturated $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ was added and extracted with ethyl acetate $(20 \mathrm{~mL} \times 3)$. The combined organic layer was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography and afforded the desired product 3 .

Method F: Synthesis of chiral products 4

An oven dried $10-\mathrm{mL}$ Schlenk tube equipped with a stirring bar, was charged with $\mathrm{CuCl}(0.02 \mathrm{mmol}$, $2.0 \mathrm{mg}), \mathrm{KOMe}(0.022 \mathrm{mmol}, 1.5 \mathrm{mg}), 4 \AA \mathrm{MS}(12.5 \mathrm{mg}), \mathrm{L}_{8}(0.024 \mathrm{mmol}, 9.9 \mathrm{mg}), \mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ and ${ }^{t} \mathrm{AmylOH}(0.6 \mathrm{mmol}, 52.9 \mathrm{mg})$. The mixture was stirred for 1 h at room temperature. Then $1,6-$ diynes $(0.2 \mathrm{mmol}), \mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}(0.3 \mathrm{mmol}, 78.7 \mathrm{mg})$ were added. The solution was stirred at $10{ }^{\circ} \mathrm{C}$ until the complete consumption of the starting material. Then, saturated $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ was added and extracted with ethyl acetate $(20 \mathrm{~mL} \times 3)$. The combined organic layer was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography and afforded the desired product 4.

Gram-Scaled Experiment

An oven dried $10-\mathrm{mL}$ Schlenk tube equipped with a stirring bar, was charged with $\mathrm{CuCl}(0.4 \mathrm{mmol}$, 39.6 mg), $\mathrm{KOMe}(0.44 \mathrm{mmol}, 30.9 \mathrm{mg}), 4 \AA \mathrm{MS}(250 \mathrm{mg}), \mathrm{L}_{8}(0.48 \mathrm{mmol}, 199 \mathrm{mg}), \mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ and ${ }^{t} \mathrm{AmylOH}(12.0 \mathrm{mmol}, 1.058 \mathrm{~g})$. The mixture was stirred for 1 h at room temperature. Then 1a $(4.0 \mathrm{mmol}, 1.197 \mathrm{~g})$ and $2(6.0 \mathrm{mmol}, 1.573 \mathrm{~g})$ were added. The solution was stirred at $-10^{\circ} \mathrm{C}$ for 24 h . Then, saturated $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ was added and extracted with ethyl acetate ($40 \mathrm{~mL} \times 3$). The combined organic layer was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography and afforded the desired product $\mathbf{4 a}$ in 72% yield and 91% ee (1.25 g).

Method G: Synthesis of product 5a

An oven dried $10-\mathrm{mL}$ Schlenk tube equipped with a stirring bar, was charged with $\mathbf{4 a}(0.22 \mathrm{mmol}$, 95.8 mg), diethyl but-2-ynedioate ($0.2 \mathrm{mmol}, 34.0 \mathrm{mg}$) and toluene $(1.0 \mathrm{~mL})$. The mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for 12 h under argon atmosphere. Then, saturated $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ was added and extracted with ethyl acetate ($20 \mathrm{~mL} \times 3$). The combined organic layer was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography and afforded the desired product $\mathbf{5 a}$ in 76% yield $(91.9 \mathrm{mg}, \mathrm{dr}=61: 39)$.

Method H: Synthesis of product 6a

An oven dried $10-\mathrm{mL}$ Schlenk tube equipped with a stirring bar, was charged with $\mathbf{4 a}(0.22 \mathrm{mmol}$, $95.8 \mathrm{mg})$, PTAD ($0.2 \mathrm{mmol}, 34.0 \mathrm{mg}$) and toluene (1.0 mL). The mixture was stirred room temperature for 12 h under argon atmosphere. Then, saturated $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ was added and extracted with ethyl acetate $(20 \mathrm{~mL} \times 3)$. The combined organic layer was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography and afforded the desired product $\mathbf{6 a}$ in 87% yield ($106.2 \mathrm{mg}, \mathrm{dr}=27: 73$).

III. Screening of ligands

Screening of nitrogen ligands for racemic reaction:

14\%

16\%

11\%

34%

Screening of chiral ligands for asymmetric reaction:

entry	$\begin{gathered} {[\mathrm{Cu}]} \\ (10 \mathrm{~mol} \%) \end{gathered}$	ligand (mol \%)	base ($22 \mathrm{~mol} \%$)	additive (equiv)	solvent (1 mL)	T/ ${ }^{\circ} \mathrm{C}$	t/h	yield (\%) ${ }^{\text {b }}$	ee \%
1	CuCl	$\mathrm{L}_{1}(12)$	$\mathrm{NaO}^{\prime} \mathrm{Bu}$	MeOH (2.0)	THF	25	20	41	66
2	CuCl	$\mathrm{L}_{2}(12)$	$\mathrm{NaO}^{\prime} \mathrm{Bu}$	MeOH (2.0)	THF	25	20	0	--
3	CuCl	$\mathrm{L}_{3}(12)$	$\mathrm{NaO}^{\prime} \mathrm{Bu}$	$\mathrm{MeOH}(2.0)$	THF	25	20	20	10
4	CuCl	$\mathrm{L}_{4}(12)$	$\mathrm{NaO}^{\prime} \mathrm{Bu}$	$\mathrm{MeOH}(2.0)$	THF	25	20	24	0
5	CuCl	$\mathrm{L}_{5}(12)$	$\mathrm{NaO}^{\prime} \mathrm{Bu}$	$\mathrm{MeOH}(2.0)$	THF	25	20	19	7
6	CuCl	$\mathrm{L}_{6}(12)$	$\mathrm{NaO}^{\prime} \mathrm{Bu}$	$\mathrm{MeOH}(2.0)$	THF	25	20	32	76
7	CuCl	$\mathrm{L}_{7}(20)$	$\mathrm{KO}^{\prime} \mathrm{Bu}$	--	MeOH:THF (1:5)	25	20	52	74
8	CuCl	$\mathrm{L}_{8}(20)$	$\mathrm{KO}^{\prime} \mathrm{Bu}$	--	MeOH:THF (1:5)	25	20	58	77
9	CuCl	$\mathrm{L}_{9}(20)$	$\mathrm{KO}^{\prime} \mathrm{Bu}$	--	MeOH:THF (1:5)	25	20	47	76
10	CuBr	L_{10} (20)	$\mathrm{KO}^{\prime} \mathrm{Bu}$	--	MeOH:THF (1:5)	25	20	42	66
11	CuTc	$\mathrm{L}_{11}(20)$	$\mathrm{KO}^{\prime}{ }^{\text {Bu }}$	--	MeOH:THF (1:5)	25	20	37	58
12	CuCl	$\mathrm{L}_{12}(20)$	$\mathrm{KO}^{\prime} \mathrm{Bu}(10)$	--	MeOH:THF (1:5)	25	3	37	72

L_{1}

L_{2}

L_{3}

L_{4}

L_{5}

L_{9}

L_{6}

L_{10}

L_{7}

L_{11}

L_{8}

L_{12}

IV. Characterization Data and Spectrums of Substrates and Products

1-benzyl-5-methyl-3,3-di(prop-2-yn-1-yl)indolin-2-one (1b)

Prepared according to method A. The substrate 1b was obtained as colorless crystal in 46% yield $(0.287 \mathrm{~g})$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.00(\mathrm{ddd}, J$ $=7.9,1.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 2 \mathrm{H}), 2.91(\mathrm{dd}, J=16.8,2.6$ $\mathrm{Hz}, 2 \mathrm{H}), 2.68(\mathrm{dd}, J=16.8,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{t}, J=2.6 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 177.4,140.6,135.8,132.3,130.3,129.1,128.7,127.7,127.6,124.6$, 109.0, 79.2, 71.3, 49.6, 44.1, 26.2, 21.4.

HRMS (ESI): m/z Calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 314.1545$, found: 314.1541.

1-benzyl-5,7-dimethyl-3,3-di(prop-2-yn-1-yl)indolin-2-one (1c)

Prepared according to method \mathbf{A}. The substrate 1c was obtained as light red solid in 70% yield $(0.457 \mathrm{~g})$.
${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.18(\mathrm{~m}, 6 \mathrm{H}), 6.80(\mathrm{td}, J=1.5,0.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.19(\mathrm{~s}, 2 \mathrm{H}), 2.91(\mathrm{dd}, J=16.8,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{dd}, J=16.8,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.31$ (s, 3H), $2.23(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{t}, J=2.6 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.5,138.6,137.7,133.3,132.3,131.0,128.8,127.3,126.1,122.4$, 119.5, 79.4, 71.3, 49.1, 45.3, 26.6, 21.1, 18.8.

HRMS (ESI): m/z Calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 328.1701$, found: 328.1696.

1-benzyl-7-bromo-3,3-di(prop-2-yn-1-yl)indolin-2-one (1g)

Prepared according to method \mathbf{A}. The substrate $\mathbf{1 g}$ was obtained as yellow solid in 67% yield $(0.504 \mathrm{~g})$.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{dd}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=8.2,1.2$
$\mathrm{Hz}, 1 \mathrm{H}), 7.34-7.18(\mathrm{~m}, 5 \mathrm{H}), 6.97(\mathrm{dd}, J=8.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~s}, 2 \mathrm{H}), 2.92(\mathrm{dd}$, $J=16.8,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{dd}, J=16.8,2.6 \mathrm{~Hz}, 2 \mathrm{H}) 1.95(\mathrm{t}, J=2.6 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.3,140.6,137.4,134.9,133.4,128.5,127.2,126.8,124.1,123.0$, 102.6, 78.7, 71.8, 49.3, 44.9, 26.5.

HRMS (ESI): m / z Calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NOBr}[\mathrm{M}+\mathrm{H}]^{+}: 378.0494$, found: 378.0493.

=

3,3-di(prop-2-yn-1-yl)-1-propylindolin-2-one (1j)

Prepared according to method \mathbf{A}. The substrate $\mathbf{1 j}$ was obtained as yellow solid in 78% yield $(0.391 \mathrm{~g})$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55(\mathrm{ddd}, J=7.4,1.3,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{td}, J=7.7$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{td}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dt}, J=7.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{dd}, J=16.8,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{dd}, J=16.8,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.90(\mathrm{t}, J=2.7 \mathrm{~Hz}, 2 \mathrm{H})$, $1.72(\mathrm{~h}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 177.3,143.4,130.4,128.8,123.9,122.5,108.5,79.1,71.1,49.4,41.9$, 26.1, 20.9, 11.6.

HRMS (ESI): m/z Calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 252.1388$, found: 252.1388 .

1-phenyl-3,3-di(prop-2-yn-1-yl)indolin-2-one (1k)

Prepared according to method \mathbf{A}. The substrate $\mathbf{1 k}$ was obtained as yellow solid in 72% yield (0.411 g).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.46-$ $7.39(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.97 (dd, $J=16.8,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{dd}, J=16.8,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{t}, J=2.6 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.9,144.1,134.5,130.1,129.8,128.8,128.4,126.8,124.0,123.2$, 109.4, 78.9, 71.3, 49.6, 26.4.

HRMS (ESI): m / z Calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 286.1232$, found: 286.1230 .

1-allyl-3,3-di(prop-2-yn-1-yl)indolin-2-one (1m)

Prepared according to method \mathbf{A}. The substrate $\mathbf{1 m}$ was obtained as white plate crystal in 45% yield $(0.225 \mathrm{~g})$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55(\mathrm{ddd}, J=7.4,1.3,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{td}, J=7.8$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{td}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dt}, J=7.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.83$ (ddt, $J=17.2,10.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{dtd}, J=17.2,1.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{dq}, J=10.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.37$ (dt, $J=5.1,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{dd}, J=16.8,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{dd}, J=16.8,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.91(\mathrm{t}, J=2.6$ $\mathrm{Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 177.1,143.0,131.3,130.3,128.8,123.9,122.7,117.6,109.1,79.0,71.2$, 49.5, 42.6, 26.1.

HRMS (ESI): m/z Calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 250.1232$, found: 250.1235 .

1-(but-2-yn-1-yl)-3,3-di(prop-2-yn-1-yl)indolin-2-one (1n)

Prepared according to method \mathbf{A}. The substrate $\mathbf{1 n}$ was obtained as colorless crystal in 51% yield $(0.266 \mathrm{~g})$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57(\mathrm{dd}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{td}, J=7.7$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{td}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dt}, J=7.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{q}$, $J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{dd}, J=16.6,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{dd}, J=16.6,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{t}, J=2.7 \mathrm{~Hz}, 2 \mathrm{H})$, $1.75(\mathrm{t}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 176.5,142.3,130.2,128.8,123.8,122.9,109.3,80.0,78.8,72.2,71.3$, 49.2, 29.9, 25.9, 3.6.

HRMS (ESI): m/z Calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 262.1232$, found: 262.1234 .

1,1-di(prop-2-yn-1-yl)-3,4-dihydronaphthalen-2(1H)-one (1s)

Prepared according to method \mathbf{D}. The substrate $\mathbf{1 s}$ was obtained as yellow solid in 32% yield (0.354 g).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.27(\mathrm{td}, J=7.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=7.9,5.9 \mathrm{~Hz}, 2 \mathrm{H})$, 2.86 (dd, $J=16.8,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{dd}, J=16.8,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{dd}, J=7.9,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{t}, J$ $=2.6 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 211.5,137.8,137.2,128.3,127.4,127.1,127.0,80.0,71.4,54.1,39.6$, 29.1, 28.1.

HRMS (ESI): m/z Calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 223.1123, found: 223.1123.

2-benzyl-4,4-di(prop-2-yn-1-yl)-1,4-dihydroisoquinolin-3(2H)-one (1w)

Prepared according to method \mathbf{C}. The substrate $\mathbf{1 w}$ was obtained as colorless crystal in 88% yield (1.376 g).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.22(\mathrm{~m}, 7 \mathrm{H}), 7.10$ $-7.03(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 2 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}), 3.11(\mathrm{dd}, J=16.4,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{dd}, J=$ $16.4,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{t}, J=2.6 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 170.3,136.6,135.2,131.1,128.7,128.3,127.7,127.7,127.3,126.4$, 125.3, 80.2, 71.1, 50.9, 49.8, 49.3, 29.4.

HRMS (ESI): m / z Calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 314.1545$, found: 314.1541.

3,3-di(prop-2-yn-1-yl)benzofuran-2(3H)-one (1ak)

Prepared according to method B. The substrate 1ak was obtained as white solid in 68% yield $(0.715 \mathrm{~g})$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53$ (ddd, $J=7.5,1.4,0.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.38 (td, $J=7.8,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.21(\mathrm{td}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{ddd}, J=8.0,1.1,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J$ $=16.8,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{dd}, J=16.8,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{t}, J=2.7 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.1,153.3,129.8,128.4,124.6,124.2,110.9,77.7,72.3,49.4,26.8$. HRMS (ESI): m/z Calcd. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 211.0759$, found: 211.0753.

:

4,4-di(prop-2-yn-1-yl)isochroman-3-one (1al)

Prepared according to method B. The substrate 1al was obtained as white solid in 20% yield (0.224 g).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{dd}, J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{tdd}, J=7.8,1.4,0.7$
$\mathrm{Hz}, 1 \mathrm{H}), 7.37(\mathrm{td}, J=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{ddq}, J=7.5,1.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~s}, 2 \mathrm{H})$, $3.02(\mathrm{dd}, J=16.8,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{dd}, J=16.8,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{t}, J=2.7 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.6,133.7,130.8,128.7,128.0,126.5,124.4,79.0,72.3,69.7,49.2$, 27.5.

HRMS (ESI): m / z Calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 225.0916$, found: 225.0913.

(Z)-1'-benzyl-3-((dimethyl(phenyl)silyl)methylene)-4-
 methylenespiro[cyclopentane-1,3'-indolin]-2'-one (3a)

Prepared according to method \mathbf{E}. The product 3a was obtained as yellow oil in 77% yield (67.1 mg).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.30-$ $7.13(\mathrm{~m}, 6 \mathrm{H}), 7.11(\mathrm{td}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{td}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.81$ (dd, $J=2.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.33$ (dd, $J=3.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.01$ (dd, $J=2.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.91$ (s, 2H), 3.35 $(\mathrm{dd}, J=15.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dt}, J=15.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dt}, J=15.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=$ $15.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.47$ ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.5,156.4,145.9,141.7,139.2,136.0,135.2,133.9,129.1,128.9$, $128.0,127.8,127.7,127.3,122.7,122.7,122.2,112.6,109.1,50.8,49.3,45.5,44.0,-1.3,-1.5$.
HRMS (ESI): m/z Calcd. for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{NOSi}[\mathrm{M}+\mathrm{H}]^{+}: 436.2097$, found: 436.2097.

\pm		nn ${ }_{n}^{\text {n }}$		9
-	-	$\xrightarrow{1}$	く11	

(Z)-1'-benzyl-3-((dimethyl(phenyl)silyl)methylene)-5'-methyl-4-
methylenespiro[cyclopentane-1,3'-indolin]-2'-one (3b)

Prepared according to method E. The product 3b was obtained as colorless oil in 71% yield (63.9 mg).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.32-$ $7.23(\mathrm{~m}, 5 \mathrm{H}), 7.01(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ (ddd, $J=7.9,1.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.60$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{dd}, J=2.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=3.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{dd}, J=2.7,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.91$ ($\mathrm{s}, 2 \mathrm{H}$), $3.34(\mathrm{dd}, J=15.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dt}, J=15.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dt}, J=15.6$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=15.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 0.47$ (s, 3H), $0.46(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.3,156.5,145.8,139.2,139.2,136.1,135.2,133.8,132.1,129.1$, $128.8,128.0,128.0,127.6,127.2,123.6,122.0,112.7,108.8,50.8,49.5,45.4,44.0,21.3,-1.2,-1.7$.

HRMS (ESI): m/z Calcd. for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{NOSi}[\mathrm{M}+\mathrm{H}]^{+}: 450.2253$, found: 450.2252.

(Z)-1'-benzyl-3-((dimethyl(phenyl)silyl)methylene)-5',7'-dimethyl-4-methylenespiro[cyclopentane-1,3'-indolin]-2'-one (3c)

Prepared according to method \mathbf{E}. The product $\mathbf{3 c}$ was obtained as yellow oil in 71% yield $(65.8 \mathrm{mg})$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.31-$ $7.25(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.72 (dd, $J=1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{dd}, J=2.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=3.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H})$, $5.03(\mathrm{dd}, J=2.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=15.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dt}, J=15.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dt}$, $J=15.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=15.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 0.48(\mathrm{~s}, 3 \mathrm{H}), 0.47(\mathrm{~s}$, 3H).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.4,156.7,145.9,139.2,137.9,137.2,136.1,133.8,132.2,132.1$, $129.0,128.9,128.0,127.2,125.6,121.9,121.4,119.5,112.6,50.1,49.9,45.8,45.1,21.0,18.8,-1.2,-$ 1.7.

HRMS (ESI): m/z Calcd. for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{NOSi}[\mathrm{M}+\mathrm{H}]^{+}: 464.2410$, found: 464.2414 .

(Z)-1'-benzyl-3-((dimethyl(phenyl)silyl)methylene)-5'-fluoro-4-methylenespiro[cyclopentane-1,3'-indolin]-2'-one (3d)

Prepared according to method E. The product 3d was obtained as colorless oil in 59% yield (53.5 mg).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.20(\mathrm{~m}, 8 \mathrm{H}), 6.92(\mathrm{dd}$, $J=8.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{td}, J=8.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{dd}, J=8.5,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.84(\mathrm{dd}, J=2.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{dd}, J=3.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{dd}, J=2.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 2 \mathrm{H})$, $3.36(\mathrm{dd}, J=15.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dt}, J=15.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dt}, J=15.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dd}$, $J=15.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.47(\mathrm{~s}, 3 \mathrm{H}), 0.46(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.1,159.3(\mathrm{~d}, J=240.6 \mathrm{~Hz}), 155.7,145.3,139.0,137.5(\mathrm{~d}, J=2.0 \mathrm{~Hz})$, $136.6(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 135.7,133.8,129.2,129.0,128.1,127.8,127.2,122.9,113.9(\mathrm{~d}, J=23.5 \mathrm{~Hz})$, $113.0,111.0(\mathrm{~d}, J=25.1 \mathrm{~Hz}), 109.5(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 51.2(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 49.2,45.3,44.1,-1.3,-1.6$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-120.48$.
HRMS (ESI): m / z Calcd. for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{NOFSi}[\mathrm{M}+\mathrm{H}]^{+}: 454.2002$, found: 454.2000.

(Z)-1'-benzyl-5'-chloro-3-((dimethyl(phenyl)silyl)methylene)-4-methylenespiro[cyclopentane-1,3'-indolin]-2'-one (3e)

Prepared according to method \mathbf{E}. The product $\mathbf{3 e}$ was obtained as yellow oil in 80% yield (75.4 mg).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{dd}, J=7.7,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 3 \mathrm{H})$, $7.33-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.16(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=8.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.61$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dd}, J=2.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=3.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{dd}, J=2.8,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H}), 3.35(\mathrm{dd}, J=15.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dt}, J=15.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dt}, J=15.7$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=15.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.48(\mathrm{~s}, 3 \mathrm{H}), 0.46(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.8,155.6,145.1,140.1,138.9,136.7,135.6,133.8,129.1,129.0$, 128.1, 128.1, 127.8, 127.6, 127.2, 123.3, 123.0, 113.1, 110.0, 50.9, 49.3, 45.2, 44.0, -1.2, -1.8.

HRMS (ESI): m/z Calcd. for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{NOClSi}[\mathrm{M}+\mathrm{H}]^{+}: 470.1707$, found: 470.1729.

(Z)-1'-benzyl-5'-bromo-3-((dimethyl(phenyl)silyl)methylene)-4-
methylenespiro[cyclopentane-1,3'-indolin]-2'-one (3f)

Prepared according to method \mathbf{E}. The product $\mathbf{3 f}$ was obtained as white solid in 64% yield (65.7 mg).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.33-$ $7.18(\mathrm{~m}, 7 \mathrm{H}), 6.57(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=3.0$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 3.35(\mathrm{dd}, J=15.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dt}, J=15.4,2.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.60(\mathrm{dt}, J=15.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.48(\mathrm{~s}, 3 \mathrm{H}), 0.46(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 178.7,155.6,145.0,140.6,138.9,137.0,135.5,133.8,130.6,129.1$, $129.0,128.1,127.8,127.2,126.0,123.0,115.5,113.2,110.5,50.9,49.3,45.1,44.0,-1.2,-1.8$

HRMS (ESI): m/z Calcd. for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{NOBrSi}[\mathrm{M}+\mathrm{H}]^{+}: 514.1202$, found: 514.1199.

[^0](Z)-1'-benzyl-7'-bromo-3-((dimethyl(phenyl)silyl)methylene)-4-
methylenespiro[cyclopentane-1,3'-indolin]-2'-one (3g)

Prepared according to method \mathbf{E}. The product $\mathbf{3 g}$ was obtained as colorless oil in 61% yield (62.7 mg).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.34-$ $7.20(\mathrm{~m}, 4 \mathrm{H}), 7.14(\mathrm{dd}, J=11.2,7.7 \mathrm{~Hz}, 3 \mathrm{H}), 6.84(\mathrm{ddd}, J=8.1,7.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{dd}, J=2.6,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.43$ (s, 2H), 5.33 (dt, $J=2.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.03$ (dd, $J=2.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.35$ (dd, $J=15.9$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dt}, J=15.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dt}, J=16.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=15.5,1.9 \mathrm{~Hz}$, 1 H), 0.47 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13}$ C NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 180.3,155.9,145.5,139.2,139.1,138.5,137.7,133.8,133.7,129.1$, 128.7, 128.0, 127.2, 126.3, 124.1, 122.7, 121.7, 112.9, 102.5, 50.3, 49.6, 45.8, 44.7, -1.3, -1.5.

HRMS (ESI): m/z Calcd. for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{NOBrSi}[\mathrm{M}+\mathrm{H}]^{+}: 514.1202$, found: 514.1201.

(Z)-1'-benzyl-3-((dimethyl(phenyl)silyl)methylene)-5'-methoxy-4-methylenespiro[cyclopentane-1,3'-indolin]-2'-one (3h)

Prepared according to method \mathbf{E}. The product $\mathbf{3 h}$ was obtained as yellow oil in 70% yield (65.1 mg).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.33-$ $7.21(\mathrm{~m}, 5 \mathrm{H}), 6.83(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=8.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=3.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{dd}, J=2.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.91$ $(\mathrm{s}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{dd}, J=15.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dt}, J=15.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dt}, J=15.8$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.53 (dd, $J=15.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 0.46 (s, 6 H).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.1,156.3,156.1,145.8,139.2,136.5,136.1,135.1,133.8,129.1$, $128.9,128.0,127.7,127.3,122.3,112.8,112.1,110.1,109.4,55.8,51.2,49.3,45.5,44.1,-1.3,-1.5$.

HRMS (ESI): m/z Calcd. for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{NO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 466.2202$, found: 466.2198 .

(Z)-3-((dimethyl(phenyl)silyl)methylene)-1'-methyl-4-methylenespiro[cyclopentane-1,3'-indolin]-2'-one (3i)

Prepared according to method \mathbf{E}. The product $\mathbf{3 i}$ was obtained as yellow oil in 53% yield (38.2 mg).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{td}$, $J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~s}$, $1 \mathrm{H}), 5.31(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=15.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{dt}, J=$ $15.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.46(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 179.4,156.5,146.0,142.6,139.3,135.3,133.9,129.1,128.0,127.9$, 122.7, 122.6, 122.1, 112.6, 108.0, 50.8, 49.2, 45.3, 26.6, -1.3, -1.5.

HRMS (ESI): m/z Calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NOSi}[\mathrm{M}+\mathrm{H}]^{+}: 360.1784$, found: 360.1781 .

(Z)-3-((dimethyl(phenyl)silyl)methylene)-4-methylene-1'-propylspiro[cyclopentane-1,3'-indolin]-2'-one (3j)

Prepared according to method \mathbf{E}. The product $\mathbf{3 j}$ was obtained as yellow oil in 76% yield $(58.3 \mathrm{mg})$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.27-$ $7.21(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dt}, J=7.8,0.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.79(\mathrm{dd}, J=2.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{dd}, J=3.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dd}, J=2.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.28(\mathrm{dd}, J=15.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dt}, J=15.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dt}, J=15.8,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.46(\mathrm{dt}, J=15.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~h}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.46(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 179.2,156.5,146.0,142.0,139.2,135.4,133.8,129.0,128.0,127.7$, 122.7, 122.4, 121.9, 112.5, 108.3, 50.6, 49.2, 45.3, 41.7, 20.9, 11.4, -1.4, -1.5.

HRMS (ESI): m/z Calcd. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{NOSi}[\mathrm{M}+\mathrm{H}]^{+}$: 388.2097, found: 388.2093.

(Z)-3-((dimethyl(phenyl)silyl)methylene)-4-methylene-1'-phenylspiro[cyclopentane-1,3'-indolin]-2'-one (3k)

Prepared according to method \mathbf{E}. The product $\mathbf{3 k}$ was obtained as white solid in 69% yield (58.0 mg).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.45-$ $7.36(\mathrm{~m}, 6 \mathrm{H}), 7.26-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{dd}, J=$ $2.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{dd}, J=3.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dd}, J=2.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=15.8,2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.23(\mathrm{dt}, J=15.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dt}, J=15.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=15.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.48$ ($\mathrm{s}, 3 \mathrm{H}$), 0.47 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.8,156.3,145.8,142.4,139.2,135.0,134.7,133.9,129.7,129.1$, 128.1, 128.0, 127.8, 126.6, 123.2, 122.9, 122.2, 112.7, 109.3, 50.9, 49.6, 45.8, -1.3, -1.5.

HRMS (ESI): m/z Calcd. for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{NOSi}[\mathrm{M}+\mathrm{H}]^{+}: 422.1940$, found: 422.1939.

(Z)-1'-acetyl-3-((dimethyl(phenyl)silyl)methylene)-4-methylenespiro[cyclopentane-1,3'-indolin]-2'-one (3I)

Prepared according to method \mathbf{E}. The product $\mathbf{3 1}$ was obtained as white solid in 49% yield (37.8 mg).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.24(\mathrm{dt}, J=8.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.58(\mathrm{~m}, 2 \mathrm{H})$, $7.42-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{ddd}, J=8.3,7.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 2 \mathrm{H}), 5.82(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.34(\mathrm{dd}, J=3.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=15.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dt}, J=15.4$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{dt}, J=15.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=15.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.47(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.6,171.1,155.4,145.2,139.0,138.7,134.1,133.9,129.2,128.3$, 128.1, 125.5, 122.9, 122.3, 116.5, 113.0, 51.2, 50.4, 46.6, 26.9, -1.4, -1.5.

HRMS (ESI): m / z Calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 388.1733$, found: 388.1724 .

(Z)-1'-allyl-3-((dimethyl(phenyl)silyl)methylene)-4-methylenespiro[cyclopentane-1,3'-indolin]-2'-one (3m)

Prepared according to method \mathbf{E}. The product $\mathbf{3 m}$ was obtained as colorless crystal in 65% yield (50.1 mg).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.24$ $-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{tt}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dt}, J=7.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.89-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.80-$ $5.78(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{dt}, J=2.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.24-5.14(\mathrm{~m}, 2 \mathrm{H}), 5.00(\mathrm{dt}, J=2.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.36$ (ddd, $J=5.3,2.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.49(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.46(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 179.0,156.4,145.9,141.7,139.2,135.1,133.8,131.6,129.1,128.0$, $127.8,122.6,122.6,122.1,117.5,112.6,108.9,50.6,49.2,45.4,42.6,-1.4,-1.5$.
HRMS (ESI): m/z Calcd. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NOSi}[\mathrm{M}+\mathrm{H}]^{+}: 386.1940$, found: 386.1942.

(Z)-1'-(but-2-yn-1-yl)-3-((dimethyl(phenyl)silyl)methylene)-4-methylenespiro[cyclopentane-1,3'-indolin]-2'-one (3n)

Prepared according to method \mathbf{E}. The product $\mathbf{3 n}$ was obtained as yellow oil in 78% yield $(62.1 \mathrm{mg})$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.28$ $(\mathrm{td}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{dt}, J=7.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.78(\mathrm{dd}, J=2.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{dd}, J=3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dd}, J=2.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.46$ $(\mathrm{q}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\mathrm{dd}, J=15.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dt}, J=15.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dt}, J=15.8$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dq}, J=15.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{t}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.46(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl_{3}) $\delta 178.4,156.3,145.8,141.1,139.2,135.1,133.9,129.1,128.0,127.8$, $122.8,122.6,122.1,112.6,109.2,80.1,72.4,50.7,49.2,45.3,30.0,3.7,-1.4,-1.5$.

HRMS (ESI): m/z Calcd. for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NOSi}[\mathrm{M}+\mathrm{H}]^{+}: 398.1940$, found: 398.1940.

(Z)-3-((dimethyl(phenyl)silyl)methylene)-4-methylenespiro[cyclopentane-1,2'-inden]-1'(3'H)one (30)

Prepared according to method E. The product $\mathbf{3 o}$ was isolated in 79% yield (54.4 mg).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.45$ $-7.32(\mathrm{~m}, 5 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=15.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.06$ $(\mathrm{d}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{dt}, J=14.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H})$, 0.42 (s, 6H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 208.9,157.2,152.7,146.6,139.4,136.5,135.1,133.9,129.0,127.9$, $127.6,126.7,124.3,121.1,111.9,53.9,50.1,46.4,41.6,-1.2,-1.4$.

HRMS (ESI): m/z Calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}: 345.1675$, found: 345.1674.

(Z)-3-((dimethyl(phenyl)silyl)methylene)-6'-fluoro-4-methylenespiro[cyclopentane-1,2'-inden]-1'(3'H)-one (3p)

Prepared according to method \mathbf{E}, and the product $\mathbf{3 p}$ was obtained as yellow oil in 72% yield (51.9 mg).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59-7.54$ (m, 2H), $7.43-7.37$ (m, 2H), 7.37 $-7.30(\mathrm{~m}, 4 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=15.6,2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.02(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{dt}, J=14.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~d}, J=$ $15.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.42(\mathrm{~s}, 3 \mathrm{H}), 0.41(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.0(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 162.6(\mathrm{~d}, J=248.2 \mathrm{~Hz}), 156.9,148.0(\mathrm{~d}, J=2.0$ $\mathrm{Hz}), 146.4,139.3,138.2(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 133.9,129.0,128.1(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 128.0,122.8(\mathrm{~d}, J=23.7$ $\mathrm{Hz}), 121.4,112.0,110.1(\mathrm{~d}, J=21.7 \mathrm{~Hz}), 54.9,50.1,46.4,41.0,-1.2,-1.4$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-114.28.
HRMS (ESI): m/z Calcd. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{FOSi}[\mathrm{M}+\mathrm{H}]^{+}: 363.1580$, found: 363.1583.

为

cob

(Z)-5'-bromo-3-((dimethyl(phenyl)silyl)methylene)-4-methylenespiro[cyclopentane-1,2'-inden]-1'(3'H)-one (3q)

Prepared according to method \mathbf{E}, and the product $\mathbf{3 q}$ was obtained as yellow oil in 65% yield (55.0 mg).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.38$ $-7.33(\mathrm{~m}, 3 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 3.12(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.96$ (d, $J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.42(\mathrm{~s}, 6 \mathrm{H})$,. ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.7,156.8,154.3,146.3,139.3,135.3,133.9,131.3,130.5,130.0$, $129.0,128.0,125.5,121.5,112.1,54.1,50.1,46.4,41.3,-1.2,-1.4$.

HRMS (ESI): m/z Calcd. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{OBrSi}[\mathrm{M}+\mathrm{H}]^{+}: 423.0780$, found: 423.0780.

(Z)-3-((dimethyl(phenyl)silyl)methylene)-6'-methoxy-4-

methylenespiro[cyclopentane-1,2'-inden]-1'(3'H)-one (3r)

Prepared according to method \mathbf{E}, and the product $\mathbf{3 r}$ was obtained as yellow oil in 75% yield (55.8 mg).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.23$ $-7.18(\mathrm{~m}, 2 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{dd}, J=15.7,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.01-2.92(\mathrm{~m}, 3 \mathrm{H}), 2.39(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.42(\mathrm{~s}, 3 \mathrm{H}), 0.41(\mathrm{~s}$, 3H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 209.0,159.7,157.3,146.7,145.5,139.4,137.6,133.9,129.0,128.0$, $127.5,124.5,121.0,111.9,105.4,55.8,54.8,50.2,46.5,41.0,-1.2,-1.4$. HRMS (ESI): m/z Calcd. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 375.1780$, found: 375.1782 .

(Z)-3-((dimethyl(phenyl)silyl)methylene)-4-methylene-3',4'-dihydro-2'H-spiro[cyclopentane-1,1'-naphthalen]-2'-one (3s)

Prepared according to method \mathbf{E}, and the product $3 \mathbf{s}$ was obtained as yellow solid in 81% yield (58.2 mg).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.26$ $(\mathrm{m}, 1 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 3 \mathrm{H}), 5.67(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J$ $=16.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dt}, J=15.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.04(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.70$ $-2.62(\mathrm{~m}, 3 \mathrm{H}), 0.40(\mathrm{~s}, 3 \mathrm{H}), 0.38(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 212.8,157.1,146.2,141.6,139.2,136.1,133.9,128.9,128.1,127.9$, 127.0, 126.8, 126.6, 121.1, 111.8, 55.9, 49.7, 45.2, 37.4, 28.2, -1.1, -1.5.

HRMS (ESI): m/z Calcd. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}: 359.1831$, found: 359.1830.

(Z)-3-((dimethyl(phenyl)silyl)methylene)-4-methylene-3',4'-dihydro-1'H-spiro[cyclopentane-1,2'-naphthalen]-1'-one (3t)

Prepared according to \mathbf{E}, and the product $\mathbf{3 t}$ was obtained as yellow oil in 94% yield (67.0 mg).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{dd}, J=7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.53(\mathrm{~m}$, $2 \mathrm{H}), 7.46(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{t}, J$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=16.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-2.95(\mathrm{~m}, 3 \mathrm{H}), 2.53(\mathrm{~d}, J=16.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.41(\mathrm{dd}, J=15.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-2.02(\mathrm{~m}, 2 \mathrm{H}), 0.41(\mathrm{~s}, 3 \mathrm{H}), 0.40(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 200.7,157.2,146.4,143.6,139.5,133.9,133.4,132.0,128.9,128.8$, 128.1, 127.9, 126.8, 121.1, 112.0, 49.8, 46.9, 43.1, 32.6, 26.0, -1.2, -1.4. HRMS (ESI): m/z Calcd. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}: 359.1831$, found: 359.1831.

(Z)-7'-chloro-3-((dimethyl(phenyl)silyl)methylene)-4-methylene-3',4'-dihydro-1'H-spiro[cyclopentane-1,2'-naphthalen]-1'-one (3u)

Prepared according to method \mathbf{E}, and the product $\mathbf{3 u}$ was obtained as yellow oil in 92% yield (71.9 mg).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 2 \mathrm{H})$, $7.41(\mathrm{dd}, J=8.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{t}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=16.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-2.91(\mathrm{~m}, 3 \mathrm{H}), 2.52(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.40(\mathrm{dd}, J=15.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-2.01(\mathrm{~m}, 2 \mathrm{H}), 0.41(\mathrm{~s}, 3 \mathrm{H}), 0.39(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 199.5,156.8,146.1,141.8,139.5,133.9,133.3,133.2,133.0,130.4$, $128.9,127.9,127.8,121.3,112.2,49.6,46.7,43.0,32.4,25.5,-1.2,-1.4$. HRMS (ESI): m / z Calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{OClSi}[\mathrm{M}+\mathrm{H}]^{+}: 393.1441$, found: 393.1432 .

S41
(Z)-3-((dimethyl(phenyl)silyl)methylene)-6'-methoxy-4-methylene-3',4'-dihydro-1'H-spiro[cyclopentane-1,2'-naphthalen]-1'-one (3v)

Prepared according to method \mathbf{E}, and the product $\mathbf{3 v}$ was obtained as yellow oil in 89% yield $(69.0 \mathrm{mg})$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 2 \mathrm{H})$, $7.37-7.29(\mathrm{~m}, 3 \mathrm{H}), 6.82(\mathrm{dd}, J=8.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.16(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{dd}, J=16.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-2.91(\mathrm{~m}, 3 \mathrm{H})$, $2.50(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dd}, J=15.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.98(\mathrm{~m}, 2 \mathrm{H}), 0.41(\mathrm{~s}, 3 \mathrm{H}), 0.39(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 199.5,163.6,157.5,146.5,146.1,139.6,133.9,130.6,128.9,127.9$, $125.7,120.9,113.4,112.5,112.0,55.5,49.5,47.0,43.2,32.7,26.4,-1.1,-1.4$. HRMS (ESI): m/z Calcd. for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 389.1937$, found: 389.1937.

(Z)-2'-benzyl-3-((dimethyl(phenyl)silyl)methylene)-4-methylene-1',2'-dihydro-3' \boldsymbol{H} -spiro[cyclopentane-1, 4'-isoquinolin]-3'-one (3w)

Prepared according to method \mathbf{E}. The product $\mathbf{3 w}$ was obtained as colorless oil in 67% yield (60.2 mg).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.16(\mathrm{~m}, 11 \mathrm{H}), 7.08-$ $7.03(\mathrm{~m}, 1 \mathrm{H}), 5.74-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=3.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{dd}, J=2.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~s}$, $2 \mathrm{H}), 4.38(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=15.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dt}, J=$ $15.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dt}, J=15.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dq}, J=15.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.41(\mathrm{~s}, 3 \mathrm{H}), 0.39(\mathrm{~s}$, 3 H).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.1,157.2,146.3,140.4,139.3,137.0,133.9,131.4,129.0,128.9$, 128.0, 127.9, 127.7, 127.6, 126.7, 125.8, 125.5, 121.1, 111.9, 51.1, 50.1, 49.7, 48.7, 44.4, -1.1, -1.5.

HRMS (ESI): m / z Calcd. for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{NOSi}[\mathrm{M}+\mathrm{H}]^{+}: 450.2253$, found: 450.2256.

(Z)-dimethyl((3-methylenespiro[cyclopentane-1,9'-fluoren]-4-ylidene)methyl)(phenyl)silane (3x)

Prepared according to method \mathbf{E}. The product $\mathbf{3 x}$ was obtained as yellow oil in 99% yield (74.8 mg).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.45$
$-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.33(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 5.38$ (s, 1H), 5.04 (s, 1H), 3.01 ($\mathrm{s}, 2 \mathrm{H}), 2.89$ ($\mathrm{s}, 2 \mathrm{H}), 0.50(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 158.4,151.5,147.5,139.8,139.4,133.9,129.1,128.0,127.5,127.3$, $123.0,121.6,119.9,112.3,53.6,51.3,47.1,-1.4$.

HRMS (ESI): m/z Calcd. for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 379.1882$, found: 379.1890.

(Z)-2-((dimethyl(phenyl)silyl)methylene)-8,8-dimethyl-3-methylenespiro[4.5]decane-6,10dione (3y)

Prepared according to method \mathbf{E}, and the product $\mathbf{3 y}$ was obtained as white solid in 96% yield (67.6 mg).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 3 \mathrm{H}), 5.64(\mathrm{t}$, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{t}, J=$ $2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.64-2.60(\mathrm{~m}, 4 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 0.37(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.1,155.2,144.9,139.3,133.9,129.0,127.9,121.4,112.0,68.0,51.8$, 44.1, 40.1, 30.9, 28.7, 28.5, -1.3.

HRMS (ESI): m/z Calcd. for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 353.1937$, found: 353.1940.

[^1](Z)-((8,8-dimethyl-3-methylene-7,9-dioxaspiro[4.5]decan-2-
ylidene)methyl)dimethyl(phenyl)silane (3z)

Prepared according to method \mathbf{E}. The product $\mathbf{3 z}$ was obtained as yellow oil in 82% yield (53.7 mg).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 3 \mathrm{H}), 5.67(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12$ $(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 4 \mathrm{H}), 2.50(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, 2 H), 1.43 (d, $J=3.3 \mathrm{~Hz}, 6 \mathrm{H}), 0.37$ (s, 6H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 157.2,146.2,139.5,133.8,128.9,127.9,121.6,112.4,98.0,68.3,45.6$, 41.6, 38.4, 24.0, 23.9, -1.3.

HRMS (ESI): m/z Calcd. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 329.1937$, found: 329.1922 .

dimethyl (Z)-3-((dimethyl(phenyl)silyl)methylene)-4-methylenecyclopentane-1,1-dicarboxyla te (3aa)

Prepared according to method \mathbf{E} and the product 3aa was obtained as colorless oil in 90% yield $(61.8 \mathrm{mg})$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 3 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 4.92$ (s, 1H), $3.74(\mathrm{~s}, 6 \mathrm{H}), 3.15(\mathrm{~s}, 2 \mathrm{H}), 3.02(\mathrm{~s}, 2 \mathrm{H}), 0.37(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 171.9,155.0,144.6,139.2,133.9,129.0,127.9,121.6,112.2,57.1,53.0$, 45.6, 42.2, -1.4.

HRMS (ESI): m / z Calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 345.1522$, found: 345.1523.

(Z)-1-acetyl-3-((dimethyl(phenyl)silyl)methylene)-4-methylene- N-phenylcyclopentane-1carboxamide (3ab)

Prepared according to method \mathbf{E}. The product $\mathbf{3 a b}$ was obtained as white solid in 92% yield (71.4 mg).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.1$
$\mathrm{Hz}, 2 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.12(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H})$, $5.00(\mathrm{~s}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, J=$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 0.39(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 207.8,168.3,154.7,144.6,138.9,137.6,133.8,129.2,129.1,128.0$, $124.8,122.8,120.0,112.9,65.0,45.0,41.3,27.4,-1.4,-1.5$.

HRMS (ESI): m / z Calcd. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 390.1889$, found: 390.1891 .

S48
methyl (Z)-3-((dimethyl(phenyl)silyl)methylene)-4-methylene-1-(phenylsulfonyl) cyclopentane-1-carboxylate (3ac)

Prepared according to method \mathbf{E}. The product $\mathbf{3 a c}$ was obtained as colorless oil in 92% yield (78.4 mg).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.55(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 3 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H})$, $3.67(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=$ $16.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.36(\mathrm{~s}, 3 \mathrm{H}), 0.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 168.3,152.9,143.0,138.7,136.6,134.4,133.8,129.9,129.1,129.0$, 128.0, 122.9, 113.0, 75.4, 53.5, 43.0, 39.8, -1.4, -1.6.

HRMS (ESI): m / z Calcd. for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{SO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 427.1399$, found: 427.1395 .

S49
ethyl (Z)-1-(diethoxyphosphoryl)-3-((dimethyl(phenyl)silyl)methylene)-4-methylenecyclo-pentane-1-carboxylate (3ad)

Prepared according to method \mathbf{E}. The product 3ad was obtained as colorless oil in 88% yield (76.9 mg).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 3 \mathrm{H}), 5.69(\mathrm{~s}$, $1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 4.25-4.09(\mathrm{~m}, 6 \mathrm{H}), 3.30-2.94(\mathrm{~m}, 4 \mathrm{H}), 1.32(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.26$ (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.37(\mathrm{~s}, 3 \mathrm{H}), 0.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.0,155.2(\mathrm{~d}, J=9.7 \mathrm{~Hz}), 144.7(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 139.2,133.8,128.9$, $127.9,121.1,111.9,63.0(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 63.0(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 61.9,51.6(\mathrm{~d}, J=141.2 \mathrm{~Hz}), 43.9(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}), 40.4(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 16.6,16.5,14.2,-1.4,-1.5$.
HRMS (ESI): m / z Calcd. for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{PSi}[\mathrm{M}+\mathrm{H}]^{+}: 437.1913$, found: 437.1912.

S50
ethyl (Z)-3-((dimethyl(phenyl)silyl)methylene)-4-methylene-1-phenylcyclopentane-1-carboxylate (3ae)

Prepared according to method \mathbf{E}. The product $\mathbf{3 a e}$ was obtained as colorless oil in 97% yield (73.3 mg).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.27$ $-7.22(\mathrm{~m}, 1 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.40(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{t}, J=7.1 \mathrm{~Hz}$, 3H), 0.37 (s, 6H).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.9,156.4,145.6,142.3,139.2,133.9,128.9,128.5,127.9,127.1$, 126.7, 121.0, 112.0, 61.2, 55.0, 48.8, 44.8, 14.2, -1.3, -1.4.

HRMS (ESI): m/z Calcd. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 377.1937$, found: 377.1942.

methyl (Z)-3-((dimethyl(phenyl)silyl)methylene)-4-methylene-1-(p-tolyl)cyclopentane-1-carboxylate (3af)

Prepared according to method \mathbf{E}. The product 3af was obtained as yellow oil in 95% yield (71.7 mg).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.25-$ $7.18(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~d}, J=$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}$, 3H), 0.37 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.7,156.3,145.6,139.3,139.2,136.8,133.9,129.3,128.9,127.9$, 126.6, 121.0, 112.0, 54.7, 52.6, 48.8, 44.8, 21.1, -1.3, -1.3.

HRMS (ESI): m/z Calcd. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 377.1937$, found: 377.1945.

methyl (Z)-3-((dimethyl(phenyl)silyl)methylene)-1-(4-methoxyphenyl)-4-methylenecyclopen-tane-1-carboxylate (3ag)

Prepared according to method \mathbf{E}. The product $\mathbf{3 a g}$ was obtained as yellow oil in 80% yield (62.4 mg).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}$, $3 \mathrm{H}), 3.48(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~d}, J=15.1 \mathrm{~Hz}$, 1H), 0.37 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.7,158.7,156.3,145.6,139.2,134.3,133.9,128.9,127.9,127.8$, 121.1, 113.9, 112.0, 55.4, 54.3, 52.6, 48.9, 44.9, -1.3, -1.3.

HRMS (ESI): m/z Calcd. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 393.1886$, found: 393.1884.

(Z)-3-((dimethyl(phenyl)silyl)methylene)-4-methylene-1-phenylcyclopentane-1-carbonitrile (3ah)

Prepared according to method \mathbf{E}. The product $\mathbf{3}$ ah was obtained as yellow oil in 85% yield (55.9 mg).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-$ $7.32(\mathrm{~m}, 6 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.12(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.42(\mathrm{~s}, 3 \mathrm{H}), 0.41(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 153.5,143.5,139.0,138.6,133.9,129.2,129.1,128.3,128.1,126.1$, 123.7, 113.7, 51.6, 47.8, 44.2, -1.4, -1.5.

HRMS (ESI): m/z Calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NSi}[\mathrm{M}+\mathrm{H}]^{+}: 330.1678$, found: 330.1679.

Sn-
Prepared according to method E. The product 3ai was obtained as colorless oil in 93% yield (59.2 mg).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.26(\mathrm{~m}, 8 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 4.90$ (s, 1H), 3.63 (s, 2H), $3.41(\mathrm{~s}, 2 \mathrm{H}), 3.31(\mathrm{~s}, 2 \mathrm{H}), 0.38(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 154.7,144.5,138.9,138.5,133.9,129.1,129.0,128.5,128.0,127.3$, 119.1, 110.2, 64.5, 61.3, 60.8, -1.6.

HRMS (ESI): m/z Calcd. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NSi}[\mathrm{M}+\mathrm{H}]^{+}: 320.1835$, found: 320.1836.

SiMe

(E)-3-((dimethyl(phenyl)silyl)methylene)-4-methylene-1-tosylpyrrolidine (3aj)

\square Prepared according to method E. The product 3aj was obtained as colorless oil in 72% yield (55.2 mg).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.69$ (s, 1H), $5.11(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 0.34(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 150.5,143.9,141.1,138.1,133.7,132.7,129.8,129.3,128.1,128.1$, 122.1, 112.1, 56.7, 54.1, 21.7, -1.8.

HRMS (ESI): m/z Calcd. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]^{+}: 384.1454$, found: 384.1458 .

SiMe

(S,Z)-1'-benzyl-3-((dimethyl(phenyl)silyl)methylene)-4-methylenespiro[cyclopentane-1,3'-indolin]-2'-one (4a)

Prepared according to method \mathbf{F}. The product $\mathbf{4 a}$ was isolated in 74% yield $(64.5 \mathrm{mg})$ with 92% ee.
The characterization data and spectrums of $\mathbf{4 a}$ are same to $\mathbf{3 a}$
$[\alpha]_{D}^{20}+7.9^{\circ}\left(c 1.35, \mathrm{CHCl}_{3}\right)$
The enantiomeric excess of $\mathbf{4 a}$ was determined by chiral HPLC analysis on IC-3 column.
Conditions: hexane/isopropanol $=95: 5$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}$, UV-Vis detection at $\lambda=$ $254 \mathrm{~nm}, t_{\mathrm{R} 1}=28.3 \mathrm{~min}$ (minor), $t_{\mathrm{R} 2}=32.2 \mathrm{~min}$ (major).

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area	
$\#$	$[\mathrm{~min}]$	$[\mathrm{min}]$	[mAU*s]	$[\mathrm{mAU}]$	$\%$

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	28.279	BB	0.5288	523.55487	15.54896	4.2113
2	32.243	BB	0.6213	1.19086 e 4	298.59094	95.7887
Totals :				1.24322e4	314.13990	

(S,Z)-1'-benzyl-3-((dimethyl(phenyl)silyl)methylene)-5'-methyl-4-
methylenespiro[cyclopentane-1,3'-indolin]-2'-one (4b)

Prepared according to method \mathbf{F}. The product $\mathbf{4 b}$ was isolated in 80% yield (71.9 mg) and 94% ee.
The characterization data and spectrums of $\mathbf{4 b}$ are same to $\mathbf{3 b}$.
$[\alpha]_{D}^{20}+12.6^{\circ}\left(c 1.14, \mathrm{CHCl}_{3}\right)$
The enantiomeric excess of $\mathbf{4 b}$ was determined by chiral HPLC analysis on IC-3 column.
Conditions: hexane/isopropanol $=90: 10$, flow rate $=0.4 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}$, UV-Vis detection at λ
$=260 \mathrm{~nm}, t_{\mathrm{R} 1}=28.1 \mathrm{~min}$ (minor), $t_{\mathrm{R} 2}=32.4 \mathrm{~min}$ (major).

Signal 5: DAD1 E, Sig=260,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	28.209	BB	0.5252	4672.03516	138.63710	49.6211
2	32.578	BB	0.6475	4743.39258	113.52082	50.3789

```
Totals :
9415.42773 252.15792
```


Signal 5: DAD1 E, Sig=260,4 $\operatorname{Ref}=360,100$

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \text { s }]} \end{gathered}$	Height [mAU]	Area \%
1	28.137	BB	0.5125	471.56274	14.16234	3.0847
2	32.419	BB	0.6445	1.48155 e 4	356.72794	96.9153
Total	s :			1.52871 e 4	370.89027	

(S,Z)-1'-benzyl-3-((dimethyl(phenyl)silyl)methylene)-5',7'-dimethyl-4-methylenespiro[cyclopentane-1,3'-indolin]-2'-one (4c)

Prepared according to method \mathbf{F}. The product $\mathbf{4 c}$ was isolated in 72% yield (66.4 mg) and 96% ee.

The characterization data and spectrums of $\mathbf{4 c}$ are same to $3 \mathbf{c}$.
$[\alpha]_{D}^{20}+8.7^{\circ}\left(c 2.30, \mathrm{CHCl}_{3}\right)$
The enantiomeric excess of $\mathbf{4 c}$ was determined by chiral HPLC analysis on Chiralpak IC -3 column. Conditions: hexane/isopropanol $=92: 8$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}$, UV-Vis detection at $\lambda=$ $254 \mathrm{~nm}, t_{\mathrm{R} 1}=34.0 \mathrm{~min}$ (minor), $t_{\mathrm{R} 2}=36.1 \mathrm{~min}$ (major).

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak					
RetTime Type	Width	Area	Height	Area	
$\#$	$[$ min]	[min]	[mAU*s]	[mAU]	$\%$

Totals :
8355.09912171 .56802

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	33.983	BB	0.6166	176.31381	3.95137	1.8932
2	36.132	BB	0.8031	9136.66113	176.75449	98.1068
Tota	ls :			9312.97495	180.70585	

(S,Z)-1'-benzyl-3-((dimethyl(phenyl)silyl)methylene)-5'-fluoro-4-methylenespiro[cyclopentane-1,3'-indolin]-2'-one (4d)

Prepared according to method \mathbf{F}. The product $\mathbf{4 d}$ was isolated in 67% yield $(60.4 \mathrm{mg})$ with 91% ee.

The characterization data and spectrums of $\mathbf{4 d}$ are same to $\mathbf{3 d}$.
$[\alpha]_{D}^{20}+27.3^{\circ}\left(c 3.20, \mathrm{CHCl}_{3}\right)$
The enantiomeric excess of $\mathbf{4 d}$ was determined by chiral HPLC analysis on IC-3 column.
Conditions: hexane/isopropanol $=95: 5$, flow rate $=0.4 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}$, UV-Vis detection at $\lambda=$ $260 \mathrm{~nm}, t_{\mathrm{R} 1}=30.1 \mathrm{~min}$ (minor), $t_{\mathrm{R} 2}=34.0 \mathrm{~min}$ (major).

Signal 5: DAD1 E, $\operatorname{Sig}=260,4 \operatorname{Ref}=360,100$

Peak \#	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area \%
1	29.600	BB	0.5357	2044.32739	59.07508	50.0249
2	33.462	BBA	0.6223	2042.29297	51.31702	49.9751
Total	s :			4086.62036	110.39211	

Signal 5: DAD1 E, Sig=260,4 Ref=360,100

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	30.119	BB	0.6049	767.74963	19.10295	4.4870
2	34.012	BBA	0.6372	1.63429 e 4	397.92712	95.5130

(S,Z)-1'-benzyl-5'-chloro-3-((dimethyl(phenyl)silyl)methylene)-4-methylenespiro[cyclopentane-1,3'-indolin]-2'-one (4e)

Prepared according to method \mathbf{F}. The product $\mathbf{4 e}$ was isolated in 56% yield $(52.4 \mathrm{mg})$ and 92% ee.

The characterization data and spectrums of $\mathbf{4 e}$ are same to $\mathbf{3 e}$.
$[\alpha]_{D}^{20}+28.9^{\circ}\left(c 1.01, \mathrm{CHCl}_{3}\right)$
The enantiomeric excess of $\mathbf{4 e}$ was determined by chiral HPLC analysis on IC- 3 column.
Conditions: hexane/isopropanol $=94: 6$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}$, UV-Vis detection at $\lambda=$ $254 \mathrm{~nm}, t_{\mathrm{R} 1}=18.6 \mathrm{~min}$ (minor), $t_{\mathrm{R} 2}=21.7 \mathrm{~min}$ (major).

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak					
RetTime Type	Width	Area	Height	Area	
$\#$	$[$ min $]$	$[$ min]	[mAU*s]	[mAU]	$\%$

Totals :
3285.49133136 .94530

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area \%
1	18.635	BB	0.3444	430.87222	19.60421	4.1824
2	21.697	BB	0.4131	9871.22949	370.15411	95.8176
Total	s :			1.03021 e 4	389.75833	

(S, Z)-1'-benzyl-5'-bromo-3-((dimethyl(phenyl)silyl)methylene)-4-
methylenespiro[cyclopentane-1,3'-indolin]-2'-one (4f)

Prepared according to method \mathbf{F}. The product $\mathbf{4 f}$ was isolated in 72% yield (73.7 mg) and 91\% ee.
The characterization data and spectrums of $\mathbf{4 f}$ are same to $\mathbf{3 f}$.
$[\alpha]_{D}^{20}+32.9^{\circ}\left(c 2.03, \mathrm{CHCl}_{3}\right)$
The enantiomeric excess of $\mathbf{4 f}$ was determined by chiral HPLC analysis on IC-3 column.
Conditions: hexane/isopropanol $=94: 6$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}$, UV-Vis detection at $\lambda=$ $254 \mathrm{~nm}, t_{\mathrm{R} 1}=19.6 \mathrm{~min}$ (minor), $t_{\mathrm{R} 2}=23.4 \mathrm{~min}$ (major).

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	20.096	BB	0.3906	6106.10498	243.43355	49.2254
2	24.017	BB	0.4984	6298.26660	195.21004	50.7746
Total	s :			1. 24044 e 4	438.64359	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	19.608	BB	0.3947	779.69208	30.86169	4.3450
2	23.382	BBA	0.4830	1.71647 e 4	554.77472	95.6550
Total	:			1.79444 e 4	585.63641	

(S,Z)-1'-benzyl-7'-bromo-3-((dimethyl(phenyl)silyl)methylene)-4-
methylenespiro[cyclopentane-1,3'-indolin]-2'-one (4g)

Prepared according to method \mathbf{F}. The product $\mathbf{4 g}$ was isolated in 62% yield $(63.7 \mathrm{mg})$ and 94% ee.

The characterization data and spectrums of $\mathbf{4 g}$ are same to $\mathbf{3 g}$.
$[\alpha]_{D}^{20}+26.4^{\circ}\left(c 3.10, \mathrm{CHCl}_{3}\right)$
The enantiomeric excess of $\mathbf{4 g}$ was determined by chiral HPLC analysis on IC-3 column.
Conditions: hexane/isopropanol $=98.8: 1.2$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}$, UV-Vis detection at $\lambda=254 \mathrm{~nm}, t_{\mathrm{R} 1}=32.3 \mathrm{~min}$ (minor), $t_{\mathrm{R} 2}=35.0 \mathrm{~min}$ (major).

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { s }]} \end{gathered}$	Height [mAU]	Area \%
1	31.817	BB	0.6536	6388.25830	152.85295	50.0958
2	34.673	BBA	0.7240	6363.81348	136.46954	49.9042
Total	s :			1.27521e4	289.32249	

Signal 1: DAD1 A, Sig=254,4 Ref=360, 100

Peak \#	```RetTime [min]```	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area \%
1	32.274	BB	0.6384	464.55576	11.47335	3.0475
2	34.954	BB	0.7314	1.47791 e 4	312.70972	96.9525

(S,Z)-1'-benzyl-3-((dimethyl(phenyl)silyl)methylene)-5'-methoxy-4-methylenespiro[cyclopentane-1,3'-indolin]-2'-one (4h)

Prepared according to method \mathbf{F}. The product $\mathbf{4 h}$ was isolated in 68% yield (63.2 mg) and 92% ee.

The characterization data and spectrums of $\mathbf{4 h}$ are same to $\mathbf{3 h}$.
$[\alpha]_{D}^{20}+16.3^{\circ}\left(c 2.06, \mathrm{CHCl}_{3}\right)$
The enantiomeric excess of $\mathbf{4 h}$ was determined by chiral HPLC analysis on IC-3 column.
Conditions: hexane/isopropanol $=90: 10$, flow rate $=0.4 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}$, UV-Vis detection at λ
$=254 \mathrm{~nm}, t_{\mathrm{R} 1}=35.5 \mathrm{~min}$ (minor), $t_{\mathrm{R} 2}=40.4 \mathrm{~min}$ (major).

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	35.500	BB	0.7028	2456.62573	53.99958	50.1020
2	40.487	BB	0.8185	2446.62012	46.00107	49.8980
Total	:			4903.24585	100.00065	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	35.500	BB	0.6890	343.56180	7.69335	3.8135
2	40.409	BB	0.8171	8665.59375	163.82230	96.1865

(S,Z)-3-((dimethyl(phenyl)silyl)methylene)-4-methylene-1'-phenylspiro[cyclopentane-1,3'-indolin]-2'-one (4i)

Prepared according to method \mathbf{F}. The product $\mathbf{4 i}$ was isolated in 70% yield $(58.9 \mathrm{mg})$ and 92% ee. (ee value improved to 95% after recrystallization in $\mathrm{Et}_{2} \mathrm{O}$ at room temperature)
The characterization data and spectrums of $\mathbf{4 i}$ are same to $\mathbf{3 k}$.
$[\alpha]_{D}^{20}+10.8^{\circ}\left(c 1.28, \mathrm{CHCl}_{3}\right)$
The enantiomeric excess of $\mathbf{4 i}$ was determined by chiral HPLC analysis on IC- 3 column.
Conditions: hexane/isopropanol $=95: 5$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}$, UV-Vis detection at $\lambda=$ $260 \mathrm{~nm}, t_{\mathrm{R} 1}=36.7 \mathrm{~min}$ (minor), $t_{\mathrm{R} 2}=41.9 \mathrm{~min}$ (major).

Signal 5: DAD1 E, Sig=260,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	36.404	BB	0.6891	6897.40137	155.60748	50.1393
2	41.475	BBA	0.4809	6859.08838	210.09293	49.8607
Total	s :			1.37565 e 4	365.70041	

Signal 5: DAD1 E, Sig=260,4 Ref=360,100

Peak \#	RetTime [min]		Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	36.675	BB	0.6939	779.98395	17.23628	3.9409
2	41.878	BBA	0.4350	1.90122 e 4	654.36096	96.0591
Tota				1.97921 e 4	671.59725	

(S,Z)-1'-acetyl-3-((dimethyl(phenyl)silyl)methylene)-4-methylenespiro[cyclopentane-1,3'-indolin]-2'-one (4j)

Prepared according to method \mathbf{F}. The product $\mathbf{4} \mathbf{j}$ was isolated in 42% yield (32.5 mg) and 69% ee.
The characterization data and spectrums of $\mathbf{4 j}$ are same to $\mathbf{3 1}$.
$[\alpha]_{D}^{20}+8.0^{\circ}\left(c 1.04, \mathrm{CHCl}_{3}\right)$
The enantiomeric excess of $\mathbf{4} \mathbf{j}$ was determined by chiral HPLC analysis on IC- $\mathbf{3}$ column.
Conditions: hexane/isopropanol $=99: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}$, UV-Vis detection at $\lambda=$ $260 \mathrm{~nm}, t_{\mathrm{R} 1}=16.7 \mathrm{~min}$ (minor), $t_{\mathrm{R} 2}=18.2 \mathrm{~min}$ (major).

Signal 5: DAD1 E, Sig=260, 4 Ref $=360,100$

Totals : $2104.63672 \quad 84.98607$

Signal 5: DAD1 E, Sig=260,4 $\operatorname{Ref}=360,100$

Peak \#	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	16.656	BB	0.3307	1069.39160	49.75622	15.4793
2	18.188	BBA	0.3992	5839.15283	223.22215	84.5207
Total				6908.54443	272.97837	

(S,Z)-3-((dimethyl(phenyl)silyl)methylene)-4-methylene-1'-propylspiro[cyclopentane-1,3'-indolin]-2'-one (4k)

Prepared according to method \mathbf{F}. The product $\mathbf{4 k}$ was isolated in 79% yield $(60.9 \mathrm{mg})$ and 85% ee.
The characterization data and spectrums of $\mathbf{4 k}$ are same to $\mathbf{3 j}$.
$[\alpha]_{D}^{20}+13.8^{\circ}\left(c 1.85, \mathrm{CHCl}_{3}\right)$
The enantiomeric excess of $\mathbf{4 k}$ was determined by chiral HPLC analysis on IC- 3 column.
Conditions: hexane/isopropanol $=90: 10$, flow rate $=0.4 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}$, UV-Vis detection at λ
$=273 \mathrm{~nm}, t_{\mathrm{R} 1}=19.5 \mathrm{~min}$ (minor), $t_{\mathrm{R} 2}=23.6 \mathrm{~min}$ (major).

Signal 6: DAD1 F, Sig=273,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	19.612	BB	0.3281	3778.66455	179.12192	50.8861
2	23.731	BB	0.4197	3647.06738	135.62816	49.11

Totals : 7425.73193 314.75008

Signal 6: DAD1 F, $\operatorname{Sig}=273,4$ Ref $=360,100$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { * }]} \end{gathered}$	Height [mAU]	Area \%
1	19.491	BB	0.3393	665.52673	30.41373	7.5255
2	23.574	BB	0.4229	8178.14795	301.06714	92.4745
Total	s :			8843.67468	331.48087	

(S,Z)-1'-allyl-3-((dimethyl(phenyl)silyl)methylene)-4-methylenespiro[cyclopentane-1,3'-indolin]-2'-one (41)

Prepared according to method \mathbf{F}. The product $\mathbf{4 l}$ was isolated in 80% yield $(61.5 \mathrm{mg})$ and 88% ee.
The characterization data and spectrums of $\mathbf{4 1}$ are same to $\mathbf{3 m}$.
$[\alpha]_{D}^{20}+14.2^{\circ}\left(c 1.80, \mathrm{CHCl}_{3}\right)$
The enantiomeric excess of $\mathbf{4 1}$ was determined by chiral HPLC analysis on IC- 3 column.
Conditions: hexane/isopropanol $=90: 10$, flow rate $=0.4 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}$, UV-Vis detection at λ
$=273 \mathrm{~nm}, t_{\mathrm{R} 1}=21.2 \mathrm{~min}$ (minor), $t_{\mathrm{R} 2}=24.2 \mathrm{~min}$ (major).

Signal 6: DAD1 F, Sig=273,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area \%
1	20.903	BB	0.3402	2597.11255	119.20599	49.8888
2	23.959	BB	0.4123	2608.69263	98.72852	50.1112
Total	s :			5205.80518	217.93450	

Signal 6: DAD1 F, Sig=273,4 Ref=360,100

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	21.162	BB	0.3427	378.80591	17.21802	5.9214
2	24.236	BB	0.4154	6018.40771	225.45686	94.0786
Total	s :			6397.21362	242.67488	

(S,Z)-1'-(but-2-yn-1-yl)-3-((dimethyl(phenyl)silyl)methylene)-4-
methylenespiro[cyclopentane-1,3'-indolin]-2'-one (4m)

Prepared according to method F. The product $\mathbf{4 m}$ was isolated in 67% yield (53.2 mg) and 91% ee.
The characterization data and spectrums of $\mathbf{4 m}$ are same to $\mathbf{3 n}$.
$[\alpha]_{D}^{20}+10.1^{\circ}\left(c 1.51, \mathrm{CHCl}_{3}\right)$
The enantiomeric excess of $\mathbf{4 m}$ was determined by chiral HPLC analysis on IC- 3 column.
Conditions: hexane/isopropanol $=90: 10$, flow rate $=0.4 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}$, UV-Vis detection at λ
$=254 \mathrm{~nm}, t_{\mathrm{R} 1}=24.0 \mathrm{~min}$ (minor), $t_{\mathrm{R} 2}=25.8 \mathrm{~min}$ (major).

Signal 1: DAD1 A, Sig=254,4 Ref=360, 100

| Peak
 RetTime
 $\#$ | Tmin] |
| :---: | :---: | :---: | :---: | :---: | :---: |

Signal 1: DAD1 A, Sig=254, 4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area \%
1	24.023	BB	0.7418	1140.69580	21.61153	4.5832
2	25.785	BB	0.3912	2.37478 e 4	944.82587	95.4168
Total	s			2.48885 e 4	966.43740	

(S,Z)-3'-((dimethyl(phenyl)silyl)methylene)-4'-methylene-2H-spiro[benzofuran-3,1'-cyclopentan]-2-one (4n)

Prepared according to method \mathbf{F}. The product $\mathbf{4 n}$ was isolated in 51% yield (35.2 mg) and 81% ee.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.31-$ $7.26(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.06(\mathrm{~m}, 3 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 5.33(\mathrm{dd}, J=2.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J$ $=15.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dt}, J=15.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.61(\mathrm{~m}, 1 \mathrm{H}), 0.46(\mathrm{~s}$, 6 H).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.6,154.7,152.3,144.5,138.9,133.9,132.9,129.2,128.8,128.1$, $124.5,123.3,123.0,113.2,110.8,50.1,49.1,46.4,-1.4,-1.5$.
HRMS (ESI): m / z Calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 347.1467$, found: 347.1468.

$[\alpha]_{D}^{20}+10.5^{\circ}\left(c 1.45, \mathrm{CHCl}_{3}\right)$
The enantiomeric excess of $\mathbf{4 n}$ was determined by chiral HPLC analysis on IC- 3 column.
Conditions: hexane/isopropanol $=95: 5$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}$, UV-Vis detection at $\lambda=$ $254 \mathrm{~nm}, t_{\mathrm{R} 1}=12.9 \mathrm{~min}$ (minor), $t_{\mathrm{R} 2}=13.7 \mathrm{~min}$ (major).

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area	
$\#$	$[\mathrm{~min}]$	$[\mathrm{min}]$	$\left[\mathrm{mAU}^{*} \mathrm{~s}\right]$	$[\mathrm{mAU}]$	$\%$

$\begin{array}{lllllll}1 & 12.911 & \text { BB } & 0.1886 & 1306.95349 & 108.46664 & 49.9653\end{array}$
$\begin{array}{lllllllllll}2 & 13.731 & \text { BB } & 0.2025 & 1308.77039 & 101.44193 & 50.0347\end{array}$

Totals :
$2615.72388 \quad 209.90857$

Signal 1: DAD1 A, Sig=254,4 Ref $=360,100$

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	12.914	BB	0.1888	505.69666	41.91538	9.5325
2	13.731	BB	0.2010	4799.30029	370.70599	90.4675
Total	s :			5304.99695	412.62138	

(S, Z)-3-((dimethyl(phenyl)silyl)methylene)-4-methylenespiro[cyclopentane-1,2'-inden]-1'(3'H)-one (4o)

Prepared according to method \mathbf{F}. The product $\mathbf{4 0}$ was isolated in 57% yield (39.2 mg) and 56% ee.
The characterization data and spectrums of $\mathbf{4 0}$ are same to $\mathbf{3 0}$.
$[\alpha]_{D}^{20}-7.1^{\circ}\left(c 1.43, \mathrm{CHCl}_{3}\right)$
The enantiomeric excess of $\mathbf{4 0}$ was determined by chiral HPLC analysis on Chiralpak IC- 3 column. Conditions: hexane/isopropanol $=99.6: 0.4$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}$, UV-Vis detection at $\lambda=254 \mathrm{~nm}, t_{\mathrm{R} 1}=38.1 \mathrm{~min}$ (major), $t_{\mathrm{R} 2}=41.3 \mathrm{~min}$ (minor).

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	37.607	BB	0.7744	1490.62195	29.35661	49.9529
2	40.597	BBA	0.8569	1493.43420	26.68805	50.0471
Total	s :			2984.05615	56.04466	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	38.147	BB	0.8139	4588.49170	86.35617	77.8924
2	41.318	BB	0.8952	1302.31616	21.85568	22.1076
Total	s :			5890.80786	108.21185	

(S,Z)-2'-benzyl-3-((dimethyl(phenyl)silyl)methylene)-4-methylene-1',2'-dihydro-3'H-spiro[cyclopentane-1,4'-isoquinolin]-3'-one (4p)

Prepared according to method \mathbf{F}. The product $\mathbf{4 p}$ was isolated in 65% yield (58.4 mg) and 95% ee.

The characterization data and spectrums of $\mathbf{4 p}$ are same to $\mathbf{3 w}$.
$[\alpha]_{D}^{20}+15.4^{\circ}\left(c 1.46, \mathrm{CHCl}_{3}\right)$
The enantiomeric excess of $\mathbf{4 p}$ was determined by chiral HPLC analysis on IC-3 column.
Conditions: hexane/isopropanol $=80: 20$, flow rate $=0.4 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}$, UV-Vis detection at λ
$=254 \mathrm{~nm}, t_{\mathrm{R} 1}=30.8 \mathrm{~min}$ (minor), $t_{\mathrm{R} 2}=33.8 \mathrm{~min}$ (major).

Signal 1: DAD1 A, Sig=254, 4 Ref $=360,100$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \text { s] }} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	31.761	BB	0.6146	4199.35352	106.82281	49.9310
2	34.296	BB	0.6767	4210.95752	97.72299	50.0690

Totals : 8410.31104204 .54580

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

(S,Z)-3-((dimethyl(phenyl)silyl)methylene)-4-methylenespiro[cyclopentane-1,4'-isochroman]-3'-one (4q)

Prepared according to method \mathbf{F}. The product $\mathbf{4 q}$ was isolated in 65% yield $(46.8 \mathrm{mg})$ and 87% ee.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.23-7.19$ $(\mathrm{m}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{dd}, J=3.2$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=15.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dt}, J=15.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.90$ $-2.78(\mathrm{~m}, 2 \mathrm{H}), 0.41(\mathrm{~s}, 3 \mathrm{H}), 0.38(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 174.5,155.4,144.9,138.9,138.3,133.9,131.2,129.1,128.8,128.0$, $127.4,125.5,125.0,122.3,112.6,69.2,49.3,48.0,43.7,-1.2,-1.6$.
HRMS (ESI): m/z Calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 361.1624$, found: 361.1623.

$[\alpha]_{D}^{20}-2.3^{\circ}\left(c 2.33, \mathrm{CHCl}_{3}\right)$
The enantiomeric excess of $\mathbf{4 q}$ was determined by chiral HPLC analysis on OJ- 3 column.
Conditions: hexane/isopropanol $=80: 20$, flow rate $=0.35 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}$, UV-Vis detection at $\lambda=254 \mathrm{~nm}, t_{\mathrm{R} 1}=32.2 \mathrm{~min}$ (major), $t_{\mathrm{R} 2}=42.4 \mathrm{~min}$ (minor).

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

(S,Z)-3-((dimethyl(phenyl)silyl)methylene)-4-methylene-3',4'-dihydro-2'H-
spiro[cyclopentane-1,1'-naphthalen]-2'-one (4r)

Prepared according to method \mathbf{F}. The product $\mathbf{4 r}$ was isolated in 78% yield (55.8 mg) and 85% ee.
The characterization data and spectrums of $\mathbf{4 r}$ are same to $\mathbf{3 s}$.
$[\alpha]_{D}^{20}+19.9^{\circ}\left(c 1.72, \mathrm{CHCl}_{3}\right)$
The enantiomeric excess of $\mathbf{4 r}$ was determined by chiral HPLC analysis on IC-3 column.
Conditions: hexane/isopropanol $=90: 10$, flow rate $=0.4 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}$, UV-Vis detection at λ
$=230 \mathrm{~nm}, t_{\mathrm{R} 1}=12.9 \mathrm{~min}$ (minor), $t_{\mathrm{R} 2}=14.0 \mathrm{~min}$ (major).

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	12.834	BB	0.1726	7299.65820	662.39099	49.8869
2	13.985		0.1941	7332.76074	593.86212	0.

Totals :
$1.46324 \mathrm{e} 4 \quad 1256.25311$

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

(S)-Diethyl 1'-benzyl-4-(dimethyl(phenyl)silyl)-2'-oxo-1,3,4,7-tetrahydrospiro[i-ndene-2,3'-indo-line]-5,6-dicarboxylate (5a)

Prepared according to method \mathbf{G} The product $\mathbf{5 a}$ was obtained as white solid in 76% yield ($91.9 \mathrm{mg}, \mathrm{dr}=61: 39$).
(5a major) ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.22(\mathrm{~m}$, $8 \mathrm{H}), 7.20(\mathrm{ddd}, J=7.4,1.4,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{td}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.66(\mathrm{dt}, J=7.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.15(\mathrm{~m}, 2 \mathrm{H})$, $4.01(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.27-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.85$ $-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.38(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 3 H), 0.46 ($\mathrm{s}, 3 \mathrm{H}$), 0.42 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.3,169.1,167.7,141.9,136.6,136.6,136.2,135.6,134.4,132.9$, $132.8,129.5,128.9,127.8,127.7,127.6,127.5,127.3,123.1,122.2,108.8,61.3,61.1,52.0,47.5,47.0$, 43.8, 34.5, 29.9, 14.2, 14.0, -3.0, -3.6.

HRMS (ESI): m / z Calcd. for $\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{NO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 606.2676$, found: 606.2673.

5a (major): $(91 \%$ ee $)[\alpha]_{D}^{20}-12.5^{\circ}\left(c 1.83, \mathrm{CHCl}_{3}\right)$
The enantiomeric excess of $\mathbf{5 a}$ (major) was determined by chiral HPLC analysis on IC-3 column. Conditions: hexane/isopropanol $=90: 10$, flow rate $=0.4 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}$, UV-Vis detection at λ $=210 \mathrm{~nm}, t_{\mathrm{R} 1}=36.6 \mathrm{~min}$ (minor), $t_{\mathrm{R} 2}=45.1 \mathrm{~min}$ (major).

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
\#	[min]		[min]	[mAU*s]	[mAU]	\%

Totals :
$1.67594 \mathrm{e} 5 \quad 1901.32690$

Signal 2: DAD1 B, Sig=210,4 $\operatorname{Ref}=360,100$

Peak \#	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	36.642	BB	1.0039	1749.68176	22.33530	4.5781
2	45.095	BBA	1.5377	3.64691 e 4	354.07010	95.4219
Total	s :			3.82188 e 4	376.40540	

(5a (minor)) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54$ (dd, $J=7.4,2.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.37-7.21$ (m, 8H), 7.12 (ddd, $J=7.8,5.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=4.1,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{dt}, J=7.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 2 \mathrm{H})$, $4.29-4.13(\mathrm{~m}, 2 \mathrm{H}), 4.01-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{dt}, J=5.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.83(\mathrm{~m}, 4 \mathrm{H}), 2.63-2.53$ $(\mathrm{m}, 1 \mathrm{H}), 2.48-2.39(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.42(\mathrm{~s}, 3 \mathrm{H}), 0.38(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.5,168.9,167.6,141.9,137.1,136.8,136.1,135.9,134.1,132.8$, $132.5,129.6,128.9,127.9,127.7,127.7,127.5,127.4,122.9,122.1,109.0,61.2,61.1,51.6,47.9,47.3$, 43.9, 34.3, 30.0, 14.2, 14.0, -2.7, -3.1.

HRMS (ESI): m/z Calcd. for $\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{NO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 606.2676$, found: 606.2672.

[^2]5a (minor): $(90 \%$ ee $)[\alpha]_{D}^{20}-9.9^{\circ}\left(c 1.02, \mathrm{CHCl}_{3}\right)$
The enantiomeric excess of $\mathbf{5 a}$ (minor) was determined by chiral HPLC analysis on Chiralpak IC3 column.

Conditions: hexane/isopropanol $=65: 35$, flow rate $=0.3 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}$, UV-Vis detection at λ $=214 \mathrm{~nm}, t_{\mathrm{R} 1}=48.3 \mathrm{~min}$ (major), $t_{\mathrm{R} 2}=61.2 \mathrm{~min}$ (minor)

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { s }]} \end{gathered}$	Height [mAU]	Area \%
1	48.785	BB	1.6246	1.21734 e 5	1133.78870	50.1471
2	61.344	BBA	1.9520	1.21020 e 5	927.66992	49.8529
Total	s :			2.42754 e 5	2061.45862	

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak	RetTime Type	Width	Area	Height	Area
$\#$	$[\mathrm{~min}]$	$[\mathrm{min}]$	$[\mathrm{mAU}$ *s $]$	$[\mathrm{mAU}]$	$\%$

1	48.312 BB	1.43323 .47244 e 4	365.22043	95.0099
2	61.189 BB	1.42421823 .80042	15.21760	4.9901

[^3](S)-1'-benzyl-5-(dimethyl(phenyl)silyl)-2-phenyl-6,9-dihydro-1H,5H,8H-spiro[cyclopenta[d][1,2,4]triazolo[1,2-a]pyridazine-7,3'-indoline]-1,2',3(2H)-trione
(major))

Prepared according to the above general method \mathbf{G}. The product 6a (major) was obtained as white solid.
(6a (major)) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.47(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.46-7.21(\mathrm{~m}, 9 \mathrm{H}), 7.13(\mathrm{td}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{td}, J=7.6,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.69(\mathrm{dt}, J=7.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.69-6.62(\mathrm{~m}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.91$ (d, $J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.52(\mathrm{~s}, 3 \mathrm{H}), 0.50(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13}$ C NMR (101 MHz, CDCl_{3}) $\delta 180.9,154.2,149.7,142.1,135.9,135.7,135.0,134.3,131.6,131.5$, $130.2,129.2,129.0,128.4,128.2,128.2,127.8,127.4,125.5,124.6,123.2,122.3,109.2,50.9,48.7,46.4$, 46.3, 45.3, 44.0, -2.6, -3.1.

HRMS (ESI): m/z Calcd. for $\mathrm{C}_{37} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 611.2478$, found: 611.2480 .

6a (major): $(88 \%$ ee $),[\alpha]_{D}^{20}-141.4^{\circ}\left(c\right.$ 1.16, $\left.\mathrm{CHCl}_{3}\right)$
The enantiomeric excess of $\mathbf{6 a}$ (major) was determined by chiral HPLC analysis on IB column. Conditions: hexane/isopropanol $=70: 30$, flow rate $=0.6 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}$, UV-Vis detection at λ $=210 \mathrm{~nm}, t_{\mathrm{R} 1}=38.8 \mathrm{~min}$ (minor), $t_{\mathrm{R} 2}=45.6 \mathrm{~min}$ (major).

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { s }]} \end{gathered}$	Height [mAU]	Area \%
1	37.279	BB	1.5180	5.64965 e 4	518.98224	49.6820
2	45.318	BB	1.6198	5.72198 e 4	486.63623	50.3180

Totals :
1.13716 e 51005.61847

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

(6a (minor)) ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{dd}, J=7.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.40-$ 7.23 (m, 9H), 7.19 (ddd, $J=7.4,1.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$ (td, $J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.98$ (td, $J=7.5,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.70(\mathrm{dt}, J=7.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 2 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=14.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.07(\mathrm{dq}, J=15.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~d}, J$ $=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.60(\mathrm{~s}, 3 \mathrm{H}), 0.50(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.4,153.6,149.7,141.9,135.9,135.7,134.7,134.3,131.9,131.5$, $130.2,129.1,128.9,128.2,128.2,128.1,127.8,127.3,125.4,124.5,123.3,122.0,109.2,51.7,49.0,46.1$, 46.0, 45.0, 43.9, -2.9, -4.0.

HRMS (ESI): m / z Calcd. for $\mathrm{C}_{37} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 611.2478$, found: 611.2488 .

6a (minor): $(92 \%$ ee $),[\alpha]_{D}^{20}+58.1^{\circ}\left(c 2.56, \mathrm{CHCl}_{3}\right)$
The enantiomeric excess of $\mathbf{6 a}$ (minor) was determined by chiral HPLC analysis on IB column.
Conditions: hexane/isopropanol $=75: 25$, flow rate $=0.6 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=25^{\circ} \mathrm{C}$, UV-Vis detection at λ $=230 \mathrm{~nm}, t_{\mathrm{R} 1}=21.8 \mathrm{~min}$ (major), $t_{\mathrm{R} 2}=26.9 \mathrm{~min}$ (minor).

Signal 4: DAD1 D, Sig=230,4 Ref=360,100

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	22.217	BB	0.6			
2	26.609	BBA	0.9756	8140.6640	122.44772	49.75

```
Totals :
    1.63601e4 308.70983
```


Signal 4: DAD1 D, Sig=230,4 $\operatorname{Ref}=360,100$

Peak RetTime Type	Width	Area	Height	Area	
$\#$	$[\mathrm{~min}]$	$[\mathrm{min}]$	$[\mathrm{mAU} * \mathrm{~s}]$	$[\mathrm{mAU}]$	$\%$

$\begin{array}{lllllll}1 & 21.838 & \text { BB } & 0.6780 & 1.03869 \mathrm{e} 5 & 2260.74707 & 95.9719\end{array}$
$\begin{array}{llllll}2 & 26.939 & \text { BB } & 0.9997 & 4359.59229 & 64.57137\end{array} 4.0281$

Totals :
$1.08229 \mathrm{e} 5 \quad 2325.31844$

V. Crystal Data for Compound $4 \mathbf{i}$

Empirical formula	C28H27NOSi
Formula weight	421.59
Temperature/K	293(2)
Crystal system	orthorhombic
Space group	P212121
a/Å	9.08856(12)
b/Å	12.68486(17)
c/Å	21.2932(3)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
Volume/Å ${ }^{3}$	2454.84(6)
Z	4
pcalcg/cm ${ }^{3}$	1.141
μ / mm^{-1}	0.975
$\mathrm{F}(000)$	896.0
Crystal size/mm3	$0.12 \times 0.09 \times 0.08$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ}$	8.114 to 147.77
Index ranges	$-11 \leqslant \mathrm{~h} \leqslant 7,-15 \leqslant \mathrm{k} \leqslant 15,-26 \leqslant 1 \leqslant 26$
Reflections collected	13241
Independent reflections	4734 [Rint $=0.0213$, Rsigma $=0.0177]$
Data/restraints/parameters	4734/13/294
Goodness-of-fit on F2	1.040
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R} 1=0.0409, \mathrm{wR} 2=0.1168$
Final R indexes [all data]	$\mathrm{R} 1=0.0434, \mathrm{wR} 2=0.1205$
Largest diff. peak/hole / e \AA^{-3}	0.32/-0.28
Flack parameter	0.017(12)

VI. References

1. Zhang, Q.; Liang, Q.-J.; Xu, J.-L.; Xu, Y.-H.; Loh, T.-P. Palladium-Catalyzed Silaborative Carbocyclizations of 1,6-Diynes. Chem. Coттии. 2018, 54, 2357-2360.
2. Matsumoto, US Patent No. US6525081 (2003).

[^0]:

[^1]:

[^2]:

[^3]: Totals :
 $3.65482 \mathrm{e} 4 \quad 380.43803$

