Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers.

Supporting Information for

Asymmetric Total Synthesis of Montanine-type Amaryllidaceae

Alkaloids
Fang Wang ${ }^{1}$, Xiaohan Xu^{1}, Yangtian Yan, Jiayang Zhang, Yang Yang*
School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030 (China)
E-mail: yang_yang@hust.edu.cn

Table of Contents

1. General experimental S3
2. Experimental procedures and characterization data S4
3. NMR comparison of synthetic and natural products S19
4. References. S29
5. ECD calculation of 5 S20
6. Copes of HPLC Traces S36
7. NMR spectra S37

1. General experimental

All reactions sensitive to air or moisture were carried out under argon atmosphere in dry, freshly distilled, solvents under anhydrous conditions, unless otherwise noted. Anhydrous THF, DME and toluene were distilled over sodium benzophenone ketyl under Argon. Anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled over calcium hydride under Argon. Anhydrous MeOH was distilled over magnesium under Argon. All other solvents and reagents were used as obtained from commercial sources without further purification. Reactions were magnetically stirred and monitored by thin layer chromatography (TLC) with $0.15-0.2 \mathrm{~mm}$ pre-coated silica gel $(10-40 \mu \mathrm{~m})$ plates, using UV light as the visualizing agent or aqueous potassium permanganate and ethanolic phosphomolybdic acid as developing agents. Column chromatography was performed with silica gel (200-300 mesh) under pressure. NMR spectra were recorded on (${ }^{1} \mathrm{H}$ at $400 \mathrm{MHz}, 600 \mathrm{MHz}$ and ${ }^{13} \mathrm{C}$ at $100 \mathrm{MHz}, 150 \mathrm{MHz}$) Bruker spectrometers. Chemical shifts (δ) were given in ppm with reference to solvent signals $\left[{ }^{1} \mathrm{H}\right.$ NMR: CDCl_{3} (7.26), $\mathrm{CD}_{3} \mathrm{OD}$ (3.31), $\mathrm{CD}_{3} \mathrm{COCD}_{3}(2.05) ;{ }^{13} \mathrm{C}^{\mathrm{NMR}:} \mathrm{CDCl}_{3}$ (77.2), $\mathrm{CD}_{3} \mathrm{OD}$ (49.0), $\left.\mathrm{CD}_{3} \mathrm{COCD}_{3}(29.7)\right]$. The following abbreviations were used to explain multiplicities: $\mathrm{s}=$ singlet, d $=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. IR spectra were collected on Perkin Elmer FT-IR L1600300 spectrometer. High-resolution mass spectra were recorded on Bruker microTOF II.

2. Experimental procedures and characterization data

Following a reported procedure ${ }^{[1]}$ with slight modifications, to a solution of the (N(arenesulfonylimino))phenyliodinane $\mathbf{S 2}{ }^{[2]}\left(\mathrm{PhI}=\mathrm{NTs}, 3.8 \mathrm{~g}, 10.12 \mathrm{mmol}, 1.0\right.$ equiv) in dry $\mathrm{CH}_{3} \mathrm{CN}$ $(40 \mathrm{~mL})$ were added sequentially the alkene $\mathbf{S} \mathbf{1}\left(2.2 \mathrm{~g}, 15.18 \mathrm{mmol}, 1.5\right.$ equiv) and $\mathrm{Cu}(\mathrm{acac})_{2}(79$ $\mathrm{mg}, 0.3 \mathrm{mmol}, 0.03$ equiv) at RT. After stirring at the same temperature for 30 min , completion of reaction was realized as a clear solution formed upon dissolution of $\mathrm{PhI}=\mathrm{NTs} . \mathrm{Et}_{3} \mathrm{~N}(3.0 \mathrm{v} \%)$ was added to the mixture before filtered thought a pad of Celite (pretreated with EtOAc containing 0.5 $\mathrm{v} \% \mathrm{Et}_{3} \mathrm{~N}$) and concentrated. The residue was purified by flash column chromatography (petroleum ether/EtOAc, $6: 1 \rightarrow 3: 1$, containing $\left.1.0 \mathrm{v} \% \mathrm{Et}_{3} \mathrm{~N}\right)$ to afford compound $\mathbf{1 1}(2.3 \mathrm{~g}, 73 \%)$ as a white solid. The spectral data of compound 11 agree with those previously reported ${ }^{[3]}$.

Following a reported procedure ${ }^{[4]}$ with slight modifications, to a solution of (5R)-5-Methyl-2-cyclohexen-1-one $\mathbf{S 3}{ }^{[5]}$ ($2.0 \mathrm{~g}, 18.16 \mathrm{mmol}, 1.0$ equiv) in THF (90 mL) was added HMPA (8 mL , $45.4 \mathrm{mmol}, 2.5$ equiv) at $-78{ }^{\circ} \mathrm{C}$. After 10 min , LiHMDS (20 mL , 1.1 equiv, 1.0 M in THF/ethylbenzene) was added dropwise and the mixture was continued to stir for 1 h . The reaction mixture was then allowed to stir at $0^{\circ} \mathrm{C}$ for another 1 h , after then $\operatorname{TIPSOTf}(4.9 \mathrm{~mL}, 18.16 \mathrm{mmol}$, 1.0 equiv) was added dropwise at $-78^{\circ} \mathrm{C}$. After stirring at this temperature for 1 h , the reaction mixture was quenched with sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and extracted with n-hexane (3 x 20 mL). The combined organic layers were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by column chromatography (petroleum ether, $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to afford compound (S)-12 (3.86 g, 80\%) as a colorless oil.

Compound (S)-12: $[\alpha]_{\mathrm{D}}{ }^{23}:-32.1\left(\mathrm{c} 1.1, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 5.77$ (ddd, $J=9.6$, 6.0, 2.0 Hz, 1H), $5.27(\mathrm{dd}, J=9.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d} \mathrm{br}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.54(\mathrm{~m}, 1 \mathrm{H})$, $2.29(\mathrm{dd}, J=16.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{ddd}, J=16.4,13.6,1.2,1 \mathrm{H}), 1.22-1.15(\mathrm{~m}, 3 \mathrm{H}), 1.12-1.09$ $(\mathrm{m}, 18 \mathrm{H}), 1.06(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 153.9,125.0,123.8,101.2$, 37.5, 30.5, 20.6, 18.2 (6C), 12.9 (3C); IR (KBr): 2936, 1730, 1605, 1455, 1288, 1074, 815, 701 $\mathrm{cm}^{-1} ;$ HRMS (APCI, m/z) calcd for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}: 267.2139$, found 267.2140

A solution of $\mathrm{Cu}(\mathrm{OTf})_{2}(570 \mathrm{mg}, 1.58 \mathrm{mmol}, 0.1$ equiv $)$ in $\mathrm{DCM}(40 \mathrm{~mL})$ was stirred at room tempreture for 5 min . A separate flask was charged with aziridine $\mathbf{1 1}(5 \mathrm{~g}, 15.8 \mathrm{mmol}, 1.0$ equiv), silyldienol ethers (S)-12 (5.0 g, $18.9 \mathrm{mmol}, 1.2$ equiv), and $\mathrm{DCM}(118 \mathrm{~mL})$. The mixture solutions of $\mathbf{1 1}$ and (S)-12 were added dropwise to the copper salt. Full conversion of the aziridine $\mathbf{1 1}$ was observed after stirring for 0.5 h at room temperature, then the reaction was continued to stirred for another 3 h untill the deprotection of silyl ethers finished, then $\mathrm{K}_{2} \mathrm{CO}_{3}(10.9 \mathrm{~g}, 79 \mathrm{mmol}, 5.0$ equiv $)$ and $\mathrm{EtOH}(474 \mathrm{~mL})$ were added sequentially and the reaction mixture was heated to $60^{\circ} \mathrm{C}$. After stirred for 18 h , the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and extracted with DCM $(3 \times 80 \mathrm{~mL})$. The combined organic layers were washed with brine $(50 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The crude product was purified by column chromatography (petroleum ether/EtOAc, 6:1 to $2: 1$) to afford (+)-10 (3.77 g, 56\%, d.r. 5:1 (d.r.=exo: endo)) as a white foam.

Compound (+)-10 - exo: ee $=99 \%,[\alpha]_{\mathrm{D}}{ }^{23}:+14.3\left(c 0.6, \mathrm{CHCl}_{3}\right)$, HPLC: Daicel CHIRALPAK IA column, 30% IPA in hexanes, $0.7 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ minor $)=18.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=35.9 \mathrm{~min}$; TLC (petroleum ether:EtOAc, $2: 1 \mathrm{v} / \mathrm{v}$): $\boldsymbol{R}_{\boldsymbol{f}}=0.44$ (UV, phosphomolybdic acid); ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.58$ (dd, $J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~s}, 2 \mathrm{H}), 4.08-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=$ 9.6, 7.2 Hz, 1H), $3.27-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=16.4,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.55(\mathrm{dd}, J=16.0,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.36-2.34(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.89(\mathrm{~m}, 3 \mathrm{H}), 0.71(\mathrm{~d}, J$ $=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 209.3,148.4,147.3,144.2,134.1,132.6,130.1$ (2C), 127.8 (2C), $121.4,108.8,107.3,101.4,57.8,55.8,51.5,48.6,45.3,45.3,30.9,21.8,21.1 ;$ IR (KBr):

2958, 1717, 1490, 1345, 1163, 1038, 814, 665, $548 \mathrm{~cm}^{-1}$; HRMS (ESI, m/z) calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NNaO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 450.1346$, found 450.1350 .

To a solution of ketone (+)-10-exo (1.3 g, $3.04 \mathrm{mmol}, 1.0$ equiv) in dry DCM (76 mL) were added sequentially DIPEA ($5.18 \mathrm{~mL}, 30.4 \mathrm{mmol}, 10$ equiv) and TMSOTf ($2.76 \mathrm{~mL}, 15.2 \mathrm{mmol}, 5.0$ equiv) at room temperature. After stirring at this temperature for 4 h , the reaction mixture was quenched with sat. aq. $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and extracted with cold n-Pentane $(3 \times 20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The combined organic layers were washed with sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. To a solution of the residue in $\mathrm{MeCN}(76 \mathrm{~mL})$ was added $\mathrm{Pd}(\mathrm{OAc})_{2}(889 \mathrm{mg}, 3.96$ mmol, 1.3 equiv) at RT. After stirring at this temperature for 4 h , the resulting mixture were filtered thought a pad of Celite. The filtrate was concentrated in vacuo and the residue was purified by column chromatography (petroleum ether/EtOAc, $5: 1 \rightarrow 3: 1$) to afford compound (-)-13 (400 mg, 31%) as a white foam. The recovered starting material was subjected to the above conditions twice more to give 13 ($678 \mathrm{mg}, 52 \%$ over 3 cycles).

Compound 13: $[\alpha] \mathrm{D}^{25}=-129.5\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$; TLC (petroleum ether:EtOAc, $2: 1 \mathrm{v} / \mathrm{v}$): $\boldsymbol{R}_{\boldsymbol{f}}=0.43$ $\left(\mathrm{UV}, \mathrm{KMnO}_{4}\right) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.73(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 2 \mathrm{H}), 5.82$ $(\mathrm{s}, 1 \mathrm{H}), 4.45(\mathrm{dt}, J=12.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{td}, J=6.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-3.31(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{dd}$, $J=16.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $(150$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 196.3,158.6,148.5,147.5,144.2,135.1,132.2,130.2$ (2C), 127.6 (2C), 127.3, $121.5,108.8,107.1,101.5,59.4,55.8,50.6,49.1,41.6,24.0,21.8$; IR (KBr): 2924, 2854, 1669, 1489, 1446, 1248, 1163, 1095, 1036, $664 \mathrm{~cm}^{-1}$; HRMS (ESI, m/z) calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NNaO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 448.1189$, found 448.1175 .

To a solution of enone $\mathbf{1 3}(127 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv $)$ in dry $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(2: 1,8 \mathrm{~mL})$ was added CeCl_{3} ($221 \mathrm{mg}, 0.90 \mathrm{mmol}, 3.0$ equiv) at room temperature. The resulting mixture was stirred at RT for 20 min before $\mathrm{NaBH}_{4}\left(22.6 \mathrm{mg}, 0.60 \mathrm{~mol}, 2.0\right.$ equiv) was added at $0^{\circ} \mathrm{C}$. After stirring at room temperature for 0.5 h the reaction mixture was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by column chromatography (petroleum ether/EtOAc, $4: 1 \rightarrow 2: 1)$ to afford compound $\mathbf{1 4}(108.5 \mathrm{mg}, 85 \%)$ as a white foam.

Compound 14: $[\alpha] \mathrm{D}^{25}=-96.9\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$; TLC (petroleum ether:EtOAc, $2: 1 \mathrm{v} / \mathrm{v}$): $\boldsymbol{R}_{\boldsymbol{f}}=0.27$ (UV, (UV, $\left.\mathrm{KMnO}_{4}\right) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.77(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 2 \mathrm{H})$, $5.40(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=4.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{ddd}, J=12.0,7.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=10.2$, $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{td}, J=10.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{~s}$, $3 \mathrm{H}), 2.21-2.18(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.64(\mathrm{brs}, 1 \mathrm{H},-\mathrm{OH}), 1.64-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 148.1,147.0,143.9,134.9,134.8,133.7,130.0(2 \mathrm{C}), 128.3,127.6$ (2C), 121.4, 108.6, 107.3, 101.2, 66.8, 59.0, 56.5, 49.3, 49.3, 37.8, 22.5, 21.7; IR (KBr): 2915, 2876, 1505, 1489, 1341, 1164, 1038, 814, 666, $588 \mathrm{~cm}^{-1}$; HRMS (ESI, m/z) calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NNaO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 450.1346, found 450.1343 .

To a stirred solution of $\mathbf{1 4}(300 \mathrm{mg}, 0.70 \mathrm{mmol}, 1.0$ equiv $)$ in dry $\mathrm{DCM}(11 \mathrm{~mL})$ were added sequentially DIPEA ($0.61 \mathrm{~mL}, 3.51 \mathrm{mmol}, 5.0$ equiv) and $\mathrm{MOMCl}(0.16 \mathrm{~mL}, 2.11 \mathrm{mmol}, 3.0$ equiv) at $0^{\circ} \mathrm{C}$. After stirring at room temperature for 6 h , the reaction mixture was quenched with sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by column chromatography (petroleum ether/EtOAc, $8: 1 \rightarrow 5: 1$) to afford compound $\mathbf{S 4}(298.1 \mathrm{mg}, 90 \%)$ as a white foam.

To a stirred solution of $\mathbf{S 4}\left(90 \mathrm{mg}, 0.19 \mathrm{mmol}, 1.0\right.$ equiv) in dioxane $(9.0 \mathrm{~mL})$ was added $\mathrm{SeO}_{2}(64$ $\mathrm{mg}, 0.57 \mathrm{mmol}, 3.0$ equiv) at room temperature. After heating at $70^{\circ} \mathrm{C}$ for 5 h , the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with EtOAc (3 x 10 mL). The combined organic layers were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by column chromatography (petroleum ether/EtOAc, 5:1 $\rightarrow 1: 1$) to afford aldehyde 15 (40.0 $\mathrm{mg}, 43 \%)$ and $\mathbf{S 5}(16.8 \mathrm{mg}, 18 \%)$ as a white foam.

To a stirred solution of $\mathbf{S 5}(16.8 \mathrm{mg}, 0.034 \mathrm{mmol}, 1.0$ equiv $)$ in $\mathrm{DCM}(1.6 \mathrm{~mL})$ was added MnO_{2} ($60 \mathrm{mg}, 0.69 \mathrm{mmol}, 20$ equiv) at room temperature. After stirring for 1 h until the starting material was completely consumed, the resulting mixture was diluted with $\mathrm{DCM}(3 \mathrm{~mL})$ and filtered thought a pad of Celite. The filtrate was concentrated in vacuo to afford the $\mathbf{1 5}(16.5 \mathrm{mg}, 99 \%)$ which was used in the next step without further purification.

Compound 15: $[\alpha] \mathrm{D}^{25}=-86.6$ (c 1.0, CHCl_{3}); TLC (petroleum ether:EtOAc, $2: 1 \mathrm{v} / \mathrm{v}$): $\boldsymbol{R}_{\boldsymbol{f}}=0.62$ (UV, KMnO_{4}); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.12(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.92(\mathrm{dd}, J=3.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.81(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-$ $4.43(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{ddd}, J=12.6,7.8 .4 .8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=10.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H})$, $3.26(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{td}, J=10.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 1.92$ (dd, $J=23.4,12.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 191.3,149.2,148.0,147.1,144.2$, $140.0,134.5,131.3,130.2(2 \mathrm{C}), 127.5$ (2C), 121.4, 108.1, 107.6, 101.2, $95.8,71.4,58.6,55.9,55.4$, 50.2, 42.4, 34.6, 21.8; IR (KBr): 2879, 2859, 1698, 1618, 1497, 1342, 1249, 1167, 1103, 1047, 664, $547 \mathrm{~cm}^{-1} ;$ HRMS $(\mathrm{ESI}, \mathrm{m} / \mathrm{z})$ calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NNaO}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 508.1400$, found 508.1403.

To a solution of substrate $15(30 \mathrm{mg}, 0.062 \mathrm{mmol}, 1.0$ equiv) in xylene $(3.0 \mathrm{~mL})$ in a sealed tube, $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}(115 \mathrm{mg}, 0.124 \mathrm{mmol}, 2.0$ equiv) was added. The reaction mixture was then degassed by bubbling argon directly through the mixture for 30 min and then were heated at $180^{\circ} \mathrm{C}$ for 0.5 h , the resulting mixture were filtered thought a pad of Celite. The filtrate was concentrated in vacuo and the residue was purified by column chromatography (petroleum ether: EtOAc $=10: 1 \rightarrow 5: 1$) to afford compound (-)-16 (17.8 mg, 63\%).

Compound (-)-16: $[\alpha] \mathrm{D}^{20=}=-76.3\left(\mathrm{c} 0.6, \mathrm{CHCl}_{3}\right)$; TLC (petroleum ether:EtOAc, $2: 1 \mathrm{v} / \mathrm{v}$): $\boldsymbol{R}_{\boldsymbol{f}}=0.61$ (UV, phosphomolybdic acid); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.93$ (s, 2H), $5.75(\mathrm{dd}, J=10.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5,38-5.34(\mathrm{~m}, 1 \mathrm{H}), 4.73(\mathrm{dd}, J=20.8,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.27-$ $4.23(\mathrm{~m}, 1 \mathrm{H}), 4.02-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{td}, J=6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.16-3.08(\mathrm{~m}, 2 \mathrm{H})$, $2.63-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.64(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 148.0,146.9,143.7,134.4,131.8,131.3,129.9$ (2C), 127.5 (2C), 125.5, 121.0, $108.5,107.2,101.1,95.2,71.6,57.8,55.6,55.5,48.9,45.4,35.0,21.6$; IR (KBr): 2904, 2589, 1924, 1507, 1250, 1043, 812, 667, $550 \mathrm{~cm}^{-1}$; HRMS (ESI, m/z) calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NNaO}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 480.1451, found 480.1471 .

To a solution of naphthalene ($2.8 \mathrm{~g}, 21.9 \mathrm{mmol}, 58.8$ equiv) in anhydrous DME (12 mL) was added finely chopped sodium metal ($532 \mathrm{mg}, 23 \mathrm{mmol}, 62.2$ equiv) at room temperature. The reaction was stirred for 2 h , during which a dark green solution appeared ${ }^{[6]} .(-)-\mathbf{1 6}(170 \mathrm{mg}, 0.37 \mathrm{mmol}, 1.0$ equiv) in DME (18.5 mL) was cooled to $-78^{\circ} \mathrm{C}$. The Na-naphthalenide solution was added dropwise to this reaction using a syringe, until a dark green colour persisted for 5 min . After stirring at $-78^{\circ} \mathrm{C}$ for 30 min , the reaction mixture was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5.0 \mathrm{~mL})$ and stirred for 5 min
at the same temperature. after then it was allowed to warm at rt , potassium carbonate $(1.6 \mathrm{~g}, 11.5$ mmol, 31.0 equiv) was added to the mixture and stirred for 30 min . The suspension was extracted with DCM (3 x 30 mL), The combined organic layers were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was filtered through a short plug of silica gel $(\mathrm{DCM} / \mathrm{MeOH}$, 20:1) to afford the crude $\mathbf{S 6}$ ($100 \mathrm{mg}, 89 \%$), which was used directly into next step without intensive purification.

To a stirred solution of $\mathbf{S 6}(100 \mathrm{mg}, 0.33 \mathrm{mmol}, 1.0$ equiv $)$ in $\mathrm{HCO}_{2} \mathrm{H}(8.3 \mathrm{~mL})$ was added Paraformaldehyde ($100 \mathrm{mg}, 3.3 \mathrm{mmol}, 10$ equiv) at room temperature. Then the reaction was heated to $80^{\circ} \mathrm{C}$. After stirring at this temperature for 2 h , the reaction mixture was quenched with sat. aq. NaHCO_{3} at $0^{\circ} \mathrm{C}$ untill the pH of the solution was $7-8$, then extracted with $\mathrm{DCM}(3 \times 30 \mathrm{~mL})$ and chloroform/Isopropanol (10:1, $3 \times 30 \mathrm{~mL}$). The combined organic layers were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was redissolved in $\mathrm{MeOH}(8.3 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($68 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.5$ equiv) was added at rt . After stirring at this temperature for 30 min , the resulting mixture was filtered and concentrated. The residue was purified by column chromatography (DCM/MeOH, 20:1) to afford $17(71.5 \mathrm{mg}, 80 \%)$ as a white foam.

Compound 17: $[\alpha] \mathrm{D}^{20}=+74.6\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$; TLC $(\mathrm{DCM}: \mathrm{MeOH}, 20: 1 \mathrm{v} / \mathrm{v}): \boldsymbol{R}_{\boldsymbol{f}}=0.26(\mathrm{UV}$, phosphomolybdic acid); ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 6.07$ (ddd, $J=$ $6.0,4.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 2 \mathrm{H}), 5.74(\mathrm{dd}, J=9.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.19(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~d}, J=$ $18.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=11.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=12.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.84(\mathrm{~m}, 1 \mathrm{H})$, $2.81-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.89(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:$ $146.7,146.0,135.1,132.8,130.3,125.8,107.7,107.0,100.9,64.2,61.3,61.3,53.6,50.1,45.6,34.8 ;$ IR (KBr): 2895, 1850, 1480, 1301, 1236, 1035, 931, 867, 730, $557 \mathrm{~cm}^{-1} ;$ HRMS (ESI, m/z) calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 272.1281$, found 272.1285.

To a stirred solution of $\mathbf{1 7}\left(66 \mathrm{mg}, 0.243 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{DCM}(6 \mathrm{~mL})$ was added $\mathrm{SOCl}_{2}(124$ $\mu \mathrm{L}, 1.7 \mathrm{mmol}, 7.0$ equiv) at room temperature. After stirring for 30 min until the starting material was completely consumed, the resulting mixture was concentrated in vacuo and the residue was
dissolved in $\mathrm{MeOH}(6 \mathrm{~mL}) . \mathrm{MeONa}(5.4 \mathrm{M}(30 \mathrm{wt} . \%)$ solution in methanol, $0.46 \mathrm{~mL}, 2.43 \mathrm{mmol}$, 10 equiv) was added at room temperature. The reaction mixture was heated to $70{ }^{\circ} \mathrm{C}$ and stirred for 5 h before quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by column chromatography $(\mathrm{DCM} / \mathrm{MeOH}, 30: 1 \rightarrow 10: 1)$ to afford $\mathbf{S 7}(17.2 \mathrm{mg}$, 25%) and $\mathbf{S 8}$ ($29.2 \mathrm{mg}, 42 \%$) as white foam.

Compound S7: $[\alpha] \mathrm{D}^{20}=+21.4\left(\mathrm{c} 0.7, \mathrm{CHCl}_{3}\right) ;$ TLC $(\mathrm{DCM}: \mathrm{MeOH}, 20: 1 \mathrm{v} / \mathrm{v}): \boldsymbol{R}_{\boldsymbol{f}}=0.43(\mathrm{UV}$, phosphomolybdic acid); ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 5.99(\mathrm{dd}, J=$ $10.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 2 \mathrm{H}), 5.70(\mathrm{ddd}, J=6.0,4.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88$ $-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{~s}$ br, 1 H$), 2.82(\mathrm{~s}, 2 \mathrm{H})$, $2.75(\mathrm{~s}, 1 \mathrm{H}), 2.47(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.45-1.41(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 146.7$, $146.1,134.7,132.3,130.2,125.3,107.7,106.8,100.9,72.4,61.7,61.2,56.3,54.7,50.0,45.9,34.5$; IR (KBr): 2886, 1729, 1484, 1344, 1230, 1038, 937, 825, 710, $525 \mathrm{~cm}^{-1}$; HRMS (ESI, m/z) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 286.1438$, found 286.1446 .

Compound S8: TLC (DCM:MeOH, 20:1 v/v): $\boldsymbol{R}_{f}=0.41$ (UV, phosphomolybdic acid); ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 6.13-6.11(\mathrm{~m}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 2 \mathrm{H}), 5.80(\mathrm{dd}, J=$ $10.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.64(\mathrm{~m}, 3 \mathrm{H}), 3.46$ $(\mathrm{s}, 3 \mathrm{H}), 3.06(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 2.01-1.97(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 147.4,147.0,133.2,130.7,129.7,121.5,107.3,106.9,101.3,71.3$, 63.4, 60.1, 57.5, 52.4, 49.1, 45.2, 30.2; IR (KBr): 2925, 1500, 1484, 1341, 1235, 1101, 1035, 930, 865, 825; HRMS (ESI, m/z) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 286.1438$, found 286.1439.

To a stirred solution of $\mathbf{S} 7(16 \mathrm{mg}, 0.056 \mathrm{mmol}, 1.0$ equiv $)$ in dioxane (2.8 mL) was added SeO_{2} $\left(18.6 \mathrm{mg}, 0.168 \mathrm{mmol}, 3.0\right.$ equiv) at room temperature. After heating at $100^{\circ} \mathrm{C}$ for 8 h , the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ and extracted with DCM $(3 \times 5 \mathrm{~mL})$. The combined organic layers were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by column chromatography ($\mathrm{DCM} / \mathrm{MeOH}, 20: 1 \rightarrow 10: 1$) to afford (+)-pancratinine \mathbf{B} (4) ${ }^{[7]}$
$(9.8 \mathrm{mg}, 58 \%)$ as a white foam.
(+)-pancratinine B (4): TLC (DCM:MeOH, 20:1 v/v): $\boldsymbol{R}_{\boldsymbol{f}}=0.32$ (UV, phosphomolybdic acid); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 2 \mathrm{H}), 5.78$ $(\mathrm{d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}$, $3 \mathrm{H}), 2.99(\mathrm{dd}, J=12.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~s}, 1 \mathrm{H}), 2.85(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.36(\mathrm{br} \mathrm{d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 147.8,146.3$, $134.7,131.5,129.2,126.7,110.1,107.4,101.2,83.4,72.5,68.2,62.4,56.5,55.2,49.9,31.9$; IR (KBr): 2855, 1732, 1484, 1260, 1036, 934, 801, $524 \mathrm{~cm}^{-1}$; HRMS (ESI, m/z) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 302.1387$, found 302.1388; (+)-Pancratinine $\mathrm{B}(4):[\alpha] \mathrm{D}^{20}=+2.8(\mathrm{c} 0.4$, $\mathrm{MeOH})$; Natural (+)-Pancratinine $\mathrm{B}^{[7]}:[\alpha] \mathrm{D}^{20}=+1.9(\mathrm{c} 0.7, \mathrm{MeOH})$.

To the solution of $\mathbf{1 7}(90 \mathrm{mg}, 0.332 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{DCM}(17 \mathrm{~mL})$ were added sequentially $\mathrm{Et}_{3} \mathrm{~N}(0.14 \mathrm{~mL}, 0.996 \mathrm{mmol}, 3.0$ equiv) and TBSOTf ($0.15 \mathrm{~mL}, 0.664 \mathrm{mmol}, 2.0$ equiv) at room temperature. After stirring at this temperature for 1 h , the reaction mixture was quenched with sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by column chromatography (petroleum ether/EtOAc, 5:1 $\rightarrow 2: 1$) to afford $\mathbf{S 9}$ ($118.7 \mathrm{mg}, 92 \%$).

To a stirred solution of $\mathbf{S 9}$ ($58 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0$ equiv) in dioxane $(7.5 \mathrm{~mL})$ was added $\mathrm{SeO}_{2}(50$ $\mathrm{mg}, 0.45 \mathrm{mmol}, 3.0$ equiv) at room temperature. After heating at $100^{\circ} \mathrm{C}$ for 8 h , the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by column chromatography $(\mathrm{DCM} / \mathrm{MeOH}, 20: 1 \rightarrow 10: 1)$ to afford tertiary alcohol $\mathbf{S 1 0}(36.2$ $\mathrm{mg}, 60 \%)$ as a white foam.

Compound S10: $[\alpha] \mathrm{D}^{25}=+12.5\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$; TLC $(\mathrm{DCM}: \mathrm{MeOH}, 20: 1, \mathrm{v} / \mathrm{v}): \boldsymbol{R}_{\boldsymbol{f}}=0.51(\mathrm{UV}$, phosphomolybdic acid); ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=$ $10.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H}), 5.79(\mathrm{dd}, J=10.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-$ $4.32(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=12.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$,
$2.87(\mathrm{dd}, J=12.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.27(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 1 \mathrm{H})$, $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 147.7,146.1,139.4,130.4,129.9,126.4$, 109.9, 106.7, 101.1, 83.5, 71.9, 65.3, 60.4, 52.5, 51.5, 40.1, 26.0 (3C), 18.3, -4.4, -4.6; IR (KBr): 2930, 1483, 1342, 1242, 1095, 939, 840, 772, $596 \mathrm{~cm}^{-1}$; HRMS (ESI, m/z) calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{NO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 402.2095, found 402.2099.

To a stirred solution of $\mathbf{S 1 0}(20 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0$ equiv $)$ in dry THF $(1.5 \mathrm{~mL})$ was added $\mathrm{NH}_{4} \mathrm{HF}_{2}$ ($43 \mathrm{mg}, 0.75 \mathrm{mmol}, 15$ equiv) at room temperature. After heating at $50^{\circ} \mathrm{C}$ for 5 h , the reaction mixture was cooled to room temperature and purified directly by Preparative TLC $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH}, 80: 4: 1\right)$ to afford $\mathbf{1 8}(12.2 \mathrm{mg}, 85 \%)$ as a white foam.

Compound 18: $[\alpha] \mathrm{D}^{25}=+69.4$ (c 1.0, CHCl_{3}); TLC $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}, 90: 9: 1 \mathrm{v} / \mathrm{v}\right): \boldsymbol{R}_{\boldsymbol{f}}=0.50$ (UV, phosphomolybdic acid); ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{dd}$, $J=10.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 2 \mathrm{H}), 5.88(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{t}, J=7.2,1 \mathrm{H}), 4.20(\mathrm{~d}, J=16.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=12.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{dt}, J=14.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 147.8,146.2,134.0,131.5,129.5,126.9,110.2,107.8,101.2,82.6$, 67.4, 63.3, 62.4, 54.3, 49.6, 31.6; IR (KBr): 2851, 1735, 1485, 1378, 1261, 1038, 861, 637, 579 $\mathrm{cm}^{-1} ;$ HRMS (ESI, m/z) calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 288.1230$, found 288.1242.

To a stirred solution of $\mathbf{1 8}(12 \mathrm{mg}, 0.041 \mathrm{mmol}, 1.0$ equiv $)$ in degassed $\mathrm{DCM}(1.6 \mathrm{~mL})$ was added MnO_{2} ($71 \mathrm{mg}, 0.82 \mathrm{mmol}, 20$ equiv) at room temperature. After stirring for 30 min until the starting material was completely consumed, the resulting mixture was diluted with $\mathrm{DCM}(3 \mathrm{~mL})$ and filtered thought a pad of Celite. The filtrate was concentrated in vacuo to afford the crude 19, which was used immediately into next step without purification.

To a solution of crude 19 obtained above in THF (1.6 mL) was added DIBAL-H ($51 \mu \mathrm{~L}, 1.2 \mathrm{M}$ in toluene, $0.06 \mathrm{mmol}, 1.5$ equiv) at $-78^{\circ} \mathrm{C}$. After stirring at the same temperature for 10 min , the reaction mixture was quenched with $\mathrm{MeOH}(0.5 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by Preparative $\mathrm{TLC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH}, 80: 4: 1\right)$ to afford (+)pancratinine C (5) (5.0 mg, 42\%) and $\mathbf{1 8}(1.2 \mathrm{mg}, 10 \%)$ as a white solid.

Pancratinine C: TLC $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}, 90: 9: 1 \mathrm{v} / \mathrm{v}\right): \boldsymbol{R}_{\boldsymbol{f}}=0.45$ (UV, phosphomolybdic acid); ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta: 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H})$, $5.76(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.08$ (s, 1H), $3.05(\mathrm{~d} \mathrm{br}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~d} \mathrm{br}$, $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 147.0,145.8,135.0,130.9,129.6$, $123.5,109.4,105.8,100.5,81.2,66.9,62.1,60.6,54.2,48.8,32.9$; IR (KBr): 2923, 1735, 1502, 1487, 1238, 1218, 1051, 1034, $820 \mathrm{~cm}^{-1}$; HRMS (ESI, m/z) calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 288.1236$, found 288.1237. our synthetic (+)-Pancratinine $\mathrm{C}:[\alpha] \mathrm{D}^{20}=+2.3$ (c $\left.0.4, \mathrm{MeOH}\right)$; Natural (-)Pancratinine $\mathrm{C}^{[7]}:[\alpha] \mathrm{D}^{20}=-1.8(\mathrm{c} 0.5, \mathrm{MeOH})$.

To a solution of $\mathrm{CCl}_{3} \mathrm{CN}(50 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 13.5$ equiv) in dry $\mathrm{DCM}(0.2 \mathrm{~mL})$ was added 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ ($50 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 13.5$ equiv), the mixture was stirred at room temperature for 1.5 h. Then the solution was transferred via syringe to a flask containing $17(10 \mathrm{mg}, 0.037 \mathrm{mmol}, 1.0$ equiv) in a mixture solvent of $\mathrm{DCM}(0.2 \mathrm{~mL})$ and TFA ($40 \mu \mathrm{~L}, 0.56 \mathrm{mmol}, 15$ equiv). The resulting reaction mixture was stirred at room temperature for 10 h . Then, the reaction mixture was treated with 33% aqueous NH_{3} solution and adjusted the pH to approximately 10 , then extracted with DCM $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by chromatography on silica gel column $(\mathrm{DCM} / \mathrm{MeOH}=$ $\left.20: 1 \rightarrow 10: 1,1 \% \mathrm{NH}_{4} \mathrm{OH}\right)$ to afford epoxide $20(8.0 \mathrm{mg}, 76 \%$, d.r. $=3.5: 1)$ as a white foam.

Compound 20ß: $[\alpha] \mathrm{D}^{25}=+65.4\left(\mathrm{CHCl}_{3}, \mathrm{c}=1.0\right)$; $\mathrm{TLC}\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}, 80: 2: 1 \mathrm{v} / \mathrm{v}\right): \boldsymbol{R}_{\boldsymbol{f}}=$ $0.56\left(\mathrm{UV}, \mathrm{KMnO}_{4}\right) ;{ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H}), 4.32$
(d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.28(\mathrm{~s}, 1 \mathrm{H}), 3.08-3.06(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{~s}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.20(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{dt}, J=15.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 147.2$, $146.4,133.2,124.4,108.0,107.2,101.1,65.2,61.4,59.8,55.3,54.4,54.0,47.0,44.2,27.3 ;$ IR (KBr): 2919, 2858, 1502, 1483, 1232, 1034, 1012, 852, $792 \mathrm{~cm}^{-1}$; HRMS (ESI, m/z) calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 288.1230$, found 288.1225 .

Compound 20a: [a]D ${ }^{25}=-16.8,\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.5\right) ;\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}, 80: 2: 1 \mathrm{v} / \mathrm{v}\right): \boldsymbol{R}_{\boldsymbol{f}}=0.19$ $\left(\mathrm{UV}, \mathrm{KMnO}_{4}\right) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.53(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 2 \mathrm{H}), 4.31(\mathrm{~d}, J=$ $17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=11.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.46-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.28-$ $3.27(\mathrm{~m}, 2 \mathrm{H}), 3.22-3.18(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{~s}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.17-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{q}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 146.5,145.8,137.4$, $125.0,106.7,106.5,100.8,66.7,64.0,59.5,57.0,55.5,53.5,48.2,44.6,34.3 ;$ IR (KBr): 2920, 2851, 1502, 1483, 1257, 1232, $1036 \mathrm{~cm}^{-1}$; HRMS (ESI, m/z) calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 288.1230$, found 288.1232.

To a solution of $\mathbf{2 0} \boldsymbol{\alpha}(55 \mathrm{mg}, 0.191 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{DCM}(6.4 \mathrm{~mL})$ were added sequentially $\mathrm{Et}_{3} \mathrm{~N}(133 \mu \mathrm{~L}, 0.955 \mathrm{mmol}, 5.0$ equiv) and $\operatorname{TBSOTf}(132 \mu \mathrm{~L}, 0.573 \mathrm{mmol}, 3.0$ equiv) at room temperature. After stirring at this temperature for 6 h , the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and extracted with DCM (3x5mL). The combined organic layers were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by column chromatography (petroleum ether:EtOAc, $6: 1 \rightarrow 2: 1$) to afford $21(61.2 \mathrm{mg}, 62 \%)$.

To a solution of the $21(59.2 \mathrm{mg}, 0.115 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeOH}(6.4 \mathrm{~mL})$ were added 1 N HCl $(230 \mu \mathrm{~L}, 0.230 \mathrm{mmol}, 2.0$ equiv $)$ at room temperature. After stirred for 5 h , the reaction mixture was treated with 33% aqueous NH_{3} solution and adjusted the pH to approximately 9 , then extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated, the residue was purified by column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH}\right.$, $150: 10: 1 \rightarrow 100: 10: 1)$ to afford compound (-)-Brunsvigine (3) (29.6 mg, 90\%).

Compound (-)-Brunsvigine (3): TLC $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}, 90: 9: 1 \mathrm{v} / \mathrm{v}\right): \boldsymbol{R}_{\boldsymbol{f}}=0.61(\mathrm{UV}$, $\left.\mathrm{KMnO}_{4}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta: 6.57(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 5.91,5.88(\mathrm{ABq}, J=1.2 \mathrm{~Hz}$, $2 \times 1 \mathrm{H}), 5.75(\mathrm{dd}, J=3.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.34,3.82(\mathrm{ABq}, J=16.2 \mathrm{~Hz}, 2 \times 1 \mathrm{H}), 4.16(\mathrm{t}, J=4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.72-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{brs}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=11.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.07-3.06(\mathrm{~m}, 2 \mathrm{H}), 2.20-$ $2.17(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{q}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta: 155.8,147.1,146.2,132.1$, $124.8,115.6,107.5,107.1,101.0,68.8,66.3,63.5,61.4,55.9,45.6,33.1 ;{ }^{1} \mathbf{H}$ NMR (600 MHz , $\left.\mathbf{C D}_{3} \mathbf{O D}\right) \delta: 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 5.87,5.86(\mathrm{ABq}, J=1.2 \mathrm{~Hz}, 2 \times 1 \mathrm{H}), 5.70(\mathrm{dd}, J=3.6,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.27,3.85(\mathrm{ABq}, J=16.2 \mathrm{~Hz}, 2 \times 1 \mathrm{H}), 4.04(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.61-3.58$ (m, 1H), 3.37 (brs, 1H), $3.26(\mathrm{dd}, J=12.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{brs}, 2 \mathrm{H}), 2.04(\mathrm{ddd}, J=12.0,5.4,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.54(\mathrm{q}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}\right) \delta: 154.2,148.4,147.7,133.2$, $125.0,117.7,108.4,107.9,102.2,69.8,67.1,64.6,61.3,56.4,46.5,33.0$; IR (KBr): 2292, 2853, 1498, 1384, 1238, 1081, 1032, 928, $803 \mathrm{~cm}^{-1}$; HRMS (ESI, m/z) calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 288.1230, found 288.1232. [$\alpha] \mathrm{D}^{25}=-72.8(\mathrm{c}=0.5, \mathrm{EtOH})$; Natural $(-)$-Brunsvigine ${ }^{[8]}:[\alpha] \mathrm{D}^{20}=-76.6$ $(\mathrm{c}=1.0, \mathrm{EtOH}) ;$ Note: The spectroscopic data were consistent with those previously reported. ${ }^{[9]}$

To a solution of $\mathbf{2 0 \beta}$ ($30 \mathrm{mg}, 0.104 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{DCM}(3.5 \mathrm{~mL})$ were added sequentially $\mathrm{Et}_{3} \mathrm{~N}(43 \mu \mathrm{~L}, 0.312 \mathrm{mmol}, 3.0$ equiv $)$ and $\mathrm{MsCl}(12 \mu \mathrm{~L}, 0.156 \mathrm{mmol}, 1.5$ equiv $)$ at room temperature. After stirring at this temperature for 0.5 h , the reaction mixture was filtered through a short plug of silica gel ($\mathrm{DCM} / \mathrm{MeOH}, 40: 1$). The filtrate was concentrated in vacuo and the residue was redissolved in $\mathrm{DCM}(3.5 \mathrm{~mL}), \mathrm{Et}_{3} \mathrm{~N}(73 \mu \mathrm{~L}, 0.052 \mathrm{mmol}, 5.0$ equiv $)$ and $\operatorname{TBSOTf}(72 \mu \mathrm{~L}, 0.312$ mmol, 3.0 equiv) were added sequentially at room temperature. After stirred for 5 h , the reaction mixture was quenched with sat. aq. $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(3 \mathrm{x} 5 \mathrm{~mL})$. The combined organic layers were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by column chromatography $(\mathrm{DCM} / \mathrm{MeOH}, 60: 1 \rightarrow 40: 1)$ to afford $\mathbf{2 2}(39.1 \mathrm{mg}$, 78\%).

Compound 22: $[\alpha] \mathrm{D}^{25}=-95.3\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 40: 1 \mathrm{v} / \mathrm{v}\right): \boldsymbol{R}_{\boldsymbol{f}}=0.60\left(\mathrm{UV}, \mathrm{KMnO}_{4}\right) ;$
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 5.89(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.45-5.44$ (m, 1H), $4.56(\mathrm{ddd}, J=12.0,7.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.39(\mathrm{~m}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ (d, $J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.05-2.99(\mathrm{~m}, 2 \mathrm{H}), 3.02$ $(\mathrm{s}, 3 \mathrm{H}), 2.65(\mathrm{dt}, J=10.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{q}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~d}, J=3.0 \mathrm{~Hz}$, $6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 153.9,147.1,146.2,131.5,124.6,116.4,107.8,107.0,101.0$, 84.3, 72.1, 62.2, 61.2, 55.9, 45.5, 38.5, 36.9, 25.9, 18.1 (3C), -4.2 (2C); IR (KBr): 2926, 2854, 1483, $1359,1234,1175,1039,937,875,834 \mathrm{~cm}^{-1} ;$ HRMS (ESI, m/z) calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{NO}_{6} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]^{+}$: 480.1871 , found 480.1865 .

To a stirred solution of $\mathbf{2 2}(20 \mathrm{mg}, 0.042 \mathrm{mmol}, 1.0$ equiv) in THF (1.4 mL) was added TBAF (42 $\mu \mathrm{L}, 1.0 \mathrm{M}$ in THF, $0.042 \mathrm{mmol}, 1.0$ equiv) at room temperature. After stirred for 1 h , the reaction solvent was concentrated in vacuo, the residue was purified by column chromatography (DCM/MeOH, 40:1 \rightarrow 30:1) to afford 23 ($10.2 \mathrm{mg}, 91 \%$).

Compound 23: $[\alpha] \mathrm{D}^{25}=-33.6(\mathrm{c}=1.0, \mathrm{MeOH}) ;\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 40: 1 \mathrm{v} / \mathrm{v}\right): \boldsymbol{R}_{\boldsymbol{f}}=0.40(\mathrm{UV}$, $\left.\mathrm{KMnO}_{4}\right) ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 6.52(\mathrm{~s}, 1 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 5.87(\mathrm{dd}, J=10.4,1.6 \mathrm{~Hz}, 2 \mathrm{H})$, $5.81(\mathrm{dd}, J=4.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.46-3.45(\mathrm{~m}$, $1 \mathrm{H}), 3.40-3.30(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=11.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=$ 11.2, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{ddd}, J=14.0,7.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.25(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 155.8,146.9,146.1,132.5,124.8,110.1,107.3,106.9,100.9,60.7,59.8,55.2,52.6,47.7$, 45.4, 27.4; IR (KBr): 2918, 2851, 1503, 1483, 1331, 1234, 1038, 936, 814, $770 \mathrm{~cm}^{-1}$; HRMS (ESI, m / z) calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 270.1125, found 270.1126.

To a stirred solution of $\mathbf{2 3}(10 \mathrm{mg}, 0.037 \mathrm{mmol}, 1.0$ equiv $)$ in $\mathrm{MeOH}(1.0 \mathrm{~mL})$ was added $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ $\left(20 \mu \mathrm{~L}, 0.149 \mathrm{mmol}, 4.0\right.$ equiv) at $0^{\circ} \mathrm{C}$. After stirred for 15 minutes at this temperature, the reaction mixture was treated with 3 N NaOH solution and adjusted the pH to approximately 8 , then extracted
with DCM ($3 \times 5 \mathrm{~mL}$). The resulting mixture was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated, the residue was purified by column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH}, 100: 10: 1\right)$ to afford (-)Montanine (1) (8.9 mg, 80\%).

Compound (-)-Montanine (1): TLC $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}, 90: 9: 1 \mathrm{v} / \mathrm{v}\right): \boldsymbol{R}_{\boldsymbol{f}}=0.80\left(\mathrm{UV}, \mathrm{KMnO}_{4}\right)$; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~d}, J=1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.57(\mathrm{brs}, 1 \mathrm{H}), 4.34,3.82(\mathrm{ABq}, J=16.8 \mathrm{~Hz}, 2 \times 1 \mathrm{H}), 4.09(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.47$ $(\mathrm{m}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.44-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-3.03(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{ddd}$, $J=13.2,5.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{td}, J=12.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 154.2$, $146.9,146.1,132.6,124.7,113.2,107.4,107.0,100.9,79.9,69.2,61.0,58.8,57.7,55.5,45.7,32.8 ;$ IR (KBr): 3402, 2924, 2853, 1503, 1483, 1333, 1234, 1081, 1039, $935 \mathrm{~cm}^{-1} ;$ HRMS (ESI, m/z) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 302.1387$, found $302.1381 ;[\alpha] \mathrm{D}^{25}=-81.3\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right) ;$ Natural $(-)$ Montanine ${ }^{[10]}:[\alpha] \mathrm{D}^{26}=-87.6\left(\mathrm{c}=0.57, \mathrm{CHCl}_{3}\right)$; Note: The spectroscopic data were consistent with those previously reported. ${ }^{[9]}$

To a stirred solution of $\mathbf{2 3}\left(10 \mathrm{mg}, 0.037 \mathrm{mmol}, 1.0\right.$ equiv) in THF $(0.3 \mathrm{~mL})$ was added $3 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ $(0.3 \mathrm{~mL})$ at room temperature. After heating at $70^{\circ} \mathrm{C}$ for 5 h , the reaction was quenched with 50 ml $\mathrm{DCM} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH}(100: 10: 1)$ at $0^{\circ} \mathrm{C}$. The resulting mixture was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated, the residue was purified by column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH}\right.$, 100:10:1) to afford (-)-Pancracine (2) (8.4 mg, 79\%).

Compound (-)-Pancracine (2): TLC $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}: \mathrm{NH}_{4} \mathrm{OH}, 90: 9: 1 \mathrm{v} / \mathrm{v}\right): \boldsymbol{R}_{\boldsymbol{f}}=0.50\left(\mathrm{UV}, \mathrm{KMnO}_{4}\right)$; ${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta: 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 5.91(\mathrm{brs}, 1 \mathrm{H}), 5.87(\mathrm{brs}, 1 \mathrm{H}), 5.35$ $(\mathrm{s}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.13,3.62(\mathrm{ABq}, J=16.8 \mathrm{~Hz}, 2 \times 1 \mathrm{H})$, 3.73 (brs, 1H), $3.65-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.24($ brs, 1 H$), 3.22-3.17(\mathrm{~m}, 1 \mathrm{H}), 2.85($ brs, 2 H$), 1.85-1.80$ $(\mathrm{m}, 1 \mathrm{H}), 1.35(\mathrm{td}, J=12.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 152.5,145.9,145.2,132.9$, $125.3,115.8,107.2,106.8,100.4,70.9,68.8,60.7,57.9,55.1,44.8,31.2 ;$ IR (KBr): 2881, 2182, 1503, 1487, 1335, 1278, 1234, 1029, 1012, 974, 932, 877, $774 \mathrm{~cm}^{-1} ;$ HRMS (ESI, m/z) calcd for
$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 288.1230$, found 288.1222; $[\alpha] \mathrm{D}^{25}=-70.3(\mathrm{c}=0.3, \mathrm{MeOH})$; Natural (-)Pancracine ${ }^{[11]}:[\alpha] D^{24}=-74(c=0.02, \mathrm{MeOH})$; Note: The spectroscopic data were consistent with those previously reported. ${ }^{[9]}$

3. NMR comparison of synthetic and natural products

Table S1. ${ }^{1} \mathrm{H}$ NMR Spectroscopic $\left(\mathrm{CDCl}_{3}, 27{ }^{\circ} \mathrm{C}\right)$ Comparison of Natural ${ }^{[7]}$ and Our Synthetic

Pancratinine B

Pancratinine B

No.	Natural (300 MHz) ${ }^{1} \mathrm{H}[\mathrm{ppm}$, mult, $J(\mathrm{~Hz})]$	Ours $(400 \mathrm{MHz})$ $\delta^{1} \mathrm{H}[\mathrm{ppm}$, mult, $J(\mathrm{~Hz})]$	$\Delta \boldsymbol{\delta}$
1	$5.77(1 \mathrm{H}, \mathrm{d}, 10.4 \mathrm{~Hz})$	$5.78(1 \mathrm{H}, \mathrm{d}, 10.8 \mathrm{~Hz})$	0.01
2	$6.15(1 \mathrm{H}, \mathrm{d}, 10.4 \mathrm{~Hz})$	$6.15(1 \mathrm{H}, \mathrm{d}, 10.2 \mathrm{~Hz})$	0
3	$3.97(1 \mathrm{H}, \mathrm{m})$	$3.95(1 \mathrm{H}, \mathrm{m})$	0.02
4	$2.40(1 \mathrm{H}, \mathrm{d}, 9.5 \mathrm{~Hz})$	$2.36(1 \mathrm{H}, \mathrm{br} \mathrm{d}, 12.6 \mathrm{~Hz})$	0.04
	$1.57(1 \mathrm{H}, \mathrm{dt}, 12.6,4.4 \mathrm{~Hz})$	$1.58(1 \mathrm{H}, \mathrm{m})$	0.01
4 a	$2.96(1 \mathrm{H}, \mathrm{s})$	$2.92(1 \mathrm{H}, \mathrm{s})$	0.04
6	$4.32(1 \mathrm{H}, \mathrm{d}, 16.6 \mathrm{~Hz})$	$4.29(1 \mathrm{H}, \mathrm{d}, 16.8 \mathrm{~Hz})$	0.03
	$3.86(1 \mathrm{H}, \mathrm{d}, 16.6 \mathrm{~Hz})$	$3.84(1 \mathrm{H}, \mathrm{d}, 16.8 \mathrm{~Hz})$	0.02
7	$6.55(1 \mathrm{H}, \mathrm{s})$	$6.55(1 \mathrm{H}, \mathrm{s})$	0
10	$6.63(1 \mathrm{H}, \mathrm{s})$	$6.63(1 \mathrm{H}, \mathrm{s})$	0
11	$2.67(1 \mathrm{H}, \mathrm{s})$	$2.65(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz})$	0.02
12	$3.02(1 \mathrm{H}, \mathrm{d}, 11.8 \mathrm{~Hz})$	$2.99(1 \mathrm{H}, \mathrm{dd}, 12.0,1.8 \mathrm{~Hz})$	0.03
	$2.88(1 \mathrm{H}, \mathrm{d}, 11.8 \mathrm{~Hz})$	$2.85(1 \mathrm{H}, \mathrm{d}, 11.4 \mathrm{~Hz})$	0.03
$\mathrm{OCH}_{2} \mathrm{O}$	$5.94(2 \mathrm{H}, \mathrm{s})$	$5.94(2 \mathrm{H}, \mathrm{s})$	0
OMe	$3.43(3 \mathrm{H}, \mathrm{s})$	$3.44(3 \mathrm{H}, \mathrm{s})$	0.01

Table S2. ${ }^{13} \mathrm{C}$ NMR Spectroscopic $\left(\mathrm{CDCl}_{3}, 27{ }^{\circ} \mathrm{C}\right)$ Comparison of Natural ${ }^{[7]}$ and Our Synthetic

Pancratinine B

Pancratinine B

No.	Natural $(75 \mathrm{MHz})$ $\delta^{13} \mathrm{C}(\mathrm{ppm})$	Ours $(100 \mathrm{MHz})$ $\boldsymbol{\delta}^{13} \mathrm{C}(\mathrm{ppm})$	$\boldsymbol{\Delta} \boldsymbol{\boldsymbol { \delta }}$
1	134.6	134.7	0.1
2	130.3	131.5	0.2
3	71.4	72.5	1.1
4	29.3	31.9	2.6
4 a	67.7	68.2	0.5
11 a	81.8	83.4	1.6
6	60.3	62.4	2.1
6 a	124.0	126.7	2.7
7	106.9	107.4	0.5
8	146.2	146.3	0.1
9	147.6	147.8	0.2
10	109.7	110.1	0.4
10 a	127.7	129.2	1.5
11	48.8	49.9	1.1
12	53.7	55.2	1.5
$\mathrm{OCH}_{2} \mathrm{O}$	100.9	101.2	0.3
OMe^{2}	56.1	56.5	0.4

Note: The ${ }^{1} \mathrm{H}$ NMR spectroscopic data was identical to that reported in the literature. However, the partial deviation of ${ }^{13} \mathrm{C}$ NMR spectra in CDCl_{3} was observed. The reason for such deviation could not be concluded at this stage. The structure of our synthetic (\pm)-Pancratinine B was determined by X-Ray Diffraction, and the Crystal data agree with those previously reported ${ }^{[7]}$; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectroscopic data of $(+)$-Pancratinine B were identical to the racemic (\pm) Pancratinine B ${ }^{[3]}$.

Table S3. ${ }^{1} \mathrm{H}$ NMR Spectroscopic $\left(\mathrm{CD}_{3} \mathrm{OD}, 27{ }^{\circ} \mathrm{C}\right)$ Comparison of Natural ${ }^{[7]}$ and Our
Synthetic Pancratinine C

Pancratinine C

No.	Natural (300 MHz) ${ }^{1} \mathrm{H}[\mathrm{ppm}$, mult, $J(\mathrm{~Hz})]$	Ours $(400 \mathrm{MHz})$ $\square \delta^{1} \mathrm{H}[\mathrm{ppm}$, mult, $J(\mathrm{~Hz})]$	$\boldsymbol{\Delta} \boldsymbol{\delta}$
1	$5.74(1 \mathrm{H}, \mathrm{d}, 10.3 \mathrm{~Hz})$	$5.76(1 \mathrm{H}, \mathrm{d}, 10.4 \mathrm{~Hz})$	0.02
2	$6.01(1 \mathrm{H}, \mathrm{d}, 10.3 \mathrm{~Hz})$	$6.03(1 \mathrm{H}, \mathrm{d}, 10.4 \mathrm{~Hz})$	0.02
3	$4.30(1 \mathrm{H}, \mathrm{m})$	$4.31(1 \mathrm{H}, \mathrm{m})$	0.01
4	$2.32(1 \mathrm{H}, \mathrm{d} \mathrm{br}, 13.0 \mathrm{~Hz})$	$2.30(1 \mathrm{H}, \mathrm{d} \mathrm{br}, 12.8 \mathrm{~Hz})$	0.02
	$1.62(1 \mathrm{H}, \mathrm{dt}, 11.0,4.3 \mathrm{~Hz})$	$1.62(1 \mathrm{H}, \mathrm{m})$	0
4 a	$3.12(1 \mathrm{H}, \mathrm{s})$	$3.08(1 \mathrm{H}, \mathrm{s})$	0.04
6	$4.33(1 \mathrm{H}, \mathrm{d}, 16.2 \mathrm{~Hz})$	$4.31(1 \mathrm{H}, \mathrm{d}, 16.4 \mathrm{~Hz})$	0.02
	$3.98(1 \mathrm{H}, \mathrm{d}, 16.2 \mathrm{~Hz})$	$3.94(1 \mathrm{H}, \mathrm{d}, 16.4 \mathrm{~Hz})$	0.04
7	$6.58(1 \mathrm{H}, \mathrm{s})$	$6.59(1 \mathrm{H}, \mathrm{s})$	0.01
10	$6.62(1 \mathrm{H}, \mathrm{s})$	$6.63(1 \mathrm{H}, \mathrm{s})$	0.01
11	$2.75(1 \mathrm{H}, \mathrm{d}, 2.3 \mathrm{~Hz})$	$2.73(1 \mathrm{H}, \mathrm{d}, 1.6 \mathrm{~Hz})$	0.02
12	$3.06(1 \mathrm{H}, \mathrm{dd}, 11.5,2.3 \mathrm{~Hz})$	$3.05(1 \mathrm{H}, \mathrm{d} \mathrm{br}, 12.0 \mathrm{~Hz})$	0.01
	$2.95(1 \mathrm{H}, \mathrm{d}, 11.5 \mathrm{~Hz})$	$2.92(1 \mathrm{H}, \mathrm{d}, 11.2 \mathrm{~Hz})$	0.03
$\mathrm{OCH}_{2} \mathrm{O}$	$5.89(2 \mathrm{H}, \mathrm{s})$	$5.92(2 \mathrm{H}, \mathrm{s})$	0.03

Table S4. ${ }^{13} \mathrm{C}$ NMR Spectroscopic ($\left.\mathrm{CD}_{3} \mathrm{OD}, 27{ }^{\circ} \mathrm{C}\right)$ Comparison of Natural ${ }^{[7]}$ and Our Synthetic Pancratinine C

Pancratinine C

No.	Natural $(75 \mathrm{MHz})$ $\delta^{13} \mathrm{C}(\mathrm{ppm})$	Ours $(100 \mathrm{MHz})$ $\square \delta^{13} \mathrm{C}(\mathrm{ppm})$	$\boldsymbol{\Delta} \boldsymbol{\boldsymbol { \delta }}$
1	135.0	135.0	0
2	130.8	130.9	0.1
3	62.0	62.1	0.1
4	32.6	32.9	0.3
4 a	67.0	66.9	0.1
11 a	80.9	81.2	0.3
6	60.4	60.6	0.2
6 a	123.1	123.5	0.4
7	105.8	105.8	0
8	145.9	145.8	0.1
9	147.0	147.0	0
10	109.5	109.4	0.1
10 a	129.4	129.6	0.2
11	48.7	48.8	0.1
12	54.1	54.2	0.1
$\mathrm{OCH}_{2} \mathrm{O}$	100.5	100.5	0

Table S5. Comparison of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data $\left(\mathrm{CDCl}_{3}, 27{ }^{\circ} \mathrm{C}\right)$ for Fan's ${ }^{[9]}$ and Our Synthetic Montanine (1)

Montanine
\(\left.\begin{array}{cccc}\hline \& Fan's(400 \mathrm{MHz}) \& Ours(400 \mathrm{MHz})

No. \& \delta{ }^{1} \mathrm{H}[\mathrm{ppm}, mult, J(\mathrm{~Hz})] \& \delta{ }^{1} \mathrm{H}[\mathrm{ppm}, \mathrm{mult}, J(\mathrm{~Hz})]\end{array}\right]\)| |
| :---: |
| 1 |

Table S6. Comparison of the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data $\left(\mathrm{CDCl}_{3}, 27{ }^{\circ} \mathrm{C}\right)$ for Fan's ${ }^{[9]}$ and Our Synthetic Montanine (1)

Montanine

No.	Fan's $(100 \mathrm{MHz})$ $\delta{ }^{13} \mathrm{C}(\mathrm{ppm})$	Ours $(150 \mathrm{MHz})$ $\delta{ }^{13} \mathrm{C}(\mathrm{ppm})$	$\boldsymbol{\Delta} \boldsymbol{\delta}$
1	154.1	154.2	0.1
2	146.7	146.9	0.2
3	145.9	146.1	0.2
4	132.4	132.6	0.2
5	124.6	124.7	0.1
6	112.9	113.2	0.3
7	107.2	107.4	0.2
8	106.8	107.0	0.2
9	100.7	100.9	0.2
10	79.7	79.9	0.2
11	68.9	69.2	0.3
12	60.8	61.0	0.2
13	58.6	58.8	0.2
14	57.5	57.7	0.2
15	55.3	55.5	0.2
16	45.6	45.7	0.1
17	32.7	32.8	0.1

Table S7. Comparison of the ${ }^{\mathbf{1}} \mathrm{H}-$ NMR data (DMSO- $\boldsymbol{d}_{6}, 27^{\circ} \mathrm{C}$) for Fan's ${ }^{[9]}$ and Our Synthetic
Pancracine (2)

Pancracine

	Fan's $(400 \mathrm{MHz})$	Ours $(600 \mathrm{MHz})$	
No.	$\delta^{1} \mathrm{H}[\mathrm{ppm}$, mult, $J(\mathrm{~Hz})]$	$\delta{ }^{1} \mathrm{H}[\mathrm{ppm}$, mult, $J(\mathrm{~Hz})]$	$\Delta \boldsymbol{\delta}$
1	$6.67(\mathrm{~s}, 1 \mathrm{H})$	$6.66(\mathrm{~s}, 1 \mathrm{H})$	0.01
2	$6.57(\mathrm{~s}, 1 \mathrm{H})$	$6.57(\mathrm{~s}, 1 \mathrm{H})$	0
3	$5.91,5.88(\mathrm{ABq}, J=0.8 \mathrm{~Hz}, 2 \times 1 \mathrm{H})$	$5.91(\mathrm{brs}, 1 \mathrm{H}), 5.87(\mathrm{brs}, 1 \mathrm{H})$	0
4	$5.35(\mathrm{brs}, 1 \mathrm{H})$	$5.35(\mathrm{~s}, 1 \mathrm{H})$	0
5	$4.73(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH})$	$4.73(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$	0
6	$4.69(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}) 1 \mathrm{H})$,	$4.68(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$	0.01
7	$4.13,3.62(\mathrm{ABq}, J=16.8 \mathrm{~Hz}, 2 \times 1 \mathrm{H}) 1 \mathrm{H})$	$4.13,3.62(\mathrm{ABq}, J=16.8 \mathrm{~Hz}, 2 \times 1 \mathrm{H})$	0
8	$3.72(\mathrm{brs} 1 \mathrm{H})$.	$3.73(\mathrm{brs}, 1 \mathrm{H})$	0.01
9	$3.64-3.61(\mathrm{~m}, 1 \mathrm{H})$	$3.65-3.61(\mathrm{~m}, 1 \mathrm{H})$	0
10	$3.24(\mathrm{brs}, 1 \mathrm{H})$	$3.24(\mathrm{brs}, 1 \mathrm{H})$	0
11	$3.23-3.17(\mathrm{~m}, 1 \mathrm{H})$	$3.22-3.17(\mathrm{~m}, 1 \mathrm{H})$	0
12	$2.85(\mathrm{brs}, 2 \mathrm{H})$	$2.85(\mathrm{brs}, 2 \mathrm{H})$	0
13	$1.85-1.80(\mathrm{~m}, 1 \mathrm{H})$	$1.85-1.80(\mathrm{~m}, 1 \mathrm{H})$	0
14	$1.34(\mathrm{td}, J=2.2,12.1 \mathrm{~Hz}, 1 \mathrm{H})$	$1.35(\mathrm{td}, J=12.0,2.4 \mathrm{~Hz}, 1 \mathrm{H})$	0.01

Table S8. Comparison of the ${ }^{13} \mathrm{C}$-NMR data (DMSO- $d_{6}, 27^{\circ} \mathrm{C}$) for Fan's ${ }^{[9]}$ and Our Synthetic Pancracine (2)

Pancracine

No.	Fan's $(100 \mathrm{MHz})$ $\delta{ }^{13} \mathrm{C}(\mathrm{ppm})$	Ours $(150 \mathrm{MHz})$ $\boldsymbol{\delta}{ }^{13} \mathrm{C}(\mathrm{ppm})$	$\boldsymbol{\Delta} \boldsymbol{\delta}$
1	152.4	152.5	0.1
2	145.9	145.9	0
3	145.2	145.2	0
4	132.9	132.9	0
5	125.3	125.3	0
6	115.8	115.8	0
7	107.2	107.2	0
8	106.8	106.8	0
9	100.4	100.4	0
10	70.9	70.9	0
11	68.8	68.8	0
12	60.7	60.7	0
13	57.9	57.9	0
14	55.1	55.1	0
15	44.8	44.8	0
16	31.1	31.2	0.1

Table S9. Comparison of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data $\left(\mathrm{CDCl}_{3}, 27{ }^{\circ} \mathbf{C}\right)$ for Fan's ${ }^{[9]}$ and Our Synthetic

Brunsvigine (3)

	Fan's (400 MHz)	Ours (600 MHz)	
No.	$\delta{ }^{1} \mathrm{H}[\mathrm{ppm}$, mult, $J(\mathrm{~Hz})]$		$\triangle \delta$
1	$6.57(1 \mathrm{H}, \mathrm{s})$	6.57 (s, 1H)	0
2	6.49 (1H, s)	6.49 ($\mathrm{s}, 1 \mathrm{H})$	0
3	$5.91,5.88(2 \times 1 \mathrm{H}, \mathrm{ABq}, 1.2 \mathrm{~Hz})$	$5.91,5.88(2 \times 1 \mathrm{H}, \mathrm{ABq}, 1.2 \mathrm{~Hz})$	0
4	$5.77-5.70(1 \mathrm{H}, \mathrm{m})$	5.75 (1H, dd, 3.0, 2.4 Hz)	0.01
5	$4.34,3.82(2 \times 1 \mathrm{H}, \mathrm{ABq}, 16.4 \mathrm{~Hz})$	$4.34,3.82(2 \times 1 \mathrm{H}, \mathrm{ABq}, 16.4 \mathrm{~Hz})$	0
6	4.17-4.15 (1H, m)	4.16 (1H, t, 4.2 Hz,)	0
7	3.73-3.66 (1H, m)	$3.72-3.68(1 \mathrm{H}, \mathrm{m})$	0
8	3.30 (1 H, brs)	3.30 (1H, brs)	0
9	3.16-3.13 (1H, m)	3.20 (1H, dd, 11.4, 3.6 Hz,)	0.04
10	3.10-3.04 (2H, m)	3.07-3.06 ($2 \mathrm{H}, \mathrm{m}$)	0.01
11	2.21-2.16 (1H, m)	2.20-2.17 (1H, m)	0.01
12	1.47 (1H, q, 12.0 Hz)	1.47 (1H, q, 11.4 Hz)	0

Table S10. Comparison of the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data $\left(\mathrm{CD}_{3} \mathrm{OD}, 27^{\circ} \mathrm{C}\right)$ for Fan's ${ }^{[9]}$ and Our Synthetic Brunsvigine (3)

Brunsvigine

No.	Fan's $(100 \mathrm{MHz})$ $\delta{ }^{13} \mathrm{C}(\mathrm{ppm})$	Ours $(150 \mathrm{MHz})$ $\boldsymbol{\delta}{ }^{13} \mathrm{C}(\mathrm{ppm})$	$\boldsymbol{\Delta \boldsymbol { \delta }}$
1	154.3	154.2	0.1
2	148.4	148.4	0
3	147.6	147.7	0.1
4	133.2	133.2	0
5	125.1	125.0	0.1
6	117.6	117.7	0.1
7	108.4	108.4	0
8	107.8	107.9	0.1
9	102.1	102.2	0.1
10	69.8	69.8	0
11	67.1	67.1	0
12	64.5	64.6	0.1
13	61.4	61.3	0.1
14	56.3	56.4	0.1
15	46.5	46.5	0
16	33.0	33.0	0

4. References

1. P. Yang, L. Qi, Z. Liu, G. Yang, Z. Chai, Lewis Acid Catalyzed Dynamic Kinetic Asymmetric Transformation of Racemic N-Sulfonylaziridines, J. Am. Chem. Soc. 2018, 140, 17211-17217.
2. Y. Yorinobu, Y. Tamotsu, O. Makoto, Synthesis and reaction of new type I-N ylide, Ntosyliminoiodinane, Chem. Lett. 1975, 4, 361-362.
3. F. Wang, X. Xu, Y. Yan, J. Zhang, W.-J. Bai, J.-W. Chen, Y. Yang, Diastereoselective Construction of Fused Carbocyclic Pyrrolidines via a Copper-Catalyzed [3+2] Cycloaddition: Total Syntheses of Pancratinines B-C, Org. Lett. 2023, 25, 6853-6857.
4. (a) M. E. Jung, C. A. Roberts, F. Perez, H. V. Pham, L.-F. Zou, K. N. Houk, Thermodynamic Control of Isomerizations of Bicyclic Radicals: Interplay of Ring Strain and Radical Stabilization, Org. Lett. 2016, 18, 32-35. (b) S. Romanski, B. Kraus, M. Guttentag, W. Schlundt, H. Rucker, A. Adler, J. M. Neudorfl, R. Alberto, S. Amslinger, H. G. Schmalz, Acyloxybutadiene tricarbonyl iron complexes as enzyme-triggered CO-releasing molecules (ET-CORMs): a structure-activity relationship study, Dalton Trans. 2012, 41, 13862-13875.
5. X.-Y. Cheng, S. P. Waters, Pyridone Annulation via Tandem Curtius Rearrangement/ $6 \pi-$ Electrocyclization: Total Synthesis of (-)-Lyconadin C, Org. Lett. 2013, 15, 4226-4229. 6. H.-J. Yang, S. Hou, C. Tao, Z. Liu, C. Wang, S. Cheng, Y. Li, Rhodium-Catalyzed Denitrogenative [3+2] Cycloaddition: Access to Functionalized Hydroindolones and the Framework of Montanine-Type Amaryllidaceae Alkaloids, Chem. 2017, 23, 12930-12936. 7. (a) J. C. Cedrón, J. C. Oberti, A. Estévez-Braun, Á. G. Ravelo, M. D. Arco-Aguilar, M. López, Pancratium canariense as an Important Source of Amaryllidaceae Alkaloids, J. Nat. Prod. 2009, 72, 112-116. (b) Y. Hirasawa, J. Kobayashi, H. Morita, The Lycopodium Alkaloids, Heterocycles. 2009, 77, 679-729.
6. L. J. Dry, M. Poynton, M. E. Thompson, F. L. Warren, 947. The alkaloids of the amaryllidaceae. Part IV. The alkaloids of brunsvigia cooperi baker, J. Chem. Soc. 1958, 4701-4704.
7. X. Bao, Y.-X. Cao, W.-B. Chu, H. Qu, J.-Y. Du, X.-H. Zhao, X.-Y. Ma, C.-T. Wang, C.-A. Fan, Bioinspired Total Synthesis of Montanine-Type Amaryllidaceae Alkaloids, Angew. Chem., Int. Ed. 2013, 52, 14167-14172.
8. F. Viladomat, J. Bastida, C. Codina, W. E. Campbell, S. Mathee, Alkaloids from Boophane flava, Phytochemistry. 1995, 40, 307-311.
9. W. C. Wildman, C. L. Brown, Mass spectra of 5,11-methanomorphanthridine alkaloids. The structure of pancracine, J. Am. Chem. Soc. 1968, 90, 6439-6446.

5. ECD calculation of 5

Experimental section: The conformation of 5 generated by BALLOON were subjected to semiempirical PM3 quantum mechanical geometry optimizations using the Gaussian 09 program. Duplicate conformations were identified and removed when the root-mean-square (RMS) distance was less than $0.5 \AA$ for any two geometry-optimized conformations. The remaining conformations were further optimized at the B3LYP/6-31G (d) level in MeOH with the IEFPCM solvation model using Gaussian 09, and the duplicate conformations emerging after these calculations were removed according to the same RMS criteria above. The harmonic vibrational frequencies were calculated to confirm the stability of the final conformers. The electronic circular dichroism (ECD) spectrum were calculated for each conformer using the TDDFT methodology at the LC-wPBE/6-311G(d,p) level with MeOH as solvent by the IEFPCM solvation model implemented in Gaussian 09 program. The ECD spectra for each conformer were simulated using a Gaussian function with a bandwidth σ of 0.6 eV . The spectra were combined after Boltzmann weighting according to their population contributions and UV correction was applied.

Table S11. Important thermodynamic parameters (a.u.) and Boltzmann distributions of the optimized (3S, 4aS, 5R, 11R, 11aR)-5 at B3LYP/6-31G (d) level in MeOH.

Conformation	Gibbs free energies (Hartree)	Boltzmann distribution
1	-975.239481	44.9%
2	-975.238470	32.9%
3	-975.237631	7.9%
4	-975.236506	6.1%
5	-975.237563	3.6%
6	-975.235549	1.3%

Table S12. Optimized coordinate of (3S, 4aS, 5R, 11R, 11aR)-5 at B3LYP/6-31G (d) level in MeOH .

Conformation 1						

Atom	X	Y	Z	Atom	X	Y	Z
C	-3.221532	-0.694941	0.139882	H	1.133026	0.814061	-1.491712
C	-3.423332	0.631223	-0.235555	O	0.782354	-1.652741	-1.241397
C	-2.398266	1.554267	-0.222156	O	5.558687	0.291592	-0.481164
C	-1.125233	1.112392	0.191033	H	-2.567853	2.583426	-0.525442
C	-0.921932	-0.223326	0.586452	H	-1.837761	-2.186955	0.844408
C	-1.986097	-1.153291	0.548302	H	-6.054351	-0.277548	0.551223
O	-4.394941	-1.398608	0.004056	H	-5.962362	-0.757243	-1.188105
C	-5.394197	-0.423338	-0.315211	H	0.11873	2.65223	-0.695844
O	-4.730569	0.808904	-0.62189	H	-0.136639	2.843885	1.030383
C	0.045337	2.09513	0.246393	H	0.405428	-1.540173	1.678668
N	1.343674	1.46107	0.514539	H	3.378053	0.25022	-1.977263
C	1.750886	0.575419	-0.619572	H	3.414376	1.838177	-1.189952
C	1.402697	-0.90585	-0.20138	H	4.21304	0.836994	0.8936
C	0.464854	-0.654385	1.037586	H	4.658477	-1.838949	0.702307
C	3.215565	0.774834	-1.024098	H	2.405047	-2.753044	0.44365
C	4.21246	0.209523	-0.006831	H	2.146487	0.272453	2.082355
C	3.843114	-1.210931	0.345782	H	0.593491	1.037276	2.459286
C	2.609692	-1.708275	0.215229	H	-0.121178	-1.306443	-1.342947
C	1.171782	0.548951	1.669223	H	5.609225	-0.25343	-1.283711
Conformation 2							
Atom	X	Y	Z	Atom	X	Y	Z
C	-3.223923	-0.690302	0.145379	H	1.143275	0.81468	-1.505423
C	-3.423928	0.636816	-0.227656	O	0.768739	-1.648731	-1.257882
C	-2.396308	1.55701	-0.217941	O	5.54875	0.187647	-0.477686
C	-1.12262	1.110965	0.188888	H	-2.564498	2.586956	-0.51938
C	-0.92108	-0.225553	0.582012	H	-1.84077	-2.187047	0.841085
C	-1.987954	-1.152479	0.54767	H	-6.055286	-0.266862	0.567522
O	-4.399864	-1.39066	0.01411	H	-5.969234	-0.744257	-1.172684

C	-5.397807	-0.412834	-0.300933	H	0.122356	2.646861	-0.702693
O	-4.732505	0.818516	-0.607764	H	-0.127751	2.840159	1.02426
C	0.050635	2.09047	0.24018	H	0.40859	-1.547684	1.664641
N	1.349086	1.454786	0.504992	H	3.409826	0.238664	-1.972581
C	1.75527	0.56985	-0.631017	H	3.415052	1.830187	-1.184149
C	1.39943	-0.911446	-0.217442	H	4.149145	0.789696	0.929674
C	0.466755	-0.660514	1.02547	H	4.663214	-1.879078	0.627223
C	3.223887	0.761215	-1.026228	H	2.398055	-2.772955	0.389728
C	4.201804	0.189237	0.004883	H	2.153263	0.258979	2.06692
C	3.842766	-1.239501	0.308609	H	0.603463	1.027384	2.451168
C	2.604983	-1.724434	0.183648	H	-0.13167	-1.293708	-1.356018
C	1.177911	0.539551	1.65787	H	5.799482	1.112043	-0.630823
Conformation 3							
Atom	X	Y	Z	Atom	X	Y	\mathbf{Z}
C	-3.223524	-0.692285	0.142829	H	1.139065	0.815517	-1.496912
C	-3.423737	0.635155	-0.228798	O	0.773418	-1.650779	-1.251649
C	-2.396841	1.556121	-0.215851	O	5.506852	0.295765	-0.594858
C	-1.123574	1.110644	0.192879	H	-2.565082	2.586315	-0.516376
C	-0.921895	-0.226358	0.584532	H	-1.840602	-2.18894	0.839111
C	-1.987981	-1.154056	0.546881	H	-6.057079	-0.272105	0.558283
O	-4.398775	-1.393406	0.00848	H	-5.965052	-0.746737	-1.182328
C	-5.396657	-0.416018	-0.308287	H	0.122215	2.648696	-0.694288
O	-4.731795	0.816448	-0.61111	H	-0.13072	2.83904	1.032489
C	0.049212	2.090733	0.247439	H	0.406008	-1.549005	1.668585
N	1.347048	1.454644	0.512828	H	3.400013	0.24845	-1.976272
C	1.754576	0.571398	-0.624756	H	3.416467	1.835066	-1.186105
C	1.399976	-0.909799	-0.211446	H	4.171403	0.81988	0.90599
C	0.465336	-0.661079	1.030349	H	4.654007	-1.875074	0.642969
C	3.218626	0.770329	-1.028523	H	2.40253	-2.767478	0.403567

C	4.204147	0.204739	-0.009438	H	2.15012	0.258943	2.074521
C	3.841387	-1.226003	0.31543	H	0.599355	1.025746	2.457576
C	2.606325	-1.718887	0.193372	H	-0.125385	-1.2937	-1.356647
C	1.174971	0.539118	1.664358	H	6.153718	0.046129	0.083312
Conformation 4							
Atom	X	Y	Z	Atom	X	Y	Z
C	-3.234317	-0.678237	0.174735	H	1.09058	0.761936	-1.482124
C	-3.434189	0.647227	-0.203291	O	0.691219	-1.665668	-1.15941
C	-2.406486	1.566249	-0.196064	O	5.53407	0.208243	-0.55777
C	-1.132315	1.115943	0.205369	H	-2.574498	2.597604	-0.49304
C	-0.932877	-0.219229	0.595674	H	-1.852308	-2.17459	0.869599
C	-2.000574	-1.13989	0.578945	H	-6.284074	-0.454331	-0.000075
O	-4.427796	-1.363585	0.10205	H	-5.487613	-0.78928	-1.587265
C	-5.336653	-0.468946	-0.545687	H	0.116567	2.632966	-0.714652
O	-4.758438	0.840683	-0.529237	H	-0.124099	2.856165	1.009865
C	0.043148	2.092066	0.237182	H	0.388742	-1.534386	1.695572
N	1.341169	1.45243	0.50678	H	3.369401	0.22836	-1.999524
C	1.732838	0.551178	-0.621783	H	3.363661	1.824572	-1.230206
C	1.40106	-0.919774	-0.167107	H	4.165872	0.830258	0.874867
C	0.453416	-0.656142	1.044285	H	4.697097	-1.833169	0.632416
C	3.190439	0.755902	-1.052838	H	2.427744	-2.740281	0.526516
C	4.201153	0.211665	-0.038423	H	2.137796	0.276736	2.089067
C	3.862943	-1.21057	0.315005	H	0.582785	1.045255	2.452648
C	2.621417	-1.702821	0.255486	H	1.341393	-1.95234	-1.82066
C	1.164225	0.550114	1.669624	H	5.780968	1.131713	-0.722201
Conformation 5							
Atom	X	Y	\mathbf{Z}	Atom	X	Y	\mathbf{Z}
C	-3.074142	-0.734131	0.26563	H	1.486628	0.711276	-1.367243
C	-3.316541	0.41943	-0.477852	O	1.090903	-1.587631	-0.591476

C	-2.354026	1.393042	-0.642763	O	3.832954	-0.994452	-1.932178
C	-1.102628	1.185388	-0.026797	H	-2.553495	2.284577	-1.230294
C	-0.860418	0.029503	0.736308	H	-1.678092	-1.861949	1.454746
C	-1.859198	-0.961008	0.877307	H	-5.95807	-0.464048	0.317389
O	-4.185731	-1.542565	0.241226	H	-5.657502	-1.384665	-1.207566
C	-5.204083	-0.77993	-0.416947	H	0.143907	2.517239	-1.199539
O	-4.58845	0.37699	-0.996312	H	-0.326577	3.16113	0.363965
C	-0.006228	2.242443	-0.148094	H	0.43547	-0.83948	2.233943
N	1.291156	1.843345	0.411552	H	3.624612	1.663802	-1.379338
C	1.936003	0.752176	-0.370283	H	3.826363	1.498616	0.366671
C	1.571247	-0.612254	0.351259	H	5.281401	-0.108735	-0.8437
C	0.501656	-0.146585	1.388037	H	4.81182	-1.757142	0.911079
C	3.446835	0.994421	-0.530369	H	2.541597	-1.945273	1.852561
C	4.214112	-0.321566	-0.725066	H	2.024944	1.152972	2.271641
C	3.980976	-1.193364	0.492232	H	0.395833	1.856231	2.342548
C	2.753514	-1.291754	1.008156	H	0.220844	-1.280641	-0.904937
C	1.069135	1.238329	1.740888	H	2.967526	-1.410902	-1.762742
Conformation 6							
Atom	X	Y	Z	Atom	X	Y	Z
C	-3.234756	-0.680105	0.172289	H	1.088518	0.762907	-1.475295
C	-3.434545	0.645904	-0.203729	O	0.697445	-1.668086	-1.156471
C	-2.407071	1.565171	-0.19409	O	5.489828	0.312973	-0.669951
C	-1.133093	1.114711	0.207753	H	-2.574982	2.596972	-0.489541
C	-0.93377	-0.221214	0.59584	H	-1.853028	-2.177255	0.865911
C	-2.00122	-1.142116	0.576715	H	-6.284359	-0.456264	-0.003886
O	-4.428106	-1.365608	0.097627	H	-5.487237	-0.788708	-1.591245
C	-5.336673	-0.469953	-0.54912	H	0.117271	2.63357	-0.707863
O	-4.758632	0.839608	-0.530375	H	-0.126787	2.854048	1.016432
C	0.042165	2.091202	0.242889	H	0.386023	-1.537725	1.696158

N	1.339469	1.451123	0.51362	H	3.362478	0.23606	-2.001972
C	1.733267	0.552084	-0.616777	H	3.366962	1.828136	-1.232513
C	1.402299	-0.918804	-0.163412	H	4.184456	0.861609	0.851963
C	0.451905	-0.658379	1.046294	H	4.688391	-1.828496	0.650888
C	3.186711	0.763699	-1.054528	H	2.432714	-2.735529	0.536655
C	4.202947	0.226967	-0.050053	H	2.133893	0.274305	2.095296
C	3.86166	-1.197116	0.323766	H	0.577731	1.04111	2.457336
C	2.62334	-1.697668	0.264189	H	1.344856	-1.928354	-1.831297
C	1.16086	0.547721	1.67444	H	6.158375	0.122024	0.006197

6. Copes of HPLC Traces.

Area Percent Report

Area Percent Report					
Peak	RetTime [min]	Height [mAU]	Area	Height \%	Area \%
1	18.327	87.557	2944357	65.672	50.648
2	35.324	45.767	2883930	34.328	49.352

7. NMR spectra.

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

10	190	180	170	160															
		180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{fl}_{1}^{10 \mathrm{ppa})} \end{gathered}$	90	80	70	60	50	40	30	20	10

${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

		1		1	1	15		1	1	1		1	1	1			1				
10	200	190	180	170	160	150	140	130	120	110	$\begin{array}{r} 100 \\ (\mathrm{ppm}) \end{array}$	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

18

${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

	18					1	1		1	1			1					
30	180	170	160	150	140	130	120	110	${ }^{100} \mathrm{fl}$	90	80	70	60	50	40	30	20	10

