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1. MATERIALS AND CHARACTERIZATION TECHNIQUES

1.1 Materials

All commercially available reagents were purchased and used without further purification.

Reactions were monitored by thin-layer chromatography (TLC) analysis on Merck silica gel 60
F254 TLC plates, using visualization by UV irradiation. Column chromatographic separations
were performed using Merck 60 silica gel (40-63um) and, unless otherwise stated, the samples
were loaded as solutions in the eluent.

1.2 Instruments

FT-IR spectra were recorded on a Nicolet Avatar FTIR spectrometer using KBr pellets. Nuclear

magnetic resonance (NMR) spectra were recorded on Bruker Avance 400 spectrometer (9.4T,
400.13 MHz for *H, 100.62 MHz for 3C) *H and *3C chemical shifts (8) are reported in ppm relative
to tetramethylsilane, using solvent residual signals as the reference. 'H NMR diffusion
measurements were performed by using the bipolar-gradient LED (BPLED) pulse sequence. The
diffusion time (A) was set between 120-200 ms, the pulsed gradients were incremented from 2
to 95% of the maximum strength in sixteen spaced steps with a duration (5/2) of 1.1 to 1.6 ms
and a LED delay of 5 ms. The diffusion coefficients, D, have been determined for all the
compounds according to the equation | = l,exp[-Dy?G%8(A-6/3-t/2)], where | is the observed
intensity; lo, the reference intensity; G, the gradient amplitude; §, the duration of the gradient; v,
the gyromagnetic ratio; A, the diffusion time and t the LED delay of 5 ms. We chose
tetramethylsilane (TMS) and tetakis(trimethylsilyl)silane as internal references. MS-Maldi
spectra were obtained on a MICROFLEX (Bruker Daltonics) spectrometer and MS-ESI spectra
were obtained on an ESQUIRE 3000plus (Bruker Daltonics) spectrometer. The mesophase
identification was based on microscopic examination of the textures formed by samples
between two glass plates. NIKON and OLYMPUS BH-2 polarizing microscopes equipped with a
LINKAM THMS600 hot stage were used. The temperatures and enthalpies of the phase
transitions were determined by calorimetric measurements performed with DSC TA Instrument
Q-20 and Q-2000 systems. Thermogravimetric analysis (TGA) was performed using a TA
Q5000IR instrument at a heating rate of 10 2C /min under a nitrogen atmosphere. The X-ray
investigations on non-oriented samples were carried out in Lindemann capillary tubes
(diameter: 0.9 or 1 mm) using a PINHOLE (ANTON-PAAR) film camera operating with a point-
focused Ni-filtered Cu-Ka beam.



2. Synthetic procedures

2.1 Synthesis of 8-(4-hydroxyphenyl)-1,3-diazaspiro[4.5]decane-2,4-dione
((2)-2 and (E)-2)
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Scheme S1

8-(4-Hydroxyphenyl)-1,3-diazaspiro[4.5]decane-2,4-dione was synthetized by a modification of
literature procedure.! A mixture of 4-(4-hydroxyphenyl)-cyclohexanone (1.33 mmol), KCN (2.65
mmol) and (NH4),COs (7.86 mmol) were mixed in ethanol/water (3/2) (20 mL) and the mixture
was loaded into a Teflon-lined stainless steel autoclave. The sealed autoclave was heated under
autogenous pressure at 100 °C overnight. The resulting mixture was cooled to ambient
temperature and the precipitate was filtered off, washed with ice-cold water and ethanol.
Afterwards it was dried to yield a mixture of cis and trans diastereomers. Yield: 70%.

'H NMR (300 MHz, DMSO-ds, ppm) & = 8.63 (s, 1H, (2)-2), 7.88 (s, 1H, (E)-2), 7.09 (d, J = 8.4 Hz,
2H, (2)-2), 7.02 (d, J = 8.5 Hz, 2H, (E)-2), 6.66 (d, J = 8.4 Hz, 2H, (Z)-2), 5.74 (s, 1H), 2.47 - 2.32 (m,
1H), 2.12 — 1.50 (m, 8H). 3C NMR (75 MHz, DMSO-ds) & = 28.86, 33.52, 39.52, 41.52, 61.90,
114.93,127.71, 137.01, 155.49, 156.44, 178.71: MS (ESI*): Calcd. for C14H16N,03: 260.12, found:
m/z 282.9 (M+Na)*, 261.0 (M+H)*.

2.2 Synthesis of 3,4,5-tris(decyloxy)benzoic anhydride (3)

1) 1-Bromodecane, K,CO3; DMF

HO 2) KOH, dioxane/H,0 Ci1oH210
3) HCI, H,0
HO COOCH; C1oHp1O COOH
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Scheme S2.



Methyl 3,4,5-tris(decyloxy)benzoate.? Methyl 3,4,5-trihydroxybenzoate (4.90 g, 26.61 mmol)
and anhydrous potassium carbonate (13.00 g, 94.05 mmol) were stirred in 95 mL of dry DMF.
The flask was heated to 100 °C under inert atmosphere and then 1-bromodecane (18.44 g, 83.38
mmol) was slowly added. The mixture was stirred at 100 °C overnight. Afterwards, it was allowed
to cool to room temperature and an extraction was performed by adding water and solution of
hexane/ethyl acetate (1:1) to the mixture. The organic layer was washed with NaOH (10%),
washed with brine, dried over MgSQ,, filtered and the solvent was evaporated. The resulting
product was purified by column chromatography eluting with hexane/dichloromethane (3:2) to
give a waxy product. Yield: 70%. *H NMR (300 MHz, CDCls, ppm): 6 = 7.27 (s, 2H), 4.08 —3.98 (m,
6H), 3.91 (s, 3H), 1.84— 1.74 (m, 6H), 1.48 —1.28 (m, 42H), 0.95 — 0.84 (m, 9H). 3C NMR (75 MHz,
CDCls): 6 = 166.9, 152.8, 142.3, 124.8, 107.9, 73.5, 69.1, 52.0, 31.9, 30.3, 29.7-29.2, 26.0, 22.7,
14.1. MS (ESI*): Calcd. for C3gHegOs: 604.5, found: m/z 627.5 (M+Na)*

3,4,5-tris(decyloxy)benzoic acid.? Methyl 3,4,5-tris(decyloxy)benzoate (9.11 g, 15.06 mmol) was
dissolved in 1,4-dioxane (120 mL). The mixture was heated under reflux and then a solution of
KOH (90%) (1.93 g, 34.42 mmol) in 1.6 mL of water was slowly added. The reaction mixture was
stirred at reflux for 12 hours. After cooling to 0 °C, the mixture was acidified by slowly adding
HCI (37%) until an acidic pH was attained. The precipitated product was filtered off and washed
with water and ethanol. The obtained product was purified by recrystallization from glacial
acetic acid, to give a white powder. Yield: 72%. *H NMR (400 MHz, CDCls, ppm): & = 7.27 (s, 2H),
4.04 (t,J = 6.7 Hz, 2H), 4.02 (t, J = 6.6 Hz, 4H), 1.82 — 1.73 (m, 6H), 1.51 — 1.20 (m, 42H), 0.88 (t,
J=7.0 Hz, 9H). *C NMR (100 MHz, CDCls): 6 = 172.2, 152.8, 143.0, 123.6, 108.4, 73.5, 69.1, 31.8,
30.8, 30.3, 29.7, 29.6, 29.5, 29.4, 29.3, 29.2, 26.0, 25.9, 22.6, 14.0. IR (KBr; cm™): 2920, 2850,
1685, 1586, 1431, 1332, 1230, 1122. MS (ESI*): Calcd. for C37HgsOs: 590.5, found: m/z 591.5
(M+H)".

3,4,5-tris(decyloxy)benzoic anhydride (3).> Acetic anhydride (3.04 g, 29.8 mmol) and p-
toluenesulfonic acid monohydrate (114 mg, 0.599 mmol) were added to a 50 mL toluene
solution of 4.52 g (7.65 mmol) of 3,4,5-tris(decyloxy)benzoic acid, and the mixture was refluxed
for 1 h. The excess acetic anhydride and generated acetic acid were removed by distillation. The
crude product was purified by silica gel chromatography (ethyl acetate/n-hexane, 1:30) to give
3,4,5-tris(decyloxy)benzoic anhydride as a white solid. Yield: 62%. *H NMR (300 MHz, CDCls,
ppm) & = 7.33 (s, 4H), 4.07 (t, J = 6.6 Hz, 4H), 4.01 (t, J = 6.4 Hz, 8H), 1.72-1.85 (m, 12H), 1.27-
1.58 (m, 84H), 0.88 (t, J = 6.4 Hz, 18H). 3C NMR (75 MHz, CDCl3) & = 166.66, 152.93, 142.46,
125.22,108.14, 73.64, 69.32, 65.31, 64.82, 53.56, 32.09, 32.07, 32.05, 30.48, 29.88, 29.82, 29.79,
29.74, 29.72, 29.70, 29.56, 29.51, 29.47, 29.45, 28.90, 26.25, 26.21, 26.19, 22.86, 22.84, 22.66,
14.26. MS (MALDI): Calcd. for C74H13009: 1162.97, found: m/z 1186.0 (M+Na)*.



2.3 Synthesis of 4-(2,4-dioxo-1,3-diazaspiro[4.5]decan-8-yl)phenyl 3,4,5-
tris(decyloxy) benzoate ((2)-4 and (E)-4)
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8-(4-Hydroxyphenyl)-1,3-diazaspiro[4.5]decane-2,4-dione (223 mg, 0.86 mmol) solved in DMF
(2 mL) was added to 3,4,5-tris(decyloxy)benzoic anhydride (1g, 0.86 mmol) solution in DCM (2
mL). After 10 minutes DMAP (60 mg, 0.52 mmol) solved in 2 mL of DCM were added. The solution
was stirred overnight at room temperature; afterwards 10 mL of hexane/AcOEt (1:1) were
added. The organic layer was washed with brine, dried over MgSQ,, filtered and the solvent was
evaporated under vacuum. The mixture of diastereomers (Z)-4 and (E)-4 was purified and
separated by silica gel chromatography (ethyl acetate/n-hexane, 2/3) to give two products.
Yield: (2)-4, 20% and (E)-4, 7%.

(Z)-4 diastereomer

'H NMR (500 MHz, CDCls) &6 8.65 (s, 1H), 7.81 (s, 1H), 7.40 (s, 2H), 7.37-7.29 (m, 2H), 7.20-7.10
(m, 2H), 4.14-3.94 (m, 6H), 2.74-2.59 (m, 1H), 2.13-1.93 (m, 4H), 1.93-1.58 (m, 10H), 1.57-1.42
(m, 6H), 1.41-1.17 (m, 36H), 0.94-0.81 (m, 9H). ¥3C NMR (126 MHz, CDCl5) § 177.65, 165.26,
156.99, 153.01, 149.42, 143.26, 143.16, 127.82, 123.89, 121.75, 108.67,73.63, 69.33, 63.26,
42.14, 33.49, 31.95, 31.92, 30.37, 29.74, 29.68, 29.64, 29.60, 29.41, 29.36, 26.11, 26.08, 22.69,
14.11.

(E)-4 diastereomer

'H NMR (500 MHz, CD,Cl,) 8 7.75 (s, 1H), 7.39 (s, 2H), 7.37-7.31 (m, 2H), 7.15-7.10 (m, 2H), 5.38
(s, 1H), 4.01-3.98 (m, 6H), 2.62 (tt, J = 12.0, 3.5 Hz, 1H), 2.35-2.23 (m, 2H), 2.21-2.13 (m, 2H),
1.92-1.69 (m, 10H), 1.53-1.43 (m, 6H), 1.42-1.19 (m, 36H), 0.94-0.82 (m, 9H). *C NMR (126 MHz,
CD,Cl;) & 176.82, 165.52, 155.75, 153.42, 149.90, 144.12, 143.27, 128.28, 124.45, 122.08,
108.70, 73.92, 69.67, 61.35, 42.33, 35.39, 32.34, 30.76, 30.15, 30.09, 30.05, 30.00, 29.97, 29.81,
29.76, 29.61, 26.51, 26.48, 23.11, 14.28.



3. SUPPLEMENTARY FIGURES

3.1. NMR Spectra
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Figure S1. *H NMR spectrum of Z-diastereomer (Z)-4 (500 MHz, 298K, CDCls).
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Figure S2. 13C NMR spectrum of Z-diastereomer (Z)-4 (125 MHz, 298K, CDCls).
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Figure S3. *H-1H ROESY spectrum of Z-diastereomer (Z)-4 (500 MHz, 298K, CDCls). tmix=400m:s.
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Figure S4. *H-13C HSQC spectrum of Z-diastereomer (Z)-4 (500 MHz, 298K, CDCls).
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Figure S5. *H-13C HMBC spectrum of Z-diastereomer (Z)-4 (500 MHz, 298K, CDCls).
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Figure S6. *H NMR spectrum of E-diastereomer (E)-4 (500 MHz, 298K, CD,Cl,).
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Figure S7. 13C NMR spectrum of E-diastereomer (E)-4 (125 MHz, 298K, CD,Cl,).
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Figure S8. *H-'H ROESY spectrum of E-diastereomer (E)-4 (500 MHz, 298K, CD,Cly).
tmix=400ms.
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Figure S9. 'H-13C HSQC spectrum of E-diastereomer (E)-4 (500 MHz, 298K, CD,Cly).
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Figure S11. 'H NMR spectra of Z-diastereomer (Z)-4 in C¢D, at different concentrations.
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Figure S12. Temperature-dependent *H NMR spectra of (Z)-4 isomer at 16 mM in CDCls.
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Figure S14. *H DOSY NMR spectra of E-diastereomer (E)-4 at 298 K in CDCls (bottom trace in
black) and in a mixture 9:1 CsD1,:CDCls (top trace in gray). The projection is referenced to H in
CDCl; solution.
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Figure S15. HRMAS *H NOESY spectrum of Z-diastereomer (Z)-4 (500 MHz, 298K, CsDs).
(tmix=40ms, spinning rate of 4 kHz).
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Figure. 16. 'H-H NOESY spectrum of Z-diastereomer (Z)-4 (500 MHz, 298K, C¢Ds). tmix=400ms.
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3.2. Quantitative DOSY analysis of diastereomer (Z)-4

We have calculated the self-diffusion coefficients, D, from the modified Stejskal-Tanner
equation: I= I, exp[-Dy*G?3* (A-8/3)] , where | and |, are the resonance intensity measured for a
gradient pulse or in his absence, y is the gyromagnetic ratio of the hydrogen nucleus, G the pulse-
gradient strength, A is the diffusion time and & is the duration of the bipolar gradient pulse.

To circumvent changes of viscosity from one sample to another it is convenient by defining a
reduced diffusion coefficient Ajs) (E. J. Cabrita and S. Berger, Magn. Reson. Chem., 2001, 39,
$142-5148.). We have used TMS as internal reference: Aj= D; / D tus. On the other hand, the
ratio of diffusion coefficients for two different molecular species (Di/Dj) is inversely proportional
to the square-root or to the cubic-root of the ratio of their molecular weights.

Two DOSY experiments have been carried out for each solvent:

In the case of dissolution in CDCls, the variation of resonance intensity with gradient intensity
for a) (2)-4 (d20=150ms, p30=1.6ms) and b) TMS (d20=100ms, p30=0.8ms) are indicated below:



au. =g a.

, a) oo b)
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. . . .. D(z)-4 4,55 x 10710
and its reduced diffusion coefficient: A cpcs = Bt — = (0.20
DTums 22.76x 10~10

In the case of dissolution in C¢D1, the variation of resonance intensity with gradient intensity
for a) (Z)-4 (d20=180ms, p30=2ms) and b) TMS (d20=100ms, p30=1ms) are:

09 a) 0.9 b)

08 08
0.7 0.7
06 06

0.5 05

T T T T T T
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D(z)-4 _ 1.55x10710
Drms  14.05x 10-10

=0.11

and its reduced diffusion coefficient: Acep12 =

The ratio of diffusion coefficients for two different molecular species (Di/Dj) is inversely
proportional to the square-root or to the cubic-root of the ratio of their molecular weights
(Mj/Mi) for rod-like and spherical molecules, respectively. Assuming that rosettes are
hydrodynamically spherical, the average aggregate size can be estimated as Nposy = (Mag/M) =
(D/Dag)? In this case we use the reduced diffusion coefficients:

Acoci — 0.2 = 1.81 .. 18132 5.96
Acep12 0.11

which fits the proposal for the formation of a hexameric rosette for (2)-4.



3.3. XRD
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Figure $18. Room temperature XRD pattern of (Z)-4 organogel in cyclohexane.

Table S1. X-Ray structural parameters of the mesophases of the pure compounds.

dobs®(R) | hkI® | Lattice parameters®

(2)-4 42.2 100 | a=48.4A
23.9 110 |h=4.1;Z=6
4.4 (br) | Alkyl chains

(E)-4 42.9 100 |a=495A
24.4 110 | h=3.9;Z=6
21.5 200
16.4 211

4.4 (br) | Alkyl chains

2 dops: d value calculated according to Bragg’s equation.
b Miller indices.

¢ a: lattice constant of the columnar phase. a = (2/V3)-(d10+V3-d11+V4-d20+V7-d21+...)/Nreflections

0

Figure S19. Room temperature XRD pattern of (Z)-4 in the Col, mesophase.
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Table S2. TEM microphotographs of Z-(4) in different solvents and concentrations.

3.5. TEM and SEM images

Dodecane

1% wt.

2% wt.

Table S3. SEM microphotographs of Z-(4) in different solvents and concentrations.
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4. Theoretical calculation

4.1. Computational details

Density functional theory (DFT) calculations were carried out by using Gaussian09 package.* DFT
with the B3LYP exchange—correlation functional®” and Grimme D3BJ dispersion correction

scheme®® was utilized in conjunction with the 6-31G** basic set®®

. The interaction energies
between of dimers and hexamers (AEi.) were calculated at the same level of theory as the
difference between the total complex energy and the sum of the total energies of the hydantoin
units. The interaction energies were corrected using the Boys—Bernardi counterpoise method in

order to correct the basis set superposition error (BSSE)*..

NCl analysis was performed using Multiwfn software!?. A density cutoff of p = 0.1 au was applied.
Three-dimensional plots were created taking an isovalue of 0.5 for the reduced density gradient
(s) and coloring in the [-0.025, 0.025] a.u. +(A2)p range using VMD software®3.

4.2. Results

Table S4. Interaction energies (AEin: in k] mol?) calculated at the B3LYP-D3/6-31G** level for
dimers and hexamers of (2)-4-M and (E)-4-M.

Complex AEiq:
k) mol™
(2)-4-M DIMER -77.0
(E)-4-M DIMER -66.3
(Z)-4-M HEXAMER -444.9
(E)-4-M HEXAMER -317.5
(2)-4-M DIMER (E)-4-M DIMER

1.798 A

#

1.803 A

z

Figure S22. B3LYP-D3/6-31G** optimized structures calculated for (Z)-4-M and (E)-4-M with
hydrogen bond distances.



(2)-4-M (Z2)-4-M DIMER (Z)-4-M HEXAMER

Figure S23. NClI plots of models, dimers and hexamers.
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