# **Supporting Information**

# Palladium-catalyzed [6+4] cycloaddition with π-allyl all-carbon 1,6-dipole for the synthesis of tenmembered heterocycles

Jun-Tao Chen,<sup>a,b</sup> Na Lin,<sup>a</sup> Linli Xu,<sup>a</sup> Yi Wang,<sup>b</sup> Xiaoyan Luo,<sup>b</sup> Yang-Zi Liu,<sup>\*a</sup> and Wei-Ping

Deng\*a,b

a. Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China.

b. Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China

### Contents

| 1.  | General information                                                     | 2  |
|-----|-------------------------------------------------------------------------|----|
| 2.  | Preparation of all-carbon 1,6-dipole precursor 1                        | 3  |
| 3.  | Preparation of benzofuran-derived azadienes 2                           | 3  |
| 4.  | Preparation of furan-derived azadienes 4                                | 3  |
| 5.  | Optimization of reaction conditions                                     | 5  |
| 6.  | General procedure for Pd-catalyzed [6+4] cycloaddition                  | 6  |
| 7.  | Scale-up experiment                                                     | 25 |
| 8.  | Synthetic transformation                                                | 26 |
| 9.  | Control experiment                                                      | 27 |
| 10. | Crystallographic data for compound 3aa and 8ax                          | 28 |
| 11. | <sup>1</sup> H NMR, <sup>19</sup> F NMR and <sup>13</sup> C NMR spectra | 31 |

#### 1. General information

<sup>1</sup>H NMR spectra were recorded on a Bruker DPX 400 MHz or 600 MHz spectrometer in CDCl<sub>3</sub>. Chemical shifts were reported in ppm with the internal TMS signal at 0.0 ppm as a standard. The spectra are interpreted as: s = singlet, d = doublet, t = triplet, q = quartet, m = quartetmultiplet, dd = doublet of doublets, dd = triplet of doublets, dt = doublet of triplets, ddd = doubletof doublet of doublets, ddt = doublet of doublet of triplets, dtd = doublet of triplet of doublets, brs = broad signals, coupling constant (s) J are reported in Hz and relative integrations are reported. <sup>13</sup>C NMR spectra were recorded on a Bruker DPX 400 MHz or 600 MHz spectrometer in CDCl<sub>3</sub>. Chemical shifts were reported in ppm with the internal chloroform signal at 77.16 ppm as a standard. <sup>19</sup>F NMR (377 MHz) spectra were recorded on a Bruker DPX 400 MHz or 600 MHz spectrometer in CDCl<sub>3</sub> and referenced relative to CFCl<sub>3</sub>. Melting points were obtained in open capillary tubes using SGW X-4 micro melting point apparatus which were uncorrected. High-resolution mass spectra (HRMS) were recorded on a Waters GCT Premier mass spectrometer using EI-TOF (electron ionization-time of flight) or on a JEOC AccuTOF LC-plus 4G mass spectrometer using ESI (electrospray ionization). Anhydrous CH<sub>2</sub>Cl<sub>2</sub> was distilled from calcium hydride. Anhydrous toluene was distilled from sodium/benzophenone. Other anhydrous solvents (<30 ppm water, Karl-Fischer titration) were purchased from Energy or J&K and stored over molecular sieves under an argon atmosphere. Pd<sub>2</sub>(dba)<sub>3</sub>, Pd<sub>2</sub>(dba)<sub>3</sub>·CHCl<sub>3</sub> and Pd(PPh<sub>3</sub>)<sub>4</sub> were purchased from Laajoo.

#### 2. Preparation of all-carbon 1,6-dipole precursor 1



Under nitrogen atmosphere, to a solution of **S1** (1.0 equiv.) in anhydrous tetrahydrofuran (2.0 mL/mmol) was added NaH (3.0 equiv.) at 0 °C.<sup>1</sup> Then ClCOOMe (3.0 equiv.) was added dropwise via syringe at the same temperature. After the starting material was completely consumed (detected by TLC), the reaction mixture was quenched with saturated aqueous NH<sub>4</sub>Cl. Then, the mixture was extracted with ethyl acetate, washed with brine and dried over Na<sub>2</sub>SO<sub>4</sub>. After evaporation, the mixture was purified by column chromatography (petroleum ether/ ethyl acetate = 6:1) to give the corresponding cycloadducts **1**.

#### 3. Preparation of benzofuran-derived azadienes 2



Substrates 2 were synthesized according to the literature procedure.<sup>2</sup> Spectral data of compounds were in accordance with those reported in the literature.

#### 4. Preparation of furan-derived azadienes 4



Substrates **4** was synthesized according to the literature procedure.<sup>3</sup> Spectral data of compound was in accordance with that reported in the literature.

#### References

[1] K. Li; S. Yang; B. Zheng; W. Wang; Y Wu; J. Li and H. Guo, A new type of δvinylvalerolactone for palladium-catalyzed cycloaddition: synthesis of nine-membered heterocycles, *Chem. Commun.*, 2022, **58**, 6646–6649.

[2] H. Ni; X. Tang; W. Zheng; W. Yao; N. Ullah; Y. Lu, Enantioselective phosphine-catalyzed formal [4+4] annulation of  $\alpha$ , $\beta$ -unsaturated imines and allene ketones: construction of eight-membered rings, *Angew. Chem. Int. Ed.* 2017, **56**, 14222–14226.

[3] W.-L. Yang, J.-H. Shen, Z.-H. Zhao, Z. Wang and W.-P. Deng, Stereoselective synthesis of functionalized azepines *via* gold and palladium relay catalysis, *Org. Chem. Front.* 2022, **9**, 4685–4691.

#### 5. Optimization of reaction conditions

 

 Table S1. Optimization of the reaction conditions for Pd-catalyzed [6+4] cycloaddition of allcarbon 1,6-dipole precursor 1a and furan-derived azadiene 4



| Entry           | R  | [Pd]                                                  | Ligand          | Solvent           | Yield <sup>b</sup> /% |
|-----------------|----|-------------------------------------------------------|-----------------|-------------------|-----------------------|
| 1               | Ts | Pd <sub>2</sub> (dba) <sub>3</sub> ·CHCl <sub>3</sub> | L1              | DCM               | 32                    |
| 2               | Ts | Pd <sub>2</sub> (dba) <sub>3</sub> ·CHCl <sub>3</sub> | L3 <sup>c</sup> | DCM               | 25                    |
| 3               | Ts | Pd <sub>2</sub> (dba) <sub>3</sub> ·CHCl <sub>3</sub> | L4 <sup>c</sup> | DCM               | 12                    |
| 4               | Ts | Pd <sub>2</sub> (dba) <sub>3</sub> ·CHCl <sub>3</sub> | L5              | DCM               | 20                    |
| 5               | Ts | Pd <sub>2</sub> (dba) <sub>3</sub> ·CHCl <sub>3</sub> | L6              | DCM               | 45                    |
| 6               | Ts | $Pd_2(dba)_3$                                         | L6              | DCM               | 42                    |
| 7               | Ts | $Pd(PPh_3)_4^d$                                       | L6              | DCM               | 40                    |
| 8               | Ts | Pd <sub>2</sub> (dba) <sub>3</sub> ·CHCl <sub>3</sub> | L6              | THF               | 57                    |
| 9               | Ts | Pd <sub>2</sub> (dba) <sub>3</sub> ·CHCl <sub>3</sub> | L6              | toluene           | 65                    |
| 10              | Ts | Pd <sub>2</sub> (dba) <sub>3</sub> ·CHCl <sub>3</sub> | L6              | PhCF <sub>3</sub> | 58                    |
| 11              | Ts | Pd <sub>2</sub> (dba) <sub>3</sub> ·CHCl <sub>3</sub> | L6              | o-xylene          | 49                    |
| 12 <sup>e</sup> | Ts | Pd <sub>2</sub> (dba) <sub>3</sub> ·CHCl <sub>3</sub> | L6              | toluene           | 75                    |
| 13 <sup>e</sup> | Ms | Pd <sub>2</sub> (dba) <sub>3</sub> ·CHCl <sub>3</sub> | L6              | toluene           | 40                    |

<sup>*a*</sup> Reaction conditions: **1a** (0.15 mmol), **4a** (0.10 mmol),  $Pd_2(dba)_3 \cdot CHCl_3$  (5 mol%) and ligand (20 mol%) in 1.0 mL of solvent under a N<sub>2</sub> atmosphere at 25 °C for 24 h. <sup>*b*</sup> Yield of **5a** was determined by <sup>1</sup>H-NMR spectroscopic analysis of the crude product with 1,3,5-trimethoxybenzene as an internal standard. <sup>*c*</sup> 20 mol%. <sup>*d*</sup> 10 mol% <sup>*e*</sup> at 0 °C

#### 6. General procedure for Pd-catalyzed [6+4] cycloaddition



**General procedure A**: An oven-dried Schlenk tube was added  $Pd_2(dba)_3$  (0.005 mmol, 4.6 mg, 5 mol%), L5 (0.01 mmol, 1.8 mg, 10 mol%) followed by the addition of anhydrous DCE (1 mL) under N<sub>2</sub>. The reaction mixture was allowed to stir for 30 mins at 25 °C, and all-carbon 1,6-dipole precursor 1 (0.15 mmol) and benzofuran-derived azadienes 2 (0.1 mmol) were then added. After 24 h, the mixture was concentrated and purified by column chromatography (petroleum ether/ ethyl acetate = 4:1) to give the corresponding cycloadducts 3.



**1a** was obtained as white solid; m.p. = 75.4 – 79.6 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.42 – 7.28 (m, 5H), 6.05 (dd, J = 17.2, 10.8 Hz, 1H), 5.38 (d, J = 17.2 Hz, 1H), 5.31 (d, J = 10.8 Hz, 1H), 3.86 (s, 3H), 3.79 (s, 3H), 2.67 – 2.56 (m, 1H), 2.50 – 2.41 (m, 1H), 2.31 – 2.14 (m, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  167.3, 167.2, 164.5, 141.8, 140.0, 128.8(2C), 128.1, 125.1(2C), 115.9, 88.6, 62.7, 53.9, 53.8, 30.7, 25.7; HRMS (ESI-TOF, m/z): calcd for C17H18O6Na [M+Na]<sup>+</sup>: 341.0996, found: 341.0998.



**1b** was obtained as light yellow oil; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.57 – 7.43 (m, 2H), 7.36 – 7.17 (m, 2H), 6.01 (dd, J = 17.2, 10.8 Hz, 1H), 5.38 (d, J = 17.1 Hz, 1H), 5.33 (d, J = 10.8 Hz, 1H), 3.86 (s, 3H), 3.80 (s, 3H), 2.68 – 2.56 (m, 1H), 2.52 – 2.39 (m, 1H), 2.29 – 2.09 (m, 2H); <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>)  $\delta$  167.0(6), 167.0(5), 164.2, 141.0, 139.5, 131.9(2C), 126.9(2C), 122.3, 116.4, 88.1, 62.6, 53.9(2C), 30.5, 25.6; **HRMS** (ESI-TOF, m/z): calcd for C<sub>17</sub>H<sub>17</sub>O<sub>6</sub>Br<sup>79</sup>Na [M+Na]<sup>+</sup>: 419.0101, found: 419.0103; C<sub>17</sub>H<sub>17</sub>O<sub>6</sub>Br<sup>81</sup>Na [M+Na]<sup>+</sup>: 421.0081 found: 421.0086.



1c was obtained as light yellow oil; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.45 – 7.33 (m, 2H), 7.11 – 6.98 (m, 2H), 6.03 (dd, J = 17.2, 10.8 Hz, 1H), 5.38 (d, J = 17.1 Hz, 1H), 5.33 (d, J = 10.9 Hz, 1H), 3.85 (s, 3H), 3.80 (s, 3H), 2.68 – 2.57 (m, 1H), 2.51 – 2.40 (m, 1H), 2.31 – 2.11 (m, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 167.0(3), 167.0(2), 164.2, 162.3 (d,  $J_{C-F} = 247.4$  Hz), 139.7, 137.6 (d,  $J_{C-F} = 3.3$  Hz), 127.0 (d,  $J_{C-F} = 8.2$  Hz) (2C), 116.0, 115.5 (d,  $J_{C-F} = 21.6$  Hz) (2C), 88.1, 62.6, 53.7(2C), 30.5, 25.6; <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>) δ -114.2.(s, 1F); HRMS (ESI-TOF, m/z): calcd for C17H17O<sub>6</sub>FNa [M+Na]<sup>+</sup>: 359.0902, found: 359.0903.



1d was obtained as light yellow oil; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.30 – 7.23 (m, 2H), 7.26 – 7.14 (m, 2H), 6.03 (dd, J = 17.2, 10.8 Hz, 1H), 5.36 (d, J = 17.1 Hz, 1H), 5.29 (d, J = 10.8 Hz, 1H), 3.85 (s, 3H), 3.79 (s, 3H), 2.66 – 2.54 (m, 1H), 2.52 – 2.38 (m, 1H), 2.34 (s, 3H), 2.28 – 2.13 (m, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  167.3, 167.2, 164.5, 140.2, 138.9, 137.9, 129.4(2C), 125.1(2C), 115.7, 88.7, 62.7, 53.9, 53.8, 30.6, 25.8, 21.1; HRMS (ESI-TOF, m/z): calcd for C<sub>18</sub>H<sub>20</sub>O<sub>6</sub>Na [M+Na]<sup>+</sup>: 355.1153, found: 355.1144.



1e was obtained as light yellow oil; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.32 – 7.25 (m, 2H), 7.23 – 7.17 (m, 2H), 6.03 (dd, J = 17.2, 10.8 Hz, 1H), 5.37 (d, J = 17.1 Hz, 1H), 5.29 (d, J = 10.9 Hz, 1H), 3.85 (s, 3H), 3.79 (s, 3H), 2.66 – 2.56 (m, 1H), 2.56 – 2.41 (m, 2H), 2.25 – 2.17 (m, 2H), 1.89 – 1.80 (m, 4H), 1.78 – 1.71 (m, 1H), 1.46 – 1.22 (m, 5H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  167.4, 167.2, 164.5, 148.1, 140.2, 139.1, 127.2(2C), 125.1(2C), 115.6, 88.7, 62.7, 53.8(4), 53.8(2), 44.2, 34.4(2C), 30.6, 26.9(2C), 26.2, 25.8; HRMS (ESI-TOF, m/z): calcd for C<sub>23</sub>H<sub>28</sub>O<sub>6</sub>Na [M+Na]<sup>+</sup>: 423.1779, found: 423.1778.



If was obtained as light yellow oil; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.89 – 7.81 (m, 4H), 7.53 – 7.48 (m, 2H), 7.47 – 7.43 (m, 1H), 6.13 (dd, J = 17.2, 10.8 Hz, 1H), 5.44 (d, J = 17.2 Hz, 1H), 5.35 (d, J = 10.8 Hz, 1H), 3.88 (s, 3H), 3.76 (s, 3H), 2.70 – 2.61 (m, 1H), 2.53 – 2.44 (m, 1H), 2.35 – 2.30 (m, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  167.3, 167.2, 164.5, 140.0, 139.0, 133.1, 132.9, 128.7, 128.5, 127.7, 126.7, 126.7, 124.2, 123.1, 116.2, 88.8, 62.8, 53.9(4), 53.8(8), 30.6, 25.8; HRMS (ESI-TOF, m/z): calcd for C<sub>21</sub>H<sub>20</sub>O<sub>6</sub>Na [M+Na]<sup>+</sup>: 391.1153, found: 391.1154.



**3aa** was obtained as white solid; m.p. = 188.4 – 192.1 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.74 – 7.67 (m, 2H), 7.59 – 7.46 (m, 2H), 7.39 – 7.31 (m, 2H), 7.30 – 7.24 (m, 2H), 7.23 – 7.18 (m, 1H), 7.15 – 7.05 (m, 3H), 6.64 – 6.54 (m, 2H), 5.64 (s, 1H), 5.54 – 5.46 (m, 1H), 4.78 – 4.68 (m, 1H), 4.63 – 4.54 (m, 1H), 3.77 (s, 3H), 3.42 (s, 3H), 2.84 – 2.75 (m, 4H), 2.43 – 2.31 (m, 1H), 2.27 – 2.14 (m, 1H), 1.15 – 1.05 (m, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)δ 171.1, 170.2, 155.7, 153.6, 149.0, 140.4, 136.4, 130.7(2C), 128.4(2C), 127.9(2C), 127.8, 127.6, 126.7, 126.4(2C), 125.1, 123.9, 119.2, 117.9, 117.7, 112.4, 63.1, 53.0, 52.1, 46.6, 43.4, 37.9, 33.0, 22.3; HRMS (ESI-TOF, m/z): calcd for C<sub>32</sub>H<sub>31</sub>NO<sub>7</sub>SNa [M+Na]<sup>+</sup>: 596.1714, found: 596.1717.



**3ab** was obtained as white solid; m.p. = 186.6 – 189.6 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.66 – 7.58 (m, 2H), 7.57 – 7.46 (m, 2H), 7.43 – 7.38 (m, 2H), 7.37 – 7.33 (m, 2H), 7.15 – 7.05 (m, 3H), 6.65 – 6.58 (m, 2H), 5.65 (s, 1H), 5.53 – 5.45 (m, 1H), 4.82 – 4.73 (m, 1H), 4.56 – 4.47 (m, 1H), 3.77 (s, 3H), 3.46 (s, 3H), 2.85 – 2.76 (m, 4H), 2.43 – 2.30 (m, 1H), 2.25 – 2.12 (m, 1H), 1.08 – 0.98 (m, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.9, 170.1, 155.5, 153.6, 148.9, 140.3, 135.4, 132.6(2C), 131.0(2C), 128.4(2C), 127.9, 126.3(2C), 126.1, 125.2, 124.0, 121.9, 118.9, 118.0, 117.4, 112.6, 62.8, 53.1, 52.2, 46.8, 42.8, 37.6, 33.1, 22.5; HRMS (ESI-TOF,

m/z): calcd for  $C_{32}H_{30}NO_7SBr^{79}Na$  [M+Na]<sup>+</sup>: 674.0819, found: 674.0816;  $C_{32}H_{30}NO_7SBr^{81}Na$  [M+Na]<sup>+</sup>: 676.0799, found: 676.0793.



**3ac** was obtained as white solid; m.p. = 189.6 – 193.6 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.76 – 7.66 (m, 2H), 7.56 – 7.47 (m, 2H), 7.40 – 7.31 (m, 2H), 7.16 – 7.05 (m, 3H), 7.02 – 6.91 (m, 2H), 6.65 – 6.58 (m, 2H), 5.67 (s, 1H), 5.54 – 5.46 (m, 1H), 4.81 – 4.72 (m, 1H), 4.58 – 4.49 (m, 1H), 3.77 (s, 3H), 3.45 (s, 3H), 2.87 – 2.73 (m, 4H), 2.43 – 2.30 (m, 1H), 2.25 – 2.12 (m, 1H), 1.10 – 1.00 (m, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  171.0, 170.2, 162.2 (d,  $J_{C-F}$  = 247.2 Hz), 155.8, 153.6, 149.0, 140.4, 132.6 (d,  $J_{C-F}$  = 8.1 Hz) (2C), 132.1 (d,  $J_{C-F}$  = 3.4 Hz), 128.5(2C), 127.9, 126.4(2C), 126.3, 125.2, 124.0, 119.0, 117.9, 117.5, 114.8 (d,  $J_{C-F}$  = 21.1 Hz) (2C), 112.6, 63.0, 53.1, 52.2, 46.8, 42.6, 37.7, 33.1, 22.5; <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  - 115.0. (s, 1F); HRMS (ESI-TOF, m/z): calcd for C<sub>32</sub>H<sub>30</sub>FNO<sub>7</sub>SNa [M+Na]<sup>+</sup>: 614.1620, found: 614.1622.



**3ad** was obtained as white solid; m.p. =  $189.7 - 192.6 \,^{\circ}$ C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.92 - 7.86 (m, 2H), 7.60 - 7.56 (m, 2H), 7.56 - 7.52 (m, 1H), 7.50 - 7.47 (m, 1H), 7.40 - 7.36 (m, 2H), 7.16 - 7.07 (m, 3H), 6.66 - 6.59 (m, 2H), 5.77 (s, 1H), 5.53 - 5.45 (m, 1H), 4.86 - 4.77 (m, 1H), 4.53 - 4.43 (m, 1H), 3.78 (s, 3H), 3.44 (s, 3H), 2.85 (s, 4H), 2.45 - 2.32 (m, 1H), 2.25 - 2.12 (m, 1H), 1.06 - 0.96 (m, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  170.7, 169.9, 155.1, 153.6, 148.8, 141.9, 140.2, 131.9(2C), 131.5(2C), 128.5(2C), 127.9, 126.3(2C), 125.7, 125.4, 124.2, 119.0, 118.6, 118.4, 117.2, 112.8, 111.3, 62.8, 53.2, 52.2, 46.9, 43.2, 37.3, 33.2, 22.6; HRMS (ESI-TOF, m/z): calcd for C<sub>33</sub>H<sub>30</sub>N<sub>2</sub>O<sub>7</sub>SNa [M+Na]<sup>+</sup>: 621.1666, found: 621.1662.



**3ae** was obtained as white solid; m.p. = 188.4 - 189.6 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.72 - 7.64 (m, 2H), 7.56 - 7.46 (m, 2H), 7.41 - 7.32 (m, 2H), 7.29 - 7.21 (m, 2H), 7.18 - 7.05 (m, 3H), 6.65 - 6.58 (m, 2H), 5.66 (s, 1H), 5.53 - 5.45 (m, 1H), 4.82 - 4.73 (m, 1H), 4.57 - 4.48 (m, 1H), 3.77 (s, 3H), 3.46 (s, 3H), 2.86 - 2.76 (m, 4H), 2.43 - 2.30 (m, 1H), 2.25 - 2.12 (m, 1H), 1.09 - 0.99 (m, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  171.0, 170.2, 155.6, 153.6, 148.9, 140.4, 134.9, 133.6, 132.3(2C), 128.5(2C), 128.1(2C), 127.9, 126.4(2C), 126.2, 125.2, 124.1, 118.9, 118.0, 117.4, 112.6, 62.9, 53.1, 52.2, 46.8, 42.7, 37.6, 33.2, 22.5; HRMS (ESI-TOF, m/z): calcd for C<sub>32</sub>H<sub>30</sub>Cl<sup>35</sup>NO<sub>7</sub>SNa [M+Na]<sup>+</sup>: 630.1324, found: 630.1354; C<sub>32</sub>H<sub>30</sub>Cl<sup>37</sup>NO<sub>7</sub>SNa [M+Na]<sup>+</sup>: 632.1294, found: 632.1320.



**3af** was obtained as white solid; m.p. =  $187.5 - 190.6 \,^{\circ}$ C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.92 – 7.85 (m, 2H), 7.58 – 7.45 (m, 4H), 7.42 – 7.31 (m, 2H), 7.19 – 7.05 (m, 3H), 6.67 – 6.59 (m, 2H), 5.77 (s, 1H), 5.54 – 5.46 (m, 1H), 4.85 – 4.76 (m, 1H), 4.56 – 4.46 (m, 1H), 3.78 (s, 3H), 3.43 (s, 3H), 2.88 – 2.80 (m, 4H), 2.45 – 2.32 (m, 1H), 2.26 – 2.13 (m, 1H), 1.10 – 0.99 (m, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  170.8, 170.0, 155.4, 153.7, 148.9, 140.4, 140.3, 131.4(2C), 129.6 (q,  $J_{C-F}$  = 32.4 Hz), 128.5(2C), 127.9, 126.3(2C), 125.9, 125.3, 124.7 (q,  $J_{C-F}$  = 3.8 Hz) (2C), 124.3 (q,  $J_{C-F}$  = 272.0 Hz), 124.1, 118.8, 118.3, 117.3, 112.7, 62.9, 53.1, 52.2, 46.9, 43.1, 37.5, 33.2, 22.6; <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -62.6. (s, 3F); HRMS (ESI-TOF, m/z): calcd for C<sub>33</sub>H<sub>30</sub>F<sub>3</sub>NO<sub>7</sub>SNa [M+Na]<sup>+</sup>: 664.1588, found: 664.1583.



**3ag** was obtained as white solid; m.p. = 187.6 – 189.4 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.18 – 8.11 (m, 2H), 7.99 – 7.92 (m, 2H), 7.59 – 7.52 (m, 1H), 7.50 – 7.46 (m, 1H), 7.44 – 7.33 (m, 2H), 7.20 – 7.06 (m, 3H), 6.67 – 6.60 (m, 2H), 5.83 (s, 1H), 5.54 – 5.46 (m, 1H), 4.89 – 4.79 (m, 1H), 4.53 – 4.43 (m, 1H), 3.78 (s, 3H), 3.46 (s, 3H), 2.89 – 2.81 (m, 4H), 2.46 – 2.33 (m, 1H), 2.26 – 2.13 (m, 1H), 1.07 – 0.97 (m, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.7, 169.9, 155.0, 153.7, 148.9, 147.2, 143.9, 140.3, 132.1(2C), 128.5(2C), 128.0, 126.3(2C), 125.6, 125.5, 124.3, 122.9(2C), 118.6, 118.5, 117.2, 112.8, 62.8, 53.2, 52.3, 47.0, 43.1, 37.3, 33.2, 22.7; HRMS (ESI-TOF, m/z): calcd for C<sub>32</sub>H<sub>30</sub>N<sub>2</sub>O<sub>9</sub>SNa [M+Na]<sup>+</sup>: 641.1565, found: 641.1557.



**3ah** was obtained as white solid; m.p. = 192.5 – 194.6 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.61 – 7.51 (m, 3H), 7.53 – 7.45 (m, 1H), 7.41 – 7.28 (m, 2H), 7.18 – 7.03 (m, 5H), 6.65 – 6.57 (m, 2H), 5.59 (s, 1H), 5.54 – 5.46 (m, 1H), 4.78 – 4.68 (m, 1H), 4.63 – 4.53 (m, 1H), 3.77 (s, 3H), 3.46 (s, 3H), 2.82 – 2.70 (m, 4H), 2.45 – 2.30 (m, 1H), 2.29 – 2.16 (m, 4H), 1.14 – 1.03 (m, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 171.2, 170.3, 155.9, 153.6, 149.0, 140.4, 137.2, 133.2, 130.6(2C), 128.7(2C), 128.4(2C), 127.8, 126.7, 126.4(2C), 125.0, 123.9, 119.2, 117.7(0), 117.6(6), 112.4, 63.1, 53.0, 52.1, 46.6, 43.1, 37.9, 33.1, 22.4, 21.2; HRMS (ESI-TOF, m/z): calcd for C<sub>33</sub>H<sub>33</sub>NO<sub>7</sub>SNa [M+Na]<sup>+</sup>: 610.1870, found: 610.1871.



**3ai** was obtained as white solid; m.p. = 188.9 – 192.9 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.66 – 7.58 (m, 2H), 7.58 – 7.45 (m, 2H), 7.38 – 7.28 (m, 2H), 7.16 – 7.03 (m, 3H), 6.85 – 6.77 (m,

2H), 6.64 - 6.57 (m, 2H), 5.60 (s, 1H), 5.54 - 5.46 (m, 1H), 4.78 - 4.69 (m, 1H), 4.62 - 4.52 (m, 1H), 3.77 (s, 3H), 3.76 (s, 3H), 3.47 (s, 3H), 2.80 (s, 4H), 2.43 - 2.30 (m, 1H), 2.26 - 2.13 (m, 1H), 1.12 - 1.03 (m, 1H); <sup>13</sup>**C** NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  171.2, 170.3, 158.9, 156.0, 153.6, 149.0, 140.4, 131.9(2C), 128.4(2C), 128.3, 127.9, 126.7, 126.4(2C), 125.0, 123.9, 119.2, 117.6, 117.5, 113.3(2C), 112.4, 63.1, 55.2, 53.0, 52.2, 46.6, 42.7, 37.9, 33.1, 22.4; **HRMS** (ESI-TOF, m/z): calcd for C<sub>33</sub>H<sub>33</sub>NO<sub>8</sub>SNa [M+Na]<sup>+</sup>: 626.1820, found: 626.1821.



**3aj** was obtained as white solid; m.p. = 185.9–189.6 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.66 – 8.60 (m, 1H), 8.16 – 8.06 (m, 2H), 7.62 – 7.55 (m, 1H), 7.54 – 7.43 (m, 2H), 7.43 – 7.32 (m, 2H), 7.20 – 7.07 (m, 3H), 6.71 – 6.64 (m, 2H), 5.83 (s, 1H), 5.54 – 5.46 (m, 1H), 4.90 – 4.81 (m, 1H), 4.54 – 4.45 (m, 1H), 3.78 (s, 3H), 3.52 (s, 3H), 2.94 – 2.83 (m, 4H), 2.46 – 2.33 (m, 1H), 2.28 – 2.15 (m, 1H), 1.10 – 0.99 (m, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.7, 169.9, 155.0, 153.7, 148.6, 147.8, 140.4, 138.3, 138.2, 128.6, 128.5(2C), 127.9, 126.3(2C), 125.7, 125.5, 125.5, 124.2, 122.6, 118.6, 118.4, 117.3, 113.0, 62.8, 53.2, 52.4, 47.1, 42.9, 37.3, 33.3, 22.7; HRMS (ESI-TOF, m/z): calcd for C<sub>32</sub>H<sub>30</sub>N<sub>2</sub>O<sub>9</sub>SNa [M+Na]<sup>+</sup>: 641.1565, found: 641.1559.



**3ak** was obtained as white solid; m.p. =  $188.4 - 191.6 \,^{\circ}$ C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.76 – 7.71 (m, 1H), 7.67 – 7.60 (m, 1H), 7.59 – 7.47 (m, 2H), 7.40 – 7.31 (m, 2H), 7.25 – 7.18 (m, 2H), 7.16 – 7.05 (m, 3H), 6.64 – 6.58 (m, 2H), 5.65 (s, 1H), 5.53 – 5.45 (m, 1H), 4.81 – 4.72 (m, 1H), 4.59 – 4.49 (m, 1H), 3.78 (s, 3H), 3.47 (s, 3H), 2.85 – 2.75 (m, 4H), 2.43 – 2.30 (m, 1H), 2.25 – 2.12 (m, 1H), 1.09 – 0.99 (m, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  170.8, 170.1, 155.3, 153.7, 148.9, 140.3, 138.3, 133.5, 130.6, 129.5, 129.1, 128.4(2C), 127.9, 127.8, 126.4(2C), 126.2, 125.2, 124.1, 118.9, 118.1, 117.5, 112.7, 62.9, 53.1, 52.2, 46.8, 43.0, 37.6, 33.1, 22.4; HRMS (ESI-TOF, m/z): calcd for C<sub>32</sub>H<sub>30</sub>Cl<sup>35</sup>NO<sub>7</sub>SNa [M+Na]<sup>+</sup>: 630.1324, found: 630.1320; calcd for C<sub>32</sub>H<sub>30</sub>Cl<sup>37</sup>NO<sub>7</sub>SNa [M+Na]<sup>+</sup>: 632.1294, found: 632.1305.



**3al** was obtained as white solid; m.p. = 198.4 – 199.6 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.90 – 7.85 (m, 1H), 7.71 – 7.65 (m, 1H), 7.59 – 7.47 (m, 2H), 7.41 – 7.31 (m, 3H), 7.21 – 7.05 (m, 4H), 6.65 – 6.58 (m, 2H), 5.63 (s, 1H), 5.53 – 5.45 (m, 1H), 4.82 – 4.72 (m, 1H), 4.59 – 4.49 (m, 1H), 3.78 (s, 3H), 3.49 (s, 3H), 2.87 – 2.74 (m, 4H), 2.43 – 2.30 (m, 1H), 2.25 – 2.12 (m, 1H), 1.08 – 0.98 (m, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  170.9, 170.1, 155.3, 153.7, 148.9, 140.4, 138.6, 133.5, 130.7, 130.1, 129.4, 128.5(2C), 127.9, 126.4(2C), 126.2, 125.3, 124.1, 121.7, 118.9, 118.1, 117.5, 112.7, 63.0, 53.1, 52.2, 46.8, 43.0, 37.7, 33.1, 22.5; HRMS (ESI-TOF, m/z): calcd for C<sub>32</sub>H<sub>30</sub>Br<sup>79</sup>NO<sub>7</sub>SNa [M+Na]<sup>+</sup>: 674.0819, found: 674.0811; calcd for C<sub>32</sub>H<sub>30</sub>Br<sup>81</sup>NO<sub>7</sub>SNa [M+Na]<sup>+</sup>: 676.0799, found: 676.0793.



**3am** was obtained as white solid; m.p. = 184.8 – 186.6 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.60 – 7.53 (m, 1H), 7.53 – 7.46 (m, 3H), 7.37 – 7.30 (m, 2H), 7.18 – 7.03 (m, 5H), 6.63 – 6.56 (m, 2H), 5.57 (s, 1H), 5.54 – 5.46 (m, 1H), 4.76 – 4.67 (m, 1H), 4.65 – 4.56 (m, 1H), 3.77 (s, 3H), 3.44 (s, 3H), 2.80 – 2.72 (m, 4H), 2.44 – 2.28 (m, 4H), 2.26 – 2.14 (m, 1H), 1.15 – 1.05 (m, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 171.1, 170.2, 155.7, 153.7, 149.0, 140.4, 137.4, 136.2, 131.3, 128.4(2C), 128.4, 127.8(2C), 127.8, 126.9, 126.4(2C), 125.1, 123.9, 119.3, 117.8(5), 117.7(9), 112.4, 63.1, 53.0, 52.0, 46.6, 43.4, 38.0, 33.0, 22.3, 21.8; HRMS (ESI-TOF, m/z): calcd for C<sub>33H33NO7SNa [M+Na]<sup>+</sup>: 610.1870, found: 610.1865.</sub>



**3an** was obtained as white solid; m.p. = 189.9 – 195.6 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.59 – 7.53 (m, 1H), 7.52 – 7.46 (m, 1H), 7.38 – 7.26 (m, 4H), 7.21 – 7.04 (m, 4H), 6.79 – 6.72 (m, 1H), 6.61 – 6.55 (m, 2H), 5.61 (s, 1H), 5.54 – 5.46 (m, 1H), 4.76 – 4.67 (m, 1H), 4.64 – 4.54 (m, 1H), 3.78 (d, *J* = 2.2 Hz, 6H), 3.44 (s, 3H), 2.85 – 2.72 (m, 4H), 2.42 – 2.30 (m, 1H), 2.26 – 13 / 78

- 2.13 (m, 1H), 1.19 – 1.04 (m, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 171.1, 170.1, 159.1, 155.5, 153.6, 149.0, 140.4, 137.8, 128.8, 128.4(2C), 127.9, 126.8, 126.4(2C), 125.1, 123.9, 123.0, 119.3, 118.0, 117.7, 116.8, 112.8, 112.4, 63.1, 55.3, 53.0, 52.1, 46.6, 43.3, 38.0, 33.0, 22.3;
HRMS (ESI-TOF, m/z): calcd for C<sub>33</sub>H<sub>33</sub>NO<sub>8</sub>SNa [M+Na]<sup>+</sup>: 626.1820, found: 626.1821.



**3ao** was obtained as white solid; m.p. =  $178.4 - 180.6 \,^{\circ}$ C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.99 – 7.88 (m, 1H), 7.67 – 7.56 (m, 1H), 7.47 – 7.41 (m, 1H), 7.41 – 7.30 (m, 3H), 7.25 – 7.05 (m, 5H), 6.70 – 6.63 (m, 2H), 5.97 (s, 1H), 5.61 – 5.53 (m, 1H), 4.81 – 4.71 (m, 1H), 4.69 – 4.59 (m, 1H), 3.70 (s, 3H), 3.63 (s, 3H), 3.01 – 2.91 (m, 1H), 2.78 (s, 3H), 2.76 – 2.63 (m, 1H), 2.50 – 2.37 (m, 1H), 1.05 – 0.95 (m, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  170.2, 169.9, 153.7, 153.5, 149.6, 140.5, 135.2, 134.2, 133.5, 129.6, 129.0, 128.4(2C), 127.9, 127.1, 126.5(2C), 126.2, 125.3, 123.9, 120.1, 118.5, 118.1, 112.1, 62.4, 53.1, 52.4, 46.3, 39.6, 38.1, 33.3, 23.3; HRMS (ESI-TOF, m/z): calcd for C<sub>32</sub>H<sub>30</sub>Cl<sup>35</sup>NO<sub>7</sub>SNa [M+Na]<sup>+</sup>: 630.1324, found: 630.1327; calcd for C<sub>32</sub>H<sub>30</sub>Cl<sup>37</sup>NO<sub>7</sub>SNa [M+Na]<sup>+</sup>: 632.1294, found: 632.1308.



**3ap** was obtained as white solid; m.p. = 187.4 – 189.8 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.64 – 7.54 (m, 1H), 7.55 – 7.45 (m, 1H), 7.42 – 7.30 (m, 2H), 7.24 – 7.19 (m, 1H), 7.21 – 7.15 (m, 1H), 7.17 – 7.04 (m, 3H), 6.93 – 6.84 (m, 1H), 6.67 – 6.59 (m, 2H), 5.91 (s, 1H), 5.56 – 5.48 (m, 1H), 4.73 – 4.55 (m, 2H), 3.84 (s, 3H), 3.47 (s, 3H), 2.80 (s, 3H), 2.78 – 2.71 (m, 1H), 2.44 – 2.31 (m, 1H), 2.29 – 2.16 (m, 1H), 1.14 – 1.04 (m, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 171.2, 169.7, 154.3, 153.6, 148.9, 140.3, 138.2, 128.5(2C), 128.4, 127.9, 126.8, 126.3(8)(2C), 126.3(5), 125.7, 125.3, 124.1, 119.5, 117.8, 117.7, 112.3, 63.6, 53.2, 52.5, 46.5, 39.1, 37.7, 32.7, 22.2; HRMS (ESI-TOF, m/z): calcd for C<sub>30</sub>H<sub>29</sub>NO<sub>7</sub>S<sub>2</sub>Na [M+Na]<sup>+</sup>: 602.1278, found: 602.1276.



**3aq** was obtained as white solid; m.p. = 188.4 – 189.9 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.20 – 8.16 (m, 1H), 7.87 – 7.80 (m, 2H), 7.79 – 7.71 (m, 2H), 7.60 – 7.51 (m, 2H), 7.46 – 7.39 (m, 2H), 7.39 – 7.33 (m, 2H), 7.19 – 7.05 (m, 3H), 6.66 – 6.59 (m, 2H), 5.82 (s, 1H), 5.56 – 5.48 (m, 1H), 4.83 – 4.73 (m, 1H), 4.65 – 4.55 (m, 1H), 3.76 (s, 3H), 3.35 (s, 3H), 2.92 – 2.79 (m, 1H), 2.75 (s, 3H), 2.47 – 2.34 (m, 1H), 2.30 – 2.17 (m, 1H), 1.19 – 1.09 (m, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 171.1, 170.3, 155.7, 153.7, 149.0, 140.4, 133.9, 133.2, 132.7, 130.0, 128.7, 128.5(2C), 128.4, 127.9, 127.6, 127.2, 126.7, 126.4(2C), 126.1, 126.0, 125.1, 124.0, 119.2, 118.0, 117.7, 112.5, 63.1, 53.1, 52.2, 46.7, 43.5, 37.9, 33.1, 22.4; HRMS (ESI-TOF, m/z): calcd for C<sub>36</sub>H<sub>33</sub>NO<sub>7</sub>SNa [M+Na]<sup>+</sup>: 646.1870, found: 646.1870.



**3ar** was obtained as white solid; m.p. =  $189.8 - 193.6 \,^{\circ}$ C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.72 – 7.68 (m, 1H), 7.68 – 7.62 (m, 2H), 7.48 – 7.42 (m, 1H), 7.40 – 7.35 (m, 1H), 7.30 – 7.21 (m, 3H), 7.18 – 7.10 (m, 3H), 6.70 – 6.65 (m, 2H), 5.60 (s, 1H), 5.57 – 5.52 (m, 1H), 4.76 – 4.66 (m, 1H), 4.63 – 4.54 (m, 1H), 3.77 (s, 3H), 3.42 (s, 3H), 2.82 – 2.73 (m, 4H), 2.44 – 2.32 (m, 1H), 2.31 – 2.18 (m, 1H), 1.15 – 1.05 (m, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  171.0, 170.1, 156.9, 152.4, 149.3, 140.1, 136.1, 130.6(2C), 129.0, 128.6(2C), 128.2, 128.1(3C), 127.8, 126.4(2C), 122.0, 117.5(0), 117.4(9), 117.1, 113.9, 63.1, 53.1, 52.2, 46.5, 43.5, 38.2, 33.1, 22.2; HRMS (ESI-TOF, m/z): calcd for C<sub>32</sub>H<sub>30</sub>Br<sup>79</sup>NO<sub>7</sub>SNa [M+Na]<sup>+</sup>: 674.0819, found: 674.0814; calcd for C<sub>32</sub>H<sub>30</sub>Br<sup>81</sup>NO<sub>7</sub>SNa [M+Na]<sup>+</sup>: 676.0799, found: 676.0809.



**3as** was obtained as white solid; m.p. = 188.6–190.6 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.73 – 7.68 (m, 1H), 7.68 – 7.61 (m, 2H), 7.52 – 7.42 (m, 2H), 7.31 – 7.09 (m, 6H), 6.69 – 6.63 (m, 2H), 5.58 (s, 1H), 5.55 – 5.47 (m, 1H), 4.75 – 4.65 (m, 1H), 4.65 – 4.55 (m, 1H), 3.77 (s, 3H), 3.43 (s, 3H), 2.81 – 2.71 (m, 4H), 2.44 – 2.32 (m, 1H), 2.31 – 2.18 (m, 1H), 1.15 – 1.05 (m, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 171.0(1), 169.9(7), 156.0, 153.8, 149.2, 140.1, 136.1,

130.5(2C), 128.6(2C), 128.1(3C), 127.8, 127.4, 126.4(2C), 126.1, 120.5, 118.5, 118.0, 117.5, 115.8, 63.1, 53.1, 52.2, 46.5, 43.5, 38.1, 33.1, 22.2; **HRMS** (ESI-TOF, m/z): calcd for  $C_{32}H_{30}Br^{79}NO_7SNa$  [M+Na]<sup>+</sup>: 674.0819, found: 674.0816; calcd for  $C_{32}H_{30}Br^{81}NO_7SNa$  [M+Na]<sup>+</sup>: 676.0799, found: 676.0798.



**3at** was obtained as white solid; m.p. = 192.4–195.6 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.72 – 7.65 (m, 2H), 7.56 – 7.47 (m, 2H), 7.33 – 7.08 (m, 7H), 6.75 – 6.67 (m, 2H), 5.60 (s, 1H), 5.57 – 5.48 (m, 1H), 4.79 – 4.69 (m, 1H), 4.67 – 4.58 (m, 1H), 3.77 (s, 3H), 3.59 (s, 3H), 2.91 – 2.81 (m, 1H), 2.74 – 2.70 (m, 3H), 2.45 – 2.23 (m, 2H), 1.14 – 1.04 (m, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 171.0, 169.7, 156.1, 150.7, 149.1, 140.3, 135.9, 130.8(2C), 128.6(2C), 128.4, 128.2, 128.1(2C), 128.1, 127.8, 126.4(2C), 125.2, 118.8, 118.5, 117.7, 105.1, 63.3, 53.1, 52.4, 46.6, 43.8, 37.9, 33.1, 22.3; HRMS (ESI-TOF, m/z): calcd for C<sub>32</sub>H<sub>30</sub>Br<sup>79</sup>NO<sub>7</sub>SNa [M+Na]<sup>+</sup>: 674.0819, found: 674.0819; C<sub>32</sub>H<sub>30</sub>Br<sup>81</sup>NO<sub>7</sub>SNa [M+Na]<sup>+</sup>: 676.0799, found: 676.0802.



**3au** was obtained as white solid; m.p. = 194.4–198.6 °C; <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>) δ 7.69 – 7.63 (m, 2H), 7.56 – 7.51 (m, 1H), 7.46 – 7.35 (m, 1H), 7.34 – 7.08 (m, 7H), 6.71 – 6.64 (m, 2H), 5.60 (s, 1H), 5.57 – 5.51 (m, 1H), 4.76 – 4.66 (m, 1H), 4.63 – 4.53 (m, 1H), 3.77 (s, 3H), 3.42 (s, 3H), 2.83 – 2.74 (m, 4H), 2.45 – 2.32 (m, 1H), 2.30 – 2.18 (m, 1H), 1.15 – 1.04 (m, 1H); <sup>13</sup>**C** NMR (101 MHz, CDCl<sub>3</sub>) δ 171.0, 170.1, 157.1, 152.0, 149.3, 140.1, 136.1, 130.6(2C), 129.7, 128.6(2C), 128.3, 128.1(3C), 127.8, 126.4(2C), 125.5, 118.9, 117.6, 117.5, 113.5, 63.1, 53.1, 52.2, 46.5, 43.5, 38.1, 33.1, 22.2; **HRMS** (ESI-TOF, m/z): calcd for C<sub>32</sub>H<sub>30</sub>Cl<sup>35</sup>NO7SNa [M+Na]<sup>+</sup>: 630.1324, found: 630.1323; calcd for C<sub>32</sub>H<sub>30</sub>Cl<sup>37</sup>NO7SNa [M+Na]<sup>+</sup>: 632.1294, found: 632.1328.



**3av** was obtained as white solid; m.p. = 185.4–189.6 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.68 – 7.62 (m, 2H), 7.57 – 7.46 (m, 2H), 7.37 – 7.32 (m, 1H), 7.30 – 7.08 (m, 6H), 6.70 – 6.63 (m, 2H), 5.58 (s, 1H), 5.55 – 5.48 (m, 1H), 4.75 – 4.65 (m, 1H), 4.65 – 4.55 (m, 1H), 3.77 (s, 3H), 3.43 (s, 3H), 2.81 – 2.73 (m, 4H), 2.45 – 2.32 (m, 1H), 2.31 – 2.18 (m, 1H), 1.15 – 1.05 (m, 16/78

1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  171.0, 170.0, 156.1, 153.6, 149.2, 140.1, 136.1, 131.1, 130.5(2C), 128.5(2C), 128.1(3C), 127.8, 126.3(2C), 125.7, 124.7, 120.1, 118.0, 117.5, 112.9, 63.1, 53.1, 52.2, 46.5, 43.5, 38.1, 33.0, 22.1; **HRMS** (ESI-TOF, m/z): calcd for C<sub>32</sub>H<sub>30</sub>Cl<sup>35</sup>NO<sub>7</sub>SNa [M+Na]<sup>+</sup>: 630.1324, found: 630.1326; C<sub>32</sub>H<sub>30</sub>Cl<sup>37</sup>NO<sub>7</sub>SNa [M+Na]<sup>+</sup>: 632.1294, found: 632.1307.



**3aw** was obtained as white solid; m.p. = 200.4–202.6 °C;<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>) 8.09 – 7.94 (m, 2H), 7.75 – 7.67 (m, 2H), 7.49 – 7.46 (m, 1H), 7.44 – 7.40 (m, 2H), 7.34 – 7.29 (m, 1H), 7.20 – 7.03 (m, 8H), 6.58 – 6.51 (m, 2H), 5.51 – 5.38 (m, 1H), 5.34 (s, 1H), 4.78 – 4.68 (m, 1H), 4.68 – 4.58 (m, 1H), 3.75 (s, 3H), 3.33 (s, 3H), 2.76 – 2.66 (m, 1H), 2.37 – 2.27 (m, 1H), 2.21 – 2.11 (m, 1H), 1.03 – 0.94 (m, 1H); <sup>13</sup>**C** NMR (151 MHz, CDCl<sub>3</sub>) δ 171.1, 169.9, 155.5, 153.5, 150.2, 149.5, 143.8, 140.1, 136.8, 130.0(2C), 128.8(2C), 128.5(2C), 128.0, 127.8(2C), 127.5, 126.6, 126.4(2C), 125.2, 124.2(2C), 123.8, 119.4, 117.5, 117.1, 112.3, 63.3, 53.1, 52.1, 46.9, 43.1, 32.9, 22.1; **HRMS** (ESI-TOF, m/z): calcd for C<sub>37</sub>H<sub>32</sub>N<sub>2</sub>O<sub>9</sub>SNa [M+Na]<sup>+</sup>: 703.1721, found: 703.1719.



**3ax** was obtained as white solid; m.p. = 188.4–189.6 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.72 – 7.66 (m, 2H), 7.50 – 7.41 (m, 3H), 7.32 – 7.17 (m, 4H), 7.15 – 6.99 (m, 6H), 6.67 – 6.57 (m, 3H), 5.68 (s, 1H), 5.42 – 5.35 (m, 1H), 4.81 – 4.72 (m, 1H), 4.39 – 4.29 (m, 1H), 3.76 (s, 3H), 3.40 (s, 3H), 2.94 – 2.84 (m, 1H), 2.37 – 2.27 (m, 4H), 2.22 – 2.09 (m, 1H), 1.07 – 0.97 (m, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 171.1, 170.5, 156.1, 153.4, 148.3, 143.9, 140.6, 136.6, 134.9, 130.9(2C), 129.7(2C), 128.4(2C), 128.1(2C), 127.7(3C), 127.2, 126.3(2C), 126.0, 124.5, 123.1, 119.2, 118.4, 117.8, 112.2, 63.1, 52.9, 52.0, 46.9, 43.3, 33.5, 22.7, 21.7; HRMS (ESI-TOF, m/z): calcd for C<sub>38</sub>H<sub>35</sub>NO<sub>7</sub>SNa [M+Na]<sup>+</sup>: 672.2027, found: 672.2025.



**3ba** was obtained as white solid; m.p. = 189.8–192.6 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.72 – 7.66 (m, 2H), 7.58 – 7.47 (m, 2H), 7.37 – 7.31 (m, 2H), 7.30 – 7.25 (m, 2H), 7.24 – 7.19 (m, 3H), 6.47 – 6.39 (m, 2H), 5.62 (s, 1H), 5.53 – 5.45 (m, 1H), 4.76 – 4.66 (m, 1H), 4.63 – 4.53 (m, 1H), 3.77 (s, 3H), 3.43 (s, 3H), 2.78 (s, 4H), 2.37 – 2.25 (m, 1H), 2.24 – 2.11 (m, 1H), 1.10 – 1.01 (m, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  171.0, 170.1, 155.7, 153.6, 148.0, 139.3, 136.3, 131.6(2C), 130.7(2C), 128.1(2C), 128.0(2C), 127.6, 126.7, 125.2, 124.0, 121.9, 119.2, 118.3, 117.8, 112.5, 63.0, 53.1, 52.2, 46.5, 43.3, 38.0, 32.9, 22.2; ; HRMS (ESI-TOF, m/z): calcd for C<sub>32</sub>H<sub>30</sub>Br<sup>79</sup>NO<sub>7</sub>SNa [M+Na]<sup>+</sup>: 674.0819, found: 674.0822; C<sub>32</sub>H<sub>30</sub>Br<sup>81</sup>NO<sub>7</sub>SNa [M+Na]<sup>+</sup>: 676.0799, found: 676.0803.



**3ca** was obtained as white solid; m.p. = 187.5–189.8 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.74 – 7.67 (m, 2H), 7.59 – 7.46 (m, 2H), 7.37 – 7.14 (m, 5H), 6.80 – 6.71 (m, 2H), 6.58 – 6.49 (m, 2H), 5.64 (s, 1H), 5.49 – 5.41 (m, 1H), 4.76 – 4.66 (m, 1H), 4.62 – 4.52 (m, 1H), 3.76 (s, 3H), 3.42 (s, 3H), 2.85 – 2.74 (m, 4H), 2.38 – 2.26 (m, 1H), 2.25 – 2.12 (m, 1H), 1.12 – 1.02 (m, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  171.0, 170.1, 162.4 (d,  $J_{C-F}$  = 247.1 Hz), 155.7, 153.5, 147.9, 136.4 (d,  $J_{C-F}$  = 3.2 Hz) (2C), 136.3, 130.6(2C), 128.0 (d,  $J_{C-F}$  = 8.0 Hz) (2C), 127.9(2C), 127.5, 126.6, 125.0, 123.9, 119.1, 117.8, 117.7, 115.2 (d,  $J_{C-F}$  = 21.4 Hz), 112.3, 63.0, 53.0, 52.0, 46.4, 43.3, 37.8, 32.9, 22.3; <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -114.4. (s, 1F); HRMS (ESI-TOF, m/z): calcd for C<sub>32</sub>H<sub>30</sub>FNO<sub>7</sub>SNa [M+Na]<sup>+</sup>: 614.1620, found: 614.1618.



**3da** was obtained as white solid; m.p. = 185.4 – 189.3 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.73 – 7.66 (m, 2H), 7.58 – 7.53 (m, 1H), 7.51 – 7.41 (m, 1H), 7.37 – 7.16 (m, 5H), 6.92 – 6.85 (m, 2H), 6.53 – 6.46 (m, 2H), 5.63 (s, 1H), 5.52 – 5.44 (m, 1H), 4.76 – 4.66 (m, 1H), 4.62 – 4.53 – 18/78

(m, 1H), 3.77 (s, 3H), 3.42 (s, 3H), 2.82 – 2.71 (m, 4H), 2.42 – 2.29 (m, 1H), 2.27 – 2.12 (m, 4H), 1.14 – 1.04 (m, 1H); <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>)  $\delta$  171.1, 170.2, 155.6, 153.6, 148.9, 137.7, 137.4, 136.5, 130.7(2C), 129.1(2C), 127.9(2C), 127.6, 126.8, 126.3(2C), 125.0, 123.9, 119.3, 117.9, 116.9, 112.3, 63.2, 53.0, 52.1, 46.6, 43.4, 37.9, 33.0, 22.2, 21.1; **HRMS** (ESI-TOF, m/z): calcd for C<sub>33</sub>H<sub>33</sub>NO<sub>7</sub>SNa [M+Na]<sup>+</sup>: 610.1870, found: 610.1856.



**3ea** was obtained as white solid; m.p. = 187.3–189.9 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.74 – 7.67 (m, 2H), 7.56 – 7.52 (m, 1H), 7.52 – 7.47 (m, 1H), 7.37 – 7.31 (m, 2H), 7.30 – 7.23 (m, 2H), 7.22 – 7.18 (m, 1H), 6.95 – 6.88 (m, 2H), 6.57 – 6.50 (m, 2H), 5.63 (s, 1H), 5.52 – 5.44 (m, 1H), 4.77 – 4.67 (m, 1H), 4.62 – 4.53 (m, 1H), 3.77 (s, 3H), 3.42 (s, 3H), 2.84 – 2.69 (m, 4H), 2.42 – 2.29 (m, 2H), 2.29 – 2.16 (m, 1H), 1.87 – 1.72 (m, 4H), 1.42 – 1.23 (m, 6H), 1.15 – 1.04 (m, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 171.1, 170.3, 155.6, 153.6, 148.9, 147.8, 137.8, 136.5, 130.7(2C), 127.9(2C), 127.6, 126.9(2C), 126.8, 126.2(2C), 125.0, 123.9, 119.3, 117.9, 116.9, 112.4, 63.1, 53.0, 52.1, 46.6, 44.2, 43.4, 37.9, 34.5, 34.3, 33.1, 26.9(2C), 26.2, 22.2; **HRMS** (ESI-TOF, m/z): calcd for C<sub>38</sub>H<sub>41</sub>NO<sub>7</sub>SNa [M+Na]<sup>+</sup>: 678.2496, found: 678.2496.



**3fa** was obtained as white solid; m.p. = 189.4–192.6 °C; <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>) δ 7.73 – 7.62 (m, 4H), 7.60 – 7.54 (m, 1H), 7.53 – 7.48 (m, 1H), 7.47 – 7.36 (m, 5H), 7.30 – 7.25 (m, 2H), 7.25 – 7.16 (m, 1H), 6.89 – 6.82 (m, 1H), 6.71 – 6.68 (m, 1H), 5.67 – 5.58 (m, 2H), 4.80 – 4.69 (m, 1H), 4.68 – 4.60 (m, 1H), 3.79 (s, 3H), 3.40 (s, 3H), 2.86 – 2.76 (m, 4H), 2.56 – 2.43 (m, 1H), 2.28 – 2.15 (m, 1H), 1.20 – 1.10 (m, 1H); <sup>13</sup>**C** NMR (101 MHz, CDCl<sub>3</sub>) δ 171.2, 170.1, 155.8, 153.8, 149.3, 137.9, 136.5, 133.3, 132.9, 130.6(2C), 128.2, 128.0(2C), 128.0, 127.6, 127.5, 127.2, 126.3, 126.2, 126.0, 125.2, 124.3, 124.0, 119.5, 118.4, 118.0, 112.5, 63.3, 53.1, 52.1, 46.5, 43.4, 38.2, 32.8, 22.3; **HRMS** (ESI-TOF, m/z): calcd for C<sub>36</sub>H<sub>33</sub>NO<sub>7</sub>SNa [M+Na]<sup>+</sup>: 646.1870, found: 646.1869.

#### **Faild examples:**

All the reaction were carried out following the general procedure A to further test the substrate scope of [6+4] annulation reaction protocol.





**General procedure B**: An oven-dried Schlenk tube was added  $Pd_2(dba)_3$ ·CHCl<sub>3</sub> (0.005 mmol, 5.1 mg, 5 mol%), L6 (0.01 mmol, 6.5 mg, 20 mol%) followed by the addition of anhydrous toluene (1 mL) under N<sub>2</sub>. The reaction mixture was allowed to stir for 30 mins at 25 °C, and all-carbon 1,6-dipole precursor 1a (0.15 mmol) and furan-derived azadienes 4 (0.1 mmol) were then added. After 24 h, the mixture was concentrated and purified by column chromatography (petroleum ether/ ethyl acetate = 4:1) to give the corresponding cycloadducts 5.



**5aa** was obtained as white solid; m.p. = 167.4–169.6 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.66 – 7.61 (m, 2H), 7.57 – 7.52 (m, 2H), 7.50 – 7.45 (m, 2H), 7.37 – 7.32 (m, 2H), 7.29 – 7.16 (m, 6H), 7.15 – 7.08 (m, 3H), 7.04 – 6.97 (m, 2H), 6.97 – 6.93 (m, 1H), 5.55 – 5.47 (m, 1H), 5.21 (s, 1H), 4.65 – 4.56 (m, 1H), 4.15 – 4.04 (m, 1H), 3.72 (s, 3H), 3.42 (s, 3H), 2.78 – 2.68 (m, 1H), 2.46 – 2.32 (m, 4H), 2.22 – 2.12 (m, 1H), 1.68 – 1.61 (m, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 171.8, 171.6, 151.2, 149.3, 144.1, 141.4, 140.7, 139.3, 135.2, 130.4, 130.2(2C), 129.6(2C), 128.7(2C), 128.4(2C), 128.3(2C), 127.9, 127.8, 127.8(2C), 126.9, 126.6(2C), 124.8, 124.0(2C), 117.5, 107.8, 62.2, 52.7, 52.1, 47.0, 42.8, 34.5, 22.7, 21.7; HRMS (ESI-TOF, m/z): calcd for C<sub>40</sub>H<sub>37</sub>NO<sub>7</sub>SNa [M+Na]<sup>+</sup>: 698.2183, found: 698.2181.



**5ab** was obtained as light yellow oil; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.67 – 7.62 (m, 2H), 7.49 – 7.41 (m, 4H), 7.37 – 7.31 (m, 2H), 7.30 – 7.21 (m, 3H), 7.18 – 7.05 (m, 5H), 7.04 – 6.99 (m, 2H), 6.94 (s, 1H), 5.52 – 5.47 (m, 1H), 5.18 (s, 1H), 4.64 – 4.57 (m, 1H), 4.09 – 4.02 (m, 1H), 3.73 (s, 3H), 3.46 (s, 3H), 2.78 – 2.71 (m, 1H), 2.46-2.34 (m, 4H), 2.28 (s, 3H), 2.22 – 2.14 (m, 1H), 1.63 – 1.56 (m, 1H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 172.0, 171.6, 151.1, 149.3, 144.1, 141.3, 140.8, 136.3, 136.2, 135.2, 130.4, 130.1(2C), 129.6(2C), 128.7(2C), 128.5(2C), 128.4(3)(2C), 128.3(8)(2C), 127.8(2), 127.7(8), 126.6(2C), 125.1, 124.0(2C), 117.5, 107.8,

62.1, 52.7, 52.1, 47.0, 42.5, 34.5, 22.7, 21.7, 21.2; **HRMS** (ESI-TOF, m/z): calcd for  $C_{41}H_{39}NO_7SNa \ [M+Na]^+$ : 712.2340, found: 712.2338.



**5ac** was obtained as light yellow oil; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.84 – 7.77 (m, 2H), 7.49 – 7.41 (m, 3H), 7.36 – 7.30 (m, 4H), 7.26 – 7.23 (m, 1H), 7.21 – 7.18 (m, 1H), 7.16 – 7.07 (m, 5H), 7.06 – 7.03 (m, 2H), 6.99 (s, 1H), 5.57 – 5.48 (m, 1H), 5.42 (s, 1H), 4.62 – 4.52 (m, 1H), 4.05 – 3.96 (m, 1H), 3.62 (s, 3H), 3.60 (s, 3H), 2.82 (s, 3H), 2.76 – 2.65 (m, 1H), 2.52 – 2.41 (m, 4H), 2.34 – 2.21 (m, 1H), 1.83 – 1.74 (m, 1H); <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 172.3, 171.6, 150.7, 149.7, 144.2, 141.4, 140.6, 138.6, 137.6, 135.4, 131.4, 130.4, 129.6(2C), 129.0, 128.8(2C), 128.7(2C), 128.5(2C), 127.9, 127.8, 126.9, 126.5(2C), 125.7, 124.9, 123.9(2C), 117.9, 108.3, 62.1, 52.5, 52.2, 47.6, 38.6, 35.1, 23.4, 21.8, 20.6; **HRMS** (ESI-TOF, m/z): calcd for C<sub>41</sub>H<sub>39</sub>NO<sub>7</sub>SNa [M+Na]<sup>+</sup>: 712.2340, found: 712.2338.



**5ad** was obtained as light yellow oil; <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) δ 7.65 – 7.61 (m, 2H), 7.52 – 7.47 (m, 2H), 7.39 – 7.33 (m, 2H), 7.32 – 7.26 (m, 1H), 7.24 – 7.20 (m, 2H), 7.19 – 7.07 (m, 5H), 7.04 – 6.99 (m, 2H), 6.94 (s, 1H), 6.91 – 6.87 (m, 1H), 5.56 – 5.51 (m, 1H), 5.47 (s, 1H), 4.59 – 4.51 (m, 1H), 4.21 – 4.14 (m, 1H), 3.80 (s, 3H), 3.45 (s, 3H), 2.71 – 2.64 (m, 1H), 2.46 – 2.34 (m, 4H), 2.22 – 2.14 (m, 1H), 1.56 – 1.46 (m, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 171.3(2C), 151.3, 149.1, 145.3, 144.2, 141.9, 140.7, 140.6, 135.1, 130.3, 129.7(2C), 128.7(2C), 128.5(2C), 128.2(2C), 128.0, 127.8(2C), 126.6(2C), 126.1, 124.5, 124.1(2C), 117.6, 107.8, 63.0, 52.9, 52.5, 51.8, 47.0, 34.2, 33.2, 21.8; **HRMS** (ESI-TOF, m/z): calcd for C<sub>38</sub>H<sub>35</sub>NO<sub>7</sub>S<sub>2</sub>Na [M+Na]<sup>+</sup>: 704.1748, found: 704.1747.



**5ae** was obtained as light yellow oil; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.68 – 7.61 (m, 2H), 7.50 – 7.43 (m, 2H), 7.42 – 7.32 (m, 2H), 7.30 – 7.27 (m, 1H), 7.25 – 7.21 (m, 2H), 7.18 – 7.09 (m, 6H), 7.04 – 6.97 (m, 2H), 6.93 (s, 1H), 6.78 – 6.64 (m, 1H), 5.55 – 5.47 (m, 1H), 5.18 (s, 1H), 4.64 – 4.55 (m, 1H), 4.15 – 4.04 (m, 1H), 3.81 (s, 3H), 3.73 (s, 3H), 3.46 (s, 3H), 2.77 – 2.67 (m, 1H), 2.44 – 2.32 (m, 4H), 2.23 – 2.15 (m, 1H), 1.67 – 1.62 (m, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 171.8, 171.6, 159.0, 151.1, 149.3, 144.1, 141.4, 140.8(5), 140.7(6), 135.2, 130.4, 129.6(2C), 128.7(2C), 128.5, 128.4(2C), 128.3(2C), 127.9, 127.8, 126.6(2C), 124.8, 124.0(2C), 122.3, 117.6, 116.5, 112.3, 107.9, 62.1, 55.3, 52.7, 52.1, 47.1, 42.8, 34.6, 22.7, 21.7; **HRMS** (ESI-TOF, m/z): calcd for C<sub>41</sub>H<sub>39</sub>NO<sub>8</sub>SNa [M+Na]<sup>+</sup>: 728.2289, found: 728.2287.



**5af** was obtained as light yellow oil; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.67 – 7.60 (m, 2H), 7.57 – 7.46 (m, 2H), 7.45 – 7.33 (m, 2H), 7.29 – 7.08 (m, 8H), 7.04 – 6.98 (m, 2H), 6.92 – 6.84 (m, 2H), 6.81 (s, 1H), 5.55 – 5.47 (m, 1H), 5.19 (s, 1H), 4.64 – 4.54 (m, 1H), 4.13 – 4.04 (m, 1H), 3.84 (s, 3H), 3.72 (s, 3H), 3.41 (s, 3H), 2.77 – 2.67 (m, 1H), 2.46 – 2.31 (m, 4H), 2.23 – 2.10 (m, 1H), 1.68 – 1.60 (m, 1H); <sup>13</sup>C **NMR** (101 MHz, CDCl<sub>3</sub>) δ 171.8, 171.6, 159.5, 151.3, 149.4, 144.0, 140.8(1), 140.7(5), 139.4, 135.3, 130.2(2C), 129.6(2C), 128.4(2C), 128.3(2C), 127.8, 127.7(2C), 126.9, 126.6(2C), 125.5(2C), 124.7, 123.5, 117.6, 114.1(2C), 106.3, 62.2, 55.5, 52.7, 52.0, 47.0, 42.8, 34.5, 22.7, 21.7; **HRMS** (ESI-TOF, m/z): calcd for C<sub>41</sub>H<sub>39</sub>NO<sub>8</sub>SNa [M+Na]<sup>+</sup>: 728.2289, found: 728.2287.



**5ag** was obtained as light yellow oil; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.66 – 7.60 (m, 2H), 7.55 – 7.49 (m, 2H), 7.44 – 7.38 (m, 2H), 7.35 – 7.30 (m, 2H), 7.29 – 7.26 (m, 1H), 7.25 – 7.09 (m, 7H), 7.03 – 6.97 (m, 2H), 6.95 (s, 1H), 5.56 – 5.48 (m, 1H), 5.19 (s, 1H), 4.64 – 4.54 (m, 1H), 4.15 – 4.04 (m, 1H), 3.72 (s, 3H), 3.42 (s, 3H), 2.75 – 2.61 (m, 1H), 2.48 – 2.33 (m, 4H), 2.24

 $-2.12 \text{ (m, 1H)}, 1.65 - 1.58 \text{ (m, 1H)}; {}^{13}\text{C NMR} (151 \text{ MHz, CDCl}_3) \delta 171.9, 171.5, 150.1, 149.4, 144.2, 141.7, 140.6, 139.1, 135.2, 133.6, 130.1(2C), 129.7(2C), 129.0(2C), 128.8, 128.5(2C), 128.3(2C), 127.9, 127.8(2C), 127.0, 126.5(2C), 125.2(2C), 125.0, 117.5, 108.3, 62.1, 52.8, 52.1, 47.0, 34.5, 29.8, 22.6, 21.8;$ **HRMS** $(ESI-TOF, m/z): calcd for <math>C_{40}H_{36}Cl^{35}NO_7SNa$  [M+Na]<sup>+</sup>: 732.1794, found: 732.1795; calcd for  $C_{40}H_{36}Cl^{37}NO_7SNa$  [M+Na]<sup>+</sup>: 734.1764, found: 734.1777.

#### 7. Scale-up experiment



Under a nitrogen atmosphere,  $Pd_2(dba)_3$  (0.1 mmol, 91.5 mg, 5 mol%), L5 (0.2 mmol, 36.0 mg, 10 mol%) were added sequentially into a flame-dried Schlenk flask equipped with a magnetic stir bar. The flask was evacuated and back-filled with nitrogen for three times. Then the anhydrous DCE (20.0 mL) was added via syringe sequentially and the resulting mixture stirred at 25 °C for 30 mins. Then, all-carbon 1,6-dipole precursor **1a** (3.0 mmol, 954.3 mg) and benzofuran-derived azadienes **2a** (2.0 mmol, 598.1 mg) were added. After 24 h, the mixture was concentrated and purified by column chromatography (petroleum ether/dichloromethane = 4:1) to give the corresponding cycloadduct **3aa** in 60% yield (689.0 mg).



Under a nitrogen atmosphere,  $Pd_2(dba)_3 \cdot CHCl_3$  (0.1 mmol, 102.3 mg, 5 mol%), L6 (0.4 mmol, 130.1 mg, 20 mol%) were added sequentially into a flame-dried Schlenk flask equipped with a magnetic stir bar. The flask was evacuated and back-filled with nitrogen for three times. Then the anhydrous toluene (20.0 mL) was added via syringe sequentially and the resulting mixture stirred at 25 °C for 30 mins. Then, all-carbon 1,6-dipole precursor **1a** (3.0 mmol, 954.3 mg) and furan-derived azadienes **4a** (2.0 mmol, 802.2 mg) were added. After 24 h, the mixture was concentrated and purified by column chromatography (petroleum ether/dichloromethane = 4:1) to give the corresponding cycloadduct **5aa** in 51% yield (685.0 mg).

#### 8. Synthetic transformation



**3aa** (57.3 mg, 0.1 mmol) and LiCl (16.8 mg, 0.4 mmol) in 2 mL DMSO was stirred for 8 h at 160°C. After 8 h, the reaction mixture was then cooled to room temperature. The reaction mixture was quenched with  $H_2O$ , and extracted with  $3 \times 5.0$  mL EtOAc. The combined organic layers were washed with saturated aqueous NH<sub>4</sub>Cl, brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by flash chromatography on petroleum ether/ ethyl acetate = 4:1) to give the product **7aa**.

**7aa** (as a mixture of diastereomers, 1:1 dr)was obtained as light yellow solid; m.p. = 188.4–191.6 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.65 – 7.57 (m, 3H), 7.55 – 7.49 (m, 2H), 7.44 – 7.40 (m, 3H), 7.36 – 7.28 (m, 8H), 7.25 – 7.18 (m, 5H), 7.15 – 7.01 (m, 5H), 6.66 – 6.60 (m, 2H), 5.85 – 5.77 (m, 1H), 5.54 – 5.46 (m, 1H), 5.27 – 5.22 (m, 1H), 5.03 – 4.92 (m, 1H), 4.87 – 4.62 (m, 3H), 4.49 – 4.39 (m, 1H), 3.56 (s, 3H), 3.50 – 3.44 (m, 4H), 3.44 – 3.32 (m, 1H), 3.14 – 2.96 (m, 1H), 2.91 (s, 3H), 2.86 (s, 3H), 2.75 – 2.59 (m, 1H), 2.45 – 2.33 (m, 1H), 2.07 – 1.88 (m, 2H), 1.45 – 1.37 (m, 1H), 0.92 – 0.72 (m, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  173.9, 173.6, 156.2, 155.5, 153.8, 153.8, 150.1, 147.9, 141.3, 141.0, 138.2, 138.1, 129.3(2C), 129.1(2C), 128.7(2C), 128.5(5)(2C), 128.5(2)(2C), 128.4(2C), 127.8(2), 127.7(8), 127.7(7), 127.6, 127.3, 126.6(2C), 126.5(2C), 125.8, 124.9, 124.9, 123.9, 123.8, 120.6, 119.6, 119.1, 118.6, 117.7, 117.2, 112.6, 111.8, 52.0, 51.7, 50.4, 48.4, 48.2, 46.6, 42.9, 42.1, 38.3, 38.1, 28.9, 28.2, 26.1, 21.8.; HRMS (ESI-TOF, m/z): calcd for C<sub>30</sub>H<sub>29</sub>NO<sub>5</sub>SNa [M+Na]<sup>+</sup>: 538.1659, found: 538.1637.

#### 9. Control experiment



An oven-dried Schlenk tube was added  $Pd_2(dba)_3$  (0.005 mmol, 4.6 mg, 5 mol%), L5 (0.01 mmol, 1.8 mg, 10 mol%) followed by the addition of anhydrous DCE (1 mL) under N<sub>2</sub>. The reaction mixture was allowed to stir for 30 mins at 25 °C, and 1,6-dipole precursor **6a** (0.15 mmol) and benzofuran-derived azadienes **2x** (0.1 mmol) were then added. After 24 h, the mixture was concentrated and purified by column chromatography (petroleum ether/ ethyl acetate = 4:1) to give the corresponding cycloadducts **8ax**.

**8ax** (as a mixture of diastereomers, 1.7:1:1.7:1.2 dr)was obtained as light yellow solid; m.p. = 200.6–202.7 °C; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.83 – 7.76 (m, 1H), 7.50 – 7.45 (m, 2H), 7.37 – 7.32 (m, 2H), 7.27 – 7.12 (m, 9H), 7.11 – 7.07 (m, 2H), 6.98 – 6.90 (m, 3H), 5.56 (dd, *J* = 17.1, 10.9 Hz, 1H), 4.73 (s, 1H), 4.36 (d, *J* = 17.1 Hz, 1H), 4.29 (d, *J* = 10.9 Hz, 1H), 3.50 (s, 3H), 2.74 – 2.66 (m, 1H), 2.43 – 2.37 (m, 1H), 2.24 (s, 3H), 2.20 – 2.11 (m, 2H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  169.5, 167.7, 153.8, 148.9, 143.5, 142.0, 140.0, 136.5, 133.9, 129.9(2C), 129.7(2C), 128.6(2C), 128.1(5), 128.0(8)(2C), 127.9, 127.4(2C), 125.7, 125.2, 124.9(2C), 123.6, 121.8, 116.9, 115.0, 111.1, 87.8, 59.5, 53.4, 47.1, 31.0, 22.2, 21.7.; HRMS (ESI-TOF, m/z): calcd for C<sub>37</sub>H<sub>33</sub>NO<sub>7</sub>SNa [M+Na]<sup>+</sup>: 658.1870, found: 658.1874.

#### 10. Crystallographic data for compound 3aa and 8ax

The corresponding compound **3aa** and **8ax** (10.0 mg) were dissolved in 1.0 mL DCM. The solution was filtered by millipore filter and transferred to a vial. Then, drops of hexane were added subsequently. A single crystal was obtained by natural volatilization at room temperature. The data set was collected by a Bruker APEX-II CCD at 293(2) K equipped with micro-focus Cu radiation source (K $\alpha$  = 1.54178 Å). Applied with faceindexed numerical absorption correction, the structure solution was solved and refinement was processed by SHELXTL program package.



Figure S1 The X-ray crystal structure of **3aa** with thermal ellipsoids at the 30% probability level (CCDC: 2297302).

| Identification code                      | data_2023091201_0m                                           |  |  |
|------------------------------------------|--------------------------------------------------------------|--|--|
| Empirical formula                        | C32 H31 N O7 S                                               |  |  |
| Formula weight                           | 573.64                                                       |  |  |
| Temperature                              | 273.15                                                       |  |  |
| Wavelength                               | 0.71073 Å                                                    |  |  |
| Crystal system                           | monoclinic                                                   |  |  |
| Space group                              | P 1 21/c 1                                                   |  |  |
| Unit cell dimensions                     | $a = 10.9167(7) \text{ Å} \qquad \alpha = 90^{\circ}$        |  |  |
|                                          | $b = 15.9481(8) \text{ Å} \qquad \beta = 103.422(2)^{\circ}$ |  |  |
|                                          | $c = 17.0402(10) \text{ Å} \qquad \gamma = 90^{\circ}$       |  |  |
| Volume                                   | 2885.7(3) Å <sup>3</sup>                                     |  |  |
| Z                                        | 4                                                            |  |  |
| Density (calculated)                     | 1.320 Mg/m <sup>3</sup>                                      |  |  |
| Absorption coefficient                   | 0.162 mm <sup>-1</sup>                                       |  |  |
| F(000)                                   | 1208                                                         |  |  |
| Crystal size                             | $0.220 \times 0.190 \times 0.160 \text{ mm}^3$               |  |  |
| Theta range for data collection          | 2.304 to 27.491°                                             |  |  |
| Index ranges                             | -14<=h<=14, -20<=k<=20, -22<=l<=22                           |  |  |
| Reflections collected                    | 27088                                                        |  |  |
| Independent reflections                  | 4155 [R(int) = 0.0546]                                       |  |  |
| Completeness to theta = $27.491^{\circ}$ | 99.7 %                                                       |  |  |
| Absorption correction                    | multi-scan                                                   |  |  |
|                                          |                                                              |  |  |

Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F<sup>2</sup> Final R indices [I>2sigma(I)] R indices (all data) Largest diff. peak and hole 0.9085 Full-matrix least-squares on F<sup>2</sup> 6599 / 0 / 373 1.038 R1 = 0.0546, wR2 = 0.1105 R1 = 0.1024, wR2 = 0.1341 0.186 and -0.360 e.Å<sup>-3</sup>



Figure S2 The X-ray crystal structure of 8ax with thermal ellipsoids at the 30% probability level (CCDC: 2297449).

| Identification code                      | 2022092101_0ma                     |                        |  |  |
|------------------------------------------|------------------------------------|------------------------|--|--|
| Empirical formula                        | C37 H33 N O7 S                     |                        |  |  |
| Formula weight                           | 635.70                             |                        |  |  |
| Temperature                              | 298.00                             |                        |  |  |
| Wavelength                               | 0.71073 Å                          |                        |  |  |
| Crystal system                           | orthorhombic                       |                        |  |  |
| Space group                              | P n a 21                           |                        |  |  |
| Unit cell dimensions                     | a = 19.7154(12) Å                  | $\alpha = 90^{\circ}$  |  |  |
|                                          | b = 9.3448(7)  Å                   | $\beta = 90^{\circ}$   |  |  |
|                                          | c = 17.9767(10) Å                  | $\gamma = 90^{\circ}$  |  |  |
| Volume                                   | 3312.0(4) Å <sup>3</sup>           |                        |  |  |
| Z                                        | 4                                  |                        |  |  |
| Density (calculated)                     | 1.275 Mg/m <sup>3</sup>            |                        |  |  |
| Absorption coefficient                   | 0.148 mm <sup>-1</sup>             | 0.148 mm <sup>-1</sup> |  |  |
| F(000)                                   | 1336                               |                        |  |  |
| Crystal size                             | 0.33×0.2×0.15 mm                   | 1 <sup>3</sup>         |  |  |
| Theta range for data collection          | 2.266 to 25.392°                   |                        |  |  |
| Index ranges                             | -23<=h<=23, -11<=k<=11, -20<=l<=21 |                        |  |  |
| Reflections collected                    | 21371                              |                        |  |  |
| Independent reflections                  | 4227 [R(int) = 0.0770]             |                        |  |  |
| Completeness to theta = $25.392^{\circ}$ | 99.5 %                             |                        |  |  |
| Absorption correction                    | multi-scan                         |                        |  |  |
| Max. and min. transmission               | 0.8662                             |                        |  |  |
| Refinement method                        | Full-matrix least-squ              | ares on F <sup>2</sup> |  |  |
| Data / restraints / parameters           | 5910 / 1 / 430                     |                        |  |  |
| Goodness-of-fit on F <sup>2</sup>        | 1.084                              |                        |  |  |
|                                          | 29 / 78                            |                        |  |  |

Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole R1 = 0.0477, wR2 = 0.1090 R1 = 0.0748, wR2 = 0.1353 0.0110(11) $0.181 \text{ and } -0.178 \text{ e.}\text{Å}^{-3}$ 





#### 32 / 78



## <sup>19</sup>F NMR of **1c** in CDCl<sub>3</sub> (377 MHz)










#### 37 / 78

<sup>1</sup>H NMR of **3aa** in CDCl<sub>3</sub> (400 MHz)



<sup>1</sup>H NMR of **3ab** in CDCl<sub>3</sub> (400 MHz)



<sup>1</sup>H NMR of **3ac** in CDCl<sub>3</sub> (400 MHz)



# <sup>19</sup>F NMR of **3ac** in CDCl<sub>3</sub> (377 MHz)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1(ppm) <sup>1</sup>H NMR of **3ad** in CDCl<sub>3</sub> (400 MHz)



<sup>1</sup>H NMR of **3ae** in CDCl<sub>3</sub> (400 MHz)



### <sup>1</sup>H NMR of **3af** in CDCl<sub>3</sub> (400 MHz)



# $^{19}\mathrm{F}$ NMR of 3af in CDCl<sub>3</sub> (377 MHz)



20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1(ppm) <sup>1</sup>H NMR of **3ag** in CDCl<sub>3</sub> (400 MHz)







<sup>1</sup>H NMR of **3aj** in CDCl<sub>3</sub> (400 MHz)



<sup>1</sup>H NMR of **3ak** in CDCl<sub>3</sub> (400 MHz)



<sup>1</sup>H NMR of **3al** in CDCl<sub>3</sub> (400 MHz)





<sup>1</sup>H NMR of **3an** in CDCl<sub>3</sub> (400 MHz)



<sup>1</sup>H NMR of **3ao** in CDCl<sub>3</sub> (400 MHz)



<sup>1</sup>H NMR of **3ap** in CDCl<sub>3</sub> (400 MHz)



### <sup>1</sup>H NMR of **3aq** in CDCl<sub>3</sub> (400 MHz)



<sup>1</sup>H NMR of **3ar** in CDCl<sub>3</sub> (400 MHz)



<sup>1</sup>H NMR of **3as** in CDCl<sub>3</sub> (400 MHz)



<sup>1</sup>H NMR of **3at** in CDCl<sub>3</sub> (400 MHz)



<sup>1</sup>H NMR of **3au** in CDCl<sub>3</sub> (400 MHz)



<sup>1</sup>H NMR of **3av** in CDCl<sub>3</sub> (400 MHz)



<sup>1</sup>H NMR of **3aw** in CDCl<sub>3</sub> (400 MHz)



<sup>1</sup>H NMR of **3ax** in CDCl<sub>3</sub> (400 MHz)







<sup>1</sup>H NMR of **3ca** in CDCl<sub>3</sub> (400 MHz)



65 / 78

# <sup>19</sup>F NMR of **3ca** in CDCl<sub>3</sub> (377 MHz)



<sup>1</sup>H NMR of **3da** in CDCl<sub>3</sub> (400 MHz)



<sup>1</sup>H NMR of **3ea** in CDCl<sub>3</sub> (400 MHz)



### <sup>1</sup>H NMR of **3fa** in CDCl<sub>3</sub> (400 MHz)









<sup>1</sup>H NMR of **5ab** in CDCl<sub>3</sub> (600 MHz)



<sup>1</sup>H NMR of **5ac** in CDCl<sub>3</sub> (400 MHz)


<sup>1</sup>H NMR of **5ad** in CDCl<sub>3</sub> (400 MHz)



<sup>1</sup>H NMR of **5ae** in CDCl<sub>3</sub> (400 MHz)



<sup>1</sup>H NMR of **5af** in CDCl<sub>3</sub> (400 MHz)



<sup>1</sup>H NMR of **5ag** in CDCl<sub>3</sub> (600 MHz)



<sup>1</sup>H NMR of 7aa in CDCl<sub>3</sub> (400 MHz)



