Supporting information

Electrocatalytic O-S Bonding Reaction Targeting Biological Macromolecules

Shuqiang Jiang ${ }^{1}$, Longyu Xiao ${ }^{1}$, Li Pan ${ }^{2}$, Qiaoyu Huang ${ }^{3}$, Fujin Huo ${ }^{1}$, Meng Gao ${ }^{1}$, Cuifen Lu^{1}, Pan Wu ${ }^{*}$, Yue Weng ${ }^{*}$
${ }^{1}$ Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecule, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Chemistry and Chemical Engineering, Hubei University, Wuhan, P. R. China ${ }^{2}$ State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
${ }^{3}$ Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan,430062, P. R. China

TABLE OF CONTENTS

1. General Information 3
2. Synthesis of Starting Materials 4
3. General Procedure for BioconJugation of Tyrosine and Sodium benzenesulfinate 10 3.1 Reaction Optimization 10
3.2 Gram-Scale Experiments 11
3.3 Sodium arenesulfinates scope and characterization 12
3.4 Dipeptide scope and characterization 19
3.5 Polypeptide scope and characterization. 26
3.6 EPR and DFT 36
3.7 Anti-fungal experiment of benzenesulfonate-labeled peptide 37
4.References. 38
4. Spectra 39
5.1 NMR Spectra of Products 39

1. General Information

All glassware was oven dried at $110^{\circ} \mathrm{C}$ for hours and cooled down under vacuum. Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. The instrument for electrolysis was dual display potentiostat (DJS-292B) (made in China). The anodic electrode was graphite rod ($\phi 6$ mm) and cathodic electrode was platinum plate ($15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 0.3 \mathrm{~mm}$). Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel. Gradient flash chromatography was conducted eluting with a continuous gradient from dichloromethane to the methanol. High resolution mass spectra (HRMS) for dipeptides were measured with a Waters Micromass GCT instrument and accurate masses were reported for the molecular ion + Sodium ($\mathrm{M}+\mathrm{Na}$). High resolution mass spectra (HRMS) for polypeptides were measured with an ABI 5800 instrument and accurate masses were reported for the molecular ion + Hydrogen $(\mathrm{M}+\mathrm{H})$ or molecular ion + Sodium ($\mathrm{M}+\mathrm{Na}$). The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker 400 MHz NMR spectrometer. For ${ }^{1} \mathrm{H}$ NMR, chemical shifts (δ) were given in ppm relatives to internal standard (TMS at 0 ppm, DMSO- d_{6} at $2.50 \mathrm{ppm}, \mathrm{MeOH}-d_{4}$ at 3.31 ppm , Acetone- d_{6} at 2.05 ppm). For ${ }^{13} \mathrm{C}-\mathrm{NMR}$, chemical shifts (δ) were reported in ppm using solvent as internal standard $\left(\mathrm{CDCl}_{3}\right.$ at 77.00 ppm, DMSO- d_{6} at 39.50 ppm , $\mathrm{MeOH}-\mathrm{d}_{4}$ at 49.00 ppm, Acetone- d_{6} at 29.84 ppm). HPLC analyses were performed on an Agilent 1260 Infinity LC system using a 100 mm Agilent Zorbax 300SB-C18 $5 \mu \mathrm{~m}$ analytical column. All of the MALDI-TOF-MS and MALDI-TOF-MS/MS spectra were acquired using 5800 MALDI-MS (AB SCIEX, Concord, Canada) equipped with a 355 nm Nd: YAG laser in the reflector positive mode. Samples of $0.6 \mu \mathrm{~L}$ mixed with $0.6 \mu \mathrm{~L}$ freshly prepared CHCA matrix were directly loaded onto the stainless steel MALDI plate and allowed to dry in a gentle stream of warm air. Samples were ablated with a power of 3500 while the laser rastered over the target surface. A total of 2000 laser shots were employed in each sample spot. The MS and MS/MS data processing was further performed by DataExplorer 4.0 (AB SCIEX, Concord, Canada). UV-vis absorption
spectra were performed on a Shimadzu UV-2700 spectrophotometer or Agilent Technologies Cary 8454. Fluorescence spectra were collected on a Hitachi F-4600 fluorescence spectrophotometer. The circular dichroism spectra were collected on Chhirascan ${ }^{\text {TM }}$ CD spectroscopy (Applied Photophysics, Leatherhead, United Kingdom). CD spectra were collected from 180 nm to 280 nm and with a scanning speed of 200 $\mathrm{nm} / \mathrm{min}$. The bandwidth was 5 nm , and the response time was 2 s . All spectra were taken at ambient temperature.

2. Synthesis of Starting Materials

Synthesis of starting materials dipeptides $\mathbf{4 a - 4 i}{ }^{\text {i11 }\{2\}}$

In a round bottomed flask, equipped with a stir bar, peptide $\mathbf{A}(2.0 \mathrm{mmol})$, HOBT (1hydroxybenzotriazole) (3.0 mmol), HBTU (O-benzotriazole- N, N, N, N^{\prime}-tetramethyl-uronium-hexafluorophosphate) (3.0 mmol), dichloromethane (40 mL) and triethylamine (2.4 mmol) were combined and added. The mixture was stirred for 30 min at room temperature, and then, peptide $\mathbf{B}(2.0 \mathrm{mmol})$ was added to the solution. The reaction was stirred overnight. After regular workup, the reaction mixture washed by saturated NaHCO_{3} solution ($40 \mathrm{~mL} \times 3$), 2 M hydrochloric acid solution ($40 \mathrm{~mL} \times 3$) and $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL} \times 3)$. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The resulting crude product was purified by flash chromatography ($\mathrm{DCM} / \mathrm{MeOH}$) to afford corresponding dipeptides $\mathbf{4 a} \mathbf{- 4 i}$.

4a
Dipeptide 4a Fmoc-Leu-Tyr-OMe, white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone- d_{6}) δ $8.37(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.72-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.84-6.80(\mathrm{~m}$, $1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.73-4.68(\mathrm{~m}, 1 \mathrm{H}), 4.39-4.29(\mathrm{~m}, 3 \mathrm{H}), 4.24-4.20(\mathrm{~m}$, $1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.06-2.93(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.57(\mathrm{~m}, 2 \mathrm{H}), 0.94$ $-0.89(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Acetone- d_{6}) $\delta 173.18,172.51,157.06,156.97$, $145.02,144.74,141.95,131.09,128.43,127.87,126.08,120.70,115.96,67.13,54.64$, 52.21, 47.89, 41.91, 37.34, 25.25, 23.41, 21.91.

4b

Dipeptide 4b Fmoc-Phe-Tyr-OMe, white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone- d_{6}) δ $8.39(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.64-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.39(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.31-7.15(\mathrm{~m}, 7 \mathrm{H}), 7.04-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.73(\mathrm{~m}$, $2 \mathrm{H}), 4.73-4.68(\mathrm{~m}, 1 \mathrm{H}), 4.58-4.53(\mathrm{~m}, 1 \mathrm{H}), 4.29-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.12(\mathrm{~m}$, $2 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{dd}, J=14.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.07-2.90(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Acetone- d_{6}) $\delta 172.09,171.71,156.77,156.41,144.55,144.47,141.58,138.21$, $130.79,129.85,128.65,128.09,127.53,126.85,125.73,120.35,115.65,66.87,56.64$, 54.42, 51.92, 47.44, 38.30, 37.07.

4c
Dipeptide 4c Fmoc-Gly-Tyr-OMe, white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone- d_{6}) δ $8.32(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.30(\mathrm{~m}, 3 \mathrm{H})$, $7.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.71-4.66(\mathrm{~m}, 1 \mathrm{H}), 4.37-4.22(\mathrm{~m}, 3 \mathrm{H}), 3.91-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{~s}$, $3 \mathrm{H}), 3.04-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.96-2.91(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Acetone- $\left.d_{6}\right) \delta$ $172.53,169.79,157.45,157.14,144.97,142.01,131.14,128.49,128.05,127.92$, $126.13,120.75,116.03,67.36,54.60,52.26,47.88,44.66,37.47$.

4d
Dipeptide 4d Fmoc-Met-Tyr-OMe, white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone- d_{6}) δ $8.32(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.6,2 \mathrm{H}), 7.71(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.05-6.02(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.77-6.673(\mathrm{~m}, 2 \mathrm{H}), 4.69-4.64(\mathrm{~m}, 1 \mathrm{H}), 4.39-4.29(\mathrm{~m}, 3 \mathrm{H}), 4.25-4.20(\mathrm{~m}$, $1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.06-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.13$ $-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.88(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right) \delta$ $172.55,172.08,157.13,156.93,145.07,144.85,142.03,131.13,128.50,127.92$, $126.14,120.77,116.02,67.19,54.82,54.70,52.28,47.94,37.26,32.89,30.61,15.13$.

4e

Dipeptide 4e Fmoc-Trp(Boc)-Tyr-OMe, white solid. ${ }^{1}$ H NMR (400 MHz , DMSO- d_{6}) $\delta 9.27(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.41-7.30(\mathrm{~m}$, $4 \mathrm{H}), 7.27-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.50-4.39(\mathrm{~m}, 2 \mathrm{H}), 4.22-4.08(\mathrm{~m}$, $3 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.08-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.97-2.84(\mathrm{~m}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) δ 172.47, 172.16, 157.10, 156.79, 145.00, 144.95, 142.00, $137.55,131.19,128.46,128.13,127.94,126.15,124.55,122.11,120.73,119.57,119.34$, $116.00,112.15,111.31,67.22,56.48,54.75,52.24,47.92,37.47,28.77 .28 .09$.

4f
Dipeptide 4f Fmoc-His(Trt)-Tyr-OMe, white solid. ${ }^{1}$ H NMR (400 MHz , Chloroformd) $\delta 7.73(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{dd}, J=7.6,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{dd}, J=6.4,4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40(\mathrm{~d}, ~ J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 9 \mathrm{H}), 7.06-7.03(\mathrm{~m}$, $6 \mathrm{H}), 6.89(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.32(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.85-4.79(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 1 \mathrm{H}), 4.29-4.24(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.55(\mathrm{~s}, 3 \mathrm{H}), 3.11-2.90(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) δ 171.63, 171.03, $156.40,156.10,143.94,142.07,141.22,138.14,136.55,130.49,129.73,128.17$, $128.12,127.68,127.15,127.11,126.61,125.38,125.33,119.91,119.73,115.82,67.30$,
55.62, 53.48, 52.21, 47.10, 37.36, 31.38.

Dipeptide 4g Fmoc-Lys(Boc)-Tyr-OMe, white solid. ${ }^{1}$ H NMR (400 MHz, DMSO- d_{6}) $\delta 9.23(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.75-7.71(\mathrm{~m}, 2 \mathrm{H})$, $7.45-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{t}, J=5.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.14(\mathrm{~m}, 4 \mathrm{H}), 4.03-$ $3.95(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 2.93-2.82(\mathrm{~m}, 4 \mathrm{H}), 1.63-1.42(\mathrm{~m}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}), 1.28$ $-1.16(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.d_{6}\right) \delta 172.63,172.19,156.31,156.05$, $149.55,149.48,144.39,144.22,141.18,134.30,130.97,128.09,127.51,125.77$, $120.54,120.06,120.01,77.81,66.10,54.87,53.88,52.26,47.16,36.25,32.09,29.69$, 28.73, 23.20 .

4h
Dipeptide 4h Fmoc-Glu(tBu)-Tyr-OMe, white solid. ${ }^{1}$ H NMR (400 MHz, DMSO- d_{6}) $\delta 9.25(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{dt}, J=13.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=$ $17.2,8.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.06(\mathrm{td}, J=8.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.92-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.23$ $(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.92-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{dq}, J=16.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 172.12,172.00,156.27,149.55,149.49,144.38,144.19$,
$141.19,134.30,130.97,128.10,127.51,125.77,120.56,120.07,120.03,80.15,66.14$, 54.05, 53.93, 52.30, 47.14, 36.14, 31.69, 28.22, 27.80.

4i
Dipeptide 4i Fmoc-Ala-Tyr-OMe,white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.25$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.14 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.87 (dd, $J=17.3,7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.74(\mathrm{~d}, J$ $=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{dd}, J=8.3,1.7$ $\mathrm{Hz}, 2 \mathrm{H}), 6.68-6.61(\mathrm{~m}, 2 \mathrm{H}), 4.42(\mathrm{tt}, J=8.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.17(\mathrm{~m}, J=12.3$, $6.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.04(\mathrm{dt}, J=29.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.97-2.73(\mathrm{~m}$, $2 \mathrm{H}), 1.08-1.02(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 173.03,172.31,156.02$, $149.51,149.45,144.34,144.28,141.17,134.37,131.10,128.10,127.53,125.81$, $120.56,120.02,119.97,66.13,53.61,52.42,50.23,47.07,36.52,18.78$.

Synthesis of starting materials dipeptides $4 j^{\{1\}\{2\}}$

In a round bottomed flask, equipped with a stir bar, peptide $\mathbf{A}(2.0 \mathrm{mmol})$, HOBT (1hydroxybenzotriazole) (3.0 mmol), HBTU (O-benzotriazole- N, N, N, N^{\prime}-tetramethyl-uronium-hexafluorophosphate) (3.0 mmol), dichloromethane (40 mL) and triethylamine (2.4 mmol) were combined and added. The mixture was stirred for 30 min at room temperature, and then, peptide $\mathbf{B}(2.0 \mathrm{mmol})$ was added to the solution. The reaction was stirred overnight. After regular workup, the reaction mixture washed by saturated NaHCO_{3} solution ($40 \mathrm{~mL} \times 3$), 2 M hydrochloric acid solution ($40 \mathrm{~mL} \times 3$) and $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL} \times 3)$. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Without further purification, the 95% TFA / DCM solution (8 mL) was added dropwise. The mixture was stirred for 2 h at room temperature. The resulting
crude product was purified by flash chromatography ($\mathrm{DCM} / \mathrm{MeOH}$) to afford corresponding dipeptides $\mathbf{4 j}$.

Dipeptide 4j Fmoc-Ser-Tyr-OMe, white solid. ${ }^{1}$ H NMR (400 MHz , Acetone- d_{6}) $\delta 8.32$ (s, 1H), 7.88 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.76-7.73$ (m, 2H), 7.60 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 2H), $6.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.74-4.69(\mathrm{~m}, 1 \mathrm{H}), 4.36-4.31(\mathrm{~m}, 3 \mathrm{H}), 4.28-4.22(\mathrm{~m}$, $2 \mathrm{H}), 3.86-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.07-3.02(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.97(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Acetone- d_{6}) $\delta 172.54,171.02,157.15,157.05,145.02,144.91,142.01$, $131.20,128.50,127.95,126.15,120.76,116.03,67.42,63.25,57.53,54.77,52.34$, 47.89, 37.35.

3. General Procedure for BioconJugation of Tyrosine and Sodium benzenesulfinate

3.1 Reaction Optimization

In an oven-dried undivided three-necked bottle (25 mL) equipped with a stir bar, protected tyrosine (0.20 mmol), Sodium benzenesulfinate (0.3 mmol), ${ }^{\mathrm{n}} \mathrm{Bu} 4 \mathrm{NBr}(0.40$ $\mathrm{mmol})$ and $\mathrm{MeCN} / \operatorname{buffer}(\mathrm{pH}=8.6)(7.0 \mathrm{~mL} / 0.5 \mathrm{~mL})$ were combined and added. The bottle was equipped graphite rod ($\phi 6 \mathrm{~mm}$, about 15 mm immersion depth in solution) as the anode and platinum plate $(15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 0.3 \mathrm{~mm})$ as the cathode. The reaction mixture was stirred and electrolyzed at constant current under room temperature. When the reaction finished,The pure product was obtained by flash column chromatography on silica gel. A summary of optimization results is presented in Table $\mathbf{S 1}$ below.

Table S1. Effects of reaction parameters

[a] Reaction conditions: graphite rod anode, platinum plate cathode, constant current $=$ $15 \mathrm{~mA}, 1 \mathbf{1 a}$ (1.0 equiv., 0.20 mmol), $\mathbf{2 a}$ (1.5 equiv, 0.3 mmol), ${ }^{\mathrm{n}} \mathrm{Bu} 4 \mathrm{NBr}$ (2 equiv, 0.40 $\mathrm{mmol}), 7.0 \mathrm{~mL}$ MeCN, 0.5 mL buffer $(\mathrm{pH}=8.6), 25^{\circ} \mathrm{C} .80 \mathrm{~min}$. Yields of isolated products are shown. $\mathrm{nr}=$ no reaction. $\mathrm{nd}=$ no detected.

3.2 Gram-Scale Experiments

General procedure for Gram-Scale Experiments: In an oven-dried undivided threenecked bottle (250 mL) equipped with a stir bar, tyrosine (5.0 mmol), Sodium benzenesulfinate (7.5 mmol), and ${ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{NBr}(10.0 \mathrm{mmol})$, buffer $(\mathrm{pH}=8.6,12 \mathrm{~mL})$ were
combined and added. Then, $\mathrm{CH}_{3} \mathrm{CN}(160 \mathrm{~mL})$ were injected into the tubes via syringes. The bottle was equipped with carbon rod $(\phi 6 \mathrm{~mm})$ as the anode and platinum plate (15 $\mathrm{mm} \times 15 \mathrm{~mm} \times 0.3 \mathrm{~mm}$) as the cathode. The reaction mixture was stirred and electrolysis at constant current of 15 mA under $25^{\circ} \mathrm{C}$ overnight. The solvent was removed under vacuum. The crude product was purified by flash column chromatography on silica gel to afford pure product.

3.3 Sodium arenesulfinates scope and characterization

3a
methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-((phenylsulfonyl)oxy)phenyl)pro panoate(3a);
75.7 mg (yield: $87 \%, 0.2 \mathrm{mmol}$ scale), white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ $7.86-7.81$ (m, 2H), $7.81-7.77$ (m, 1H), 7.65 (t, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.31$ (d, $J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.21-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{~s}$, $3 \mathrm{H}), 2.97$ (dd, $J=13.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=13.8,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 172.84,155.81,148.10,137.51,135.39,134.89,131.08$, 130.20, 128.61, 122.17, 78.77, 55.30, 52.24, 36.20, 28.55. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{Na})^{+} \mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{7} \mathrm{~S}: 458.1243$, found, 458.1248 .

methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-(tosyloxy)phenyl)propanoate(3b);
62.1 mg (yield: $69 \%, 0.2 \mathrm{mmol}$ scale), white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ
7.71 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.92$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{dd}, J=18.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 2.96$ (dd, $J=13.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=13.9,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13}$ C NMR (101 MHz, DMSO- d_{6}) $\delta 172.85,155.81,148.15,146.13,137.40,132.01$,
131.05, 130.62, 128.64, 122.17, 78.77, 55.30, 52.24, 36.19, 28.55, 21.64. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{Na})^{+} \mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{7} \mathrm{~S}: 472.1400$, found, 472.1423.

methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-((m-tolylsulfonyl)oxy)phenyl)pr opanoate(3c);
54.8 mg (yield: $61 \%, 0.2 \mathrm{mmol}$ scale), white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) δ 7.70 (s, 1H), 7.63 (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.25(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.22-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H})$, 2.99 (dd, $J=13.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.85$ (dd, $J=13.8,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.41$ (s, 3H), 1.33 (s, 9H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 172.85,155.82,148.12,140.23,137.46,136.00$, 134.87, 131.06, 129.96, 128.60, 125.78, 122.19, 78.77, 55.33, 52.23, 36.19, 28.55, 21.11. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{Na})^{+} \mathrm{C}_{22} \mathrm{H}_{2} 7 \mathrm{NO}_{7} \mathrm{~S}: 472.1400$, found, 472.1425 .

methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-(((4-methoxyphenyl)sulfonyl)ox y)phenyl)propanoate(3d);
54.0 mg (yield: $58 \%, 0.2 \mathrm{mmol}$ scale), white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ 7.77 (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.23-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H})$, 2.99 (dd, $J=13.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=13.9,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) δ 172.86, 164.41, 155.83, 148.21, 137.33, 131.02, 126.11, $122.23,115.32,78.78,56.34,55.33,52.23,36.20,28.54$. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{Na})^{+} \mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{8} \mathrm{~S}: 488.1349$, found, 488.1343 .

methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-(((4-fluorophenyl)sulfonyl)oxy)p henyl)propanoate(3e);
63.5 mg (yield: 70%, 0.2 mmol scale), white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMS $\left.\mathrm{O}-d_{6}\right) \delta 7.91(\mathrm{dd}, J=8.9,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.16$ (dd, $J=13.4,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{dd}, J=13.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.83$ (dd, $J=13.8,10.2 \mathrm{~Hz}, 1 \mathrm{H}$), $1.30(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) δ $172.83,167.27,164.73,155.81,148.02,137.63,132.06,131.96,131.14,131.11$, 131.08, 122.21, 117.69, 117.46, 78.77, 55.29, 52.24, 36.18, 28.54. 19F NMR (377 MHz , DMSO- d_{6}) $\delta-102.57$. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{Na})^{+} \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{FNO}_{7}$ S: 476.1149 ,found, 476.1138.

methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-(((3-fluorophenyl)sulfonyl)oxy)p henyl)propanoate(3f);
54.4 mg (yield: $60 \%, 0.2 \mathrm{mmol}$ scale), white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMS O-d d_{6}) $7.75-7.69(\mathrm{~m}, 4 \mathrm{H}), 7.28(\mathrm{t}, J=9.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.00(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, 2H), $4.24-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{dd}, J=13.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.85$ (dd, $J=13.8,10.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.34 (s, 9H). ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d6) $\delta 172.80,163.44,160.96,155.79,148.00,137.71,136.74,136.67,132.70,132$. $62,131.18,125.07,125.04,122.85,122.64,122.12,115.84,115.59,78.76,55.2$ 5, 52.21, 36.22, 28.53. 19F NMR (377 MHz , DMSO- d_{6}) $\delta-57.04$. HRMS (ES I) cald. for $(\mathrm{M}+\mathrm{Na})^{+} \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{FNO}_{7} \mathrm{~S}: 476.1149$, found, 476.1141 .

methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-(((4-chlorophenyl)sulfonyl)oxy) phenyl)propanoate(3g);
56.4 mg (yield: 60%, 0.2 mmol scale), white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMS $\left.\mathrm{O}-d_{6}\right) \delta 7.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{dd}, J=1$ $3.5,8.4 \mathrm{~Hz}, 3 \mathrm{H}), 6.98$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), $4.24-4.12$ (m, 1H), 3.59 (s, 3 H), 2.99 (dd, $J=13.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=13.9,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.32$ (s, 9H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ 172.79, 155.80, 148.01, 140.48, 13 7.69, 133.68, 131.18, 130.57, 130.41, 122.16, 78.77, 55.27, 52.22, 36.21, 28.55. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{Na})^{+} \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{ClNO}_{7} \mathrm{~S}: 492.0854$, found, 492.0857

3h
methyl (S)-3-(4-(((4-bromophenyl)sulfonyl)oxy)phenyl)-2-((tert-butoxycarbonyl) amino)propanoate(3h);
77.2 mg (yield: 75%, 0.2 mmol scale), white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMS O- d_{6}) $\delta 7.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.20-4.09$ $(\mathrm{m}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{dd}, J=13.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=13.8,1$ $0.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) δ 172.83, 155.81, $147.98,137.70,134.05,133.36,131.20,130.56,129.65,122.18,78.76,55.28,5$ 2.25, 36.17, 28.54. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{Na})^{+} \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{BrNO}_{7} \mathrm{~S}: 536.0349$, f ound, 536.0346.

$3 i$
methyl (S)-3-(4-(((3-bromophenyl)sulfonyl)oxy)phenyl)-2-((tert-butoxycarbonyl) amino)propanoate(3i);
80.2 mg (yield: 78%, 0.2 mmol scale), white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMS O-d d_{6}) $\delta 8.04(\mathrm{ddd}, J=8.0,2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.87$ (d, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.63 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.32-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.01$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.25-4.16(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{dd}, J=13.8,5.3$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.86 (dd, $J=13.8,10.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.32 ($\mathrm{s}, 9 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 172.80,155.79,147.95,138.33,137.75,136.80,132.38,131.20$, 130.70, 127.73, 122.98, 122.14, 78.77, 55.26, 52.22, 36.23, 28.55. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{Na})^{+} \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{BrNO}_{7} \mathrm{~S}$: 536.0349, found, 536.0342.

3j
methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-(((4-cyanophenyl)sulfonyl)oxy)p henyl)propanoate (3J);
45.1 mg (yield: 49%, 0.2 mmol scale), white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMS $\left.\mathrm{O}-d_{6}\right) \delta 8.14(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.04(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{dd}, J=1$ $1.6,8.4 \mathrm{~Hz}, 3 \mathrm{H}), 6.99$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.18$ (dd, $J=18.4,5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.59(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{dd}, J=13.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=13.9,10.2 \mathrm{~Hz}, 1$ H), 1.31 ($\mathrm{s}, 9 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) δ 172.78, 155.80, 147.88, 1 $38.85,137.88,134.30,131.27,129.42,122.13,117.74,117.73,78.78,55.24,52$. 24, 36.19, 28.54. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{Na})^{+} \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}$:483.1196, foun d, 483.1188.

3k
methyl (S)-3-(4-(([1,1'-biphenyl]-4-ylsulfonyl)oxy)phenyl)-2-((tert-butoxycarbon yl)amino)propanoate(3k);
46.1 mg (yield: $45 \%, 0.2 \mathrm{mmol}$ scale), white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ $7.94(\mathrm{q}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=13.9,8.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.00(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.22-4.12(\mathrm{~m}$, $1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{dd}, J=13.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=13.9,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.30$ (s, 9H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 172.82,155.81,148.14,146.61,138.31$, $137.52,133.61,131.13,129.69,129.50,129.30,128.24,127.69,122.18,78.77,55.29$, 52.22, 36.20, 28.54. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{Na})^{+} \mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{7} \mathrm{~S}: 534.1556$, found, 534.1558.

methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-((naphthalen-2-ylsulfonyl)oxy)p henyl)propanoate(3l);
72.0 mg (yield: $74 \%, 0.2 \mathrm{mmol}$ scale), white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ $8.56(\mathrm{~s}, 1 \mathrm{H}), 8.22-8.18(\mathrm{~m}, 2 \mathrm{H}), 8.09(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=8.7,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.76(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.24-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{dd}, J$ $=13.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=13.9,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 172.80,155.80,148.20,137.47,135.52,132.01,131.93,131.09,130.64$,
$130.41,130.37,130.05,128.50,128.45,122.96,122.17,78.74,55.25,52.16,36.22$, 28.51. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{Na})^{+} \mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{7} \mathrm{~S}: 508.1400$, found, 508.1408 .

3m
methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-((ethylsulfonyl)oxy)phenyl)prop anoate (3m);
47.3 mg (yield: 61%, 0.2 mmol scale), white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) δ $7.39-7.33$ (m, 3H), 7.26 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), $4.27-4.18$ (m, 1H), 3.64 (s, 3H), 3.48 (q, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{dd}, J=13.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=13.8,10.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.38(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 172.89,155.87$, 148.07, 137.28, 131.22, 122.26, 78.80, 55.41, 52.28, 44.90, 36.20, 28.55, 8.51. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{Na})^{+} \mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{7} \mathrm{~S}: 410.1243$, found, 410.1241 .

3n
methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-((thiophen-2-ylsulfonyl)oxy)phe nyl)propanoate(3n);
61.8 mg (yield: $70 \%, 0.2 \mathrm{mmol}$ scale), white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ 8.19 (dd, $J=5.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=3.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.28-7.24(\mathrm{~m}, 3 \mathrm{H}), 6.97(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{dd}, J=16.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}$, $3 \mathrm{H}), 2.98$ (dd, $J=13.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=13.8,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) δ 172.86, 155.81, 148.17, 137.76, 137.51, 136.81, 133.54, 131.14, 128.87, 122.06, 78.79, 55.32, 52.26, 36.20, 28.56. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{Na})^{+} \mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{7} \mathrm{~S}_{2}: 464.0808$, found, 464.0802.

methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-(((4-(trifluoromethoxy)phenyl)s ulfonyl)oxy)phenyl)propanoate(30);
70.6 mg (yield: $68 \%, 0.2 \mathrm{mmol}$ scale), white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ 8.02 (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=9.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.00(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.27-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{dd}, J=13.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.87$ (dd, $J=13.9,10.1 \mathrm{~Hz}, 1 \mathrm{H}$), $1.32(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 172.78$, $155.80,152.96,152.94,147.99,137.73,133.61,131.49,131.17,122.12,122.04$, 121.52, 118.95, 78.74, 55.27, 52.17, 36.20, 28.48. ${ }^{19}$ F NMR (377 MHz , DMSO) δ $109.15(\mathrm{t}, J=17.8 \mathrm{~Hz})$. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{Na})^{+} \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{8} \mathrm{~S}: 542.1066$, found, 542.1054.

3.4 Dipeptide scope and characterization

5a
methyl (R)-2-((R)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-4-methylpent anamido)-3-(4-((phenylsulfonyl)oxy)phenyl)propanoate(5a);
83.2 mg (yield: $62 \%, 0.2 \mathrm{mmol}$ scale), white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ 8.37 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.91 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.83-7.80$ (m, 2H), 7.78 (d, $J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.73$ (dd, $J=7.5,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.43 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33$ (t, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.49-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.34-4.28(\mathrm{~m}, 1 \mathrm{H}), 4.27-4.19(\mathrm{~m}, 2 \mathrm{H}), 4.10-4.04$ (m, 1H), $3.55(\mathrm{~s}, 3 \mathrm{H}), 3.04-2.91(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{dd}, J=17.1,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.48-1.40$ $(\mathrm{m}, 1 \mathrm{H}), 1.39-1.32(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 172.99,172.15,156.26,148.13,144.42,144.17,141.21$,
$141.19,137.08,135.40,134.76,131.12,130.20,128.62,128.12,127.52,125.76$, $122.18,120.60,120.58,65.99,53.67,53.23,52.27,47.16,41.10,36.17,24.55,23.45$, 21.94. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{Na})^{+} \mathrm{C}_{37} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}: 693.2241$, found, 693.2244 .

5b
methyl (R)-2-((R)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-phenylprop anamido)-3-(4-((phenylsulfonyl)oxy)phenyl)propanoate(5b);
74.7 mg (yield: $53 \%, 0.2 \mathrm{mmol}$ scale), white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ $8.50(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.32 (d, $J=8.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{t}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.19(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.95-6.90(\mathrm{~m}, 2 \mathrm{H}), 4.59-4.49(\mathrm{~m}, 1 \mathrm{H}), 4.36-4.28(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=$ $12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.10-3.02(\mathrm{~m}, 1 \mathrm{H}), 3.01-2.94$ $(\mathrm{m}, 2 \mathrm{H}), 2.77(\mathrm{dd}, J=13.8,10.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 172.27$, $172.08,156.19,148.19,144.25,144.15,141.13,138.51,137.01,135.36,134.77$, 131.14, 130.17, 129.71, 128.62, 128.51, 128.09, 127.52, 126.74, 125.72, 122.26, 120.55, 64.80,56.34, 53.83,52.35,47.02,37.37,34.20. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{Na})^{+}$ $\mathrm{C}_{40} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}$:727.2084, found, 727.2081.

5c
methyl (R)-2-(2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)acetamido)-3-(4((phenylsulfonyl)oxy)phenyl)propanoate (5c);
78.6 mg (yield: $64 \%, 0.2 \mathrm{mmol}$ scale), white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) δ $8.32(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.85-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.77(\mathrm{~m}$,

1H), 7.72 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, 2H), $4.51-4.44$ (m, 1H), 4.29 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.23$ (d, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.62$ (t, J $=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{dd}, J=13.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=13.8,8.9 \mathrm{~Hz}$, 1H). ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 172.17,169.66,156.90,148.17,144.30,141.19$, $137.02,135.43,134.73,131.15,130.22,128.65,128.11,127.55,125.72,122.26,120.59$, 66.20, 53.78, 52.35, 47.07, 43.49, 36.42. HRMS (ESI) cald. for (M+Na) ${ }^{+} \mathrm{C}_{33} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}$: 637.1615, found, 637.1619.

methyl (R)-2-((R)-2-(((9 H -fluoren-9-yl)methoxy)carbonyl)amino)-4-(methylthio) butanamido)-3-(4-((phenylsulfonyl)oxy)phenyl)propanoate(5d);
64.7 mg (yield: $48 \%, 0.2 \mathrm{mmol}$ scale), white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ $8.46(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.86-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.68-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 4.53-4.46(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{td}$, $J=8.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{dd}, J=13.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=13.7$, $10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.60(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 144.34,141.18,137.14,135.42,134.82,131.22,130.23,128.61$, 128.13, 127.53, 120.60, 66.16, 53.99, 53.58, 52.44,47.81,37.13,33.77,31.09,14.96. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{Na})^{+} \mathrm{C}_{36} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}$:711.1805, found, 711.1811.

5e
tert-butyl 3-((R)-2-((($9 \mathrm{H}-\mathrm{fluoren}-9-\mathrm{yl}) m e t h o x y)$ carbonyl $)$ amino $)$-3-(((R)-1-meth oxy-1-0xo-3-(4-((phenylsulfonyl)oxy)phenyl)propan-2-yl)amino)-3-oxopropyl)-1

H-indole-1-carboxylate(5e);

99.5 mg (yield: 59%, 0.2 mmol scale), white solid. 1 H NMR (400 MHz , DMSO- d_{6}) δ $8.64(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{t}, J=9.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.62(\mathrm{t}, J=7.8 \mathrm{~Hz}, 5 \mathrm{H}), 7.43-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.30$ $-7.21(\mathrm{~m}, 5 \mathrm{H}), 6.93(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.60-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.49-4.41(\mathrm{~m}, 1 \mathrm{H}), 4.23$ $-4.10(\mathrm{~m}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.12-2.93(\mathrm{~m}, 4 \mathrm{H}), 1.57(\mathrm{~s}, 9 \mathrm{H}) .13 \mathrm{C}$ NMR (101 MHz, DMSO- $\left.d_{6}\right) \delta 172.13,172.04,148.19,144.21,144.12,141.15,137.04,135.34,134.78$, $131.15,130.74,130.17,128.62,128.08,127.47,125.76,125.68,124.78,124.61$, $122.89,122.26,120.57,119.97,117.14,115.16,85.07,63.72,55.50,53.86,52.34$, 46.02,35.13,28.08,26.35. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{Na})^{+} \mathrm{C}_{47} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{10} \mathrm{~S}: 866.2717$, found, 866.2711.

$5 f$
methyl (R)-2-((R)-2-((($9 \mathrm{H}-\mathrm{fluoren}-9-\mathrm{yl}) m e t h o x y)$ carbonyl)amino)-3-(1-trityl-1H-imidazol-4-yl)propanamido)-3-(4-((phenylsulfonyl)oxy)phenyl)propanoate(5f); 95.6 mg (yield: $51 \%, 0.2 \mathrm{mmol}$ scale), white solid. 1 H NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ 8.40 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.90 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.79$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.33(\mathrm{~s}, 8 \mathrm{H}), 7.27(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.02(\mathrm{dd}, J=6.8,3.0 \mathrm{~Hz}, 6 \mathrm{H}), 6.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$,
$6.74(\mathrm{~s}, 1 \mathrm{H}), 4.50-4.43(\mathrm{~m}, 1 \mathrm{H}), 4.35-4.27(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.11$ (d, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.03-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.88-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.67$ ($\mathrm{m}, 1 \mathrm{H}$). 13C NMR (101 MHz, DMSO- d_{6}) δ 172.06, 171.94, 156.15, 148.14, 144.20, 144.17, 142.54, 141.16, 141.13, 138.14, 137.35, 137.01, 135.37, 134.72, 131.12, $130.18,129.70,129.64,128.78,128.62,128.59,128.47,128.12,127.54,125.76$, $122.23,120.58,119.68,75.11,66.26,54.79,53.74,52.30,47.05,36.26,31.22$. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{Na})^{+} \mathrm{C}_{56} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}$: 959.3085, found, 959.3092.

methyl (R)-2-((R)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-5-((tert-butox ycarbonyl)amino)pentanamido)-3-(4-((phenylsulfonyl)oxy)cyclohexa-1,3-dien-1-y l)propanoate(5g);
91.4 mg (yield: 58%, 0.2 mmol scale), white solid.1H NMR (400 MHz, DMSO- d_{6}) δ $8.31(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.78-6.71(\mathrm{~m}, 1 \mathrm{H})$, $4.51-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.31-4.18(\mathrm{~m}, 3 \mathrm{H}), 4.02-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{dd}, J$ $=14.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=14.0,8.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.58-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H})$, $1.35-1.18(\mathrm{~m}, 4 \mathrm{H})$. 13C NMR (101 MHz , DMSO- d_{6}) $\delta 172.62,172.10,156.31,156.05$, $148.16,144.39,144.21,141.19,137.02,135.35,134.83,131.10,130.17,128.59$, $128.10,127.52,125.75,122.17,120.56,77.82,66.08,54.83,53.69,52.26,47.15,36.26$, 32.05, 29.68, 28.74, 23.20. HRMS (ESI) cald. for (M+Na) ${ }^{+} \mathrm{C}_{41} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{10} \mathrm{~S}$: 794.2717, found, 794.2712.

tert-butyl (R)-4-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-5-(((R)-1-methox y-1-oxo-3-(4-((phenylsulfonyl)oxy)phenyl)propan-2-yl)amino)-5-oxopentanoate(5 h);
90.6 mg (yield: $61 \%, 0.2 \mathrm{mmol}$ scale), white solid.1H NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6} \delta$ 8.39 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.91$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.84-7.72$ (m, 5H), 7.64 (t, $J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.50-4.44(\mathrm{~m}, 1 \mathrm{H}), 4.33-4.20(\mathrm{~m}, 3 \mathrm{H})$, $4.07-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.06-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-$ $1.69(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) .13 \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 172.13,172.08,172.03$, $156.28,148.14,144.38,144.17,141.20,137.04,135.40,134.74,131.13,130.20$, 128.63, 128.13, 127.53, 125.77, 122.22, 120.60, 80.17, 66.13, 54.02, 53.75, 52.32, 47.11, 36.12, 31.67, 28.21, 27.77. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{Na})^{+} \mathrm{C}_{40} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{~S}$: 765.2452, found, 765.2439.

5i
methyl (R)-2-((R)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)propanamido) -3-(4-((phenylsulfonyl)oxy)phenyl)propanoate(5i);
88.0 mg (yield:70\%, 0.2 mmol scale), white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ $8.36(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.84-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.74$ (dd, $J=7.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.62$ (m, 2H), 7.47 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.55-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.27-4.18(\mathrm{~m}, 3 \mathrm{H}), 4.04(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.61$
(s, 3H), 3.06 (dd, $J=13.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=13.8,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.99(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 173.03,172.23,144.28,143.05,137.07$, 134.77, 131.23, 130.21, 129.39, 128.61, 128.11, 127.75, 127.53, 125.79, 121.84, 120.56, $120.49,110.19,66.50,55.37,52.39,50.23,47.09,35.19,18.85$. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{Na})^{+} \mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}: 651.1771$, found,651.1778.

5j
methyl (R)-2-((R)-2-((($(9 \mathrm{H}$-fluoren-9-yl)methoxy)carbonyl)amino)-3-hydroxypro panamido)-3-(4-((phenylsulfonyl)oxy)phenyl)propanoate(5j);
60.6 mg (yield: $47 \%, 0.2 \mathrm{mmol}$ scale), white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ $8.32(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{dd}, J=8.1,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.89(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.50-4.43$ (m, 1H), $4.28(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.58$ $(\mathrm{d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.04-2.90(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 171.99,170.68,156.38,148.15,144.35,144.24,141.19$, $137.00,135.41,134.72,131.19,130.21,128.63,128.13,127.56,125.79,122.21$, $120.59,66.21,62.11,57.63,53.76,52.34,47.08,36.30$. HRMS (ESI) cald. for $(\mathrm{M}+\mathrm{Na})^{+}$ $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}: 667.1720$, found, 667.1718 .

3.5 Polypeptide scope and characterization

General Procedure for Bioconjugation of Tyrosine and Sodium benzenesulfite : In an oven-dried undivided three-necked bottle (15 mL) equipped with a stir bar, polypeptides (5 mg), Sodium benzenesulfite (10 mg), $\mathrm{CH}_{3} \mathrm{CN}(1.5 \mathrm{~mL})$, buffer ($\mathrm{pH}=8.6$, $0.1 \mathrm{~mL}),{ }^{\mathrm{n}} \mathrm{Bu} 4 \mathrm{NBr}(0.08 \mathrm{mmol})$ were combined and added. The bottle was equipped graphite $\operatorname{rod}(\phi 6 \mathrm{~mm})$ as the anode and platinum plate $(10 \mathrm{~mm} \times 10 \mathrm{~mm} \times 0.3 \mathrm{~mm})$ as the cathode and then charged. The reaction mixture was stirred and electrolyzed at constant current of 8 mA under $25^{\circ} \mathrm{C}$ for 10 min . After completion of the reaction, the solution was analyzed by LC-MS/MS spectroscopy. The reaction was analyzed by reversedphase HPLC on a 250 mm long ChromCore C18 $5 \mu \mathrm{~m}$ column using a gradient of 5% to 50% buffer B within 30 minutes. HPLC analysis used buffers A (water $+0.1 \% \mathrm{TFA}$) and $\mathrm{B}(9: 1$ acetonitrile : water $+0.1 \% \mathrm{TFA})$. Conversion reported as a $\%$ conversion as determined.

[D-ala2]-leucine encephalin:YAGFL

HPLC: >99\% conversion.

Product 6a is a peak that elute at 50% buffer B (9:1 acetonitrile: water $+0.1 \% \mathrm{TFA}$) with retention times of 9.301 min . Reactant is a peak that elutes at 50% buffer B with a retention time of 8.931 min .
HRMS (ESI-TOF): \mathbf{m} / \mathbf{z} calculated for $\mathrm{C}_{37} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{9} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}, 751.3119$, found 751.3120

HPLC Spectra:

Data Name: 2023-6-14-5 peptide product-9-1-5ul-3.Jcd
Sample Name: JSQ
Sample ID:1

MALDI-TOF-MS/MS Spectra:

Allatostation: GGSLYSFGL

HPLC: >99\% conversion.

Product $6 \mathbf{b}$ is a peak that elute at 50% buffer B ($9: 1$ acetonitrile: water $+0.1 \%$ TFA) with retention times of 8.631 min . Reactant is a peak that elutes at 50% buffer B with a retention time of 8.545 min .

HRMS (ESI-TOF): \mathbf{m} / \mathbf{z} calculated for $\mathrm{C}_{50} \mathrm{H}_{68} \mathrm{~N}_{10} \mathrm{O}_{15} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}, 1081.4737$, found 1081.4736.

HPLC Spectra:

MALDI-TOF-MS/MS Spectra:

Myelopeptide-2(MP-2):LVVYPW

HPLC: $>99 \%$ conversion.

Product $6 \mathbf{c}$ is a peak that elute at 50% buffer B ($9: 1$ acetonitrile: water $+0.1 \%$ TFA) with retention times of 8.874 min . Reactant is a peak that elutes at 50% buffer B with a retention time of 9.880 min .

HRMS (ESI-TOF): m/z calculated for $\mathrm{C}_{49} \mathrm{H}_{64} \mathrm{~N}_{8} \mathrm{O}_{10} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}, \mathbf{9 5 7 . 4 5 3 9}$, found 957.4539.

HPLC Spectra:

Data Name: 2023-7-11-815 peptide product-1-20ul-161.Jcd
Sample Name: JSQ
Sample ID:1

MALDI-TOF-MS/MS Spectra:

3-8-Angiotensin II:VYIHPF

HPLC: >99\% conversion.

Product $6 \mathbf{c}$ is a peak that elute at 50% buffer B ($9: 1$ acetonitrile: water $+0.1 \%$ TFA) with retention times of 8.401 min . Reactant is a peak that elutes at 50% buffer B with a retention time of 8.331 min .

HRMS (ESI-TOF): \mathbf{m} / \mathbf{z} calculated for $\mathrm{C}_{48} \mathrm{H}_{61} \mathrm{~N}_{9} \mathrm{O}_{10} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}, 956.4334$, found 956.4331.

HPLC Spectra:

Data Name: 2023-6-29-152 peptide product-9-1-30ul-91.Jcd
Sample Name: JSQ
Sample ID:1

MALDI-TOF-MS/MS Spectra:

Endomorphin 1:YPWF

HPLC: >99\% conversion.

Product 6e is a peak that elute at 50% buffer B ($9: 1$ acetonitrile: water $+0.1 \%$ TFA) with retention times of 8.738 min . Reactant is a peak that elutes at 50% buffer B with a retention time of 8.855 min .

HRMS (ESI-TOF): m/z calculated for $\mathrm{C}_{42} \mathrm{H}_{44} \mathrm{~N}_{6} \mathrm{O}_{8} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}, 793.3014$, found 793.3014.

HPLC Spectra:

Data Name: 2023-6-29-225 peptide product-9-1-30ul-80.Jcd Sample Name: JSQ Sample ID:1

MALDI-TOF-MS/MS Spectra:

β-Casomorphin(1-5),amide,bovine:YAFPM

 HPLC: >99\% conversion.

Product 6d is a peak that elute at 50% buffer B ($9: 1$ acetonitrile: water $+0.1 \%$ TFA) with retention times of 8.642 min . Reactant is a peak that elutes at 50% buffer B with a retention time of 8.830 min .

HRMS (ESI-TOF): \mathbf{m} / \mathbf{z} calculated for $\mathrm{C}_{39} \mathrm{H}_{48} \mathrm{~N}_{6} \mathrm{O}_{9} \mathrm{~S}_{\mathbf{2}},[\mathrm{M}+\mathrm{H}]^{+}, 809.2997$, found 809.2997.

HPLC Spectra:

Data Name: 2023-6-20-17 peptide product-9-1-5ul-47.Jcd
Sample Name: JSQ
Sample ID:1

MALDI-TOF-MS/MS Spectra:

ω-Conotoxin MVIIC:DYMGWM

HPLC: $>99 \%$ conversion.

Product 6f is a peak that elute at 50% buffer B ($9: 1$ acetonitrile: water $+0.1 \%$ TFA) with retention times of 8.628 min . Reactant is a peak that elutes at 50% buffer B with a retention time of 8.545 min .

HRMS (ESI-TOF): m/z calculated for $\mathrm{C}_{44} \mathrm{H}_{54} \mathrm{~N}_{8} \mathrm{O}_{12} \mathrm{~S}_{3},[\mathrm{M}+\mathrm{H}]^{+}, 983.3096$, found 983.3096

HPLC Spectra:

Data Name: 2023-6-14-18 peptide product-9-1-20ul-27.Jcd
Sample Name: JSQ
Sample ID:1

MALDI-TOF-MS/MS Spectra:

β-Casomorphin:YPFVEPI

HPLC: >99\% conversion.
Product $6 \mathbf{h}$ is a peak that elute at 50% buffer B ($9: 1$ acetonitrile: water $+0.1 \%$ TFA) with retention times of 8.642 min . Reactant is a peak that elutes at 50% buffer B with a retention time of 8.840 min .

HRMS (ESI-TOF): \mathbf{m} / z calculated for $\mathrm{C}_{52} \mathrm{H}_{68} \mathrm{~N}_{8} \mathrm{O}_{13} \mathrm{~S},[\mathrm{M}+\mathrm{H}]^{+}, 1045.4699$, found 1045.4700.

HPLC Spectra:

MALDI-TOF-MS/MS Spectra:

Synthesis of 7a: In an oven-dried undivided three-necked bottle (10 mL) equipped with a stir bar, Myoglobin (5 mg), Sodium benzenesulphinate (10 mg), ${ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{NBr}(0.08 \mathrm{mmol})$, $\mathrm{MeCN} / \operatorname{buffer}(\mathrm{pH}=8.6)(1.5 \mathrm{~mL} / 0.1 \mathrm{~mL})$ were combined and added. The bottle was equipped graphite rod ($\phi 6 \mathrm{~mm}$) as the anode and platinum plate ($10 \mathrm{~mm} \times 10 \mathrm{~mm} \times 0.3$ $\mathrm{mm})$ as the cathode and then charged. The reaction mixture was stirred and electrolyzed at constant current of 8 mA under $25^{\circ} \mathrm{C}$ for 10 min . After completion of the reaction, the solution was analyzed by Maldi-Tof MS.

Comparison of CD spectra between Myoglobin and product ($100 \mu \mathrm{~g} / \mathrm{mL}$ in buffer).

3.6 EPR and DFT

To gain additional insights into the mechanism for this reaction, we conducted DFT calculations for this reaction. The reaction diagrams were calculated at the B3LYP with $6-31 \mathrm{G}$ level for C and $\mathrm{H}, 6-31 \mathrm{G}+$ level for S, O, and Br atoms of theory.

3.7 Anti-fungal experiment of benzenesulfonate-labeled peptide

To assess the in vivo antifungal activity of benzenesulfonate-labeled peptide, the indicator strain Alternaria alternata was cultivated in potato dextrose broth for 24 h , and $100 \mu \mathrm{~L}$ culture was added to molten potato dextrose agar cooled below $55^{\circ} \mathrm{C} .100 \mu \mathrm{~L}$ product $6 \mathrm{~h}(3 \mathrm{mg} / \mathrm{mL})$, substrate, solvent (water) was added to oxford cup placed onto the solidified agar respectively. Inhibition zones were recorded after 48 h at $30^{\circ} \mathrm{C}$

To assess the in vivo antifungal activity of 6 h , the indicator strain Alternaria alternata was cultivated in potato dextrose broth for 24 h , and $100 \mu \mathrm{~L}$ culture was added to molten potato dextrose agar (PDA) cooled below $55^{\circ} \mathrm{C} .100 \mu \mathrm{~L} 6 \mathrm{~h}(3 \mathrm{mg} / \mathrm{mL})$, substrate, solvent (water) was added to oxford cup placed onto the solidified agar respectively. Inhibition zones were recorded after 48 h at $30^{\circ} \mathrm{C}$.

MIC Experiment: To determine the minimal inhibitory concentration of $6 \mathrm{~h}, 10 \mu \mathrm{~L}$ dilutions ranging from $0.1-3 \mathrm{mg} / \mathrm{mL}$ were added to $200 \mu \mathrm{~L}$ PDA in 96 well plates. At the same time, no addition, added water or substrate as positive controls. The plates were then kept at $4{ }^{\circ} \mathrm{C}$ for 4 hours to allow the diffusion of additions. The indicator strain Alternaria alternata was then inoculated on the surface of the agar and incubated at $28^{\circ} \mathrm{C}$ for 48 h . From the results, we found that the antifungal ability of 6 h increases with increasing concentration.

A
B
C
D
E
F

A: Water; B: no addition; C: b-Casomorphin; D:1mg/mL 6h; E: $2 \mathrm{mg} / \mathrm{mL}$ 6h; F: 3 $\mathrm{mg} / \mathrm{mL} 6 \mathrm{~h}$.

4.References

$\{1\}$ R. A. Serwa, J.-M. Swiecicki, D. Homann, C. P. R. Hackenberger, Phosphoramidate peptide synthesis by solution- and solid-phase Staudingerphosphite reactions. J. Pept. Sci.2010, 16, 563-567.
\{2\} Alam J, Keller T H, Loh T P. Functionalization of peptides and proteins by Mukaiyamaaldol reaction. J. Am. Chem. Soc. 2010, 132, 9546-9548.

5. Spectra

5.1 NMR Spectra of Products

NへNへNへN゚。

Boc
$3 e$

.57 .04

$3 g$

$3 i$

Boc O

 $\stackrel{\overline{1}}{\square}$

3j

©

31

$\stackrel{\Gamma}{\square}$

운

5a

5b

50

190	180	170	160	150	140	130	120	110	100
$\mathrm{f}(\mathrm{ppm})$									

5c

5c

5 e

Boc
5 g

$5 i$
NM

\qquad

लֹN

$5 i$

[^0]

[^0]:

