Electronic Supplementary Information

Visible-light-driven $\mathbf{C}\left(\mathbf{s p}^{3}\right)$-H alkylation of heterobenzylic amines via electron donor-acceptor complexes

Yumei Huo, ${ }^{\text {a }}$ Beibei Chen, ${ }^{\text {a }}$ Zhaoqing Xu, ${ }^{\text {*ab }}$ Xiaoyu Ren, ${ }^{* a}$ Rupeng Qi, ${ }^{a}$ Chao Wang*ab
${ }^{\text {a }}$ Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
${ }^{\mathrm{b}}$ Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, China

E-mail: zqxu@lzu.edu.cn, renxy@1zu.edu.cn, wangchao@lzu.edu.cn

Table of contents

1. General information S2
2. Substrates synthesis S2
3. General procedure of $\mathrm{C}\left(\mathrm{sp}^{3}\right)$-H alkylation S4
4. Characterization of products S10
5. Synthetic applications S18
6. The mechanistic studies S20
7. NMR spectra S23
8. References S53

1. General information

All commercially available reagents were used without further purification unless otherwise stated. All solvents were purified and dried according to standard methods prior to use. $410-420 \mathrm{~nm}$ light source was bought in Xuzhou Aijia electronic technology, China. NMR spectra were recorded on a Bruker 300 M instrument spectrometer in CDCl_{3} using tetramethylsilane (TMS) as internal standard unless otherwise stated. Data for ${ }^{1} \mathrm{H}$ NMR are recorded as follows: chemical shift (δ, ppm), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet and $\mathrm{dd}=$ doublet of doublets coupling constant (s) in Hz , integration). Data for ${ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR are reported in terms of chemical shift (δ, ppm). Reactions were monitored by thin layer chromatography (TLC) and column chromatography purifications were carried out using silica gel. Melting points were measured on a SCW X-4 and values are uncorrected. UV-Vis absorption spectra were recorded by using BIOMATE 3S UVVisible Spectrophotometer. All new compounds were further characterized by high resolution mass spectra (HRMS) were obtained by quadrupole mass spectrometer with ESI ionization sources.

2. Substrates synthesis

General procedure for the synthesis of oxadiazoles amine ${ }^{1}$

Step 1: In a two-neck round-bottom flask the appropriate aryl hidrazide ($10 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$. After the $\mathrm{Et}_{3} \mathrm{~N}(20 \mathrm{mmol}, 2.0$ equiv) was added and stirred the reaction for 10 minutes, the temperature system was taken at 0 ${ }^{\circ} \mathrm{C}$ and the 2-choroacetyl chloride ($15 \mathrm{mmol}, 1.5$ equiv) was slowly dripped in a flask. The mixture remained at ambient temperature for 4 h approximately, and the intermediate was obtained, without isolation. In the same flask, triphenylphosphine ($15.7 \mathrm{mmol}, 1.57$ equiv), carbon tetra-chloride ($50 \mathrm{mmol}, 5.0$ equiv) and triethylamine ($15.7 \mathrm{mmol}, 1.57$ equiv) were added, followed by the mixture was heated at $40^{\circ} \mathrm{C}$ for 12 h with stirring in an oil bath. Then the mixture was cooled to room temperature, poured into water $(15 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. Combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent evaporated under reduced pressure. The residue was purified by silica gel column chromatography to yield $1,3,4$-oxadiazoles (about 63\% yield).

Step 2: To a solution of oxadiazoles ($6.2 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(13 \mathrm{~mL})$ was added 4-methoxyaniline ($9.3 \mathrm{mmol}, 1.5$ equiv). Then $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($15.5 \mathrm{mmol}, 2.5$ equiv) was added and the mixture was heated at $82^{\circ} \mathrm{C}$ for 18 h with stirring in an oil bath. Subsequently, the mixture was cooled to room temperature. Diatomaceous earth suction filtration system, suction filtration to obtain the organic layer poured into water (15 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. Combined organic layers were
dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent evaporated under reduced pressure. The residue was purified by silica gel column chromatography to yield 1,3,4-oxadiazoles amine.

General procedure for the synthesis of alkyl iodide ${ }^{2}$

$$
\mathrm{R}-\mathrm{OH}+\mathrm{I}_{2}+\mathrm{PPh}_{3}+\text { imidazole } \xrightarrow[\text { overnight }]{\mathrm{DCM}} \mathrm{R} \text {-I }
$$

General protocol for the preparation of secondary and primary iodides: Iodine chips ($12 \mathrm{mmol}, 1.2$ equiv) were added to a solution of $\mathrm{Ph}_{3} \mathrm{P}(12 \mathrm{mmol}, 1.2$ equiv) and imidazole ($12 \mathrm{mmol}, 1.2$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{M})$ at $0^{\circ} \mathrm{C}$. The alcohol (10 mmol , 1.0 equiv, neat or a solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added dropwise to the reaction mixture at $0^{\circ} \mathrm{C}$. The mixture was allowed to warm to room temperature and stirred overnight. Next, the solvent was removed on a rotary evaporator. The residue was purified by silica gel column chromatography.

General protocol for the preparation of tertiary iodides: $\mathrm{MeSO}_{3} \mathrm{H}(20 \mathrm{mmol}, 2.0$ equiv) was added dropwise to a solution of $\mathrm{NaI}(20 \mathrm{mmol}, 2.0$ equiv) and the tertiary alcohol ($10 \mathrm{mmol}, 1$ equiv), in $\mathrm{MeCN}\left(0.2 \mathrm{M}\right.$ in the tertiary alcohol) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm up to room temperature and it was stirred for an additional 30 minutes. Next, the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with $\mathrm{H}_{2} \mathrm{O}, \mathrm{NaHCO}_{3}, \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated with rotatory evaporation. Further purification of the tertiary iodide would be done by distillation or column chromatography.

3. General procedure of $\mathbf{C}\left(\mathbf{s p}^{3}\right)$-H alkylation

3.1 Optimization of reaction conditions

Table S1 Base screening ${ }^{a}$

entry	base	yield b (\%)	entry	base	yield b (\%)
1	TMG	17	10	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	24
2	$\mathrm{Et}_{3} \mathrm{~N}$	trace	11	$\mathrm{K}_{3} \mathrm{PO}_{4}$	15
3	DIPEA	13	12	$\mathrm{K}_{2} \mathrm{HPO}_{4}$	N. D.
4	DBU	15	13	$\mathrm{KH}_{2} \mathrm{PO}_{4}$	N. D.
5	HMPA	N. D.	14	$\mathrm{NaO}^{t} \mathrm{Bu}$	30
6	DABCO	N. D.	15	NaOH	25
7	CsF	33	16	NaOAc	N. D.
8	KOCH_{3}	36	17	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	N. D.
9	KF	N. D.	18	NaHCO_{3}	N. D.

[^0]Table S2 Solvent screening ${ }^{a}$

entry	solvent	yield $^{\text {b }}$ (\%)	entry	solvent	yield $^{\text {b }}$ (\%)
1	Toluene	N. D.	12	DMPU	10
2	DCE	21	13	DCM	15
3	DMF	24	14	DMAc	29
4	$\mathrm{CH}_{3} \mathrm{CN}$	36	15	ethyl acetate	trace
5	THF	N. D.	16	CCl_{4}	N. D.
6	DMSO	30	17	HFIP	N. D.
7	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	4	18	1,4-Dioxane	N. D.
8	$\mathrm{CH}_{3} \mathrm{OH}$	trace	19	1,3-Dioxolane	N. D.
9	CHCl_{3}	trace	20	para-xylene	N. D.
10	$\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right) \mathrm{O}$	trace	21	2-ethoxyethanol	N. D.
11	Acetone	trace	22	$\begin{gathered} 1,2- \\ \text { Dimethoxyethane } \end{gathered}$	N. D.

${ }^{a} 0.05 \mathrm{mmol}$ scale. ${ }^{b}$ Yield was determined by ${ }^{1} \mathrm{H}$ NMR using 1,3,5trimethoxybenzene as an internal standard.

Table S3 Light source screening ${ }^{a}$

PMPHN		$\frac{\begin{array}{c} \mathrm{KOCH}_{3}(2 \mathrm{e} \\ \mathrm{L}(10 \mathrm{~mol} \end{array}}{\substack{\mathrm{CH} \mathrm{CN}(0 . \\ \mathrm{hv}, \mathrm{rt}, 12}}$			
entry	light	yield $^{\text {b }}$ (\%)	entry	light	$\mathrm{yield}^{b}(\%)$
1	White LED	trace	5	410-420 nm	38
2	Green LED	N. D.	6	$400-410 \mathrm{~nm}$	29
3	Blue LED	10	7	$395-400 \mathrm{~nm}$	32
4	$420-430 \mathrm{~nm}$	36	8	380 nm	36
${ }^{a} 0.05 \mathrm{mmol}$ scale. ${ }^{b}$ Yield was determined by ${ }^{1} \mathrm{H}$ NMR using $1,3,5-$ trimethoxybenzene as an internal standard.					

Table $\mathbf{S 4} \mathrm{KOCH}_{3}$ loading screening ${ }^{a}$

entry	X	yield ${ }^{\text {b }}$ (\%)	entry	X	yield ${ }^{\text {b }}$ (\%)
1	0.5	trace	5	4.0	52
2	1.5	25	6	5.0	57
3	2.0	38	7	6.0	57
4	3.0	47	8	8.0	57

Table S5 L loading screening ${ }^{a}$

Table S6 Alkyl iodide loading screening ${ }^{a}$

PMPH		$\begin{array}{r} \mathrm{KOCH}_{3}(5 \text { equ } \\ \quad \mathrm{L}(10 \mathrm{~mol} \%) \\ \hline \mathrm{CH} 3 \mathrm{CN}(0.1 \\ 410-420 \mathrm{~nm}, \mathrm{rt} \end{array}$ iv			
entry	X	yield $^{\text {b }}$ (\%)	entry	X	yield $^{b}(\%)$
1	1.5	33	4	4.0	67
2	2.0	57	5	5.0	67
3	3.0	60	6	6.0	57
${ }^{a} 0.05 \mathrm{mmol}$ scale. ${ }^{b}$ Yield was determined by ${ }^{1} \mathrm{H}$ NMR using $1,3,5-$ trimethoxybenzene as an internal standard.					

Table S7 Reaction concentration screening ${ }^{a}$

entry
18

Table S8 Control experiments under standard reaction conditions ${ }^{a}$

3.2 General procedure

General procedure: To an oven-dried 10 mL quartz test tube with a stirring bar was added derivative of 1,3,4-oxadiazoles amine ($1,0.1 \mathrm{mmol}, 1.0$ equiv), followed by the addition of (11bS)-N,N-dimethyldinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4amine ($\mathbf{L}, 0.01 \mathrm{mmol}, 0.1$ equiv), iodoalkane ($\mathbf{2}, 0.4 \mathrm{mmol}, 4.0$ equiv) which added before air change if it is solid or injected after air change if it is liquid and KOCH_{3} ($0.5 \mathrm{mmol}, 5.0$ equiv). Then, air was withdrawn and backfilled with Ar (three times). $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$ was added. Thereafter, the test tube was transferred to a $410-420 \mathrm{~nm}$ light photoreactor, where it was irradiated for 12 h at room temperature. Then, the reaction was quenched with water (2 mL), extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$), washed with brine ($3 \times 10 \mathrm{~mL}$), dried over anhydrous sodium sulfate, concentrated in vacuo, and purified by column chromatography (hexane/ethyl acetate) to give the product 3.

Reaction device diagram

We use a commercially available $24 \mathrm{~W} 410-420 \mathrm{~nm}$ purple LED lamp as the reaction light source. At ambient temperature, the sample is placed approximately 2 cm away from the lamp. The material of the irradiation vessel is quartz. We also measured the wavelength of the LED light by ourselves (recorded on an AVANTES® AvaSpecULS2048 spectrometer instrument). The result was shown as follow:

4. Characterization of products

(N -(cyclohexyl(5-phenyl-1,3,4-oxadiazol-2-yl)methyl)-4-methoxyaniline (3aa): white solid, $59.6 \mathrm{mg}, 82 \%$ yield. M. p. $150-155^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.00(\mathrm{~d}, J=15 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 6.71$ (dd, $J=15.9 \mathrm{~Hz}, 9 \mathrm{~Hz}, 4 \mathrm{H}), 4.56$ (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.69$ (s, $3 \mathrm{H}), 2.07$ (d, $J=12 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.68$ (d, $J=$ $9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.31-1.21(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.0,164.7,152.8,140.5,131.6,128.9,126.8,123.8$, 115.2, 114.8, 56.7, 55.6, 42.1, 29.6, 29.5, 26.0, 25.81, 25.75.

HRMS (ESI): $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$calcd: 386.1844, found: 386.1838 .

N-(cyclohexyl(5-phenyl-1,3,4-oxadiazol-2-yl)methyl)-4-fluoroaniline (3ba): white solid, $51.3 \mathrm{mg}, 73 \%$ yield. M. p. $155-157{ }^{\circ} \mathrm{C}$.
${ }^{1} H$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.01(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.49(\mathrm{~m}, 3 \mathrm{H}), 6.86(\mathrm{t}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.68-6.64(\mathrm{~m}, 2 \mathrm{H}), 4.56(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.06(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{t}, J=12 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{~s}, 1 \mathrm{H})$, $1.58(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.32-1.17(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{19} \mathbf{F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ-126.34.
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.7,164.8,142.8,131.7,129.0,126.9,123.8,116.0$, 115.7, 114.7, 56.4, 42.1, 29.6, 29.5, 26.1, 25.84, 25.79.

HRMS (ESI): $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{FN}_{3} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}$calcd: 374.1645, found: 374.1649.

N-(cyclohexyl(5-phenyl-1,3,4-oxadiazol-2-yl)methyl)aniline (3ca): white solid, $46.7 \mathrm{mg}, 70 \%$ yield. M. p. $185-190{ }^{\circ} \mathrm{C}$.
${ }^{1}$ H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.01(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.65(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.07(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{t}, J=12.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.69$ (d, $J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.32-1.12(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.8,164.8,146.5,131.6,129.4,129.0,126.9,123.8$, $118.6,113.5,55.5,42.1,29.7,29.5,26.1,25.84,25.78$.
HRMS (ESI): $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}$calcd: 356.1739, found: 356.1735 .

3-chloro- \boldsymbol{N}-(cyclohexyl(5-phenyl-1,3,4-oxadiazol-2-yl)methyl)aniline (3da): white solid, $52.1 \mathrm{mg}, 71 \%$ yield. M. p. $195-200^{\circ} \mathrm{C}$.
${ }^{1} H$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.70-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.24(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~d}, J=9.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.67(\mathrm{~s}, 1 \mathrm{H}), 1.32-1.15(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.3,147.6,135.1,131.8,130.4,129.0,126.9,123.7$, $118.6,113.4,111.6,55.4,42.1,29.6,29.5,26.0,25.81,25.75$.
HRMS (ESI): $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{ClN}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$calcd: 368.1530 , found: 368.1527.

\boldsymbol{N}-(cyclohexyl(5-(4-methoxyphenyl)-1,3,4-oxadiazol-2-yl)methyl)-4-methoxyanili ne (3ea): white solid, $62.9 \mathrm{mg}, 80 \%$ yield. M. p. $128-133{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.93(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $6.71(\mathrm{dd}, J=17.1 \mathrm{~Hz}, 8.7 \mathrm{~Hz}, 4 \mathrm{H}), 4.49(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{t}, J=12 \mathrm{~Hz}, 2 \mathrm{H})$, $1.68(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.31-1.15(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.5,164.6,162.2,152.8,140.6,128.6,116.4,115.2$, $114.8,114.3,56.7,55.6,55.4,42.1,29.6,29.5,26.1,25.9,25.8$.
HRMS (ESI): $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$calcd: 416.1950 , found: 416.1951.

3fa
\mathbf{N}-((5-(4-chlorophenyl)-1,3,4-oxadiazol-2-yl)(cyclohexyl)methyl)-4-methoxyanilin e (3fa): white solid, $59.7 \mathrm{mg}, 75 \%$ yield. M. p. $179-183{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.94(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $6.71(\mathrm{dd}, J=19.8 \mathrm{~Hz}, 8.7 \mathrm{~Hz}, 4 \mathrm{H}), 4.55(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.68$ $(\mathrm{s}, 1 \mathrm{H}), 1.24(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.66-1.15(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.3,164.0,152.9,140.4,137.9,129.3,128.1,122.3$, $115.2,114.9,56.8,55.6,42.2,29.64,29.55,26.1,25.9,25.8$.
HRMS (ESI): $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$calcd: 420.1455 , found: 420.1444 .

3ga
N-((5-(4-bromophenyl)-1,3,4-oxadiazol-2-yl)(cyclohexyl)methyl)-4-methoxyanilin
e (3ga): white solid, $69.9 \mathrm{mg}, 79 \%$ yield. M. p. $180-185^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $6.71(\mathrm{dd}, J=20.1 \mathrm{~Hz}, 8.7 \mathrm{~Hz}, 4 \mathrm{H}), 4.55(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~d}, J$ $=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 1 \mathrm{H}), 1.79-1.68(\mathrm{~m}, 3 \mathrm{H}), 1.57(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~s}$, 5H).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.3,164.0,152.9,140.4,132.3,128.3,126.3,122.8$, $115.2,114.9,56.8,55.6,42.2,29.6,29.5,26.1,25.84,25.79$.
HRMS (ESI): $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{BrN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd: 442.1130 , found: 442.1125 .

4-(5-(cyclohexyl((4-methoxyphenyl)amino)methyl)-1,3,4-oxadiazol-2-yl)benzonit rile (3ha): white solid, $66.0 \mathrm{mg}, 85 \%$ yield. M. p. $150-154{ }^{\circ} \mathrm{C}$.
${ }^{1} H$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.12(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $6.71(\mathrm{dd}, J=21 \mathrm{~Hz}, 8.7 \mathrm{~Hz}, 4 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~d}, J=$ $11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{t}, J=12 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.57$ (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.32-1.16(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.1,163.3,153.0,140.3,132.8,127.7,127.3,117.9$, $115.14,115.06,114.9,56.9,55.6,42.2,29.63,29.57,26.0,25.81,25.77$.
HRMS (ESI): $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$calcd: 411.1797, found: 411.1795 .

\mathbf{N}-((5-(3-chlorophenyl)-1,3,4-oxadiazol-2-yl)(cyclohexyl)methyl)-4-methoxyanilin e (3ia): white solid, $62.1 \mathrm{mg}, 78 \%$ yield. M. p. $120-124{ }^{\circ} \mathrm{C}$.
${ }^{1} H$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.39(\mathrm{~m}$, $2 \mathrm{H}), 6.71$ (dd, $J=19.2 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 4 \mathrm{H}), 4.55(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.75(\mathrm{~m}$, $2 \mathrm{H}), 1.68(\mathrm{~s}, 1 \mathrm{H}), 1.56(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.32-1.16(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.5,163.6,152.9,140.4,135.1,131.6,130.3,126.8$, $125.5,125.0,115.2,114.9,56.8,55.6,42.2,29.7,29.6,26.1,25.84,25.79$.
HRMS (ESI): $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$calcd: 420.1455 , found: 420.1450 .

3ja
N-(cyclohexyl(5-(naphthalen-1-yl)-1,3,4-oxadiazol-2-yl)methyl)-4-methoxyaniline (3ja): white solid, $66.2 \mathrm{mg}, 80 \%$ yield. M. p. $105-108^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $8.00(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.51(\mathrm{~m}, 3 \mathrm{H}), 6.75(\mathrm{dd}, J=$ $11.7 \mathrm{~Hz}, 9.3 \mathrm{~Hz}, 4 \mathrm{H}), 4.63(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, $2.10(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.67$ (m, 2H), $1.34-1.17(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.7,164.7,152.9,140.6,133.7,132.5,129.9,128.6$, $128.3,128.0,126.6,126.1,124.7,120.5,115.3,114.9,56.8,55.6,42.2,29.7,29.6$, 26.1, 25.9, 25.8.

HRMS (ESI): $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$calcd: 436.2001 , found: 436.1994.

N-(cyclohexyl(5-(furan-2-yl)-1,3,4-oxadiazol-2-yl)methyl)-4-methoxyaniline (3ka): white solid, $57.3 \mathrm{mg}, 81 \%$ yield. M. p. $138-142{ }^{\circ} \mathrm{C}$.
${ }^{1}$ H NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=21.6$ $\mathrm{Hz}, 8.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.57(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.74(\mathrm{~m}, 2 \mathrm{H})$, $1.70-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.31-1.14(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.4,157.6,152.9,145.5,140.4,139.4,115.1,114.9$, 114.0, 112.1, 56.6, 55.7, 42.1, 29.7, 29.6, 26.1, 25.83, 25.77.

HRMS (ESI): $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$calcd: 376.1637 , found: 376.1633.

N-(cyclohexyl(5-(thiophen-2-yl)-1,3,4-oxadiazol-2-yl)methyl)-4-methoxyaniline (31a): white solid, $61.3 \mathrm{mg}, 83 \%$ yield. M. p. $137-141^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.70(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.14(\mathrm{t}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=19.8 \mathrm{~Hz}, 8.7 \mathrm{~Hz}, 4 \mathrm{H}), 4.53(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 1 \mathrm{H})$, $3.71(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.71$ $-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.57$ (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.31-1.15(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.5,161.0,152.9,140.5,130.0,129.7,128.0,125.2$, 115.2, 114.9, 56.7, 55.7, 42.1, 29.7, 29.6, 26.1, 25.9, 25.8.

HRMS (ESI): $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{NaO}_{2} \mathrm{~S}$ [M+Na] calcd: 392.1409, found: 392.1407.

ethyl-2-((5-(cyclohexyl((4-methoxyphenyl)amino)methyl)-1,3,4-oxadiazol-2-yl)th io)acetate (3ma): yellow oil, $62.4 \mathrm{mg}, 77 \%$ yield.
${ }^{1}$ H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.74(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $4.44(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=14.1 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{~s}$, $3 \mathrm{H}), 2.01(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 1 \mathrm{H}), 1.50(\mathrm{~d}, J=12 \mathrm{~Hz}$, $1 \mathrm{H}), 1.28-1.10(\mathrm{~m}, 8 \mathrm{H})$.
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.4,167.4,163.0,152.9,140.3,115.1,114.9,62.3$, 56.7, 55.7, 42.0, 34.3, 29.6, 29.5, 26.0, 25.80, 25.76, 14.0 .

HRMS (ESI): $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{NaO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$calcd: 428.1620, found: 428.1624.

6-((5-(cyclohexyl((4-methoxyphenyl)amino)methyl)-1,3,4-oxadiazol-2-yl)thio)hex an-1-ol (3na): yellow oil, $52.9 \mathrm{mg}, 63 \%$ yield.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.74(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $4.44(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{~s}, 2 \mathrm{H}), 3.18(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.73(\mathrm{~m}, 7 \mathrm{H}), 1.56-1.53(\mathrm{~m}, 3 \mathrm{H})$, $1.47-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.25-1.11(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.9,164.5,152.9,140.5,115.2,114.9,62.7,56.7$, 55.7, 42.0, 32.5, 29.6, 29.5, 29.1, 28.3, 26.1, 25.84, 25.79, 25.1.

HRMS (ESI): $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{NaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$calcd: 442.2140, found: 442.2145 .

(2R,3R,5R,6S)-2-(acetoxymethyl)-6-((5-((R)-cyclohexyl((4-methoxyphenyl)amino) methyl)-1,3,4-oxadiazol-2-yl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (30a): yellow solid, $92.3 \mathrm{mg}, 71 \%$ yield. M. p. $122-125^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $5.38(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{t}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 5.18-5.08(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{~s}, 1 \mathrm{H})$, $4.30-4.22(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.05$ - $2.02(\mathrm{~m}, 13 \mathrm{H}), 1.82-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 1 \mathrm{H}), 1.52(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.26-$ 1.12 (m, 5H).
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.6,170.0,169.4,169.3,169.1,153.0,152.9,140.2$, $115.1,115.0,114.8,83.2,73.53,73.46,69.6,69.5,67.6,61.3,55.6,41.9,29.6,29.5$, 26.0, 25.7, 20.6, 20.5.

HRMS (ESI): $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{11} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$calcd: 650.2384, found: 650.2366 .

N-(cyclohexyl(5-phenyloxazol-2-yl)methyl)-4-methoxyaniline (3pa): white solid, $58.0 \mathrm{mg}, 80 \%$ yield. M. p. $160-165^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.59(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33$ $-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=22.5 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, 4 \mathrm{H}), 4.38(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.99(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 1 \mathrm{H})$, $1.81-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.55(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.30-1.10(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.7,152.5,151.0,141.3,128.8,128.3,128.0,124.1$, 121.6, 115.1, 114.7, 58.5, 55.7, 42.9, 29.8, 29.5, 26.2, 26.01, 25.96.

HRMS (ESI): $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$calcd: 385.1892, found: 385.1895 .

N-(cyclohexyl(5-phenylthiazol-2-yl)methyl)-4-methoxyaniline (3qa): yellow solid, $57.5 \mathrm{mg}, 76 \%$ yield. M. p. $107-110{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $4.44(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~s}, 2 \mathrm{H}), 1.70-1.64$ $(\mathrm{m}, 2 \mathrm{H}), 1.30-1.19(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.4,152.5,141.3,138.8,137.8,131.6,128.9,127.9$, $126.5,114.8,114.6,62.8,55.6,44.4,29.9,28.9,26.23,26.15$.
HRMS (ESI): $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}$calcd: 379.1844, found: 379.1836.

$3 r a$
\boldsymbol{N}-(cyclohexyl(pyridin-2-yl)methyl)-4-methoxyaniline (3ra): yellow oil, 41.5 mg , 70\% yield.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.58(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 4.27(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 2 \mathrm{H})$, $1.77-1.67(\mathrm{~m}, 3 \mathrm{H}), 1.49(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.25-1.07(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.3,151.8,149.2,142.1,136.0,122.2,121.8,114.7$, 114.6, 65.3, 55.7, 43.8, 30.3, 29.1, 26.3.

HRMS (ESI): $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$calcd: 297.1967, found: 297.1958.

\mathbf{N}-(benzo[d]oxazol-2-yl(cyclohexyl)methyl)-4-methoxyaniline (3sa): yellow solid, $43.7 \mathrm{mg}, 65 \%$ yield. M. p. $105-110{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.26$ $(\mathrm{m}, 2 \mathrm{H}), 6.70(\mathrm{dd}, J=15 \mathrm{~Hz}, 9 \mathrm{~Hz}, 4 \mathrm{H}), 4.48(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~s}$, $3 \mathrm{H}), 2.06(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.53(\mathrm{~d}, J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.26-1.17(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.2,152.6,150.6,141.0,140.8,124.7,124.2,119.9$, $115.0,114.8,110.6,59.0,55.6,42.7,29.8,29.6,26.2,26.0,25.9$.
HRMS (ESI): $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd: 337.1916 , found: 337.1904 .

4-methoxy- N -(1-(5-phenyl-1,3,4-oxadiazol-2-yl)octyl)aniline (3ab): white solid, $49.3 \mathrm{mg}, 65 \%$ yield. M. p. $96-100^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.00(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 3 \mathrm{H}), 6.73$ (dd, $J=17.1 \mathrm{~Hz}, 8.7 \mathrm{~Hz}, 4 \mathrm{H}$), $4.75(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{dd}, J=$ $14.1 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.35-1.26(\mathrm{~m}, 10 \mathrm{H}), 0.86(\mathrm{t}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.6,164.8,153.0,140.1,131.7,129.0,126.9,123.8$, $115.2,114.9,55.6,51.4,34.5,31.7,29.1,29.0,25.8,22.6,14.0$.
HRMS (ESI): $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd: 380.2338, found: 380.2323 .

4-methoxy- N-(5-phenyl-1-(5-phenyl-1,3,4-oxadiazol-2-yl)pentyl)aniline (3ac): white solid, $57.9 \mathrm{mg}, 70 \%$ yield. M. p. $100-105^{\circ} \mathrm{C}$.
${ }^{1} H$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.99$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.55-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.28-$ $7.23(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 6.72(\mathrm{dd}, J=20.4 \mathrm{~Hz}, 8.7 \mathrm{~Hz}, 4 \mathrm{H}), 4.75(\mathrm{t}, J=$ $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{dd}, J=14.7 \mathrm{~Hz}$, $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.43(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.5,164.8,153.0,142.0,140.0,131.7,129.0$, $128.32,128.30,126.9,125.8,123.8,115.3,114.9,55.6,51.4,35.6,34.3,30.9,25.4$.
HRMS (ESI): $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd: 414.2182, found: 414.2171.

N -(4-chloro-1-(5-phenyl-1,3,4-oxadiazol-2-yl)butyl)-4-methoxyaniline yellow oil, $36.5 \mathrm{mg}, 51 \%$ yield.
${ }^{1}$ H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.99(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.47(\mathrm{~m}, 3 \mathrm{H}), 6.83(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.07(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.68(\mathrm{~m}$, $5 \mathrm{H}), 3.38$ (dd, $J=15 \mathrm{~Hz}, 8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.32$ (m, 3H), 2.21 (s, 1H).
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.1,164.9,151.8,141.2,131.6,128.9,126.9,123.8$, 114.9, 113.3, 55.8, 54.8, 49.0, 31.8, 24.2 .

HRMS (ESI): $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{ClN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd: 358.1322, found: 358.1319.

4-methoxy- N-(2-methyl-1-(5-phenyl-1,3,4-oxadiazol-2-yl)propyl)aniline
(3ae): white solid, $53.7 \mathrm{mg}, 83 \%$ yield. M. p. $143-147^{\circ} \mathrm{C}$.
${ }^{1}$ H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.00(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.47(\mathrm{~m}, 3 \mathrm{H}), 6.73$ (dd, $J=13.8 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 4 \mathrm{H}), 4.53(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.70$ (s, 3H), $2.33-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.0,164.7,152.9,140.4,131.6,128.9,126.8,123.8$, 115.3, 114.8, 57.5, 55.6, 23.6, 19.1, 19.0.

HRMS (ESI): $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd: 324.1712, found: 324.1705 .

4-methoxy- \boldsymbol{N}-((5-phenyl-1,3,4-oxadiazol-2-yl)(tetrahydro-2H-pyran-4-yl)methyl) aniline (3af): white solid, $60.7 \mathrm{mg}, 83 \%$ yield. M. p. $170-173{ }^{\circ} \mathrm{C}$.
${ }^{1} H$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.49(\mathrm{~m}, 3 \mathrm{H}), 6.73$ (dd, $J=16.5 \mathrm{~Hz}, 8.7 \mathrm{~Hz}, 4 \mathrm{H}), 4.58(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~d}, J$ $=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{dd}, J=24 \mathrm{~Hz}, 12 \mathrm{~Hz}, 2 \mathrm{H}), 2.12-2.18(\mathrm{~m}, 1 \mathrm{H})$, $2.00(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.4,164.9,153.2,140.1,131.8,129.0,126.9,123.7$, $115.5,115.0,67.6,67.4,56.6,55.7,39.6,29.8,29.5$.
HRMS (ESI): $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$calcd: 388.1637 , found: 388.1634 .

3ag
4-methoxy- N -((5-phenyl-1,3,4-oxadiazol-2-yl)(tetrahydrofuran-2-yl)methyl)anilin e (3ag): yellow solid, $59.7 \mathrm{mg}, 85 \%$ yield, $1: 1$ d.r. M. p. $95-100{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.00(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.26(\mathrm{~m}, 3 \mathrm{H}), 6.77-$ $6.70(\mathrm{~m}, 4 \mathrm{H}), 5.00-4.90(\mathrm{~m}, 1 \mathrm{H}), 4.60-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.15-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.91-$ $3.86(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 1 \mathrm{H})$, $1.91-1.84(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.8,167.7,152.9,152.8,140.4,131.6,128.9,126.9$, $126.8,123.8,115.2,114.8,68.1,67.9,55.6,50.5,49.7,39.8,39.6,31.9,31.5,25.5$, 25.4.

HRMS (ESI): $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$calcd: 374.1478 , found: 374.1475 .

3ah
\mathbf{N}-(2,2-dimethyl-1-(5-phenyl-1,3,4-oxadiazol-2-yl)propyl)-4-methoxyaniline (3ah): white solid, $53.9 \mathrm{mg}, 80 \%$ yield. M. p. $189-193{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.00(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.47(\mathrm{~m}, 3 \mathrm{H}), 6.71$ $(\mathrm{dd}, J=11.7 \mathrm{~Hz}, 9.6 \mathrm{~Hz}, 4 \mathrm{H}), 4.48(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70$ (s, 3H), 1.15 (s, 9H).
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.8,164.6,153.0,140.7,131.6,129.0,126.8,123.8$, $115.6,114.8,60.9,55.6,35.2,26.6$.
HRMS (ESI): $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd: 338.1869 , found: 338.1866 .

N-((1s,3s)-adamantan-1-yl(5-phenyl-1,3,4-oxadiazol-2-yl)methyl)-4-methoxyanil ine (3ai): white solid, $54.8 \mathrm{mg}, 66 \%$ yield. M. p. $145-150{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.02-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 3 \mathrm{H}), 6.73(\mathrm{dd}, J$ $=9.3 \mathrm{~Hz}, 3 \mathrm{~Hz}, 4 \mathrm{H}), 4.34(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~d}, J=$ $12.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.76-1.57(\mathrm{~m}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.3,164.6,152.9,140.9,131.6,129.0,126.8,123.9$, 115.6, 114.8, 61.7, 55.6, 38.9, 37.0, 36.7, 28.2.

HRMS (ESI): $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd: 416.2338 , found: 416.2329 .

5. Synthetic applications

Step 1: A mixture of 3aa ($0.44 \mathrm{mmol}, 159.8 \mathrm{mg}$) and $\mathrm{Ce}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{NO}_{3}\right)_{6}$ (cerium ammonium, $2.82 \mathrm{mmol}, 1.54 \mathrm{~g}$) in 5:2 solution of $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(3.0 \mathrm{~mL})$ was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h . The mixture was modulated to alkalescence with saturated aqueous sodium carbonate. Then the mixture was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for three times, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was not purified and was directly used for the next steps. (crude yield 91\%)

Synthesis of 4a: The residue ($0.2 \mathrm{mmol}, 51.4 \mathrm{mg}$) was dissolved in $4 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Di-tert-butyl dicarbonate ($0.3 \mathrm{mmol}, 65.5 \mathrm{mg}$) and $\mathrm{Et}_{3} \mathrm{~N}(0.3 \mathrm{mmol}, 30.4 \mathrm{mg})$ were then added dropwise. The mixture was allowed to stir for 2.5 h at room temperature. 20 $\mathrm{mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$ was added and the mixture was washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and brine (20 $\mathrm{mL})$. The resulting solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo. The product $\mathbf{4 a}$ was purified by silica gel column chromatography using hexane-EtOAc as eluents.

Synthesis of 4b: The residue ($0.2 \mathrm{mmol}, 51.4 \mathrm{mg}$) was dissolved in $0.5 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$, followed the 1-hydroxybenzotriazole (HOBT $0.3 \mathrm{mmol}, 37.0 \mathrm{mg}$), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC $\cdot \mathrm{HCl} 0.32 \mathrm{mmol}$, $61.3 \mathrm{mg})$, (S)-6-((benzyloxy)carbonyl)amino)-2-((tertbutoxycarbonyl)amino)hexanoic acid ($0.22 \mathrm{mmol}, 83.7 \mathrm{mg}$) and DIPEA (0.32 mmol , 37.8 mg) were added. The mixture was stirred for 12 h . After completion of the reaction monitored by TLC, water (2 mL) was added to quench the reaction and concentrated under reduced pressure. The resultant residue was dissolved with ethyl acetate (10 mL), washed with $1 \mathrm{M} \mathrm{HCl}(5 \mathrm{~mL})$, and brine ($5 \mathrm{~mL} \times 2$). The combined organic layers were dried over with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced
pressure to afford the crude residue. The $\mathbf{4 b}$ was purified by silica gel column chromatography using hexane-EtOAc as eluents.

$4 a$
tert-butyl (cyclohexyl(5-phenyl-1,3,4-oxadiazol-2-yl)methyl)carbamate (4a): white solid, $65.0 \mathrm{mg}, 91 \%$ yield. M. p. $175-179{ }^{\circ} \mathrm{C}$.
${ }^{1} H$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.05(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.51(\mathrm{~m}, 3 \mathrm{H}), 5.22(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 1 \mathrm{H}), 1.78(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.67(\mathrm{~d}$, $J=11.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.26-1.13(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.3,164.8,155.3,131.7,129.0,126.9,123.7,80.3$, 52.1, 42.0, 29.3, 28.3, 25.9, 25.8.

HRMS (ESI): $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$calcd: 380.1950, found: 380.1954.

benzyl tert-butyl ((5S)-6-((cyclohexyl(5-phenyl-1,3,4-oxadiazol-2-yl)methyl)amin o)-6-oxohexane-1,5-diyl)dicarbamate (4b): yellow oil, $96.6 \mathrm{mg}, 78 \%$ yield. 1:1 d.r. ${ }^{1}$ H NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.03(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{~s}$, $5 \mathrm{H}), 7.15-7.03(\mathrm{~m}, 1 \mathrm{H}), 5.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J$ $=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.98-4.92(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 2 \mathrm{H}) 1.94-1.74(\mathrm{~m}, 6 \mathrm{H})$, $1.66(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.51(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 11 \mathrm{H}), 1.26-1.14(\mathrm{~m}, 5 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.1,165.7,164.8,156.6,155.9,136.6,131.8,129.0$, $128.0,126.9,123.6,122.3,80.2,66.5,54.2,53.4,50.4,41.6,40.3,31.3,29.6,29.2$, 28.3, 25.8, 25.7, 22.5.

HRMS (ESI): $\mathrm{C}_{34} \mathrm{H}_{45} \mathrm{~N}_{5} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$calcd: 642.3268, found: 642.3262 .

6. The mechanistic studies

6.1 Control experiments

NOTE: To an oven-dried 10 mL quartz test tube with a stirring bar was added $\mathbf{1 a}$ (0.1 $\mathrm{mmol}, 28.4 \mathrm{mg}), \mathbf{L}(0.01 \mathrm{mmol}, 3.6 \mathrm{mg}), \mathrm{KOCH}_{3}(0.5 \mathrm{mmol}, 35.1 \mathrm{mg})$ and TEMPO $(0.3 \mathrm{mmol}, 46.9 \mathrm{mg})$. Then, air was withdrawn and backfilled with Ar (three times). $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$ and iodocyclohexane 2a ($0.4 \mathrm{mmol}, 33.6 \mathrm{mg}$) were added and the mixture were transferred to a violet LED photoreactor (410-420 nm), where it was irradiated for 12 h . Then, the reaction was quenched with water (3 mL), extracted with ethyl acetate, washed with brine, dried over anhydrous sodium sulfate, concentrated in vacuo, and the yields of 3aa were determined by ${ }^{1} \mathrm{H}$ NMR using $1,3,5$-trimethoxybenzene as an internal standard. In the presence of TEMPO, the reaction was completely suppressed and the yield of 3aa was 0%, and the radical trapping intermediate 5a detected by HRMS (A), which revealed the involvement of a radical intermediate during the reaction process. Addition of BHT led to a dramatic decrease of the yield ($\mathrm{B}, 12 \%$). To ensure the radical pathway, We also conducted a radical clock experiment using 6 -iodohex-1-ene (6a) as the reaction partner. The ringclosing product $\mathbf{6 b}$ was obtained (C)

Furthermore, we synthesized (E)-4-methoxy- N-((5-phenyl-1,3,4-oxadiazol-2-yl)me thylene)aniline (7a) was used instead of 4-methoxy- N-((5-phenyl-1,3,4-oxadiazol-2yl)methyl)aniline (1a), no 3aa was detected, which indicated that $7 \mathbf{7 a}$ was not formed as the intermediate for this transformation (D).
N-(2-cyclopentyl-1-(5-phenyl-1,3,4-oxadiazol-2-yl)ethyl)-4-methoxyaniline (6b): white solid, $27.3 \mathrm{mg}, 75 \%$ yield. M. p. $116-120{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.00(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.47(\mathrm{~m}, 3 \mathrm{H}), 6.73(\mathrm{dd}, J=14.7 \mathrm{~Hz}, 8.1 \mathrm{~Hz}, 4 \mathrm{H}), 4.78$ $(\mathrm{d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.92-1.90(\mathrm{~m}$, $2 \mathrm{H}), 1.77-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.26-1.15(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.7,164.8,152.9,140.1,131.6,129.0,126.9,123.9,115.2,114.9$, 55.6, 50.9, 40.8, 36.7, 32.7, 32.5, 25.0, 24.9. HRMS (ESI): $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$ calcd: 386.1844, found: 386.1841.

6.2 UV-Vis absorption

Figure S1. UV-Vis absorption spectra of substrate $\mathbf{2 a}\left(1 \times 10^{-3} \mathbf{M}\right), \mathbf{L}\left(1 \times 10^{-3} \mathbf{M}\right),[\mathbf{2 a}+\mathbf{L}]$ $\left(1 \times 10^{-3} \mathbf{M}\right),\left[\mathbf{2} \mathbf{a}+\mathrm{KOCH}_{3}\right]\left(1 \times 10^{-3} \mathbf{M}\right)$ and $\left[\mathbf{2} \mathbf{a}+\mathbf{L}+\mathrm{KOCH}_{3}\right]\left(1 \times 10^{-3} \mathbf{M}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}$.

NOTE: In the UV-Vis absorption studies, Combined $\left[\mathbf{2 a}+\mathbf{L}+\mathrm{KOCH}_{3}\right]$, respectively, in $\mathrm{CH}_{3} \mathrm{CN}$ the optical absorption spectrum showed a bathochromic shift to the visible
spectral region, diagnostic of an EDA complex. And at this concentration, a solution containing this EDA complex is visibly yellow color.

Figure S2. UV-Vis absorption spectra of substrate $\left[\mathbf{2 a}+\mathbf{L}+\mathrm{KOCH}_{3}\right]\left(1 \times 10^{-3} \mathrm{M}\right)$, $\left[\mathbf{2 a}+\mathbf{L}+\mathrm{Cs}_{2} \mathrm{CO}_{3}\right]\left(1 \times 10^{-3} \mathrm{M}\right),\left[\mathbf{2} \mathbf{a}+\mathbf{L}+\mathrm{NaHCO}_{3}\right]\left(1 \times 10^{-3} \mathbf{M}\right),[\mathbf{2 a}+\mathbf{L}+\mathrm{DABCO}]\left(1 \times 10^{-3} \mathrm{M}\right)$, $\left[\mathbf{2 a +}+{ }^{+} \mathrm{BuONa}\right]\left(1 \times 10^{-3} \mathrm{M}\right)$ and $\left[\mathbf{2 a}+\mathbf{L}+\mathrm{K}_{3} \mathrm{PO}_{4}\right]\left(1 \times 10^{-3} \mathrm{M}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}$.

NOTE: We found that the absorption was significantly different with the addition of different bases, and it is worth noting that the addition of bases that did not promote the reaction, such as NaHCO_{3} and DABCO , did not change the absorption. Based on these experimental results, we hypothesized that the base might play two roles in the reaction transformations process: (1) promoting the formation of EDA complexes between iodoalkanes and organophosphine; (2) providing basic conditions to facilitate the deprotonation of heterocyclic amines.

7. NMR spectra

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aa.

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aa.

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{3 b a}$.

${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ba

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 c a}$.

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ca.

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3da.

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 3ea.

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ea.

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3fa.

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3} \mathbf{f a}$.

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 g a}$.

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ga.

かorr r rob

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{3 h a}$.

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ha.

${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}) spectrum of compound 3ia.

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{3 j a}$.

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3} \mathbf{j} \mathbf{a}$.

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 k a}$.

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 3la.

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 m a}$.

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 m a}$.

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $3 \mathbf{n a}$.

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3na.

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3oa.

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3 oa .

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3pa.

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3pa.

ririririoioi

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{3 q a}$.

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ra.

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3sa.

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3} \mathbf{s a}$.

\circ
0
0
1

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3} \mathbf{a b}$.

$$
\begin{aligned}
& \text { かrrrrriobio }
\end{aligned}
$$

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 a b}$.

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ac.

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{3 a d}$.

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ad.

$$
\begin{aligned}
& \begin{array}{l}
\circ \\
\circ \\
\vdots \\
1
\end{array}
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ae.

－の	r	m	のmro	$\sim \infty$
$\forall \infty$	\because	\checkmark	romr	กの
ம்	\dot{m}	\bigcirc	－iفm	ம்
66	n	\square	m ${ }^{\text {y }}$	－
$1 /$	\cdots	\cdots	「1／1	

${ }_{\sim}^{\infty} 8$ ¢ ${ }^{\text {in }}$ ¢	¢ூf	¢
Fít ${ }^{\text {¢ }}$	¢in	¢
$V /$	，	

${ }^{13} \mathrm{C}$ NMR（ $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound 3af．

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 3ag．

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ah.

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ah.

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ai.

${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{4 b}$.

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{6 b}$.

8. References

[1]. J. Leal, A. Sauer, J. Mayer, S. Stefanello, D. Gonçalves, F. Soares, B. Iglesias, D. Back, O .Rodrigues and L. Dornelles, Synthesis and Electrochemical and Antioxidant Properties of Chalcogenocyanate Oxadiazole and 5-Heteroarylchalcogenomethyl-1H-Tetrazole Derivatives, New J. Chem., 2017, 41, 5875-5883.
[2]. W. Liu, L. Li and C. J. Li, Empowering a Transition-Metal-Free Coupling between Alkyne and Alkyl Iodide with Light in Water, Nat. Commun., 2015, 6, 6526.

[^0]: ${ }^{a} 0.05 \mathrm{mmol}$ scale. ${ }^{b}$ Yield was determined by ${ }^{1} \mathrm{H}$ NMR using 1,3,5trimethoxybenzene as an internal standard.

