Supporting Information

Isatin-based spiro indolenine alkaloids from *Isatis indigotica* Fortune with anti-neuroinflammatory and acetylcholinesterase inhibitor effects

Ming Bai^{a,1}, Yu-Fei Xi^{a, 1}, Si-Hui Mi^a, Pei-Yuan Yang^a, Li-Li Lou^{a,*}, Tian-Ming Lv^a, Xin Zhang^a, Guo-Dong Yao^a, Bin Lin^b, Xiao-Xiao Huang^{a,c*}, Shao-Jiang Song^{a,*}

^a Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China

^b Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China

^c State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu 222001, China

*Corresponding author.

E-mail: lou_li_li@163.com (L. L Lou); xiaoxiao270@163.com (X. X. Huang); songsj99@163.com (S. J Song) ¹ The two authors contributed equally to this work

Content

Table S1. ¹H (400 MHz) and ¹³C NMR (100 MHz) spectroscopic data of 1-3 in DMSO- d_6 .

- Fig. S1. UV spectrum of compound 1.
- Fig. S2. HRESIMS spectrum of compound 1.
- Fig. S3. ¹H NMR spectrum (400 MHz, DMSO- d_6) of compound 1.
- Fig. S4. ¹³C NMR spectrum (100 MHz, DMSO- d_6) of compound 1.
- Fig. S5. HSQC spectrum (600 MHz, DMSO- d_6) of compound 1.
- Fig. S6. HMBC spectrum (600 MHz, DMSO- d_6) of compound 1.
- Fig. S7. ¹H-¹H COSY spectrum (600 MHz, DMSO- d_6) of compound **3**.
- Fig. S8. NOESY spectrum (600 MHz, DMSO- d_6) of compound 1.
- Fig. S9. Experimental ECD spectra of 1a.
- Fig. S10. Experimental ECD spectra of 1b.
- Fig. S11. The chiral HPLC chromatogram of compounds 1a and 1b.
- Fig. S12. UV spectrum of compound 2.
- Fig. S13. HRESIMS spectrum of compound 2.
- Fig. S14. ¹H NMR spectrum (400 MHz, DMSO- d_6) of compound 2.
- Fig. S15. ¹³C NMR spectrum (100 MHz, DMSO- d_6) of compound 2.
- Fig. S16. HSQC spectrum (600 MHz, DMSO- d_6) of compound 2.
- Fig. S17. HMBC spectrum (600 MHz, DMSO- d_6) of compound 2.
- Fig. S18. ROESY spectrum (600 MHz, DMSO- d_6) of compound 2.
- Fig. S19. 1 H- 1 H COSY spectrum (600 MHz, DMSO- d_{6}) of compound 2.
- Fig. S20. Experimental ECD spectra of 2.
- Fig. S21. UV spectrum of compound 3.
- Fig. S22. HRESIMS spectrum of compound 3.
- Fig. S23. ¹H NMR spectrum (400 MHz, DMSO- d_6) of compound 3.
- Fig. S24. ¹³C NMR spectrum (100 MHz, DMSO- d_6) of compound 3.
- Fig. S25. HSQC spectrum (600 MHz, DMSO- d_6) of compound 3.
- Fig. S26. HMBC spectrum (600 MHz, DMSO- d_6) of compound 3.

Fig. S27. NOESY spectrum (600 MHz, DMSO-*d*₆) of compound 3.Fig. S28. Experimental ECD spectra of 3.

Position —	1		2		3	
	$\delta_{ m H}$ (multi, J in Hz)	$\delta_{ m C}$	$\delta_{ m H}$ (multi, J in Hz)	$\delta_{ m C}$	$\delta_{ m H}$ (multi, J in Hz)	$\delta_{ m C}$
1	10.28, s	_	7.74, s	_	10.95, s	_
2	_	173.1	_	90.1	_	124.6
3	_	83.6	_	193.3	_	134.0
3a	_	128.1	_	121.4	_	120.3
4	7.97, d (7.7)	128.6	7.61, d (8.0)	124.4	7.69, d (7.6)	117.8
5	7.00, t (7.7)	121.2	7.29, t (8.0)	124.9	6.97, t (7.6)	118.6
6	7.18, t (7.7)	129.4	7.80, t (8.0)	137.7	7.07, t (7.6)	121.7
7	6.58, d (7.7)	109.5	8.37, d (8.0)	116.4	7.27, d (7.6)	111.4
7a	_	142.1	_	150.7	_	133.0
8	_	—	_	167.7	-	_
9	-	—	-	83.7	-	_
10	_	—	4.99, s	85.6	-	_
11	_	—	4.23, d (4.4)	78.9	-	_
12	_	—	3.82, t (6.6)	89.4	-	_
13	_	—	3.42, overlapped	62.1	-	_
1'	3.47, d (12.2)	49.2	7.02, s	_	4.51, d (7.1)	108.2
2'	3.44, overlapped	48.8	_	68.1	4.58, overlapped	70.5
3'	2.79, m	66.4	_	196.6	-	172.1
3'a	_	—	_	123.2	-	_
4'	1.91, m; 1.68, m	24.4	7.51, d (7.6)	123.3	5.01, d (8.2)	76.5
5'	1.79, m	17.5	6.83, overlapped	119.0	3.20, m	78.3

Table S1. ¹H (400 MHz) and ¹³C NMR (100 MHz) spectroscopic data of 1-3 in DMSO- d_6 .

6'	3.10, dd (6.8, 8.2); 2.58, m	52.1	7.39, t (7.6)	136.6	3.71, m; 3.62, m	61.0
7'	_	171.6	6.83, overlapped	112.9	6.06, s	112.4
7'a	_	_	_	160.4	_	—
8'	_	_	_	_	_	172.1
1"	_	124.6	-	_	4.59, overlapped	63.3
2",6"	6.00, s	106.7	-	_	_	_
3",5"	-	147.0	-	_	_	_
4"	-	134.5	-	_	_	_
9-OH	-	_	6.57 (1H, s)	_	_	_
11-OH	-	_	7.07, d (4.6)	_	_	_
13-OH	-	_	4.83, t (4.8)	_	_	_
2'-OH	-	_	-	_	6.76, d (5.9)	_
6'-OH	-	_	-	_	5.06, t (5.5)	_
7'-OCH ₃	3.46, s	51.7	-	_	_	_
1"-OCH ₃	-	_	-	_	3.28, s	57.2
3",5"-OCH ₃	3.43, s	55.7	_	_	-	—
4"-OH	8.17, s	_	-	—	-	_

Fig. S1 UV spectrum of compound 1.

Analysis Name 20200916ceyang.m Method Bruker Customer Operator Sample Name DQY-110 Instrument / Ser# micrOTOF-Q 125 Comment Acquisition Parameter Source Type Positive 4500 V -500 V 1.2 Bar 180 °C 8.0 I/min Ion Polarity Set Nebulizer ESI Set Dry Heater Set Dry Gas Active 50 m/z Set Capillary Set End Plate Offset Focus Scan Begin Scan End 1500 m/z Set Collision Cell RF 400.0 Vpp Set Divert Valve Source Intens. x10⁵ +MS, 0.5min #29 0.8-0.6 477.1654 0.4 455.1816 0.2 474.1533 504.0094 466.1618 493.1338 0.0 450 470 500 460 480 490 m/z Meas. # Formul m/z Mean rdb N-Rule mSigm Std I Std Std I Std Std err e m/z a [ppm] err Conf a Mean VarNo m/z Comb [ppm] m/z rm Diff Dev 477.16 54 477.16 1 C 24 H -0.9 24.99 0.0450 0.0028 0.0142 0.0059 0.8427 -4.5 12.5 ok even 26 N 2 32 Na O 7 Intens. x10⁴ 8-C 24 H 26 N 2 Na O 7 ,477.16 6 477.1632 4 2-0 450 460 470 500 480 490 m/z # Form Meas. m/z err Mean rdb N-Rul e mSig Std I Std Std I Std Std

е Conf

Fig. S2 HRESIMS spectrum of compound 1.

ma

Mean

m/z

VarNo

rm

D:\Data\20200916CEYANG\DQY-110_1-D,3_01_14944.d

Analysis Info

m/z

ula

[ppm]

err

[ppm]

9/16/2020 5:36:54 PM

m/z Diff

Comb

Dev

Mass Spectrum SmartFormula Report Acquisition Date

Fig. S6. HMBC spectrum (600 MHz, DMSO- d_6) of compound 1.

Fig. S7. ¹H-¹H COSY spectrum (600 MHz, DMSO- d_6) of compound **1**.

Fig. S8. NOESY spectrum (600 MHz, DMSO- d_6) of compound 1.

Fig. S10. Experimental ECD spectra of 1b.

Fig. S11. The chiral HPLC chromatogram of compounds 1a and 1b.

Fig. S12 UV spectrum of compound 2.

Mass Spectrum SmartFormula Report

G:\20170601CEYANG\C2-8-6_1-E,1_01_9815.d 20131026_ceyang.m C2-8-6

Acquisition Date 6/1/2017 2:17:51 PM

Operator Bruker Customer Instrument / Ser#

micrOTOF-Q 125

Fig. S13 HRESIMS spectrum of compound 2.

Fig. S16. HSQC spectrum (600 MHz, DMSO- d_6) of compound 2.

Fig. S17. HMBC spectrum (600 MHz, DMSO- d_6) of compound 2.

Fig. S18. ROESY spectrum (600 MHz, DMSO- d_6) of compound 2.

Fig. S19. ¹H-¹H COSY spectrum (600 MHz, DMSO- d_6) of compound **2**.

Fig. S21 UV spectrum of compound 3.

Fig. S25. HSQC spectrum (600 MHz, DMSO- d_6) of compound 3.

Fig. S26. HMBC spectrum (600 MHz, DMSO- d_6) of compound 3.

Fig. S27. NOESY spectrum (600 MHz, DMSO- d_6) of compound 3.

Fig. S28. Experimental ECD spectra of 3.