Supporting Information

Highly Regio- and Stereoselective

Bromochlorination and Bromoazidation of 1,3-

Dienes

Wei-Wei Ma, ${ }^{\text {a }} \mathrm{Zi}-L u$ Wang, ${ }^{\text {a }}$ Jin-Bo Zhao, ${ }^{\text {b }}$ and Yun-He Xu*a
${ }^{\text {an }}$ Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR
China
${ }^{\mathrm{b}}$ Faculty of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, PR China.

Table of Contents

1. General Information 3
2. Synthesis of Starting Materials 4
3. General Experimental Procedures 5
3.1 General Procedure for Bromochlorination of 1,3-Dienes 5
3.2 General Procedure for Bromoazidation of 1,3-Dienes 5
3.3 Gram-Scale Reactions and Product Transformations 6
3.4 Control Experiments Study for the Transformation between 14Relevant Vicinal and Allyl Chlorobromides
3.5 X-Ray Crystallographic Data of 17 19
4. Characterization Data and Spectrum of Products 21
5. References 164

1. General Information

Unless otherwise noted, reagents and solvents were purchased from commercial suppliers (such as Energy Chemical Corporation, J\&K Scientific, Sinopharm Chemical Reagent Corporation etc.) and used without further purification. Dry toluene was used for bromochlorination of 1,3-dienes after distilled from CaH_{2} while toluene was directly used for bromoazidation of 1,3-dienes without further purification. ${ }^{1} \mathrm{H}$ NMR, ${ }^{19} \mathrm{~F}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at $25^{\circ} \mathrm{C}$ on a Bruker Advance 400 M NMR or 500 M NMR spectrometers (CDCl_{3} as solvent). Chemical shifts of ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$ and ${ }^{13} \mathrm{C}$ NMR spectra are reported as δ in units of parts per million (ppm) downfield from $\mathrm{SiMe}_{4}(\delta$ 0.00) and relative to the signal of SiMe_{4} ($\delta 0.00$ singlet). Multiplicities were given as: s (singlet); d (doublet); t (triplet); q (quartet); dd (doublet of doublets); dt (doublet of triplets); m (multiplets), etc. Coupling constants are reported as a J value in $\operatorname{Hertz}(\mathrm{Hz})$. The residual solvent signals were used as references and the chemical shifts were converted to the TMS scale ($\left.\mathrm{CDCl}_{3}: \delta \mathrm{H}=7.26 \mathrm{ppm}, \delta \mathrm{C}=77.16 \mathrm{ppm}\right)$. High resolution mass spectral analysis (HRMS) was performed on Waters XEVO G2 Q-TOF (Waters Corporation). Preparative high performance liquid chromatography (Preparative HPLC) was performed on Thermo Scientific UltiMate 3000 equipped with Shimadzu ShimPack PRC-ODS column, conditions: $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}=100: 0$, flow rate $=5 \mathrm{~mL} / \mathrm{min}$, column temperature $=25^{\circ} \mathrm{C}$, UV-Vis detection at $\lambda=214 \mathrm{~nm}$. Flash chromatography was performed using 200-300 mesh silica gel with the indicated solvent system. Single crystal X-ray diffraction data was collected on the Rigaku Oxford Diffraction (ROD) SuperNova Diffraction System.

2. Synthesis of Starting Materials

$$
1,3 \text {-dienes }(\mathbf{1 a - 1 r}, \mathbf{1 x}, \mathbf{1} \mathbf{y})^{[1]}, \mathbf{1} \mathbf{r}^{[2]}, \mathbf{1} \mathbf{r}^{[3]}, \mathbf{1} \mathbf{t}^{[4]}, \mathbf{1} \mathbf{u}^{[5]}, \mathbf{1} \mathbf{v}^{[6]}, \mathbf{1} \mathbf{w}^{[7]}(\mathbf{1 1 z - 1 a v})^{[8]} \text { were }
$$ prepared according to published procedures. All 1,3-dienes were known compounds and those spectral data were in good agreement with literature values.

$1 f$

1k

1p

16

1c

1d

1e

1g

1h

11

$1 m$

1j
$1 i$

1n

10

$1 r$

1s

1t

14

1 ae

1aj

1 ao

1at

1af

1w

1x

1 y

$1 z$

1aa

1ab

1ac

1ad

1ak

1ap

1 ag

1ah

1ai

1am

1al

1 aq

1au

1an

1 ar
1as

3. General Experimental Procedures

3.1 General Procedure for Bromochlorination of 1,3-Dienes

Procedure A: Selective 4,3-bromochlorination of 1,3-dienes

An oven dried 15 mL sealed tube equipped with a magnetic stir bar was charged with the corresponding 1,3-diene ($0.2 \mathrm{mmol}, 1.0$ equiv), dry toluene (2 mL) under argon atmosphere and cooled down to $0{ }^{\circ} \mathrm{C}$. Then, $\mathrm{TMSCl}\left(0.3 \mathrm{mmol}, 1.0 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and NBS ($0.3 \mathrm{mmol}, 0.5 \mathrm{M}$ in MeCN) were added dropwise in turn. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . After that, the reaction mixture was quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aqueous solution, diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by preparative HPLC to afford products.

Procedure B: Selective 1,4-bromochlorination of 2-substituted 1,3-dienes

An oven dried 15 mL sealed tube equipped with a magnetic stir bar was charged with the corresponding 1,3-diene ($0.2 \mathrm{mmol}, 1.0$ equiv), dry toluene (2 mL) under argon atmosphere and cooled down to $0{ }^{\circ} \mathrm{C}$. Then, $\mathrm{TMSCl}\left(0.3 \mathrm{mmol}, 1.0 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and NBS ($0.3 \mathrm{mmol}, 0.5 \mathrm{M}$ in MeCN) were added dropwise in turn. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . After that, the reaction mixture was quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aqueous solution, diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel or preparative HPLC to afford products.

3.2 General Procedure for Bromoazidation of 1,3-Dienes

Procedure C: Selective 4,3-bromoazidation of 1,3-dienes

An oven dried 15 mL sealed tube equipped with a magnetic stir bar was charged with the corresponding 1,3-diene ($0.2 \mathrm{mmol}, 1.0$ equiv), toluene (2 mL) under argon atmosphere and cooled down to $0{ }^{\circ} \mathrm{C}$. Then, $\mathrm{TMSN}_{3}\left(0.3 \mathrm{mmol}, 1.0 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and NBS ($0.3 \mathrm{mmol}, 0.5 \mathrm{M}$ in MeCN) were added dropwise in turn. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ until completion of the reaction (monitored by TLC). After that, the reaction mixture was quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aqueous solution, diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate to afford products.

Procedure D: Selective 1,4-bromoazidation of 2-substituted 1,3-dienes

An oven dried 15 mL sealed tube equipped with a magnetic stir bar was charged with the corresponding 1,3-diene ($0.2 \mathrm{mmol}, 1.0$ equiv), toluene (2 mL) under argon atmosphere and cooled down to $0{ }^{\circ} \mathrm{C}$. Then, $\mathrm{TMSN}_{3}\left(0.3 \mathrm{mmol}, 1.0 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and NBS ($0.3 \mathrm{mmol}, 0.5 \mathrm{M}$ in MeCN) were added dropwise in turn. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ until completion of the reaction (monitored by TLC). After that, the reaction mixture was quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aqueous solution, diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate to afford products.

3.3 Gram-Scale Reactions and Product Transformations

(1) Gram-Scale Reactions

An oven dried round bottom flask equipped with a magnetic stir bar was charged with the corresponding 1,3-diene ($5.0 \mathrm{mmol}, 1.0$ equiv), dry toluene (50 mL) under argon atmosphere and cooled down to $0{ }^{\circ} \mathrm{C}$. Then, $\mathrm{TMSCl}\left(7.5 \mathrm{mmol}, 1.0 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and NBS ($7.5 \mathrm{mmol}, 0.5 \mathrm{M}$ in MeCN) were added dropwise in turn. The reaction mixture was vigorously stirred at $0{ }^{\circ} \mathrm{C}$ for 6 h . After that, the reaction mixture was quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aqueous solution, diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by preparative HPLC to afford product 2a in 81% yield (0.99 g).

5 mmol

Ar, 4 h

3a, $0.93 \mathrm{~g}, 76 \%$ $Z I E=78: 22$

An oven dried round bottom flask equipped with a magnetic stir bar was charged with the corresponding 1,3-diene ($5.0 \mathrm{mmol}, 1.0$ equiv), dry toluene (50 mL) under argon atmosphere and cooled down to $0{ }^{\circ} \mathrm{C}$. Then, $\mathrm{TMSCl}\left(7.5 \mathrm{mmol}, 1.0 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and NBS ($7.5 \mathrm{mmol}, 0.5 \mathrm{M}$ in MeCN) were added dropwise in turn. The reaction mixture was vigorously stirred at $0{ }^{\circ} \mathrm{C}$ for 4 h . After that, the reaction mixture was quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aqueous solution, diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel and eluted with petroleum ether to afford product 3a in 76% yield $(0.93 \mathrm{~g}, Z / E$ $=78: 22$).

An oven dried round bottom flask equipped with a magnetic stir bar was charged with the corresponding 1,3-diene ($5.0 \mathrm{mmol}, 1.0$ equiv), toluene (50 mL) under argon atmosphere and cooled down to $0^{\circ} \mathrm{C}$. Then, $\mathrm{TMSN}_{3}\left(10.0 \mathrm{mmol}, 1.0 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and

NBS ($10.0 \mathrm{mmol}, 0.5 \mathrm{M}$ in MeCN) were added dropwise in turn. The reaction mixture was vigorously stirred at $0{ }^{\circ} \mathrm{C}$ for 6 h . After that, the reaction mixture was quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aqueous solution, diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (1:20) to afford product $\mathbf{4 a}$ in 88% yield (1.10 g).

An oven dried round bottom flask equipped with a magnetic stir bar was charged with the corresponding 1,3-diene ($5.0 \mathrm{mmol}, 1.0$ equiv), toluene (50 mL) under argon atmosphere and cooled down to $0{ }^{\circ} \mathrm{C}$. Then, $\mathrm{TMSN}_{3}\left(7.5 \mathrm{mmol}, 1.0 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and NBS ($7.5 \mathrm{mmol}, 0.5 \mathrm{M}$ in MeCN) were added dropwise in turn. The reaction mixture was vigorously stirred at $0{ }^{\circ} \mathrm{C}$ for 18 h . After that, the reaction mixture was quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aqueous solution, diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (1:20) to afford product 5a in 76% yield ($0.96 \mathrm{~g}, \mathrm{Z} / E=90: 10$).

(2) One-pot synthesis of (\boldsymbol{E})-(3-chlorobuta-1,3-dien-1-yl)benzene

The crude product 2a was prepared according to the procedure A . Then, $\mathrm{K}_{2} \mathrm{CO}_{3}(2.0$ equiv), $\mathrm{MeCN}(1 \mathrm{~mL})$ were added to the residue and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 16 h . After that, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The residue was purified by column chromatography on silica gel and eluted with petroleum ether to afford product 6 in 62% yield (20.4 mg).
(3) One-pot synthesis of (\boldsymbol{E})-(3,4-diazidobut-1-en-1-yl)benzene

The crude product $\mathbf{2 a}$ was prepared according to the procedure A. Then, NaN_{3} (1.5 equiv), acetone $(0.8 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~mL})$ were added to the residue and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 12 h . After that, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The residue was purified by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether ($1: 20$) to afford product 7 in 65% yield (27.9 mg).
(4) Synthesis of (E)-(3-azidobuta-1,3-dien-1-yl)benzene and (E)-1-morpholino-4-phenylbut-3-en-2-amine

To an oven dried $25-\mathrm{mL}$ Schlenk tube equipped with a magnetic stir bar, were added $\mathbf{4 a}$ ($0.2520 \mathrm{~g}, 1.0 \mathrm{mmol}$), morpholine ($0.2610 \mathrm{~g}, 3.0 \mathrm{mmol}$), MeOH (2.5 mL) under argon atmosphere. The reaction mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 24 h . After solvent was removed under reduced pressure, the residue was purified by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (1:5) to afford compound $\mathbf{8}$ ($187.7 \mathrm{mg}, 73 \%$) as a pale yellow oil. Besides, the byproduct 12 was obtained in 18% isolated yield.

To an oven dried $10-\mathrm{mL}$ Schlenk tube equipped with a magnetic stir bar, were added $\mathrm{Zn}(0.0396 \mathrm{~g}, 0.6 \mathrm{mmol}), \mathrm{NH}_{4} \mathrm{Cl}(0.0535 \mathrm{~g}, 1.0 \mathrm{mmol}), 8$ ($\left.0.0517 \mathrm{~g}, 0.2 \mathrm{mmol}\right), \mathrm{EtOH}$ $(0.75 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(0.25 \mathrm{~mL})$ under argon atmosphere. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 3 h . Then, the reaction was quenched with $\mathrm{Sat} . \mathrm{Na}_{2} \mathrm{CO}_{3}$ (aq.), extracted with ethyl acetate, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The
residue was purified by column chromatography on silica gel and eluted with $\mathrm{DCM} / \mathrm{MeOH}$ (10:1 to 5:1) to afford $9(41.0 \mathrm{mg}, 88 \%)$ as a pale yellow solid.
(5) Synthesis of (\boldsymbol{E})-1-(1-bromo-4-phenylbut-3-en-2-yl)-4-phenyl-1H-1,2,3-triazole

To a $10-\mathrm{mL}$ Schlenk tube equipped with a magnetic stir bar, were added $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ $(0.0050 \mathrm{~g}, 10 \mathrm{~mol} \%)$, sodium ascorbate ($0.0079 \mathrm{~g}, 20 \mathrm{~mol} \%$), $\mathbf{4 a}(0.0504 \mathrm{~g}, 0.2 \mathrm{mmol})$, phenylacetylene $(0.0306 \mathrm{~g}, 0.3 \mathrm{mmol}),{ }^{t} \mathrm{BuOH}(0.5 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ under argon atmosphere. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 12 h . Then, the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The residue was purified by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (1:5) to afford compound $\mathbf{1 0}$ ($60.2 \mathrm{mg}, 85 \%$) as a white solid.
(6) Synthesis of (\boldsymbol{E})-2-azido-4-phenylbut-3-en-1-ol

To a $10-\mathrm{mL}$ Schlenk tube equipped with a magnetic stir bar, were added $\mathbf{4 a}(0.0504 \mathrm{~g}$, $0.2 \mathrm{mmol})$, DMSO $(0.8 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~mL})$ under argon atmosphere. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 16 h . Then, the reaction was extracted with ethyl acetate, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The residue was purified by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (1:5) to afford $\mathbf{1 1}(29.0 \mathrm{mg}, 77 \%)$ as a brownish yellow oil.

(7) Synthesis of (E)-(3-azidobuta-1,3-dien-1-yl)benzene

To an oven dried $10-\mathrm{mL}$ Schlenk tube equipped with a magnetic stir bar, were added $\mathbf{4 a}$ $(0.0504 \mathrm{~g}, 0.2 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(3.0$ equiv, 0.6 mmol$)$, THF (1.0 mL) under argon atmosphere. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 36 h . Then, the reaction was quenched with Sat. $\mathrm{NH}_{4} \mathrm{Cl}$ (aq.), extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The residue was purified by column chromatography on silica gel and eluted with petroleum ether to afford $12(27.3 \mathrm{mg}, 85 \%)$ as a pale yellow oil.

(8) Synthesis of (\boldsymbol{E})-(3,4-diazidobut-1-en-1-yl)benzene

To a $25-\mathrm{mL}$ Schlenk tube equipped with a magnetic stir bar, were added $\mathrm{NaN}_{3}(0.0488$ $\mathrm{g}, 0.75 \mathrm{mmol}), 4 \mathrm{a}(0.1261 \mathrm{~g}, 0.5 \mathrm{mmol})$, acetone $(2 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(0.4 \mathrm{~mL})$ under argon atmosphere. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 16 h . Then, the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, extracted with ethyl acetate, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The residue was purified by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (1:20) to afford 7 (105.1 mg , 98\%) as a brownish yellow oil.

(9) Synthesis of (Z)-4-azido-2-phenylbut-2-en-1-ol

To a $10-\mathrm{mL}$ Schlenk tube equipped with a magnetic stir bar, were added $\mathbf{5 a}(0.0504 \mathrm{~g}$, $0.2 \mathrm{mmol})$, DMSO $(0.8 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~mL})$ under argon atmosphere. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 12 h . Then, the reaction was extracted with ethyl acetate, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under
vacuum. The residue was purified by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (1:5) to afford $\mathbf{1 3}(30.0 \mathrm{mg}, 79 \%, Z / E=31: 69)$ as a pale yellow oil.

(10) Synthesis of (Z)-4-(4-azido-2-phenylbut-2-en-1-yl)morpholine

To an oven dried $10-\mathrm{mL}$ Schlenk tube equipped with a magnetic stir bar, were added $\mathrm{K}_{2} \mathrm{CO}_{3}(0.0553 \mathrm{~g}, 0.4 \mathrm{mmol}), 5 \mathrm{a}(0.0504 \mathrm{~g}, 0.2 \mathrm{mmol})$, morpholine $(0.2610 \mathrm{~g}, 0.6$ mmol), DMF (1.0 mL) under argon atmosphere. The reaction mixture was stirred at 40 ${ }^{\circ} \mathrm{C}$ for 12 h . Then, the reaction was extracted with ethyl acetate, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The residue was purified by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (1:5) to afford $\mathbf{1 4}(46.4 \mathrm{mg}, 90 \%, Z / E=75: 25)$ as a pale yellow oil.
(11) Synthesis of (Z)-(4-azido-1-thiocyanatobut-2-en-2-yl)benzene

To an oven dried $10-\mathrm{mL}$ Schlenk tube equipped with a magnetic stir bar, were added $\mathrm{NaSCN}(0.0178 \mathrm{~g}, 0.22 \mathrm{mmol}), \mathbf{2 a}(0.0504 \mathrm{~g}, 0.2 \mathrm{mmol})$, acetone (1.0 mL) under argon atmosphere. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 22 h . Then, the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, extracted with ethyl acetate, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The residue was purified by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (1:5) to afford $\mathbf{1 5}$ ($37.5 \mathrm{mg}, 82 \%$, $\left.Z / E=89: 11, \mathbf{1 5 : 1 5}{ }^{\prime}=95: 5\right)$ as a pale yellow oil.
(12) Synthesis of (Z)-2-((4-azido-2-phenylbut-2-en-1-yl)oxy)isoindoline-1,3-dione

To an oven dried $10-\mathrm{mL}$ Schlenk tube equipped with a magnetic stir bar, were added $\mathrm{K}_{2} \mathrm{CO}_{3}(0.0553 \mathrm{~g}, 0.4 \mathrm{mmol}), N$-hydroxyphthalimide ($0.0652 \mathrm{~g}, 0.4 \mathrm{mmol}$), 5a (0.0504 $\mathrm{g}, 0.2 \mathrm{mmol})$, DMF (1.0 mL) under argon atmosphere. The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 24 h . Then, the reaction was extracted with ethyl acetate, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The residue was purified by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (1:5) to afford $\mathbf{1 6}\left(48.1 \mathrm{mg}, 72 \%, Z / E=75: 25,16: 16{ }^{\prime}=93: 7\right)$ as a white solid.
(13) Synthesis of (Z)-4-(4-(4-([1,1'-biphenyl]-4-yl)-1H-1,2,3-triazol-1-yl)-2-phenylbut-2-en-1-yl)morpholine

To a $10-\mathrm{mL}$ Schlenk tube equipped with a magnetic stir bar, were added $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ ($0.0050 \mathrm{~g}, 10 \mathrm{~mol} \%$), sodium ascorbate ($0.0079 \mathrm{~g}, 20 \mathrm{~mol} \%$), 14 ($0.0517 \mathrm{~g}, 0.2 \mathrm{mmol}$), 4-biphenylylacetylene ($0.0535 \mathrm{~g}, 0.3 \mathrm{mmol}),{ }^{t} \mathrm{BuOH}(0.5 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ under argon atmosphere. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 5 h . Then, the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The residue was purified by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (1:5) to afford $\mathbf{1 7}$ (76.4 mg, 88\%) as a white solid.

3.4 Control Experiments Study for the Transformation between Relevant Vicinal and Allyl Chlorobromides.

According to the results of control experiments, we were pleased to find that $\mathbf{3 a}^{\prime \prime}$ could be smoothly converted to 3a and 3a' in the NMR tube at $25^{\circ} \mathrm{C}$ after 8 h . Besides, the results indicated that the higher the reaction temperature, the faster the conversion rate, but solvent and light had no obvious effect on the transformation. Subsequently, it is noteworthy that $\mathbf{2 g}$ ' was completely transformed into $\mathbf{2 g}$ in CDCl_{3} at $25^{\circ} \mathrm{C}$ after 12 h. Likewise, solvent and light did not evidently affect the transformation. Frustratingly, there was no mutual transformation between $\mathbf{2 w}$ and $\mathbf{2 w} \mathbf{w}^{\mathbf{}}$.

Thus, taking into account the results of the above control experiments, we found that heating had an obvious effect on the conversion and the higher the temperature, the faster the conversion rate. It is worth noting that the products generated from the transformations, always contain a conjugated structure. Therefore, we proposed that the driving force of the transformation may be due to the thermodynamic stability of the conjugated structure and the possible mechanism of neighboring group participation was proposed.

Control Experiments for the Transformation of 3a' into 3a and 3a'.
A) Time effect on the transformation of $\mathbf{3 a}$ " into $\mathbf{3 a}$ and $\mathbf{3 a}{ }^{\prime}$

B) Sovent effect on the transformation of 3a" into 3a and 3a' (mesitylene as internal standard)

3a	+	3a'	+	3a"	CDCl_{3}	3a	+	3a'	+	3 a
$25^{\circ} \mathrm{C}, 12 \mathrm{~h}$										
52\%		trace		28\%		75\%		3\%		trace
3a	+	3a'	+	$3 a^{\prime \prime}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	3a	+	3a'	+	$3 a^{\prime \prime}$
$25^{\circ} \mathrm{C}, 12 \mathrm{~h}$										
52\%		trace		28\%		75\%		3\%		trace

B) Temperature effect on the transformation of $\mathbf{3 a} \mathbf{a}$ into $\mathbf{3 a}$ and $\mathbf{3 a} \mathbf{a}^{\mathbf{\prime}}$

$1 z$

toluene, $0^{\circ} \mathrm{C}, 1 \mathrm{~h}, \mathrm{Ar}$

3a, 52\%

3a', trace

3a", 28\%
mesitylene as internal standard

D) Light effect on the transformation of $\mathbf{3 a} \mathbf{a}^{\prime \prime}$ into $\mathbf{3 a}$ and $\mathbf{3 a} \mathbf{a}^{\prime}$ (mesitylene as internal standard)

(2) Control Experiments for the Transformation of $\mathbf{2 g}$ to $\mathbf{2 g}$ and No Mutual Transformation between $2 w$ and $2 w$.
A) Transformation of $\mathbf{2 g}$ ' to $\mathbf{2 g}$

Sovent effect on the transformation of $\mathbf{2 g}$ ' into $\mathbf{2 g}$ (mesitylene as internal standard)

2g	+	2g'	CDCl_{3}	2 g	+	2g'
			$25^{\circ} \mathrm{C}, 12 \mathrm{~h}$			
55\%		30\%		85\%		0
2 g	+	2g'	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	2g	+	2g'
			$25^{\circ} \mathrm{C}, 12 \mathrm{~h}$			
55\%		30\%		85\%		0

Light effect on the transformation of $\mathbf{2 g}$ ' into $\mathbf{2 g}$ (mesitylene as internal standard)

2g	+	2g'		2g	+	2g
			$25^{\circ} \mathrm{C}, 12 \mathrm{~h}$			
55\%		30\%		85\%		0
2g	+	2g'	CDCl_{3}, dark	2g	+	2g'
			$25^{\circ} \mathrm{C}, 12 \mathrm{~h}$			
55\%		30\%		85\%		0

B) No mutual transformation between $\mathbf{2 w}$ and $\mathbf{2 w} \mathbf{w}^{\prime}$

3.5 X-Ray Crystallographic Data of 17.

Table S1. Crystal data and structure refinement for $\mathbf{1 7}$

Identification code	$\mathbf{1 7}$
Empirical formula	$\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}$
Formula weight	436.54
Temperature $/ \mathrm{K}$	$293(2)$
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1}$
a / \AA	$10.8599(9)$
$\mathrm{b} / \AA \AA^{\mathrm{c}}$	$5.6056(3)$
c / \AA	$19.3263(14)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$95.592(7)$
$\gamma /{ }^{\circ}$	90
$\mathrm{Volume} / \AA^{3}$	$1170.91(14)$
Z	2
$\rho_{\text {calc }} / \mathrm{cm}^{3}$	1.238
μ / mm^{-1}	$\mathrm{~F}(000)$

Crystal size $/ \mathrm{mm}^{3}$	$0.18 \times 0.15 \times 0.14$
Radiation	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ}$	8.18 to 145.646
Index ranges	$-13 \leq \mathrm{h} \leq 13,-6 \leq \mathrm{k} \leq 4,-23 \leq 1 \leq 21$
Reflections collected	4469
Independent reflections	$3078\left[\mathrm{R}_{\text {int }}=0.0388, \mathrm{R}_{\text {sigma }}=0.0558\right]$
Data/restraints/parameters	$3078 / 1 / 299$
Goodness-of-fit on F^{2}	1.064
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0564, \mathrm{wR}_{2}=0.1271$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0806, \mathrm{wR}_{2}=0.1500$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$0.19 /-0.18$

4. Characterization Data and Spectrum of Products

(E)-(4-bromo-3-chlorobut-1-en-1-yl)benzene (2a)

Following the general procedure A, 2a was obtained in 81%
 yield $(38.3 \mathrm{mg})$ as colorless oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.44-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H})$, $6.71(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{dd}, J=15.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.74$ $(\mathrm{tdd}, J=8.8,5.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=10.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=10.3,8.8$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 135.5,135.1,128.8,128.8,127.1,126.5,60.8$, 35.7. HRMS (ESI): m/z calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrCl}^{+}-\mathrm{Cl}\right]: 208.9965$, found: 208.9978 .
(E)-1-(4-bromo-3-chlorobut-1-en-1-yl)-4-chlorobenzene (2b)

Following the general procedure A, 2b was obtained in 76\%
 yield (42.6 mg) as colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.36-7.30(\mathrm{~m}, 4 \mathrm{H}), 6.66(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.16(\mathrm{dd}, J=15.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{tdd}, J=8.8,5.0,0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=10.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=10.3,8.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.5,134.0,133.9,129.0,128.3,127.1,60.5,35.5$. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrCl}_{2}{ }^{+}-\mathrm{Cl}\right]:$ 242.9576, found: 242.9591 .
(E)-1-bromo-4-(4-bromo-3-chlorobut-1-en-1-yl)benzene (2c)

Following the general procedure A, $\mathbf{2 c}$ was obtained in 76% yield (49.3 mg) as colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.65$ $(\mathrm{d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{ddd}, J=15.6,8.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.79-4.67(\mathrm{~m}, 1 \mathrm{H}), 3.77$ (ddd, $J=10.3,5.0,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.59(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 134.4, 133.9, 132.0, 128.5, 127.2, 122.7, 60.4, 35.4. HRMS (ESI): m/z calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{Br}_{2} \mathrm{Cl}^{+}-\mathrm{Cl}\right]: 286.9071$, found: 286.9069 .

[^0]

Following the general procedure A, $\mathbf{2 d}$ was obtained in 82% yield (43.2 mg) as colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.42-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.10(\mathrm{dd}, J=15.6,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.73$ (tdd, $J=8.9$, $5.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=10.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=10.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-112.65(\mathrm{tt}, J=8.8,5.4 \mathrm{~Hz}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.1$ (d, $J=248.4 \mathrm{~Hz}), 134.0,131.7$ (d, $J=3.3 \mathrm{~Hz}), 128.7$ (d, $J=8.2 \mathrm{~Hz}$), 126.3 (d, $J=2.3 \mathrm{~Hz}$), $115.9(\mathrm{~d}, J=21.8 \mathrm{~Hz}), 60.7,35.6$. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrClF}^{+}-\mathrm{Cl}\right]: 226.9871$, found: 226.9880 .
(E)-1-(4-bromo-3-chlorobut-1-en-1-yl)-3-methylbenzene (2e)

Following the general procedure A, $\mathbf{2 e}$ was obtained in 86%
 yield (51.9 mg) as colorless oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.25-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.16$ (dd, $J=15.6,8.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.73 (td, $J=8.9,5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.76(\mathrm{dd}, J=10.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=10.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 138.5,135.4,135.3,129.6,128.7,127.7,126.2,124.3,61.0$, 35.7, 21.5. HRMS (ESI): m/z calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BrCl}^{+}-\mathrm{Cl}\right]: 223.0122$, found: 223.0126.
(E)-1-(4-bromo-3-chlorobut-1-en-1-yl)-2-methylbenzene (2f)

Following the general procedure A, 2f was obtained in 77%

yield (39.9 mg) as colorless oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
$7.47-7.43$ (m, 1H), $7.21-7.14$ (m, 3H), 6.92 (d, $J=15.5 \mathrm{~Hz}$,
1 H), 6.05 (dd, $J=15.5,8.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.75 (tdd, $J=8.9,5.1,0.8$
$\mathrm{Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=10.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=10.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.1,134.7,133.1,130.6,128.6,127.9,126.3,126.2$, 60.9, 35.7, 19.9. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BrCl}^{+}-\mathrm{Cl}\right]: 223.0122$, found: 223.0125 .
methyl (E)-4-(4-bromo-3-chlorobut-1-en-1-yl)benzoate ($\mathbf{2 g}$)

Following the general procedure $\mathrm{A}, \mathbf{2 g}$ was obtained

MeOOC
 in 80% yield $(48.9 \mathrm{mg})$ as colorless oil $(4,3-$ adduct:4,1-adduct $=65: 35$, the regioisomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR analysis of crude reaction mixture and 4,1-adduct was completely transformed into 4,3-adduct at $25^{\circ} \mathrm{C}$ after 12 h$) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H})$, $6.75(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{dd}, J=15.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{tdd}, J=8.8,5.0,0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{dd}, J=10.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=10.3,8.8 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.8,139.9,134.1,130.1,130.1,129.0,126.9,60.2$, 52.3, 35.3. HRMS (ESI): m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrClO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 302.9787$, found: 302.9795.

(E)-1-(4-bromo-3-chlorobut-1-en-1-yl)-4-nitrobenzene (2h)

Following the general procedure A, $\mathbf{2 h}$ was obtained in

82% yield $(47.4 \mathrm{mg})$ as colorless oil (4,3-adduct:4,1adduct $=60: 40$, the regioisomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR analysis of crude reaction mixture and 4,1adduct was transformed into 4,3-adduct very slowly at $25^{\circ} \mathrm{C}$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.23-8.19(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{dd}$, $J=15.7,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.81-4.72(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=10.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J$ $=10.3,9.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 147.7,141.8,132.8,131.0,127.7$, 124.2, 59.5, 35.0. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrClNO}_{2}{ }^{+}-\mathrm{Cl}\right]: 253.9816$, found: 253.9834 .
(E)-5-(4-bromo-3-chlorobut-1-en-1-yl)benzo $[d][1,3]$ dioxole ($\mathbf{2 i}$)

Following the general procedure A, $\mathbf{2 i}$ was obtained in 73%

yield (43.2 mg) as colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 6.95(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{dd}, J=$ $15.6,8.9 \mathrm{~Hz} 1 \mathrm{H}), 5.97(\mathrm{~s}, 2 \mathrm{H}), 4.72(\mathrm{tdd}, J=8.9,5.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=10.3$, $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=10.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.3$,
148.2, 134.8, 129.9, 124.7, 122.2, 108.5, 106.1, 101.4, 61.1, 35.8. HRMS (ESI): m/z calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BrClO}_{2}{ }^{+}-\mathrm{Cl}\right]$: 288.9631 , found: 288.9636 .
(E)-2-(4-bromo-3-chlorobut-1-en-1-yl)naphthalene (2j)

Following the general procedure A, $\mathbf{2} \mathbf{j}$ was obtained in 95%
 yield $(56.1 \mathrm{mg})$ as colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.84-7.76(\mathrm{~m}, 4 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.51$ $-7.43(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{dd}, J=$ $15.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{td}, J=8.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=10.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ $(\mathrm{dd}, J=10.3,8.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.2,133.6,133.6,133.0$, 128.6, 128.3, 127.8, 127.6, 126.7, 126.6, 126.6, 123.6, 61.0, 35.7. HRMS (ESI): m/z calculated for [$\left.\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{BrCl}^{+}-\mathrm{Cl}\right]: 259.0122$, found: 259.0134.
(E)-1-(4-bromo-3-chlorobut-1-en-1-yl)naphthalene (2k)

Following the general procedure A, $\mathbf{2 k}$ was obtained in 92%
 yield (54.3 mg) as colorless oil. ${ }^{1} \mathbf{H} \mathbf{~ N M R ~}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.13-8.02(\mathrm{~m}, 1 \mathrm{H}), 7.90-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.58(\mathrm{~m}$, $1 \mathrm{H}), 7.57-7.44$ (m, 4H), 6.21 (dd, $J=15.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.87 (tdd, $J=8.8,5.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=10.3,5 . \mathrm{Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=10.3$, $9.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.7,133.3,132.5,131.3,129.7,129.0$, 128.8, 126.5, 126.1, 125.7, 124.6, 123.8, 60.6, 35.6. HRMS (ESI): m/z calculated for [$\left.\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{BrCl}^{+}-\mathrm{Cl}\right]: 259.0122$, found: 259.0115 .
(E)-2-(4-bromo-3-chlorobut-1-en-1-yl)thiophene (21)

Following the general procedure A, 21 was obtained in 74%

yield (37.2 mg) as pale yellow oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=5.1$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=15.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{dd}, J=15.5,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{tdd}$, $J=8.8,5.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=10.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=10.3,8.8 \mathrm{~Hz}$, 1H). ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.3,128.2,127.7,127.6,125.9,125.6,60.7$, 35.5. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BrClS}^{+}-\mathrm{Cl}\right]: 214.9530$, found: 214.9529 .
(4-bromo-3-chlorobut-1-ene-1,1-diyl)dibenzene (2m)
Following the general procedure A, $\mathbf{2 m}$ was obtained in 77%
 yield (49.8 mg) as colorless oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.46-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 7 \mathrm{H}), 6.06(\mathrm{~d}, J=10.5 \mathrm{~Hz}$, 1 H), 4.68 (ddd, $J=10.5,9.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.69$ (dd, $J=10.1$, $5.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.63 (dd, $J=10.1,9.1 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathbf{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.2,140.9,138.4,129.6,128.7,128.5,128.4,128.1,127.9,125.7$, 57.5, 35.8. HRMS (ESI): m/z calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{BrCl}^{+}-\mathrm{Cl}\right]: 285.0278$, found: 285.0290 .

4,4'-(4-bromo-3-chlorobut-1-ene-1,1-diyl)bis(fluorobenzene) (2n)
Following the general procedure A, $\mathbf{2 n}$ was obtained in 90%
 yield (64.4 mg) as colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ б $7.29-7.19$ (m, 4H), $7.16-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.04-6.96$ (m, $2 \mathrm{H}), \delta 5.99(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.63$ (ddd, $J=10.5,9.6,4.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.69 (dd, $J=10.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61$ (dd, $J=10.1$, $9.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.1(\mathrm{~d}, J=$ $249.9 \mathrm{~Hz}), 162.7(\mathrm{~d}, J=249.0 \mathrm{~Hz}), 145.3,136.9(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 134.1(\mathrm{~d}, J=3.6 \mathrm{~Hz})$, 131.4 (d, $J=8.1 \mathrm{~Hz}$), 129.6 (d, $J=8.1 \mathrm{~Hz}$), $126.0,115.9$ (d, $J=21.5 \mathrm{~Hz}), 115.5(\mathrm{~d}, J=$ 21.6 Hz), 57.1, 35.5. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-113.08 - -113.18 (m), -113.19--113.28 (m). HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{BrClF}_{2}{ }^{+}-\mathrm{Cl}\right]: 321.0090$, found: 321.0089.
(E)-(4-bromo-3-chloro-2-methylbut-1-en-1-yl)benzene (20)

Following the general procedure A, $\mathbf{2 0}$ was obtained in 93% yield $(48.3 \mathrm{mg})$ as colorless oil. (4,3-adduct:4,1-adduct $=$ 69:31, the regioisomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR

20' analysis of crude reaction mixture). ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.39-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.28-$ $7.23(\mathrm{~m}, 1.2 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H})(\mathbf{2 o}), 6.05-5.96(\mathrm{~m}, 0.24 \mathrm{H})\left(\mathbf{2 0}^{\prime}\right)$,
$5.50(\mathrm{~s}, 0.24 \mathrm{H})\left(\mathbf{2 0}^{\prime}\right), 4.74(\mathrm{dd}, J=10.1,5.8 \mathrm{~Hz}, 1 \mathrm{H})(\mathbf{2 o}), 4.01(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 0.48 \mathrm{H})$ (20'), $3.78-3.64(\mathrm{~m}, 2 \mathrm{H})(\mathbf{2 o}), 1.93(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 3 \mathrm{H})(\mathbf{2 o}), 1.72(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 0.72 \mathrm{H})$ (20'). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 20: $\delta 136.5,133.6,132.1,129.2,128.4,127.5,66.9$, 33.0, 12.0. 2o': $\delta 141.0,138.7,128.6,128.3,127.5,124.9,67.9,27.6,13.1$. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BrCl}^{+}-\mathrm{Cl}\right]: 223.0122$, found: 223.0124 .
(Z)-(2,4-dibromo-3-chlorobut-1-en-1-yl)benzene (2p)

Following the general procedure A, ($\mathbf{2 p + 2 p}$ ') was obtained in

2p

$2 p^{\prime}$
 95% yield (61.6 mg) as colorless oil. (4,3-adduct:4,1-adduct $=58: 42$, the regioisomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR analysis of crude reaction mixture). ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.69-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.38-$ 7.33 (m, 3.25H), $7.16(\mathrm{~s}, 1 \mathrm{H})(\mathbf{2 p}), 6.64(\mathrm{td}, J=7.9,1.2 \mathrm{~Hz}$, $0.65 \mathrm{H})\left(\mathbf{2 p}{ }^{\prime}\right), 5.64(\mathrm{~s}, 0.65 \mathrm{H})\left(\mathbf{2 p}{ }^{\prime}\right), 4.82(\mathrm{dd}, J=9.8,5.0 \mathrm{~Hz}$, $1 \mathrm{H})(\mathbf{2 p}), 4.10(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1.3 \mathrm{H})\left(\mathbf{2 p} \mathbf{p}^{\prime}\right), 3.89(\mathrm{dd}, J=10.4$, $9.8 \mathrm{~Hz}, 1 \mathrm{H})(\mathbf{2 p}), 3.71(\mathrm{dd}, J=10.4,5.0 \mathrm{~Hz}, 1 \mathrm{H})(\mathbf{2 p}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 2p: $\delta 134.1,129.5,129.1,128.9,128.4,127.9,65.4,33.6 .2 p ': \delta 137.7,134.3,130.9$, 129.1, 128.2, 123.0, 65.7, 28.9. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{Br}_{2} \mathrm{Cl}^{+}-\mathrm{Cl}\right]$: 286.9071 , found: 286.9075 .
(E)-(4-bromo-3-chloro-3-methylbut-1-en-1-yl)benzene (2q)

Following the general procedure A, $2 \mathbf{q}$ was obtained in 50%
 yield (26.0 mg) as colorless oil. The stability of the product $\mathbf{2 q}$ is relatively poor. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-$ $7.41(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 6.70$ $(\mathrm{d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.76(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$

NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 135.8,131.4,131.1,128.8,128.5,127.0,69.0,42.6,27.7$.
HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BrCl}^{+}-\mathrm{Cl}\right]:$ 223.0122, found: 223.0119.
(E)-(4-bromo-3-chloropent-1-en-1-yl)benzene (2r)

Following the general procedure A, 2r was obtained in 70\% yield ($36.3 \mathrm{mg}, \mathrm{dr}=50: 50$) as colorless oil. ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.44-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.26$ $(\mathrm{m}, 1 \mathrm{H}), 6.74-6.64(\mathrm{~m}, 1 \mathrm{H}), 6.36-6.22(\mathrm{~m}, 1 \mathrm{H}), 4.82-4.75$ (m, 0.5 H), 4.62 (dd, $J=9.1,6.7 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.40(\mathrm{qd}, J=6.8,3.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.34-4.25$ $(\mathrm{m}, 0.5 \mathrm{H}), 1.85(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1.5 \mathrm{H}), 1.81(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1.5 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}(101 \mathrm{MHz}$, CDCl_{3}) $\delta 135.7,135.7,135.3,134.7,128.8,128.7,127.1,127.0,126.8,124.7,67.2$, 66.2, 52.2, 51.6, 23.4, 21.3. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BrCl}^{+}-\mathrm{Cl}\right]$: 223.0122, found: 223.0114. Since the product is mixtures of diastereomers, not all ${ }^{13} \mathrm{C}$ NMR signals are resolved.
(E)-((2-bromo-3-chloro-5-phenylpent-4-en-1-yl)oxy)(tert-butyl)dimethylsilane (2s) Following the general procedure $\mathrm{A}, \mathbf{2 s}$ was obtained in
 90% yield ($70.2 \mathrm{mg}, \mathrm{dr}=60: 40$) as colorless oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 77.43-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.37$ $-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.72-6.63(\mathrm{~m}$, $1 \mathrm{H}), 6.39$ (dd, $J=15.7,8.5 \mathrm{~Hz}, 0.4 \mathrm{H}), 6.30(\mathrm{dd}, J=15.7,9.3 \mathrm{~Hz}, 0.6 \mathrm{H}), 5.06-4.87$ (m, 1H), 4.27 (ddd, $J=6.9,5.8,4.5 \mathrm{~Hz}, 0.6 \mathrm{H}), 4.21$ (ddd, $J=8.1,5.3,2.9 \mathrm{~Hz}, 0.4 \mathrm{H}$), $4.05(\mathrm{dd}, J=10.9,4.5 \mathrm{~Hz}, 0.6 \mathrm{H}), 3.99(\mathrm{dd}, J=10.4,8.1 \mathrm{~Hz}, 0.4 \mathrm{H}), 3.92(\mathrm{dd}, J=10.4$, $5.3 \mathrm{~Hz}, 0.4 \mathrm{H}$), 3.85 (dd, $J=10.9,6.9 \mathrm{~Hz}, 0.6 \mathrm{H}) .0 .97-0.88(\mathrm{~m}, 9 \mathrm{H}), 0.15-0.05(\mathrm{~m}$, $6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 135.8,135.8,134.9,133.8,128.8,128.6,128.6$, 127.2, 127.0, 126.1, 64.9, 64.6, 62.1, 61.8, 58.2, 57.7, 26.0, 18.4, 18.4, -5.2, -5.2, -5.3. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{BrClOSi}^{+}-\mathrm{Cl}\right]: 353.0936$, found: 353.0953 . Since the product is mixtures of diastereomers, not all ${ }^{13} \mathrm{C}$ NMR signals are resolved.
(E)-2-bromo-3-chloro-5-phenylpent-4-en-1-yl benzoate (2t)

Following the general procedure $\mathrm{A}, \mathbf{2 t}$ was obtained in

79% yield ($60.0 \mathrm{mg}, \mathrm{dr}=55: 45$) as colorless oil. ${ }^{1} \mathbf{H}$
NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10-8.04$ (m, 2H), 7.62 -
$7.56(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.26(\mathrm{~m}, 3 \mathrm{H})$,
$6.75(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 0.45 \mathrm{H}), 6.71(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 0.55 \mathrm{H}), 6.45-6.26(\mathrm{~m}, 1 \mathrm{H}), 5.03-$
$4.86(\mathrm{~m}, 1 \mathrm{H}), 4.84-4.69(\mathrm{~m}, 2 \mathrm{H}), 4.60-4.54(\mathrm{~m}, 0.55 \mathrm{H}), 4.54-4.49(\mathrm{~m}, 0.45 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.9,165.9,135.4,135.4,135.3,134.9,133.6,129.9$, $129.9,129.5,129.5,128.8,128.8,128.7,127.1,125.9,125.4,65.7,65.3,62.6,62.3$, 53.5, 53.3. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrClO}_{2}{ }^{+}-\mathrm{Cl}\right]: 343.0333$, found: 343.0314. Since the product is mixtures of diastereomers, not all ${ }^{13} \mathrm{C}$ NMR signals are resolved.
(E)-(4-bromo-3-chlorooct-1-en-1-yl)benzene (2u)
Following the general procedure $\mathrm{A}, \mathbf{2} \mathbf{u}$ was obtained in
 74% yield ($44.4 \mathrm{mg}, \mathrm{dr}=52: 48$) as colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.37$ - 7.31 (m, 2H), $7.31-7.26(m, 1 H), 6.73-6.63(m$, $1 \mathrm{H}), 6.35(\mathrm{~d}, J=15.6,8.6 \mathrm{~Hz}, 0.48 \mathrm{H}), 6.29(\mathrm{dd}, J=15.6,9.1 \mathrm{~Hz}, 0.52 \mathrm{H}), 4.82(\mathrm{ddd}, J$ $=8.6,3.7,0.9 \mathrm{~Hz}, 0.48 \mathrm{H}), 4.68(\mathrm{ddd}, J=9.1,6.6,0.7 \mathrm{~Hz}, 0.52 \mathrm{H}), 4.28-4.16(\mathrm{~m}, 1 \mathrm{H})$, $2.18-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.27(\mathrm{~m}, 3 \mathrm{H})$, $0.97-0.90(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.8,135.7,134.7,134.6,128.8$, 128.6, 128.6, 127.0, 127.0, 127.0, 125.6, 65.8, 65.7, 59.6, 59.1, 35.5, 34.1, 29.9, 29.4, 22.2, 22.1, 14.1. HRMS (ESI): m/z calculated for [$\left.\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{BrCl}^{+}-\mathrm{Cl}\right]: 265.0591$, found: 265.0600. Since the product is mixtures of diastereomers, not all ${ }^{13} \mathrm{C}$ NMR signals are resolved.
(E)-(4-bromo-3-chloro-4-methylpent-1-en-1-yl)benzene (2v)

Following the general procedure A, $\mathbf{2 v}$ was obtained in 60%

yield (32.8 mg) as colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\delta 7.45-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.27$ (m, $1 \mathrm{H}), 6.68(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{ddd}, J=15.6,9.0,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 135.8,134.9,128.8,128.6,127.0,126.2,72.0,66.8,32.6,30.1$. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{BrCl}^{+}-\mathrm{Cl}\right]$: 237.0278, found: 237.0303.
(E)-(6-bromo-5-chlorohex-3-en-1-yl)benzene (2w)

Following the general procedure $\mathrm{A},\left(\mathbf{2 w}+\mathbf{2} \mathbf{w}^{\prime}\right)$ was

2w

2w' obtained in 58% yield (31.7 mg) as colorless oil ($\mathbf{2 w} \mathbf{w} \mathbf{2} \mathbf{w}^{\prime}$ $=52: 48$, the regioisomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR analysis of crude reaction mixture). ${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.26(\mathrm{~m}, \mathbf{3 . 3 8 H})(\mathbf{2 w + 2 w ') , ~}$ $7.22-7.16(\mathrm{~m}, 5.15 \mathrm{H})(\mathbf{2 w}+\mathbf{2 w}), 5.95-5.80(\mathrm{~m}, 2.42 \mathrm{H})$ $\left(2 \mathbf{w}+\mathbf{2 w} \mathbf{w}^{\prime}\right), 5.50(\mathrm{ddt}, J=15.2,8.8,1.5 \mathrm{~Hz}, 1 \mathrm{H})(\mathbf{2 w})$, $4.51(\mathrm{td}, J=8.8,5.2 \mathrm{~Hz}, 1 \mathrm{H})(\mathbf{2 w}), 4.31(\mathrm{td}, J=7.7,6.0 \mathrm{~Hz}, 0.68 \mathrm{H})(\mathbf{2 w}), 3.93$ (dd, J $=6.8,1.2 \mathrm{~Hz}, 1.36 \mathrm{H})(\mathbf{2 w}), 3.64(\mathrm{dd}, J=10.3,5.2 \mathrm{~Hz}, 1 \mathrm{H})(\mathbf{2 w}), 3.49(\mathrm{dd}, J=10.3$, $8.8 \mathrm{~Hz}, \mathbf{1 H})(\mathbf{2 w}), 2.80-2.70(\mathrm{~m}, \mathbf{3 . 4 H})(\mathbf{2 w}+\mathbf{2 w}$ '), $2.45-2.38(\mathrm{~m}, \mathbf{2 H})(\mathbf{2 w}), 2.19-$ $2.06(\mathrm{~m}, 1.38 \mathrm{H})(\mathbf{2 w}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 2w: δ 141.3, 136.2, 128.7, 128.6, 128.5, 126.1, 60.7, 35.8, 35.3, 33.9. 2w': $\delta 140.6,135.1,128.8,128.7,128.4,126.4$, 60.5, 39.8, 32.6, 31.2. HRMS (ESI): m/z calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{BrCl}^{+}-\mathrm{Cl}\right]: 237.0278$, found: 237.0301.
(2-(3-bromo-2-chloropropylidene)propane-1,3-diyl)dibenzene (2x)
Following the general procedure A, $\mathbf{2 x}$ was obtained in 52%
 yield $(36.4 \mathrm{mg})$ as colorless oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.34-7.27$ (m, 5H), $7.23-7.11(\mathrm{~m}, 5 \mathrm{H}), 5.48(\mathrm{~d}, J=9.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.01(\mathrm{td}, J=9.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=9.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=9.9,9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 145.0,138.6,138.3,129.3,129.0,128.7,128.6,126.7,126.6$, 126.6, 55.8, 42.8, 36.1, 35.9. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{BrCl}^{+}-\mathrm{Cl}\right]$: 313.0591, found: 313.0598 .
(Z)-(1-bromo-4-chlorobut-2-en-2-yl)benzene (3a)

Following the general procedure $\mathrm{B}, \mathbf{3 a}$ was obtained in 77% yield
 $\left(37.8 \mathrm{mg}, Z / E=77: 23, \mathbf{3 a}: 3 \mathbf{a}^{\prime}>98: 2\right)$ as colorless oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 2 \mathrm{H})$, $7.36(\mathrm{~m}, 1 \mathrm{H}), 6.12(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 4.32(\mathrm{~d}, J=$
$8.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 141.0,139.0,128.8,128.7,128.1,126.4$,
39.6, 27.1. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrCl}^{+}-\mathrm{Cl}\right]$: 208.9965, found: 208.9973.
(Z)-1-(1-bromo-4-chlorobut-2-en-2-yl)-4-chlorobenzene (3b)

Following the general procedure B, $\mathbf{3 b}$ was obtained in 76%
 yield $\left(42.6 \mathrm{mg}, Z / E=78: 22, \mathbf{3 b}: 3 \mathbf{b b}^{\mathbf{\prime}}=98: 2\right)$ as colorless oil. ${ }^{[9]}$ ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.36-$ $7.33(\mathrm{~m}, 2 \mathrm{H}), 6.10(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H}), 4.29(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 139.9,137.4,134.6,129.0,128.4$, 127.7, 39.4, 26.7. HRMS (ESI): m/z calculated for [$\left.\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrCl}_{2}{ }^{+}-\mathrm{Cl}\right]$: 242.9576, found: 242.9576.
(Z)-1-(1-bromo-4-chlorobut-2-en-2-yl)-4-fluorobenzene (3c)

Following the general procedure B, $\mathbf{3 c}$ was obtained in 80%
 yield ($40.5 \mathrm{mg}, Z / E=79: 21, \mathbf{3 c}: 3 \mathbf{c}^{\prime}=97: 3$) as colorless oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47$ - $7.42(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.04$ (m, 2H), $6.07(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H}), 4.30(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 163.0(\mathrm{~d}, J=248.4 \mathrm{~Hz}$), 140.0, $135.1(\mathrm{~d}, J=$ $3.4 \mathrm{~Hz}), 130.3(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 128.2(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 128.0(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 115.8(\mathrm{~d}, J$ $=21.6 \mathrm{~Hz}), 39.5,27.0 .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-113.16 (ddd, $J=13.9,8.7,5.3$ Hz). HRMS (ESI): m/z calculated for [$\left.\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrClF}^{+}-\mathrm{Cl}\right]:$ 226.9871, found: 226.9878.
(Z)-1-(1-bromo-4-chlorobut-2-en-2-yl)-4-(tert-butyl)benzene (3d)
 Following the general procedure B, 3d was obtained in 74\% yield ($44.6 \mathrm{mg}, Z / E=78: 22, \mathbf{3 d}: 3 \mathbf{d}^{\prime}=96: 4$) as colorless oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.40(\mathrm{~m}, 4 \mathrm{H}), 6.13$ (t, J $=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 4.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.33(\mathrm{~s}$, 9H). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.8,140.7,135.9,127.3,125.9,125.7,39.8$, 34.8, 31.4, 27.0. HRMS (ESI): m/z calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{BrCl}^{+}-\mathrm{Cl}\right]: 265.0591$, found: 265.0592.
(Z)-1-(1-bromo-4-chlorobut-2-en-2-yl)-4-methoxybenzene (3e)

Following the general procedure B, $\mathbf{3 e}$ was obtained in 83%
 yield ($45.9 \mathrm{mg}, Z / E=84: 16, \mathbf{3 e}: \mathbf{3 e}=97: 3$) as colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.39(\mathrm{~m}, 2 \mathrm{H}), 6.92-$ $6.88(\mathrm{~m}, 2 \mathrm{H}), 6.06(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~s}, 2 \mathrm{H}), 4.31(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $3.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.0,140.5,129.7,127.6$, 126.3, 114.2, 55.5, 39.9, 27.2. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BrClO}^{+}-\mathrm{Cl}\right]$: 239.0071, found: 239.0075 .
(Z)-(4-(1-bromo-4-chlorobut-2-en-2-yl)phenoxy)(tert-butyl)dimethylsilane (3f)

Following the general procedure B, $\mathbf{3 f}$ was obtained in 81% yield ($60.9 \mathrm{mg}, Z / E=88: 12, \mathbf{3 f : 3 f ^ { \prime }}=97: 3$) as colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 6.85$
$-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.07(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}), 4.31$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.21(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.3$, 140.6, 129.7, 127.5, 126.4, 120.3, 39.9, 27.2, 25.8, 18.4, -4.2. HRMS (ESI): m/z calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{BrClOSi}^{+}-\mathrm{Cl}\right]: 339.0779$, found: 339.0784 .
(Z)-((4-(1-bromo-4-chlorobut-2-en-2-yl)phenyl)ethynyl)trimethylsilane (3g)

Following the general procedure $\mathrm{B}, \mathbf{3 g}$ was obtained in 70% yield ($47.7 \mathrm{mg}, Z / E=81: 19, \mathbf{3 g}: \mathbf{3 g}^{\prime}=93: 7$) as colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48-$ 7.45 (m, 2H), $7.43-7.38(\mathrm{~m}, 2 \mathrm{H}), 6.15(\mathrm{t}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H}), 4.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.26(\mathrm{~s}$, 9H). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.3,138.9,132.4,128.6,128.4,126.1,104.7$, 95.8, 39.5, 26.6, 0.1. HRMS (ESI): m/z calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{BrClSi}^{+}-\mathrm{Cl}\right]: 305.0361$, found: 305.0360.
(Z)-4-(1-bromo-4-chlorobut-2-en-2-yl)phenyl 4-methylbenzenesulfonate (3h)

Following the general procedure B, $\mathbf{3 h}$ was obtained in 78% yield ($64.8 \mathrm{mg}, Z / E=78: 22, \mathbf{3 h}: \mathbf{3} \mathbf{h}^{\prime}=97: 3$) as pale yellow oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.41$ $-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.97(\mathrm{~m}, 2 \mathrm{H})$, $6.08(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 4.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 149.7,145.6,139.7,138.0,132.4,130.0,128.9,128.6,127.6$, 122.7, 39.4, 26.7, 21.9. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrClO}_{3} \mathrm{~S}^{+}-\mathrm{Cl}\right]$: 379.0003, found: 378.9999 .
(Z)-4-(1-bromo-4-chlorobut-2-en-2-yl)-1,1'-biphenyl (3i)

Following the general procedure B, $\mathbf{3 i}$ was obtained in 75% yield ($48.3 \mathrm{mg}, Z / E=82: 18, \mathbf{3 i} \mathbf{i} \mathbf{3 i}^{\prime}=93: 7$) as colorless oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60(\mathrm{~m}, 4 \mathrm{H}), 7.56-7.53$ (m, 2H), $7.47-7.42$ (m, 2H), $7.38-7.34$ (m, 1H), 6.19 (t, $J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H}), 4.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 141.5, 140.5, 140.4, 137.7, 129.0, 127.9, 127.7, 127.5, 127.2, 126.7, 39.7, 26.9. HRMS (ESI): m / z calculated for [$\left.\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{BrCl}^{+}-\mathrm{Cl}\right]: 285.0278$, found: 285.0283.
(Z)-1-(1-bromo-4-chlorobut-2-en-2-yl)-3-chlorobenzene ($\mathbf{3} \mathbf{j}$)

Following the general procedure $\mathrm{B}, \mathbf{3} \mathbf{j}$ was obtained in 70%
 yield ($39.0 \mathrm{mg}, Z / E=65: 35, \mathbf{3 j}: \mathbf{3 j} \mathbf{j}=97: 3$) as colorless oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.37-$ $7.34(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~m}, 1 \mathrm{H}), 6.12(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~s}$, $2 \mathrm{H}), 4.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.9,139.8,134.8$, 130.1, 129.2, 128.7, 126.6, 124.6, 39.3, 26.6. HRMS (ESI): m/z calculated for [$\left.\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrCl}_{2}{ }^{+}-\mathrm{Cl}\right]: 242.9576$, found: 242.9588 .
(Z)-1-(1-bromo-4-chlorobut-2-en-2-yl)-3,5-dimethylbenzene (3k)

Following the general procedure $\mathrm{B}, \mathbf{3 k}$ was obtained in 78% yield ($42.6 \mathrm{mg}, Z / E=76: 24, \mathbf{3 k}: 3 \mathbf{k}^{\prime}=94: 6$) as colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.08-7.06(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.98$ (m, 1H), 6.09 (t, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.36 (s, 2H), 4.30 (d, $J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}$), $2.34(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.2$, 139.0, 138.3, 130.4, 127.7, 124.2, 39.8, 27.3, 21.5. HRMS (ESI): m/z calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{BrCl}^{+}-\mathrm{Cl}\right]: 237.0278$, found: 237.0281.
(Z)-2-(1-bromo-4-chlorobut-2-en-2-yl)-9H-fluorene (3I)

Following the general procedure $\mathrm{B}, \mathbf{3 1}$ was obtained in 43% yield ($28.7 \mathrm{mg}, Z / E=77: 23,31: 31{ }^{\prime}=94: 6$) as colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80-7.77$ $(\mathrm{m}, 2 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.47$ (m, 1H), $7.41-7.36$ (m, 1H), 7.32 (m, 1H), 6.19 (td, $J=8.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=$ $1.3 \mathrm{~Hz}, 2 \mathrm{H}$), 4.35 (dd, $J=8.1,1.3 \mathrm{~Hz}, 2 \mathrm{H}$), $3.92(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.8,143.7,142.3,141.3,141.2,137.5,127.6,127.2,127.0,125.2,125.2,123.0$, 120.2, 120.1, 39.8, 37.1, 27.4. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrCl}^{+}-\mathrm{Cl}\right]$: 297.0278, found: 297.0275
(Z)-3-(1-bromo-4-chlorobut-2-en-2-yl)-1-tosyl-1 H-indole (3m)

Following the general procedure B, $\mathbf{3 m}$ was obtained in 57% yield ($50.0 \mathrm{mg}, Z / E=67: 33, \mathbf{3 m}: 3 \mathbf{m}^{\prime}=94: 6$) as pale yellow oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03-7.99(\mathrm{~m}, 1 \mathrm{H}), 7.82$ - 7.77 (m, 3H), $7.73-7.67$ (m, 1H), $7.38-7.33$ (m, 1H), 7.32 $-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.31(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.34(\mathrm{~m}, 4 \mathrm{H}), 2.35$ (s, 3H). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.4,135.4,134.9,133.8,130.1,128.7,128.5$, 127.1, 125.3, 124.5, 123.9, 121.2, 120.7, 114.0, 39.3, 27.4, 21.8. HRMS (ESI): m/z calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{BrClNO}_{2}{ }^{+}-\mathrm{Cl}\right]: 402.0163$, found: 402.0160.

1-((Z)-1-bromo-4-chlorobut-2-en-2-yl)-4-((($1 R, 2 S, 5 R)$-2-isopropyl-5methylcyclohexyl)oxy)benzene (3n)

Following the general procedure $\mathrm{B}, \mathbf{3 n}$ was obtained in
 50% yield ($40.0 \mathrm{mg}, Z / E=90: 10, \mathbf{3 n}: 3 \mathbf{n}^{\prime}=97: 3$) as colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.37$ (m, 2H), $6.91-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.07(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.65(\mathrm{~m}, 1 \mathrm{H}) 4.37(\mathrm{~s}, 2 \mathrm{H}), 4.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.15$ - $2.04(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.61(\mathrm{~m}, 6 \mathrm{H}), 1.11-0.98(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.85$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.8$, 140.6, 129.7, 127.5, 126.0, 115.7, 73.4, 47.9, 40.0, 37.7, 35.1, 29.4, 27.2, 26.3, 25.0, 22.4, 21.2, 21.0. HRMS (ESI): m/z calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{BrClO}^{+}-\mathrm{Cl}\right]: 363.1323$, found: 363.1317.
(Z)-4-(1-bromo-4-chlorobut-2-en-2-yl)phenyl

2-(2-fluoro-[1,1'-biphenyl]-4yl)propanoate (30)

Following the general procedure $\mathrm{B}, \mathbf{3 0}$ was obtained in 76% yield ($74.1 \mathrm{mg}, Z / E=83: 17$, 30:3o' $=98: 2$) as colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.47-$ 7.42 (m, 5H), $7.41-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.23$ $(\mathrm{m}, 2 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.08(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H}), 4.28(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 4.00(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $172.4,159.9$ (d, $J=248.7 \mathrm{~Hz}$), 151.0, 141.2 (d, $J=7.7 \mathrm{~Hz}$), 140.1, 136.8, 135.5, 131.2 (d, $J=4.0 \mathrm{~Hz}$), 129.6, 129.1 (d, $J=3.0 \mathrm{~Hz}$), 128.6, 128.3, 127.9, 127.5, 123.7 (d, $J=$ $3.4 \mathrm{~Hz}), 121.7,115.5(\mathrm{~d}, ~ J=23.8 \mathrm{~Hz}), 45.3,39.5,26.9,18.5$. HRMS (ESI): m/z calculated for $\left[\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{BrClFO}_{2}{ }^{+}-\mathrm{Cl}\right]: 451.0708$, found: 451.0707.
(Z)-4-(1-bromo-4-chlorobut-2-en-2-yl)phenyl dimethylpentanoate (3p)

5-(2,5-dimethylphenoxy)-2,2Following the general procedure B , 3p was obtained in 80% yield (79.0 $\mathrm{mg}, Z / E=82: 18, \mathbf{3 p}: 3 \mathbf{p}^{\prime}=98: 2$) as colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.10(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}), 4.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, 2H), $3.98(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~m}, 4 \mathrm{H}), 1.37(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13}$ C NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.3,157.0,151.3,140.2,136.6,136.6,130.5,128.2,127.5,123.8$, 121.9, 120.9, 112.1, 67.9, 42.6, 39.5, 37.3, 27.0, 25.4, 25.3, 21.6, 15.9. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{BrClO}_{3}{ }^{+}-\mathrm{Cl}\right]: 457.1378$, found: 457.1384.
(E)-(3-azido-4-bromobut-1-en-1-yl)benzene (4a)
 7.39 (m, 2H), $7.38-7.27$ (m, 3H), 6.73 (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dd}, J=15.8,7.9 \mathrm{~Hz}$, 1 H), 4.35 (dddd, $J=7.9,6.6,5.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.50-3.41$ (m, 2H). ${ }^{13}$ C NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.7,135.5,128.9,128.8,127.0,124.0,64.8,34.4$. HRMS (ESI): m/z calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrN}_{3}{ }^{+}-\mathrm{N}_{3}\right]$: 208.9966, found: 208.9967.
(E)-1-(3-azido-4-bromobut-1-en-1-yl)-4-chlorobenzene (4b)

Following the general procedure C, $\mathbf{4 b}$ was obtained in 91%
 yield (52.2 mg) as colorless oil, using ethyl acetate/petroleum ether 1:20 as eluent. ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.37-7.30(\mathrm{~m}, 4 \mathrm{H}), 6.68(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.11$ (dd, $J=15.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.34 (dddd, $J=7.8,6.6,5.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.53-3.38$ (m, $2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) δ 134.6, 134.4, 134.0, 129.1, 128.2, 124.7, 64.6, 34.2. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrClN}_{3}{ }^{+}-\mathrm{N}_{3}\right]:$ 242.9576, found: 242.9578.
(E)-1-(3-azido-4-bromobut-1-en-1-yl)-4-bromobenzene (4c)

Following the general procedure C, $\mathbf{4 c}$ was obtained in 82% yield (54.6 mg) as pale yellow oil, using ethyl acetate/petroleum ether (1:20) as eluent. ${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.51-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{dq}, J=8.2,1.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.67(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.13$ (ddd, $J=15.8,7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.27(\mathrm{~m}, 1 \mathrm{H})$,
$3.52-3.39(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 134.4,132.0,128.5,124.8,122.7$, 64.6, 34.2. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{Br}_{2} \mathrm{~N}_{3}{ }^{+}-\mathrm{N}_{3}\right]:$ 286.9071, found: 286.9075.
(E)-1-(3-azido-4-bromobut-1-en-1-yl)-4-fluorobenzene (4d)

Following the general procedure C, $\mathbf{4 d}$ was obtained in 92% yield (49.8 mg) as colorless oil, using ethyl acetate/petroleum ether (1:20) as eluent. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42$ 7.36 (m, 2H), $7.07-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.06 (dd, $J=15.8,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.34$ (dddd, $J=7.9,6.6,5.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.50-3.40$ $(\mathrm{m}, 2 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-112.58(\mathrm{ddd}, J=13.8,8.7,5.4 \mathrm{~Hz}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.1(\mathrm{~d}, J=248.6 \mathrm{~Hz}), 134.5,131.7(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 128.6$ (d, J $=8.1 \mathrm{~Hz}), 123.8(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 115.9(\mathrm{~d}, J=21.7 \mathrm{~Hz}), 64.7,34.3$. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrFN}_{3}{ }^{+}-\mathrm{N}_{3}\right]$: 226.9872, found: 226.9873.
(E)-1-(3-azido-4-bromobut-1-en-1-yl)-3-methylbenzene (4e)

Following the general procedure C, $\mathbf{4 e}$ was obtained in 89% yield (47.4 mg) as colorless oil, using ethyl acetate/petroleum ether (1:20) as eluent. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.12 (dd, $J=15.8,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.33$ (dddd, $J=7.9,6.6,5.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.53-3.37$ $(\mathrm{m}, 2 \mathrm{H}) 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.5,135.9,135.4,129.6,128.8$, 127.6, 124.2, 123.7, 64.9, 34.4, 21.5. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BrN}_{3}{ }^{+}\right.$$\mathrm{N}_{3}$]: 223.0123, found: 223.0126.
(E)-1-(3-azido-4-bromobut-1-en-1-yl)-2-methylbenzene (4f)

Following the general procedure, $\mathbf{4 f}$ was obtained in 85% yield $(45.0 \mathrm{mg})$ as colorless oil, using ethyl acetate/petroleum ether (1:20) as eluent. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.18$ (m, $3 \mathrm{H}), 7.14-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.12$ (dd, $J=15.8,7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.33 (dddd, $J=7.9,6.6,5.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.37(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 136.0,134.8,133.9,130.6,128.6,126.4,126.2,125.3,64.9,34.3,20.0$. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BrN}_{3}{ }^{+}-\mathrm{N}_{3}\right]:$ 223.0123, found: 223.0121.
(E)-1-(3-azido-4-bromobut-1-en-1-yl)-2-methylbenzene (4g)

$4 g$

Following the general procedure $\mathrm{C},\left(\mathbf{4} \mathbf{g}+\mathbf{4} \mathbf{g}^{\prime}\right)$ was obtained in 82% yield ($49.6 \mathrm{mg}, \mathbf{4 g}: \mathbf{4 g}^{\prime}=79: 21$) as colorless oil, using ethyl acetate/petroleum ether (1:10) as eluent. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \delta$ $8.05-7.99(\mathrm{~m}, 2.56 \mathrm{H})\left(\mathbf{4 g}+\mathbf{4 g} \mathbf{g}^{\prime}\right), 7.50-7.44(\mathrm{~m}$, $2.56 \mathrm{H})\left(\mathbf{4 g}+\mathbf{4 g} \mathbf{g}^{\prime}\right), 6.77(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H})(\mathbf{4 g}), 6.71$ (d, $J=15.7 \mathrm{~Hz}, 0.28 \mathrm{H})\left(4 \mathrm{~g}^{\prime}\right), 6.41(\mathrm{dd}, J=15.7,9.5$ $\mathrm{Hz}, 0.28 \mathrm{H})\left(\mathbf{4 g}^{\prime}\right), 6.25(\mathrm{dd}, J=15.9,7.6 \mathrm{~Hz}, 1 \mathrm{H})(\mathbf{4 g}), 4.77$ (dddd, $J=9.5,6.8,6.0,0.7$ $\mathrm{Hz}, 0.28 \mathrm{H})\left(\mathbf{4 g}^{\prime}\right), 4.38(\mathrm{dddd}, J=7.6,6.6,5.6,1.1 \mathrm{~Hz}, 1 \mathrm{H})(\mathbf{4 g}), 3.92(\mathrm{~s}, 3 \mathrm{H})(\mathbf{4 g}), 3.92$ $(\mathrm{s}, 0.84 \mathrm{H})\left(4 \mathrm{~g}^{\prime}\right), 3.81-3.69(\mathrm{~m}, 0.56 \mathrm{H})(\mathbf{4 g}), 3.54-3.42(\mathrm{~m}, 2 \mathrm{H})(\mathbf{4 g}) .{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4 \mathrm{~g}: \delta 166.8,139.8,134.5,130.2,130.2,126.9,126.7,64.5,52.3,34.0$. 4g': 166.8, 139.8, 133.5, 130.1, 129.2, 127.0, 126.9, 57.0, 50.8, 34.8. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{BrN}_{3} \mathrm{O}_{2}{ }^{+}-\mathrm{N}_{3}\right]$: 267.0021 , found: 267.0021 .
(E)-1-(3-azido-4-bromobut-1-en-1-yl)-4-nitrobenzene (4h)

4h'

Following the general procedure C , $(\mathbf{4} \mathbf{h}+\mathbf{4} \mathbf{h})$ was obtained in 78% yield $\left(46.2 \mathrm{mg}, \mathbf{4 h}: \mathbf{4} \mathbf{h}^{\prime}=38: 62\right)$ as pale yellow oil, using ethyl acetate/petroleum ether $(1: 10)$ as eluent. $\mathbf{4 h}$ and $\mathbf{4 h}$ ' were determined by analysis of ${ }^{1} \mathrm{H}^{13}{ }^{13} \mathrm{C}$ HSQC spectroscopy. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.25$ - 8.18 (m, 3.28H) (4h+4h'), $7.59-7.52$ (m, 3.29H) $(\mathbf{4 h}+\mathbf{4 h}$ '), $6.81(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 0.64 \mathrm{H})(\mathbf{4 h}), 6.76(\mathrm{~d}, J=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H})(\mathbf{4 h} \mathbf{h}), 6.47$ (dd, $J=15.7,9.4 \mathrm{~Hz}, 1 \mathrm{H})\left(\mathbf{4 h}^{\prime}\right), 6.32(\mathrm{dd}, J=15.9,7.4 \mathrm{~Hz}$, $0.64 \mathrm{H})(\mathbf{4 h}), 4.76(\mathrm{~m}, 1 \mathrm{H})\left(\mathbf{4} \mathbf{h}^{\prime}\right), 4.45-4.38(\mathrm{~m}, 0.64 \mathrm{H})(\mathbf{4 h}), 3.84-3.71(\mathrm{~m}, 2 \mathrm{H})\left(\mathbf{4} \mathbf{h}^{\prime}\right)$, $3.53-3.47$ (m, 1.29H) (4h). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 4h: $\delta 147.7,141.8,133.2$, 128.9, 127.6, 124.3, 64.1, 33.7. ${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) 4h': $\delta 147.8,141.8,132.2$, 131.2, 127.7, 124.2, 56.9, 49.9. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrN}_{4} \mathrm{O}_{2}{ }^{+}-\mathrm{N}_{3}\right]$:
(E)-2-(3-azido-4-bromobut-1-en-1-yl)naphthalene (4i)

Following the general procedure C, $\mathbf{4 i}$ was obtained in 85% yield (51.4 mg) as colorless oil, using ethyl acetate/petroleum ether (1:20) as eluent. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86-7.77(\mathrm{~m}, 4 \mathrm{H}), 7.60(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.44$ (m, $2 \mathrm{H}), 6.88(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dd}, J=15.8,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.40$ (dddd, $J=7.9,6.6$, $5.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.43(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.7,133.6$, 132.9, 128.6, 128.3, 127.9, 127.6, 126.7, 126.6, 124.2, 123.5, 64.9, 34.4. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{BrN}_{3}{ }^{+}-\mathrm{N}_{3}\right]$: 259.0123, found: 259.0127.
(E)-1-(3-azido-4-bromobut-1-en-1-yl)naphthalene (4j)

Following the general procedure C, $\mathbf{4} \mathbf{j}$ was obtained in 95% yield (57.3 mg) as colorless oil, using ethyl acetate/petroleum ether (1:20) as eluent. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08(\mathrm{dd}$, $J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57-7.43$ (m, 4H), 6.16 (dd, $J=15.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.47 (dddd, $J=7.8,6.6,5.8$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.47(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.7,133.4,133.2$, 131.2, 129.1, 128.8, 127.2, 126.6, 126.2, 125.7, 124.6, 123.7, 64.8, 34.3. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{BrN}_{3}{ }^{+}-\mathrm{N}_{3}\right]:$ 259.0123, found: 259.0134 .
(E)-2-(3-azido-4-bromobut-1-en-1-yl)thiophene (4k)

Following the general procedure $\mathrm{C}, \mathbf{4 k}$ was obtained in 62% yield $(32.0 \mathrm{mg})$ as brownish yellow oil, using ethyl acetate/petroleum ether (1:20) as eluent. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24(\mathrm{dt}, J$ $=5.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dt}, J=3.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=5.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86$ (dq, $J=15.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{dd}, J=15.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.31$ (dddd, $J=7.8,6.6,5.4$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.38(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.3,128.5,127.7$, 127.6, 125.8, 123.2, 64.7, 34.2. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BrN}_{3} \mathrm{~S}^{+}-\mathrm{N}_{3}\right]$: 214.9530, found: 214.9533 .
(3-azido-4-bromobut-1-ene-1,1-diyl)dibenzene (4l)

Following the general procedure C, $\mathbf{4 1}$ was obtained in 72% yield $(47.1 \mathrm{mg})$ as colorless oil, using ethyl acetate/petroleum ether (1:20) as eluent. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.37$ (m, 3H), 7.33 - 7.26 (m, 5H), $7.24-7.19$ (m, 2H), 6.05 (d, $J=9.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.30(\mathrm{dt}, J=9.8,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.37(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 148.9,140.6,138.4,129.7,128.8,128.6,128.5,128.2$, 127.7, 122.9, 60.7, 34.7. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{BrN}_{3}{ }^{+}-\mathrm{N}_{3}\right]$: 285.0279, found: 285.0280 .

4,4'-(3-azido-4-bromobut-1-ene-1,1-diyl)bis(fluorobenzene) (4m)

Following the general procedure C, $\mathbf{4 m}$ was obtained in 78% yield (56.7 mg) as colorless oil, using ethyl acetate/petroleum ether (1:20) as eluent. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-$ $7.21(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.10(\mathrm{~m}, 4 \mathrm{H}), 7.05-6.97(\mathrm{~m}, 2 \mathrm{H}), 5.99$ (d, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.25 (dt, $J=9.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.41$ (d, J $=6.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-112.94--$ 113.04 (m), -113.06--113.15 (m). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.1(\mathrm{~d}, J=249.0$ $\mathrm{Hz}), 162.7$ ($\mathrm{d}, ~ J=249.0 \mathrm{~Hz}$), $146.9,136.7(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 134.1(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 131.5$ (d, $J=8.1 \mathrm{~Hz}$), 129.5 (d, $J=8.2 \mathrm{~Hz}$), 123.2, $116.0(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 115.5(\mathrm{~d}, J=21.6$ $\mathrm{Hz}), 60.6,34.3$. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{BrF}_{2} \mathrm{~N}_{3}{ }^{+}-\mathrm{N}_{3}\right]: 321.0091$, found: 321.0095 .
(E)-(3-azido-4-bromo-2-methylbut-1-en-1-yl)benzene (4n)

Following the general procedure C, $\mathbf{4 n}$ was obtained in 86% yield $(48.3 \mathrm{mg}, 4,3$-adduct: 4,1 -adduct $=67: 33$) as colorless oil, using ethyl acetate/petroleum ether (1:20) as eluent. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.33$ (m, 3.2H) (4n+4n'), 7.31 $7.26(\mathrm{~m}, 3.8 \mathrm{H})\left(\mathbf{4 n}+\mathbf{4 n} \mathbf{n}^{\prime}\right), 6.61(\mathrm{~s}, 1 \mathrm{H})(\mathbf{4 n}), 6.09-6.00(\mathrm{~m}, 0.4 \mathrm{H})\left(\mathbf{4 n} \mathbf{n}^{\prime}\right), 5.04(\mathrm{~s}, 0.4 \mathrm{H})$ $\left(4 \mathbf{n}^{\prime}\right), 4.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})(\mathbf{4 n}), 4.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.8 \mathrm{H})\left(4 \mathbf{n}^{\prime}\right), 3.51-3.43(\mathrm{~m}, 2 \mathrm{H})$
$(\mathbf{4 n}), 1.89(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H})(\mathbf{4 n}), 1.59(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1.2 \mathrm{H})\left(4 \mathbf{n}^{\prime}\right) .{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathbf{4 n}: \delta 139.5,136.3,131.4,129.2,128.4,127.4,71.1,32.6,13.6 .4 \mathbf{n}^{\prime}: \delta$ 137.2, 133.0, 128.9, 128.4, 127.2, 124.6, 71.2, 27.4, 13.1. HRMS (ESI): m/z calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BrN}_{3}{ }^{+}-\mathrm{N}_{3}\right]: 223.0123$, found: 223.0126.
(Z)-(3-azido-2,4-dibromobut-1-en-1-yl)benzene (40)

Following the general procedure C, $\mathbf{4 0}$ was obtained in 81% yield $(53.4 \mathrm{mg}, 4,3$-adduct:4,1-adduct $=55: 45)$ as colorless oil, using ethyl acetate/petroleum ether (1:20) as eluent. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.31(\mathrm{~m}, 6.4 \mathrm{H})$, $7.16(\mathrm{~s}, 1 \mathrm{H})(\mathbf{4 o}), 6.53(\mathrm{td}, J=7.9,1.1 \mathrm{~Hz}, 0.68 \mathrm{H})\left(4 \mathbf{o}^{\prime}\right), 5.28(\mathrm{~s}, 0.68 \mathrm{H})\left(4 \mathbf{o}^{\prime}\right), 4.48(\mathrm{t}$, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H})(4 \mathrm{o}), 4.11$ (d, $J=7.9 \mathrm{~Hz}, 1.36 \mathrm{H})\left(4 \mathrm{o}^{\prime}\right), 3.65(\mathrm{dd}, J=10.7,6.4 \mathrm{~Hz}, 1 \mathrm{H})$ (40), 3.53 (dd, $J=10.6,7.1 \mathrm{~Hz}, 1 \mathrm{H})(\mathbf{4 o}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 40: $\delta 134.2$, 133.4, 129.4, 129.0, 128.5, 127.6, 70.3, 32.4. 4o': $\delta 135.8,133.5,129.2,129.1,128.0$, 121.0, 70.8, 28.6. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{Br}_{2} \mathrm{~N}_{3}{ }^{+}-\mathrm{N}_{3}\right]$: 286.9071, found: 286.9073.
(E)-(3-azido-4-bromo-3-methylbut-1-en-1-yl)benzene (4p)

Following the general procedure C, $\mathbf{4 p}$ was obtained in 72% yield (38.3 mg) as colorless oil, using ethyl acetate/petroleum ether (1:20) as eluent. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.39$ (m, 2H), $7.37-7.27(\mathrm{~m}, 3 \mathrm{H}), 6.71(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.51$ $-3.44(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.8,132.3,128.9,128.6$, 126.9, 63.9, 40.8, 22.8. HRMS (ESI): m/z calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BrN}_{3}{ }^{+}-\mathrm{N}_{3}\right]:$ 223.0123, found: 223.0118.

(E)-(3-azido-4-bromopent-1-en-1-yl)benzene (4q)

Following the general procedure C, $\mathbf{4 q}$ was obtained in 88% yield

(46.8 mg, $\mathrm{dr}=54: 46$) as colorless oil, using ethyl acetate/petroleum ether (1:20) as eluent. ${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 3 \mathrm{H}), 6.72(\mathrm{~d}, J=$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{dd}, J=8.0,4.9 \mathrm{~Hz}, 0.54 \mathrm{H}), 6.20(\mathrm{dd}, J=8.0,4.9 \mathrm{~Hz}, 0.46 \mathrm{H}), 4.24$
$-4.15(\mathrm{~m}, 1.46 \mathrm{H}), 4.14-4.07(\mathrm{~m}, 0.54 \mathrm{H}), 1.73(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1.38 \mathrm{H}), 1.71(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 1.62 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 136.5,136.0,135.6,128.9,128.8,127.0$, 127.0, 123.7, 123.4, 70.0, 69.7, 51.0, 50.8, 22.6, 22.0. HRMS (ESI): m/z calculated for [$\left.\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BrN}_{3}{ }^{+}-\mathrm{N}_{3}\right]$: 223.0123, found: 223.0131. Since the product is mixtures of diastereomers, not all ${ }^{13} \mathrm{C}$ NMR signals are resolved.
(E)-(3-azido-4-bromooct-1-en-1-yl)benzene (4r)

Following the general procedure $\mathrm{C}, \mathbf{4 r}$ was obtained in 92% yield ($56.5 \mathrm{mg}, \mathrm{dr}=58: 42$) as colorless oil, using ethyl acetate/petroleum ether ($1: 20$) as eluent. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.27(\mathrm{~m}$, $3 \mathrm{H}), 6.72$ (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.33-6.19$ (m, 1H), $4.28-4.21$ (m, 1H), 4.05 (dt, $J=$ $9.2,4.5 \mathrm{~Hz}, 0.58 \mathrm{H}), 3.99(\mathrm{dt}, J=9.3,4.7 \mathrm{~Hz}, 0.42 \mathrm{H}) ., 1.96-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.56$ $(\mathrm{m}, 1 \mathrm{H}), 1.46-1.26(\mathrm{~m}, 3 \mathrm{H}), 0.95-0.87(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 136.4, 135.7, 135.7, 128.9, 128.7, 128.7, 127.0, 127.0, 124.2, 123.6, 68.8, 68.6, 58.2, 58.1, 35.1, 34.7, 29.8, 29.8, 22.2, 22.2, 14.0. HRMS (ESI): m/z calculated for [$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{BrN}_{3}{ }^{+}-\mathrm{N}_{3}$]: 265.0592, found: 265.0598. Since the product is mixtures of diastereomers, not all ${ }^{13} \mathrm{C}$ NMR signals are resolved.
(E)-((3-azido-2-bromo-5-phenylpent-4-en-1-yl)oxy)(tert-butyl)dimethylsilane (4s)

Following the general procedure $\mathrm{C}, \mathbf{4 s}$ was obtained in 76% yield ($60.3 \mathrm{mg}, \mathrm{dr}=63: 37$) as colorless oil, using ethyl acetate/petroleum ether (1:20) as eluent. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.27(\mathrm{~m}$, $3 \mathrm{H}), 6.78-6.66(\mathrm{~m}, 1 \mathrm{H}), 6.36-6.23(\mathrm{~m}, 1 \mathrm{H}), 4.58-4.46(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{dt}, J=8.1$, $4.7 \mathrm{~Hz}, 0.37 \mathrm{H}), 4.04-3.97(\mathrm{~m}, 0.63 \mathrm{H}), 3.95-3.86(\mathrm{~m}, 1.63 \mathrm{H}), 3.77$ (dd, $J=10.7,8.2$ $\mathrm{Hz}, 0.37 \mathrm{H}), 0.95-0.90(\mathrm{~m}, 9 \mathrm{H}), 0.11(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3.78 \mathrm{H}), 0.07(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2.22 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.8,135.8,135.4,128.9,128.7,128.7,127.0,127.0$, $124.6,122.9,64.8,64.4,64.4,64.0,56.3,55.9,26.0,26.0,18.4,18.4,-5.2,-5.2,-5.3,-$ 5.3. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{BrN}_{3} \mathrm{OSi}^{+}-\mathrm{N}_{3}\right]$: 353.0937, found: 353.0978. Since the product is mixtures of diastereomers, not all ${ }^{13} \mathrm{C}$ NMR signals are
resolved.
(E)-3-azido-2-bromo-5-phenylpent-4-en-1-yl benzoate (4t)

Following the general procedure C, $\mathbf{4 t}$ was obtained in 81% yield $(62.4 \mathrm{mg}, \mathrm{dr}=64: 36)$ as colorless oil, using ethyl acetate/petroleum ether (1:10) as eluent. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 1 \mathrm{H})$, $7.48-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 3 \mathrm{H}), 6.83-6.71(\mathrm{~m}, 1 \mathrm{H}), 6.38-6.23(\mathrm{~m}, 1 \mathrm{H})$, $4.72-4.55(\mathrm{~m}, 2 \mathrm{H}), 4.52-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.38-4.33(\mathrm{~m}, 0.36 \mathrm{H}), 4.33-4.27(\mathrm{~m}$, $0.64 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.8,165.8,137.1,136.4,135.3,133.6,133.5$, 129.9, 129.9, 129.4, 128.9, 128.9, 128.7, 128.6, 127.1, 127.0, 123.3, 122.6, 65.9, 65.3, 65.3, 65.0, 52.0, 51.7. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}_{2}{ }^{+}-\mathrm{N}_{3}\right]: 343.0334$, found: 343.0333. Since the product is mixtures of diastereomers, not all ${ }^{13} \mathrm{C}$ NMR signals are resolved.
(E)-(3-azido-4-bromo-4-methylpent-1-en-1-yl)benzene (4u)
 Following the general procedure C, $\mathbf{4 u}$ was obtained in 60% yield (33.6 mg) as colorless oil, using ethyl acetate/petroleum ether (1:20) as eluent. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47-7.43$ (m, 2H), $7.38-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{dd}$, $J=15.8,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=8.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 136.7,135.7,128.9,128.7,127.0,123.6,74.6,66.3,31.4$, 31.0. HRMS (ESI): m/z calculated for [$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{BrN}_{3}{ }^{+}-\mathrm{N}_{3}$]: 237.0279, found: 237.0293 .
(E)-(3-azido-4-bromo-3,4-dimethylpent-1-en-1-yl)benzene (4v)

Following the general procedure $\mathrm{C}, \mathbf{4 v}$ was obtained as colorless
oil. Yield $=54 \%$, using ethyl acetate/petroleum ether (1:20) as
eluent. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.38$ - 7.32 (m, 2H), 7.31 - $7.26(\mathrm{~m}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 136.2$,
132.5, 128.8, 128.7, 128.3, 126.9, 72.1, 70.9, 30.3, 30.2, 20.9. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{BrN}_{3}{ }^{+}-\mathrm{N}_{3}\right]$: 251.0436, found: 251.0470.
(E)-(5-azido-6-bromohex-3-en-1-yl)benzene (4w)

Following the general procedure $\mathrm{C},\left(\mathbf{4 w}+\mathbf{4} \mathbf{w}^{\prime}\right)$ was obtained in 71% yield ($39.8 \mathrm{mg}, \mathbf{4 w}: \mathbf{4} \mathbf{w}^{\mathbf{\prime}}=82: 18$) as colorless oil, using ethyl acetate/petroleum ether $(1: 20)$ as eluent. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.26$ (m, 2.6 H), $7.23-7.16$ (m, 3.8H), $5.99-5.90(\mathrm{~m}, 1 \mathrm{H})\left(4 \mathbf{w}^{\prime}\right)$, $5.90-5.83(\mathrm{~m}, 0.28 \mathrm{H})(4 w), 5.71(\mathrm{ddt}, J=15.2,7.7,1.1$ $\mathrm{Hz}, 1 \mathrm{H})\left(4 \mathbf{w}^{\prime}\right), 5.42$ (ddt, $J=15.3,8.0,1.5 \mathrm{~Hz}, 0.28 \mathrm{H}$) (4w), $4.15-4.07(\mathrm{~m}, 0.28 \mathrm{H})(4 \mathbf{w}), 4.01-3.91(\mathrm{~m}, 2 \mathrm{H})\left(4 \mathbf{w}^{\prime}\right), 3.88-3.81(\mathrm{~m}, 1 \mathrm{H})\left(4 \mathbf{w}^{\prime}\right)$, $3.36-3.26(\mathrm{~m}, 0.56 \mathrm{H})(4 \mathbf{w}), 2.77-2.66(\mathrm{~m}, 2.56 \mathrm{H}), 2.48-2.40(\mathrm{~m}, 0.56 \mathrm{H})(4 \mathbf{w}), 1.95$ $-1.77(\mathrm{~m}, 2 \mathrm{H})\left(\mathbf{4 w}{ }^{\prime}\right) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathbf{4 w}: \delta 141.2,137.1,128.6,128.5$, 126.2, 125.6, 64.6, 35.5, 34.4, 34.1. 4w': $\delta 140.8,132.5,130.4,128.7,128.6,126.3$, 62.5, 36.0, 31.9, 31.2. HRMS (ESI): m/z calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{BrN}_{3}{ }^{+}-\mathrm{N}_{3}\right]:$ 237.0279, found: 237.0277.
(Z)-(4-azido-1-bromobut-2-en-2-yl)benzene (5a)

Following the general procedure D, $\mathbf{5 a}$ was obtained in 87% yield (43.9 mg, $Z / E=95: 5,5 \mathbf{5}: 5 \mathbf{a}^{\prime}>98: 2$) as colorless oil, using ethyl acetate/petroleum ether (1:20) as eluent. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 3 \mathrm{H}), 6.01(\mathrm{t}, J=7.2$
$\mathrm{Hz}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H}), 4.09(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.4$, 139.3, 128.8, 128.6, 126.4, 126.2, 48.4, 27.5. HRMS (ESI): m/z calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrN}_{3}{ }^{+}-\mathrm{N}_{3}\right]:$ 208.9966, found: 208.9952 .
(Z)-1-(4-azido-1-bromobut-2-en-2-yl)-4-methoxybenzene ($\mathbf{5 b}$)

Following the general procedure D, $\mathbf{5 b}$ was obtained in 82% yield ($46.3 \mathrm{mg}, Z / E=84: 16, \mathbf{5 b}: 5 \mathbf{b}^{\prime}>98: 2$) as pale yellow oil, using ethyl acetate/petroleum ether (1:20) as eluent. ${ }^{1} \mathbf{H}$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 3 \mathrm{H}), 6.01(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H}), 4.09(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.0$, 140.9, 129.9, 127.5, 124.4, 114.2, 55.5, 48.4, 27.6. HRMS (ESI): m/z calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrN}_{3}{ }^{+}-\mathrm{N}_{3}\right]:$ 208.9966, found: 208.9952.
(Z)-1-(4-azido-1-bromobut-2-en-2-yl)-2-methylbenzene (5c)

Following the general procedure D, $\mathbf{5 c}$ was obtained in 92% yield ($49.0 \mathrm{mg}, Z / E=98: 2, \mathbf{5 c}: 5 \mathbf{c}^{\prime}>98: 2$) as colorless oil, using ethyl acetate/petroleum ether (1:20) as eluent. ${ }^{1} \mathbf{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.27-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 2 \mathrm{H}), 5.65(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.22(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 142.0,140.2,135.2,130.6,129.2,128.2,128.0,125.9,48.0,29.6,20.0$. (ESI): m / z calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BrN}_{3}{ }^{+}-\mathrm{N}_{3}\right]:$ 223.0123, found: 223.0124.
(Z)-1-(4-azido-1-bromobut-2-en-2-yl)-4-(trifluoromethyl)benzene (5d)

Following the general procedure D, $\mathbf{5 d}$ was obtained in 81% yield ($51.9 \mathrm{mg}, Z / E=98: 2, \mathbf{5 d}: 5 \mathbf{d}^{\prime}=78: 22$) as pale yellow oil, using ethyl acetate/petroleum ether (1:20) as eluent. 5d and 5d' were determined by analysis of ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectroscopy. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 2 \mathrm{H})$, $6.06(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H}), 4.12(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathbf{F}$ NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$-62.67. ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.8(\mathrm{q}, J=1.5 \mathrm{~Hz}), 140.1,128.2$, 126.9, 126.7, 125.8 (q, $J=3.8 \mathrm{~Hz}$), 124.1 ($\mathrm{q}, ~ J=272.0 \mathrm{~Hz}$), 48.3, 26.9. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BrF}_{3} \mathrm{~N}_{3}{ }^{+}-\mathrm{N}_{3}\right]: 276.9840$, found: 276.9836.
methyl (Z)-4-(4-azido-1-bromobut-2-en-2-yl)benzoate (5e)

Following the general procedure D, $\mathbf{5 e}$ was obtained in 79% yield ($50.6 \mathrm{mg}, Z / E=98: 2$, 5e:5e' $=75: 25$) as colorless oil, using ethyl acetate/petroleum ether (1:10) as eluent. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06-8.03(\mathrm{~m}, 2 \mathrm{H})$, $7.55-7.52(\mathrm{~m}, 2 \mathrm{H}), 6.09(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H}), 4.12(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$,
$3.93(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.7,143.6,140.4,130.1,130.1,128.0$, 126.3, 52.3, 48.4, 26.9. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{BrN}_{3} \mathrm{O}_{2}{ }^{+}-\mathrm{N}_{3}\right]$: 267.0021, found: 267.0031.
(Z)-1-(4-azido-1-bromobut-2-en-2-yl)-3-chlorobenzene (5f)

Following the general procedure D, $\mathbf{5 f}$ was obtained in 69% yield ($39.5 \mathrm{mg}, Z / E=98: 2, \mathbf{5 f : 5 f ^ { \prime }}=90: 10$) as colorless oil, using ethyl acetate/petroleum ether (1:20) as eluent. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 3 \mathrm{H})$, $6.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~s}, 2 \mathrm{H}), 4.09(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 141.1, $140.2,134.8,130.1,128.6,127.4,126.6,124.6,48.3,27.1$ HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrClN}_{3}{ }^{+}-\mathrm{N}_{3}\right]:$ 242.9576, found: 242.9584 .
(Z)-((4-(4-azido-1-bromobut-2-en-2-yl)phenyl)ethynyl)trimethylsilane (5g)

Following the general procedure D, $\mathbf{5 g}$ was obtained in 80% yield ($55.7 \mathrm{mg}, Z / E=97: 3, \mathbf{5 g}: 5 \mathbf{g}^{\prime}=92: 8$) as colorless oil, using ethyl acetate/petroleum ether (1:20) as eluent. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.45$ $(\mathrm{m}, 2 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 2 \mathrm{H}), 6.02(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.30(\mathrm{~s}, 2 \mathrm{H}), 4.09(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.26(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 140.6, 139.1, 132.4, 126.8, 126.1, 123.4, 104.7, 95.7, 48.4, 27.0, 0.1. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{BrN}_{3} \mathrm{Si}^{+}-\mathrm{N}_{3}\right]$: 305.0361, found: 305.0362.
(Z)-2-(4-azido-1-bromobut-2-en-2-yl)-9H-fluorene (5h)

Following the general procedure D, $\mathbf{5} \mathbf{h}$ was obtained in 53% yield ($36.1 \mathrm{mg}, Z / E=87: 13$, $\mathbf{5 h}: 5 \mathbf{h}^{\prime}>98: 2$) as colorless oil, using ethyl acetate/petroleum ether (1:20) as eluent. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81-7.77$ (m, 2H), $7.66-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ $-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 1 \mathrm{H}), 6.07(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 4.12(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.93 (s, 2H). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 143.8, 143.7, 142.3, 141.7,
(Z)-4-(4-azido-1-bromobut-2-en-2-yl)phenyl 4-methylbenzenesulfonate (5i)

Following the general procedure D, $\mathbf{5 i}$ was obtained in 76% yield ($64.2 \mathrm{mg}, Z / E=97: 3,5 \mathbf{5 i}: 5 \mathbf{i}^{\prime}=95: 5$) as colorless oil, using ethyl acetate/petroleum ether (1:10) as eluent. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.36$ (m, 2H), $7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.97(\mathrm{~m}, 2 \mathrm{H}), 5.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H})$, 4.08 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.46 (s, 3H). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.7,145.6$, 140.0, 138.2, 132.4, 130.0, 128.6, 127.6, 127.2, 122.7, 48.3, 27.2, 21.9. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}-\mathrm{N}_{3}\right]$: 379.0004, found: 379.0001.
(Z)-(4-(4-azido-1-bromobut-2-en-2-yl)phenoxy)(tert-butyl)dimethylsilane (5j)

Following the general procedure $\mathrm{D}, \mathbf{5 j}$ was obtained in 77%
yield ($58.9 \mathrm{mg}, Z / E=86: 14,5 \mathbf{j}: 5 \mathbf{j}^{\prime}>98: 2$) as colorless oil, using ethyl acetate/petroleum ether (1:20) as eluent. ${ }^{1} \mathbf{H}$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37$ - 7.33 (m, 2H), $6.85-$ $6.81(\mathrm{~m}, 2 \mathrm{H}), 5.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~s}, 2 \mathrm{H}), 4.07(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.99(\mathrm{~s}$, 9H), 0.21 ($\mathrm{s}, 6 \mathrm{H}$). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.2,140.9,132.1,127.4,124.5$, 120.3, 48.4, 27.6, 25.8, 18.4, -4.2. HRMS (ESI): m/z calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{BrN}_{3} \mathrm{OSi}^{+}\right.$$\mathrm{N}_{3}$]: 339.0780, found: 339.0785 .
(Z)-3-(4-azido-1-bromobut-2-en-2-yl)-1-tosyl-1 H -indole ($\mathbf{5 k}$)

Following the general procedure D, $\mathbf{5 k}$ was obtained in 62% yield ($55.2 \mathrm{mg}, Z / E=\mathbf{7 9 : 2 1 , 5} \mathbf{5}: \mathbf{5} \mathbf{k}^{\prime}>98: 2$) as pale yellow oil, using ethyl acetate/petroleum ether (1:10) as eluent. ${ }^{1} \mathbf{H}$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01(\mathrm{dt}, J=8.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.81$

- $7.76(\mathrm{~m}, 3 \mathrm{H}), 7.69-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.16(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 4.13(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.4,135.4,135.0,134.0,130.1,128.7,127.0,126.7,125.3,124.3$,
123.9, 121.3, 120.6, 114.0, 48.1, 27.8, 21.7. HRMS (ESI): m / z calculated for [$\left.\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{BrN}_{4} \mathrm{O}_{2} \mathrm{~S}^{+}-\mathrm{N}_{3}\right]: 402.0164$, found: 402.0162 .
(Z)-1-(4-azido-1-bromobut-2-en-2-yl)-4-chlorobenzene (51)

Following the general procedure D, $\mathbf{5 1}$ was obtained in 68% yield ($39.0 \mathrm{mg}, Z / E=96: 4, \mathbf{5 1}: 5 \mathbf{I}^{\prime}=90: 10$) as colorless oil, using ethyl acetate/petroleum ether (1:20) as eluent. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.33$ $(\mathrm{m}, 2 \mathrm{H}), 5.99(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~s}, 2 \mathrm{H}), 4.09(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.3,137.6,134.6,129.0,127.7,126.7,48.3,27.2$. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrClN}_{3}{ }^{+}-\mathrm{N}_{3}\right]: 242.9576$, found: 242.9577 .
(Z)-1-(4-azido-1-bromobut-2-en-2-yl)-4-fluorobenzene (5m)

Following the general procedure D, $\mathbf{5 m}$ was obtained in 78% yield ($42.1 \mathrm{mg}, Z / E=96: 4, \mathbf{5 m}: 5 \mathbf{m}^{\prime}=96: 4$) as colorless oil, using ethyl acetate/petroleum ether ($1: 20$) as eluent. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.04(\mathrm{~m}, 2 \mathrm{H})$, $5.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 163.0(\mathrm{~d}, J=248.1 \mathrm{~Hz}), 140.4,135.3(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 128.2(\mathrm{~d}, J=8.1 \mathrm{~Hz})$, $126.2(\mathrm{~d}, J=1.0 \mathrm{~Hz}), 115.8(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 48.3,27.5 .{ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-113.30$ (ddd, $J=14.0,8.7,5.3 \mathrm{~Hz}$). HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrFN}_{3}{ }^{+}-\right.$ N_{3}]: 226.9872, found: 226.9873.
(Z)-1-(4-azido-1-bromobut-2-en-2-yl)-3,5-dimethylbenzene (5n)

Following the general procedure D, $\mathbf{5 n}$ was obtained in 82% yield ($45.9 \mathrm{mg}, Z / E=94: 6,5 \mathrm{n}: 5 \mathbf{n}^{\prime}=94: 6$) as colorless oil, using ethyl acetate/petroleum ether (1:20) as eluent. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.08-7.06(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.97(\mathrm{~m}, 1 \mathrm{H}), 5.97$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H}), 4.07(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.6,139.2,138.3,130.3,125.8,124.2,48.4,27.7,21.5$. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{BrN}_{3}{ }^{+}-\mathrm{N}_{3}\right]: 237.0278$, found: 237.0280.
(Z)-1-(4-azido-1-bromobut-2-en-2-yl)-4-(tert-butyl)benzene (50)

Following the general procedure D, $\mathbf{5 0}$ was obtained in 85% yield ($52.4 \mathrm{mg}, Z / E=93: 7, \mathbf{5 0}: \mathbf{5 0}^{\prime}=96: 4$) as colorless oil, using ethyl acetate/petroleum ether (1:20) as eluent. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.38(\mathrm{~m}, 4 \mathrm{H}), 6.01(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 151.7,141.0,136.1,125.9,125.7,125.4,48.4,34.7,31.4,27.5$. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{BrN}_{3}{ }^{+}-\mathrm{N}_{3}\right]:$ 265.0591, found: 265.0592.
(Z)-4-(4-azido-1-bromobut-2-en-2-yl)-1,1'-biphenyl (5p)

Following the general procedure D, $\mathbf{5 p}$ was obtained in 74% yield ($48.6 \mathrm{mg}, Z / E=91: 9, \mathbf{5 p}: 5 \mathbf{p}^{\prime}=96: 4$) as colorless oil, using ethyl acetate/petroleum ether (1:20) as eluent. ${ }^{1} \mathbf{H}$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.57-7.53$
$(\mathrm{m}, 2 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 1 \mathrm{H}), 6.07(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~s}, 2 \mathrm{H})$, $4.11(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.5,140.9,140.5,137.9$, 129.0, 127.7, 127.5, 127.2, 126.7, 126.1, 48.4, 27.4. HRMS (ESI): m/z calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{BrN}_{3}{ }^{+}-\mathrm{N}_{3}\right]: 285.0279$, found: 285.0280 .
(Z)-1-(4-azido-1-bromobut-2-en-2-yl)cyclohex-1-ene (5q)

Following the general procedure D, $\mathbf{5 q}$ was obtained in 44% yield ($22.5 \mathrm{mg}, Z / E=86: 14,5 \mathbf{q}: 5 \mathbf{q}^{\prime}>98: 2$) as colorless oil, using ethyl acetate/petroleum ether (1:20) as eluent. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.10(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~s}$, $2 \mathrm{H}), 4.00(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.25-2.15(\mathrm{~m}, 4 \mathrm{H}), 1.75-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.57(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.6,133.7,127.2,121.6,77.5,77.2,76.8,48.4$, 26.1, 26.0, 25.3, 22.8, 22.0. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{BrN}_{3}-\mathrm{N}_{3}\right]^{+}$: 213.0278, found: 213.0274.
(Z)-(5-azido-3-(bromomethyl)pent-3-en-1-yl)benzene (5r)

Following the general procedure D, $\mathbf{5 r}$ was obtained in 73% yield ($40.9 \mathrm{mg}, Z / E>98: 2,5 \mathrm{r}: 5 \mathbf{r}^{\prime}>98: 2$) as colorless oil, using ethyl acetate/petroleum ether (1:20) as eluent. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 3 \mathrm{H}), 5.52(\mathrm{tt}, J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.96(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.84-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.54(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 141.5,141.0,128.6,128.5,126.3,123.8,47.6,37.2,34.4$, 28.7. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{BrN}_{3}-\mathrm{N}_{3}\right]^{+}: 237.0279$, found: 237.0328 .
(Z)-1-azido-3-(bromomethyl)dec-2-ene (5s)

Following the general procedure D, $\mathbf{5 s}$ was obtained in 85% yield ($46.6 \mathrm{mg}, Z / E>98: 2,5 \mathrm{5}: 5 \mathrm{~s}^{\prime}>98: 2$) as colorless oil, using ethyl acetate/petroleum ether (1:20) as eluent. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.51(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.52-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 8 \mathrm{H}), 0.89$ $(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.5,123.0,47.7,35.6,31.9,29.2$, 29.2, 28.6, 27.8, 22.8, 14.2. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{BrN}_{3}-\mathrm{N}_{3}\right]^{+}$: 245.0779, found: 245.0758 .
(Z)-(4-azido-1-bromobut-2-en-2-yl)cyclohexane (5t)

Following the general procedure D, $\mathbf{5 t}$ was obtained in 78% yield ($40.3 \mathrm{mg}, Z / E>98: 2,5 \mathbf{5 t : 5 t}>98: 2$) as colorless oil, using ethyl acetate/petroleum ether ($1: 20$) as eluent. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.51(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, 2H), $2.18-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.74(\mathrm{~m}, 5 \mathrm{H}), 1.34-1.15(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.5,122.0,47.7,44.1,32.7,28.1,26.7,26.2$. HRMS (ESI): m/z calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{BrN}_{3}-\mathrm{N}_{3}\right]^{+}: 257.0528$, found: 257.0536.

1-((Z)-4-azido-1-bromobut-2-en-2-yl)-4-(((2S,5R)-2-isopropyl-5methylcyclohexyl)oxy)benzene (5u)

Following the general procedure D, $\mathbf{5 u}$ was obtained in 76% yield ($61.8 \mathrm{mg}, Z / E=87: 13,5 \mathrm{u}: 5 \mathbf{u}^{\prime}>98: 2$) as colorless oil, using ethyl acetate/petroleum ether (1:20) as eluent. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.36$ $(\mathrm{m}, 1.15 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 0.85 \mathrm{H}), 6.93-6.87(\mathrm{~m}$, $2 \mathrm{H}), 5.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 1.15 \mathrm{H}), 4.24$ (s, 0.86 H$), 4.07$ (d, $J=$ $7.3 \mathrm{~Hz}, 1.14 \mathrm{H}$), 3.78 (d, $J=7.2 \mathrm{~Hz}, 0.88 \mathrm{H}), 2.15-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.48(\mathrm{~m}, 5 \mathrm{H})$, $1.12-0.94(\mathrm{~m}, 3 \mathrm{H}), 0.95-0.91(\mathrm{~m}, 3 \mathrm{H}), 0.88-0.80(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , CDCl_{3}) $\delta 158.8,140.9,130.8,127.5,124.1,115.7,73.5,48.4,47.9,37.8,35.1,29.4$, 26.3, 25.0, 22.4, 21.2, 21.0. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{BrN}_{3} \mathrm{O}-\mathrm{N}_{3}\right]^{+}$: 363.1323 , found: 363.1327 .
(Z)-4-(4-azido-1-bromobut-2-en-2-yl)phenyl 2-(2-fluoro-[1,1'-biphenyl]-4yl)propanoate (5v)

Following the general procedure $\mathrm{D}, \mathbf{5 v}$ was obtained in 82% yield ($81.1 \mathrm{mg}, Z / E=93: 7$, $\mathbf{5 v}: 5 \mathrm{v}^{\prime}>98: 2$) as colorless oil, using ethyl acetate/petroleum ether (1:10) as eluent.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58-7.53(\mathrm{~m}, 2.97 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 7.28 \mathrm{H}), 7.40-$ $7.35(\mathrm{~m}, 1.5 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 3.02 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 2.94 \mathrm{H}), 5.97(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1.45 \mathrm{H}), 4.29(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{~s}, 0.91 \mathrm{H}), 4.07(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{q}, J=7.2 \mathrm{~Hz}$, 1.46 H), $3.71(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 0.9 \mathrm{H}), 1.66(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 4.38 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 172.4,159.9(\mathrm{~d}, J=248.6 \mathrm{~Hz}), 150.9,141.2(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 140.4,137.0$, $135.5,131.2(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 129.8,129.1(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 128.6,127.9,127.5,126.5$, $123.7(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 121.7,115.5(\mathrm{~d}, J=23.9 \mathrm{~Hz}), 48.3,45.3,27.3,18.52$. HRMS (ESI): m / z calculated for $\left[\mathrm{C}_{25} \mathrm{H}_{2} \mathrm{BrFN}_{3} \mathrm{O}_{2}-\mathrm{N}_{3}\right]^{+}: 451.0708$, found: 451.0706 . dimethylpentanoate (5w)

Following the general procedure D , $\mathbf{5 w}$ was obtained in 84% yield (84.1 $\mathrm{mg}, Z / E=94: 6,5 \mathrm{w}: 5 \mathrm{w}^{\prime}>98: 2$) as colorless oil, using ethyl acetate/petroleum ether (1:10) as eluent. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.43$ (m, 2H), $7.07-7.03$ (m, 2H), 7.00 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.67$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.63$ (s, 1H), $5.98(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.02-3.96(\mathrm{~m}$, 2H), $2.30(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 176.3,157.0,151.3,140.6,136.7,136.6,130.5,127.4,126.4,123.7,121.9$, 120.9, 112.1, 67.9, 48.3, 42.6, 37.3, 27.4, 25.4, 25.3, 21.5, 15.9. HRMS (ESI): m/z calculated for $\left[\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{BrN}_{3} \mathrm{O}_{3}-\mathrm{N}_{3}\right]^{+}: 457.1378$, found: 457.1379.
(E)-(3-chlorobuta-1,3-dien-1-yl)benzene (6)

Derivatization product 6 was obtained in 62% yield $(20.4 \mathrm{mg})$ as colorless oil, using petroleum ether as eluent. Product $\mathbf{6}$ is a known compound. ${ }^{[10]}{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.43(\mathrm{~m}, 2 \mathrm{H})$, $7.38-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=15.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.8,136.0,133.5$, 128.9, 128.6, 127.2, 125.5, 116.1.
(E)-(3,4-diazidobut-1-en-1-yl)benzene (7)

Derivatization product 7 was obtained in $65 \%(27.9 \mathrm{mg})$ as pale yellow oil, using ethyl acetate/petroleum ether $(1: 20)$ as eluent. Product 7 is a known compound. ${ }^{[11]}{ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.43-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{dd}, J=15.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.19(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.33(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) δ 135.7, 135.5, 128.9, 128.8, 126.9, 123.1, 64.0, 54.7.
(E)-4-(2-azido-4-phenylbut-3-en-1-yl)morpholine (8)
 Derivatization product $\mathbf{8}$ was obtained in 73% yield (187.7 mg) as pale yellow oil, using ethyl acetate/petroleum ether (1:5) as eluent.. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.37$ (m, 2H), $7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.65(\mathrm{~d}$, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{dd}, J=15.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~m}, 4 \mathrm{H})$, $2.65-2.56(\mathrm{~m}, 3 \mathrm{H}), 2.50(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.0,133.6,128.8$, 128.3, 126.7, 125.4, 77.5, 77.2, 76.8, 67.0, 63.0, 61.5, 54.0. HRMS (ESI): m/z calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 259.1559$, found: 259.1557.
(E)-1-morpholino-4-phenylbut-3-en-2-amine (9)

Derivatization product 9 was obtained in 88% yield (41.0 mg) as pale yellow oil, using $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:5) as eluent. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.34(\mathrm{~m}, 2 \mathrm{H})$, $7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=15.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.17$ (dd, $J=15.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.63(\mathrm{~m}, 5 \mathrm{H}), 3.39(\mathrm{~s}, 2 \mathrm{H}), 2.66-2.54$ $(\mathrm{m}, 2 \mathrm{H}), 2.50-2.35(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 136.7, 131.5, 130.0, 128.7, 127.8, 126.5, 67.1, 64.2, 53.9, 50.5. HRMS (ESI): m/z calculated for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}: 233.1654$, found: 233.1652.
(E)-1-(1-bromo-4-phenylbut-3-en-2-yl)-4-phenyl-1H-1,2,3-triazole (10)

Derivatization product 10 was obtained in 85% yield (60.2 mg) as white solid, using ethyl acetate/petroleum ether (1:5) as eluent. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.88-7.82$ (m, 2H), $7.46-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 4 \mathrm{H}), 6.71(\mathrm{~d}, J=$ $15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{dd}, J=15.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{td}, J=7.2$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=10.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=10.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 147.6,136.3,135.1,130.5,129.1,129.0,128.9,128.4,127.0$, 125.9, 123.4, 119.4, 64.0, 33.9. HRMS (ESI): m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{BrN}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 354.0606, found: 354.0607.
(E)-2-azido-4-phenylbut-3-en-1-ol (11)

Derivatization product $\mathbf{1 1}$ was obtained in 77% yield (29.0 mg) as brownish yellow oil, using ethyl acetate/petroleum ether (1:5) as eluent. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.39(\mathrm{~m}$, 2H), $7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dd}, J=$ $15.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.25 (dddd, $J=8.1,7.2,4.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=11.4,4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.64(\mathrm{dd}, J=11.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.7$, 135.5, 128.8, 128.6, 126.9, 123.0, 66.5, 65.1. HRMS (ESI): m/z calculated for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 190.0980$, found: 190.0976 .
(E)-(3-azidobuta-1,3-dien-1-yl)benzene (12)

Derivatization product $\mathbf{1 2}$ was obtained in 85% yield (27.3 mg) as pale yellow oil, using petroleum ether as eluent. Product 12 is a known compound. ${ }^{[12]}{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.38(\mathrm{~m}$, 2H), 7.35 - 7.29 (m, 2H), $7.28-7.23$ (m, 1H), 6.86 (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.55$ (d, $J=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 144.0,136.2,131.0,128.8,128.4,127.0,123.3,101.5$.
(Z)-4-azido-2-phenylbut-2-en-1-ol (13)

Derivatization product $\mathbf{1 3}$ was obtained in 79% yield (30.0 mg , $Z / E=31: 69)$ as pale yellow oil, using ethyl acetate/petroleum ether (1:5) as eluent. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.47-7.43(\mathrm{~m}$, $0.8 \mathrm{H})(\boldsymbol{Z}-\mathbf{1 3}), 7.42-7.31(\mathrm{~m}, 4.2 \mathrm{H}), 7.20-7.14$ (m, 2H) ($\boldsymbol{E}-\mathbf{1 3}$), $5.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 0.4 \mathrm{H})(\boldsymbol{Z} \mathbf{- 1 3}), 5.87(\mathrm{tt}, J=7.4,1.6 \mathrm{~Hz}, 1 \mathrm{H})(\boldsymbol{E}-\mathbf{1 3}), 4.58(\mathrm{~s}, 0.8 \mathrm{H})$ (Z-13), 4.36 (s, 2H) (E-13), 4.08 (d, $J=7.4 \mathrm{~Hz}, 0.8 \mathrm{H})(\boldsymbol{Z}-\mathbf{1 3}), 3.74(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$ ($\boldsymbol{E}-\mathbf{1 3}$), 1.97 (s, 1.4 H). ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{Z} \mathbf{- 1 3}: \delta 144.6,139.7,128.8,128.2$, 126.7, 123.9, 59.9, 48.2. E-13: 146.6, 136.7, 128.7, 128.6, 128.1, 119.8, 66.9, 48.8. HRMS (ESI): m / z calculated for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 190.0980$, found: 190.0977 .
(Z)-4-(4-azido-2-phenylbut-2-en-1-yl)morpholine (14)

Derivatization product 14 was obtained in 90% yield (46.4 mg . $Z / E=75: 25)$ as pale yellow oil, using ethyl acetate/petroleum ether (1:5) as eluent. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51-7.43$ (m, 2H), $7.36-7.30(\mathrm{~m}, 3 \mathrm{H}), 5.98(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{t}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.39(\mathrm{~s}, 2 \mathrm{H}), 2.45(\mathrm{t}, J=$ $4.6 \mathrm{~Hz}, 4 \mathrm{H}$). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.9,141.3,128.3,127.7,126.7,125.6$, 67.0, 57.8, 53.5, 48.6. HRMS (ESI): m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 259.1559$, found: 259.1558 .
(Z)-(4-azido-1-thiocyanatobut-2-en-2-yl)benzene (15)

Derivatization product 15 was obtained in 82% yield (37.5 mg . $Z / E=89: 11, \mathbf{1 5 : 1 5}=95: 5)$ as pale yellow oil, using ethyl acetate/petroleum ether (1:5) as eluent. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{~m}, 5 \mathrm{H}), 6.10(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 138.4,138.1,129.0,129.0,127.8$, 126.7, 111.4, 48.3, 33.3. HRMS (ESI): m/z calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{~S}^{+}-\mathrm{N}_{3}\right]$: 188.0534, found: 188.0531.
(Z)-2-((4-azido-2-phenylbut-2-en-1-yl)oxy)isoindoline-1,3-dione (16)

Derivatization product 16 was obtained in 72% yield (48.1 mg . $Z / E=75: 25,16: 16 '=93: 7$) as white solid, using ethyl acetate/petroleum ether (1:5) as eluent. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.85-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.73$ (m, 2H), $7.66-7.61$ (m, 2H), $7.41-7.34(\mathrm{~m}, 3 \mathrm{H}), 6.25(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~s}$, $2 \mathrm{H}), 4.31(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $163.5,139.6,137.3,134.7,130.2,128.9,128.8,128.6,128.3$, 126.4, 123.7, 74.4, 48.6. HRMS (ESI): m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 357.0964, found: 357.0965.
(Z)-4-(4-(4-([1,1'-biphenyl]-4-yl)-1H-1,2,3-triazol-1-yl)-2-phenylbut-2-en-1yl)morpholine (17)

Derivatization product 17 was obtained in 88% yield ($76.4 \mathrm{mg} . Z / E=75: 25$) as white solid, using ethyl acetate/petroleum ether (1:5) as eluent. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91-$ $7.85(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{~s}$, $1 \mathrm{H}), 6.09$ (t, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.35 (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.70-3.63$ (m, 4H), 3.50 (s, 2H), $2.58-2.43(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.7,141.6,141.5,140.9$, $140.5,129.7,128.9,128.4,128.0,127.5,127.5,127.0,126.6,126.1,125.1,119.5,67.0$, 58.2, 53.5, 48.6. HRMS (ESI): m/z calculated for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 437.2341$, found: 437.2346 .

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

10	,	10	1	1	1	1	1		1				1	1	1					1		
	0	-10	-20	-30	-40	-50	-60	-		-90	${ }^{-100}(\mathrm{ppm})$	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210
										$\underbrace{+寸+寸 \mathrm{Jam}}$						$\underset{i}{i}$						

ll

210	200	190	180	170	160	150		130			$\begin{gathered} 100 \\ \mathrm{f} 1 \stackrel{\mathrm{ppm})}{ } \end{gathered}$	90	80	70	60	50	40	30	20	10	0	-10
 $\stackrel{8}{\circ}$																						

[^1]

[^2]

[^3]

$\underbrace{\mathrm{Cl}} \mathrm{Br}$

$2 w^{*}$

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

Ph

Ch

$\stackrel{1}{10}$	100	190	180	170	160	150	140	1	1	110	1	1	18	1	1	5	40	1	1	10	-	1
											1 (ppin											-10

l

TBSO

踢
둔

$\stackrel{\infty}{0} \stackrel{n}{i} \stackrel{n}{\sim}$

[^4]

190	180	170	160	150	140	130	${ }_{120}$	110	$\underset{\substack{100 \\(\text { porm }}}{ }$	90	80	70	60	50	40	${ }_{30}$	0
	 																$\stackrel{\circ}{6}$

				$\begin{aligned} & \text { त्रा } \\ & \text { in } \end{aligned}$						$\begin{aligned} & \text { TO } \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { T } \\ & \text { O } \\ & \text { in } \end{aligned}$								
5	9.0	8.5	8.0	7.5	7. 0	6.5	6.0	5.5	5.0	$\underset{\substack{1.5 \\ \hline(\mathrm{pmm})}}{1}$	4. 0	3.5	3. 0	2. 5	0	1.5	1.0	0.5	0.0	-

$$
\begin{aligned}
& \text { ~ั }
\end{aligned}
$$

210	200	190	180	170	160	150	140	130	120		$\begin{gathered} 100 \\ \text { f1 }{ }_{(\mathrm{ppm})} \end{gathered}$	90	80	70	60	50	40	30	20	10	0	-10
							$\begin{array}{rl} 8 & 0 \\ 0 \\ 0 & 0 \\ 0 \\ 0 \end{array}$															

[^5]

[^6]
$\mathrm{O}_{2} \mathrm{~N}_{4}{ }^{\mathrm{B}}$

[^7]

The compounds $\mathbf{4 h}$ and $\mathbf{4} \mathbf{h}$ ' were determined by analysis of ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectroscopy. Due to the presence of azide group, the chemical shift of C_{a} is obviously larger than that of C_{b} and the chemical shift of C_{d} is larger than that of C_{c}. The chemical shifts of compounds (1-azido-2-bromoethyl)benzene ${ }^{[13]}$ and (2-azido-1-bromoethyl)benzene ${ }^{[14]}$ can be used as reference values.

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

210	${ }_{200}$	190	180	170	160	150	140	130	${ }_{120}$	110	100	${ }_{90}$	80	10	60	50	${ }_{40}$	30	10	10	0	10
											(ppm)											

10	0	-10	$\stackrel{1}{-20}$	-30	-40	-50	-60	-70	-80	${ }_{-90}$	$\begin{gathered} -100 \\ \mathrm{fl}(\mathrm{ppm}) \end{gathered}$	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210

$$
\begin{aligned}
& \text { 幆㩐 }
\end{aligned}
$$

謷蹻 跨
路

			\%

210	200	190	180	170	160	150	140	130	120	110	$\stackrel{100}{(\mathrm{ppm})}$	90	80	70	60	50	40	30	20	10	0	-10

4w

$4 w^{\prime}$

${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC of $\mathbf{4 w}$ and $4 \mathbf{w}^{\prime}$

The compounds $\mathbf{4 w}$ and $\mathbf{4} \mathbf{w}^{\prime}$ were determined by analysis of ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectroscopy. The determination method is similar to that of $\mathbf{4 h}$ and $\mathbf{4 h}$ '.

210	200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \text { f1 } \quad(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0	-10
		 						$\underbrace{6_{0}^{n}}_{i}$				+ +				$\stackrel{\sim}{\sim}$						

210	200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{fl}(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0	-10
$\begin{array}{\|c\|c} 0 \\ 0 \\ \\ \hline \end{array}$	哭	on in	$\begin{aligned} & \infty \\ & \\ & \\ & \\ & \hline \end{aligned}$	$\xrightarrow{\text { n }}$							$\stackrel{\sim}{7} \stackrel{\sim}{7}$											

5d

5d'

The compounds $\mathbf{5 d}$ and $\mathbf{5 d}$ ' were determined by analysis of ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectroscopy. Due to the presence of azide group, the chemical shift of C_{a} is obviously larger than that of C_{b} and the chemical shift of C_{c} is larger than that of C_{d}. The chemical shifts of compounds (E)-(3-azidoprop-1-en-1-yl)benzene ${ }^{[15]}$ and (E)-(3-bromoprop-1-en-1yl)benzene ${ }^{[16]}$ can be used as reference values.

$\stackrel{\substack{m}}{\underset{\sim}{\sim} \underset{\sim}{j}}$
$\stackrel{8}{\circ}$

MeOOC

${ }_{210}$	${ }_{200}$	190	180	170	160	150	140	130	120	110	100	${ }_{90}$	80	10	60	50	10	10	10	10	1	10
											fl (ppm)											

 Ni in i i

[^8]

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	10	10	0	-10

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	10

(

${ }_{210}$	${ }_{200}$	190	180	170	160	150	140	130	120	110	100	${ }_{90}$	80	10	${ }_{60}$	50	40	30	20	10	0	-10
											f1 (ppm)											

The product $\mathbf{5 k}$ was produced as a mixture of Z - and E-isomers, which was determined by analysis of ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectroscopy, because the chemical shift of C_{a} is obviously larger than that of C_{b} and the chemical shift of C_{c} is obviously larger than that of C_{d}.

Nin
$\stackrel{\text { N }}{\stackrel{n}{\sim}}$

-

V

1D NOESY of 5 s

1

2
+'

[^9]

[^10]

[^11]

[^12]

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	10

$18{ }^{3}$

(Z)-13

(E)-13

(Z)-13

(E)-13

[^13]
1D NOESY of 13

1


```
\゙M
\/\mp@code{Nam}
```


1D NOESY of 14

[^14]

[^15]
5. References

[1] (a) Takaya, J.; Sasano, K.; Iwasawa, N. Org. Lett. 2011, 13, 1698-1701. (b) Ji, D.-W.; He, G.C.; Zhang, W.-S.; Zhao, C.-Y.; Hu, Y.-C.; Chen, Q.-A. Chem. Commun. 2020, 56, 7431-7464.
[2] Liao, L.; Sigman, M. S. J. Am. Chem. Soc. 2010, 132, 10209-10211.
[3] Marcum, J. S.; Roberts, C. C.; Manan, R. S.; Cervarich, T. N.; Meek, S. J. J. Am. Chem. Soc. 2017, 139, 15580-15583.
[4] Ely, R. J.; Morken, J. P. J. Am. Chem. Soc. 2010, 132, 2534-2535.
[5] Jiang, X.; Hartwig, J. F. Angew. Chem. Int. Ed. 2017, 56, 8887-8891.
[6] Krijnen, E. S.; Zuilhof, H.; Lodder, G. J. Org. Chem. 1994, 59, 8139-8150.
[7] Chen, C.-N.; Cheng, W.-M.; Wang, J.-K.; Chao, T.-H.; Cheng, M.-J.; Liu, R.-S. Angew. Chem. Int. Ed. 2021, 60, 4479-4484.
[8] (a) Fiorito, D.; Folliet, S.; Liu, Y.; Mazet, C. ACS Catal. 2018, 8, 1392-1398. (b) Wang, Z.-L.; Wang, Y.; Xu, J.-L.; Zhao, M.; Dai, K.-Y.; Shan, C.-C.; Xu, Y.-H. Org. Lett. 2021, 23, 4736-4742. (c) Wang, Y.; Wang, Z.-L.; Ma, W.-W.; Xu, Y.-H. Org. Lett. 2022, 24, 4081-4086.
[9] Lim, B.; Oh, E.-T.; Im, J. O.; Lee, K. S.; Jung, H.; Kim, M.; Kim, D.; Oh, J. T.; Bae, S.-H.; Chung, W.-J.; Ahn, K.-H.; Koo, S. Eur. J. Org. Chem. 2017, 2017, 6390-6400.
[10] Jose, B.; Patricia, M.; Fernando, A.; Carlos, V. Adv. Synth. Catal. 2006, 348, 347-353.
[11] Shen, S.-J; Zhu, C.-L; Lu, D.-Fu; Xu, H. ACS Catal. 2018, 8, 4473-4482.
[12] Liu, Z.-H; Liao, P.-Q; Bi, X.-H. Org. Lett. 2014, 16, 3668-3671.
[13] Qi, Z.; Li, W.; Niu, Y.; Benassi, E.; Qian, B. Org. Lett. 2021, 23, 2399-2404.
[14] Fumagalli, G.; Rabet, P. T. G.; Boyd, S.; Greaney, M. F. Angew. Chem., Int. Ed. 2015, 54, 11481-11484.
[15] Rueping, M.; Vila, C.; Uria, U. Org. Lett. 2012, 14, 768-771.
[16] Kroesen, U.; Knauer, L.; Strohmann, C. Angew. Chem., Int. Ed. 2017, 56, 6232-6235.

[^0]: (E)-1-(4-bromo-3-chlorobut-1-en-1-yl)-4-fluorobenzene (2d)

[^1]:

[^2]:

[^3]:

[^4]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ & & & 10 & 1 \\ \text { (ppm) }\end{array}$

[^5]:

[^6]:

[^7]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1 & (\mathrm{ppm})\end{array}$

[^8]:

[^9]:

[^10]:

[^11]:

[^12]: $\begin{array}{llllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^13]:

[^14]:

[^15]:

