Practical Synthesis and Divergent Optimization of Halichonine B for

the Discovery of Novel Pharmaceutical Leads

Nvdan Hu^{a, b}, XiaWang^{a,c}, Shengxin Sun^a, Juan Yang^a, Shengkun Li^{*a}

^a National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.

^bCollege of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, China.

^cDepartment of Pesticide Science, College of Plant Protection, Nanjing Agricultural University,

Nanjing, 210095, China

Corresponding Author: Shengkun Li, Email SKL505@outlook.com

Content

1 General information	S1
2 Synthesis of drimanyl amine	S2
2.1 Synthesis of amine 1	S2
2.2 Synthesis of amine 2	S2
3 Synthesis of halichonine B (3) and 8-hydroxyly N- Boc-halichonine B (11)	S3
4 Synthesis of halichonine B analogs	S12
4.1 General procedures for the <i>N</i> -alkylation of amine 2	S12
4.2 General procedures for the synthesis of amide analogs	S30
4.3 General procedures for the synthesis of sulfamide analogs	S37
4.4 General procedures for the synthesis of (thio)urea analogs	S39
5 Synthesis of homodrimanyl amine 18	S41
6 Antifungal activity of halichonine B and analogs	S43
7 Molecular docking	S54
8 References	S54
9 NMR spectra	S54

1 General information

Unless otherwise stated, all solvents and reagents were purchased from commercial sources (Energy or Meryer Chemicals etc.), they were analytically pure and used without further purification. Anhydrous solvents were purchased from commercial sources (Energy Chemicals etc.).

Silica gel GF₂₅₄ and column chromatography silica gel for isolation (200-300 mesh) were both purchased from Qingdao Broadchem Industrial Co., Ltd. Reaction progress was monitored by thin-layer chromatography (TLC) on silica gel GF₂₅₄ with ultraviolet (UV_{254nm} or UV_{365nm}) detection. ¹HNMR and ¹³CNMR spectra were recorded on a Bruker AV 400M or JEOL 500M spectrometers with CDCl₃ or CD₃OD as solvent and tetramethylsilane as the internal standard. The chemical shifts (δ) were recorded in parts per million (ppm). Data for ¹H NMR are reported as follows: chemical shift (δ : ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; and m, multiplet), coupling constant (Hz), integration and assignment (*H*). Data for ¹³C NMR are reported in terms of chemical shift (δ : ppm). Electrospray ionization high-resolution mass spectrometry (ESI-HRMS) data were also obtained with the Waters XEVO G2-XS Q-TOF mass spectrometer.

The agriculturally important plant pathogens were provided by the College of Plant Protection, Nanjing Agricultural University (Nanjing, China). The *in vitro* antifungal activities were carried out according to the procedures we used previously (Li, D.; Zhang, S.; Song, Z.; Wang, G.; Li, S., Bioactivity-guided mixed synthesis accelerate the serendipity in lead optimization: Discovery of fungicidal homodrimanyl amides. *Eur. J. Med. Chem.* **2017**, 136, 114-121.).

2 Synthesis of drimanyl amine

2.1 Synthesis of amine 1

Drimanyl oxazinone **4** was prepared starting from (+)-sclareolide following the previously reported procedure by our group.¹ To a dried flask charged with **4** (776 mg, 3.0 mmol, 1.0 equiv.) was added water (6 mL), concentrated sulfuric acid (20 mL) was then added at 0 °C. The reaction mixture was transferred to a metal bath at 110 °C and stirred for 3 h. The reaction mixture was then adjusted to pH 7-8 with NaOH (50% aqueous solution) and extracted with DCM (50 mL × 3), the combined organic phase was sequentially washed with saturated aqueous NaCl (50 mL × 2), dried over anhydrous Na₂SO₄, and concentrated under vacuum. The crude product was purified by flash chromatography on silica gel (200-300 m) with DCM/MeOH (10:1, v/v) as the eluent to give compound **1** (colorless oil, 563.5 mg ($\Delta^{7,8}$: $\Delta^{8,9}$ =3:1.2), 85% yield). ¹H NMR (500 MHz, CDCl₃) δ 5.49 (s, 1H), 3.78 (br, 3.0H), 3.43 (d, *J* =13.6 Hz, 0.4H),

3.27 (d, *J* = 13.6 Hz, 0.4H), 2.97 (dd, *J* = 13.4, 2.4 Hz, 1H), 2.76 (dd, *J* = 13.5, 6.4 Hz, 1H), 2.07 – 1.95 (m, 2H), 1.93 – 1.89 (m, 1H), 1.87 – 1.82 (m, 2 H), 1.78 (s, 3H), 1.69 (s, 1.2H), 1.68 –1.44 (m, 3.5H), 1.43 – 1.37 (m, 2H), 1.28 – 1.10 (m, 4.8H), 0.95 (s, 1.2H), 0.88 (s, 1.2H), 0.87 (s, 3H), 0.85 (s, 3H), 0.83 (s, 1.2H), 0.78 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 138.9, 132.6, 132.2, 124.4, 57.0, 51.7, 49.8, 42.2, 41.7,
39.5, 39.4, 38.6, 37.4, 37.1, 36.6, 33.8, 33.4, 33.3, 33.1, 23.8, 22.3, 22.1, 21.7, 20.5,
19.8, 19.0, 18.9, 18.8, 14.4.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₅H₂₈N 222.22163; Found 222.22113.

2.2 Synthesis of amine 2

To a dried flask were added oxazinone **4** (2.4 g, 9.0 mmol, 1.0 equiv.) and diethylenetriamine (DETA, 19.3 mL, 180 mmol, 20 equiv.). The reaction mixture was heated to 140 °C, stirred for 24 h and monitored by TLC until the full consumption of oxazinone **4**. The reaction mixture was added water (30 mL), and extracted with the solution of EtOAc/MeOH (30 mL× 3, 10:1, v/v), the combined organic phase was sequentially washed with saturated aqueous NaCl (40 mL × 2), dried over anhydrous Na₂SO₄, and concentrated under vacuum. The crude product was purified by flash chromatography on silica gel (200-300 m) with EtOAc/MeOH (5:1, v/v) as the eluent to give compound **2** (white solid, 1.1 g, 51% yield).

(1S,2R,4aS,8aS)-1-(aminomethyl)-2,5,5,8a-tetramethyldecahydronaphthalen-2-ol (2) ¹H NMR (500 MHz, CDCl₃) δ 4.37 (br, 3H), 3.18 (dd, J = 12.7, 2.5 Hz, 1H), 2.97 – 2.91 (m, 1H), 1.89 – 1.85 (m, 1H), 1.77 – 1.69 (m, 1H), 1.66 – 1.60 (m, 1H), 1.60 – 1.51 (m, 2H), 1.49 (dd, J = 10.9, 2.5 Hz, 1H), 1.46 – 1.40 (m, 1H), 1.38 – 1.33 (m, 1H), 1.31 (s, 3H), 1.26 – 1.12 (m, 2H), 1.08 – 1.02 (m, 1H), 0.98 (dd, J = 12.2, 2.2 Hz, 1H), 0.86 (s, 3H), 0.77 (s, 3H), 0.76 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) *δ* 74.3, 59.1, 56.0, 43.8, 41.8, 39.9, 38.3, 37.8, 33.6, 33.4, 24.8, 21.7, 20.1, 18.7, 15.9.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₅H₃₀NO 240.23219; Found 240.23203.

3 Synthesis of halichonine B (3) and 8-hydroxyl *N*-Boc-halichonine B (11)

(11)

Compound **5** was prepared in an approach according to the previous method.² To a stirred solution of 4-amino-1-butanol (1.8 mL, 20 mmol, 1.0 equiv.) in CH_2Cl_2 (110 mL) containing molecular sieves of 3 Å (4 g) was added 3-methyl-2-butenal (2.2 mL, 22 mmol, 1.1 equiv.) at room temperature, and the mixture was stirred at room temperature

for 20 h. The mixture was filtered, and the residue was washed with CH₂Cl₂. Concentration of the filtrate and washings afforded the crude imine intermediate. To a stirred solution of the crude imine intermediate in MeOH (20 mL) was added NaBH₄ (1.5 g, 40 mmol, 2.0 equiv.) at 0 °C. After being stirred at room temperature for 30 min, the reaction mixture was diluted with H₂O (80 mL) and extracted with CH₂Cl₂ (60 mL \times 3). The combined extracts were washed with brine (60 mL \times 2), dried over Na₂SO₄, and filtered. Removal of the solvent afforded the crude amine (2.6 g), which was used for the next reaction without further purification.

To a stirred solution of the crude amine (2.6 g, 16.5 mmol, 1.0 equiv.) in THF (80 mL) were added Boc₂O (4.2 mL, 18.1 mmol, 1.1 equiv.) and Et₃N (3.6 mL, 26.4 mmol, 1.6 equiv.) at 0 °C. After being stirred at room temperature for 1.5 h, the reaction mixture was diluted with saturated aqueous NH₄Cl (150 mL) and extracted with EtOAc (60 mL \times 3). The combined layers were washed with brine (60 mL \times 2), dried over Na₂SO₄, filtered, and concentrated. The crude product was purified by column chromatography on silica gel with petroleum ether /EtOAc (4:1 - 1:1, v/v) to give compound **5** (colorless liquid, 2.8 g, 55% yield).

¹H NMR (400 MHz, CDCl₃) δ 5.12 – 5.06 (m, 1H), 3.74 (br, 2H), 3.58 (t, *J* = 6.0 Hz, 2H), 3.14 – 3.10 (m, 2H), 1.67 (s, 3H), 1.61 (s, 3H), 1.57 – 1.46 (m, 4H), 1.40 (s, 9H).

Compound **5** (343 mg, 1.3 mmol, 1.0 equiv.), triphenylphosphine (682 mg, 2.6 mmol, 2.0 equiv.) and carbon tetrabromide (862 mg, 2.6 mmol, 2.0 equiv.) were dissolved in dry DCM (6 ml) at 0 °C, then allowed to warm to room temperature and stirred overnight. Saturated aqueous NaHCO₃ (15 mL) was added and extracted with EtOAc (10 mL \times 3). The combined organic layers were dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (200-300 m) with petroleum ether /EtOAc (100:1, v/v) as the eluent to give compound **6** (colorless liquid, 352 mg, 82% yield).

¹H NMR (500 MHz, CDCl₃) δ 5.15 – 5.12 (m, 1H), 3.79 (d, J = 24.7 Hz, 2H), 3.42 (t, J = 6.7 Hz, 2H), 3.17 (br, 2H), 1.86 – 1.81 (m, 2H), 1.72 (s, 3H), 1.66 (s, 3H), 1.64 – 1.62 (m, 2H), 1.45 (s, 9H).

1,4,4a,5,6,7,8,8a-octahydronaphthalen-1-yl)methyl)amino)butyl)carbamate (8)

tert-butyl

To a stirred solution of amine **1** (176.8 mg, 0.8 mmol, 1.0 equiv.) in anhydrous DMF (4 mL) were added NaOH (32.0 mg, 0.8 mmol, 1.0 equiv.), and 18-crown-6 (105.6 mg, 0.4 mmol, 0.5 eq), and the mixture was stirred at room temperature for 30 min, compound **6** (383.0 mg, 1.2 mmol, 1.5 equiv.) was added at 0 °C. After being stirred at room temperature for 36 h, the reaction mixture was diluted with H₂O (10 mL) and extracted with EtOAc (15 mL × 2). The organic layers were washed with brine (15 mL× 2), dried over Na₂SO₄, filtered, and concentrated. The crude product was purified by column chromatography on silica gel (200-300 m) with DCM /EtOAc (3:0-1:1, v/v) as the eluent to give compound **8** (colorless oil, 82 mg), **8m** (colorless oil, 101 mg, $\Delta_{7,8}:\Delta_{8,9}=3:2$), and recovery of amine **1** (42 mg, $\Delta_{7,8}:\Delta_{8,9}=3:0.7$). The NMR spectra data of compound **8** is in agreement with that in the previous reports.²

¹H NMR (500 MHz, CDCl₃) δ 5.43 – 5.42 (m, 1H), 5.14 – 5.11 (m, 1H), 3.80 – 3.75 (m, 2H), 3.13 – 3.10 (m, 2H), 2.68 (dd, *J* = 12.2, 2.0 Hz, 1H), 2.65 – 2.60 (m, 1H), 2.55 – 2.50 (m, 1H), 2.46 (dd, *J* = 12.1, 7.3 Hz, 1H), 1.99 – 1.89 (m, 2H), 1.88 – 1.80 (m, 1H), 1.71 (s, 3H), 1.70 (s, 3H), 1.64 (s, 3H), 1.54 – 1.48 (m, 3H), 1.46 – 1.42 (m, 12H (s, 9H)), 1.42 – 1.37 (m, 2H), 1.19 – 1.15 (m, 2H), 1.09 – 1.03 (m, 1H) , 0.86 (s, 3H), , 0.84 (s, 3H), 0.75 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 155.8, 134.4 (2C), 123.1, 121.3, 79.3, 55.4, 50.2, 50.1,
48.4, 46.2, 44.7, 42.4, 39.5, 36.3, 33.4, 33.1, 28.6 (3C), 27.5, 26.5, 25.9, 23.9, 22.1 (2C),
18.9, 17.9, 14.2.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₉H₅₃N₂O₂ 461.41020; Found 461.40980.

tert-butyl (3-methylbut-2-en-1-yl) (4-((3-methylbut-2-en-1-yl) (((1*S*,4a*S*,8a*S*)-2,5,5,8a-tetramethyl-1,4,4a,5,6,7,8,8a-octahydronaphthalen-1-yl)methyl)amino)butyl)carbamate (**9**)

To a stirred solution of amine **8** (152 mg, 0.3 mmol, 1.0 equiv.) in MeCN (3 mL) were added *i*-Pr₂NEt (59 μ L, 0.3 mmol, 1.0 equiv.) and 3,3-dimethylallyl bromide (92.6 μ L, 0.8 mmol, 2.7 equiv.) at 0 °C. After being stirred at ambient temperature for 15 h, the reaction mixture was diluted with H₂O (5 mL) and extracted with EtOAc (10 mL × 2). The organic layers were washed with brine (10 mL × 2), dried over Na₂SO₄, filtered, and concentrated. The crude product was purified by column chromatography on silica gel (200-300 m) with DCM /EtOAc (25:1, v/v) as the eluent to give compound **9** (colorless oil, 119.4 mg, 69% yield), the NMR spectra data is in agreement with that in the previous reports.²

¹H NMR (500 MHz, CDCl₃) δ 5.40 – 5.36 (m, 1H), 5.24 – 5.20 (m, 1H), 5.16 – 5.11 (m, 1H), 3.80 – 3.72 (m, 2H), 3.12 – 3.08 (m, 3H), 2.85 – 2.81 (m, 1H), 2.52 – 2.46 (m, 1H), 2.31 – 2.22 (m, 2H), 2.21 – 2.16 (m, 1H), 2.02 – 1.94 (m, 2H), 1.87 – 1.79 (m, 2H), 1.75 (s, 3H), 1.71 (s, 6H), 1.65 (s, 3H), 1.61 (s, 3H), 1.53 – 1.47 (m, 2H), 1.44 – 1.37 (m, 14H (s, 9H)), 1.21 – 1.13 (m, 2H), 1.02 – 0.96 (m, 1H) , 0.87 (s, 3H) ,0.85 (s, 3H), 0.73 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 155.6, 136.2, 134.8, 133.9, 122.2, 121.9, 121.2, 79.1,
53.7, 53.3, 51.5, 51.2, 50.2, 46.3, 44.7, 42.3, 39.1, 36.1, 33.3, 33.1, 28.7 (3C), 26.7,
26.0, 25.8, 24.4, 23.7, 22.5, 22.1, 18.9, 18.0, 17.9, 13.7.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₄H₆₁N₂O₂ 529.47276; Found 529.47137.

 N^1 , N^4 -bis(3-methylbut-2-en-1-yl)- N^1 -(((1*S*,4a*S*,8a*S*)-2,5,5,8a-tetramethyl-1,4,4a,5,6,7,8,8a-octahydronaphthalen-1-yl)methyl)butane-1,4-diamine (**3**)

Amine 9 (121 mg, 0.23 mmol) was treated with 4.0 M HCl/MeOH (1 mL) at 0 °C, and the mixture was stirred at ambient temperature for 2 h. The reaction mixture was concentrated to afford halichonine B HCl salt, The halichonine B HCl salt was purified by column chromatography on Al₂O₃ with DCM/MeOH (10: 1, v/v) as the eluent to give halichonine B (colorless oil, 82 mg, 84% yield).

¹H NMR (500 MHz, CD₃OD) δ 5.39 – 5.36 (m, 1H), 5.28 – 5.23 (m, 2H), 3.20 (d, J = 7.0 Hz, 2H), 3.14 (dd, J = 14.2, 6.2 Hz, 1H), 2.89 (dd, J = 14.2, 7.7 Hz, 1H), 2.61 – 2.53 (m, 3H), 2.37 – 2.29 (m, 2H), 2.27 – 2.22 (m, 1H), 2.08 – 2.03 (m, 1H), 2.00 – 1.94 (m, 1H), 1.91 – 1.82 (m, 2H), 1.76 (s, 3H), 1.74 (s, 3H), 1.72 (s, 3H), 1.67 (s, 3H), 1.65 (s, 3H), 1.60 – 1.56 (m, 1H), 1.55 – 1.51 (m, 1H), 1.51 – 1.44 (m, 4H), 1.44 – 1.40 (m, 1H), 1.24 – 1.17 (m, 2H), 1.07 – 1.00 (m, 1H), 0.90 (s, 3H), 0.87 (s, 3H), 0.77 (s, 3H).

¹³C NMR (126 MHz, CD₃OD) δ 136.9, 136.3, 135.2, 123.1, 123.01, 122.7, 55.0, 54.5, 53.0, 52.3, 51.7, 49.9, 47.6, 43.5, 40.5, 37.4, 34.0, 33.9, 28.4, 26.1, 26.0, 25.8, 24.8, 23.0, 22.5, 19.9, 18.1, 18.0, 14.2.

 $[\alpha]_{D}^{5} = +60.0 (c 0.1, MeOH)$

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₉H₅₃N₂ 429.42030; Found 429.41930.

	Osamu Ohno's	Ichiro Hayakawa's
halichonine B	halichonine B ³	halichonine B ²
500 MHz	800 MHz	600 MHz
5.39 – 5.36 (m, 1H)	5.34 (s, 1H)	5.36 (m, 1H)
5.28 – 5.23 (m, 2H)	5.22 (m, 1H)	5.28–5.20 (m, 2H)
	5.22 (m, 1H)	

Comparison tables for halichonine B ¹H-NMR and ¹³C-NMR in CD₃OD

3.20 (d, J = 7.0 Hz, 2H)	3.18 (d, J = 6.5 Hz, 2H)	3.18 (d, J = 7.0 Hz, 2H)
3.14 (dd, J = 14.2, 6.2 Hz,	3.11 (dd, <i>J</i> = 13.9, 5.7	3.13 (dd, J = 14.1, 6.1 Hz,
1H)	Hz, 1H)	1H)
2.89 (dd, J = 14.1, 7.7 Hz,	2.86 (dd, <i>J</i> = 13.9, 7.8	2.88 (dd, J = 14.1, 7.7 Hz,
1H)	Hz, 1H)	1H)
2.61 – 2.53 (m, 3H)	2.55-2.52 (m, 3H)	2.59–2.51 (m, 3H)
2.37 – 2.29 (m, 2H)	2.31 (m, 2H)	2.36–2.28 (m, 2H)
2.27 – 2.22 (m, 1H)	2.22 (m, 1H)	2.27–2.20 (m, 1H)
2.08 – 2.03 (m, 1H)	2.03 (m, 1H)	2.04 (br m, 1H)
2.00 – 1.94 (m, 1H)	1.95 (m, 2H)	1.96 (br m, 1H)
1.91 – 1.82 (m, 2H)	1.84 (m, 1H)	1.90–1.80 (m, 2H)
1.76 (s, 3H)	1.74 (s, 3H)	1.75 (s, 3H)
1.74 (s, 3H)	1.74 (s, 3H)	1.73 (s, 3H)
1.72 (s, 3H)	1.70 (s, 3H)	1.71 (s, 3H)
1.67 (s, 3H)	1.68 (s, 3H)	1.66 (s, 3H)
1.65 (s, 3H)	1.63 (s, 3H)	1.64 (s, 3H)
1.60 – 1.56 (m, 1H)	1.55 (m, 1H)	1.61–1.36 (m, 7H)
1.55 – 1.51 (m, 1H)	1.45 (m, 2 H)	
1.51 – 1.44 (m, 4H)	1.43 (m, 2H)	
1.44 – 1.40 (m, 1H)	1.39 (m, 1H)	
	1.38 (m, 1H)	
	1.18 (m, 1H)	
1.24–1.17 (m, 2H)	1.16 (m, 1H)	1.23–1.16 (m, 2H)
1.07–1.00 (m, 1H)	1.01 (m, 1H)	1.03 (ddd, J = 13.1, 13.1, 3.3 Hz, 1H)

0.90 (s, 3H)	0.88 (s, 3H)	0.89 (s, 3H)
0.87 (s, 3H)	0.85 (s, 3H)	0.86 (s, 3H)
0.77 (s, 3H)	0.74 (s, 3H)	0.76 (s, 3H)

	Osamu Ohno's	Ichiro Hayakawa's
halichonine B	halichonine B	halichonine B
126 MHz	100 MHz	150 MHz
14.2	12.8	14.2
18.0	16.7	18.0
18.1	16.7	18.1
19.9	18.5	19.9
22.5	21.1	22.4
23.0	21.6	22.9
24.8	23.5	24.8
25.8	24.3	25.8
26.0	24.6	25.9
26.1	24.7	26.1
28.4	26.2	28.5
33.9	32.5	33.9
34.0	32.6	34.0
37.4	36.1	37.4
40.5	39.2	40.6
43.5	42.2	43.5
47.6	45.8	47.6
49.9	48.0	49.9
51.7	50.4	51.7
52.3	51.0	52.4
53.0	51.7	53.1
54.5	53.0	54.5

55.0	53.6	55.0
122.7	119.0	
123.0	121.5	123.0 (2C)
123.1	121.7	123.1
135.2	134	135.2
136.3	135.4	136.0
136.9	137.4	136.8

tert-butyl (4-((((1*S*,2*R*,4a*S*,8a*S*)-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1-yl)methyl)amino)butyl)(3-methylbut-2-en-1-yl)carbamate (**10**)

To a stirred solution of compound **5** (176 mg, 0.69 mmol, 1.0 equiv.) and 2,2,6,6tetramethylpiperidinooxy (TEMPO, 11 mg, 0.07 mmol, 0.1 equiv.) in DCM (1 mL) were added (diacetoxyiodo)benzene (PIDA, 243 mg, 0.75 mmol, 1.1 equiv.). The reaction mixture was stirred until the reaction was completely monitored by TLC, and then it was diluted with DCM (15 mL). The mixture was washed with a saturated aqueous solution of Na₂S₂O₃ (15 mL) and extracted with DCM (10 mL × 2). The combined organic layers were washed with aqueous NaHCO₃ (15 mL) and brine (15 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (200-300 m) with petroleum ether /EtOAc (20:1, v/v) as the eluent to give compound **7** (colorless liquid, 123 mg, 70% yield).

¹H NMR (500 MHz, CDCl₃) δ 9.75 (s, 1H), 5.11 (s, 1H), 3.84 – 3.69 (m, 2H), 3.15 (s, 2H), 2.42 (t, *J* = 7.1 Hz, 2H), 1.83 – 1.77 (m, *J* = 7.2 Hz, 2H), 1.69 (s, 3H), 1.63 (s, 3H), 1.42 (s, 9H).

To a schlenk flask containing a stirring bar was charged with amine 2 (741 mg, 3.1 mmol, 1.0 equiv.), aldehyde 7 (794 mg, 3.1 mmol, 1.0 equiv.) and NaBH(OAc)₃ (2.6 g, 12.4 mmol, 4.0 equiv.). The flask was evacuated and filled with N₂ (three cycles). Then, anhydrous ClCH₂CH₂Cl (30 mL) was added. The resulting mixture was stirred overnight at room temperature, and quenched with saturated aqueous solution of NaHCO₃ (20 mL). The organic layers were separated and the aqueous layers were extracted with CH₂Cl₂ (20 mL × 3). The combined organic layers were washed with brine (30 mL), dried over Na₂SO₄, filtered, and concentrated. The crude product was purified by column chromatography on silica gel (200-300 m) with EtOAc/MeOH (100:1, v/v) as the eluent to give compound **10** (colorless oil, 1.0 g, 67% yield).

¹H NMR (500 MHz, CDCl₃) δ 5.09 (s, 1H), 3.80 – 3.70 (m 2H), 3.15 – 3.08 (m, 2H), 2.93 (dd, J = 12.3, 2.4 Hz, 1H), 2.69 (t, J = 11.9 Hz, 1H), 2.67 – 2.61 (m, 1H), 2.51 – 2.46 (m, 1H), 1.82 – 1.78 (m, 1H), 1.76 – 1.72 (m, 1H), 1.68 (d, J = 1.4 Hz, 3H), 1.62 (s, 3H), 1.61 – 1.53 (m, 2H), 1.50 – 1.47 (m, 2H), 1.47 – 1.45 (m, 1H), 1.41 (s, 11H (s, 9H)), 1.39 – 1.36 (m, 1H), 1.36 – 1.31 (m, 2H), 1.23 (s, 3H), 1.21 – 1.10 (m, 2H), 0.95 – 0.89 (m, 2H), 0.84 (s, 3H), 0.76 (s, 3H), 0.74 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ155.7, 134.4, 121.2, 79.3, 73.5, 58.2, 56.4, 49.7, 46.8, 46.0, 44.7, 43.3, 42.0, 40.2, 37.4, 33.7, 33.5, 28.6 (3C), 27.3, 26.2, 25.9, 25.5, 21.8, 20.0, 18.8, 18.0, 15.8.

HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₉H₅₅N₂O₃ 479.42070; Found 479.42020.

tert-butyl (4-((((1*S*,2*R*,4a*S*,8a*S*)-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1-yl)methyl)(3-methylbut-2-en-1-yl)amino)butyl)(3-methylbut-2-en-1-yl)carbamate (**11**)

Same synthesis procedure as that of compound **9**, the crude product was purified by column chromatography on silica gel column chromatography (200-300 m) with EtOAc as the eluent to give compound **11** (colorless oil, 89% yield).

¹H NMR (500 MHz, CDCl₃) δ 5.22 – 5.10 (m, 2H), 3.76 (d, J = 27.8 Hz, 2H), 3.24 – 3.17 (m, 1H), 3.17 – 3.05 (m, 2H), 2.83 – 2.78 (m, 1Hz, 1H), 2.72 (t, J = 12.4 Hz, 1H), 2.67 – 2.58 (m, 1H), 2.41 (d, J = 12.9 Hz, 1H), 2.21 – 2.13 (m, 1H), 1.81 – 1.76 (m, 1H), 1.76 – 1.70 (m, 4H (s, 3H)), 1.70 (s, 3H), 1.64 (s, 3H), 1.63 (s, 3H), 1.60 – 1.56 (m, 1H), 1.56 – 1.52 (m, 1H), 1.51 – 1.45 (m, 3H), 1.45 – 1.42 (m, 11H (s, 9H)), 1.41 – 1.33 (m 3H), 1.22 (s, 3H), 1.21 – 1.17 (m, 1H), 1.17 – 1.11 (m, 1H), 0.96 (dd, J = 12.2, 2.1 Hz, 1H), 0.92 – 0.87 (m, 1H), 0.86 (s, 3H), 0.77 (s, 3H), 0.75 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 155.7, 135.9, 134.3, 121.2, 120.7, 79.2, 73.4, 56.6, 54.7, 53.9, 51.4 (2C), 46.1, 44.7, 43.4, 42.0, 40.0, 37.3, 33.7, 33.5, 28.6 (3C), 26.6, 26.0, 25.9, 25.3, 24.1, 21.7, 20.0, 18.8, 18.2, 18.0, 15.9.

HRMS (ESI) m/z: [M+H]⁺Calcd for C₃₄H₆₃N₂O₃ 547.48332; Found 547.48285.

4 Synthesis of halichonine B analogs

4.1 General procedures for the *N*-alkylation of amine 2

4.1.1 the *N*-mono-alkylation of amine **2**

The analogs **12a-12u** can be prepared according to the same synthesis procedure as that of **10**.

(1S,2R,4aS,8aS)-1-(((2,6-difluorobenzyl)amino)methyl)-2,5,5,8a-

tetramethyldecahydronaphthalen-2-ol (12a)

Yield: 80% Physical State: white solid mp: 75.5~78.5 °C

¹H NMR (500 MHz, CDCl₃) δ 7.24 – 7.18 (m, 1H), 6.90 – 6.84 (m, 2H), 3.86 (s, 2H), 2.95 (dd, J = 12.3, 2.5 Hz, 1H), 2.71 (t, J = 11.9 Hz, 1H), 1.83 – 1.80 (m, 1H), 1.68 – 1.64 (m, 1H), 1.62–1.57 (m, 1H), 1.56 – 1.50 (m, 1H), 1.50 – 1.43 (m, 1H), 1.41 – 1.32 (m, 3H), 1.23 – 1.17 (m, 4H (s, 3H)), 1.16 – 1.10 (m, 1H), 0.94 (dd, J = 12.1, 2.3 Hz, 2H), 0.86 (s, 3H), 0.77 (s, 3H), 0.74 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 162.8 (d, J = 8.2 Hz), 160.9 (d, J = 8.4 Hz), 129.3 (t, J = 10.4 Hz), 115.1 (t, J = 19.7 Hz), 111.4 (d, J = 6.0 Hz), 111.3 (d, J = 6.0 Hz), 73.4, 58.2, 56.3, 45.7, 43.3, 41.9, 40.4, 40.0, 37.5, 33.7, 33.4, 25.4, 21.8, 19.9, 18.8, 15.8. HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₂H₃₄F₂NO 366.26030; Found 366.25974.

(1S,2R,4aS,8aS)-1-((((3,5-difluorobenzyl)amino)methyl)-2,5,5,8a-

tetramethyldecahydronaphthalen-2-ol (12b)

Yield: 69% Physical State: white solid mp: 92.6~94.4 °C ¹H NMR (500 MHz, CDCl₃) δ 6.86 – 6.80 (m, 2H), 6.71 – 6.67 (m, 1H), 3.83 (d, J = 13.7 Hz, 1H), 3.66 (d, J = 13.4 Hz, 1H), 2.97 (dd, J = 12.1, 2.3 Hz, 1H), 2.74 (t, J = 11.9 Hz, 1H), 1.88 – 1.83 (m, 1H), 1.78 – 1.72 (m, 1H), 1.66 – 1.60 (m, 1H), 1.59 – 1.53 (m, 1H), 1.53 – 1.46 (m, 1H), 1.46 – 1.34 (m, 3H), 1.25 – 1.18 (m, 4H (s, 1H)), 1.18 – 1.12 (m, 1H), 0.99 – 0.92 (m, 2H), 0.87 (s, 3H), 0.78 (s, 3H), 0.75 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 164.2 (d, J = 12.4 Hz), 162.2 (d, J = 12.4 Hz), 143.4 (t, J = 8.5 Hz), 111.1 (d, J = 6.0 Hz), 110.9 (d, J = 6.0 Hz), 102.8 (t, J = 25.3 Hz), 73.7, 58.6, 56.3, 53.4, 46.4, 43.3, 41.9, 40.2, 37.6, 33.7, 33.5, 25.4, 21.7, 20.0, 18.8, 15.9. HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₂H₃₄F₂NO 366.26030; Found 366.25974.

(1*S*,2*R*,4a*S*,8a*S*)-1-(((4-(*tert*-butyl)benzyl)amino)methyl)-2,5,5,8a-

Yield: 80% Physical State: colorless oil

¹H NMR (500 MHz, CDCl₃) δ 7.34 – 7.32 (m, 2H), 7.23 – 7.20 (m, 2H), 3.81 (d, J = 12.9 Hz, 1H), 3.64 (d, J = 12.8 Hz, 1H), 3.02 (dd, J = 12.3, 2.4 Hz, 1H), 2.78 (t, J = 11.9 Hz, 1H), 1.86 – 1.83 (m, 1H), 1.79 – 1.75 (m, 1H), 1.65 – 1.60 (m, 1H), 1.60 – 1.54 (m, 1H), 1.53 – 1.46 (m, 1H), 1.44 – 1.40 (m, 2H), 1.40 – 1.34 (m, 1H), 1.30 (s, 9H), 1.22 (s, 3H), 1.21 – 1.19 (m, 1H), 1.18 – 1.13 (m, 1H), 1.00 – 0.93 (m, 2H), 0.88 (s, 3H), 0.79 (s, 3H), 0.76 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 150.3, 136.3, 128.1, 125.5, 73.6, 58.3, 56.3, 53.7, 46.3, 43.3, 41.9, 40.2, 37.5, 34.6, 33.7, 33.4, 31.5, 25.4, 21.7, 19.9, 18.8, 15.8.
HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₆H₄₄NO 386.34174; Found 386.34082.

(1S, 2R, 4aS, 8aS) - 1 - (((3 - (tert-butyl)phenyl) - 2 - methylpropyl)amino)methyl) - 2 - methylpropyl)amino)methyl - 2 - methylpropyl)amino)methyl) - 2 - methylpropyl)amino)methyl) - 2 - methylpropyl)amino)methyl - 2 - methylpropyl - 2 - methylprop

2,5,5,8a-tetramethyldecahydronaphthalen-2-ol (12d)

Yield: 55% Physical State: colorless oil

¹H NMR (500 MHz, CDCl₃) δ 7.30 – 7.29 (m, 2H), 7.09 – 7.07 (m, 2H), 7.07 – 7.05 (m, 2H), 7.07 – 7.05 (m, 2H), 2.97 – 2.91 (m, 2H), 2.70 (t, *J* = 11.8 Hz, 1H), 2.68 – 2.58 (m, 4H), 2.54 – 2.46 (m, 2H), 2.41 – 2.30 (m, 3H), 1.94 – 1.84 (m, 3H), 1.84 – 1.82 (m, 1H), 1.79 – 1.73 (m, 2H), 1.65 – 1.61 (m, 2H), 1.60 – 1.53 (m, 2H), 1.52 – 1.45 (m, 2H), 1.45 – 1.40 (m, 2H), 1.40 – 1.34 (m, 4H), 1.31 (s, 18H), 1.28 (s, 3H), 1.27 (s, 3H), 1.26 – 1.20 (m, 2H), 1.18 – 1.14 (m, 2H), 0.97 – 0.96 (m, 2H), 0.95 – 0.93 (m, 2H), 0.91 (d, *J* = 6.6 Hz, 3H), 0.89 (d, *J* = 6.7 Hz, 3H), 0.87 (s, 6H), 0.79 (s, 6H), 0.77 – 0.76 (m, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 148.7, 137.6, 137.5, 128.9, 125.2, 73.5, 73.4, 58.5, 58.2, 56.3, 56.1, 47.1, 47.0, 43.3, 41.9, 41.7, 41.0, 40.1, 37.4, 35.3, 35.1, 34.4, 33.7, 33.4, 31.5, 25.5, 25.5, 21.7, 20.0, 18.8, 18.3, 18.2, 15.8.

HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₉H₅₀NO 428.38869; Found 428.38831.

(1*S*,2*R*,4a*S*,8a*S*)-1-(((4-isopropylbenzyl)amino)methyl)-2,5,5,8atetramethyldecahydronaphthalen-2-ol (**12e**)

Yield: 67% Physical State: colorless oil

¹H NMR (500 MHz, CDCl₃) δ 7.22 – 7.19 (m, 2H), 7.18 – 7.15 (m, 2H), 3.80 (d, J = 12.8 Hz, 1H), 3.64 (d, J = 12.8 Hz, 1H), 3.01 (dd, J = 12.3, 2.4 Hz, 1H), 2.90 – 2.85 (m, 1H), 2.77 (t, J = 11.9 Hz, 1H), 1.86 – 1.82 (m, 1H), 1.79 – 1.74 (m, 1H), 1.65 – 1.59 (m, 1H), 1.59 – 1.52 (m, 1H), 1.52 – 1.46 (m, 1H), 1.45 – 1.40 (m, 2H), 1.40 – 1.34 (m, 1H), 1.24 (s, 3H), 1.22 (s, 3H), 1.22 (s, 3H), 1.21 – 1.13 (m, 2H), 0.99 – 0.93 (m, 2H), 0.87 (s, 3H), 0.78 (s, 3H), 0.76 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 148.0, 136.6, 128.4, 126.6, 73.5, 58.2, 56.3, 53.7, 46.2,
43.3, 41.9, 40.1, 37.4, 33.9, 33.7, 33.4, 25.4, 24.1, 21.7, 19.9, 18.8, 15.9.
HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₅H₄₂NO 372.32609; Found 372.32553.

(1*S*,2*R*,4a*S*,8a*S*)-2,5,5,8a-tetramethyl-1-(((2-

nitrobenzyl)amino)methyl)decahydronaphthalen-2-ol (12f)

Yield: 48% Physical State: yellow solid mp: 80.9~83.0 °C

¹H NMR (500 MHz, CDCl₃) δ 7.95 (dd, J = 8.2, 1.2 Hz, 1H), 7.60 – 7.53 (m, 2H), 7.42 (m, 1H), 4.02 (d, J = 13.6 Hz, 1H), 3.92 (d, J = 13.7 Hz, 2H (br, 1H)), 3.03 (dd, J = 12.3, 2.4 Hz, 1H), 2.82 (t, J = 11.8 Hz, 1H), 1.85 – 1.82 (m, 1H), 1.76 – 1.71 (m, 1H), 1.63 – 1.60 (m, 1H), 1.58 – 1.51 (m, 1H), 1.52 – 1.33 (m, 3H), 1.39 – 1.33 (m, 1H), 1.26 (s, 3H), 1.23 – 1.18 (m, 1H), 1.18 – 1.11 (m, 1H), 1.00 – 0.93 (m, 2H), 0.86 (s, 3H), 0.77 (s, 3H), 0.76 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 149.2, 134.2, 133.6, 131.9, 128.6, 125.0, 73.6, 58.3, 56.3, 50.8, 46.6, 43.3, 41.9, 40.1, 37.6, 33.7, 33.4, 25.4, 21.7, 19.9, 18.7, 15.8.

(1*S*,2*R*,4a*S*,8a*S*)-1-(((4-bromobenzyl)amino)methyl)-2,5,5,8atetramethyldecahydronaphthalen-2-ol (**12g**)

Yield: 68% **Physical State**: white solid **mp**: 123.9~124.4 °C ¹H NMR (500 MHz, CDCl₃) δ 7.45 – 7.41 (m, 2H), 7.19 – 7.14 (m, 2H), 3.80 (d, *J* = 13.2 Hz, 1H), 3.61 (d, *J* = 13.2 Hz, 1H), 2.97 (dd, *J* = 12.2, 2.3 Hz, 1H), 2.73 (t, *J* = 11.8 Hz, 1H), 1.86 – 1.82 (m, 1H), 1.77 – 1.73 (m, 1H), 1.65 – 1.59 (m, 1H), 1.60 – 1.52 (m, 1H), 1.52 – 1.45 (m, 1H), 1.45 – 1.34 (m, 3H), 1.24 – 1.18 (m, 4H (s, 3H)), 1.18 – 1.12 (m, 1H), 0.98 – 0.91 (m, 2H), 0.87 (s, 3H), 0.78 (s, 3H), 0.74 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 138.4, 131.7, 130.1, 121.2, 73.6, 58.5, 56.3, 53.5, 46.3, 43.3, 41.9, 40.2, 37.5, 33.7, 33.5, 25.5, 21.7, 19.9, 18.8, 15.8. HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₂H₃₅BrNO 408.18965; Found 408.18912.

(1*S*,2*R*,4a*S*,8a*S*)-1-(((4-fluorobenzyl)amino)methyl)-2,5,5,8atetramethyldecahydronaphthalen-2-ol (**12h**)

Yield: 46% Physical State: white solid mp: 92.3~93.5 °C

¹H NMR (500 MHz, CDCl₃) δ 7.26 – 7.22 (m, 2H), 7.00 – 6.95 (m, 2H), 3.81 (d, J = 12.9 Hz, 1H), 3.61 (d, J = 12.9 Hz, 1H), 2.97 (dd, J = 12.2, 2.4 Hz, 1H), 2.73 (t, J = 11.8 Hz, 1H), 1.84 – 1.81 (m, 1H), 1.76 – 1.72 (m, 1H), 1.64 – 1.58 (m, 1H), 1.58 – 1.51 (m, 1H), 1.50 – 1.44 (m, 1H), 1.44 – 1.38 (m, 2H), 1.38 – 1.33 (m, 1H), 1.22 –

1.16 (m, 4H (s, 3H)), 1.16 – 1.10 (m, 1H), 0.97 – 0.91 (m, 2H), 0.86 (s, 3H), 0.77 (s, 3H), 0.73 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 162.2 (d, *J* = 245.3 Hz), 135.0 (d, *J* = 3.2 Hz), 130.0 (d, *J* = 7.9 Hz), 115.4 (d, *J* = 21.5 Hz), 73.6, 58.4, 56.3, 53.3, 46.1, 43.2, 41.9, 40.2, 37.5, 33.7, 33.4, 25.4, 21.7, 19.9, 18.8, 15.8.

HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₂H₃₅FNO 348.26972; Found 348.26932.

(1S,2R,4aS,8aS)-1-(((4-chlorobenzyl)amino)methyl)-2,5,5,8a-

tetramethyldecahydronaphthalen-2-ol (12i)

Yield: 68% Physical State: white solid mp: 127.8~128.6 °C

¹H NMR (500 MHz, CDCl₃) δ 7.29 – 7.26 (m, 2H), 7.24 – 7.21 (m, 2H), 3.82 (d, J = 13.1 Hz, 1H), 3.63 (d, J = 13.1 Hz, 1H), 2.98 (dd, J = 12.3, 2.4 Hz, 1H), 2.73 (t, J = 11.8 Hz, 1H), 1.86 – 1.82 (m, 1H), 1.77 – 1.73 (m, 1H), 1.64 – 1.60 (m, 1H), 1.59 – 1.52 (m, 1H), 1.52 – 1.45 (m, 1H), 1.44 – 1.39 (m, 2H), 1.39 – 1.35 (m, 1H), 1.23 – 1.18 (m, 4H (s, 3H)), 1.18 – 1.12 (m, 1H), 0.98 – 0.92 (m, 2H), 0.87 (s, 3H), 0.78 (s, 3H), 0.74 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 137.8, 133.1, 129.8, 128.8, 73.6, 58.5, 56.3, 53.4, 46.3,
43.3, 41.9, 40.2, 37.5, 33.7, 33.5, 25.5, 21.7, 20.0, 18.8, 15.8.

HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₂H₃₅ClNO 364.24017; Found 364.23981.

4-((((((1*S*,2*R*,4a*S*,8a*S*)-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1yl)methyl)amino)methyl)benzonitrile (**12j**)

Yield: 66% Physical State: white solid mp: 146.7~147.1 °C

¹H NMR (500 MHz, CDCl₃) δ 7.61 – 7.58 (m, 2H), 7.42 – 7.39 (m, 2H), 3.92 (d, J = 13.8 Hz, 1H), 3.71 (d, J = 13.8 Hz, 1H), 2.98 (dd, J = 12.2, 2.3 Hz, 1H), 2.73 (t, J = 11.7 Hz, 1H), 1.85 – 1.81 (m, 1H), 1.75 – 1.71 (m, 1H), 1.64 – 1.59 (m, 1H), 1.55 (m, 1H), 1.50 – 1.43 (m, 1H), 1.43 – 1.39 (m, 2H), 1.39 – 1.33 (m, 1H), 1.25 – 1.19 (m, 1H), 1.18 (s, 3H), 1.17 – 1.10 (m, 1H), 0.98 – 0.91 (m, 2H), 0.86 (s, 3H), 0.77 (s, 3H), 0.73 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 144.8, 132.4, 129.0, 118.9, 111.3, 73.7, 58.6, 56.3, 53.7,
46.5, 43.2, 41.8, 40.2, 37.5, 33.6, 33.4, 25.4, 21.7, 19.9, 18.7, 15.8.

HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₃H₃₅N₂O 355.27439; Found 355.27390.

(1*S*,2*R*,4a*S*,8a*S*)-1-((benzylamino)methyl)-2,5,5,8a-tetramethyldecahydronaphthalen-2-ol (**12k**)

Yield: 61% Physical State: white solid mp: 154.5~156.5 °C

¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.52 (m, 2H), 7.47 – 7.34 (m, 3H), 4.28 (d, J = 13.4 Hz, 1H), 3.98 (d, J = 13.5 Hz, 1H), 3.07 – 2.96 (m, 2H), 1.94 – 1.86 (m, 2H), 1.64 – 1.53 (m, 2H), 1.52 – 1.40 (m, 3H), 1.36 – 1.29 (m, 1H), 1.20 – 1.06 (m, 6H (s, 3H)), 0.96 (dd, J = 12.2, 2.0 Hz, 1H), 0.83 (s, 3H), 0.72 (s, 3H), 0.65 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 131.0, 130.1, 129.5, 129.4, 75.1, 55.8, 55.4, 51.4, 43.9 (2C), 41.4, 39.3, 38.0, 33.4 (2C), 23.8, 21.6, 20.2, 18.5, 16.0. HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₂H₃₆NO 330.27914; Found 330.27869.

(1*S*,2*R*,4a*S*,8a*S*)-1-(((4-methoxybenzyl)amino)methyl)-2,5,5,8atetramethyldecahydronaphthalen-2-ol (**12l**)

Yield: 50% Physical State: white solid mp: 240.3~240.4 °C

¹H NMR (500 MHz, CDCl₃) δ 7.23 – 7.18 (m, 2H), 6.86 – 6.82 (m, 2H), 3.80 – 3.77 (m, 4H (s, 3H)), 3.59 (d, J = 12.8 Hz, 1H), 2.98 (dd, J = 12.3, 2.4 Hz, 1H), 2.74 (t, J = 11.9 Hz, 1H), 1.85 – 1.81 (m, 1H), 1.77 – 1.72 (m, 1H), 1.63 – 1.59 (m, 1H), 1.58 – 1.45 (m, 2H), 1.42 – 1.39 (m, 2H), 1.38 – 1.33 (m, 1H), 1.24 – 1.17 (m, 4H (s, 3H)), 1.16 – 1.11 (m, 1H), 0.98 – 0.92 (m, 2H), 0.86 (s, 3H), 0.77 (s, 3H), 0.74 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 158.9, 131.4, 129.6, 113.9, 73.6, 58.2, 56.3, 55.4, 53.4, 46.0, 43.3, 41.9, 40.1, 37.5, 33.7, 33.4, 25.4, 21.7, 19.9, 18.8, 15.8. HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₃H₃₈NO₂ 360.28971; Found 360.28867.

(1S,2R,4aS,8aS)-2,5,5,8a-tetramethyl-1-(((4-

methylbenzyl)amino)methyl)decahydronaphthalen-2-ol (12m)

Yield: 77% Physical State: white solid mp: 75.2~76.5 °C

¹H NMR (500 MHz, CDCl₃) δ 7.42 (d, *J* = 7.8 Hz, 2H), 7.19 (d, *J* = 7.7 Hz, 2H), 4.23 (d, *J* = 13.3 Hz, 1H), 3.94 (d, *J* = 13.3 Hz, 1H), 2.99 (m, 2H), 2.31 (s, 3H), 1.92 – 1.88 (m, 2H), 1.62 – 1.54 (m, 2H), 1.51 – 1.43 (m, 2H), 1.42 – 1.39 (m, 1H), 1.33 – 1.27 (m, 1H), 1.17 – 1.15 (m, 1H), 1.15 – 1.10 (m, 4H (s, 3H)), 1.10 – 1.06 (m, 1H), 0.96 (dd, *J* = 12.3, 1.9 Hz, 1H), 0.81 (s, 3H), 0.71 (s, 3H), 0.64 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 139.5, 130.1, 130.0, 127.6, 75.1, 55.6, 55.4, 50.9, 43.9,

43.6, 41.4, 39.2, 38.0, 33.4 (2C), 23.7, 21.5, 21.4, 20.1, 18.4, 16.0.

HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₃H₃₈NO 344.29479; Found 344.29425.

(1S,2R,4aS,8aS)-2,5,5,8a-tetramethyl-1-(((3-

methylbenzyl)amino)methyl)decahydronaphthalen-2-ol (12n)

Yield: 45% **Physical State**: white solid **mp**: 235.5~237.2 °C ¹H NMR (500 MHz, CDCl₃) δ 7.21 (t, J = 7.5 Hz, 1H), 7.14 (s, 1H), 7.12 (d, J = 7.6Hz, 1H), 7.08 (d, J = 7.5 Hz, 1H), 3.88 (d, J = 13.0 Hz, 1H), 3.68 (d, J = 13.0 Hz, 1H), 3.02 (dd, J = 12.3, 2.3 Hz, 1H), 2.80 (t, J = 11.9 Hz, 1H), 2.33 (s, 3H), 1.87 – 1.83 (m, 1H), 1.74 – 1.70 (m, 1H), 1.65 – 1.60 (m, 1H), 1.59 – 1.53 (m, 1H), 1.52 – 1.47 (m, 2H), 1.44 – 1.40 (m, 1H), 1.38 – 1.34 (m, 1H), 1.25 – 1.18 (m, 4H (s, 3H)), 1.18 – 1.13 (m, 1H), 1.02 – 0.95 (m, 2H), 0.87 (s, 3H), 0.77 (s, 3H), 0.74 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 138.4, 137.9, 129.4, 128.6, 128.5, 125.7, 73.9, 57.9, 56.2, 53.6, 46.0, 43.4, 41.8, 40.0, 37.6, 33.7, 33.5, 25.2, 21.7, 21.5, 20.0, 18.8, 15.9. HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₃H₃₈NO 344.29479; Found 344.29404.

(1*S*,2*R*,4a*S*,8a*S*)-1-(((3,5-dimethylbenzyl)amino)methyl)-2,5,5,8atetramethyldecahydronaphthalen-2-ol (**12o**)

Yield: 41% Physical State: white solid mp: 163.6~164.5 °C

¹H NMR (500 MHz, CDCl₃) δ 7.11 (s, 1H), 7.07 (d, J = 1.3 Hz, 2H), 5.62 (br, 2H), 3.90 (d, J = 13.1 Hz, 1H), 3.69 (d, J = 13.1 Hz, 1H), 2.99 (dd, J = 12.5, 2.2 Hz, 1H), 2.81 (t, J = 11.8 Hz, 1H), 2.22 (s, 3H), 2.20 (s, 3H), 1.86 – 1.82 (m, 1H), 1.67 – 1.63 (m, 1H), 1.62 – 1.56 (m, 2H), 1.56 – 1.47 (m, 2H), 1.43 – 1.37 (m, 1H), 1.36 – 1.30 (m, 1H), 1.21 – 1.15 (m, 4H (s, 3H)), 1.15 – 1.10 (m, 1H), 1.03 – 0.97 (m, 1H), 0.95 (dd, J = 12.1, 2.1 Hz, 1H), 0.84 (s, 3H), 0.74 (s, 3H), 0.70 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 137.0, 136.3, 133.6, 130.1, 130.0, 126.2, 74.0, 57.2, 55.9, 52.6, 45.3, 43.4, 41.7, 39.8, 37.6, 33.5, 33.3, 24.8, 21.6, 19.9, 19.7, 19.5, 18.6, 15.8.

HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₄H₄₀NO 358.31044; Found 358.30988.

(1*S*,2*R*,4a*S*,8a*S*)-2,5,5,8a-tetramethyl-1-(((naphthalen-1ylmethyl)amino)methyl)decahydronaphthalen-2-ol (**12p**)

Yield: 66% Physical State: white solid mp: 163.1~167.6 °C

¹H NMR (500 MHz, CDCl₃) δ 7.83 – 7.79 (m, 3H), 7.72 (s, 1H), 7.48 – 7.42 (m, 3H), 4.03 (d, *J* = 12.3 Hz, 1H), 3.84 (d, *J* = 13.2 Hz, 1H), 3.04 (dd, *J* = 12.2, 2.4 Hz, 1H), 2.80 (t, *J* = 11.9 Hz, 1H), 1.88 – 1.84 (m, 1H), 1.78 – 1.74 (m, 1H), 1.65 – 1.60 (m, 1H), 1.60 – 1.54 (m, 1H), 1.53 – 1.45 (m, 2H), 1.45 – 1.34 (m, 2H), 1.26 – 1.19 (m, 4H (s, 3H)), 1.19 – 1.13 (m, 1H), 1.01 – 0.94 (m, 2H), 0.88 (s, 3H), 0.78 (s, 3H), 0.74 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 136.7, 133.4, 132.9, 128.4, 127.8, 127.8, 126.9, 126.6, 126.2, 125.9, 73.6, 58.4, 56.3, 54.2, 46.3, 43.3, 41.9, 40.2, 37.5, 33.7, 33.4, 25.5, 21.7, 20.0, 18.8, 15.8.

HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₆H₃₈NO 380.29479; Found 380.29416.

(1*S*,2*R*,4a*S*,8a*S*)-2,5,5,8a-tetramethyl-1-(((quinolin-4-

ylmethyl)amino)methyl)decahydronaphthalen-2-ol (12q)

Yield: 32% Physical State: white solid mp: 125.6~126.0 °C

¹H NMR (400 MHz, CDCl₃) δ 8.85 (d, J = 4.4 Hz, 1H), 8.13 (dd, J = 8.5, 1.3 Hz, 1H), 8.02 (dd, J = 8.5, 1.4 Hz, 1H), 7.74 – 7.70 (m, 1H), 7.61 – 7.57 (m, 1H), 7.37 (d, J =4.4 Hz, 1H), 4.32 (d, J = 14.3 Hz, 1H), 4.18 (d, J = 14.2 Hz, 1H), 3.11 (dd, J = 12.2, 2.4 Hz, 1H), 2.88 (t, J = 11.8 Hz, 1H), 1.87 – 1.82 (m, 1H), 1.81 – 1.75 (m, 1H), 1.66 – 1.55 (m, 2H), 1.54 – 1.48 (m, 1H), 1.49 – 1.44 (m, 2H), 1.41 – 1.35 (m, 1H), 1.22 (s, 3H), 1.21 – 1.12 (m, 2H), 1.02 – 0.94 (m, 2H), 0.87 (s, 3H), 0.79 (s, 3H), 0.77 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.3, 148.4, 144.6, 130.4, 129.5, 127.0, 126.9, 123.1, 120.2, 73.6, 58.8, 56.3, 50.4, 47.1, 43.2, 41.9, 40.3, 37.6, 33.7, 33.5, 25.4, 21.7, 20.0, 18.8, 15.9.

HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₅H₃₇N₂O 381.29004; Found 381.28953.

(1*S*,2*R*,4a*S*,8a*S*)-1-((hexylamino)methyl)-2,5,5,8a-tetramethyldecahydronaphthalen-2ol (**12r**)

Yield: 37% Physical State: white solid mp: 166~170.8 °C

¹H NMR (400 MHz, CDCl₃) δ 3.15 – 2.06 (m, 2H), 3.04 – 2.95 (m, 1H), 2.88 – 2.81 (m, 1H), 1.96 – 1.89 (m, 2H), 1.86 – 1.79 (m, 2H), 1.70 – 1.60 (m, 3H), 1.60 – 1.52 (m, 1H), 1.52 – 1.43 (m, 1H), 1.39 – 1.35 (m, 1H), 1.34 (m, 5H (s, 3H)), 1.31 – 1.25 (m, 4H), 1.24 – 1.17 (m, 2H), 1.17 – 1.12 (m 1H), 1.01 (dd, *J* = 12.3, 2.0 Hz, 1H), 0.88 – 0.83 (m, 6H (s, 3H)), 0.75 (s, 3H), 0.74 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 75.0, 55.7, 55.5, 48.5, 45.7, 43.8, 41.4, 39.5, 38.0, 33.4,
33.4, 31.3, 26.5, 26.2, 24.0, 22.6, 21.6, 20.2, 18.5, 16.1, 14.1.

HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₁H₄₂NO 324.32547; Found 324.32609.

(1*S*,2*R*,4a*S*,8a*S*)-2,5,5,8a-tetramethyl-1-

((neopentylamino)methyl)decahydronaphthalen-2-ol (12s)

Yield: 73% **Physical State**: white solid **mp**: 89.5~91.5 °C ¹H NMR (500 MHz, CDCl₃) δ 2.97 (dd, J = 12.3, 2.4 Hz, 1H), 2.70 (t, J = 12.0 Hz, 1H), 2.46 (d, J = 11.2 Hz, 1H), 2.19 (d, J = 11.2 Hz, 1H), 1.84 – 1.80 (m, 1H), 1.78 – 1.74 (m, 1H), 1.63 – 1.58 (m, 1H), 1.58 – 1.52 (m, 1H), 1.51 – 1.44 (m, 1H), 1.44 – 1.33 (m, 3H), 1.25 (s, 3H), 1.23 – 1.17 (m, 1H), 1.17 – 1.11 (m, 1H), 0.99 – 0.92 (m, 2H), 0.88 (s, 9H), 0.86 (s, 3H), 0.77 (s, 3H), 0.76 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 73.4, 62.8, 58.1, 56.3, 47.7, 43.3, 42.0, 40.2, 37.4, 33.7, 33.4, 31.3, 27.9, 25.5, 21.7, 20.0, 18.8, 15.8.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₂₀H₄₀NO 310.31044; Found 310.31003.

(1S,2R,4aS,8aS)-1-((isobutylamino)methyl)-2,5,5,8a-

tetramethyldecahydronaphthalen-2-ol (12t)

Yield: 37% Physical State: white solid mp: 163.3~65.2 °C

¹H NMR (400 MHz, CDCl₃) δ 3.21 – 3.07 (m, 2H), 2.94 – 2.89 (m, 1H), 2.64 – 2.59 (m, 1H), 2.24 – 2.17 (m, 1H), 1.99 – 1.94 (m, 2H), 1.70 – 1.61 (m, 3H), 1.60 – 1.45 (m, 2H), 1.39 – 1.31 (m, 4H (s, 3H), 1.28 – 1.10 (m, 3H), 1.10 – 1.00 (m, 7H), 0.86 (s, 3H), 0.76 (s, 3H), 0.76 (s, 3H).

13C NMR (101 MHz, CDCl₃) δ 75.4, 55.5, 55.0, 46.3, 43.8, 41.5, 39.5, 37.9, 33.5,
33.4, 25.9, 24.1, 21.6, 20.5, 20.4, 20.2, 18.5, 16.1.
HRMS (ESI) m/z: [M+H]⁺Calcd for C₁₉H₃₈NO 296.29479; Found 296.29425.

(1*S*,2*R*,4a*S*,8a*S*)-1-((ethylamino)methyl)-2,5,5,8a-tetramethyldecahydronaphthalen-2ol (**12u**)

Yield: 56% Physical State: white solid mp: 240.3~240.4 °C

¹H NMR (500 MHz, CDCl₃) δ 9.30 (br, 1H), 8.70 (br, 1H), 3.15 – 3.05 (m, 3H), 3.02 – 2.96 (m, 1H), 1.95 – 1.91 (m, 1H), 1.89 (dd, *J* = 9.5, 2.6 Hz, 1H), 1.69 – 1.63 (m, 2H), 1.62 – 1.59 (m, 1H), 1.57 – 1.50 (m, 1H), 1.50 – 1.44 (m, 1H), 1.42 (t, *J* = 7.2 Hz, 3H), 1.36 – 1.33 (m, 4H (s, 3H)), 1.23 – 1.11 (m, 3H), 0.99 (dd, *J* = 12.3, 2.0 Hz, 1H), 0.84 (s, 3H), 0.75 (s, 3H), 0.74 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 74.9, 55.8, 55.5, 45.1, 43.8, 43.4, 41.4, 39.5, 38.0, 33.4
(2C), 24.0, 21.5, 20.2, 18.5, 16.1, 11.7.

HRMS (ESI) m/z: [M+H]⁺Calcd for C₁₇H₃₄NO 268.26349; Found 268.26312.

4.1.2 the *N*-double alkylation of amine 2

(1S,2R,4aS,8aS)-1-((bis(3-methylbut-2-en-1-yl)amino)methyl)-2,5,5,8a-

tetramethyldecahydronaphthalen-2-ol (13a)

To a stirred solution of amine **2** (60.0 mg, 0.25 mmol, 1.0 equiv.) in MeCN (2 mL) were added *i*-Pr₂NEt (48.0 μ L, 0.27 mmol, 1.1 equiv.) and 3,3-dimethylallyl bromide (70.0 μ L, 0.6 mmol, 2.4 equiv.) at 0 °C. After being stirred at ambient temperature for 15 h, the reaction mixture was diluted with H₂O (10 mL) and extracted with EtOAc (10 mL × 2). The organic layers were washed with brine (10 mL × 2), dried over Na₂SO₄, filtered, and concentrated. The crude product was purified by column chromatography on silica gel column chromatography (200-300 m) with ether /EtOAc (3:1, v/v) as the eluent to give compound **13a** (colorless oil, 37.5 mg, 40% yield).

¹H NMR (500 MHz, CDCl₃) δ 5.23 (s, 2H), 3.22 (d, J = 13.7 Hz, 2H), 2.76 (t, J = 12.3 Hz, 3H), 2.39 (d, J = 12.9 Hz, 1H), 1.82 – 1.78 (m, 1H), 1.77 – 1.75 (m, 1H), 1.72 (s,

6H), 1.62 (s, 6H), 1.61 – 1.52 (m, 3H), 1.49 – 1.46 (m, 1H), 1.45 – 1.39 (m, 1H), 1.38 – 1.33 (m, 1H), 1.22 (s, 3H), 1.21 – 1.16 (m, 1H), 1.16 – 1.12 (m, 1H), 0.97 – 0.94 (m, 1H), 0.90 (dd, J = 13.1, 4.1 Hz, 1H), 0.86 (s, 3H), 0.78 (s, 3H), 0.75 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 135.9, 121.2, 73.5, 56.6, 54.7, 51.5, 50.7, 43.4, 42.0, 39.9, 37.3, 33.7, 33.5, 26.0, 25.1, 21.8, 20.0, 18.8, 18.1, 15.9. HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₅H₄₆NO 376.35739; Found 376.35687.

To a stirred solution of amine **2** (78 mg, 0.3 mmol, 1.0 equiv.) in CH₃CN (1.5 mL) were added K₂CO₃ (45.6 mg, 0.33 mmol, 1.1 equiv.) and added dropwise benzyl bromide (71 μ L, 0.6 mmol, 2.0 equiv.) via a syringe. After being stirred at room temperature for 24 h, the reaction mixture was filtered, and concentrated. The crude product was purified by column chromatography on silica gel (200-300 m) with petroleum ether /EtOAc (7:1, v/v) as the eluent to give compound **13b**.

The analogs 13c - 13e can be prepared according to the similar treatment described above.

(1*S*,2*R*,4a*S*,8a*S*)-1-((dibenzylamino)methyl)-2,5,5,8atetramethyldecahydronaphthalen-2-ol (**13b**)

Yield: 46% Physical State: white solid mp: 109.5~110.9 °C

¹H NMR (500 MHz, CDCl₃) δ 7.34 – 7.32 (m, 2H), 7.32 – 7.30 (m, 5H), 7.29 (s, 1H), 7.27 (d, *J* = 2.0 Hz, 1H), 7.26 – 7.23 (m, 2H), 4.09 (d, *J* = 12.9 Hz, 2H), 2.94 (d, *J* = 12.9 Hz, 2H), 2.90 (dd, *J* = 13.0, 11.7 Hz, 1H), 2.42 (dd, *J* = 13.0, 2.0 Hz, 1H), 1.86 – 1.80 (m, 1H), 1.76 – 1.71 (m, 2H), 1.61 – 1.56 (m, 2H), 1.55 – 1.48 (m, 1H), 1.46 – 1.42 (m, 1H), 1.39 – 1.34 (m, 1H), 1.20 – 1.08 (m, 2H), 1.02 – 0.95 (m, 2H), 0.86 (s, 3H), 0.76 (s, 3H), 0.67 (s, 3H), 0.59 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 138.0, 130.0, 128.6, 127.5, 73.6, 59.1, 56.6, 54.7, 51.1,

43.2, 42.0, 40.0, 37.4, 33.7, 33.5, 24.4, 21.7, 20.0, 18.8, 15.8.

HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₉H₄₂NO 420.32609; Found 420.32529.

(1S,2R,4aS,8aS)-1-((bis(3-methoxybenzyl)amino)methyl)-2,5,5,8a-

tetramethyldecahydronaphthalen-2-ol (13c)

Yield: 44% Physical State: colorless oil

¹H NMR (400 MHz, CDCl₃) δ 7.23 (t, J = 7.8 Hz, 2H), 7.13 (br, 1H), 6.91 (d, J = 6.9 Hz, 2H), 6.85 – 6.83 (m, 2H), 6.81 – 6.78 (m, 2H), 4.06 (d, J = 13.0 Hz, 2H), 3.79 (s, 6H), 2.94 (d, J = 12.9 Hz, 2H), 2.90 – 2.86 (m, 1H), 2.41 (dd, J = 13.0, 1.9 Hz, 1H), 1.86 – 1.80 (m, 1H), 1.79 – 1.75 (m, 1H), 1.72 (dd, J = 11.6, 1.9 Hz, 1H), 1.62 – 1.56 (m, 2H), 1.53 – 1.49 (m, 1H), 1.48 – 1.40 (m, 1H), 1.40 – 1.34 (m, 1H), 1.21 – 1.08 (m, 2H), 1.02 – 0.93 (m, 2H), 0.76 (s, 3H) , 0.79 (s, 3H) , 0.68 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.7, 139.5, 129.5, 122.0, 115.1, 113.2, 73.7, 59.1, 56.5, 55.3, 54.7, 51.3, 43.2, 41.9, 39.9, 37.4, 33.6, 33.4, 24.5, 21.65, 19.9, 18.7, 15.8. HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₃₁H₄₆NO₃ 480.34722; Found 480.34647.

⁽¹S,2R,4aS,8aS)-1-((bis(4-methylbenzyl)amino)methyl)-2,5,5,8a-

tetramethyldecahydronaphthalen-2-ol (13d)

Yield: 50% Physical State: colorless oil

¹H NMR (400 MHz, CDCl₃) δ 7.33 (br, 1H), 7.18 (d, J = 7.8 Hz, 4H), 7.12 (d, J = 7.8 Hz, 4H), 4.04 (d, J = 12.9 Hz, 2H), 2.90 (t, J = 12.3 Hz, 3H), 2.39 (dd, J = 13.0, 2.0 Hz, 1H), 2.33 (s, 6H), 1.86 – 1.79 (m, 1H), 1.78 – 1.71 (m, 2H), 1.63 – 1.57 (m, 2H), 1.52 (dd, J = 12.4, 3.9 Hz, 1H), 1.48 – 1.43 (m, 1H), 1.41 – 1.34 (m, 1H), 1.20 – 1.10 (m, 2H), 1.03 – 0.95 (m, 2H), 0.87 (s, 3H), 0.77 (s, 3H), 0.68 (s, 3H), 0.65 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 137.0, 134.8, 129.7, 129.2, 73.6, 58.6, 56.6, 54.7, 51.0, 43.2, 42.0, 40.0, 37.4, 33.7, 33.5, 24.5, 21.7, 21.2, 19.9, 18.8, 15.8. HRMS (ESI) m/z: [M+H]⁺Calcd for C₃₁H₄₆NO 448.35739; Found 448.35675.

(1S,2R,4aS,8aS)-1-((bis(4-fluorobenzyl)amino)methyl)-2,5,5,8a-

tetramethyldecahydronaphthalen-2-ol (13e)

Yield: 57% Physical State: white solid mp: 126.1~127.4 °C

¹H NMR (500 MHz, CDCl₃) δ 7.26 – 7.23 (m, 4H), 7.12 (br, 1H), 7.03 – 6.98 (m, 4H), 4.02 (d, *J* = 13.0 Hz, 2H), 2.95 – 2.82 (m, 3H), 2.40 (dd, *J* = 12.8, 1.9 Hz, 1H), 1.83 – 1.79 (m, 1H), 1.76 – 1.72 (m, 1H), 1.71 (dd, *J* = 11.7, 1.9 Hz, 1H), 1.62 – 1.56 (m, 2H), 1.55 – 1.47 (m, 1H), 1.46 – 1.41 (m, 1H), 1.39 – 1.34 (m, 1H), 1.19 – 1.09 (m, 2H), 1.00 – 0.94 (m, 2H), 0.86 (s, 3H), 0.76 (s, 3H), 0.67 (s, 3H), 0.61 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 162.4 (d, J = 245.7 Hz), 133.6, 131.4 (d, J = 7.9 Hz), 115.5 (d, J = 21.3 Hz), 73.7, 58.2, 56.6, 54.8, 51.0, 43.1, 41.9, 40.0, 37.4, 33.7, 33.5, 24.5, 21.7, 19.9, 18.8, 15.8.

HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₉H₄₀F₂NO 456.30725; Found 456.30646.

(1*S*,2*R*,4a*S*,8a*S*)-2,5,5,8a-tetramethyl-1-(morpholinomethyl)decahydronaphthalen-2-ol (13f)

A suspension of amine **2** (287 mg, 1.3 mmol, 1.0 equiv.), 2,2'-dibromodiethyl ether (165.0 μ L, 1.3 mmol, 1.0 equiv.), and K₂CO₃ (180 mg, 1.3 mmol, 1.0 equiv.) in CH₃CN (12 ml) was refluxed for 24 h, the reaction mixture was filtered, and concentrated. The crude product was purified by silica gel column chromatography on silica gel (200-300 m) with DCM /MeOH (100:1, v/v) as the eluent to give compound **13f** (colorless oil, 289 mg, 72% yield).

¹H NMR (500 MHz, CDCl₃) δ 3.71 – 3.66 (m, 4H), 2.78 – 2.59 (m, 3H), 2.48 (dd, J = 12.9, 2.5 Hz, 1H), 2.33 (s, 2H), 1.84 – 1.80 (m, 1H), 1.75 – 1.73 (m, 1H), 1.65 – 1.59 (m, 2H), 1.59 – 1.55 (m, 1H), 1.50 – 1.44 (m, 1H), 1.43 – 1.39 (m, 1H), 1.36 – 1.34 (m, 1H), 1.25 (s, 3H), 1.22 – 1.19 (m, 1H), 1.18 – 1.10 (m, 1H), 0.95 (dd, J = 12.1, 2.2 Hz, 1H), 0.93 – 0.87 (m, 1H), 0.86 (s, 3H), 0.78 (s, 3H), 0.77 (s, 3H),.

¹³C NMR (126 MHz, CDCl₃) δ 73.5, 67.1, 56.5, 56.4, 54.2, 53.9, 43.1, 41.9, 40.1, 37.2, 33.7, 33.5, 25.6, 21.8, 20.0, 18.8, 15.8.

HRMS (ESI) m/z: [M+H]⁺Calcd for C₁₉H₃₆NO₂ 310.27406; Found 310.27341.

4.2 General procedures for the synthesis of amide analogs

To a solution of amine **2** (191.2 mg, 0.8 mmol, 1.0 equiv.) in anhydrous CH₂Cl₂ (10 mL) were added triethylamine (Et₃N) (553.4 μ L, 4.0 mmol, 5.0 eq) and 4-fluorobenzoyl chloride (283.5 μ L, 2.4 mmol, 3.0 eq) dropwise at 0 °C. Subsequently, the mixture was stirred at room temperature, and the reaction progress was monitored by TLC until the reaction was complete. The solvent was added a saturated aqueous solution of NH₄Cl (10 mL) and CH₂Cl₂ (10 mL). The organic layer was separated, and the aqueous phase was extracted with CH₂Cl₂ (15 mL × 2). The combined organic layers were washed with brine (20 mL), dried over Na₂SO₄, and concentrated. The crude product was purified by column chromatography on silica gel (200-300 m) with petroleum ether/EtOAc (20:1, v/v) as the eluent to give compound **14a**.

The amide analogs 14b and 14c were synthesized through similar manipulation.

To a stirred solution of 2-picolinic acid (123 mg, 1.0 mmol, 1.2 equiv.) in anhydrous CH_2Cl_2 (8 mL) was added *N*-(3-dimethylaminopropyl)-*N'*-ethylcarbodiimide hydrochloride (EDCI-HCl, 230 mg, 1.2 mmol, 1.5 equiv.) followed by the addition of

amine **2** (191.2 mg, 0.8 mmol, 1.0 equiv.) and 4-dimethylaminopyridine (DMAP, 51 mg, 0.4 mmol, 0.5 equiv.) in an ice bath. The mixture was allowed to gradually warm to room temperature, and it was stirred overnight until full consumption of amine **2** as detected by TLC. The solvent was removed, and the crude product was purified by column chromatography on silica gel (200-300 m) with petroleum ether/EtOAc (3:1-1:1, v/v) as the eluent to give compound **14h**.

The amide analogs 14d - 14g and 14i - 14j were synthesized through similar manipulation.

4-fluoro-*N*-(((1*S*,2*R*,4a*S*,8a*S*)-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1yl)methyl)benzamide (**14a**)

Yield: 74% Physical State: white solid mp: 163.3~164.4 °C

¹H NMR (500 MHz, CDCl₃) δ 7.81 (br, 1H), 7.79 – 7.74 (m, 2H), 7.07 – 7.02 (m, 2H), 3.87 – 3.82 (m, 1H), 3.34 – 3.29 (m, 1H), 2.44 (br, 1H), 1.94 – 1.93 (m, 1H), 1.90 – 1.86 (m, 1H), 1.70 – 1.63 (m, 1H), 1.62 – 1.50 (m, 2H), 1.49 – 1.43 (m, 2H), 1.40 – 1.36 (m, 1H), 1.32 – 1.23 (m, 4H (s, 3H)), 1.17 – 1.10 (m, 1H), 1.05 – 1.00 (m, 1H), 0.94 (dd, J = 12.2, 2.2 Hz, 1H), 0.87 (s, 3H), 0.86 (s, 3H), 0.80 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.1, 164.7 (d, J = 251.1 Hz), 131.1 (d, J = 3.0 Hz), 129.3 (d, J = 8.9 Hz), 115.5 (d, J = 21.7 Hz), 75.1, 59.6, 56.0, 45.2, 41.8, 40.2, 38.3,

37.5, 33.6, 33.4, 24.5, 21.7, 20.5, 18.6, 15.8.

HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₂H₃₃FNO₂ 362.24898; Found 362.24836.

N-(((1*S*,2*R*,4a*S*,8a*S*)-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1yl)methyl)-4-methylbenzamide (**14b**)

Yield: 75% **Physical State**: white solid **mp**: 141.7~142.2 °C ¹H NMR (500 MHz, CDCl₃) δ 7.68 – 7.62 (m, 3H (br, 1H)), 7.18 (d, J = 7.9 Hz, 2H), 3.81 – 3.76 (m, 1H), 3.38 – 3.33 (m, 1H), 2.66 (br, 1H), 2.36 (s, 3H), 1.93 – 1.90 (m, 1H), 1.89 – 1.84 (m, 1H), 1.69 – 1.63 (m, 1H), 1.62 – 1.50 (m, 2H), 1.48 – 1.43 (m, 2H), 1.40 – 1.35 (m, 1H), 1.33 – 1.22 (m, 4H (s, 3H)), 1.16 – 1.10 (m, 1H), 1.06 – 1.00 (m, 1H), 0.94 (dd, J = 12.2, 2.3 Hz, 1H), 0.87 (s, 3H), 0.86 (s, 3H), 0.80 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.3, 141.6, 132.0, 129.2, 127.0, 74.7, 60.0, 56.0, 45.1, 41.8, 40.1, 38.3, 37.4, 33.6, 33.4, 24.5, 21.7, 21.5, 20.5, 18.6, 15.8. HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₃H₃₆NO₂ 358.27406; Found 358.27457.

N-(((1*S*,2*R*,4a*S*,8a*S*)-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1yl)methyl)benzamide (**14c**)

Yield: 56% Physical State: white solid mp: 172.8~173.7 °C

¹H NMR (500 MHz, CDCl₃) δ 7.96 – 7.94 (br, 1H), 7.77 – 7.72 (m, 2H), 7.45 – 7.41 (m, 1H), 7.36 – 7.33 (m, 2H), 3.83 – 3.78 (m, 1H), 3.35 – 3.30 (m, 1H), 3.03 (br, 1H), 1.92 – 1.89 (m, 1H), 1.87 – 1.81 (m, 1H), 1.66 – 1.60 (m, 1H), 1.59 – 1.54 (m, 1H), 1.54 – 1.49 (m, 1H), 1.47 (dd, J = 8.4, 3.6 Hz, 1H), 1.45 – 1.40 (m, 1H), 1.38 – 1.34 (m, 1H), 1.30 – 1.21 (m, 4H ((s, 3H))), 1.14 – 1.08 (m, 1H), 1.02 – 0.97 (m, 1H), 0.91 (dd, J = 12.2, 2.2 Hz, 1H), 0.85 (s, 3H), 0.83 (s, 3H), 0.78 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.2, 134.8, 131.3, 128.5, 127.0, 74.7, 59.7, 55.9, 44.97, 41.7, 40.0, 38.2, 37.5, 33.6, 33.4, 24.4, 21.7, 20.4, 18.6, 15.7. HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₂H₃₄NO₂ 344.25841; Found 344.25754. N-((((1S,2R,4aS,8aS))-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1-N-((((1S,2R,4aS,8aS))-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1-N-((((1S,2R,4aS,8aS))-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1-N-((((1S,2R,4aS,8aS))-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1-N-((((1S,2R,4aS,8aS))-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1-N-((((1S,2R,4aS,8aS))-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1-N-((((1S,2R,4aS,8aS))-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1-N-((((1S,2R,4aS,8aS))-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1-N-(((1S,2R,4aS,8aS))-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1-N-(((1S,2R,4aS,8aS))-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1-N-(((1S,2R,4aS,8aS))-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1-N-(((1S,2R,4aS,8aS))-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1-N-(((1S,2R,4aS,8aS))-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1-N-(((1S,2R,4aS,8aS))-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1-N-(((1S,2R,4aS,8aS))-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1-N-(((1S,2R,4aS,8aS))-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1-N-(((1S,2R,4aS,8aS))-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1-N-(((1S,2R,4aS,8aS))-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1-N-(((1S,2R,4aS,8aS))-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1-N-(((1S,2R,4aS,8aS))-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1-N-(((1S,2R,4aS,8aS))-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1-N-(((1S,2R,4aS,8aS))-2-hydroxy-2,5,5,8a-tetramethyldecahydroxy-2,5,8a-tetramethyldecahydroxy-2,5,8a-tetramethyldecahydroxy-2,5,8a-tetramethyldecahydroxy-2,5,8a-tetramethyldecahydroxy-2,5,8a-tetramethyldecahydroxy-2,5,8a-tetramethyldecahydroxy-2,5,8a-tetramethyldecahydroxy-2,5,8a-tetramethyldecahydroxy-2,5,8a-tetramethyldecahydroxy-2,5,8a-tetramethyldecahydroxy-2,5,8a-tetramethyldecahydroxy-2,5,8a-tetramethyldecahydroxy-2,5,8a-tetramethyldecahydroxy-2,5,8a-tetramethyldecahydroxy-2,5,8a-tetramethylde

yl)methyl)-4-methoxybenzamide (14d)

Yield: 80% **Physical State**: white solid **mp**: 142.6~145.2 °C ¹H NMR (400 MHz, CDCl₃) δ 7.91 (br, 1H), 7.73 – 7.68 (m, 2H), 6.83 – 6.78 (m, 2H), 3.77 – 3.73 (m,4H (s, 3H)), 3.31 (dd, *J* = 14.1, 8.1 Hz, 1H), 1.92 – 1.87 (m, 1H), 1.84 – 1.77 (m, 1H), 1.64 – 1.57 (m, 1H), 1.57 – 1.48 (m, 2H), 1.48 – 1.44 (m, 1H), 1.42 – 1.31 (m, 2H), 1.28 – 1.18 (m, 4H (s, 3H)), 1.12 – 1.05 (m, 1H), 1.00 – 0.93z (m, 1H), 0.89 (dd, *J* = 12.1, 2.1 Hz, 1H), 0.83 (s, 3H), 0.81 (s, 3H), 0.76 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.9, 162.0, 128.8, 127.0, 113.6, 74.5, 59.7, 55.9, 55.4, 44.9, 41.7, 40.0, 38.2, 37.4, 33.6, 33.3, 24.3, 21.7, 20.4, 18.6, 15.7. HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₃H₃₆NO₃ 374.26897; Found 374.26859.

N-(((1*S*,2*R*,4a*S*,8a*S*)-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1yl)methyl)-4-(trifluoromethyl)benzamide (**14e**)

Yield: 65% Physical State: yellow solid mp: 120.1~121.7 °C

¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 5.6 Hz, 1H), 7.85 (d, J = 8.1 Hz, 2H), 7.62 (d, J = 8.1 Hz, 2H), 3.93 – 3.87 (m, 1H), 3.34 – 3.28 (m, 1H), 2.22 (br, 1H), 1.95 – 1.86 (m, 2H), 1.71 – 1.64 (m, 1H), 1.62 – 1.60 (m, 1H), 1.56 – 1.42 (m, 3H), 1.42 – 1.35 (m, 1H), 1.31 (s, 3H), 1.28 – 1.22 (m, 1H), 1.17 – 1.09 (m, 1H), 1.06 – 0.98 (m, 1H), 0.94 (dd, J = 12.1, 2.2 Hz, 1H), 0.88 (s, 3H), 0.86 (s, 3H), 0.80 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 165.8, 138.2, 133.1 (q, J = 32.8 Hz), 127.5, 125.6 (q, J = 3.8 Hz), 123.7 (q, J = 273 Hz), 75.2, 59.2, 56.0, 45.2, 41.7, 40.2, 38.2, 37.7, 33.6, 33.4, 24.5, 21.7, 20.4, 18.6, 15.8.

HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₃H₃₃F₃NO₂ 412.24579; Found 412.24528.

N-(((1*S*,2*R*,4a*S*,8a*S*)-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1yl)methyl)isoquinoline-1-carboxamide (**14f**)

Yield: 42% Physical State: white solid mp: 131.4~136.0 °C

¹H NMR (500 MHz, CDCl₃) δ 9.57 – 9.53 (m, 1H), 8.75 (br, 1H), 8.44 (d, *J* = 5.5 Hz, 1H), 7.86 – 7.79 (m, 1H), 7.76 (dd, *J* = 5.6, 0.9 Hz, 1H), 7.68 (m, 2H), 3.65 – 3.62 (m, 2H), 3.38 (br, 1H), 1.95 – 1.92 (m, 1H), 1.90 – 1.86 (m, 1H), 1.70 – 1.58 (m, 2H), 1.57 – 1.45 (m, 3H), 1.39 – 1.36 (m, 1H), 1.33 – 1.24 (m, 4H (s, 3H)), 1.17 – 1.09 (m, 2H), 0.96 (dd, *J* = 12.2, 2.3 Hz, 1H), 0.90 (s, 3H), 0.86 (s, 3H), 0.81 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.4, 148.8, 140.5, 137.5, 130.6, 128.7, 128.0, 127.1,

126.8, 124.3, 73.5, 62.1, 56.0, 44.5, 41.8, 40.0, 38.6, 36.5, 33.6, 33.4, 24.5, 21.6, 20.5, 18.6, 15.8.

HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₅H₃₅N₂O₂ 395.26930; Found 395.26852.

N-(((1*S*,2*R*,4a*S*,8a*S*)-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1yl)methyl)isoquinoline-3-carboxamide (**14g**)

Yield: 56% Physical State: white solid mp: 160~162.3 °C
¹H NMR (500 MHz, CDCl₃) δ 9.14 (s, 1H), 8.82 (br, 1H), 8.59 (s, 1H), 8.02 (d, J = 8.2 Hz, 1H), 7.97 (d, J = 8.2 Hz, 1H), 7.77 –z 7.74 (m, 1H), 7.71 – 7.67 (m, 1H), 3.70 – 3.57 (m, 2H), 3.42 (br, 1H), 1.96 – 1.92 (m, 1H), 1.89 – 1.85 (m, 1H), 1.70 – 1.62 (m, 2H), 1.58 – 1.52 (m, 2H), 1.51 – 1.45 (m, 1H), 1.40 – 1.34 (m, 1H), 1.33 – 1.24 (m, 4H (s, 3H)), 1.16 – 1.07 (m, 2H), 0.96 (dd, J = 12.2, 2.3 Hz, 1H), 0.90 (s, 3H), 0.86 (s, 3H), 0.81 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 165.1, 151.4, 143.7, 136.1, 131.2, 129.7, 128.9, 128.3, 127.8, 120.4, 73.4, 62.2, 56.0, 44.4, 41.8, 40.0, 38.6, 36.6, 33.5, 33.4, 24.6, 21.6, 20.5, 18.6, 15.8.

HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₅H₃₅N₂O₂ 395.26930; Found 395.26901.

N-(((1*S*,2*R*,4a*S*,8a*S*)-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1yl)methyl)picolinamide (**14h**)

Yield: 45% Physical State: white solid mp: 165.5~167.1 °C

¹H NMR (500 MHz, CDCl₃) δ 8.68 (br, 1H), 8.51 – 8.50 (m, 1H), 8.16 – 8.14 (m, 1H), 7.82 – 7.78 (m, 1H), 7.39 – 7.36 (m, 1H), 3.63 – 3.58 (m, 1H), 3.56 – 3.51 (m, 1H), 3.26 (br, 1H), 1.92 – 1.88 (m, 1H), 1.87 – 1.78 (m, 1H), 1.67 – 1.54 (m, 2H), 1.54 – 1.42 (m, 3H), 1.37 – 1.33 (m, 1H), 1.30 – 1.21 (m, 4H (s, 3H)), 1.12 (dd, J = 13.5, 4.1 Hz, 1H), 1.09 – 1.01 (m, 1H), 0.92 (dd, J = 12.2, 2.3 Hz, 1H), 0.86 (s, 3H), 0.84 (s, 3H), 0.78 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 164.6, 150.1, 148.4, 137.4, 126.2, 122.3, 73.5, 62.0, 56.0, 44.4, 41.8, 39.9, 38.5, 36.4, 33.6, 33.4, 24.5, 21.6, 20.5, 18.6, 15.8.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₂₁H₃₃N₂O₂ 345.25365; Found 345.25421.

N-(((1*S*,2*R*,4a*S*,8a*S*)-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1yl)methyl)acetamide (**14i**)

Yield: 70% **Physical State**: white solid **mp**: 139.9~140.9 °C ¹H NMR (500 MHz, CDCl₃) δ 6.89 (br, 1H), 3.49 – 3.44 (m, 1H), 3.23 – 3.18 (m, 1H), 2.78 (br, 1H), 1.93 (s, 3H), 1.89 – 1.85 (m, 1H), 1.77 – 1.74 (m, 1H), 1.67 – 1.60 (m, 1H), 1.60 – 1.53 (m, 1H), 1.51 – 1.40 (m, 2H), 1.38 – 1.31 (m, 2H), 1.28 – 1.18 (m, 4H (s, 3H)), 1.15 – 1.09 (m, 1H), 1.01 – 0.96 (m, 1H), 0.91 (dd, *J* = 12.2, 2.3 Hz, 1H), 0.85 (s, 3H), 0.80 (s, 3H), 0.77 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 170.4, 74.1, 60.7, 56.0, 44.7, 41.8, 40.0, 38.4, 36.9, 33.6, 33.3, 24.3, 23.5, 21.6, 20.4, 18.6, 15.7. HRMS (ESI) m/z: [M+H]⁺Calcd for C₁₇H₃₂NO₂ 282.24276; Found 282.24234.

N-(((1*S*,2*R*,4a*S*,8a*S*)-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1yl)methyl)propionamide (**14j**)

Yield: 73% Physical State: white solid mp: 150.4~153.5 °C

¹H NMR (500 MHz, CDCl₃) δ 6.72 (br, 1H), 3.53 – 3.44 (m, 1H), 3.24 (dd, J = 14.3, 7.1 Hz, 1H), 2.34 (br, 1H), 2.20 – 2.16 (m, 2H), 1.91 – 1.87 (m, 1H), 1.80 – 1.76 (m, 1H), 1.67 – 1.62 (m, 1H), 1.61 – 1.54 (m, 1H), 1.53 – 1.42 (m, 2H), 1.40 – 1.35 (m, 1H), 1.35 – 1.31 (m, 1H), 1.29 – 1.25 (m, 1H), 1.23 (s, 3H), 1.17 – 1.10 (m, 4H (t, J = 7.6 Hz, 1H)), 1.02 – 0.97 (m, 1H), 0.92 (dd, J = 12.2, 2.3 Hz, 1H), 0.86 (s, 3H), 0.82 (s, 3H), 0.79 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 174.0, 74.2, 60.8, 56.0, 44.8, 41.8, 40.1, 38.4, 36.8, 33.6, 33.4, 30.0, 24.5, 21.7, 20.5, 18.6, 15.7, 10.0.

HRMS (ESI) m/z: [M+H]⁺Calcd for C₁₈H₃₄NO₂ 296.25841; Found 296.25842.

4.3 General procedures for the synthesis of sulfamide analogs

To a stirred solution of **2** (96.0 mg, 0.4 mmol, 1.0 equiv.) in DCM (2.5 mL) were added triethylamine (114.0 μ L, 0.8 mmol, 2.0 equiv.) and tosyl chloride (TsCl, 93 mg, 0.5 mmol, 1.2 equiv.) at 0 °C. The mixture was stirred at room temperature for 5 h. The solvent was added a saturated aqueous solution of NH₄Cl (10 mL) and CH₂Cl₂ (5 mL). The organic layer was separated, and the aqueous phase was extracted with CH₂Cl₂ (10 mL × 2). The combined organic layers were washed with brine (20 mL), dried over Na₂SO₄, and concentrated. The crude product was purified by column chromatography on silica gel (200-300 m) with petroleum ether/EtOAc (5:1, v/v) as the eluent to give compound **15b**.

The sulfonamide analogs were synthesized through similar manipulation.

4-fluoro-*N*-(((1*S*,2*R*,4a*S*,8a*S*)-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1yl)methyl)benzenesulfonamide (**15a**)

Yield: 80% **Physical State**: white solid **mp**: 139.5~140.0 °C ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.87 (m, 2H), 7.22 – 7.15 (m, 2H), 3.21 (dd, J = 12.4, 2.6 Hz, 1H), 2.89 (dd, J = 12.4, 9.4 Hz, 1H), 1.96 (br, 1H), 1.84 – 1.80 (m, 1H), 1.68 – 1.58 (m, 2H), 1.57 – 1.50 (m, 1H), 1.49 – 1.40 (m, 2H), 1.39 – 1.31 (m, 2H), 1.22 – 1.13 (m, 1H), 1.13 – 1.07 (m, 1H), 1.05 (s, 3H), 0.91 – 0.82 (m, 5H (s, 3H)), 0.73 (s, 3H), 0.68 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.0 (d, J = 254.0 Hz), 136.0 (d, J = 3.2 Hz), 130.0 (d, J = 9.2 Hz), 116.3 (d, J = 22.5 Hz), 75.2, 58.6, 55.8, 44.9, 41.6, 40.4, 39.8, 38.1, 33.5, 33.4, 24.1, 21.6, 20.3, 18.6, 15.8.

HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₁H₃₃FNO₃S 398.21597; Found 398.21511.

N-(((1*S*,2*R*,4a*S*,8a*S*)-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1yl)methyl)-4-methylbenzenesulfonamide (**15b**)

Yield: 90% Physical State: white solid mp: 158.7~159.1 °C

¹H NMR (500 MHz, CDCl₃) δ 7.78 – 7.73 (m, 2H), 7.33 – 7.29 (m, 2H), 3.21 (dd, J = 12.5, 2.6 Hz, 1H), 2.89 (dd, J = 12.5, 9.3 Hz, 1H), 2.43 (s, 3H), 1.84 – 1.80 (m, 1H), 1.69 – 1.64 (m, 1H), 1.64 – 1.59 (m, 1H), 1.57 – 1.50 (m, 1H), 1.50 – 1.39 (m, 2H), 1.39 – 1.32 (m, 2H), 1.21 – 1.14 (m, 1H), 1.13 – 1.07 (m, 1H), 1.05 (s, 3H), 0.92 – 0.85 (m, 2H), 0.84 (s, 3H), 0.74 (s, 3H), 0.69 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.2, 137.0, 129.7, 127.4, 75.3, 58.8, 55.8, 45.2, 41.7, 40.4, 39.8, 38.1, 33.6, 33.4, 24.2, 21.7, 21.7, 20.3, 18.6, 15.8.

HRMS (ESI) m/z: [M+H]⁺Calcd for C22H36NO3S 394.24104; Found 394.24053.

N-(((1*S*,2*R*,4a*S*,8a*S*)-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1yl)methyl)-4-nitrobenzenesulfonamide (**15c**)

Yield: 56% Physical State: white solid mp: 176.9~177.4 °C

¹H NMR (500 MHz, CDCl₃) δ 8.39 – 8.34 (m, 2H), 8.09 – 8.03 (m, 2H), 6.54 (br, 1H), 3.31 (m, 1H), 2.95 (m, 1H), 1.86 – 1.82 (m, 1H), 1.71 – 1.67 (m, 1H), 1.66 – 1.62 (m, 1H), 1.57 – 1.49 (m, 1H), 1.49 – 1.41 (m, 2H), 1.40 – 1.34 (m, 2H), 1.24 – 1.14 (m, 1H), 1.11 – 1.07 (m, 4H (s, 3H)), 0.92 – 0.84 (m, 5H (s, 3H)), 0.75 (s, 3H), 0.71 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 150.0, 146.3, 128.5, 124.4, 75.6, 58.6, 55.8, 45.1, 41.6, 40.5, 39.9, 38.1, 33.5, 33.4, 24.4, 21.6, 20.3, 18.6, 15.8. HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₂₁H₃₃N₂O₅S 425.21047; Found 425.21098.

4.4 General procedures for the synthesis of (thio)urea analogs

To a dried flask charged with amine 2 (143 mg, 0.6 mmol, 1.0 equiv.) in anhydrous DCM (6 mL) was added dropwise phenyl isothiocyanate (136 μ L, 0.66 mmol, 1.1 equiv.) at 0 °C. the reaction mixture was transferred to a metal bath for reflux overnight until full consumption of 2 as detected by TLC. Evaporate the organic solvent and the crude products were purified by column chromatography on silica gel (200-300 m) with petroleum ether/EtOAc (4:1, v/v) as the eluent to give compound **16b**.

The analogs 16a and 16c were synthesized through similar manipulation.

1-ethyl-3-(((1*S*,2*R*,4a*S*,8a*S*)-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1yl)methyl)urea (**16a**)

Yield: 72% **Physical State**: white solid **mp**: 173.3~173.8 °C ¹H NMR (500 MHz, CDCl₃) δ 3.31 (dd, J = 14.6, 4.9 Hz, 1H), 3.22 – 3.14 (m, 3H), 1.88 – 1.84 (m, 1H), 1.68 – 1.63 (m, 2H), 1.61 – 1.54 (m, 1H), 1.53 – 1.41 (m, 2H), 1.40 – 1.34 (m, 2H), 1.29 – 1.22 (m, 1H), 1.20 (s, 3H), 1.15 (dd, J = 13.4, 4.3 Hz, 1H), 1.11 (t, J = 7.2 Hz, 3H), 1.07 (dd, J = 13.0, 3.8 Hz, 1H), 0.93 (dd, J = 12.2, 2.3 Hz, 1H), 0.86 (s, 3H), 0.81 (s, 3H), 0.78 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.2, 73.5, 62.1, 55.9, 44.3, 41.9, 40.0, 38.4, 37.2, 35.3, 33.5, 33.3, 24.6, 21.6, 20.5, 18.5, 15.7, 15.5. HRMS (ESI) m/z: [M+H]⁺Calcd for C₁₈H₃₅N₂O₂ 311.26930; Found 311.26855.

1-(((1*S*,2*R*,4a*S*,8a*S*)-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1yl)methyl)-3-phenylthiourea (**16b**)

Yield: 52% Physical State: white solid mp: 173.7~173.9 °C

¹H NMR (500 MHz, CDCl₃) δ 7.82 (br, 1H), 7.71 (br, 1H), 7.38 – 7.34 (m, 2H), 7.25 – 7.12 (m, 3H), 4.17 (d, J = 8.4 Hz, 1H), 3.43 (t, J = 12.0 Hz, 1H), 1.84 (dd, J = 42.4, 12.7 Hz, 2H), 1.66 – 1.53 (m, 2H), 1.51 – 1.42 (m, 2H), 1.41 – 1.33 (m, 2H), 1.28 – 1.23 (m, 1H), 1.20 (s, 3H), 1.15 – 1.09 (m, 1H), 1.02 – 0.97 (m, 1H), 0.90 – 0.88 (m, 1H), 0.85 (s, 3H), 0.83 (s, 3H), 0.77 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 179.4, 136.4, 129.9, 126.8, 125.2, 74.8, 58.5, 55.9, 45.0,
43.6, 41.7, 40.3, 38.1, 33.6, 33.4, 24.6, 21.7, 20.4, 18.6, 15.8.
HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₂H₃₅N₂OS 375.24646; Found 375.24601.

1-(4-fluorophenyl)-3-(((1*S*,2*R*,4*aS*,8*aS*)-2-hydroxy-2,5,5,8*a*-

tetramethyldecahydronaphthalen-1-yl)methyl)thiourea (16c)

Yield: 65% **Physical State**: white solid **mp**: 189.4~211.2 °C ¹H NMR (400 MHz, CDCl₃) δ 7.76 (s, 1H), 7.16 (s, 1H), 7.07 – 7.01 (m, 2H), 3.45 – 3.32 (m, 1H), 3.47 – 3.32 (m, 1H), 1.84 (dd, *J* = 30.8, 11.4 Hz, 2H), 1.66 – 1.51 (m, 3H), 1.49 – 1.42 (m, 2H), 1.40 – 1.32 (m, 2H), 1.19 (s, 5H (s, 3H)), 1.04 – 0.93 (m, 1H), 0.85 (s, 3H), 0.82 (s, 3H), 0.77 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 179.8, 162.1, 132.4, 127.7, 116.7 (d, J = 21.8 Hz), 74.9, 58.3, 55.9, 45.0, 43.6, 41.7, 40.2, 38.1, 33.6, 33.4, 24.6, 21.6, 20.3, 18.6, 15.7. HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₂H₃₄FN₂OS 393.23704; Found 393.23615.

5 Synthesis of homodrimanyl amine 18

A solution of DIBAL-H (1 M in cyclohexane, 3.0 mL, 3.0 equiv) was added to a cooled (0-5 °C) solution of 4-*tert*-butylaniline (373.0 mg, 2.5 mmol, 2.5 equiv) in anhydrous THF (1.7 mL) under nitrogen atmosphere. The mixture was allowed to warm up and stirred at room temperature for 2 h. To the solution of DIBAL-H-*p*-*tert*-

butylaniline complex was added the sclareolide (0.25 g, 1.0 mmol, 1.0 equiv) in anhydrous THF (2.5 mL) under nitrogen atmosphere at room temperature. The complex was stirred and the reaction progress was monitored by TLC until the reaction was complete (~2 h). The reaction was cooled to 0 °C and then quenched with H₂O (1.5 mL) and a 1 M aqueous solution of KHSO₄ (4 mL). The resulting mixtures were extracted with CH₂Cl₂ (10 × 3mL). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated. The residue was purified by flash chromatography (200-300 m) with petroleum ether /EtOAc (4:1, v/v) as eluent to give compound **17** (colorless oil, 359.6 mg, yield 90%).

¹H NMR (500 MHz, CDCl₃) δ 8.28 (s, 1H), 7.44 – 7.40 (m, 2H), 7.32 – 7.28 (m, 2H), 2.58 (dd, *J* = 15.2, 4.4 Hz, 1H), 2.24 (dd, *J* = 15.2, 4.4 Hz, 1H), 1.95 – 1.92 (m, 1H), 1.82 (t, *J* = 4.4 Hz, 1H), 1.69 (m, 2H), 1.58 – 1.47 (m, 2H), 1.37 – 1.32 (m, 1H), 1.30 – 1.25 (m, 11H (s, 9H)), 1.18 (s, 3H), 1.13 – 1.07 (m, 1H), 0.97 (dd, *J* = 12.4, 2.7 Hz, 2H), 0.85 (s, 3H), 0.79 (s, 3H), 0.78 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 173.7, 146.8, 136.0, 125.8, 119.5, 73.9, 58.2, 56.1, 44.4, 41.9, 39.4, 38.9, 34.4, 34.3, 33.4, 33.3, 31.5, 24.2, 21.5, 20.6, 18.4, 15.5.
HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₆H₄₂NO₂ 400.32101; Found 400.32050.

To a stirred mixture of LiAlH₄ (182.2 mg, 4.8 mmol, 6.0 equiv) in anhydrous THF (5 mL) was added dropwise a THF (5 mL) solution of homodrimanyl amide **17** (320 mg, 0.8 mmol, 1.0 equiv.) at 0 °C. The mixture was warmed to room temperature and then heated to reflux until full consumption of **17** detected by TLC. After the reaction completed, saturated Na₂SO₄ aqueous was added dropwise to quench the reaction at 0 °C. The resulting white precipitation was removed by filtration. The filtrate was dried over Na₂SO₄ and concentrated. The residue was purified by flash chromatography (200-300 m) with petroleum ether /EtOAc (9:1, v/v) as eluent to give (1*R*,2*R*,4a*S*,8a*S*)-1-(2-((4-(*tert*-butyl)phenyl)amino)ethyl)-2,5,5,8a-tetramethyldecahydronaphthalen-2-ol (**18**) (colorless oil, 252.9 mg, 82% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.23 – 7.19 (m, 2H), 6.61 – 6.57 (m, 2H), 3.22 – 3.17 (m, 1H), 3.04 – 3.00 (m, 1H), 1.90 – 1.87 (m, 1H), 1.71 – 1.68 (m, 1H), 1.68 – 1.65 (m,

2H), 1.65 – 1.63 (m, 1H), 1.63 – 1.56 (m, 1H), 1.47 – 1.44 (m,1H), 1.43 – 1.40 (m, 1H), 1.40 – 1.36 (m, 1H), 1.29 (m, 10H (s, 9H)), 1.22 (t, *J* = 4.0 Hz, 1H), 1.17 – 0.11 (m, 4H (s, 3H)), 1.01 – 0.95 (m, 1H), 0.93 (dd, *J* = 12.2, 2.3 Hz, 1H), 0.88 (s, 3H), 0.82 (s, 3H), 0.80 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 146.4, 140.1, 126.1, 112.8, 73.5, 59.5, 56.1, 46.7, 44.4,
42.0, 39.6, 39.2, 34.0, 33.5, 33.3, 31.7, 25.3, 24.5, 21.6, 20.7, 18.5, 15.5.
HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₆H₄₄NO 386.34174; Found 386.34109.

6 Antifungal activity of halichonine B and analogs

The antifungal activity of the target compounds was tested *in vitro* against the plant pathogenic fungi using the mycelium growth rate test. All the tested compounds were initially dissolved in DMSO. The media containing compounds at a final concentration of 150 μ M were then poured into Petri dishes for initial antifungal screening. In the precision antifungal test, the stock solution was diluted to 150, 75, 37.5, 18.75, 9.375, 4.688, 2.344 μ M and the above experiments were repeated for three times, the inhibition rates were calculated separately. The statistical analyses were performed by SPSS software version 26.0. The inhibition rate was calculated as follows,

Inhibition rate (%) = (C-T) / (C-5 mm) \times 100%

Where C: The average diameter (in mm) of mycelia in the blank test, T: The average diameter (in mm) of mycelia on treated PDA with tested compounds

Structure	Commd	Inhib	Inhibition rate at 15	t 150 μM ((%)
Structure	Compu.	<i>S. s</i> .	<i>R</i> . <i>s</i> .	<i>F. g.</i>	В. с.
H ₂ N H ₂ N	1	66.67	52.83	39.22	45.83
H ₂ N H ₂ N H H	2	15.69	10.00	26.32	40.00

Table S1. The antifungal activity of drimanyl amine, halichonine B, and mimics

Note: S. s. (Sclerotinia sclerotiorum), R. s. (Rhizoctonia solani), F. g. (Fusarium graminearum), and B. c. (Botrytis cinerea)

Table S2 The antifungal activity of halichonine B analogs with unsaturated aliphatic chains

Structure	Compd _	Inł	Inhibition rate at 150 µM (%)			
	compar <u> </u>	<i>S. s.</i>	<i>R</i> . <i>s</i> .	<i>F. g</i> .	<i>B. c</i> .	
F HN F HN HN H	12a	78.00	55.00	25.53	5.00	

F HN HN HN HN HN HN HN HN H	12b	90.00	70.00	29.79	47.50
	12c	92.00	82.50	51.06	77.50
HN HN HN HN HN HN HN HN HN HN HN HN HN H	12d	76.00	87.50	59.57	57.50
	12e	98.04	86.00	82.46	71.11
	12f	76.47	44.00	35.09	35.56
Br	12g	94.00	87.50	44.68	42.50
HN HN HN HN HN HN HN HN HN HN H	12h	96.00	72.50	42.55	52.50

	12i	82.46	88.24	51.06	47.50
NC HN HN HN HN HN HN HN HN HN HN HN HN HN	12j	92.00	62.50	34.04	50.00
HN HN HN HN HN HN HN HN HN HN HN HN HN H	12k	86.67	47.50	52.17	55.00
MeO	121	88.00	72.50	31.91	50.00
HN	12m	93.33	75.00	50.00	74.00
	12n	88.00	85.00	46.81	57.50
HN HN HN HN HN HN HN HN HN HN HN HN HN H	120	76.00	69.81	44.64	86.96

	12p	83.33	92.45	83.33	70.59
	12q	74.00	57.50	29.79	27.50
	12r	68.75	69.81	41.18	68.75
	12s	35.29	26.00	24.56	22.22
L H H H	12t	23.53	24.00	35.09	20.00
	12u	13.73	10.00	19.30	11.11

Table S3 The antifungal activity of N-double alkylation analogs

Structure	Comnd	Inhibition rate at 150 μ M (%)			
Structure	Compa	<i>S. s.</i>	<i>R</i> . <i>s</i> .	<i>F. g.</i>	В. с.
	13 a	57.78	57.50	43.48	66.00

N N N N N OH	13b	57.41	71.21	51.79	52.17
MeO	13c	86.67	50.00	34.78	62.00
	13d	84.44	67.50	43.48	64.00
F N N H H	13e	82.22	57.50	41.30	58.00
	13f	31.11	7.50	30.43	30.00

Table S4 The antifungal activity of halichonine B analogs (amides)

Structure	Compd	Inhibition rate at 150 µM (%)					
Structure Compu	compu	<i>S. s</i> .	<i>R. s.</i>	<i>F. g</i> .	<i>B. c</i> .		
	14a	18.00	37.50	4.26	0		
	14b	24.00	45.00	31.91	22.50		

NH NH NH NH	14c	29.41	58.00	38.60	66.67
MeO NH NH NH NH NH NH	14d	45.10	52.00	42.11	57.78
F F F NH NH NH	14e	7.84	32.00	3.51	24.44
	14f	29.41	58.00	36.84	60.00
	14g	20.37	33.33	19.64	34.78
	14h	7.84	38.00	42.11	42.22
O NH ↓ ↓ ↓ ↓ UOH	14i	3.92	1.82	17.02	47.92
NH NH NH	14j	1.96	27.27	23.40	45.83

-

Structure	Compd	Inhibition rate at 150 µM (%)				
Structure	Compu	<i>S. s.</i>	<i>R. s.</i>	<i>F. g.</i>	В. с.	
D=S=O NH MH MH	15a	58.82	78.00	47.37	71.11	
O=S=O NH WH MH	15b	54.90	70.00	35.09	60.00	
NO ₂ O=S=O NH NH UOH	15c	2.00	55.00	6.38	0	

Table S5 The antifungal activity of halichonine B analogs (sulfamides)

Table S6 The antifungal activity of halichonine B analogs (ureas and thioureas)

Structure	Compd]	Inhibition rate at 150 µM (%)			
Structure	compu	<i>S. s.</i>	<i>R. s.</i>	<i>F. g.</i>	<i>B. c</i> .	
	16 a	8.00	47.50	29.79	17.50	
	16b	52.94	62.00	38.60	60.00	

F HN HN HN HN HN HN HN HN HN HN HN HN HN	40.00	70.00	23.40	25.00
---	-------	-------	-------	-------

Table S7 The antifungal activity of homodrimanyl amide 17 and amine 18
--

Structure	Compd	Inhibition rate at 150 µM (%)			
		<i>S. s.</i>	<i>R. s.</i>	<i>F. g</i> .	В. с.
	17	9.80	8.00	21.05	33.33
tBu NH	18	13.73	20.00	21.55	55.56

Table S8. EC₅₀ against three phytopathogenic fungi *in vitro*

Structure	Compd	EC ₅₀ (μM)		
Structure	Compu.	<i>S. s</i> .	<i>R</i> . <i>s</i> .	В. с.
	3	69.37	>150	>150
Boc H	8	40.35	29.74	27.29

	9	55.52	84.13	54.67
	10	14.67	23.89	12.63
	11	45.18	34.43	20.40
F HN HN HN HN HN HN HN HN HN HN HN HN HN	12b	21.97	36.15	>150
	12c	27.75	8.90	12.20
	12d	22.49	5.81	>150
	12e	23.77	14.03	23.44
	12g	22.87	17.21	>150

HN HN HN HN HN HN HN HN HN HN HN HN HN H	12h	29.04	32.87	>150
	12i	20.14	17.12	>150
NC HN HN HN HN HN HN HN H	12j	33.98	93.50	>150
	121	23.48	82.01	>150
HN HN HN HN HN HN HN HN HN HN HN HN HN H	12m	23.89	49.79	62.29
	12n	61.90	59.58	>150
HN HN HN HN HN HN HN HN HN HN HN HN HN H	120	46.63	25.31	35.88
HN HN HN HN HOH	12p	18.47	14.71	50.53

7 Molecular docking

Fig. S1 Binding models of halichonine B and analogs with the predictive protein. halichonine B

(A), (R)-13d (B), (S)-13d (C)

8 References

- 1. D. Li, S. Zhang, Z. Song, W. Li, F. Zhu, J. Zhang and S. Li, Synthesis and bio-inspired optimization of drimenal: Discovery of chiral drimane fused oxazinones as promising antifungal and antibacterial candidates, *Eur. J. Med. Chem.*, 2018, **143**, 558-567.
- I. Hayakawa, T. Nakamura, O. Ohno, K. Suenaga and H. Kigoshi, Synthesis and structure– activity relationships for cytotoxicity and apoptosis-inducing activity of (+)-halichonine B, Org. Biomol. Chem., 2015, 13, 9969-9976.
- O. Ohno, T. Chiba, S. Todoroki, H. Yoshimura, N. Maru, K. Maekawa, H. Imagawa, K. Yamada, A. Wakamiya, K. Suenaga and D. Uemura, Halichonines A, B, and C, novel sesquiterpene alkaloids from the marine sponge Halichondria okadai Kadota, *Chem. Commun.*, 2011, 47, 12453-12455.

9 NMR spectra

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 6075

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 6075

Bond precision:	C-C = 0.0076 A	Wavelength=1.54184			
Cell:	a=6.9259(3) alpha=90	b=10.4340(4) beta=90	c=34.5744(16) gamma=90		
Temperature:	150 K				
	Calculated	Reporte	ed		
Volume	2498.51(18)	2498.50	0(18)		
Space group	P 21 21 21	P 21 21	1 21		
Hall group	P 2ac 2ab	P 2ac 2	P 2ac 2ab		
Moiety formula	C26 H44 N O, Cl	Cl, C2	6 H44 N O		
Sum formula	C26 H44 Cl N O	C26 H44	4 Cl N O		
Mr	422.07	422.07			
Dx,g cm-3	1.122	1.122			
Z	4	4			
Mu (mm-1)	1.454	1.454			
F000	928.0	928.0			
F000′	931.55				
h,k,lmax	8,13,43	8,12,42	2		
Nref	5075[2931]	4927			
Tmin,Tmax	0.828,0.877	0.532,2	1.000		
Tmin'	0.828				
Correction metho AbsCorr = MULTI	od= # Reported T L -SCAN	imits: Tmin=0.532	Tmax=1.000		
Data completene	ss= 1.68/0.97	Theta $(max) = 74$.	.022		
R(reflections)=	0.0689(4720)		wR2(reflections)= 0.1667(4927)		
S = 1.071	Npar= 2	273			

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

➔ Alert level C

PLAT220_ALERT_2_C	NonSolvent	Resd 1	C Ueq(max)/Ueq(min)	Range	3.5	Ratio
PLAT222_ALERT_3_C	NonSolvent	Resd 1 H	Uiso(max)	/Uiso(min)	Range	4.4	Ratio
PLAT242_ALERT_2_C	Low 'Mai	nMol' Ueq	as Compared	to Neighbo	ors of	C19	Check
PLAT340_ALERT_3_C	Low Bond Pr	ecision or	n C-C Bonds			0.00756	Ang.
PLAT906_ALERT_3_C	Large K Val	ue in the	Analysis of	Variance		2.665	Check

Alert level G

PLAT007_ALERT_5_G	Number of Unrefined Donor-H Atoms .		2	Report
PLAT042_ALERT_1_G	Calc. and Reported Moiety Formula S	Strings Differ	Please	Check
PLAT083_ALERT_2_G	SHELXL Second Parameter in WGHT Ur	nusually Large	5.21	Why ?
PLAT791_ALERT_4_G	Model has Chirality at C5	(Sohnke SpGr)	S	Verify
PLAT791_ALERT_4_G	Model has Chirality at C8	(Sohnke SpGr)	R	Verify
PLAT791_ALERT_4_G	Model has Chirality at C9	(Sohnke SpGr)	S	Verify
PLAT791_ALERT_4_G	Model has Chirality at C10	(Sohnke SpGr)	S	Verify
PLAT912_ALERT_4_G	Missing # of FCF Reflections Above	STh/L= 0.600	43	Note
PLAT933_ALERT_2_G	Number of OMIT Records in Embedded	.res File	2	Note
PLAT941_ALERT_3_G	Average HKL Measurement Multiplicit		3.0	Low
PLAT978_ALERT_2_G	Number C-C Bonds with Positive Resi	idual Density.	6	Info

0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 5 ALERT level C = Check. Ensure it is not caused by an omission or oversight 11 ALERT level G = General information/check it is not something unexpected 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 5 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 13/07/2021; check.def file version of 13/07/2021

Datablock 6075 - ellipsoid plot

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) hno-52

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: hno-52

Bond precision: C-C = 0.0042 A Wavelength=0.71073 Cell: a=6.1445(5) b=7.5145(6) c=41.152(4)alpha=90 beta=90 gamma=90 Temperature: 150 K Calculated Reported Volume 1900.1(3) 1900.1(3)Space group P 21 21 21 P 21 21 21 Hall group P 2ac 2ab P 2ac 2ab Moiety formula C21 H32 N2 O2 C21 H32 N2 O2 Sum formula C21 H32 N2 O2 C21 H32 N2 O2 Mr 344.49 344.48 Dx,g cm-3 1.204 1.204 Ζ 4 4 Mu (mm-1) 0.077 0.077 F000 752.0 752.0 F000′ 752.29 h,k,lmax 8,10,56 8,9,56 5273[3077] Nref 4140 0.989,0.992 0.883,1.000 Tmin,Tmax Tmin' 0.989 Correction method= # Reported T Limits: Tmin=0.883 Tmax=1.000 AbsCorr = MULTI-SCAN Data completeness= 1.35/0.79 Theta(max)= 29.410 R(reflections) = 0.0598(3006) wR2(reflections) = 0.1207(4140) S = 0.975Npar= 235

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level C
STRVA01_ALERT_4_C Flack parameter is too small
 From the CIF: _refine_ls_abs_structure_Flack -0.600
 From the CIF: _refine_ls_abs_structure_Flack_su 1.000
PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds 0.00419 Ang.
PLAT906_ALERT_3_C Large K Value in the Analysis of Variance 2.514 Check
PLAT915_ALERT_3_C No Flack x Check Done: Low Friedel Pair Coverage 68 %

Alert level	G				
PLAT007_ALERT_5_G	Number of Unrefined	Donor-H Atoms .		1	Report
PLAT032_ALERT_4_G	Std. Uncertainty on	Flack Parameter	Value High .	1.000	Report
PLAT791_ALERT_4_G	Model has Chirality	at C5	(Sohnke SpGr)	S	Verify
PLAT791_ALERT_4_G	Model has Chirality	at C8	(Sohnke SpGr)	R	Verify
PLAT791_ALERT_4_G	Model has Chirality	at C9	(Sohnke SpGr)	S	Verify
PLAT791_ALERT_4_G	Model has Chirality	at C10	(Sohnke SpGr)	S	Verify
PLAT910_ALERT_3_G	Missing # of FCF Re:	flection(s) Belo	w Theta(Min).	2	Note
PLAT912_ALERT_4_G	Missing # of FCF Rea	flections Above	STh/L= 0.600	390	Note
PLAT916_ALERT_2_G	Hooft y and Flack \mathbf{x}	Parameter Value	s Differ by .	0.10	Check
PLAT933_ALERT_2_G	Number of OMIT Record	rds in Embedded	.res File	1	Note
PLAT941_ALERT_3_G	Average HKL Measure	ment Multiplicit	у	2.6	Low
PLAT978_ALERT_2_G	Number C-C Bonds wit	th Positive Resi	dual Density.	3	Info

0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 4 ALERT level C = Check. Ensure it is not caused by an omission or oversight 12 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 7 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 22/03/2021; check.def file version of 19/03/2021

