Design rigid-featured chiral bipyridine-2NO tetradentate

ligands: application in asymmetric catalysis

Yu-Heng Wang^{a,c}, Pan Hu^{a,c}, Xi-Rui Wang^{a,c}, Ke-Lan Xu^{a,c}, Qi-Lin Wang^b, Hui-Juan Wang^a, and

Xiong-Li Liu^{a,*}

^a National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang 550025, Guizhou, China.

^b Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.

^c These four authors contributed equally to this work.

*E-mail address: xlliu1@gzu.edu.cn

Table of Contents

Table of contents	S1
1. General experimental information	S2
2. General procedure for preparation of chiral bipyridine-2NO ligands L1	S2
3. Characterization data of bipyridine-2NO ligands L1	S2
4. General procedure for preparation of chiral bipyridine-NO ligands L2	S8
5. Characterization data of bipyridine-NO ligands L2	S8
6. General procedure for preparation of chiral ligand L5a	S11
7. Characterization data of chiral ligand L5a	S11
8. Catalytic asymmetric synthesis of compounds 7	S12
9. Characterization data of compounds 7	S12
10. The gram scale synthesis of the bipyridine-2NO ligand L1a	S21
11. Control experiments and HPLC spectra for compound 7a	S21
12. References	S24
13. X-ray crystal data for compounds 4a, 4c and 7e	
14. The copies of ¹ H NMR, ¹³ C NMR and HPLC spectra for compounds L, 4 and 7	S28

1. General information

Reactions were monitored by thin layer chromatography using UV light to visualize the course of reaction. Purification of reaction products was carried out by flash chromatography. ¹H and ¹³CNMR spectra were obtained using a Bruker DPX-400 spectrometer. ¹H NMR chemical shifts are reported in ppm (δ) relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR chemical shifts are reported in ppm (δ) from tetramethylsilane (TMS) with the solvent resonance as the internal standard. Melting points were measured on an electrothermal digital melting point apparatus.

2. General procedure for preparation of chiral bipyridine-2NO ligands L1

General procedure A-In a sealed tube equipped with a magnetic stirring bar, bipyridinedicarbaldehyde **2** (1.0 mmol) and optically pure 4-hydroxyprolinamide or prolinamide **1** (2.4 mmol, 2.4 equiv) were added. Then, ethanol (6.0 mL) was added and the reaction was heated with stirring at reflux for 12 h. After completion of the reaction, as indicated by TLC, the aftertreatment residue was purified by flash column chromatography to give the intermediate **3**.

For the oxidation step, see: X. Liu, L. Lin and X. Feng, Chiral *N,N'*-dioxide ligands: synthesis, coordination chemistry and asymmetric catalysis, *Org. Chem. Front.*, 2014, **1**, 298-302. In a sealed tube equipped with a magnetic stirring bar, to the intermediate **3** was added 3.0 mL of DCM and *m*-CPBA (2.2 eq). The reaction mixture was stirred at 0 °C for 20 min. After completion of the reaction, as indicated by TLC, the aftertreatment residue was purified by flash column chromatography to furnish the bipyridine-2NO ligand L1.

3. Characterization data of bipyridine-2NO ligands L1

L1a (Prepared according to general procedure A): White solid, M.p. 263.1-263.9 °C, $[\alpha]_D^{20} = -40.6$ (*c* 0.60, CHCl₃); overall yield 53%, >20:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 2.23-2.28 (m, 2H), 2.45-2.66 (m, 6H), 3.91-3.95 (m, 2H), 4.16-4.24 (m, 2H), 4.73-4.76 (m, 2H), 6.79 (s, 2H), 7.12-7.16 (m, 2H), 7.23-7.27 (m, 4H), 7.40-7.43 (m, 4H), 7.70-7.72 (m, 2H), 7.97-8.01 (m, 2H), 8.38-8.40 (m, 2H); ¹³C NMR (CD₃OD, 100 MHz) δ : 35.5, 70.0, 76.3, 76.7, 88.1, 122.2, 122.9, 126.8, 127.7, 128.9, 135.3, 138.2, 149.8, 155.2, 168.7; HRMS (ESI-TOF) m/z: Calcd. for $C_{34}H_{32}N_6NaO_4$ [M+Na]⁺: 611.2376; Found: 611.2372.

L1b (Prepared according to general procedure A): White solid, M.p. 223.2-224.9 °C, $[\alpha]_D^{20} = -84.3$ (*c* 0.60, CHCl₃); overall yield 52%, >20:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 2.10 (s, 6H), 2.22-2.26 (m, 2H), 2.43-2.66 (m, 6H), 3.92-3.96 (m, 2H), 4.14-4.22 (m, 2H), 4.75-4.78 (m, 2H), 6.74 (s, 2H), 6.98 (d, *J* = 8.8 Hz, 4H), 7.26 (d, *J* = 8.8 Hz, 4H), 7.71 (d, *J* = 7.2 Hz, 2H), 7.97-8.01 (m, 2H), 8.41 (d, *J* = 7.6 Hz, 2H); ¹³C NMR (CD₃OD, 100 MHz) δ : 19.6, 22.5, 24.6, 71.0, 76.9, 87.9, 121.9, 122.9, 127.6, 129.4, 132.8, 136.9, 138.2, 150.3, 155.1, 169.3; HRMS (ESI-TOF) m/z: Calcd. for C₃₆H₃₆N₆NaO₄ [M+Na]⁺: 639.2687; Found: 639.2676.

L1c (Prepared according to general procedure A): White solid, M.p. 257.9-258.6 °C, $[\alpha]_D^{20} = -64.3$ (*c* 0.60 CHCl₃); overall yield 50%, >20:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 2.16 (s, 6H), 2.22-2.26 (m, 2H), 2.45-2.65 (m, 6H), 3.91-3.95 (m, 2H), 4.16-4.23 (m, 2H), 4.73-4.76 (m, 2H), 6.78 (s, 2H), 6.95 (d, *J* = 7.6 Hz, 2H), 7.09-7.17 (m, 4H), 7.28 (s, 2H), 7.70-7.72 (m, 2H), 7.98-8.02 (m, 2H), 8.39-8.41 (m, 2H); ¹³C NMR (CD₃OD, 100 MHz) δ : 20.0, 22.4, 24.6, 70.9, 77.0, 87.9, 119.9, 121.9, 123.5, 127.5, 128.7, 135.3, 138.1, 139.2, 150.3, 155.1, 169.4; HRMS (ESI-TOF) m/z: Calcd. for C₃₆H₃₆N₆NaO₄ [M+Na]⁺: 639.2690; Found: 639.2689.

L1d (Prepared according to general procedure A): White solid, M.p. 258.9-259.7 °C, $[\alpha]_D^{20} = -$

89.5 (*c* 0.60 CHCl₃); overall yield 48%, >20:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 1.00-1.04 (m, 6H), 2.23-2.28 (m, 2H), 2.41-2.65 (m, 10H), 3.92-3.96 (m, 2H), 4.15-4.22 (m, 2H), 4.75-4.78 (m, 2H), 6.74 (s, 2H), 7.01 (d, *J* = 8.8 Hz, 4H), 7.29 (d, *J* = 8.4 Hz, 4H), 7.69-7.71 (m, 2H), 7.98-8.02 (m, 2H), 8.40-8.43 (m, 2H); ¹³C NMR (CD₃OD, 100 MHz) δ : 14.5, 22.4, 24.6, 27.8, 71.0, 77.0, 87.9, 121.9, 123.0, 127.6, 128.3, 133.0, 138.2, 143.3, 150.3, 155.1, 169.4; HRMS (ESI-TOF) m/z: Calcd. for C₃₈H₄₀N₆NaO₄ [M+Na]⁺: 667.3001; Found: 667.2991.

L1e (Prepared according to general procedure A): White solid, M.p. 257.2-258.3 °C, $[\alpha]_D^{20} = -66.1$ (*c* 0.60 CHCl₃); overall yield 50%, >20:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 1.05 (s, 6H), 1.07 (s, 6H), 2.23-2.28 (m, 2H), 2.46-2.65 (m, 6H), 2.69-2.76 (m, 2H), 3.92-3.96 (m, 2H), 4.15-4.22 (m, 2H), 4.75-4.78 (m, 2H), 6.75 (s, 2H), 7.07 (d, *J* = 8.4 Hz, 4H), 7.31 (d, *J* = 8.4 Hz, 4H), 7.70-7.72 (m, 2H), 7.97-8.01 (m, 2H), 8.41-8.43 (m, 2H); ¹³C NMR (CD₃OD, 100 MHz) δ : 22.4, 22.9, 24.6, 33.5, 71.0, 76.9, 87.9, 122.0, 123.0, 126.9, 127.5, 133.1, 138.2, 147.8, 150.4, 155.2, 169.3; HRMS (ESI-TOF) m/z: Calcd. for C₄₀H₄₄N₆NaO₄ [M+Na]⁺: 695.3312; Found: 695.3294.

L1f (Prepared according to general procedure A): White solid, M.p. 247.0-247.9 °C, $[\alpha]_D^{20} = -86.7$ (*c* 0.60 CHCl₃); overall yield 53%, >20:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 1.11 (s, 18H), 2.23-2.28 (m, 2H), 2.47-2.66 (m, 6H), 3.95-3.99 (m, 2H), 4.14-4.22 (m, 2 H), 4.77-4.80 (m, 2H), 6.77 (s, 2H), 7.21 (d, *J* = 8.8 Hz, 4H), 7.34 (d, *J* = 8.8 Hz, 4H), 7.75 (d, *J* = 7.6 Hz, 2H), 7.99-8.03 (m, 2H), 8.44 (d, *J* = 7.6 Hz, 2H); ¹³C NMR (CD₃OD, 100 MHz) δ : 22.5, 24.7, 30.3, 34.0, 71.0, 76.9, 87.8, 122.0, 122.4, 125.9, 127.6, 132.9, 138.3, 149.8, 150.4, 155.2, 169.4; HRMS (ESI-TOF) m/z: Calcd. for C₄₂H₄₈N₆NaO₄ [M+Na]⁺: 723.3629; Found: 723.3629.

L1g (Prepared according to general procedure A): White solid, M.p. 257.1-258.2 °C, $[\alpha]_D^{20} = -110.6$ (*c* 0.60 CHCl₃); overall yield 53%, 15:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 2.24-2.27 (m, 2H), 2.46-2.63 (m, 6H), 3.66 (s, 6H), 3.91-3.95 (m, 2H), 4.18-4.25 (m, 2H), 4.74 (d, *J* = 9.2 Hz, 2H), 6.68 (s, 2H), 6.77-6.79 (m, 4H), 7.26-7.28 (m, 4H), 7.66 (d, *J* = 7.6 Hz, 2H), 7.98-8.02 (m, 2H), 8.42 (d, *J* = 7.6 Hz, 2H); ¹³C NMR (CD₃OD, 100 MHz) δ : 22.4, 24.5, 54.5, 71.0, 76.9, 88.4, 114.1, 121.8, 125.2, 127.6, 127.8, 138.1, 150.3, 155.1, 158.7, 169.5; HRMS (ESI-TOF) m/z: Calcd. for C₃₆H₃₆N₆NaO₆ [M+Na]⁺: 671.2581; Found: 671.2565.

L1h (Prepared according to general procedure A): White solid, M.p. 248.7-249.3 °C, $[\alpha]_D^{20} = -30.7$ (*c* 0.60 CHCl₃); overall yield 48%, >20:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 2.23-2.30 (m, 2H), 2.44-2.67 (m, 6H), 3.92-3.96 (m, 2H), 4.19-4.26 (m, 2H), 4.73-4.76 (m, 2H), 6.78 (s, 2H), 7.00-7.04 (m, 4H), 7.42-7.46 (m, 4H), 7.70-7.72 (m, 2H), 8.00-8.04 (m, 2H), 8.39-8.41 (m, 2H); ¹³C NMR (CD₃OD, 100 MHz) δ : 22.4, 24.6, 71.0, 76.8, 87.9, 115.6 (d, $J_{CF} = 23.1$ Hz), 122.0, 125.3 (d, $J_{CF} = 8.3$ Hz), 127.7, 131.5 (d, $J_{CF} = 3.4$ Hz), 138.2, 150.1, 155.1, 161.6 (d, $J_{CF} = 245.3$ Hz), 169.4; HRMS (ESI-TOF) m/z: Calcd. for C₃₄H₃₀F₂N₆NaO₄ [M+Na]⁺: 647.2189; Found: 647.2189.

L1i (Prepared according to general procedure A): White solid, M.p. 255.0-255.9 °C, $[\alpha]_D^{20} = -15.9$ (*c* 0.60 CHCl₃); overall yield 49%, >20:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 2.27-2.32 (m, 2H), 2.50-2.60 (m, 4H), 2.65-2.70 (m, 2H), 3.98-4.02 (m, 2H), 4.19-4.26 (m, 2H), 4.79-4.82 (m, 2H), 6.83-6.88 (m, 2H), 6.92 (s, 2H), 7.20-7.27 (m, 4H), 7.47-7.51 (m, 2H), 7.81 (d, *J* = 7.6 Hz, 2H), 8.05-8.09 (m, 2H), 8.41-8.43 (m, 2H); ¹³C NMR (CD₃OD, 100 MHz) δ : 22.4, 24.7, 71.1, 76.9, 87.3, 109.5 (d, *J*_{CF} = 26.0 Hz), 113.0 (d, *J*_{CF} = 22.1 Hz), 117.5 (d, *J*_{CF} = 3.1 Hz), 122.1, 127.7, 130.4 (d, *J*_{CF} = 9.0 Hz), 137.1 (d, *J*_{CF} = 10.0 Hz), 138.3, 150.0, 155.2, 162.8 (d, *J*_{CF} = 244.3 Hz), 169.4; HRMS (ESI-TOF) m/z: Calcd. for C₃₄H₃₀F₂N₆NaO₄ [M+Na]⁺: 647.2186; Found: 647.2173.

L1j (Prepared according to general procedure A): White solid, M.p. 252.0-252.5 °C, $[\alpha]_D^{20} = -318.6$ (*c* 0.60 CHCl₃); overall yield 46%, 20:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 2.23-2.30 (m, 2H), 2.43-2.68 (m, 6H), 3.98-4.02 (m, 2H), 4.26-4.33 (m, 2H), 4.80-4.83 (m, 2H), 6.63 (s, 2H), 7.03-7.07 (m, 2H), 7.17-7.25 (m, 4H), 7.29-7.35 (m, 2H), 7.67-7.69 (m, 2H), 7.99-8.03 (m, 2H), 8.50-8.52 (m, 2H); ¹³C NMR (CD₃OD, 100 MHz) δ : 22.5, 24.6, 71.2, 76.4, 88.0, 116.4 (d, $J_{CF} = 20.2$ Hz), 121.8 (d, $J_{CF} = 11.1$ Hz), 122.1, 124.7 (d, $J_{CF} = 4.3$ Hz), 127.7, 128.6, 130.4 (d, $J_{CF} = 8.2$ Hz), 138.3, 150.1, 155.2, 158.7 (d, $J_{CF} = 249.1$ Hz), 169.7; HRMS (ESI-TOF) m/z: Calcd. for C₃₄H₃₀F₂N₆NaO₄ [M+Na]⁺: 647.2189; Found: 647.2187.

L1k (Prepared according to general procedure A): White solid, M.p. 258.2-258.9 °C, $[\alpha]_D^{20} = -20.2$ (*c* 0.20 CHCl₃); overall yield 50%, >20:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 2.25-2.30 (m, 2H), 2.46-2.70 (m, 6H), 3.95-3.99 (m, 2H), 4.17-4.24 (m, 2H), 4.75-4.78 (m, 2H), 6.83 (s, 2H), 7.11-7.15 (m, 4H), 7.39-7.43 (m, 4H), 7.76 (d, *J* = 7.6 Hz, 2H), 8.02-8.06 (m, 2H), 8.40 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (CD₃OD, 100 MHz) δ : 22.5, 24.7, 71.0, 76.8, 87.4, 122.1, 123.9, 127.8, 128.9, 131.7, 134.2, 138.3, 150.0, 155.1, 169.4; HRMS (ESI-TOF) m/z: Calcd. for C₃₄H₃₀Cl₂N₆NaO₄ [M+Na]⁺: 679.1593; Found: 679.1582.

L11 (Prepared according to general procedure A): White solid, M.p. 260.5-261.7 °C, $[\alpha]_D^{20} =$ +97.6 (*c* 0.20 CHCl₃); overall yield 49%, 18:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 2.25-2.30 (m, 2H), 2.46-2.69 (m, 6H), 3.93-3.97 (m, 2H), 4.17-4.24 (m, 2H), 4.75-4.78 (m, 2H), 6.88 (d, *J* = 2H), 7.06-7.09 (m, 2H), 7.15-7.19 (m, 2H), 7.28-7.30 (m, 2H), 7.66-7.67 (m, 2H), 7.77 (d, *J* = 7.6 Hz, 2H), 8.02-8.06 (m, 2H), 8.38 (d, *J* = 7.6 Hz, 2H); ¹³C NMR (CD₃OD, 100 MHz) δ : 22.4, 24.7, 71.0, 76.8, 87.2, 120.4, 122.1, 122.5, 126.4, 127.7, 130.2, 134.4, 136.8, 138.3, 150.0, 155.2, 169.4; HRMS (ESI-TOF) m/z: Calcd. for C₃₄H₃₀Cl₂N₆NaO₄ [M+Na]⁺: 679.1598; Found: 679.1595.

L1m (Prepared according to general procedure A): White solid, M.p. 260.9-261.6 °C, $[\alpha]_D^{20} = -80.2$ (*c* 0.60 CHCl₃); overall yield 51%, >20:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 2.23-2.28 (m, 2H), 2.44-2.68 (m, 6H), 3.92-3.96 (m, 2H), 4.15-4.22 (m, 2H), 4.72-4.75 (m, 2H), 6.81 (s, 2H), 7.25-7.28 (m, 4H), 7.32-7.35 (m, 4H), 7.74 (d, *J* = 8.1 Hz, 2H), 8.01-8.04 (m, 2H), 8.37 (d, *J* = 8.2 Hz, 2H); ¹³C NMR (CD₃OD, 100 MHz) δ : 22.4, 24.7, 71.0, 76.8, 87.3, 119.5, 122.1, 124.0, 127.7, 131.9, 134.7, 138.3, 150.1, 155.1, 169.2; HRMS (ESI-TOF) m/z: Calcd. for C₃₄H₃₀Br₂N₆NaO₄ [M+Na]⁺: 767.0579; Found: 767.0561.

L1n (Prepared according to general procedure A): White solid, M.p. 248.2-248.8 °C, $[\alpha]_D^{20} = -21.9$ (*c* 0.20 CHCl₃); overall yield 51%, >20:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 2.65-2.72 (m, 2H), 2.84-2.91 (m, 2H), 3.95 (d, J = 12.0 Hz, 2H), 4.42-4.46 (m, 2H), 4.65 (d, J = 6.0 Hz, 2H), 4.97-5.00 (m, 2H), 6.80 (s, 2H), 7.13-7.17 (m, 2H), 7.24-7.28 (m, 4H), 7.39-7.42 (m, 4H), 7.70 (d, J = 7.2 Hz, 2H), 7.97-8.01 (m, 2H), 8.37 (d, J = 8.0 Hz, 2H); ¹³C NMR (CD₃OD, 100 MHz) δ : 35.5, 70.0, 76.3, 76.7, 88.1, 122.2, 122.9, 126.8, 127.7, 128.9, 135.3, 138.2, 149.8, 155.2, 168.7; HRMS (ESI-TOF) m/z: Calcd. for C₃₄H₃₂N₆NaO₆ [M+Na]⁺: 643.2271; Found: 643.2262.

L4a (Prepared according to general procedure A): White solid, M.p. 195.8-196.2 °C, $[\alpha]_D^{20} =$ +6.8 (*c* 0.60, CHCl₃); overall yield 37%, >20:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 2.20-2.25 (m, 2H), 2.42-2.59 (m, 6H), 3.83-3.87 (m, 2H), 3.99-4.06 (m, 2H), 4.48-4.51 (m, 2H), 6.76 (s, 2H), 7.14-7.18 (m, 2H), 7.29-7.33 (m, 4H), 7.50-7.57 (m, 8H), 7.72 (d, *J* = 7.2 Hz, 2H), 7.77 (s, 2H); ¹³C NMR (CD₃OD, 100 MHz) δ : 22.4, 24.2, 70.6, 76.4, 88.5, 122.6, 126.6, 128.8, 129.0, 129.1, 131.3, 135.6, 140.6, 167.7; HRMS (ESI-TOF) m/z: Calcd. for C₃₆H₃₄N₄NaO₄ [M+Na]⁺: 609.2472; Found: 609.2467.

L6a (Prepared according to general procedure A): White solid, M.p. 180.6-181.2 °C, $[\alpha]_D^{20} =$ +26.8 (*c* 0.60, CHCl₃); overall yield 41%, 12:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 2.33-2.39 (m, 2H), 2.48-2.64 (m, 6H), 4.18-4.33 (m, 4H), 4.89-4.93 (m, 2H), 7.21-7.25 (m, 2H), 7.33-7.40 (m, 5H), 7.50-7.59 (m, 8H), 7.84-7.86 (m, 1H); ¹³C NMR (CD₃OD, 100 MHz) δ : 22.1, 24.3, 69.3, 73.4, 85.7, 121.7, 126.6, 126.7, 129.0, 130.0, 130.8, 131.3, 165.9; HRMS (ESI-TOF) m/z: Calcd. for C₃₀H₃₀N₄NaO₄ [M+Na]⁺: 533.2159; Found: 533.2156.

4. General procedure for preparation of chiral bipyridine-NO ligands L2

In a sealed tube equipped with a magnetic stirring bar, bipyridine-carbaldehyde 2 (1.0 mmol) and optically pure 4-hydroxyprolinamide or prolinamide 1 (1.2 mmol, 1.2 equiv) were added. Then, anhydrous ethanol (8.0 mL) was added and the reaction was heated with stirring at reflux for 12 h. After completion of the reaction, as indicated by TLC, the aftertreatment residue was purified by flash column chromatography to give the intermediate 4.

For the oxidation step, see: X. Liu, L. Lin and X. Feng, Chiral N,N'-dioxide ligands: synthesis, coordination chemistry and asymmetric catalysis, *Org. Chem. Front.*, 2014, **1**, 298-302. In a sealed tube equipped with a magnetic stirring bar, to the intermediate **4** was added 3.0 mL of DCM and *m*-CPBA (1.2 eq). The reaction mixture was stirred at 0 °C for 20 min. After completion of the reaction, as indicated by TLC, the aftertreatment residue was purified by flash column chromatography to furnish the bipyridine-NO ligand **L2**.

5. Characterization data of bipyridine-NO ligands L2

L2a: White solid, M.p. 181.9-182.2 °C, $[\alpha]_D^{20} = -40.9$ (*c* 0.60, CHCl₃); overall yield 52%, >20:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 2.23-2.29 (m, 1H), 2.45-2.65 (m, 3H), 3.93-3.97 (m, 1H), 4.18-4.25 (m, 1H), 4.77-4.80 (m, 1H), 6.81 (s, 1H), 7.15-7.20 (m, 1H), 7.27-7.32 (m, 2H), 7.39-7.42 (m, 1H), 7.44-7.47 (m, 2H), 7.68-7.70 (m, 1H), 7.88-7.93 (m, 1H), 7.97-8.00 (m, 1H), 8.34 (d, J = 8.0 Hz, 1H), 8.43-8.45 (m, 1H), 8.61-8.63 (m, 1H); ¹³C NMR (CD₃OD, 100 MHz) δ : 22.4, 24.5, 70.9, 76.8, 87.8, 120.9, 121.8, 122.9, 124.3, 126.8, 127.2, 129.0, 135.5, 137.4, 137.9, 148.9, 150.0, 155.0, 155.8, 169.4; HRMS (ESI-TOF) m/z: Calcd. for C₂₂H₂₀N₄NaO₂ [M+Na]⁺: 395.1478; Found: 395.1478.

L2b: White solid, M.p. 183.1-183.9 °C, $[\alpha]_D^{20} = -113.6$ (*c* 0.60, CHCl₃); overall yield 50%, >20:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 2.64-2.71 (m, 1H), 2.85-2.92 (m, 1H), 3.98-4.01 (m, 1H), 4.44-4.48 (m, 1H), 4.66-4.69 (m, 1H), 5.00-5.03 (m, 1H), 6.81 (s, 1H), 7.16-7.20 (m, 1H), 7.27-7.32 (m, 2H), 7.40-7.45 (m, 3H), 7.68-7.70 (m, 1H), 7.89-7.94 (m, 1H), 7.97-8.01 (m, 1H), 8.33-8.36 (m, 1H), 8.44-8.46 (m, 1H), 8.62-8.64 (m, 1H); ¹³C NMR (CD₃OD, 100 MHz) δ : 35.5, 70.0, 76.4, 76.6, 88.2, 120.9, 122.0, 123.0, 124.3, 126.8, 127.4, 128.9, 135.3, 137.4, 138.0, 148.9, 149.5, 155.0, 155.9, 168.7; HRMS (ESI-TOF) m/z: Calcd. for C₂₂H₂₀N₄NaO₃ [M+Na]⁺: 411.1428; Found: 411.1427.

L2c: White solid, M.p. 185.7-186.6 °C, $[\alpha]_D^{20} = -87.5$ (*c* 0.60, CHCl₃); overall yield 52%, >20:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 2.25-2.30 (m, 1H), 2.46-2.65 (m, 3H), 3.93-3.97 (m, 1H), 4.18-4.25 (m, 1H), 4.76-4.79 (m, 1H), 6.83 (s, 1H), 7.28-7.31 (m, 2H), 7.38-7.42 (m, 1H), 7.47-7.51 (m, 2H), 7.71-7.74 (m, 1H), 7.88-7.92 (m, 1H), 7.99-8.03 (m, 1H), 8.30-8.33 (m, 1H), 8.44-8.46 (m, 1H), 8.61-8.63 (m, 1H); ¹³C NMR (CD₃OD, 100 MHz) δ : 22.4, 24.6, 70.9, 76.7, 87.5, 120.9, 122.0, 124.1, 124.3, 127.3, 129.0, 132.0, 134.3, 137.4, 138.0, 149.0, 149.8, 154.9, 155.9,

169.4; HRMS (ESI-TOF) m/z: Calcd. for C₂₂H₁₉ClN₄NaO₂ [M+Na]⁺: 429.1089; Found: 429.1095.

L2d: White solid, M.p. 187.6-188.0 °C, $[\alpha]_D^{20} = -51.2$ (*c* 0.60, CHCl₃); overall yield 51%, >20:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 2.66-2.73 (m, 1H), 2.86-2.92 (m, 1H), 3.98-4.01 (m, 1H), 4.43-4.48 (m, 1H), 4.66-4.70 (m, 1H), 5.00-5.03 (m, 1H), 6.83 (s, 1H), 7.27-7.31 (m, 2H), 7.39-7.42 (m, 1H), 7.44-7.48 (m, 2H), 7.71-7.73 (m, 1H), 7.88-7.92 (m, 1H), 7.99-8.03 (m, 1H), 8.30-8.33 (m, 1H), 8.45-8.47 (m, 1H), 8.62-8.63 (m, 1H); ¹³C NMR (CD₃OD, 100 MHz) δ : 35.5, 70.0, 76.4, 76.5, 87.9, 120.9, 122.1, 124.2, 124.4, 127.5, 129.0, 132.0, 134.1, 137.4, 138.1, 149.0, 149.3, 154.9, 156.0, 168.6; HRMS (ESI-TOF) m/z: Calcd. for C₂₂H₁₉ClN₄NaO₃ [M+Na]⁺: 445.1038; Found: 445.1039.

4a: White solid, M.p. 183.9-185.0 °C, $[\alpha]_D^{20} = +39.3$ (*c* 0.60, CHCl₃); yield 81%, >20:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 1.82-1.90 (m, 1H), 1.91-1.97 (m, 1H), 2.13-2.30 (m, 2H), 3.05-3.12 (m, 1H), 3.44-3.49 (m, 1H), 4.34-4.37 (m, 1H), 6.11 (s, 1H), 7.09-7.13 (m, 1H), 7.25-7.29 (m, 2H), 7.38-7.41 (m, 1H), 7.46-7.49 (m, 3H), 7.87-7.91 (m, 2H), 8.25-8.31 (m, 2H), 8.59-8.61 (m, 1H); ¹³C NMR (CD₃OD, 100 MHz) δ : 24.4, 27.4, 55.8, 65.1, 84.1, 120.3, 121.1, 121.9, 122.6, 124.1, 125.7, 128.7, 137.0, 137.4, 138.3, 148.8, 155.4, 155.6, 157.0, 175.9; HRMS (ESI-TOF) m/z: Calcd. for C₂₂H₂₀N₄NaO [M+Na]⁺: 379.1529; Found: 379.1532.

4c: White solid, M.p. 186.4-187.9 °C, $[\alpha]_D^{20} = +47.0$ (*c* 0.60, CHCl₃); yield 81%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.79-1.88 (m, 2H), 2.14-2.20 (m, 2H), 2.87-2.93 (m, 1H), 3.41-3.46 (m, 1H), 4.19-4.22 (m, 1H), 5.71 (s, 1H), 7.13-7.16 (m, 2H), 7.19-7.24 (m, 2H), 7.36-7.40 (m, 2H),

7.68-7.75 (m, 2H), 8.21 (d, J = 8.0 Hz, 1H), 8.28-8.30 (m, 1H), 8.55-8.57 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 23.9, 26.7, 55.4, 63.8, 83.3, 119.6, 119.7, 120.3, 121.6, 123.0, 128.0, 129.3, 135.3, 136.0, 137.3, 148.0, 154.4, 155.3, 155.8, 174.5; HRMS (ESI-TOF) m/z: Calcd. for $C_{22}H_{19}ClN_4NaO[M+Na]^+$: 413.1140; Found: 413.1135.

6. General procedure for preparation of chiral ligand L5a

In a sealed tube equipped with a magnetic stirring bar, bipyridine-dicarbaldehyde 2 (1.0 mmol) and optically pure prolinamide 1 (2.4 mmol, 2.4 equiv) were added. Then, ethanol (6.0 mL) was added and the reaction was heated with stirring at reflux for 12 h. After completion of the reaction, as indicated by TLC, the aftertreatment residue was purified by flash column chromatography to give the intermediate **3**.

For the oxidation step, see: X. Liu, L. Lin and X. Feng, Chiral N,N'-dioxide ligands: synthesis, coordination chemistry and asymmetric catalysis, *Org. Chem. Front.*, 2014, **1**, 298-302. In a sealed tube equipped with a magnetic stirring bar, to the intermediate **3** was added 3.0 mL of DCM and *m*-CPBA (1.0 eq). The reaction mixture was stirred at 0 °C for 20 min. After completion of the reaction, as indicated by TLC, the aftertreatment residue was purified by flash column chromatography to furnish the chiral ligand **L5a**.

7. Characterization data of chiral ligand L5a

L5a: White solid, M.p. 238.2-238.8 °C, $[\alpha]_D^{20} = -56.4$ (*c* 0.60, CHCl₃); yield 36%, 12:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 1.84-1.87 (m, 1H), 1.92-1.96 (m, 1H), 2.13-2.28 (m, 3H), 2.46-2.61 (m, 3H), 3.03-3.09 (m, 1H), 3.41-3.47 (m, 1H), 3.91-3.95 (m, 1H), 4.16-4.21 (m, 1H), 4.29-4.32 (m, 1H), 4.72 (d, J = 8.8 Hz, 1H), 6.10 (s, 1H), 6.77 (s, 1H), 7.06-7.10 (m, 1H), 7.13-7.17 (m, 1H), 7.22-7.28 (m, 4H), 7.40-7.50 (m, 5H), 7.66 (d, J = 7.6 Hz, 1H), 7.87-7.91 (m, 1H), 7.93-7.97 (m,

1H), 8.24 (d, J = 8.0 Hz, 1H), 8.36 (d, J = 8.0 Hz, 1H); ¹³C NMR (CD₃OD, 100 MHz) δ : 22.4, 24.4, 24.5, 27.4, 55.7, 65.0, 70.9, 76.8, 84.1, 87.8, 120.2, 121.9, 122.2, 122.5, 123.0, 125.6, 126.8, 127.3, 128.6, 128.9, 135.4, 137.1, 137.9, 138.5, 150.0, 154.9, 155.5, 157.2, 169.4, 175.8; HRMS (ESI-TOF) m/z: Calcd. for C₃₄H₃₂N₆NaO₃ [M+Na]⁺: 595.2481; Found: 595.2492.

8. Catalytic asymmetric synthesis of compounds 7

In a sealed tube equipped with a magnetic stirring bar, to the mixture of Ni(OTf)₂ (3.0 mol %), L1a (3.3 mol %) in 3.0 mL of CH_2Cl_2 was added 5 (0.30 mmol), and 6 (0.20 mmol). The reaction mixture was stirred at room temperature for 16 h and was directly loaded onto a silica gel and purified by flash chromatography to give the desired product 7, using hexane/EtOAc (10/1, v/v) as the eluent.

9. Characterization data of compounds 7

7a: Product in accordance with literature characterization data¹. Light yellow solid, M.p. 94.6-95.2 °C, 93% yield, 99% ee, $[\alpha]_D^{20} = -26.0$ (*c* 0.71, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IA column (95/5 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 30.64$ min; $\tau_{minor} = 39.17$ min); ¹H NMR (CDCl₃, 400 MHz) δ : 1.16-1.20 (m, 3H), 3.48-3.63 (m, 2H), 4.09-4.15 (m, 2H), 4.81-4.85 (m, 1H), 6.91-6.96 (m, 2H), 7.04-7.11 (m, 2H), 7.16-7.26 (m, 5H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.97 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 12.9, 36.8, 44.6, 61.5, 110.2, 118.3, 118.4, 121.2, 125.5, 126.7, 127.5, 135.5, 142.2, 159.9, 192.1.

7b: Product in accordance with literature characterization data¹. Light yellow solid, M.p. 111.7-112.2 °C, 85% yield, 94% ee, $[\alpha]_D^{20} = -76.0$ (*c* 0.57, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IA column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 14.98$ min; $\tau_{minor} = 19.82$ min); ¹H NMR (CDCl₃, 400 MHz) δ : 1.15-1.19 (m, 3H), 2.19 (s, 3H), 3.45-3.60 (m, 2H), 4.08-4.14 (m, 2H), 4.77-4.81 (m, 1H), 6.88-6.99 (m, 4H), 7.03-7.07 (m, 1H), 7.11 (s, 1H), 7.13 (d, *J* = 3.2 Hz, 1H), 7.19 (d, *J* = 8.0 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.94 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 12.8, 19.9, 36.4, 44.7, 61.4, 110.1, 118.3, 118.4, 121.1, 126.6, 128.2, 135.0, 135.5, 139.2, 160.0, 192.3.

7c: Light yellow solid, M.p. 109.7-110.3 °C, 85% yield, 94% ee, $[α]_D^{20} = -23.0$ (*c* 0.51, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IA column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; $τ_{major} = 15.28$ min; $τ_{minor} = 22.12$ min); ¹H NMR (CDCl₃, 400 MHz) δ: 1.17-1.21 (m, 3H), 3.45-3.60 (m, 2H), 4.11-4.16 (m, 2H), 4.79-4.83 (m, 1H), 6.83-6.87 (m, 3H), 6.90-6.96 (m, 1H), 7.05-7.09 (m, 1H), 7.17-7.23 (m, 3H), 7.29 (d, *J* = 8.0 Hz, 1H), 8.01 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 12.8, 36.0, 44.6, 61.5, 110.2, 114.3 (d, *J*_{CF} = 21.3 Hz), 117.0, 118.3 (d, *J*_{CF} = 28.0 Hz), 120.5, 121.3, 125.2, 128.2 (d, *J*_{CF} = 8.3 Hz), 135.6, 137.9, 138.0, 159.9, 160.6 (d, *J*_{CF} = 243.3 Hz), 192.0; HRMS (ESI-TOF) m/z: Calcd. for C₂₀H₁₈FNNaO₃ [M+Na]⁺: 362.1163; Found: 362.1158.

7d: Product in accordance with literature characterization data¹. Light yellow solid, M.p. 110.5-111.1 °C, 92% yield, 97% ee, $[α]_D^{20} = -21.1$ (*c* 0.40, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IB column (95/5 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; $τ_{major} = 27.59$ min; $τ_{minor} = 34.96$ min); ¹H NMR (CDCl₃, 400 MHz) δ : 1.17-1.21 (m, 3H), 3.36-3.42 (m, 1H), 3.59-3.65 (m, 1H), 4.12-4.18 (m, 1H), 5.34-5.37 (m, 1H), 6.92-6.96 (m, 2H), 7.00-

7.12 (m, 4H), 7.19 (d, *J* = 8.4 Hz, 1H), 7.27-7.30 (m, 1H), 7.35 (d, *J* = 8.4 Hz, 1H), 8.02 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 12.9, 33.2, 43.6, 61.5, 110.2, 115.7, 118.3, 118.5, 121.2, 121.3, 125.4, 126.0, 126.9, 128.0, 128.7, 132.4, 135.5, 139.5, 159.9, 191.8.

7e: Product in accordance with literature characterization data¹. Light yellow solid, M.p. 103.6-104.2 °C, 93% yield, 99% ee, $[\alpha]_D^{20} = -28.2$ (*c* 0.60, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IB column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 23.16$ min; $\tau_{minor} = 12.46$ min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 1.21-1.24 (m, 3H), 3.55-3.62 (m, 1H), 3.70-3.76 (m, 1H), 4.16-4.21 (m, 2H), 4.70-4.73 (m, 1H), 6.89-6.92 (m, 1H), 7.02-7.06 (m, 1H), 7.30-7.44 (m, 7H), 10.94 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 14.2, 36.9, 45.1, 62.3, 111.9, 117.1, 118.9, 119.0, 119.5, 121.6, 122.6, 126.5, 130.4, 131.5, 136.9, 144.4, 161.0, 193.0.

7f: Light yellow solid, M.p. 91.7-92.9 °C, 90% yield, 97% ee, $[α]_D^{20} = -25.7$ (*c* 0.30, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IB column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; $τ_{major} = 15.01$ min; $τ_{minor} = 18.49$ min); ¹H NMR (CDCl₃, 400 MHz) δ: 1.19-1.22 (m, 3H), 3.34-3.40 (m, 1H), 3.59-3.65 (m, 1H), 4.14-4.19 (m, 2H), 5.32-5.36 (m, 1H), 6.93-6.98 (m, 3H), 7.04-7.12 (m, 3H), 7.22 (d, *J* = 8.0 Hz, 1H), 7.36 (d, *J* = 7.6 Hz, 1H), 7.48-7.51 (m, 1H), 8.01 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 12.9, 36.0, 43.7, 61.5, 110.2, 115.9, 118.4, 118.6, 121.1, 121.4, 123.2, 125.5, 126.7, 127.2, 128.2, 132.0, 135.5, 141.1, 159.9, 191.6; HRMS (ESI-TOF) m/z: Calcd. for C₂₀H₁₈BrNNaO₃ [M+Na]⁺: 422.0362; Found: 422.0362.

7g: Product in accordance with literature characterization data¹. Light yellow solid, M.p. 87.9-

88.7 °C, 90% yield, 95% ee, $[\alpha]_D^{20} = -51.3$ (*c* 0.60, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IE column (95/5 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 32.24$ min; $\tau_{minor} = 39.12$ min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 1.19-1.23 (m, 3H), 3.53-3.60 (m, 1H), 3.64-3.75 (m, 4H), 4.15-4.20 (m, 2H), 4.67-4.71 (m, 1H), 6.68-6.71 (m, 1H), 6.86 (d, J = 2.4 Hz, 1H), 7.11-7.15 (m, 1H), 7.20-7.26 (m, 4H), 7.36 (d, J = 7.2 Hz, 2H), 10.74 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 14.2, 37.5, 45.4, 55.8, 62.3, 101.2, 111.4, 112.5, 117.4, 123.2, 126.5, 127.0, 128.1, 128.7, 132.0, 144.8, 153.4, 161.1, 193.3.

7h: Light yellow solid, M.p. 103.8-104.6 °C, 93% yield, 96% ee, $[α]_D^{20} = -46.0$ (*c* 0.27, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IF column (97/3 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; $τ_{major} = 42.95$ min; $τ_{minor} = 59.98$ min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 1.21-1.24 (m, 3H), 3.54-3.60 (m, 1H), 3.66-3.75 (m, 4H), 4.16-4.22 (m, 2H), 4.65-4.69 (m, 1H), 6.69-6.72 (m, 1H), 6.86 (d, *J* = 2.4 Hz, 1H), 7.21-7.23 (m, 2H), 7.32-7.34 (m, 2H), 7.41-7.45 (m, 2H), 10.77 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 14.2, 36.8, 45.1, 55.8, 62.3, 101.2, 111.5, 112.6, 116.9, 119.5, 123.3, 126.8, 130.4, 131.5, 132.0, 144.3, 153.4, 161.0, 193.1; HRMS (ESI-TOF) m/z: Calcd. for C₂₁H₂₀BrNNaO₄ [M+Na]⁺: 452.0468; Found: 452.0474.

7i: Light yellow solid, M.p. 101.7-102.9 °C, 93% yield, 92% ee, $[α]_D^{20} = -40.3$ (*c* 0.35, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak ID column (85/15 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; $τ_{major} = 9.84$ min; $τ_{minor} = 14.91$ min); ¹H NMR (CDCl₃, 400 MHz) δ: 1.18-1.22 (m, 3H), 3.33-3.39 (m, 1H), 3.57-3.63 (m, 1H), 3.67 (s, 3H), 4.13-4.19 (m, 2H), 5.26-5.30 (m, 1H), 6.70-6.73 (m, 1H), 6.82 (d, J = 2.4 Hz, 1H), 6.91-6.96 (m, 2H), 7.04-7.12 (m, 3H), 7.47-7.49 (m, 1H), 7.97 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 12.6, 35.6, 43.5, 54.5, 61.3, 100.0, 110.6, 111.1, 115.5, 121.4, 122.9, 125.6, 126.5, 126.9, 127.9, 130.3, 131.7, 140.9, 152.6, 159.6, 191.4; HRMS (ESI-TOF) m/z: Calcd. for C₂₁H₂₀BrNNaO₄ [M+Na]⁺: 452.0468; Found: 452.0464.

7j: Light yellow solid, M.p. 90.9-91.6 °C, 92% yield, 91% ee, $[\alpha]_D^{20} = -34.1$ (*c* 0.40, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak ID column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 14.46$ min; $\tau_{minor} = 21.64$ min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 1.21-1.24 (m, 3H), 3.54-3.60 (m, 1H), 3.66-3.75 (m, 4H), 4.16-4.22 (m, 2H), 4.67-4.70 (m, 1H), 6.69-6.72 (m, 1H), 6.86 (d, *J* = 2.4 Hz, 1H), 6.69-6.72 (m, 1H), 6.86 (d, *J* = 2.4 Hz, 1H), 7.21-7.23 (m, 2H), 7.29-7.31 (m, 2H), 7.38-7.41 (m, 2H), 10.77 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 14.2, 36.8, 45.1, 55.8, 62.3, 101.2, 111.5, 112.5, 117.0, 123.3, 126.8, 128.6, 130.0, 131.0, 132.0, 143.9, 153.4, 161.0, 193.1; HRMS (ESI-TOF) m/z: Calcd. for C₂₁H₂₀ClNNaO₄ [M+Na]⁺: 408.0973; Found: 408.0973.

7k: Light yellow solid, M.p. 89.9-90.6 °C, 93% yield, 92% ee, $[α]_D^{20} = -36.1$ (*c* 0.24, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak ID column (85/15 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; $τ_{major} = 9.59$ min; $τ_{minor} = 13.82$ min); ¹H NMR (CDCl₃, 400 MHz) δ: 1.19-1.22 (m, 3H), 3.36-3.42 (m, 1H), 3.59-3.65 (m, 1H), 3.67 (s, 3H), 4.14-4.19 (m, 1H), 5.29-5.32 (m, 1H), 6.71-6.73 (m, 1H), 6.81 (d, J = 2.4 Hz, 1H), 6.92 (d, J = 2.4 Hz, 1H), 7.02-7.04 (m, 2H), 7.10-7.14 (m, 2H), 7.28-7.30 (m, 1H), 7.93 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 12.9, 33.1, 43.5, 54.7, 61.5, 100.2, 110.9, 111.4, 121.6, 125.9, 126.1, 126.9, 128.0, 128.7, 130.6, 132.4, 139.5, 152.9, 159.9, 191.7; HRMS (ESI-TOF) m/z: Calcd. for C₂₁H₂₀ClNNaO₄ [M+Na]⁺: 408.0973; Found: 408.0973.

71: Light yellow solid, M.p. 91.3-92.2 °C, 87% yield, 95% ee, $[\alpha]_D^{20} = -50.2$ (*c* 0.27, CHCl₃);

The ee was determined by HPLC analysis using a Chiralpak IA column (85/15 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 10.91$ min; $\tau_{minor} = 18.15$ min); ¹H NMR (CDCl₃, 400 MHz) δ : 1.20-1.23 (m, 3H), 3.35-3.41 (m, 1H), 3.58-3.65 (m, 1H), 3.69 (s, 3H), 4.15-4.20 (m, 2H), 5.32-5.35 (m, 1H), 6.72-6.77 (m, 2H), 6.92-6.98 (m, 2H), 7.03-7.05 (m, 1H), 7.11 (d, J = 8.8 Hz, 1H), 7.21-7.23 (m, 1H), 7.97 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 12.7, 33.8, 43.1, 54.6, 61.4, 99.9, 110.7, 111.3, 115.0, 121.5, 125.5, 125.9, 126.1, 127.5, 130.4, 130.5, 132.1, 141.8, 152.8, 159.6, 191.2; HRMS (ESI-TOF) m/z: Calcd. for C₂₁H₁₉Cl₂NNaO₄ [M+Na]⁺: 442.0583; Found: 442.0586.

7m: Light yellow solid, M.p. 111.3-112.9 °C, 93% yield, 92% ee, $[\alpha]_D^{20} = -39.2$ (*c* 0.31, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IC column (97/3 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 16.49$ min; $\tau_{minor} = 18.34$ min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 1.22-1.25 (m, 3H), 3.49-3.55 (m, 1H), 3.77-3.83 (m, 1H), 4.18-4.24 (m, 2H), 5.18-5.22 (m, 1H), 6.95-6.98 (m, 1H), 7.17-7.24 (m, 2H), 7.33-7.44 (m, 5H), 11.14 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 19.0, 38.3, 49.3, 67.1, 116.4, 121.4, 124.2, 124.9, 129.3, 130.1, 131.3, 132.6, 133.2, 134.4, 134.6, 137.6, 141.9, 146.2, 165.5, 197.3; HRMS (ESI-TOF) m/z: Calcd. for C₂₀H₁₇Cl₂NNaO₃ [M+Na]⁺: 412.0478; Found: 412.0477.

7n: Light yellow solid, M.p. 98.1-99.5 °C, 89% yield, 91% ee, $[\alpha]_D^{20} = -30.2$ (*c* 0.19, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IC column (95/5 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 19.28$ min; $\tau_{minor} = 17.69$ min); ¹H NMR (CDCl₃, 400 MHz) δ : 1.18-1.22 (m, 3H), 2.20 (s, 3H), 3.43-3.59 (m, 2H), 4.12-4.17 (m, 2H), 4.73-4.77 (m, 1H), 6.88-6.93 (m, 2H), 6.98 (d, J = 8.0 Hz, 2H), 7.09 (d, J = 8.0 Hz, 2H), 7.17-7.20 (m, 2H), 7.98 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 11.8, 18.9, 35.2, 43.5, 60.5, 109.0, 118.1, 118.2, 120.0, 125.5, 127.2, 134.2, 134.8, 137.9, 158.9, 191.0; HRMS (ESI-TOF) m/z: Calcd. for C₂₁H₂₀ClNNaO₃ [M+Na]⁺: 392.1024; Found: 392.1027.

70: Light yellow solid, M.p. 100.6-101.9 °C, 88% yield, 90% ee, $[\alpha]_D^{20} = -37.5$ (*c* 0.17, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IE column (95/5 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 15.85$ min; $\tau_{minor} = 14.34$ min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 1.21-1.25 (m, 3H), 3.54-3.60 (m, 1H), 3.69-3.76 (m, 1H), 4.17-4.22 (m, 2H), 4.70-4.74 (m, 1H), 6.92-6.94 (m, 1H), 7.04-7.09 (m, 2H), 7.36-7.40 (m, 5H), 11.08 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 19.0, 41.2, 50.1, 67.0, 116.3, 120.1 (d, *J*_{CF} = 21.0 Hz), 122.6, 123.9, 125.2, 128.5, 130.1, 131.2, 134.6 (d, *J*_{CF} = 7.8 Hz), 142.0, 145.6, 165.7, 165.9 (d, *J*_{CF} = 240.1 Hz), 197.7; HRMS (ESI-TOF) m/z: Calcd. for C₂₀H₁₇ClFNNaO₃ [M+Na]⁺: 396.0773; Found: 396.0780.

7p: Light yellow solid, M.p. 101.6-102.7 °C, 92% yield, 91% ee, $[\alpha]_D^{20} = -41.2$ (*c* 0.32, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IC column (97/3 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 17.17$ min; $\tau_{minor} = 14.59$ min); ¹H NMR (CDCl₃, 400 MHz) δ : 1.20-1.23 (m, 3H), 3.44-3.50 (m, 1H), 3.54-3.60 (m, 1H), 4.14-4.20 (m, 2H), 4.77-4.81 (m, 1H), 6.77-6.82 (m, 1H), 6.87-6.96 (m, 3H), 7.01 (d, J = 8.0 Hz, 1H), 7.12-7.23 (m, 3H), 8.06 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 12.9, 36.2, 44.3, 61.7, 110.2, 112.7 (d, $J_{CF} = 21.2$ Hz), 113.6 (d, $J_{CF} = 20.2$ Hz), 116.8, 119.1, 119.4, 121.1, 122.4, 123.8, 127.4, 129.0 (d, $J_{CF} = 8.1$ Hz), 135.9, 144.6, 144.7, 159.8, 161.9 (d, $J_{CF} = 241.3$ Hz), 191.6; HRMS (ESI-TOF) m/z: Calcd. for C₂₀H₁₇ClFNNaO₃ [M+Na]⁺: 396.0773; Found: 396.0770.

7q: Light yellow solid, M.p. 102.4-103.5 °C, 89% yield, 91% ee, $[\alpha]_D^{20} = -43.3$ (*c* 0.47, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IE column (95/5 hexane/*i*-PrOH; flow

rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 17.26$ min; $\tau_{minor} = 15.02$ min); ¹H NMR (DMSO- d_6 , 400 MHz) δ : 1.22-1.25 (m, 3H), 3.55-3.62 (m, 1H), 3.70-3.77 (m, 1H), 4.17-4.23 (m, 2H), 4.70-4.74 (m, 1H), 6.92-6.95 (m, 1H), 7.29 (d, J = 8.4 Hz, 2H), 7.36-7.40 (m, 5H), 11.10 (br s, 1H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ : 19.0, 41.3, 49.9, 67.1, 116.3, 122.3, 124.0, 125.1, 128.6, 130.1, 131.2, 133.4, 134.8, 135.9, 142.0, 148.4, 165.6, 197.6; HRMS (ESI-TOF) m/z: Calcd. for $C_{20}H_{17}Cl_2NNaO_3$ [M+Na]⁺: 396.0773; Found: 396.0780.

7r: Light yellow solid, M.p. 107.1-108.9 °C, 92% yield, 91% ee, $[\alpha]_D^{20} = -21.0$ (*c* 0.15, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IE column (95/5 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 19.41$ min; $\tau_{minor} = 16.46$ min); ¹H NMR (CDCl₃, 400 MHz) δ : 1.22-1.25 (m, 3H), 3.55-3.62 (m, 1H), 3.70-3.76 (m, 1H), 4.17-4.22 (m, 2H), 4.68-4.72 (m, 1H), 6.92-6.95 (m, 1H), 7.30-7.44 (m, 7H), 11.10 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 14.2, 36.6, 45.1, 62.3, 111.5, 117.5, 119.3, 119.6, 120.4, 123.8, 125.3, 126.5, 130.4, 131.6, 137.2, 144.1, 160.9, 192.8; HRMS (ESI-TOF) m/z: Calcd. for C₂₀H₁₇BrClNNaO₃ [M+Na]⁺: 455.9973; Found: 455.9978.

7s: Light yellow solid, M.p. 110.7-111.6 °C, 89% yield, 97% ee, $[\alpha]_D^{20} = -17.2$ (*c* 0.20, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IC column (97/3 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 14.39$ min; $\tau_{minor} = 16.20$ min); ¹H NMR (CDCl₃, 400 MHz) δ : 1.20-1.24 (m, 3H), 3.32-3.38 (m, 1H), 3.56-3.63 (m, 1H), 4.16-4.21 (m, 2H), 5.27-5.31 (m, 1H), 6.89-6.99 (m, 3H), 7.05-7.07 (m, 2H), 7.19-7.24 (m, 2H), 7.48-7.50 (m, 1H), 8.10 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 12.9, 35.8, 43.6, 61.7, 110.1, 116.1, 119.2, 119.3, 121.7, 123.1, 124.0, 126.7, 127.3, 127.4, 128.0, 132.1, 135.8, 140.8, 159.9, 191.6; HRMS (ESI-TOF) m/z: Calcd. for C₂₀H₁₇BrClNNaO₃ [M+Na]⁺: 455.9973; Found: 455.9971.

7t: Product in accordance with literature characterization data¹. Light yellow solid, M.p. 101.7-102.5 °C, 89% yield, 90% ee, [α]_D²⁰ = -23.0 (*c* 0.15, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IC column (90/10 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; τ_{major} = 9.50 min; τ_{minor} = 8.82 min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ: 3.55-3.61 (m, 1H), 3.70-3.76 (m, 4H), 4.69-4.73 (m, 1H), 6.87-6.91 (m, 1H), 7.00-7.04 (m, 1H), 7.10-7.15 (m, 1H), 7.22-7.39 (m, 7H), 10.89 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ: 37.4, 45.5, 53.1, 111.9, 117.7, 118.8, 119.1, 121.5, 122.5, 126.5, 126.6, 128.1, 128.7, 136.8, 144.9, 161.4, 192.8.

7u: Product in accordance with literature characterization data¹. Light yellow solid, M.p. 121.3-122.8 °C, 90% yield, 94% ee, $[\alpha]_D^{20} = -23.5$ (*c* 0.25, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IC column (97/3 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 25.10$ min; $\tau_{minor} = 20.79$ min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ : 3.54-3.61 (m, 1H), 3.67-3.76 (m, 7H), 4.66-4.70 (m, 1H), 6.68-6.71 (m, 1H), 6.85 (d, *J* = 1.2 Hz, 1H), 7.11-7.15 (m, 1H), 7.20-7.26 (m, 4H), 7.36 (d, *J* = 7.6 Hz, 2H), 10.73 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ : 37.4, 45.4, 53.1, 55.8, 101.2, 111.4, 112.5, 117.4, 123.2, 126.5, 127.0, 128.1, 128.7, 132.0, 144.8, 153.3, 161.5, 192.8.

7w: Product in accordance with literature characterization data¹. Light yellow solid, M.p. 80.0-81.7 °C, 68% yield, 52% ee, [α]_D²⁰ = -15.6 (*c* 4.0, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IA column (85/15 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; τ_{major} = 15.67 min; τ_{minor} = 14.84 min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ: 1.20-1.24 (m, 3H), 3.55-3.61 (m, 1H), 3.67-3.74 (m, 4H), 4.16-4.21 (m, 2H), 4.70-4.73 (m, 1H), 6.91-6.95 (m, 1H), 7.08-7.15 (m, 2H), 7.22-7.26 (m, 3H), 7.33-7.36 (m, 3H), 7.41 (d, *J* = 7.6 Hz, 1H); ¹³C NMR (DMSO-

*d*₆, 100 MHz) δ: 14.2, 32.8, 37.3, 45.4, 62.3, 110.1, 117.0, 118.9, 119.3, 121.7, 126.6, 126.9, 127.0, 128.1, 128.7, 137.2, 144.8, 160.9, 193.0.

10. The gram scale synthesis of the bipyridine-2NO ligand L1a

In a sealed tube equipped with a magnetic stirring bar, bipyridine-dicarbaldehyde 2 (0.64 g, 3.0 mmol) and optically pure prolinamide 1a (1.37 g, 7.2 mmol) were added. Then, anhydrous ethanol (30.0 mL) was added and the reaction was heated with stirring at reflux for 12 h. After completion of the reaction, as indicated by TLC, the aftertreatment residue was purified by flash column chromatography to give the intermediate 3a.

For the oxidation step, see: X. Liu, L. Lin and X. Feng, Chiral *N*,*N*'-dioxide ligands: synthesis, coordination chemistry and asymmetric catalysis, *Org. Chem. Front.*, 2014, **1**, 298-302. In a sealed tube equipped with a magnetic stirring bar, to the intermediate **3** was added 20.0 mL of DCM and *m*-CPBA (2.2 eq). The reaction mixture was stirred at 0 °C for 30 min. After completion of the reaction, as indicated by TLC, the aftertreatment residue was purified by flash column chromatography to furnish the bipyridine-2NO ligand **L1a** (0.88 g, 50% overall yield, >20:1 dr).

11. Control experiments and HPLC spectra for compound 7a

In a sealed tube equipped with a magnetic stirring bar, to the mixture of Ni(OTf)₂ (3.0 mol %), L (3.3 mol %) in 3.0 mL of CH_2Cl_2 was added 5 (0.30 mmol), and 6 (0.20 mmol). The reaction mixture was stirred at room temperature for 16 h and was directly loaded onto a silica gel and purified by flash chromatography to give the desired product 7a, using hexane/EtOAc (10/1, v/v) as the eluent.

12. References

1 (a) Y. Liu, D. Shang, X. Zhou, Y. Zhu, L. Lin, X. Liu and X. Feng, AgAsF₆/Sm(OTf)₃ promoted reversal of enantioselectivity for the asymmetric Friedel-Crafts alkylations of indoles with β , γ -unsaturated α -ketoesters, Org. Lett., 2010, **12**, 180-183; (b) S. Yu, Q. Cai, C. Wang, J. Hou, J. Liang, Z. Jiao, C. Yao and Y. M. Li, Enantioselective Friedel-Crafts alkylation of indoles with β , γ -unsaturated α -ketoesters catalysed by new copper(I) catalysts, J. Org. Chem., 2023, **88**, 3046-3053; (c) V. Juste-Navarro, E. Marqués-López and R. P. Herrera, Thiourea-catalyzed addition of indoles to aliphatic β , γ -unsaturated α -ketoesters, Asian J. Org. Chem., 2015, **4**, 884-889.

13. X-ray crystal data for compounds 4a, 4c and 7e

Table S1 Crystal data and structure	refinement for 4a
Identification code	4a
Empirical formula	$C_{22}H_{20}N_4O$
Formula weight	356.42
Temperature/K	126(10)
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å, b/Å, c/Å	6.83171(10), 16.1053(2), 16.2446(2)
$\alpha ^{\prime \circ}, \beta ^{\prime \circ}, \gamma ^{\prime \circ},$	90, 90, 90
Volume/Å ³	1787.34(4)
Z	4
$\rho_{calc}g/cm^3$	1.325
μ/mm^{-1}	0.668
F(000)	752.0
Radiation	Cu Ka ($\lambda = 1.54184$)
Crystal size/mm ³	0.15 imes 0.13 imes 0.11
2Θ range for data collection/°	7.73 to 154.122
Index ranges	$-8 \le h \le 6, -20 \le k \le 17, -20 \le l \le 20$
Reflections collected	15544
Independent reflections	$3620 [R_{int} = 0.0266, R_{sigma} = 0.0133]$
Data/restraints/parameters	3620/0/245
Goodness-of-fit on F ²	1.063
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0283, wR_2 = 0.0711$
Final R indexes [all data]	$R_1 = 0.0285, wR_2 = 0.0712$
Largest diff. peak/hole / e Å ⁻³	0.18/-0.15
Flack parameter	0.04(11)/-0.01(5)

Crystal Data for C₂₂H₂₀N₄O (M=356.42 g/mol): orthorhombic, space group P2₁2₁2₁ (no. 19), a = 6.83171(10) Å, b = 16.1053(2) Å, c = 16.2446(2) Å, V = 1787.34(4) Å³, Z = 4, T = 126(10) K, μ (Cu K α) = 0.668 mm⁻¹, *Dcalc* = 1.325 g/cm³, 15544 reflections measured ($7.73^{\circ} \le 2\Theta \le 154.122^{\circ}$), 3620 unique ($R_{int} = 0.0266$, $R_{sigma} = 0.0133$) which were used in all calculations. The final R_1 was 0.0283 (I > 2 σ (I)) and wR_2 was 0.0712 (all data).

CCDC 2288367

Table S2 Crystal data and structure refinement for 4c

Identification code	4c
Empirical formula	C ₂₂ H ₁₉ ClN ₄ O
Formula weight	390.86
Temperature/K	120.01(11)
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å, b/Å, c/Å	6.01670(10), 16.8651(2), 18.0753(2)
$\alpha/^{\circ}, \beta/^{\circ}, \gamma/^{\circ},$	90, 90, 90
Volume/Å ³	1834.14(4)
Z	4
$\rho_{cale}g/cm^3$	1.415
µ/mm ⁻¹	2.012
F(000)	816.0
Radiation	Cu Kα (λ = 1.54184)
Crystal size/mm ³	$0.15 \times 0.1 \times 0.08$
2Θ range for data collection/°	7.168 to 148.652
Index ranges	$-3 \le h \le 7, -21 \le k \le 20, -22 \le l \le 22$
Reflections collected	9702
Independent reflections	$3654 [R_{int} = 0.0319, R_{sigma} = 0.0346]$
Data/restraints/parameters	3654/0/253
Goodness-of-fit on F ²	1.042
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0288, wR_2 = 0.0754$
Final R indexes [all data]	$R_1 = 0.0301, wR_2 = 0.0763$
Largest diff. peak/hole / e Å ⁻³	0.20/-0.26
Flack parameter	0.018(7)/0.014(70)

Crystal Data for $C_{22}H_{19}CIN_4O$ (M=390.86 g/mol): orthorhombic, space group $P2_12_12_1$ (no. 19), a = 6.01670(10) Å, b = 16.8651(2) Å, c = 18.0753(2) Å, V = 1834.14(4) Å³, Z = 4, T = 16.01670(10) Å 120.01(11) K, μ (Cu K α) = 2.012 mm⁻¹, *Dcalc* = 1.415 g/cm³, 9702 reflections measured (7.168° \leq $2\Theta \le 148.652^{\circ}$), 3654 unique ($R_{int} = 0.0319$, $R_{sigma} = 0.0346$) which were used in all calculations. The final R_1 was 0.0288 (I > 2 σ (I)) and wR_2 was 0.0763 (all data).

Table S3 Crystal data and structure refinement for 7e

Identification code	7e
Empirical formula	$C_{20}H_{18}BrNO_3$
Formula weight	400.26
Temperature/K	99.99(10)
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å, b/Å, c/Å	9.49786(7), 12.22987(9), 14.93872(11)
$\alpha/^{\circ}, \beta/^{\circ}, \gamma/^{\circ},$	90, 90, 90
Volume/Å ³	1735.25(2)
Z	4
$\rho_{calc}g/cm^3$	1.532
µ/mm ⁻¹	3.387
F(000)	816.0
Radiation	Cu Ka ($\lambda = 1.54184$)
Crystal size/mm ³	$0.15 \times 0.12 \times 0.11$
2Θ range for data collection/°	9.346 to 143.776
Index ranges	$-8 \le h \le 11, -15 \le k \le 14, -17 \le 1 \le 18$
Reflections collected	8067
Independent reflections	3324 [$R_{int} = 0.0191, R_{sigma} = 0.0217$]
Data/restraints/parameters	3324/5/231
Goodness-of-fit on F ²	1.063
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0209, wR_2 = 0.0560$
Final R indexes [all data]	$R_1 = 0.0211, wR_2 = 0.0561$
Largest diff. peak/hole / e Å ⁻³	0.40/-0.36
Flack parameter	-0.015(6)/-0.006(5)

Crystal Data for C₂₀H₁₈BrNO₃ (*M* =400.26 g/mol): orthorhombic, space group P2₁2₁2₁ (no. 19), a = 9.49786(7) Å, b = 12.22987(9) Å, c = 14.93872(11) Å, V = 1735.25(2) Å³, Z = 4, T = 99.99(10) K, μ (Cu K α) = 3.387 mm⁻¹, *Dcalc* = 1.532 g/cm³, 8067 reflections measured (9.346° $\leq 2\Theta \leq 143.776^{\circ}$), 3324 unique ($R_{int} = 0.0191$, $R_{sigma} = 0.0217$) which were used in all calculations. The final R_1 was 0.0209 (I > 2 σ (I)) and wR_2 was 0.0561 (all data).

14. The copies of ¹H NMR, ¹³C NMR and HPLC spectra for compounds L, 4 and 7 ¹H and ¹³C NMR of L1a

¹H and ¹³C NMR of L1b

¹H and ¹³C NMR of L1c

¹H and ¹³C NMR of L1d

¹H and ¹³C NMR of L1e

¹H and ¹³C NMR of L1f

S34

¹H and ¹³C NMR of L1h

¹H and ¹³C NMR of L1i

¹H and ¹³C NMR of L1j

S37

¹H and ¹³C NMR of L11

S39

¹H and ¹³C NMR of L1m

¹H and ¹³C NMR of L1n

¹H and ¹³C NMR of L2d

¹H and ¹³C NMR of 4a

¹H and ¹³C NMR of 4c

¹H and ¹³C NMR of 7a

¹H and ¹³C NMR of 7b

¹H and ¹³C NMR of 7c

#	Time	Area	Height	Width	Area%	Symmetry
1	15.276	125414.8	1521.1	1.1219	97.110	0.347
2	22.12	3732.4	37.6	1.3627	2.890	0.511

¹H and ¹³C NMR of 7d

¹H and ¹³C NMR of 7e

#	Time	Area	Height	Width	Area%	Symmetry
1	12.463	474	5.4	1.4679	0.393	0.324
2	23.156	120122.6	1897.3	1.0552	99.607	0.551

¹H and ¹³C NMR of 7g

HPLC	of	7g
------	----	----

#	Time	Area	Height	Width	Area%	Symmetry
1	32.244	105260	1115.8	1.3155	97.722	0.234
2	39.124	2453.8	33.1	1.0761	2.278	0.439

¹H and ¹³C NMR of 7h

1	42.953	86653,2	607.5	1.8823	97.953	0.269
2	59,983	1810.5	17.1	1.4752	2.047	0.557

¹H and ¹³C NMR of 7i

#	Time	Area	Height	Width	Area%	Symmetry
1	9.84	86286.8	3379.5	0.3929	96.232	0.535
2	14.911	3379	113.1	0.4586	3.768	0.699

¹H and ¹³C NMR of 7j

S69

HPLC of 7j

π	Time	Area	Height	Width	Area%	Symmetry
1	14.461	54900.7	1725.2	0.4783	95.703	0.427
2	21.635	2464.8	44	0.9344	4.297	0.578

¹H and ¹³C NMR of 7k

ю

#	Time	Area	Height	Width	Area%	Symmetry
1	9.594	109534.1	3755.5	0.4861	95.775	0.403
2	13.817	4831.7	181.3	0.405	4.225	0.689
¹H and ¹³C NMR of 7l

#	Time	Area	Height	Width	Area%	Symmetry
1	10.718	6320.7	125.5	0.6955	49.366	0.365
2	17.626	6483.2	77.5	1.186	50.634	0.407

#	Time	Area	Height	Width	Area%	Symmetry
1	10.908	127616.7	2284.6	0.7687	97.546	0.336
2	18.152	3210.1	30	1.4055	2.454	0.44

¹H and ¹³C NMR of 7m

#	Time	Area	Height	Width	Area%	Symmetry
1	16.492	89686.4	2341.5	0.6384	95.994	0.497
2	18.335	3743.2	92.6	0.6735	4.006	0.74

¹H and ¹³C NMR of 7n

¹H and ¹³C NMR of 70

#	Time	Area	Height	Width	Area%	Symmetry
1	14.343	875.4	30.9	0.4723	4.968	0.584
2	15.853	16747.3	343.7	0.6914	95.032	0.23

¹H and ¹³C NMR of 7p

S81

HPLC of 7p

#	Time	Area	Height	Width	Area%	Symmetry
1	14.589	1217.6	39.4	0.5149	4.673	0.643
2	17.171	24841.1	632.2	0.6549	95.327	0.605

¹H and ¹³C NMR of 7q

¹H and ¹³C NMR of 7r

S85

S87

HPLC of 7s

¹H and ¹³C NMR of 7t

# TILLE MICO	Height	Width	Area%	Symmetry
1 8.821 2253.2	109.1	0.3189	4.911	0.803
2 9.502 43627.2	1956.2	0.3392	95.089	0.728

¹H and ¹³C NMR of 7u

HPLC of 7u

