Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supporting Information

Total Synthesis of (±)-Villosin C and (±)-Teuvincenone B

Jin-Xin Zhou,^{a,c} Ming-Jie Yan,^{b,a} Xiao-Yu Shi,^{b,a} Yue-Qi Wang,^{b,a} Hong-Yan Shen,^a Xu-Dong Mao,^{a*} and Jie Wang^{a,b,c*}

- ^b School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- ^c University of Chinese Academy of Sciences, Beijing 100049, China.

^a State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. Email: maoxd1993@163.com, jiewang@simm.ac.cn

Table of Contents

1. General Experimental	
2. Optimization Details	5
3. Experimental Procedures and Characterization Data	9
Synthesis of Compound 13 ^[3]	9
Synthesis of Compound S2	9
Synthesis of Compound 11	
Synthesis of Compound 10a and 10b	
Synthesis of Compound 14 ^[4]	
Synthesis of Compound 15	
Synthesis of Compound S3	
Synthesis of Compound 16	
Synthesis of Compound S4	
Synthesis of Compound 17	
Synthesis of Compound 9 and 9a	
Synthesis of Compound S5 and 19	
Synthesis of Compound 20a and 20b	
Synthesis of Compound S6a	
Synthesis of Compound S6b	
Synethesis of Compound 5 (villosin C)	
Synethesis of Compound 5a	
Synethesis of Compound S7	
Synethesis of Compound 4 (teuvincenone B)	
4. Spectral Data Comparison of Natural Products with Synthetic Products	
4.1 villosin C	
4.2 teuvincenone B	
5. HPLC Chromatographs	
6. X-Ray Crystallographic Data for Compound 20b	
Reference	
NMR Spectra	
Compound S2 ¹ H NMR	
Compound S2 ¹³ C NMR	
Compound 11 ¹ H NMR	
Compound 11 ¹³ C NMR	
Compound 10a ¹ H NMR	
Compound 10a ¹³ C NMR	
Compound 10a ¹ H- ¹ H NOSEY NMR	
Compound 10b ¹ H NMR	
Compound 10b ¹³ C NMR	
Compound 10b ¹ H- ¹ H NOSEY NMR	

Compound 14 ¹ H NMR	
Compound 14 ¹³ C NMR	
Compound 14a ¹ H NMR	
Compound 14a ¹³ C NMR	
Compound 15 ¹ H NMR	
Compound 15 ¹³ C NMR	
Compound S3 ¹ H NMR	55
Compound S3 ¹³ C NMR	
Compound 16 ¹ H NMR	
Compound 16 ¹³ C NMR	
Compound 16 ¹ H- ¹ H NOSEY NMR	59
Compound S4 ¹ H NMR	
Compound S4 ¹³ C NMR	
Compound 17 ¹ H NMR	
Compound 17 ¹³ C NMR	
Compound 9a ¹ H NMR	
Compound 9a ¹³ C NMR	
Compound 9a ¹ H- ¹ H NOSEY NMR	
Compound 9 ¹ H NMR	
Compound 9 ¹³ C NMR	
Compound 9 ¹ H- ¹ H NOSEY NMR	69
Compound S5 ¹ H NMR	
Compound S5 ¹³ C NMR	
Compound 19 ¹ H NMR	
Compound 19 ¹³ C NMR	
Compound 20a ¹ H NMR	
Compound 20a ¹³ C NMR	
Compound 20b ¹ H NMR	
Compound 20b ¹³ C NMR	77
Compound S6a ¹ H NMR	
Compound S6a ¹³ C NMR	
Compound S6b ¹ H NMR	
Compound S6b ¹³ C NMR	
Compound 5 ¹ H NMR	
Compound 5 ¹³ C NMR	
Compound 5a ¹ H NMR	
Compound 5a ¹³ C NMR	
Compound S7 ¹ H NMR	
Compound S7 ¹³ C NMR	
Compound 4 ¹ H NMR	

Compound 4 ¹³ C NMR		39
--------------------------------	--	----

1. General Experimental

Solvents and reagents were purchased from Energy Chemical, Leyan, Bide and Sinopharm Chemical. All reactions were stirred magnetically. All moisture and oxygen sensitive reactions were performed in flame-dried glassware under a slight argon overpressure. Sensitive solutions, solvents and reagents were transferred via cannula or syringe. DCM, DMF, diethyl ether, and toluene were purified by STEEMA solvent purification system. Other solvents, starting materials, and reagents are commercially available and used directly as received, unless otherwise stated. Reactions were monitored by thin-layer chromatography (TLC) and NMR of the crude mixture. Evaporations were conducted under reduced pressure at temperatures less than 40 °C. Further dryings of the residues were accomplished using a high vacuum pump. Flash column chromatography was performed with silica gel from SiliaFlash (230-400 mesh). NMR spectra were recorded on Bruker Avance III 400, Avance III 500, and Avance III 600 instruments. Chemical shifts are given in ppm and calibrated using the residual undeuterated solvent peaks (Chloroform- d^{1} H, $\delta = 7.26$ ppm, 13 C, $\delta = 77.16$ ppm; DMSO- d_{6}^{-1} H, $\delta = 2.50$ ppm, 13 C, $\delta = 39.52$ ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q =quartet, m = multiplet, br = broad), coupling constant J, integration. High-resolution mass spectra were recorded on Agilent 1290/6545 UHPLC-QTOF/MS. Melting points were recorded on a SGWX-4A melting point apparatus (Shanghai instrument physical optics instrument Co., LTD.).

2. Optimization Details

	Me Me	DMe Bronstee or Lewis Solvent,	d acid s acid Me▪ S acid Me▪ Temp.	Me Me	+ MeH	
	11	DMe		ОМе 10а	о́ме 10b	
Entry	Bronsted acid	Solvent	Temp (°C)	Vield $(\%)^a$	Conversion $(\%)^a$	d r ^a
Lifty	or Lewis acid	Sorvent	remp. (C)	1 leia (70)		u
1	TfOH	as solvent	r.t. ^b	0	> 95	-
2	MsOH	as solvent	r.t.	42	> 95	2.5:1
3	H ₃ PO ₄	as solvent	150	n.r. ^c	< 5	-
4	TFA	as solvent	85	n.r.	< 5	-
5	<i>p</i> -TsOH	DCE	85	n.r.	< 5	-
6	CSA	DCE	85	n.r.	< 5	-
7	Tf ₂ NH	DCE	85	n.r.	< 5	-
8^d	H_2SO_4	DCM	r.t.	60	> 95	1:1
9 ^e	MsOH	DCE	85	45	> 95	1:2
10	AlCl ₃	DCE	60	23	93	5:1
11	Sc(OTf) ₃	DCE	60	44	> 95	4.3:1
12 ^f	TfOH	DCE	r.t.	68	> 95	2.9:1
13 ^{<i>f</i>}	TfOH	DCE	0	78	> 95	2.6:1

Table S1: Screening of racemic reaction conditions^[1]

Reaction conditions: **11** (0.1 mmol), Lewis acid or Bronsted acid (0.1 mmol, 1 equiv), Solvent (2 mL), Ar. ^{*a*} Determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard. ^{*b*} Room temperature. ^{*c*} No reaction. ^{*d*} H₂SO₄ (0.4 mmol, 4 equiv), ^{*e*} MsOH (0.3 mmol, 3 equiv), ^{*f*} TfOH (0.3 mmol, 3 equiv).

	Me Me Me	chiral Bronsted acions or LA•ligand Solvent, Temp.		Me	Me Me Os	OMe
	о ОМе 11			OMe P1	Р2	OMe P3
Entry	Chiral Bronsted acid or Lewis acid	Ligand	Solvent	Temp. (°C)	Yield (P1/P2/P3 , %) ^a	Conversion (%) ^a
1	CuBr ₂	L1	toluene	120	-	< 5
2	Sc(OTf) ₃	L1	toluene	120	-	< 5
3	Cu(OTf) ₂	L1	toluene	120	-	< 5
4	CuBr ₂	L2	toluene	120	n.d. ^b /14/n.d.	40
5	Sc(OTf) ₃	L2	toluene	120	n.d./n.d./n.d.	> 95
6	Cu(OTf) ₂	L2	toluene	120	-	< 5
7	CuBr ₂	L3	toluene	120	-	< 5
8	Sc(OTf) ₃	L3	toluene	120	-	< 5
9	Cu(OTf) ₂	L3	toluene	120	n.d./n.d./n.d.	78
10	CuBr ₂	L4	toluene	120	-	< 5
11	Sc(OTf) ₃	L4	toluene	120	-	< 5
12	Cu(OTf) ₂	L4	toluene	100	n.d./60/n.d.	> 95
13	Al^+	L5	toluene	120	n.d./24/n.d.	36
14	C1	-	toluene	120	-	< 5
15	C2	-	toluene	120	-	< 5
16	C3	-	toluene	120	n.d./15/n.d.	80
17	C4	-	toluene	120	-	< 5
18	C5	-	toluene	120	-	< 5
19	C6	-	toluene	120	n.d./50/n.d.	90
20 ^c	C7	-	toluene	130	-	< 5
21 ^c	C7	-	EtOAc	80	-	< 5
22 ^{<i>c</i>}	C7	-	DCM	r.t. ^d	n.d./n.d./83	> 95
23 ^c	C7	-	DCE	60	n.d./n.d./80	> 95

Table S2: Screening of asymmetric reaction conditions

Reaction conditions: **11** (0.05 or 0.01 mmol), chiral Bronsted acid (1 equiv) or LA·ligand (1 equiv), Solvent (0.5 or 0.1 mL), Ar. ^{*a*}Determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard. ^{*b*}Not detected. ^c**11** (0.01 mmol), Solvent (0.2 mL), **C7** (0.1 equiv). ^{*d*}Room temperature.

C3: R¹ = Ph

C1: R^1 = 1-naphthylC4: R^2 = 4-(NO2)-phenylC6: R^3 C2: R^1 = 4-(NO2)-phenylC5: R^2 = 2,3,4,5,6-pentafluoro-phenyl C6: R³ = 9-anthryl

C7: R⁴ = 3,5-(CF₃)₂-phenyl

Table S3: Screening of substrates, oxidants and solvents^[2]

Reaction conditions: **15** (0.05 mmol), **18a** (1.5 equiv) or **18b** (2.5 equiv) or **18c** [2.5 equiv (entries 1-7) or 2.0 equiv (entries 8-19)], solvent [0.5 mL (entries 1-7) or 0.1 mL (entries 8-19)], Ar. ^{*a*}Determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard. ^{*b*}**15** (0.1 mmol), **18c** (1.5 equiv), solvent (1 mL). ^{*c*}Room temperature. ^{*d*}Isolated yield. ^{*e*}**15** (1.0 mmol), **18c** (2.0 equiv), solvent (5 mL), under argon atmosphere. ^{*f*}Ac was deprotected in step 2.

3. Experimental Procedures and Characterization Data

Synthesis of Compound 13^[3]

2-(chloromethyl)-1,4-dimethoxybenzene

2,5-dimethoxybenzaldehyde **S1** (20 g, 120 mmol) was dissolved in THF (120 mL) and cooled to 0 °C. NaBH₄ (1.8 g, 48 mmol) was added in 3 portions, and the solution was warmed up to room temperature and stirred overnight. The reaction was quenched with HCl (1.5 M) and extracted with EtOAc for 3 times. The organic layers were combined, washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The crude product was poured into a separating funnel. Concentrated HCl (30 mL) was added and the resulting mixture was shaken vigorously for about 7 minutes. Aqueous NaHCO₃ was added and the mixture was extracted with EtOAc. The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure added and the mixture was extracted with EtOAc. The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Purified by trituration with hexane and diethyl ether afforded compound **13** (13.68 g, 61%).

Physical State: white solid.

¹**H NMR (600 MHz, Chloroform-***d***):** δ 6.94 (d, *J* = 2.5 Hz, 1H), 6.82 – 6.85 (m, 2H), 4.63 (s, 2H), 3.84 (s, 3H), 3.78 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*): δ 153.6, 151.7, 126.8, 116.3, 114.8, 112.2, 56.4, 55.9, 41.6.

Synthesis of Compound S2

2-(2,5-dimethoxyphenyl)-1-(2,6,6-trimethylcyclohex-1-en-1-yl)ethan-1-ol

To a suspension of magnesium turnings (2.53 g, 106 mmol) in THF (10 mL) at room temperature was added 1,2-dibromoethane (0.1 mL) under argon. Then, the mixture was heated to reflux by a heat gun until the observation of gas evolution. After cooling to room temperature, a solution of benzyl chloride **13** (12 g, 66 mmol) in THF (70 mL) was added in a dropwise

manner over 30 min. After addition, the mixture was stirred at 30 °C for additional 30 min. The Grignard reagent was then added to a solution of enal **12** (5.0 g, 33 mmol) in THF (10 mL) at 0 °C under argon. After addition, the reaction was warmed to room temperature and the consumption of enal was monitored by TLC (typically within 30 min). The reaction was quenched by addition of saturated aqueous NH₄Cl and extracted with EtOAc for 3 times. The organic layers were combined, washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. Purification by flash column chromatography on silica gel (petroleum ether/EtOAc = 20:1 - 5:1) afforded compound **S2** (9.0 g, 90%).

Physical State: colorless solid.

Melting Point: 71 - 73 °C.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 6.84 – 6.78 (m, 2H), 6.74 (dd, *J* = 8.7, 3.1 Hz, 1H), 4.49 (dd, *J* = 10.4, 3.1 Hz, 1H), 3.81 (s, 3H), 3.78 (s, 3H), 3.13 (dd, *J* = 13.8, 10.4 Hz, 1H), 2.89 (dd, *J* = 13.9, 3.0 Hz, 1H), 2.00 – 1.96 (m, 2H), 1.96 (s, 3H) 1.64 – 1.52 (m, 2H), 1.50 – 1.36 (m, 2H), 1.09 (s, 3H), 1.03 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 153.7, 152.0, 139.6, 131.5, 129.6, 118.0, 111.7, 111.5, 71.1, 56.0, 55.8, 40.2, 38.6, 34.9, 34.3, 28.5, 28.2, 21.3, 19.5.

HRMS (ESI-TOF): calculated for C₁₉H₂₈NaO₃⁺ ([M+Na]⁺) m/z: 327.1931; Found 327.1937.

Synthesis of Compound 11

2-(2,5-dimethoxyphenyl)-1-(2,6,6-trimethylcyclohex-1-en-1-yl)ethan-1-one

To a solution of allylic alcohol **S2** (3.04 g, 10.0 mmol) in DMSO (20 mL) was added IBX (3.64 g, 13.0 mmol, 1.3 equiv) at 45 °C. After consumption of the starting material as indicated by TLC, the reaction was cooled to room temperature and diluted with water. The mixture was then extracted with EtOAc and the organic layer was washed with brine and NaHCO₃ (aq.) successively. After drying with anhydrous Na₂SO₄, the mixture was concentrated under reduced pressure, and purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 20:1 - 5:1) to afford compound **11** (2.82 g, 93%).

Physical State: white solid.

Melting Point: 61 - 67 °C.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 6.84 – 6.75 (m, 2H), 6.69 (d, *J* = 2.9 Hz, 1H), 3.85 (s, 2H), 3.76 (s, 3H), 3.75 (s, 3H), 2.01 – 1.96 (m, 2H), 1.72 – 1.65 (m, 5H), 1.50 – 1.45 (m, 2H), 1.13 (s, 6H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 207.6, 153.5, 152.2, 143.1, 129.5, 124.3, 117.8, 112.5, 111.5, 56.0, 55.8, 47.5, 39.2, 33.5, 31.40, 28.8, 20.9, 19.0.

HRMS (ESI-TOF): calculated for C₁₉H₂₇O₃⁺ ([M+H]⁺) m/z: 303.1955; Found 303.1955.

Synthesis of Compound 10a and 10b

(±)-(4bS,8aS)-1,4-dimethoxy-4b,8,8-trimethyl-4b,6,7,8,8a,10-hexahydrophenanthren-9(5H)-one (Compound 10a)

(±)-(4bS,8aR)-1,4-dimethoxy-4b,8,8-trimethyl-4b,6,7,8,8a,10-hexahydrophenanthren-9(5H)-one (Compound 10b)

To a solution of enone **11** (3.0 g, 10.0 mmol) in DCE (150 mL) was added TfOH (2.6 mL, 30 mmol) at 0 °C under argon. After stirring for 4 h, the starting material was completely consumed as indicated by TLC. The reaction was diluted with water and extracted with EtOAc. The combined organic layers were washed with NaHCO₃ (aq.) and dried over anhydrous Na₂SO₄. After removal of the solvent under reduced pressure, the residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 20:1) to afford compound **10a** (1.52 g, 50%) and compound **10b** (500 mg, 17%).

Compound 10a:

Physical State: white solid.

Melting Point: 138 – 142 °C.

¹**H NMR (600 MHz, Chloroform-***d***):** δ 6.75 (d, *J* = 8.9 Hz, 1H), 6.67 (d, *J* = 8.9 Hz, 1H), 3.76 (s, 6H), 3.61 (d, *J* = 20.5 Hz, 1H), 3.26 – 3.18 (m, 2H), 2.66 (s, 1H), 1.73 (qt, *J* = 14.1, 3.6 Hz, 1H), 1.55 (dt, *J* = 14.2, 3.6 Hz, 1H), 1.43 (td, *J* = 13.6, 4.0 Hz, 1H), 1.37 (s, 3H), 1.35 (d, *J* = 14.2 Hz, 1H), 1.26 (s, 3H), 1.13 (td, *J* = 13.6, 3.7 Hz, 1H), 1.01 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*): δ 210.8, 152.0, 151.1, 137.7, 123.7, 110.8, 107.7, 63.3, 55.9, 55.7, 45.7, 42.5, 37.2, 33.0, 32.9, 22.2, 20.9, 19.4.

HRMS (ESI-TOF): calculated for C₁₉H₂₇O₃⁺ ([M+H]⁺) m/z: 303.1955; Found 303.1953. Compound 10b:

Physical State: white solid.

Melting Point: 105 – 107 °C.

¹**H NMR (600 MHz, Chloroform-***d***):** δ 6.79 (d, *J* = 8.9 Hz, 1H), 6.70 (d, *J* = 8.9 Hz, 1H), 3.78 (s, 3H), 3.76 (s, 3H), 3.69 (d, *J* = 23.7 Hz, 1H), 3.39 – 3.34 (m, 1H), 3.27 (d, *J* = 23.7 Hz, 1H), 1.96 (s, 1H), 1.55 – 1.43 (m, 2H), 1.36 – 1.24 (m, 2H), 1.09 (s, 3H), 1.02 (td, *J* = 13.1, 3.1 Hz, 1H), 0.91 (s, 3H), 0.45 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*): δ 212.7, 152.0, 150.9, 131.1, 125.3, 111.4, 108.3, 69.0, 56.3, 55.8, 42.5, 41.2, 39.0, 38.7, 34.2, 32.3, 31.6, 23.1, 20.5.

HRMS (ESI-TOF): calculated for C₁₉H₂₇O₃⁺ ([M+H]⁺) m/z: 303.1955; Found 303.1953.

Synthesis of Compound 14^[4]

10-hydroxy-5,8-dimethoxy-1,1,4a-trimethyl-2,3,4,4a-tetrahydrophenanthren-9(1H)-one

A mixture of ketone **10a** (1.68 g, 5.6 mmol), I₂ (1.55 g, 6.1 mmol) and CuO (220 mg, 2.8 mmol) in DMSO (11 mL) was stirred at 60 °C under argon for 2 h and then at room temperature for another 1 h. The reaction was quenched with water and Na₂S₂O₃ (aq.). The resulting mixture was extracted with EtOAc. Then, the organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 20:1 - 3:1) to afford compound **14** (1.46 g, 83%).

Physical State: yellow solid.

Melting Point: 96 – 98 °C.

¹**H NMR (600 MHz, Chloroform-***d***):** δ 7.40 (s, 1H), 7.09 (d, *J* = 9.1 Hz, 1H), 6.88 (d, *J* = 9.1 Hz, 1H), 3.91 (s, 3H), 3.85 (s, 3H), 2.97 – 2.89 (m, 1H), 1.98 (td, *J* = 12.7, 5.2 Hz, 1H), 1.82 (m, 1H), 1.64 (s, 3H), 1.61 – 1.57 (m, 2H), 1.45 (s, 6H), 1.41 (dt, *J* = 13.5, 4.8 Hz, 1H).

¹³C NMR (151 MHz, Chloroform-*d*): δ 179.9, 154.6, 150.8, 144.7, 143.3, 141.3, 117.9, 117.6, 110.4, 56.7, 56.0, 41.6, 36.6, 36.5, 31.3, 28.1, 28.1, 27.4, 18.6.

HRMS (ESI-TOF): calculated for $C_{19}H_{25}O_4^+$ ([M+H]⁺) m/z: 317.1747; Found 317.1744.

To a solution of ketone **10b** (703 mg, 2.3 mmol) in MeOH (10 mL) were added MeONa (30% in MeOH, 1.02 g, 2.5 equiv) and DCM (3 mL) under an atmosphere of O₂. After stirring at room temperature for 3 - 4 h, the starting material was converted to **14** and **14a** as indicated by TLC. The reaction was quenched with water and the resulting mixture was extracted with EtOAc for 3 times. The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was redissolved in DMSO (10 mL) and DBU (0.46 mL, 3.1 mmol) was added. After heated at 130 °C until the consumption of **14a** as indicated by TLC analysis, the reaction was cooled to room temperature and diluted with water. The mixture was extracted with EtOAc, and the organic layer was dried over anhydrous Na₂SO₄, concentrated, and purified by flash column chromatography on silica gel to afford compound **14** (518 mg, 70%).

Compound 14a:

Physical State: yellow solid.

Melting Point: 146 – 150 °C.

¹**H NMR (600 MHz, Chloroform-***d***):** 7.17 (d, *J* = 9.1 Hz, 1H), 6.90 (d, *J* = 9.1 Hz, 1H), 3.86 (s, 3H), 3.82 (s, 3H), 3.43 – 3.37 (m, 1H), 2.37 (s, 1H), 1.61 – 1.54 (m, 1H), 1.41 – 1.32 (m, 1H), 1.41 – 1.32 (m, 2H), 1.26 (s, 3H), 1.05 (td, *J* = 13.7, 2.9 Hz, 1H), 0.99 (s, 3H), 0.45 (s, 3H).

¹³C NMR (151 MHz, Chloroform-*d*): δ 198.2, 180.6, 156.6, 151.0, 138.0, 125.3, 120.8, 111.7, 68.6, 56.7, 56.6, 42.3, 40.2, 39.2, 36.1, 35.3, 31.9, 24.8, 20.3.

HRMS (ESI-TOF): calculated for C₁₉H₂₅O₄⁺ ([M+H]⁺) m/z: 317.1747; Found 317.1747.

Synthesis of Compound 15

5,8,10-trimethoxy-1,1,4a-trimethyl-2,3,4,4a-tetrahydrophenanthren-9(1H)-one

To a solution of enol **14** (1.57 g, 5.0 mmol) and NaOH (600 mg, 15 mmol) in DMF (43 mL) was added MeI (0.9 mL, 15 mmol). After stirring at room temperature overnight, the reaction was diluted with water. The resulting mixture was then extracted with Et₂O for 3 times. The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, concentrated, and purified by flash column chromatography on silica gel to afford compound **15** (1.56 g, 95%).

Physical State: white solid.

Melting Point: 114 – 115 °C.

¹**H NMR (600 MHz, Chloroform-***d***):** δ 7.02 (d, *J* = 9.0 Hz, 1H), 6.85 (d, *J* = 9.0 Hz, 1H), 3.87 (s, 3H), 3.83 (s, 3H), 3.79 (s, 3H), 2.98 – 2.90 (m, 1H), 1.94 (td, *J* = 12.7, 5.2 Hz, 1H), 1.84 – 1.75 (m, 1H), 1.62 – 1.58 (m, 5H), 1.41 (s, 3H), 1.40 (s, 3H), 1.39 – 1.34 (m, 1H).

¹³C NMR (151 MHz, Chloroform-*d*): δ 181.0, 154.1, 153.9, 150.6, 149.8, 142.8, 121.7, 116.5, 110.9, 59.0, 56.9, 56.0, 42.2, 37.4, 37.0, 31.5, 29.6, 29.1, 28.1, 18.5.

HRMS (ESI-TOF): calculated for $C_{20}H_{27}O_4^+$ ([M+H]⁺) m/z: 331.1904; Found 331.1901.

Synthesis of Compound S3

8-hydroxy-5,10-dimethoxy-1,1,4a-trimethyl-2,3,4,4a-tetrahydrophenanthren-9(1H)-one

A mixture of compound **15** (107 mg, 0.32 mmol) and AlCl₃ (45 mg, 0.34 mmol) in toluene (3.2 mL) was stirred at 80 °C for 2 - 3 h before cooled to room temperature and quenched with water. The resulting mixture was then extracted with EtOAc for 3 times. The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, concentrated, and purified by flash column chromatography on silica gel to afford compound **S3** (84 mg, 82%).

Physical State: yellow oil.

¹**H NMR (600 MHz, Chloroform-***d***):** δ 12.76 (s, 1H), 7.10 (d, *J* = 9.0 Hz, 1H), 6.84 (d, *J* = 9.0 Hz, 1H), 3.84 (s, 3H), 3.82 (s, 3H), 3.04 – 2.94 (m, 1H), 2.03 (td, *J* = 13.1, 6.1 Hz, 1H), 1.90 – 1.79 (m, 1H), 1.65 – 1.60 (m, 5H), 1.43 (s, 3H), 1.43 (s, 3H), 1.42 – 1.38 (m, 1H).

¹³C NMR (151 MHz, Chloroform-*d*): δ 186.6, 161.7, 156.2, 148.8, 148.1, 140.8, 120.5, 115.1, 114.8, 59.9, 56.4, 43.0, 37.6, 36.9, 30.2, 29.4, 29.1, 27.5, 17.9.

HRMS (ESI-TOF): calculated for C₁₉H₂₅O₄⁺ ([M+H]⁺) m/z: 317.1747; Found 317.1751.

Synthesis of Compound 16

8-(allyloxy)-5,10-dimethoxy-1,1,4a-trimethyl-2,3,4,4a-tetrahydrophenanthren-9(1H)-one

To a solution of compound S3 (189 mg, 0.6 mmol) and NaOH (75 mg, 1.88 mmol) in DMF (2.4 mL) was added allyl bromide (0.16 mL, 1.85 mmol). After stirring at 40 $^{\circ}$ C overnight, the reaction was cooled to room temperature and diluted with water. The resulting mixture was then extracted with Et₂O for 3 times. After removal of the solvent under reduced pressure, the crude product was purified by flash column chromatography on silica gel to afford compound 16 (192 mg, 91%).

Physical State: pale yellow solid.

Melting Point: 102 – 105 °C.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 6.98 (d, *J* = 8.8 Hz, 1H), 6.86 (d, *J* = 9.0 Hz, 1H), 6.17 – 6.03 (m, 1H), 5.54 (d, *J* = 17.3 Hz, 1H), 5.27 (d, *J* = 10.6 Hz, 1H), 4.60 (qd, *J* = 13.3, 5.1, 2H), 3.83 (s, 3H), 3.78 (s, 3H), 3.01 – 2.87 (m, 1H), 1.94 (td, *J* = 12.9, 5.5 Hz, 1H), 1.86 – 1.74 (m, 1H), 1.65 – 1.57 (m, 5H), 1.44 – 1.33 (m, 7H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 180.8, 154.1, 152.6, 150.9, 149.8, 142.6, 133.8, 122.4, 117.3, 116.2, 113.5, 71.1, 58.9, 55.9, 42.2, 37.3, 37.0, 31.4, 29.6.

HRMS (ESI-TOF): calculated for $C_{22}H_{29}O_4^+$ ([M+H]⁺) m/z: 357.2066; Found 357.2065.

Synthesis of Compound S4

7-allyl-8-hydroxy-5,10-dimethoxy-1,1,4a-trimethyl-2,3,4,4a-tetrahydrophenanthren-9(1H)-one

Compound **16** (183 mg, 0.5 mmol) was dissolved in 5 mL PhNEt₂, and stirred at 196 °C under argon. After 7 h, the reaction was cooled to room temperature. Water and 6 M HCl were added successively. The resulting mixture was extracted with EtOAc, and the organic layer was dried over anhydrous Na₂SO₄, concentrated, and purified by flash column chromatography on silica gel to afford compound **S4** (165 mg, 90%).

Physical State: pale yellow oil.

¹**H NMR (600 MHz, Chloroform-***d***):** δ 13.07 (s, 1H), 6.99 (s, 1H), 6.02 (ddt, *J* = 16.8, 10.1, 6.6 Hz, 1H), 5.16 – 5.06 (m, 2H), 3.83 (s, 3H), 3.82 (s, 3H), 3.49 – 3.35 (m, 2H), 3.03 – 2.92 (m, 1H), 2.02 (td, *J* = 13.0, 5.9 Hz, 1H), 1.86 – 1.82 (m, 1H), 1.65 – 1.59 (m, 5H), 1.42 (s, 6H), 1.41 – 1.37 (m, 1H).

¹³C NMR (151 MHz, Chloroform-*d*): δ 186.8, 161.5, 153.9, 148.3, 148.2, 138.7, 136.4, 126.1, 121.1, 116.2, 114.4, 59.9, 56.4, 42.7, 37.5, 37.0, 33.5, 30.3, 29.4, 29.1, 27.7, 17.9.

HRMS (ESI-TOF): calculated for C₂₂H₂₉O₄⁺ ([M+H]⁺) m/z: 357.2066; Found 357.2063.

Synthesis of Compound 17

7-allyl-5,8,10-trimethoxy-1,1,4a-trimethyl-2,3,4,4a-tetrahydrophenanthren-9(1H)-one

To a solution of enol **S4** (56 mg, 0.16 mmol) and NaOH (20 mg, 0.5 mmol) in DMF (0.64 mL) was added MeI (0.03 mL, 0.18 mmol). After stirring at room temperature overnight, additional NaOH (9 mg) and MeI (0.03 mL) was added. After consumption of the starting material as indicated by TLC, the reaction was diluted with water. The resulting mixture was then extracted with Et₂O for 3 times. The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, concentrated, and purified by flash column chromatography on silica gel to afford compound **17** (48 mg, 82%).

Physical State: orange solid.

Melting Point: 81–83 °C.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 6.90 (s, 1H), 5.97 (ddt, *J* = 16.8, 10.1, 6.7 Hz, 1H), 5.20 – 5.04 (m, 2H), 3.84 (s, 3H), 3.78 (s, 3H), 3.78 (s, 3H), 3.45 (qdt, *J* = 15.4, 6.6, 1.6 Hz, 2H), 2.99 – 2.83 (m, 1H), 1.95 (td, *J* = 12.8, 5.4 Hz, 1H), 1.85 – 1.75 (m, 1H), 1.65 – 1.54 (m, 5H), 1.42 (s, 3H), 1.41 (s, 3H), 1.39 – 1.34 (m, 1H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 181.0, 155.1, 152.5, 151.2, 149.9, 140.5, 137.0, 132.8, 124.9, 117.3, 116.4, 62.2, 58.9, 55.8, 42.1, 37.3, 37.0, 33.8, 31.4, 29.5, 29.1, 28.2, 18.4.
HRMS (ESI-TOF): calculated for C₂₃H₃₁O₄⁺ ([M+H]⁺) m/z: 371.2217; Found 371.2225.

Synthesis of Compound 9 and 9a

6-hydroxy-5,8,10-trimethoxy-1,1,4a-trimethyl-2,3,4,4a-tetrahydrophenanthren-9(1H)-one (Compound 9)

7-hydroxy-5,8,10-trimethoxy-1,1,4a-trimethyl-2,3,4,4a-tetrahydrophenanthren-9(1H)-one (Compound 9a)

A mixture of compound **15** (330 mg, 1 mmol) and malonoyl peroxide **18c** (257 mg, 2 mmol) in TFE (5 mL) was stirred at -20 °C under argon for 12 h. Solvent was removed under reduced pressure and the residue was dissolved in EtOAc. Na₂S₂O₅ (aq.) was added and the resulting mixture was stirred at room temperature for 1 h. The mixture was then extracted with EtOAc, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was dissolved in EtOH, and excess MeNH₂ in EtOH was added. After stirring at room temperature for 2 h, solvent was removed under reduced pressure, and the crude product was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3:1 - 1:1) to afford compound **9** (129 mg, 37%) and compound **9a** (153 mg, 44%).

Compound 9:

Physical State: brown solid.

Melting Point: 250 °C.

¹**H NMR (400 MHz, DMSO-***d*₆): δ 10.33 (s, 1H), 6.55 (s, 1H), 3.76 (s, 3H), 3.69 (s, 3H), 3.60 (s, 3H), 2.89 – 2.78 (m, 1H), 1.90 (td, *J* = 12.6, 4.8 Hz, 1H), 1.76 (dt, *J* = 13.9, 4.5 Hz, 1H), 1.63 – 1.50 (m, 5H), 1.37 – 1.29 (m, 7H).

¹³C NMR (151 MHz, DMSO-*d*₆): δ 178.1, 156.2, 155.2, 150.5, 149.0, 146.8, 138.3, 112.0, 100.0, 59.6, 58.2, 55.7, 41.5, 36.7, 36.0, 32.2, 29.8, 29.2, 28.9, 18.0.

HRMS (ESI-TOF): calculated for C₂₀H₂₆NaO₅⁺ ([M+Na]⁺) m/z: 369.1672; Found 369.1669. Compound 9a:

Physical State: yellow solid.

Melting Point: 148 – 150 °C.

¹**H NMR (600 MHz, Chloroform-***d***):** δ 6.78 (s, 1H), 6.05 (s, 1H), 3.86 (s, 3H), 3.83 (s, 3H), 3.79 (s, 3H), 2.95 – 2.88 (m, 1H), 1.97 (td, *J* = 12.5, 5.0 Hz, 1H), 1.84 – 1.76 (m, 1H), 1.63 – 1.57 (m, 5H), 1.42 (s, 3H), 1.41 (s, 3H), 1.40 – 1.35 (m, 1H).

¹³C NMR (151 MHz, Chloroform-*d*): δ 180.8, 157.0, 153.4, 149.6, 148.4, 139.0, 133.7, 124.1, 104.1, 62.2, 59.2, 55.8, 42.1, 37.2, 37.1, 31.2, 29.4, 29.2, 28.2, 18.3.

Synthesis of Compound S5 and 19

6-(allyloxy)-5,8,10-trimethoxy-1,1,4a-trimethyl-2,3,4,4a-tetrahydrophenanthren-9(1H)-one (Compund S5) 7-allyl-6-hydroxy-5,8,10-trimethoxy-1,1,4a-trimethyl-2,3,4,4a-tetrahydrophenanthren-9(1H)-one (Compound 19)

To a solution of phenol **9** (41 mg, 0.12 mmol) and K₂CO₃ (35 mg, 0.25 mmol) in DMF (2 mL) was added allyl bromide (0.02 mL, 0.23 mmol). After stirring at room temperature overnight, the reaction was diluted with water. The resulting mixture was then extracted with EtOAc for 3 times. The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, concentrated, and purified by flash column chromatography on silica gel to afford compound **S5**. Compound **S5** was dissolved in PhNEt₂ (2 mL) and stirred at 195 °C under argon for 8 h. After cooling to room temperature, the reaction was diluted with water. 6 M HCl was added and the resulting mixture was extracted with EtOAc. The organic layer was dried over anhydrous Na₂SO₄, concentrated under reduced pressure, and purified by flash column chromatography on silica gel to afford compound structure was dried over anhydrous Na₂SO₄, concentrated under reduced pressure, and purified by flash column chromatography on silica gel to afford compound **19** (36 mg, 79%).

Compound S5:

Physical State: colorless oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 6.52 (s, 1H), 6.09 (ddt, *J* = 17.4, 10.5, 5.3 Hz, 1H), 5.46 (dq, *J* = 17.3, 1.6 Hz, 1H), 5.34 (dq, *J* = 10.5, 1.5 Hz, 1H), 4.64 (dt, *J* = 5.0, 1.5 Hz, 2H), 3.89 (s, 3H), 3.86 (s, 3H), 3.78 (s, 3H), 2.91 (ddd, *J* = 13.3, 8.8, 7.3 Hz, 1H), 1.94 (td, *J* = 13.0, 4.9 Hz, 1H), 1.82 (ddq, *J* = 13.6, 8.9, 4.2 Hz, 1H), 1.74 – 1.63 (m, 2H), 1.62 (s, 3H), 1.41 (s, 3H), 1.39 (s, 3H), 1.38 – 1.33 (m, 1H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 180.2, 157.0, 155.8, 152.8, 149.8, 147.6, 140.4, 132.7, 118.4, 114.3, 97.9, 69.7, 60.8, 59.1, 56.8, 42.5, 37.5, 36.9, 33.0, 29.9, 29.6, 29.2, 18.6.

HRMS (ESI-TOF): calculated for $C_{23}H_{31}O_5^+$ ([M+H]⁺) m/z: 387.2166; Found 387.2169.

Compound 19:

Physical State: white solid.

Melting Point: 134 – 138 °C.

¹**H NMR (600 MHz, Chloroform-***d***):** δ 6.00 (ddd, *J* = 16.5, 10.3, 5.5 Hz, 1H), 5.80 (s, 1H), 5.15 – 5.05 (m, 2H), 3.84 (s, 3H), 3.80 (s, 3H), 3.76 (s, 3H), 3.50 (d, *J* = 6.1 Hz, 2H), 2.88 (dt, *J* = 14.5, 7.7 Hz, 1H), 1.91 (td, *J* = 12.7, 4.8 Hz, 1H), 1.83 (ddq, *J* = 13.6, 9.6, 5.1 Hz, 1H), 1.74 (dt, *J* = 13.8, 7.1 Hz, 1H), 1.66 (dt, *J* = 12.8, 6.1 Hz, 1H), 1.62 (s, 3H), 1.41 (s, 3H), 1.40 (s, 3H), 1.39 – 1.36 (m, 1H).

¹³C NMR (151 MHz, Chloroform-*d*): δ 180.0, 155.6, 152.9, 152.6, 150.1, 145.2, 141.2, 136.3, 120.4, 117.9, 116.0, 62.5, 61.2, 58.9, 42.3, 37.8, 36.7, 33.0, 31.0, 29.8, 29.1, 28.2, 18.4. HRMS (ESI-TOF): calculated for C₂₃H₃₁O₅⁺ ([M+H]⁺) m/z: 387.2166; Found 387.2165.

Synthesis of Compound 20a and 20b

 $(\pm)-(9R,11bR)-9-(iodomethyl)-5,7,11-trimethoxy-4,4,11b-trimethyl-1,3,4,8,9,11b-hexahydrophenanthro[3,2-b]furan-6(2H)-one (Compound 20a) \\ (\pm)-(9S,11bR)-9-(iodomethyl)-5,7,11-trimethoxy-4,4,11b-trimethyl-1,3,4,8,9,11b-hexahydrophenanthro[3,2-b]furan-6(2H)-one (Compound 20b)$

A mixture of compound **19** (10 mg, 0.026 mmol), I₂ (13 mg, 0.05 mmol), NaHCO₃ (3.4 mg, 0.04 mmol) in MeCN (0.5 mL) was stirred at 65 °C under argon. After consumption of the starting material as indicated by TLC, the reaction was cooled to room temperature, diluted with water. The mixture was extracted with EtOAc and the organic layer was washed with Na₂S₂O₃ (aq.) and dried over anhydrous Na₂SO₄. After removal of the solvent under reduced pressure, purification by flash column chromatography on silica gel afforded **20a** (3.2 mg, 24%) and **20b** (3.4 mg, 26%).

Compound 20a:

Physical State: white solid.

Melting Point: 112 °C.

¹H NMR (600 MHz, Chloroform-*d*): δ 5.04 – 4.93 (m, 1H), 3.91 (s, 3H), 3.85 (s, 3H), 3.77 (s, 3H), 3.50 – 3.36 (m, 3H), 3.14 – 3.09 (m, 1H), 2.93 – 2.83 (m, 1H), 1.96 (t, *J* = 13.5 Hz, 1H), 1.86 – 1.77 (m, 1H), 1.66 – 1.59 (m, 5H), 1.41 (s, 3H), 1.40 (s, 3H), 1.38 – 1.34 (m, 1H).
¹³C NMR (151 MHz, Chloroform-*d*): δ 180.1, 155.4, 153.8, 152.6, 149.6, 147.2, 137.6, 119.7, 118.6, 83.4, 61.0, 59.8, 59.1, 42.8, 37.3, 36.9, 33.6, 32.3, 29.5, 29.4, 29.2, 18.4, 8.5.
HRMS (ESI-TOF): calculated for C₂₃H₃₀IO₅⁺ ([M+H]⁺) m/z: 513.1132; Found 513.1142.

Compound 20b:

Physical State: white solid.

Melting Point: 123 – 126 °C.

¹**H NMR (600 MHz, Chloroform-***d***):** δ 4.99 – 4.90 (m, 1H), 3.92 (s, 3H), 3.86 (s, 3H), 3.77 (s, 3H), 3.52 – 3.42 (m, 3H), 3.05 (dd, *J* = 16.1, 5.2 Hz, 1H), 2.93 – 2.79 (m, 1H), 1.99 – 1.91 (m, 1H), 1.86 – 1.79 (m, 1H), 1.72 (td, *J* = 9.9, 4.4 Hz, 1H), 1.64 – 1.60 (m, 4H), 1.43 (s, 3H), 1.41 – 1.35 (m, 4H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 180.1, 155.6, 153.8, 152.6, 149.8, 147.4, 137.5, 119.8, 118.4, 83.2, 61.0, 59.8, 59.0, 42.8, 37.4, 37.0, 33.8, 32.6, 29.9, 29.5, 29.2, 18.7, 8.9.

HRMS (ESI-TOF): calculated for $C_{23}H_{30}IO_5^+$ ([M+H]⁺) m/z: 513.1132; Found 513.1140.

Synthesis of Compound S6a

 (\pm) -(9R,11bR)-9-(hydroxymethyl)-5,7,11-trimethoxy-4,4,11b-trimethyl-1,3,4,8,9,11b-hexahydrophenanthro[3,2-b]furan-6(2H)-one

A mixture of iodide **20a** (12.4 mg, 0.02 mmol) and CF₃COOCs (47 mg, 0.19 mmol) in DMF (1.6 mL) was stirred at 105 °C under argon. After 6 h, the starting material was consumed as indicated by TLC and water (0.04 mL) was added at 105 °C and stirring for 5 min. After cooling to room temperature, the reaction was diluted with brine and extracted with Et₂O for 3 times. The combined organic phases were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel to give compound **S6a** (6.8 mg, 70%).

Physical State: white solid.

Melting Point: 89 – 92 °C.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 5.04 (dtd, *J* = 9.8, 6.6, 3.5 Hz, 1H), 3.91 – 3.82 (m, 7H), 3.80 – 3.75 (m, 4H), 3.29 (dd, *J* = 15.8, 9.5 Hz, 1H), 3.10 (dd, *J* = 15.9, 7.0 Hz, 1H), 2.86 (ddd, *J* = 12.7, 8.9, 7.0 Hz, 1H), 1.94 (td, *J* = 13.1, 4.9 Hz, 1H), 1.86 – 1.76 (m, 1H), 1.74 – 1.58 (m, 5H), 1.42 (s, 3H), 1.39 – 1.34 (m, 4H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 180.1, 155.9, 153.8, 152.7, 149.7, 147.2, 137.6, 120.5, 118.2, 85.3, 64.8, 60.9, 59.6, 59.1, 42.8, 37.4, 36.9, 32.5, 29.8, 29.5, 29.1, 28.9, 18.6.

HRMS (ESI-TOF): calculated for $C_{23}H_{31}O_6^+$ ([M+H]⁺) m/z: 403.2215; Found 403.2214.

Synthesis of Compound S6b

 (\pm) -(9S,11bR)-9-(hydroxymethyl)-5,7,11-trimethoxy-4,4,11b-trimethyl-1,3,4,8,9,11b-hexahydrophenanthro[3,2-b]furan-6(2H)-one

A mixture of iodide **20b** (6.7 mg, 0.01 mmol) and CF₃COOCs (27.8 mg, 0.11 mmol) in DMF (0.8 mL) was stirred at 105 °C under argon. After 6 h, the starting material was consumed as indicated by TLC. After cooling to room temperature, the reaction was quenched with brine and the mixture was extracted with Et₂O for 3 times. The combined organic phases were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel to give compound **S6b** (4.1 mg, 78%).

Physical State: colorless oil.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 5.03 (dddd, *J* = 9.3, 7.5, 5.7, 3.3 Hz, 1H), 3.93 – 3.98 (m, 4H), 3.84 (s, 3H), 3.80 – 3.75 (m, 4H), 3.33 (dd, *J* = 15.8, 9.4 Hz, 1H), 3.08 (dd, *J* = 15.8, 7.4 Hz, 1H), 2.93 – 2.83 (m, 1H), 1.94 (td, *J* = 13.1, 5.3 Hz, 2H), 1.86 – 1.76 (m, 1H), 1.70 – 1.54 (m, 5H), 1.40 (s, 3H), 1.40 – 1.33 (m, 4H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 180.2, 155.9, 153.7, 152.7, 149.6, 147.2, 137.6, 120.6, 118.2, 85.3, 64.8, 60.9, 59.6, 59.1, 42.7, 37.3, 36.9, 32.3, 29.5, 29.5, 29.2, 28.9, 18.4. HRMS (ESI-TOF): calculated for C₂₃H₃₁O₆⁺ ([M+H]⁺) m/z: 403.2215; Found 403.2212.

Synethesis of Compound 5 (villosin C)

 $(\pm) - (9R, 11bR) - 5, 7, 11 - trihydroxy - 9 - (hydroxymethyl) - 4, 4, 11b - trimethyl - 1, 3, 4, 8, 9, 11b - hexahydrophenanthro [3, 2-b] furan - 6(2H) - one$

To a solution of compound **S6a** (13.7 mg, 0.03 mmol) in DCM (0.4 mL) was added BBr₃ (0.15 mmol, dissolved in 0.15 mL DCM) at room temperature under argon. After consumption of the starting material as indicated by TLC, the reaction was quenched with water. The resulting

mixture was then extracted with EtOAc for 3 times. The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel to afford villosin C (**5**, 8.4 mg, 68%).

Physical State: yellow solid.

Melting Point: 72 – 76 °C.

¹**H NMR (600 MHz, Chloroform-***d***):** δ 12.58 (s, 1H), 6.92 (s, 1H), 5.13 (dtd, *J* = 9.8, 6.9, 3.1 Hz, 1H), 4.98 (s, 1H), 3.92 (dd, *J* = 12.2, 3.2 Hz, 1H), 3.83 (dd, *J* = 12.2, 6.6 Hz, 1H), 3.32 (dd, *J* = 15.4, 9.5 Hz, 1H), 3.10 – 3.04 (m, 2H), 2.01 (td, *J* = 13.3, 5.4 Hz, 2H), 1.90 – 1.83 (m, 1H), 1.69 – 1.64 (m, 5H), 1.45 (s, 3H), 1.43 (s, 3H), 1.42 – 1.40 (m, 1H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 183.0, 154.4, 153.4, 144.4, 141.7, 140.1, 130.8, 110.5, 107.2, 86.6, 64.9, 42.0, 36.7, 36.4, 29.9, 28.9, 28.1, 27.5, 27.2, 17.8.

HRMS (ESI-TOF): calculated for $C_{20}H_{25}O_6^+$ ([M+H]⁺) m/z: 361.1646; Found 361.1647.

Synethesis of Compound 5a

 (\pm) -(9S,11bR)-5,7,11-trihydroxy-9-(hydroxymethyl)-4,4,11b-trimethyl-1,3,4,8,9,11b-hexahydrophenanthro[3,2-b]furan-6(2H)-one

To a solution of compound **S6b** (7.2 mg, 0.02 mmol) in DCM (0.5 mL) was added BBr₃ (0.18 mmol, dissolved in 0.18 mL DCM, 9.0 equiv) at 0 °C under argon. After 2 - 3 h, the reaction was warmed up to room temperature. After consumption of the starting material as indicated by TLC, the reaction was quenched with water. The resulting mixture was then extracted with EtOAc for 3 times. The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel to afford to 16-*epi*-villosin C (**5a**, 3.6 mg, 56%).

Physical State: yellow soild.

Melting Point: 45 - 50 °C.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 12.59 (s, 1H), 6.92 (s, 1H), 5.12 (dtd, *J* = 10.0, 7.0, 3.1 Hz, 1H), 4.99 (s, 1H), 3.91 (dd, *J* = 12.2, 3.1 Hz, 1H), 3.82 (dd, *J* = 12.2, 6.8 Hz, 1H), 3.32 (dd, *J* = 15.5, 9.5 Hz, 1H), 3.11 – 3.00 (m, 2H), 2.01 (td, *J* = 12.9, 5.8 Hz, 1H), 1.91 – 1.80 (m, 1H), 1.71 – 1.64 (m, 5H), 1.44 (s, 3H), 1.43 (s, 3H), 1.42 – 1.39 (m, 1H).

¹³C NMR (101 MHz, Chloroform-*d*): δ 183.1, 154.4, 153.4, 144.5, 141.7, 140.2, 130.8, 110.6, 107.3, 86.6, 65.0, 42.0, 36.7, 36.4, 29.9, 28.9, 28.1, 27.4, 27.2, 17.8.
HRMS (ESI-TOF): calculated for C₂₀H₂₃O₆⁻ ([M-H]⁻) m/z: 359.1495; Found 359.1496.

Synethesis of Compound S7

 (\pm) -(9S,11bR)-5,7,11-trimethoxy-4,4,9,11b-tetramethyl-1,3,4,8,9,11b-hexahydrophenanthro[3,2-b]furan-6(2H)-one

To a solution of compound **20a** (5.8 mg, 0.01 mmol) and AIBN (2 mg, 0.01 mmol) in toluene (0.6 mL) was added Bu₃SnH (9 μ L, 0.03 mmol). After stirring at 60 °C overnight, the reaction was quenched with water. The resulting mixture was then extracted with EtOAc for 3 times. The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel to afford compound **S7** (4.1 mg, 94%)

Physical State: colorless oil.

¹**H NMR (600 MHz, Chloroform-***d***):** δ 5.09 – 5.02 (m, 1H), 3.89 (s, 3H), 3.84 (s, 3H), 3.77 (s, 3H), 3.37 (dd, J = 15.5, 8.9 Hz, 1H), 2.92 – 2.86 (m, 2H), 1.95 (td, J = 13.0, 5.0 Hz, 1H), 1.85 – 1.78 (m, 1H), 1.70 – 1.61 (m, 5H), 1.50 (d, J = 6.4 Hz, 3H), 1.42 (s, 3H), 1.39 (s, 3H), 1.39 – 1.35 (m, 1H).

¹³C NMR (151 MHz, Chloroform-*d*): δ 180.2, 156.2, 153.6, 152.8, 149.7, 147.0, 137.6, 120.8, 117.9, 81.8, 60.9, 59.5, 59.1, 42.7, 37.4, 36.9, 34.5, 32.4, 29.6, 29.5, 29.2, 22.1, 18.5.

HRMS (ESI-TOF): calculated for C₂₃H₃₁O₅⁺ ([M+H]⁺) m/z: 387.2166; Found 387.2165.

Synethesis of Compound 4 (teuvincenone B)

(9S,11bR)-5,7,11-trihydroxy-4,4,9,11b-tetramethyl-1,3,4,8,9,11b-hexahydrophenanthro[3,2-b]furan-6(2H)-one

Compound **S7** (3.4 mg, 0.009 mmol) was dissolved in HBr (33% in HOAc, 0.3 mL) and stirred at 80 °C. After 3 h, more HBr (33% in HOAc, 0.25 mL) was added, and the reaction was stirred for another 3 h before cooling to room temperature and quenched with aqueous NaHCO₃. The resulting mixture was extracted with EtOAc for 3 times. The organic layers were combined, washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by chromatography on silica gel to afford teuvincenone (**4**, 1.6 mg, 53%).

Physical State: yellow solid.

Melting Point: 189 – 192 °C.

¹**H NMR (500 MHz, Chloroform-***d***):** δ 12.59 (s, 1H), 6.94 (s, 1H), 5.19 – 5.08 (m, 1H), 4.71 (s, 1H), 3.40 (dd, *J* = 15.3, 9.0 Hz, 1H), 3.09 – 3.01 (m, 1H), 2.88 (dd, *J* = 15.3, 7.4 Hz, 1H), 2.01 (td, *J* = 13.2, 6.2 Hz, 1H), 1.91 – 1.82 (m, 1H), 1.69 – 1.63 (m, 5H), 1.53 (d, *J* = 6.3 Hz, 3H), 1.45 (s, 3H), 1.43 (s, 3H), 1.42 – 1.39 (m, 1H).

¹³C NMR (126 MHz, Chloroform-*d*): δ 183.0, 154.8, 153.6, 144.0, 141.6, 139.6, 130.8, 110.8, 106.8, 83.4, 41.9, 36.6, 36.4, 34.5, 29.9, 28.1, 27.5, 27.2, 22.1, 17.8.

HRMS (ESI-TOF): calculated for C₂₀H₂₅O₅⁺ ([M+H]⁺) m/z: 345.1697; Found 345.1697.

4. Spectral Data Comparison of Natural Products with Synthetic Products

4.1 villosin C

Table S4 ¹H NMR spectroscopic data of villosin C and compound 5a in CDCl₃ (δ in ppm, J in Hz)^[5]

No	5 (isolated)	5 (synthet	ic)	5a (synthet	ic)
INO.	δ _H (500 MHz)	δ _H (600MHz)	$\Delta\delta_{ m H}$	δ _H (400 MHz)	$\Delta \delta_{ m H}$
1α	1.65, m	1.69 – 1.64, m	-	1.71 – 1.64, m	-
1β	3.07, m	3.10 – 3.04, m	-	3.11 – 3.00, m	-
2α	1.65, m	1.69 – 1.64, m	-	1.71 – 1.64, m	-
2β	1.87, m	1.90 – 1.83, m	-	1.91 – 1.80, m	-
3α	1.41, m	1.42 – 1.40, m	-	1.42 – 1.39, m	-
38	2.01, td (13.0,	2.01, td (13.3,	0.00	2.01, td (12.9,	0.00
50	6.1)	5.4)	0.00	5.8)	0.00
150	3.31, dd (15.5,	3.32, dd (15.4,	0.01	3.32, dd (15.5,	0.01
150	9.5)	9.5)	0.01	9.5)	0.01
15	3.03, m	3.10 – 3.04, m	-	3.11 – 3.00, m	-
16a	5.12 m	5.13, dtd (9.8,	0.01	5.12, dtd (10.0,	0.00
100	5.12, 11	6.9, 3.1)	0.01	7.0, 3.1)	0.00
17a	3.82, dd (12.2,	3.83, dd (12.2,	0.01	3.82, dd (12.2,	0.00
174	6.7)	6.6)	0.01	6.8)	0.00
17b	3.91, dd (12.2,	3.92, dd (12.2,	0.01	3.91, dd (12.2,	0.00
1,0	2.9)	3.2)	0.01	3.1)	0.00
18	1.43, s	1.43, s	0.00	1.43, s	0.00
19	1.45, s	1.45, s	0.00	1.44, s	-0.01
20	1.66, s	1.69 – 1.64, m	-	1.71 – 1.64, m	-
6-OH	6.92, s	6.92, s	0.00	6.92, s	0.00
11-OH	5.12, s	4.98, s	-0.14	4.99, s	-0.13
14-OH	12.58, s	12.58, s	0.00	12.59, s	0.01

Table S5 ^{13}C NMR spectroscopic data of villosin C and compound 5a in CDCl3 (δ in ppm)^{[5]}

No	5 (isolated)	5 (synthe	etic)	5a (synth	etic)
INU.	δ _C (125 MHz)	δ _C (126 MHz)	$\Delta\delta_{\mathrm{C}}$	δ _C (101 MHz)	$\Delta\delta_{ m C}$
1	29.8	29.9	0.1	29.9	0.1
2	17.7	17.8	0.1	17.8	0.1
3	36.3	36.4	0.1	36.4	0.1
4	36.5	36.7	0.2	36.7	0.2
5	144.4	144.4	0.0	144.5	0.1
6	141.5	141.7	0.2	141.7	0.2
7	182.9	183.0	0.1	183.1	0.2
8	107.2	107.2	0.0	107.3	0.1
9	140.1	140.1	0.0	140.2	0.1
10	41.9	42.0	0.1	42.0	0.1
11	130.7	130.8	0.1	130.8	0.1
12	153.3	153.4	0.1	153.4	0.1
13	110.4	110.5	0.1	110.6	0.2
14	154.3	154.4	0.1	154.4	0.1
15	28.8	28.9	0.1	28.9	0.1
16	86.4	86.6	0.2	86.6	0.2
17	64.8	64.9	0.1	65.0	0.2
18	27.9	28.1	0.2	28.1	0.2
19	27.1	27.2	0.1	27.2	0.1
20	27.3	27.5	0.2	27.4	0.1

4.2 teuvincenone B

Table S6 ¹H NMR spectroscopic data of teuvincenone B in CDCl₃ (δ in ppm, J in Hz)^[6]

Na	4 (isolated)	4 (synthetic)	
INO.	δ _H (300 MHz)	δ _H (500MHz)	$\Delta \delta_{ m H}$
1α	а	1.69 – 1.63, m	-
1β	3.06, m	3.09 – 3.01, m	-
2α	а	1.69 – 1.63, m	-
2β	а	1.91 – 1.82, m	-
3α	а	1.42 – 1.39, m	-
3β	а	2.01, td (13.2, 6.2)	-
15α	3.40, dd (15.2, 9.1)	3.40, dd (15.3, 9.0)	0.00
15	2.88, dd (15.2, 7.3)	2.88, dd (15.3, 7.4)	0.00
16α	5.14, ddq (9.0, 7.3, 6.3)	5.19 - 5.08, m	-
17	1.53, d	1.53, d (6.3)	0.00
18	1.45, s	1.45, s	0.00
19	1.43, s	1.43, s	0.00
20	1.66, s	1.69 – 1.63, m	-
6-OH	6.94, s	6.94, s	0.00
11 - OH	4.73, s	4.71, s	-0.02
14-OH	12.60, s	12.59, s	-0.01

teuvincenone B (4)

^{*a*} overlapped signal.

Table S7 ¹³C NMR spectroscopic data of Teuvincenone B CDCl₃ (δ in ppm)^[7-9]

No	4 (isolated) ^[7]	4 (isolated) ^[8]	4 (isolated) ^[9]	4 (synthet	ic)
110.	δc (50 MHz)	δc (125 MHz)	δ _C (100 MHz)	δc (126 MHz)	$\Delta \delta c^{[9]}$
1	27.9	29.7	30.0	29.9	-0.1
2	17.6	17.7	17.9	17.8	-0.1
3	36.3	36.1	36.5	36.4	-0.1
4	36.5	27.5	36.7	36.6	-0.1
5	141.5	144.2	141.7	141.6	-0.1
6	143.9	143.5	144.1	144.0	-0.1
7	182.8	182.5	183.0	183.0	0.0
8	107.5	107.7	106.9	106.8	-0.1
9	139.5	141.2	139.7	139.6	-0.1
10	41.8	41.8	42.0	41.9	-0.1
11	130.7	130.7	130.9	130.8	-0.1
12	153.4	156.5	153.6	153.6	0.0
13	110.6	111.1	110.8	110.8	0.0
14	154.6	153.3	154.8	154.8	0.0
15	34.3	33.9	34.6	34.5	-0.1
16	83.2	81.7	83.4	83.4	0.0
17	22.0	21.5	22.2	22.1	-0.1
18	27.9	27.9	27.6 ^a	27.5	-0.1
19	22.0	27.3	27.3 ^{<i>a</i>}	27.2	-0.1
20	27.1	27.3	28.2^{a}	28.1	-0.1

teuvincenone B (4)

^{*a*}The original reported chemical shifts in ref 9 for C-18, C-19 and C-20 were 28.2, 22.2 and 27.3 ppm, which were revised to 27.6, 27.3 and 28.2 ppm as told by Linzhen Li (first author of ref 9) though email communication.

5. HPLC Chromatographs

Figure S1 HPLC trace comparison

The identification of compound **5** and compound **5a** was determined by HPLC analysis on an Agilent 1260 LC/MS instrument, employing an InfinityLab Poroshell 120 column (EC-C18 2.7 μ m, 1000 bar, 3.0*150 mm). Experimental conditions: 5% – 70% MeCN in H₂O, v = 0.8 mL/min, λ = 254 nm.

6. X-Ray Crystallographic Data for Compound 20b

Figure S2 X-Ray Crystallographic Structure for Compound 20b

Table 50 CI ystal uata and structure remembring for 20	Table S	58	Crystal	data	and	structure	refinement	for	20b
--	---------	----	---------	------	-----	-----------	------------	-----	-----

Identification code	2023804zn_0m
Empirical formula	C23H29IO5
Formula weight	512.36
Temperature/K	100
Crystal system	monoclinic
Space group	P21
a/Å	6.1561(4)
b/Å	17.3244(10)
c/Å	10.0988(6)
α/°	90
β/°	102.522(2)
$\gamma/^{o}$	90
Volume/Å ³	1051.42(11)
Ζ	2
$\rho_{calc}g/cm^3$	1.618
μ/mm^{-1}	12.232
F(000)	520.0
Crystal size/mm ³	0.12 imes 0.06 imes 0.05
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)
2Θ range for data collection/°	8.97 to 148.918
Index ranges	$\textbf{-7} \leqslant h \leqslant \textbf{7}, \textbf{-21} \leqslant k \leqslant \textbf{21}, \textbf{-12} \leqslant \textbf{1} \leqslant \textbf{12}$

Reflections collected	11659
Independent reflections	4067 [$R_{int} = 0.0889$, $R_{sigma} = 0.0936$]
Data/restraints/parameters	4067/1/268
Goodness-of-fit on F ²	1.014
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0456, wR_2 = 0.1112$
Final R indexes [all data]	$R_1 = 0.0475, wR_2 = 0.1138$
Largest diff. peak/hole / e Å ⁻³	1.13/-1.48
Flack parameter	0.086(8)

Table S9 Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for 2023804zn_0m. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atomx		у	Z	U(eq)		
I1	-2312.1(6)	2697.2(4)	-275.2(4)	25.47(17)		
03	4693(10)	3639(3)	4774(6)	23.1(12)		
02	6766(9)	5340(3)	530(6)	20.0(11)		
C9	5345(14)	4076(4)	3779(9)	19.9(16)		
01	3553(10)	4134(3)	191(6)	26.1(12)		
C4	4304(13)	3914(4)	2476(9)	22.3(16)		
C5	4781(13)	4333(4)	1418(8)	20.2(16)		
O4	8714(9)	4258(3)	6253(6)	22.5(12)		
C14	11042(13)	5547(5)	2626(9)	22.1(16)		
C6	6292(12)	4950(4)	1630(8)	18.2(15)		
C18	11345(14)	6742(4)	5052(9)	21.8(16)		
C23	-171(13)	3675(4)	-359(9)	22.7(16)		
C19	10702(15)	7199(5)	6219(9)	26.5(17)		
C17	10981(14)	7288(4)	3823(9)	24.8(17)		
05	10713(9)	5601(3)	7018(6)	21.3(11)		
C22	4111(15)	4023(5)	5912(10)	27.8(18)		
C15	7853(13)	6534(4)	2435(8)	21.1(15)		
C16	8555(15)	7299(4)	3134(9)	24.6(17)		
C3	2451(15)	3356(5)	1922(9)	28.5(18)		
C7	7370(12)	5132(4)	2969(8)	18.6(15)		
C2	2135(12)	3478(5)	377(9)	24.0(18)		

Table S9 Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 2023804zn_0m. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom x		у	Z	U(eq)
C8	6971(13)	4668(4)	4042(9)	18.2(15)
C12	9936(13)	6007(4)	4709(8)	18.2(15)
C11	9648(12)	5508(4)	5676(8)	17.6(14)
C20	13854(14)	6519(5)	5506(11)	28.7(19)
C1	4896(14)	5687(5)	-368(9)	26.5(17)
C13	9004(12)	5812(4)	3207(8)	18.2(15)
C21	9231(14)	5652(5)	7940(9)	25.0(16)
C10	8437(13)	4761(4)	5395(8)	17.8(15)

Table S10 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 2023804zn_0m. The Anisotropic displacement factor exponent takes the form: -2 π^2 [$h^2a^{*2}U_{11}$ +2hka*b*U₁₂+····].

Aton	n U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂			
I1	26.2(2)	28.8(2)	21.1(3)	-3.3(3)	4.46(18)	-3.9(3)			
03	36(3)	18(2)	14(3)	3(2)	4(2)	-6(2)			
02	24(3)	24(3)	13(3)	5(2)	5(2)	0(2)			
C9	25(4)	18(4)	14(4)	8(3)	-1(3)	4(3)			
01	36(3)	25(3)	17(3)	0(2)	4(2)	-8(2)			
C4	26(4)	18(3)	22(4)	-2(3)	3(3)	-7(3)			
C5	28(4)	15(3)	16(4)	0(3)	3(3)	2(3)			
04	29(3)	19(3)	18(3)	4(2)	3(2)	-2(2)			
C14	27(4)	23(4)	19(4)	-3(3)	10(3)	-4(3)			
C6	24(4)	17(3)	13(4)	6(3)	4(3)	-1(3)			
C18	31(4)	15(3)	18(4)	-2(3)	2(3)	-5(3)			
C23	30(4)	18(3)	21(4)	-1(3)	7(3)	-7(3)			
C19	38(4)	23(4)	21(4)	-5(3)	11(4)	-5(3)			
C17	37(4)	20(4)	18(4)	0(3)	6(3)	-5(3)			
05	26(3)	24(3)	12(3)	-2(2)	2(2)	-3(2)			

Aton	n U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C22	33(4)	27(4)	26(5)	5(4)	11(4)	1(3)
C15	31(4)	13(3)	18(4)	-2(3)	2(3)	-3(3)
C16	42(5)	12(4)	18(4)	1(3)	3(4)	-2(3)
C3	36(4)	25(4)	21(4)	1(3)	-2(4)	-10(3)
C7	23(3)	16(3)	17(4)	0(3)	5(3)	3(3)
C2	26(4)	21(4)	25(5)	-5(3)	5(4)	-8(3)
C8	21(4)	14(3)	20(4)	7(3)	5(3)	3(3)
C12	23(4)	17(3)	14(4)	1(3)	4(3)	0(3)
C11	19(3)	15(3)	16(4)	2(3)	-1(3)	0(3)
C20	27(4)	25(4)	33(5)	-4(4)	5(4)	-7(3)
C1	32(4)	23(4)	23(4)	4(3)	2(4)	3(3)
C13	21(3)	16(3)	17(4)	0(3)	3(3)	2(3)
C21	33(4)	25(4)	16(4)	3(3)	4(3)	-2(3)
C10	22(3)	19(4)	12(4)	2(3)	4(3)	1(3)

Table S10 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 2023804zn_0m. The Anisotropic displacement factor exponent takes the form: -2 π^2 [$h^2a^{*2}U_{11}$ +2hka*b*U₁₂+···].

Table S11 Bond Lengths for 2023804zn_0m.

Ator	n Aton	n Length/Å	Aton	1 Aton	n Length/Å
I1	C23	2.159(7)	C18	C17	1.538(11)
O3	С9	1.385(10)	C18	C12	1.538(10)
03	C22	1.439(11)	C18	C20	1.562(12)
02	C6	1.384(9)	C23	C2	1.492(11)
02	C1	1.434(10)	C17	C16	1.505(12)
C9	C4	1.362(11)	05	C11	1.381(9)
C9	C8	1.417(11)	05	C21	1.441(10)
01	C5	1.349(10)	C15	C16	1.520(10)
01	C2	1.470(10)	C15	C13	1.561(10)
C4	C5	1.376(12)	C3	C2	1.545(12)
C4	C3	1.507(11)	C7	C8	1.414(11)

Aton	nAton	n Length/Å	Atom Atom Length/Å				
C5	C6	1.402(10)	C7	C13	1.533(10)		
O4	C10	1.214(10)	C8	C10	1.473(13)		
C14	C13	1.565(10)	C12	C11	1.344(11)		
C6	C7	1.406(11)	C12	C13	1.538(11)		
C18	C19	1.540(11)	C11	C10	1.490(10)		

Table S11 Bond Lengths for 2023804zn_0m.

Table S12 Bond Angles for 2023804zn_0m.

Atom Atom Atom Angle/°					Atom Atom Atom Angle/°				
<u>C9</u>	03	C22	119.2(6)	C4	C3	C2	101.9(7)		
C6	02	C1	115.6(6)	C6	C7	C8	119.0(7)		
03	С9	C8	124.3(8)	C6	C7	C13	118.7(7)		
C4	С9	03	116.0(7)	C8	C7	C13	122.2(7)		
C4	C9	C8	119.7(8)	01	C2	C23	106.6(7)		
C5	01	C2	108.1(6)	01	C2	C3	106.7(6)		
C9	C4	C5	120.4(7)	C23	C2	C3	115.6(7)		
C9	C4	C3	130.6(8)	C9	C8	C10	121.2(7)		
C5	C4	C3	108.8(7)	C7	C8	С9	120.1(8)		
01	C5	C4	114.0(7)	C7	C8	C10	118.4(7)		
01	C5	C6	123.8(7)	C18	C12	C13	118.4(6)		
C4	C5	C6	122.0(8)	C11	C12	C18	121.7(7)		
02	C6	C5	119.8(7)	C11	C12	C13	119.7(7)		
02	C6	C7	121.7(7)	05	C11	C10	113.6(6)		
C5	C6	C7	118.5(7)	C12	C11	05	121.9(7)		
C19	C18	C20	107.7(8)	C12	C11	C10	124.0(7)		
C17	C18	C19	106.5(6)	C15	C13	C14	111.2(6)		
C17	C18	C20	110.5(7)	C7	C13	C14	105.5(6)		
C12	C18	C19	111.8(7)	C7	C13	C15	109.0(6)		
C12	C18	C17	110.6(7)	C7	C13	C12	114.5(6)		
C12	C18	C20	109.5(6)	C12	C13	C14	106.1(6)		

Atom Atom Atom Angle/°				Ator	Atom Atom Angle/°				
C2	C23	I1	108.9(5)	C12	C13	C15	110.4(6)		
C16	C17	C18	109.7(7)	O4	C10	C8	123.1(7)		
C11	05	C21	114.1(6)	O4	C10	C11	120.0(7)		
C16	C15	C13	114.5(7)	C8	C10	C11	116.9(6)		
C17	C16	C15	111.0(7)						

Table S12 Bond Angles for 2023804zn_0m.

Table S13 Torsion Angles for 2023804zn_0m.

A	В	С	D	Angle/°	A	B	С	D	Angle/°
I1	C23	3 C 2	01	175.3(5)	C19	C18	3 C12	C13	136.0(7)
I1	C23	3 C 2	C3	-66.4(8)	C17	C18	3 C12	C11	-167.7(7)
03	C9	C4	C5	177.9(7)	C17	7C18	3C12	C13	17.4(10)
03	С9	C4	C3	3.4(13)	05	C11	C10	04	-10.7(10)
03	С9	C8	C7	-173.9(7)	05	C11	C10	C8	170.6(7)
03	С9	C8	C10	12.6(12)	C22	203	C9	C4	-130.2(8)
02	C6	C7	C8	-174.1(6)	C22	203	C9	C8	49.2(11)
02	C6	C7	C13	3.7(11)	C16	5C15	5 C 1 3	C14	-97.4(8)
С9	C4	C5	01	-177.1(7)	C16	5C15	5 C13	C7	146.6(7)
С9	C4	C5	C6	-1.7(12)	C16	5C15	5 C13	C12	20.0(9)
С9	C4	C3	C2	-179.8(9)	C3	C4	C5	01	-1.5(10)
С9	C8	C10	04	17.2(13)	C3	C4	C5	C6	173.8(7)
С9	C8	C10)C11	-164.1(7)	C7	C8	C10	04	-156.4(7)
01	C5	C6	02	-7.0(12)	C7	C8	C10	C11	22.3(11)
01	C5	C6	C7	176.0(7)	C2	01	C5	C4	-3.3(9)
C4	C9	C8	C7	5.5(12)	C2	01	C5	C6	-178.5(7)
C4	C9	C8	C10)-167.9(8)	C8	C9	C4	C5	-1.6(12)
C4	C5	C6	02	178.1(7)	C8	C9	C4	C3	-176.1(8)
C4	C5	C6	C7	1.1(11)	C8	C7	C13	C14	108.9(8)
C4	C3	C2	01	-7.0(8)	C8	C7	C13	C15	-131.5(7)
Table S13 Torsion Angles for 2023804zn_0m.

A	B	С	D	Angle/°	A	B	С	D	Angle/°
C4	C3	C2	C23	-125.3(8)	C8	C7	C13	3 C12	2-7.3(10)
C5	01	C2	C23	130.6(7)	C12	2C18	3C17	7C16	540.8(9)
C5	01	C2	C3	6.5(9)	C12	2C11	l C10	04	161.3(7)
C5	C4	C3	C2	5.3(9)	C12	2C11	l C10)C8	-17.5(12)
C5	C6	C7	C8	2.8(11)	C11	l C12	2 C 1 3	3 C14	-103.1(8)
C5	C6	C7	C13	-179.4(6)	C11	l C12	2 C 1 3	3 C15	5136.3(7)
C6	C7	C8	C9	-6.1(11)	C11	l C12	2 C 1 3	8 C7	12.9(10)
C6	C7	C8	C10	167.6(7)	C2()C18	3C17	7C16	5162.3(7)
C6	C7	C13	8C14	-68.8(8)	C20)C18	8C12	2C11	70.3(10)
C6	C7	C13	8C15	50.7(9)	C2()C18	3C12	2C13	8-104.6(8)
C6	C7	C13	8C12	174.9(6)	C1	02	C6	C5	58.7(9)
C18	3C17	7C16	5C15	-69.7(9)	C1	02	C6	C7	-124.4(8)
C18	3C12	2C11	05	-4.2(11)	C13	3 C15	5C16	5C17	736.1(10)
C18	3C12	2C11	C10	-175.5(7)	C13	3 C 7	C8	C9	176.1(7)
C18	3C12	2C13	8C14	71.9(8)	C13	3C7	C8	C1()-10.2(11)
C18	3C12	2C13	8 C15	-48.7(9)	C13	3 C 1 2	2 C11	05	170.6(6)
C18	3C12	2C13	8 C 7	-172.1(6)	C13	3 C 1 2	2C11	C10)-0.7(11)
C19	PC18	3C17	7C16	-80.9(8)	C21	105	C11	C12	2 1 2 2 . 4 (8)
C19	9C18	3C12	2C11	-49.1(10)	C21	05	C11	C10)-65.4(8)

Table S14 Hydrogen Atom Coordinates ($^{A}\times10^{4}$) and Isotropic Displacem	ent Parameters (Å ² ×
10 ³) for 2023804zn_0m.	

Atom r	v	7	U(ea)	
	y	Á,	0(04)	
H14A 10548.91	5434.07	1656.48	33	
H14B 11694.47	5081.04	3103.92	33	
H14C 12159.25	5958.5	2754.46	33	
H23A-179.42	3803.65	-1314.81	27	
H23B -714.68	4129.67	67.62	27	
H19A11422.93	7705.92	6294.75	40	

Atom x	у	Z	U(eq)
H19B 11191	6914.97	7070.96	40
H19C 9083.47	7265.53	6033.05	40
H17A11472.87	7815.99	4125.56	30
H17B 11876.71	7111.75	3176.23	30
H22A4178.77	4583.52	5790.16	42
H22B 5158.93	3873.14	6747.88	42
H22C 2599.14	3875.72	5972.83	42
H15A 8187.1	6545.88	1519.55	25
H15B 6221.88	6477.74	2318.83	25
H16A 8279.17	7720.39	2456.47	30
H16B 7650.46	7401.58	3814.93	30
H3A 1079.94	3485.84	2237.66	34
H3B 2888	2818.14	2183.46	34
H2 2644.39	3005.51	-37.6	29
H20A 14758.14	6988.88	5672.2	43
H20B 14299.11	6215.45	4789.23	43
H20C 14080.27	6212.16	6339.61	43
H1A 4220.94	5312.84	-1063.52	40
H1B 5393.77	6139.88	-802.85	40
H1C 3796.74	5846.02	149.62	40
H21A 8119.86	5238.65	7739.81	38
H21B 8478.94	6153.56	7833.52	38
H21C 10085.28	5597.13	8874.24	38

Table S14 Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 2023804zn_0m.

Reference

- (a) P. Bie, C. Zhang, A. Li, X. Peng, T. Wu and X. Pan, First Total Synthesis of (±)-Celaphanol A, J. Chin. Chem. Soc., 2002, 49, 581-583; (b) D. C. Behenna, J. L. Stockdill and B. M. Stoltz, Synthesis of the Carbocyclic Core of Zoanthenol: Implementation of an Unusual Acid-Catalyzed Cyclization, Angew. Chem. Int. Ed., 2007, 46, 4077-4080.
- [2] (a) C. Yuan, Y. Liang, T. Hernandez, A. Berriochoa, K. N. Houk and D. Siegel, Metal-free Oxidation of Aromatic Carbon-Hydrogen Bonds through a Reverse-Rebound Mechanism, *Nature*, 2013, 499, 192-196. (b)
 A. Dragan, T. M. Kubczyk, J. H. Rowley, S. Sproules and N. C. O. Tomkinson, Arene Oxidation with Malonoyl Peroxides, *Org. Lett.*, 2015, 17, 2618-2621. (c) J. C. Griffith, K. M. Jones, S. Picon, M. J. Rawling, B.M, Kariuki, M. Campbell and N. C. O. Tomkinson, Alkene *syn*-Dihydroxylation with Malonoyl Peroxides. *J. Am. Chem. Soc.*, 2010, 132, 14409-14411.
- [3] L. Mandell, S. M. Cooper, B. Robin, C. F. Campana, R. A. Day Jr., Synthesis and Electrochemical Reduction of [2-(1,4-Benzoquinonyl)ethyl]-1,4-benzoquinone. J. Org. Chem., 1983, 48, 3132-3134.
- [4] (a) G. Yin, B. Zhou, X. Meng, A. Wu and Y. Pan, Efficient C-C Double-Bond Formation Reaction via a New Synthetic Strategy: a Self-Sorting Tandem Reaction, *Org. Lett.*, 2006, 8, 2245-2248. (b) T. Jiro, O. Shigeo, and I. Yasuji, A Convenient One-Pot Synthesis of Acenaphthenequinones from 1-Acenaphthenones by NBS-DMSO Oxidation. *Bull. Chem. Soc. Jpn.*, 1986, 59, 3311-3313. (c) D. P. Bauer, and R. S. Macomber, Iodide Catalysis of Oxidations with Dimethyl Sulfoxide. A Convenient Two-Step Synthesis of alpha-Diketones from alpha-Methylene Ketones. *J. Org. Chem.*, 1975, 40, 1990-1992.
- [5] L. Li, L. Wu, M. Wang, J. Sun and J. Liang, Abietane Diterpenoids from Clerodendrum trichotomum and Correction of NMR Data of Villosin C and B, *Nat. Prod. Commun.*, 2014, 9, 907-910.
- [6] M. C. Carreiras, B. Rodriguez, M. C. de la Torre, A. Perales, M. R. Torres, G. Savona and F. Piozzi, Rearranged Abietane Diterpenoids from the Root of Teucrium polium subsp. vincentinum, *Tetrahedron*, 1990, 46, 847-860.
- [7] A. Ulubelen, G. Topcu and S. Olçal, Rearranged Abietane Diterpenes from Teucrium divaricatum subsp. Villosum, *Phytochemistry*, 1994, 37, 1371-1375.
- [8] G. Valizadeh, S. N. Ebrahimi, M. Gholami, M. Mazaheritehrani, H. Rezadoost, A. Sonboli, Rearranged Abietane Diterpenoids from roots of Teucrium hircanicum L., J. Med. Plants, 2021, 20, 24-36.
- [9] L. Li, X. Yang and Y. Li, Chemical constituents of the n-butanol fraction from the stems of Clerodendrum trichotomum and their antitumor activities in vitro, *China pharmacy*, 2022, **33**, 2578-2583. DOI: 10.6039/j.issn.1001-0408.2022.21.04.

NMR Spectra

Compound S2 ¹H NMR

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

Compound 10a ¹H NMR

Compound 10b ¹H NMR

Compound 10b ¹H-¹H NOSEY NMR

Compound 14¹³C NMR

Compound 14a ¹H NMR

Compound 15 ¹H NMR

Compound 15¹³C NMR

Compound S3 ¹³C NMR

Compound 16 ¹H NMR

CDC13							
7. 26 5. 99 5. 87 5. 84	5.15 5.10 5.05	5. 56 5. 51 5. 28 5. 25	H. 66 H. 62 H. 61 H. 51 H. 57 H. 53	3. 83 3. 78	2. 99 2. 96 2. 89	L. 98 1. 97 1. 97 1. 92 1. 92 1. 92 1. 92 1. 92 1. 93 1. 33 1. 33	-0. 00
				NZ -			

Compound 16¹³C NMR

Compound 16 ¹H-¹H NOSEY NMR

Compound S4¹³C NMR

Compound 17¹H NMR

Compound 17¹³C NMR

Compound 9a ¹H NMR

Compound 9a ¹³C NMR

Compound 9a ¹H-¹H NOSEY NMR

Compound 9¹³C NMR

Compound 9 ¹H-¹H NOSEY NMR

Compound S5¹³C NMR

Compound 19¹H NMR

Compound 19¹³C NMR

Compound 20a ¹H NMR

Compound 20a ¹³C NMR

Compound S6a ¹³C NMR

Compound S6b ¹H NMR

Compound S6b ¹³C NMR

Compound 5a ¹³C NMR

. 210 $\dot{40}$ $\frac{1}{20}$ fl (ppm)

Compound S7¹H NMR

Compound S7¹³C NMR

Compound 4¹³C NMR

