Supporting information

Electrocatalytic O-S Bonding Reaction Targeting Biological Macromolecules

Shuqiang Jiang¹, Longyu Xiao¹, Li Pan², Qiaoyu Huang³, Fujin Huo¹, Meng Gao¹, Cuifen Lu¹, Pan Wu^{*2}, Yue Weng^{*1}

¹Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecule, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Chemistry and Chemical Engineering, Hubei University, Wuhan, P. R. China ²State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China

³Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan,430062, P. R. China

TABLE OF CONTENTS

1. General Information	3
2. Synthesis of Starting Materials	4
3. General Procedure for BioconJugation of Tyrosine and Sodium benze	nesulfinate 10
3.1 Reaction Optimization	10
3.2 Gram-Scale Experiments	11
3.3 Sodium arenesulfinates scope and characterization	
3.4 Dipeptide scope and characterization	19
3.5 Polypeptide scope and characterization	
3.6 EPR and DFT	
3.7 Anti-fungal experiment of benzenesulfonate-labeled peptide	
4.References	
5. Spectra	
5.1 NMR Spectra of Products	39

1. General Information

All glassware was oven dried at 110°C for hours and cooled down under vacuum. Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. The instrument for electrolysis was dual display potentiostat (DJS-292B) (made in China). The anodic electrode was graphite rod (ϕ 6 mm) and cathodic electrode was platinum plate (15 mm×15 mm×0.3 mm). Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel. Gradient flash chromatography was conducted eluting with a continuous gradient from dichloromethane to the methanol. High resolution mass spectra (HRMS) for dipeptides were measured with a Waters Micromass GCT instrument and accurate masses were reported for the molecular ion + Sodium (M+Na). High resolution mass spectra (HRMS) for polypeptides were measured with an ABI 5800 instrument and accurate masses were reported for the molecular ion + Hydrogen (M+H) or molecular ion + Sodium (M+Na). The ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a Bruker 400 MHz NMR spectrometer. For ¹H NMR, chemical shifts (δ) were given in ppm relatives to internal standard (TMS at 0 ppm, DMSO- d_6 at 2.50 ppm, MeOH- d_4 at 3.31 ppm, Acetone- d_6 at 2.05 ppm). For ¹³C-NMR, chemical shifts (δ) were reported in ppm using solvent as internal standard (CDCl₃ at 77.00 ppm, DMSO-d₆ at 39.50 ppm, MeOH-d₄ at 49.00 ppm, Acetone-d₆ at 29.84 ppm). HPLC analyses were performed on an Agilent 1260 Infinity LC system using a 100 mm Agilent Zorbax 300SB-C18 5 µm analytical column. All of the MALDI-TOF-MS and MALDI-TOF-MS/MS spectra were acquired using 5800 MALDI-MS (AB SCIEX, Concord, Canada) equipped with a 355 nm Nd: YAG laser in the reflector positive mode. Samples of 0.6 μ L mixed with 0.6 μ L freshly prepared CHCA matrix were directly loaded onto the stainless steel MALDI plate and allowed to dry in a gentle stream of warm air. Samples were ablated with a power of 3500 while the laser rastered over the target surface. A total of 2000 laser shots were employed in each sample spot. The MS and MS/MS data processing was further performed by DataExplorer 4.0 (AB SCIEX, Concord, Canada). UV-vis absorption

spectra were performed on a Shimadzu UV-2700 spectrophotometer or Agilent Technologies Cary 8454. Fluorescence spectra were collected on a Hitachi F-4600 fluorescence spectrophotometer. The circular dichroism spectra were collected on ChhirascanTM CD spectroscopy (Applied Photophysics, Leatherhead, United Kingdom). CD spectra were collected from 180 nm to 280 nm and with a scanning speed of 200 nm/min. The bandwidth was 5 nm, and the response time was 2s. All spectra were taken at ambient temperature.

2. Synthesis of Starting Materials

Synthesis of starting materials dipeptides 4a-4i^{{1}{2}}

In a round bottomed flask, equipped with a stir bar, peptide A (2.0 mmol), HOBT (1hydroxybenzotriazole) (3.0 mmol), HBTU (O-benzotriazole-*N*, *N*, *N'*, *N'*-tetramethyluronium-hexafluorophosphate) (3.0 mmol), dichloromethane (40 mL) and triethylamine (2.4 mmol) were combined and added. The mixture was stirred for 30 min at room temperature, and then, peptide **B** (2.0 mmol) was added to the solution. The reaction was stirred overnight. After regular workup, the reaction mixture washed by saturated NaHCO₃ solution (40 mL x 3), 2M hydrochloric acid solution (40 mL x 3) and H₂O (40 mL x 3). The organic layers were combined, dried over Na₂SO₄, and concentrated. The resulting crude product was purified by flash chromatography (DCM/ MeOH) to afford corresponding dipeptides **4a-4i**.

4a

Dipeptide **4a Fmoc-Leu-Tyr-OMe**, white solid. ¹H NMR (400 MHz, Acetone- d_6) δ 8.37 (s, 1H), 7.84 (d, J = 7.6 Hz, 2H), 7.72 – 7.68 (m, 2H), 7.63 – 7.58 (m, 1H), 7.39 (t, J = 7.6 Hz, 2H), 7.30 (td, J = 7.6, 1.2 Hz, 2H), 7.02 (d, J = 8.4 Hz, 2H), 6.84 – 6.80 (m, 1H), 6.75 (d, J = 8.2 Hz, 2H), 4.73 – 4.68 (m, 1H), 4.39 – 4.29 (m, 3H), 4.24 – 4.20 (m, 1H), 3.63 (s, 3H), 3.06 – 2.93 (m, 2H), 1.78 – 1.69 (m, 1H), 1.63 – 1.57 (m, 2H), 0.94 – 0.89 (m, 6H). ¹³C NMR (101 MHz, Acetone- d_6) δ 173.18, 172.51, 157.06, 156.97, 145.02, 144.74, 141.95, 131.09, 128.43, 127.87, 126.08, 120.70, 115.96, 67.13, 54.64, 52.21, 47.89, 41.91, 37.34, 25.25, 23.41, 21.91.

Dipeptide **4b Fmoc-Phe-Tyr-OMe**, white solid. ¹H NMR (400 MHz, Acetone-*d*₆) δ 8.39 (s, 1H), 7.83 (d, *J* = 7.6 Hz, 2H), 7.64 – 7.62 (m, 3H), 7.39 (td, *J* = 7.6, 1.2 Hz, 2H), 7.31 – 7.15 (m, 7H), 7.04 – 7.00 (m, 2H), 6.81 (d, *J* = 8.8 Hz, 1H), 6.76 – 6.73 (m, 2H), 4.73 – 4.68 (m, 1H), 4.58 – 4.53 (m, 1H), 4.29 – 4.24 (m, 1H), 4.19 – 4.12 (m, 2H), 3.64 (s, 3H), 3.20 (dd, *J* = 14.0, 4.8 Hz, 1H), 3.07 – 2.90 (m, 3H). ¹³C NMR (101 MHz, Acetone-*d*₆) δ 172.09, 171.71, 156.77, 156.41, 144.55, 144.47, 141.58, 138.21, 130.79, 129.85, 128.65, 128.09, 127.53, 126.85, 125.73, 120.35, 115.65, 66.87, 56.64, 54.42, 51.92, 47.44, 38.30, 37.07.

Dipeptide **4c Fmoc-Gly-Tyr-OMe**, white solid.¹H NMR (400 MHz, Acetone- d_6) δ 8.32 (s, 1H), 7.85 (d, J = 7.6 Hz, 2H), 7.72 (d, J = 7.6 Hz, 2H), 7.43 – 7.30 (m, 3H), 7.32 (t, J = 7.2 Hz, 2H), 7.03 (d, J = 8.4 Hz, 2H), 6.82 (t, J = 6.0 Hz, 1H), 6.75 (d, J = 8.0 Hz, 2H), 4.71 – 4.66 (m, 1H), 4.37 – 4.22 (m, 3H), 3.91 – 3.81 (m, 2H), 3.64 (s, 3H), 3.04 – 2.99 (m, 1H), 2.96 – 2.91 (m, 1H). ¹³C NMR (101 MHz, Acetone- d_6) δ 172.53, 169.79, 157.45, 157.14, 144.97, 142.01, 131.14, 128.49, 128.05, 127.92, 126.13, 120.75, 116.03, 67.36, 54.60, 52.26, 47.88, 44.66, 37.47.

4d

Dipeptide **4d Fmoc-Met-Tyr-OMe**, white solid. ¹H NMR (400 MHz, Acetone- d_6) δ 8.32 (s, 1H), 7.85 (d, J = 7.6, 2H), 7.71 (t, J = 7.2 Hz, 2H), 7.52 (d, J = 7.6 Hz, 1H), 7.41 (t, J = 7.6 Hz, 2H), 7.34 – 7.30 (m, 2H), 7.05 – 6.02 (m, 2H), 6.80 (d, J = 8.4 Hz, 1H), 6.77 – 6.673 (m, 2H), 4.69 – 4.64 (m, 1H), 4.39 – 4.29 (m, 3H), 4.25 – 4.20 (m, 1H), 3.65 (s, 3H), 3.06 – 3.11 (m, 1H), 2.98 – 2.93 (m, 1H), 2.60 – 2.48 (m, 2H), 2.13 – 2.03 (m, 1H), 2.05 (s, 3H), 1.98 – 1.88 (m, 1H). ¹³C NMR (101 MHz, Acetone- d_6) δ 172.55, 172.08, 157.13, 156.93, 145.07, 144.85, 142.03, 131.13, 128.50, 127.92, 126.14, 120.77, 116.02, 67.19, 54.82, 54.70, 52.28, 47.94, 37.26, 32.89, 30.61, 15.13.

Dipeptide **4e Fmoc-Trp(Boc)-Tyr-OMe**, white solid.¹H NMR (400 MHz, DMSO- d_6) δ 9.27 (s, 1H), 8.47 (d, J = 7.4 Hz, 1H), 8.02 (s, 1H), 7.85 (d, J = 8.0 Hz, 2H), 7.76 (d, J = 7.6 Hz, 1H), 7.68 (d, J = 8.8 Hz, 1H), 7.59 (d, J = 13.5 Hz, 3H), 7.41 – 7.30 (m, 4H), 7.27 – 7.17 (m, 3H), 7.01 (d, J = 8.5 Hz, 2H), 4.50 – 4.39 (m, 2H), 4.22 – 4.08 (m, 3H), 3.57 (s, 3H), 3.08 – 3.01 (m, 1H), 2.97 – 2.84 (m, 3H), 1.55 (s, 9H). ¹³C NMR (101 MHz, DMSO- d_6) δ 172.47, 172.16, 157.10, 156.79, 145.00, 144.95, 142.00, 137.55, 131.19, 128.46, 128.13, 127.94, 126.15, 124.55, 122.11, 120.73, 119.57, 119.34, 116.00, 112.15, 111.31, 67.22, 56.48, 54.75, 52.24, 47.92, 37.47, 28.77.28.09.

Dipeptide **4f Fmoc-His(Trt)-Tyr-OMe**, white solid.¹H NMR (400 MHz, Chloroformd) δ 7.73 (d, *J* = 7.6 Hz, 2H), 7.59 (dd, *J* = 7.6, 3.9 Hz, 2H), 7.44 (dd, *J* = 6.4, 4.7 Hz, 1H), 7.40 (d, *J* = 1.5 Hz, 1H), 7.37 – 7.33 (m, 2H), 7.27 – 7.24 (m, 9H), 7.06 – 7.03 (m, 6H), 6.89 (d, *J* = 8.5 Hz, 2H), 6.66 (s, 1H), 6.57 (d, *J* = 8.5 Hz, 2H), 6.32 (d, *J* = 7.7 Hz, 1H), 4.85 – 4.79 (m, 1H), 4.52 (s, 1H), 4.29 – 4.24 (m, 2H), 4.14 (d, *J* = 7.5 Hz, 1H), 3.55 (s, 3H), 3.11 – 2.90 (m, 4H). ¹³C NMR (101 MHz, Chloroform-d) δ 171.63, 171.03, 156.40, 156.10, 143.94, 142.07, 141.22, 138.14, 136.55, 130.49, 129.73, 128.17, 128.12, 127.68, 127.15, 127.11, 126.61, 125.38, 125.33, 119.91, 119.73, 115.82, 67.30, 55.62, 53.48, 52.21, 47.10, 37.36, 31.38.

Dipeptide **4g Fmoc-Lys(Boc)-Tyr-OMe**, white solid.¹H NMR (400 MHz, DMSO-*d*₆) δ 9.23 (s, 1H), 8.23 (d, *J* = 7.4 Hz, 1H), 7.89 (d, *J* = 7.5 Hz, 2H), 7.75 – 7.71 (m, 2H), 7.45 – 7.40 (m, 3H), 7.33 (t, *J* = 7.4 Hz, 2H), 6.98 (d, *J* = 8.4 Hz, 2H), 6.77 (t, *J* = 5.7 Hz, 1H), 6.65 (d, *J* = 8.4 Hz, 2H), 4.37 (q, *J* = 7.3 Hz, 1H), 4.31 – 4.14 (m, 4H), 4.03 – 3.95 (m, 1H), 3.56 (s, 3H), 2.93 – 2.82 (m, 4H), 1.63 – 1.42 (m, 3H), 1.37 (s, 9H), 1.28 – 1.16 (m, 3H).¹³C NMR (101 MHz, DMSO- *d*₆) δ 172.63, 172.19, 156.31, 156.05, 149.55, 149.48, 144.39, 144.22, 141.18, 134.30, 130.97, 128.09, 127.51, 125.77, 120.54, 120.06, 120.01, 77.81, 66.10, 54.87, 53.88, 52.26, 47.16, 36.25, 32.09, 29.69, 28.73, 23.20.

Dipeptide **4h Fmoc-Glu(tBu)-Tyr-OMe**, white solid.¹H NMR (400 MHz, DMSO-*d*₆) δ 9.25 (s, 1H), 8.26 (d, *J* = 7.4 Hz, 1H), 7.90 (d, *J* = 7.5 Hz, 2H), 7.74 (t, *J* = 7.4 Hz, 2H), 7.51 (d, *J* = 8.4 Hz, 1H), 7.42 (t, *J* = 6.9 Hz, 2H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.00 (d, *J* = 8.4 Hz, 2H), 6.66 (d, *J* = 8.5 Hz, 2H), 4.39 (dt, *J* = 13.6, 6.9 Hz, 1H), 4.26 (dd, *J* = 17.2, 8.0 Hz, 3H), 4.06 (td, *J* = 8.5, 5.3 Hz, 1H), 3.58 (s, 3H), 2.92 – 2.83 (m, 2H), 2.23 (t, *J* = 8.0 Hz, 2H), 1.92 – 1.80 (m, 1H), 1.73 (dq, *J* = 16.5, 8.1 Hz, 1H), 1.40 (s, 9H).¹³C NMR (101 MHz, DMSO-*d*₆) δ 172.12, 172.00, 156.27, 149.55, 149.49, 144.38, 144.19,

141.19, 134.30, 130.97, 128.10, 127.51, 125.77, 120.56, 120.07, 120.03, 80.15, 66.14, 54.05, 53.93, 52.30, 47.14, 36.14, 31.69, 28.22, 27.80.

Dipeptide **4i Fmoc-Ala-Tyr-OMe**, white solid.¹H NMR (400 MHz, DMSO- d_6) δ 8.25 (d, J = 8.1 Hz, 1H), 8.14 (d, J = 8.0 Hz, 1H), 7.87 (dd, J = 17.3, 7.5 Hz, 4H), 7.74 (d, J = 4.9 Hz, 1H), 7.42 (t, J = 7.4 Hz, 2H), 7.34 (q, J = 7.2 Hz, 2H), 6.98 (dd, J = 8.3, 1.7 Hz, 2H), 6.68 – 6.61 (m, 2H), 4.42 (tt, J = 8.9, 5.0 Hz, 1H), 4.27 – 4.17 (m, J = 12.3, 6.2 Hz, 3H), 4.04 (dt, J = 29.4, 7.4 Hz, 1H), 3.62 (d, J = 2.0 Hz, 3H), 2.97 – 2.73 (m, 2H), 1.08 – 1.02 (m, 3H).¹³C NMR (101 MHz, DMSO- d_6) δ 173.03, 172.31, 156.02, 149.51, 149.45, 144.34, 144.28, 141.17, 134.37, 131.10, 128.10, 127.53, 125.81, 120.56, 120.02, 119.97, 66.13, 53.61, 52.42, 50.23, 47.07, 36.52, 18.78.

Synthesis of starting materials dipeptides 4j^{{1}{2}}

In a round bottomed flask, equipped with a stir bar, peptide A (2.0 mmol), HOBT (1-hydroxybenzotriazole) (3.0 mmol), HBTU (O-benzotriazole-*N*, *N*, *N'*, *N'*-tetramethyluronium-hexafluorophosphate) (3.0 mmol), dichloromethane (40 mL) and triethylamine (2.4 mmol) were combined and added. The mixture was stirred for 30 min at room temperature, and then, peptide **B** (2.0 mmol) was added to the solution. The reaction was stirred overnight. After regular workup, the reaction mixture washed by saturated NaHCO₃ solution (40 mL x 3), 2M hydrochloric acid solution (40 mL x 3) and H₂O (40 mL x 3). The organic layers were combined, dried over Na₂SO₄, and concentrated. Without further purification, the 95% TFA / DCM solution (8 mL) was added dropwise. The mixture was stirred for 2 h at room temperature. The resulting crude product was purified by flash chromatography (DCM / MeOH) to afford corresponding dipeptides 4j.

Dipeptide **4j Fmoc-Ser-Tyr-OMe**, white solid. ¹H NMR (400 MHz, Acetone- d_6) δ 8.32 (s, 1H), 7.88 (d, J = 7.6 Hz, 2H), 7.76 – 7.73 (m, 2H), 7.60 (d, J = 7.6 Hz, 1H), 7.43 (t, J = 7.6 Hz, 2H), 7.34 (t, J = 7.6 Hz, 2H), 7.07 (d, J = 8.0 Hz, 2H), 6.77 (d, J = 8.0 Hz, 2H), 6.69 (d, J = 8.0 Hz, 1H), 4.74 – 4.69 (m, 1H), 4.36 -4.31 (m, 3H), 4.28 – 4.22 (m, 2H), 3.86 – 3.74 (m, 2H), 3.65 (s, 3H), 3.07 – 3.02 (m, 1H), 3.02 – 2.97 (m, 1H). ¹³C NMR (101 MHz, Acetone- d_6) δ 172.54, 171.02, 157.15, 157.05, 145.02, 144.91, 142.01, 131.20, 128.50, 127.95, 126.15, 120.76, 116.03, 67.42, 63.25, 57.53, 54.77, 52.34, 47.89, 37.35.

3. General Procedure for BioconJugation of Tyrosine and Sodium

benzenesulfinate

3.1 Reaction Optimization

In an oven-dried undivided three-necked bottle (25 mL) equipped with a stir bar, protected tyrosine (0.20 mmol), Sodium benzenesulfinate (0.3 mmol), ⁿBu₄NBr (0.40 mmol) and MeCN / buffer(pH=8.6) (7.0 mL / 0.5 mL) were combined and added. The bottle was equipped graphite rod (ϕ 6 mm, about 15 mm immersion depth in solution) as the anode and platinum plate (15 mm×15 mm×0.3 mm) as the cathode . The reaction mixture was stirred and electrolyzed at constant current under room temperature. When the reaction finished,The pure product was obtained by flash column chromatography on silica gel. A summary of optimization results is presented in **Table S1** below.

Table S1. Effects of reaction parameters

Entry	Variation from the standard conditions	Isolated yields
1	none	87%
2	8 mA instead of 15 mA, 160 min	64%
3	20 mA instead of 15 mA, 60 min	52%
4	H ₂ O instead of buffer	42%
5	add to 1 eq HCI	trace
6	1.5 ml buffer	64%
7	without buffer	27%
8	CH3OH instead of CH ₃ CN	trace
9	CH ₂ Cl ₂ instead of CH ₃ CN	75%
10	C(+) C (-) instead of C(+) Pt (-)	56%
11	C(+) Ni (-) instead of C(+) Pt (-)	52%
12	Pt(+) Pt (-) instead of C(+) Pt (-)	75%
13	ⁿ Bu ₄ NBF ₄ instead of ⁿ Bu ₄ NBr	30%
14	ⁿ Bu ₄ NI instead of ⁿ Bu ₄ NBr	24%
15	ⁿ Bu ₄ NClO ₄ instead of ⁿ Bu ₄ NBr	trace
16	KBr instead of ⁿ Bu ₄ NBr	74%`
17	under N ₂	83%
18	no electric current	n.r
19	Serine	n.d
20	Threonine	n.d
21	Hxdroxyproline	n.d

[a] Reaction conditions: graphite rod anode, platinum plate cathode, constant current = 15 mA, **1a** (1.0 equiv., 0.20 mmol), **2a** (1.5 equiv, 0.3 mmol), ⁿBu₄NBr (2 equiv, 0.40 mmol), 7.0 mL MeCN, 0.5 mL buffer(pH = 8.6) , 25°C. 80min. Yields of isolated products are shown. n r =no reaction. n d = no detected.

3.2 Gram-Scale Experiments

1a 0.2 mmol

2a 1.5eq

General procedure for Gram-Scale Experiments: In an oven-dried undivided threenecked bottle (250 mL) equipped with a stir bar, tyrosine (5.0 mmol), Sodium benzenesulfinate (7.5 mmol), and ⁿBu₄NBr (10.0 mmol), buffer (pH = 8.6, 12 mL) were combined and added. Then, CH_3CN (160 mL) were injected into the tubes via syringes. The bottle was equipped with carbon rod (ϕ 6 mm) as the anode and platinum plate (15 mm×15 mm×0.3 mm) as the cathode. The reaction mixture was stirred and electrolysis at constant current of 15 mA under 25°C overnight. The solvent was removed under vacuum. The crude product was purified by flash column chromatography on silica gel to afford pure product.

3.3 Sodium arenesulfinates scope and characterization

methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-((phenylsulfonyl)oxy)phenyl)pro panoate(3a);

75.7 mg (yield: 87%, 0.2 mmol scale), white solid. ¹H NMR (400 MHz, DMSO- d_6) δ 7.86 – 7.81 (m, 2H), 7.81 – 7.77 (m, 1H), 7.65 (t, J = 7.9 Hz, 2H), 7.31 (d, J = 8.2 Hz, 1H), 7.23 (d, J = 8.7 Hz, 2H), 6.93 (d, J = 8.7 Hz, 2H), 4.21 – 4.11 (m, 1H), 3.57 (s, 3H), 2.97 (dd, J = 13.8, 5.3 Hz, 1H), 2.83 (dd, J = 13.8, 10.2 Hz, 1H), 1.30 (s, 9H). ¹³C NMR (101 MHz, DMSO- d_6) δ 172.84, 155.81, 148.10, 137.51, 135.39, 134.89, 131.08, 130.20, 128.61, 122.17, 78.77, 55.30, 52.24, 36.20, 28.55. HRMS (ESI) cald. for (M+Na)⁺ C₂₁H₂₅NO₇S: 458.1243, found, 458.1248.

methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-(tosyloxy)phenyl)propanoate(3b); 62.1 mg (yield: 69%, 0.2 mmol scale), white solid.¹H NMR (400 MHz, DMSO- d_6) δ 7.71 (d, J = 8.4 Hz, 2H), 7.45 (d, J = 7.9 Hz, 2H), 7.30 (d, J = 8.2 Hz, 1H), 7.22 (d, J =8.7 Hz, 2H), 6.92 (d, J = 8.7 Hz, 2H), 4.15 (dd, J = 18.4, 5.3 Hz, 1H), 3.57 (s, 3H), 2.96 (dd, J = 13.8, 5.3 Hz, 1H), 2.82 (dd, J = 13.9, 10.2 Hz, 1H), 2.41 (s, 3H), 1.31 (s, 9H). ¹³C NMR (101 MHz, DMSO- d_6) δ 172.85, 155.81, 148.15, 146.13, 137.40, 132.01, 131.05, 130.62, 128.64, 122.17, 78.77, 55.30, 52.24, 36.19, 28.55, 21.64. HRMS (ESI) cald. for (M+Na)⁺ C₂₂H₂₇NO₇S: 472.1400, found, 472.1423.

methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-((m-tolylsulfonyl)oxy)phenyl)pr opanoate(3c);

54.8 mg (yield: 61%, 0.2 mmol scale), white solid.¹H NMR (400 MHz, DMSO- *d*₆) δ 7.70 (s, 1H), 7.63 (d, *J* = 7.0 Hz, 2H), 7.54 (t, *J* = 7.7 Hz, 1H), 7.33 (d, *J* = 8.3 Hz, 1H), 7.25 (d, *J* = 8.7 Hz, 2H), 6.95 (d, *J* = 8.5 Hz, 2H), 4.22 – 4.14 (m, 1H), 3.60 (s, 3H), 2.99 (dd, *J* = 13.8, 5.1 Hz, 1H), 2.85 (dd, *J* = 13.8, 10.2 Hz, 1H), 2.41 (s, 3H), 1.33 (s, 9H). ¹³C NMR (101 MHz, DMSO- *d*₆) δ 172.85, 155.82, 148.12, 140.23, 137.46, 136.00, 134.87, 131.06, 129.96, 128.60, 125.78, 122.19, 78.77, 55.33, 52.23, 36.19, 28.55, 21.11. HRMS (ESI) cald. for (M+Na)⁺ C₂₂H₂₇NO₇S: 472.1400, found, 472.1425.

methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-(((4-methoxyphenyl)sulfonyl)ox y)phenyl)propanoate(3d);

54.0 mg (yield: 58%, 0.2 mmol scale), white solid.¹H NMR (400 MHz, DMSO- d_6) δ 7.77 (d, J = 9.0 Hz, 2H), 7.33 (d, J = 8.2 Hz, 1H), 7.25 (d, J = 8.7 Hz, 2H), 7.16 (d, J =9.0 Hz, 2H), 6.94 (d, J = 8.7 Hz, 2H), 4.23 – 4.14 (m, 1H), 3.87 (s, 3H), 3.60 (s, 3H), 2.99 (dd, J = 13.8, 5.3 Hz, 1H), 2.85 (dd, J = 13.9, 10.2 Hz, 1H), 1.33 (s, 9H). ¹³C NMR (101 MHz, DMSO- d_6) δ 172.86, 164.41, 155.83, 148.21, 137.33, 131.02, 126.11, 122.23, 115.32, 78.78, 56.34, 55.33, 52.23, 36.20, 28.54. HRMS (ESI) cald. for (M+Na)⁺ C₂₂H₂₇NO₈S:488.1349, found, 488.1343.

methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-(((4-fluorophenyl)sulfonyl)oxy)p henyl)propanoate(3e);

63.5 mg (yield: 70%, 0.2 mmol scale), white solid.¹H NMR (400 MHz, DMS O-d₆) δ 7.91 (dd, J = 8.9, 5.0 Hz, 2H), 7.48 (t, J = 8.8 Hz, 2H), 7.31 (d, J = 8.3 Hz, 1H), 7.24 (d, J = 8.8 Hz, 2H), 6.94 (d, J = 8.7 Hz, 2H), 4.16 (dd, J = 13.4, 10.2 Hz, 1H), 3.58 (s, 3H), 2.97 (dd, J = 13.9, 5.1 Hz, 1H), 2.83 (dd, J = 13.8, 10.2 Hz, 1H), 1.30 (s, 9H). ¹³C NMR (101 MHz, DMSO-d₆) δ 172.83, 167.27, 164.73, 155.81, 148.02, 137.63, 132.06, 131.96, 131.14, 131.11, 131.08, 122.21, 117.69, 117.46, 78.77, 55.29, 52.24, 36.18, 28.54. 19F NMR (377 MHz, DMSO-d₆) δ -102.57. HRMS (ESI) cald. for (M+Na)⁺ C₂₁H₂₄FNO₇ S: 476.1149 ,found, 476.1138.

methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-(((3-fluorophenyl)sulfonyl)oxy)p henyl)propanoate(3f);

54.4 mg (yield: 60%, 0.2 mmol scale), white solid.¹H NMR (400 MHz, DMS O-*d*₆) δ 7.75 – 7.69 (m, 4H), 7.28 (t, *J* = 9.3 Hz, 3H), 7.00 (d, *J* = 8.6 Hz, 2H), 4.24 – 4.14 (m, 1H), 3.59 (s, 3H), 3.00 (dd, *J* = 13.8, 5.2 Hz, 1H), 2.85 (dd, *J* = 13.8, 10.1 Hz, 1H), 1.34 (s, 9H). ¹³C NMR (101 MHz, DMSO-d6) δ 172.80, 163.44, 160.96, 155.79, 148.00, 137.71, 136.74, 136.67, 132.70, 132. 62, 131.18, 125.07, 125.04, 122.85, 122.64, 122.12, 115.84, 115.59, 78.76, 55.2 5, 52.21, 36.22, 28.53. 19F NMR (377 MHz, DMSO-*d*₆) δ -57.04. HRMS (ES I) cald. for (M+Na)⁺ C₂₁H₂₄FNO₇S: 476.1149, found, 476.1141.

methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-(((4-chlorophenyl)sulfonyl)oxy) phenyl)propanoate(3g);

56.4 mg (yield: 60%, 0.2 mmol scale), white solid.¹H NMR (400 MHz, DMS O- d_6) δ 7.86 (d, J = 8.7 Hz, 2H), 7.73 (d, J = 8.7 Hz, 2H), 7.28 (dd, J = 1 3.5, 8.4 Hz, 3H), 6.98 (d, J = 8.6 Hz, 2H), 4.24 – 4.12 (m, 1H), 3.59 (s, 3 H), 2.99 (dd, J = 13.8, 5.1 Hz, 1H), 2.85 (dd, J = 13.9, 10.1 Hz, 1H), 1.32 (s, 9H). ¹³C NMR (101 MHz, DMSO- d_6) δ 172.79, 155.80, 148.01, 140.48, 13 7.69, 133.68, 131.18, 130.57, 130.41, 122.16, 78.77, 55.27, 52.22, 36.21, 28.55. HRMS (ESI) cald. for (M+Na)⁺ C₂₁H₂₄CINO₇S: 492.0854, found, 492.0857

methyl (S)-3-(4-(((4-bromophenyl)sulfonyl)oxy)phenyl)-2-((tert-butoxycarbonyl) amino)propanoate(3h);

77.2 mg (yield: 75%, 0.2 mmol scale), white solid.¹H NMR (400 MHz, DMS O-*d*₆) δ 7.86 (d, J = 8.7 Hz, 2H), 7.76 (d, J = 8.8 Hz, 2H), 7.32 (d, J = 8.2 Hz, 1H), 7.25 (d, J = 8.7 Hz, 2H), 6.97 (d, J = 8.7 Hz, 2H), 4.20 – 4.09 (m, 1H), 3.58 (s, 3H), 2.98 (dd, J = 13.8, 5.2 Hz, 1H), 2.83 (dd, J = 13.8, 1 0.2 Hz, 1H), 1.30 (s, 9H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 172.83, 155.81, 147.98, 137.70, 134.05, 133.36, 131.20, 130.56, 129.65, 122.18, 78.76, 55.28, 5 2.25, 36.17, 28.54. HRMS (ESI) cald. for (M+Na)⁺ C₂₁H₂₄BrNO₇S: 536.0349, f ound, 536.0346.

methyl (S)-3-(4-(((3-bromophenyl)sulfonyl)oxy)phenyl)-2-((tert-butoxycarbonyl) amino)propanoate(3i);

80.2 mg (yield: 78%, 0.2 mmol scale), white solid.¹H NMR (400 MHz, DMS O- d_6) δ 8.04 (ddd, J = 8.0, 2.0, 1.0 Hz, 1H), 8.00 (t, J = 1.9 Hz, 1H), 7.87 (d, J = 9.7 Hz, 1H), 7.63 (t, J = 8.0 Hz, 1H), 7.32 – 7.25 (m, 3H), 7.01 (d, J = 8.7 Hz, 2H), 4.25 – 4.16 (m, 1H), 3.60 (s, 3H), 3.00 (dd, J = 13.8, 5.3 Hz, 1H), 2.86 (dd, J = 13.8, 10.1 Hz, 1H), 1.32 (s, 9H). ¹³C NMR (101 MHz, DMSO- d_6) δ 172.80, 155.79, 147.95, 138.33, 137.75, 136.80, 132.38, 131.20, 130.70, 127.73, 122.98, 122.14, 78.77, 55.26, 52.22, 36.23, 28.55. HRMS (ESI) cald. for (M+Na)⁺ C₂₁H₂₄BrNO₇S : 536.0349, found, 536.0342.

3j

methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-(((4-cyanophenyl)sulfonyl)oxy)p henyl)propanoate(3*J*);

45.1 mg (yield: 49%, 0.2 mmol scale), white solid. ¹H NMR (400 MHz, DMS O- d_6) δ 8.14 (d, J = 8.6 Hz, 2H), 8.04 (d, J = 8.7 Hz, 2H), 7.27 (dd, J = 1 1.6, 8.4 Hz, 3H), 6.99 (d, J = 8.6 Hz, 2H), 4.18 (dd, J = 18.4, 5.1 Hz, 1H), 3.59 (s, 3H), 2.99 (dd, J = 13.9, 5.2 Hz, 1H), 2.85 (dd, J = 13.9, 10.2 Hz, 1 H), 1.31 (s, 9H). ¹³C NMR (101 MHz, DMSO- d_6) δ 172.78, 155.80, 147.88, 1 38.85, 137.88, 134.30, 131.27, 129.42, 122.13, 117.74, 117.73, 78.78, 55.24, 52. 24, 36.19, 28.54. HRMS (ESI) cald. for (M+Na)⁺ C₂₂H₂₄N₂O₇S :483.1196, foun d, 483.1188.

methyl (S)-3-(4-(([1,1'-biphenyl]-4-ylsulfonyl)oxy)phenyl)-2-((tert-butoxycarbon yl)amino)propanoate(3k);

46.1 mg (yield: 45%, 0.2 mmol scale), white solid.¹H NMR (400 MHz, DMSO-*d*₆) δ 7.94 (q, *J* = 8.7 Hz, 4H), 7.77 (d, *J* = 8.0 Hz, 2H), 7.54 (t, *J* = 7.3 Hz, 2H), 7.48 (t, *J* = 7.2 Hz, 1H), 7.27 (dd, *J* = 13.9, 8.4 Hz, 3H), 7.00 (d, *J* = 8.6 Hz, 2H), 4.22 – 4.12 (m, 1H), 3.58 (s, 3H), 2.99 (dd, *J* = 13.9, 5.2 Hz, 1H), 2.84 (dd, *J* = 13.9, 10.2 Hz, 1H), 1.30 (s, 9H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 172.82, 155.81, 148.14, 146.61, 138.31, 137.52, 133.61, 131.13, 129.69, 129.50, 129.30, 128.24, 127.69, 122.18, 78.77, 55.29, 52.22, 36.20, 28.54. HRMS (ESI) cald. for (M+Na)⁺ C₂₇H₂₉NO₇S : 534.1556, found, 534.1558.

methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-((naphthalen-2-ylsulfonyl)oxy)p henyl)propanoate(31);

72.0 mg (yield: 74%, 0.2 mmol scale), white solid.¹H NMR (400 MHz, DMSO-*d*₆) δ 8.56 (s, 1H), 8.22 – 8.18 (m, 2H), 8.09 (d, *J* = 8.2 Hz, 1H), 7.88 (dd, *J* = 8.7, 2.1 Hz, 1H), 7.76 (t, *J* = 7.6 Hz, 1H), 7.69 (t, *J* = 7.5 Hz, 1H), 7.27 (d, *J* = 8.2 Hz, 1H), 7.22 (d, *J* = 8.7 Hz, 2H), 6.98 (d, *J* = 8.6 Hz, 2H), 4.24 – 4.13 (m, 1H), 3.55 (s, 3H), 2.97 (dd, *J* = 13.9, 5.2 Hz, 1H), 2.83 (dd, *J* = 13.9, 10.1 Hz, 1H), 1.28 (s, 9H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 172.80, 155.80, 148.20, 137.47, 135.52, 132.01, 131.93, 131.09, 130.64, 130.41, 130.37, 130.05, 128.50, 128.45, 122.96, 122.17, 78.74, 55.25, 52.16, 36.22, 28.51. HRMS (ESI) cald. for (M+Na)⁺ C₂₅H₂₇NO₇S : 508.1400, found, 508.1408.

methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-((ethylsulfonyl)oxy)phenyl)prop anoate(3m);

47.3 mg (yield: 61%, 0.2 mmol scale), white solid.¹H NMR (400 MHz, DMSO- d_6) δ 7.39 – 7.33 (m, 3H), 7.26 (d, J = 8.7 Hz, 2H), 4.27 – 4.18 (m, 1H), 3.64 (s, 3H), 3.48 (q, J = 7.3 Hz, 2H), 3.05 (dd, J = 13.8, 5.0 Hz, 1H), 2.89 (dd, J = 13.8, 10.3 Hz, 1H), 1.38 (t, J = 7.3 Hz, 3H), 1.34 (s, 9H). ¹³C NMR (101 MHz, DMSO- d_6) δ 172.89, 155.87, 148.07, 137.28, 131.22, 122.26, 78.80, 55.41, 52.28, 44.90, 36.20, 28.55, 8.51. HRMS (ESI) cald. for (M+Na)⁺ C₁₇H₂₅NO₇S : 410.1243, found, 410.1241.

methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-((thiophen-2-ylsulfonyl)oxy)phe nyl)propanoate(3n);

61.8 mg (yield: 70%, 0.2 mmol scale), white solid.¹H NMR (400 MHz, DMSO-*d*₆) δ 8.19 (dd, *J* = 5.0, 1.4 Hz, 1H), 7.75 (dd, *J* = 3.9, 1.5 Hz, 1H), 7.33 (d, *J* = 8.2 Hz, 1H), 7.28 – 7.24 (m, 3H), 6.97 (d, *J* = 8.6 Hz, 2H), 4.17 (dd, *J* = 16.8, 6.7 Hz, 1H), 3.58 (s, 3H), 2.98 (dd, *J* = 13.8, 5.2 Hz, 1H), 2.84 (dd, *J* = 13.8, 10.2 Hz, 1H), 1.31 (s, 9H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 172.86, 155.81, 148.17, 137.76, 137.51, 136.81, 133.54, 131.14, 128.87, 122.06, 78.79, 55.32, 52.26, 36.20, 28.56. HRMS (ESI) cald. for (M+Na)⁺ C₁₉H₂₃NO₇S₂ : 464.0808, found, 464.0802.

methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-(((4-(trifluoromethoxy)phenyl)s ulfonyl)oxy)phenyl)propanoate(30);

70.6 mg (yield: 68%, 0.2 mmol scale), white solid.¹H NMR (400 MHz, DMSO-*d*₆) δ 8.02 (d, *J* = 9.0 Hz, 2H), 7.65 (d, *J* = 10.0 Hz, 2H), 7.29 (t, *J* = 9.4 Hz, 3H), 7.00 (d, *J* = 8.7 Hz, 2H), 4.27 – 4.14 (m, 1H), 3.60 (s, 3H), 3.01 (dd, *J* = 13.8, 5.2 Hz, 1H), 2.87 (dd, *J* = 13.9, 10.1 Hz, 1H), 1.32 (s, 9H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 172.78, 155.80, 152.96, 152.94, 147.99, 137.73, 133.61, 131.49, 131.17, 122.12, 122.04, 121.52, 118.95, 78.74, 55.27, 52.17, 36.20, 28.48. ¹⁹F NMR (377 MHz, DMSO) δ -109.15 (t, *J* = 17.8 Hz). HRMS (ESI) cald. for (M+Na)⁺ C₂₂H₂₄F₃NO₈S : 542.1066, found, 542.1054.

3.4 Dipeptide scope and characterization

methyl (R)-2-((R)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-4-methylpent anamido)-3-(4-((phenylsulfonyl)oxy)phenyl)propanoate(5a);

83.2 mg (yield: 62%, 0.2 mmol scale), white solid. ¹H NMR (400 MHz, DMSO- d_6) δ 8.37 (d, J = 7.5 Hz, 1H), 7.91 (d, J = 8.5 Hz, 2H), 7.83 – 7.80 (m, 2H), 7.78 (d, J = 7.4 Hz, 1H), 7.73 (dd, J = 7.5, 4.0 Hz, 2H), 7.66 – 7.61 (m, 2H), 7.47 (d, J = 8.5 Hz, 1H), 7.43 (t, J = 7.5 Hz, 2H), 7.33 (t, J = 8.6 Hz, 2H), 7.23 (d, J = 8.8 Hz, 2H), 6.90 (d, J = 8.7 Hz, 2H), 4.49 – 4.42 (m, 1H), 4.34 – 4.28 (m, 1H), 4.27 – 4.19 (m, 2H), 4.10 – 4.04 (m, 1H), 3.55 (s, 3H), 3.04 – 2.91 (m, 2H), 1.59 (dd, J = 17.1, 10.4 Hz, 1H), 1.48 – 1.40 (m, 1H), 1.39 – 1.32 (m, 1H), 0.89 (d, J = 6.7 Hz, 3H), 0.85 (d, J = 6.5 Hz, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 172.99, 172.15, 156.26, 148.13, 144.42, 144.17, 141.21, 141.19, 137.08, 135.40, 134.76, 131.12, 130.20, 128.62, 128.12, 127.52, 125.76, 122.18, 120.60, 120.58, 65.99, 53.67, 53.23, 52.27, 47.16, 41.10, 36.17, 24.55, 23.45, 21.94. HRMS (ESI) cald. for (M+Na)⁺ C₃₇H₃₈N₂O₈S : 693.2241, found, 693.2244.

methyl (R)-2-((R)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-phenylprop anamido)-3-(4-((phenylsulfonyl)oxy)phenyl)propanoate(5b);

74.7 mg (yield: 53%, 0.2 mmol scale), white solid. ¹H NMR (400 MHz, DMSO- d_6) δ 8.50 (d, J = 7.6 Hz, 1H), 7.88 (d, J = 7.5 Hz, 2H), 7.81 (d, J = 10.6 Hz, 2H), 7.74 (d, J = 8.8 Hz, 1H), 7.64 (d, J = 10.2 Hz, 2H), 7.62 – 7.57 (m, 3H), 7.41 (t, J = 7.5 Hz, 2H), 7.32 (d, J = 8.7 Hz, 3H), 7.31 – 7.28 (m, 2H), 7.25 (t, J = 8.5 Hz, 4H), 7.19 (t, J = 7.2 Hz, 1H), 6.95 – 6.90 (m, 2H), 4.59 – 4.49 (m, 1H), 4.36 – 4.28 (m, 1H), 4.19 (d, J = 12.4 Hz, 1H), 4.14 (t, J = 6.2 Hz, 2H), 3.57 (s, 3H), 3.10 – 3.02 (m, 1H), 3.01 – 2.94 (m, 2H), 2.77 (dd, J = 13.8, 10.6 Hz, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 172.27, 172.08, 156.19, 148.19, 144.25, 144.15, 141.13, 138.51, 137.01, 135.36, 134.77, 131.14, 130.17, 129.71, 128.62, 128.51, 128.09, 127.52, 126.74, 125.72, 122.26, 120.55, 64.80,56.34, 53.83,52.35,47.02,37.37,34.20. HRMS (ESI) cald. for (M+Na)⁺ C₄₀H₃₆N₂O₈S :727.2084, found, 727.2081.

methyl (R)-2-(2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)acetamido)-3-(4-((phenylsulfonyl)oxy)phenyl)propanoate(5c);

78.6 mg (yield: 64%, 0.2 mmol scale), white solid. ¹H NMR (400 MHz, DMSO- d_6) δ 8.32 (d, J = 7.8 Hz, 1H), 7.90 (s, 1H), 7.88 (s, 1H), 7.85 – 7.81 (m, 2H), 7.80 – 7.77 (m,

1H), 7.72 (d, J = 7.5 Hz, 2H), 7.65 (t, J = 8.0 Hz, 2H), 7.49 (t, J = 6.2 Hz, 1H), 7.43 (d, J = 7.5 Hz, 2H), 7.33 (t, J = 6.8 Hz, 2H), 7.21 (d, J = 8.6 Hz, 2H), 6.92 (d, J = 8.6 Hz, 2H), 4.51 – 4.44 (m, 1H), 4.29 (d, J = 8.0 Hz, 2H), 4.23 (d, J = 6.2 Hz, 1H), 3.62 (t, J = 5.1 Hz, 2H), 3.57 (s, 3H), 3.01 (dd, J = 13.8, 5.9 Hz, 1H), 2.91 (dd, J = 13.8, 8.9 Hz, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 172.17, 169.66, 156.90, 148.17, 144.30, 141.19, 137.02, 135.43, 134.73, 131.15, 130.22, 128.65, 128.11, 127.55, 125.72, 122.26, 120.59, 66.20, 53.78, 52.35, 47.07, 43.49, 36.42. HRMS (ESI) cald. for (M+Na)⁺ C₃₃H₃₀N₂O₈S : 637.1615, found, 637.1619.

methyl (R)-2-((R)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-4-(methylthio) butanamido)-3-(4-((phenylsulfonyl)oxy)phenyl)propanoate(5d);

64.7 mg (yield: 48%, 0.2 mmol scale), white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.46 (d, *J* = 8.2 Hz, 1H), 7.91 (d, *J* = 7.4 Hz, 2H), 7.86 – 7.83 (m, 2H), 7.80 (d, *J* = 6.1 Hz, 1H), 7.75 (d, *J* = 7.5 Hz, 2H), 7.68 – 7.64 (m, 2H), 7.54 (d, *J* = 8.5 Hz, 1H), 7.43 (t, *J* = 7.5 Hz, 2H), 7.34 (t, *J* = 7.4 Hz, 2H), 7.23 (d, *J* = 8.7 Hz, 2H), 6.89 (d, *J* = 8.7 Hz, 2H), 4.53 – 4.46 (m, 1H), 4.30 (d, *J* = 12.7 Hz, 1H), 4.25 – 4.21 (m, 2H), 4.12 (td, *J* = 8.6, 5.3 Hz, 1H), 3.62 (s, 3H), 3.06 (dd, *J* = 13.7, 5.0 Hz, 1H), 2.89 (dd, *J* = 13.7, 10.1 Hz, 1H), 2.36 – 2.30 (m, 2H), 2.01 (s, 3H), 1.70 – 1.60 (m, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 144.34, 141.18, 137.14, 135.42, 134.82, 131.22, 130.23, 128.61, 128.13, 127.53, 120.60, 66.16, 53.99, 53.58, 52.44,47.81,37.13,33.77,31.09,14.96. HRMS (ESI) cald. for (M+Na)⁺ C₃₆H₃₆N₂O₈S₂ :711.1805, found, 711.1811.

99.5 mg (yield: 59%, 0.2 mmol scale), white solid. 1H NMR (400 MHz, DMSO- d_6) δ 8.64 (d, J = 7.7 Hz, 1H), 8.07 (d, J = 8.3 Hz, 1H), 7.88 (d, J = 7.5 Hz, 2H), 7.82 (t, J =7.4 Hz, 2H), 7.75 (t, J = 9.1 Hz, 3H), 7.62 (t, J = 7.8 Hz, 5H), 7.43 – 7.32 (m, 4H), 7.30 – 7.21 (m, 5H), 6.93 (d, J = 8.7 Hz, 2H), 4.60 – 4.51 (m, 1H), 4.49 – 4.41 (m, 1H), 4.23 – 4.10 (m, 3H), 3.58 (s, 3H), 3.12 – 2.93 (m, 4H), 1.57 (s, 9H). 13C NMR (101 MHz, DMSO- d_6) δ 172.13, 172.04, 148.19, 144.21, 144.12, 141.15, 137.04, 135.34, 134.78, 131.15, 130.74, 130.17, 128.62, 128.08, 127.47, 125.76, 125.68, 124.78, 124.61, 122.89, 122.26, 120.57, 119.97, 117.14, 115.16,85.07,63.72,55.50,53.86, 52.34, 46.02,35.13,28.08,26.35. HRMS (ESI) cald. for (M+Na)⁺ C₄₇H₄₅N₃O₁₀S :866.2717, found, 866.2711.

methyl (R)-2-((R)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(1-trityl-1Himidazol-4-yl)propanamido)-3-(4-((phenylsulfonyl)oxy)phenyl)propanoate(5f); 95.6 mg (yield: 51%, 0.2 mmol scale), white solid. 1H NMR (400 MHz, DMSO- d_6) δ 8.40 (d, J = 7.6 Hz, 1H), 7.90 (d, J = 7.6 Hz, 2H), 7.79 (d, J = 7.2 Hz, 2H), 7.74 (d, J =7.5 Hz, 1H), 7.66 – 7.58 (m, 4H), 7.46 – 7.38 (m, 4H), 7.33 (s, 8H), 7.27 (d, J = 7.9 Hz, 2H), 7.20 (d, J = 8.7 Hz, 3H), 7.02 (dd, J = 6.8, 3.0 Hz, 6H), 6.88 (d, J = 8.6 Hz, 2H), 6.74 (s, 1H), 4.50 - 4.43 (m, 1H), 4.35 - 4.27 (m, 1H), 4.16 (d, J = 6.1 Hz, 2H), 4.11 (d, J = 5.9 Hz, 1H), 3.48 (s, 3H), 3.03 - 2.88 (m, 2H), 2.88 - 2.81 (m, 1H), 2.76 - 2.67 (m, 1H). 13C NMR (101 MHz, DMSO- d_6) δ 172.06, 171.94, 156.15, 148.14, 144.20, 144.17, 142.54, 141.16, 141.13, 138.14, 137.35, 137.01, 135.37, 134.72, 131.12, 130.18, 129.70, 129.64, 128.78, 128.62, 128.59, 128.47, 128.12, 127.54, 125.76, 122.23, 120.58, 119.68, 75.11, 66.26, 54.79, 53.74, 52.30, 47.05, 36.26, 31.22. HRMS (ESI) cald. for (M+Na)⁺ C₅₆H₄₈N₄O₈S : 959.3085, found, 959.3092.

methyl (R)-2-((R)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-5-((tert-butox ycarbonyl)amino)pentanamido)-3-(4-((phenylsulfonyl)oxy)cyclohexa-1,3-dien-1-y l)propanoate(5g);

91.4 mg (yield: 58%, 0.2 mmol scale), white solid.1H NMR (400 MHz, DMSO- d_6) δ 8.31 (d, J = 7.6 Hz, 1H), 7.89 (d, J = 6.8 Hz, 2H), 7.81 (d, J = 8.6 Hz, 2H), 7.76 (d, J =7.5 Hz, 1H), 7.74 – 7.69 (m, 2H), 7.65 – 7.60 (m, 2H), 7.44 – 7.37 (m, 3H), 7.33 (t, J =7.4 Hz, 2H), 7.22 (d, J = 8.7 Hz, 2H), 6.90 (d, J = 8.7 Hz, 2H), 6.78 – 6.71 (m, 1H), 4.51 – 4.42 (m, 1H), 4.31 – 4.18 (m, 3H), 4.02 – 3.95 (m, 1H), 3.55 (s, 3H), 3.01 (dd, J =14.0, 5.9 Hz, 1H), 2.93 (dd, J = 14.0, 8.6 Hz, 3H), 1.58 – 1.48 (m, 2H), 1.38 (s, 9H), 1.35 – 1.18 (m, 4H). 13C NMR (101 MHz, DMSO- d_6) δ 172.62, 172.10, 156.31, 156.05, 148.16, 144.39, 144.21, 141.19, 137.02, 135.35, 134.83, 131.10, 130.17, 128.59, 128.10, 127.52, 125.75, 122.17, 120.56, 77.82, 66.08, 54.83, 53.69, 52.26, 47.15, 36.26, 32.05, 29.68, 28.74, 23.20. HRMS (ESI) cald. for (M+Na)⁺ C₄₁H₄₅N₃O₁₀S : 794.2717, found, 794.2712.

tert-butyl (R)-4-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-5-(((R)-1-methox y-1-oxo-3-(4-((phenylsulfonyl)oxy)phenyl)propan-2-yl)amino)-5-oxopentanoate(5 h);

90.6 mg (yield: 61%, 0.2 mmol scale), white solid.1H NMR (400 MHz, DMSO- $d_6 \delta$ 8.39 (d, J = 7.5 Hz, 1H), 7.91 (d, J = 7.7 Hz, 2H), 7.84 – 7.72 (m, 5H), 7.64 (t, J = 8.0Hz, 2H), 7.52 (d, J = 8.4 Hz, 1H), 7.43 (t, J = 7.5 Hz, 2H), 7.34 (t, J = 7.5 Hz, 2H), 7.23 (d, J = 8.7 Hz, 2H), 6.90 (d, J = 8.7 Hz, 2H), 4.50 – 4.44 (m, 1H), 4.33 – 4.20 (m, 3H), 4.07 – 4.01 (m, 1H), 3.57 (s, 3H), 3.06 – 2.91 (m, 2H), 2.23 (t, J = 8.0 Hz, 2H), 1.88 – 1.69 (m, 2H), 1.41 (s, 9H). 13C NMR (101 MHz, DMSO- d_6) δ 172.13, 172.08, 172.03, 156.28, 148.14, 144.38, 144.17, 141.20, 137.04, 135.40, 134.74, 131.13, 130.20, 128.63, 128.13, 127.53, 125.77, 122.22, 120.60, 80.17, 66.13, 54.02, 53.75, 52.32, 47.11, 36.12, 31.67, 28.21, 27.77. HRMS (ESI) cald. for (M+Na)⁺ C₄₀H₄₂N₂O₁₀S : 765.2452, found, 765.2439.

methyl (R)-2-((R)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)propanamido) -3-(4-((phenylsulfonyl)oxy)phenyl)propanoate(5i);

88.0 mg (yield:70%, 0.2 mmol scale), white solid.¹H NMR (400 MHz, DMSO- d_6) δ 8.36 (d, J = 8.3 Hz, 1H), 7.89 (d, J = 8.2 Hz, 2H), 7.84 – 7.81 (m, 2H), 7.78 (d, J = 7.5 Hz, 1H), 7.74 (dd, J = 7.4, 3.1 Hz, 2H), 7.67 – 7.62 (m, 2H), 7.47 (d, J = 7.9 Hz, 1H), 7.42 (t, J = 7.5 Hz, 2H), 7.33 (t, J = 7.5 Hz, 2H), 7.21 (d, J = 8.7 Hz, 2H), 6.89 (d, J = 8.6 Hz, 2H), 4.55 – 4.48 (m, 1H), 4.27 – 4.18 (m, 3H), 4.04 (q, J = 7.3 Hz, 1H), 3.61 (s, 3H), 3.06 (dd, *J* = 13.8, 4.9 Hz, 1H), 2.86 (dd, *J* = 13.8, 10.2 Hz, 1H), 0.99 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 173.03, 172.23, 144.28, 143.05, 137.07, 134.77, 131.23, 130.21, 129.39, 128.61, 128.11, 127.75, 127.53, 125.79, 121.84, 120.56, 120.49, 110.19, 66.50, 55.37, 52.39, 50.23, 47.09, 35.19, 18.85. HRMS (ESI) cald. for (M+Na)⁺ C₃₄H₃₂N₂O₈S : 651.1771, found, 651.1778.

methyl (R)-2-((R)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-hydroxypro panamido)-3-(4-((phenylsulfonyl)oxy)phenyl)propanoate(5j);

60.6 mg (yield:47%, 0.2 mmol scale), white solid. ¹H NMR (400 MHz, DMSO- d_6) δ 8.32 (d, J = 7.6 Hz, 1H), 7.90 (d, J = 7.5 Hz, 2H), 7.81 (d, J = 6.0 Hz, 2H), 7.77 (d, J =7.4 Hz, 1H), 7.74 (dd, J = 8.1, 3.8 Hz, 2H), 7.66 – 7.62 (m, 2H), 7.42 (t, J = 7.0 Hz, 2H), 7.35 – 7.30 (m, 3H), 7.21 (d, J = 8.7 Hz, 2H), 4.89 (t, J = 5.7 Hz, 1H), 4.50 – 4.43 (m, 1H), 4.28 (d, J = 5.9 Hz, 2H), 4.22 (d, J = 6.1 Hz, 1H), 4.13 – 4.07 (m, 1H), 3.58 (d, J = 4.7 Hz, 1H), 3.55 (s, 3H), 3.47 (d, J = 11.1 Hz, 1H), 3.04 – 2.90 (m, 2H).¹³C NMR (101 MHz, DMSO- d_6) δ 171.99, 170.68, 156.38, 148.15, 144.35, 144.24, 141.19, 137.00, 135.41, 134.72, 131.19, 130.21, 128.63, 128.13, 127.56, 125.79, 122.21, 120.59, 66.21, 62.11, 57.63, 53.76, 52.34, 47.08, 36.30. HRMS (ESI) cald. for (M+Na)⁺ C₃₄H₃₂N₂O₉S : 667.1720, found, 667.1718.

3.5 Polypeptide scope and characterization

General Procedure for Bioconjugation of Tyrosine and Sodium benzenesulfite : In an oven-dried undivided three-necked bottle (15 mL) equipped with a stir bar, polypeptides (5 mg), Sodium benzenesulfite (10 mg), CH₃CN (1.5 mL),buffer (pH =8.6, 0.1mL), "Bu₄NBr(0.08 mmol) were combined and added. The bottle was equipped graphite rod (ϕ 6 mm) as the anode and platinum plate (10 mm×10 mm×0.3 mm) as the cathode and then charged. The reaction mixture was stirred and electrolyzed at constant current of 8 mA under 25°C for 10 min. After completion of the reaction, the solution was analyzed by LC-MS/MS spectroscopy. The reaction was analyzed by reversed-phase HPLC on a 250 mm long ChromCore C18 5µm column using a gradient of 5% to 50% buffer B within 30 minutes. HPLC analysis used buffers A (water + 0.1% TFA) and B (9:1 acetonitrile : water + 0.1% TFA). Conversion reported as a % conversion as determined.

[D-ala2]-leucine encephalin:YAGFL

HPLC: >99% conversion.

Product 6a is a peak that elute at 50% buffer B (9:1 acetonitrile: water + 0.1% TFA) with retention times of 9.301 min. Reactant is a peak that elutes at 50% buffer B with a retention time of 8.931 min.

HRMS (ESI-TOF): m/z calculated for C₃₇H₄₆N₆O₉S, [M+H]⁺, 751.3119, found 751.3120.

HPLC Spectra:

Allatostation: GGSLYSFGL HPLC: >99% conversion.

Product 6b is a peak that elute at 50% buffer B (9:1 acetonitrile: water + 0.1% TFA) with retention times of 8.631 min. Reactant is a peak that elutes at 50% buffer B with a retention time of 8.545 min.

HRMS (ESI-TOF): m/z calculated for C₅₀H₆₈N₁₀O₁₅S, [M+H]⁺, 1081.4737, found 1081.4736.

Myelopeptide-2(MP-2):LVVYPW HPLC: >99% conversion.

Product 6c is a peak that elute at 50% buffer B (9:1 acetonitrile: water + 0.1% TFA) with retention times of 8.874 min. Reactant is a peak that elutes at 50% buffer B with a

retention time of 9. 880 min.

HRMS (ESI-TOF): m/z calculated for C₄₉H₆₄N₈O₁₀S, [M+H]⁺,957.4539, found 957.4539.

3-8-Angiotensin II:VYIHPF HPLC: >99% conversion.

Product 6c is a peak that elute at 50% buffer B (9:1 acetonitrile: water + 0.1% TFA) with retention times of 8.401 min. Reactant is a peak that elutes at 50% buffer B with a retention time of 8.331 min.

HRMS (ESI-TOF): m/z calculated for $C_{48}H_{61}N_9O_{10}S$, $[M+H]^+$, 956.4334, found 956.4331.

Endomorphin 1:YPWF HPLC: >99% conversion.

Product 6e is a peak that elute at 50% buffer B (9:1 acetonitrile: water + 0.1% TFA)

with retention times of 8.738 min. Reactant is a peak that elutes at 50% buffer B with a retention time of 8.855 min.

HRMS (ESI-TOF): m/z calculated for $C_{42}H_{44}N_6O_8S$, $[M+H]^+$, 793.3014, found 793.3014.

β-Casomorphin(1-5),amide,bovine:YAFPM HPLC: >99% conversion.

Product 6d is a peak that elute at 50% buffer B (9:1 acetonitrile: water + 0.1% TFA)

with retention times of 8.642 min. Reactant is a peak that elutes at 50% buffer B with a retention time of 8.830 min.

HRMS (ESI-TOF): m/z calculated for $C_{39}H_{48}N_6O_9S_2$, [M+H]⁺, 809.2997, found 809.2997.

Data Name: 2023-6-20-17 peptide product-9-1-5ul-47.Jcd Sample Name: JSQ Sample ID:1

ω-Conotoxin MVIIC:DYMGWM HPLC: >99% conversion.

Product 6f is a peak that elute at 50% buffer B (9:1 acetonitrile: water + 0.1% TFA)

with retention times of 8.628 min. Reactant is a peak that elutes at 50% buffer B with a retention time of 8.545 min.

HRMS (ESI-TOF): m/z calculated for $C_{44}H_{54}N_8O_{12}S_3$, [M+H]⁺, 983.3096, found 983.3096

HPLC Spectra:

β-Casomorphin:YPFVEPI HPLC: >99% conversion.

Product 6h is a peak that elute at 50% buffer B (9:1 acetonitrile: water + 0.1% TFA) with retention times of 8.642 min. Reactant is a peak that elutes at 50% buffer B with a retention time of 8.840 min.

HRMS (ESI-TOF): m/z calculated for C₅₂H₆₈N₈O₁₃S, [M+H]⁺, 1045.4699, found 1045.4700.

Synthesis of 7a: In an oven-dried undivided three-necked bottle (10 mL) equipped with a stir bar, Myoglobin (5 mg), Sodium benzenesulphinate (10 mg), ⁿBu₄NBr (0.08mmol), MeCN / buffer(pH = 8.6) (1.5 mL / 0.1 mL) were combined and added. The bottle was equipped graphite rod (ϕ 6 mm) as the anode and platinum plate (10 mm×10 mm×0.3 mm) as the cathode and then charged. The reaction mixture was stirred and electrolyzed at constant current of 8 mA under 25°Cfor 10 min. After completion of the reaction, the solution was analyzed by Maldi-Tof MS.

Comparison of CD spectra between Myoglobin and product (100µg/mL in buffer).

To gain additional insights into the mechanism for this reaction, we conducted DFT calculations for this reaction. The reaction diagrams were calculated at the B3LYP with 6-31G level for C and H, 6-31G+ level for S, O, and Br atoms of theory.

3.7 Anti-fungal experiment of benzenesulfonate-labeled peptide

To assess the in vivo antifungal activity of benzenesulfonate-labeled peptide, the indicator strain Alternaria alternata was cultivated in potato dextrose broth for 24 h, and 100 μ L culture was added to molten potato dextrose agar cooled below 55 °C. 100 μ L product 6h (3 mg/mL), substrate, solvent (water) was added to oxford cup placed onto the solidified agar respectively. Inhibition zones were recorded after 48 h at 30 °C

To assess the in vivo antifungal activity of 6h, the indicator strain Alternaria alternata was cultivated in potato dextrose broth for 24 h, and 100 μ L culture was added to molten potato dextrose agar (PDA) cooled below 55 °C. 100 μ L 6h (3 mg/mL), substrate, solvent (water) was added to oxford cup placed onto the solidified agar respectively. Inhibition zones were recorded after 48 h at 30 °C.

I: MeOH; II: blank; III: b-Casomorphin; IV: 6h.

MIC Experiment: To determine the minimal inhibitory concentration of 6h, 10 μ L dilutions ranging from 0.1-3 mg/mL were added to 200 μ L PDA in 96 well plates. At the same time, no addition, added water or substrate as positive controls. The plates were then kept at 4 °C for 4 hours to allow the diffusion of additions. The indicator strain Alternaria alternata was then inoculated on the surface of the agar and incubated at 28 °C for 48 h. From the results, we found that the antifungal ability of 6h increases with increasing concentration.

A: Water; B: no addition; C: b-Casomorphin; D:1mg/mL 6h; E: 2 mg/mL 6h; F: 3 mg/mL 6h.

4.References

- {1} R. A. Serwa, J.-M. Swiecicki, D. Homann, C. P. R. Hackenberger, Phosphoramidate peptide synthesis by solution- and solid-phase Staudingerphosphite reactions. J. Pept. Sci.2010, 16, 563–567.
- {2} Alam J, Keller T H, Loh T P. Functionalization of peptides and proteins by Mukaiyamaaldol reaction. J. Am. Chem. Soc. 2010, 132, 9546-9548.

5. Spectra

5.1 NMR Spectra of Products

00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

-35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -17 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

6.98 6.95

7.267.23

7.88

'

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

1.57

888 10,000 1

###