Supporting Information

Total Synthesis of Peshawaraquinone Through Late-Stage [3+2]

Cycloaddition or a-Ketol Rearrangement

Huihui Guo,‡^{a,b} Li Ren,‡^a Xueli Sang,^a Xuena Lu,^a Tian Li,^a Wenming Zhou,^a Abdur Rauf,^c and Hong-Dong Hao^{*ab}

^aShaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China

^bState Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China

^cDepartment of Chemistry, University of Swabi, Anbar-23561, Khyber, Pakhtunkhwa, Pakistan

Table of Contents

1.	Comparison of natural and synthetic peshawaraquinone	S2
2.	Comparison of synthetic 11'-epi-peshawaraquinone	S6
3.	Evolution of synthetic strategy for peshawaraquinone	S9
	3.1 Asymmetric investigation	S9
	3.2 Attempted synthesis peshawaraquinone through allylic substitution	S13
	3.3 Dead-end when methoxy group was used as protecting group	S15
4.	Experimental Procedures and Characterization Data	S16
	4.1 General Experimental Details	S16
	4.2 Materials	S16
	4.3 Instrumentation ·····	S16
	4.4 Experimental Procedures	S17
5.	Crystal data for compound 25 ·····	S34
6.	References	S35
7.	¹ H and ¹³ C NMR Spectra	S36

1. Comparison of natural and synthetic peshawaraquinone

_

N	Our sample, CDCl ₃	George 's sample ^[1] , CDCl ₃	Natural ^[2] , CDCl ₃
N0.	¹ H, 500 MHz (δ)	¹ H, 500 MHz (δ)	¹ H, 400 MHz (δ)
1			
2			
3			
4			
5	8.10 (dd, <i>J</i> =7.3, 1.6 Hz, 1H)	8.13 (d, <i>J</i> =7.7 Hz, 1H)	8.12 (dd, <i>J</i> = 8.4, 1.6 Hz, 1H)
6	7.77 – 7.70 (m, 1H)	7.80 – 7.70 (m, 1H)	7.74 (m, 1H)
7	7.77 – 7.70 (m, 1H)	7.80 – 7.70 (m, 1H)	7.74 (m, 1H)
8	8.16 (dd, <i>J</i> = 7.4, 1.6 Hz, 1H)	8.16 (d, <i>J</i> = 6.8 Hz, 1H)	8.16 (dd, <i>J</i> = 8.4, 1.6 Hz, 1H)
9			
10			
11	3.85 (d, <i>J</i> = 10.3 Hz, 1H)	3.87 (d, <i>J</i> = 10.4 Hz, 1H)	3.82 (d, <i>J</i> = 10.4 Hz, 1H)
12	2.77 (d, <i>J</i> = 10.2 Hz, 1H)	2.78 (d, <i>J</i> = 10.2 Hz, 1H)	2.76 (d, <i>J</i> = 10.4 Hz, 1H)
13			
14	1.31 (s, 3H)	1.32 (s, 3H)	1.30 (s, 3H)
15	2.62 (dd, <i>J</i> = 13.6, 6.5 Hz, 1H);	2.64 (dd, <i>J</i> = 13.6, 6.4 Hz, 1H);	2.62 (dd, <i>J</i> = 13.2, 6.4 Hz, 1H);
15	2.17 (t, <i>J</i> =13.2 Hz, 1H)	2.18 (t, <i>J</i> =13.2 Hz, 1H)	2.17 (t, <i>J</i> = 13.2 Hz, 1H)
1'			
2'			
3'			
4'	3.64, (s, 1H)	3.57 (s, 1H)	3.54 (s, 1H)
5'	7.98 (d, <i>J</i> = 7.8 Hz, 1H)	8.00 (d, <i>J</i> = 7.8 Hz, 1H)	7.92 (dd, <i>J</i> = 8.0, 1.5 Hz, 1H)
6'	7.77 – 7.70 (m, 1H)	7.80 – 7.70 (m, 1H)	7.74 (m, 1H)
7'	7.51 (t, <i>J</i> = 7.5 Hz, 1H)	7.53 (t, <i>J</i> = 7.5 Hz, 1H)	7.51 (m, 1H)
8'	8.04 (dd, <i>J</i> = 7.9, 1.3 Hz, 1H)	8.06 (d, <i>J</i> = 7.8 Hz, 1H)	8.04 (dd, <i>J</i> = 7.6, 1.5 Hz, 1H)
9'			
10'			
11'	3.85 – 3.76 (m, 1H)	3.87 – 3.79 (m, 1H)	3.78 (m, 1H)
12'	5.94 (d, <i>J</i> = 9.7 Hz, 1H)	5.96 (d, <i>J</i> = 9.7 Hz, 1H)	5.94 (d, <i>J</i> = 9.6 Hz, 1H)
13'			
14'	1.76 (s, 3H)	1.78 (s, 3H)	1.76 (s, 3H)
15'	1.76 (s, 3H)	1.77 (s, 3H)	1.75 (s, 3H)

	Our sample, CDCl ₃	George 's sample ^[1] , CDCl ₃	Natural ^[2] , CDCl ₃
N0.	¹³ C, 125 MHz (δ)	¹³ C, 125 MHz (δ)	¹³ C, 100 MHz (δ)
1	184.4	184.5	184.4
2	120.7	120.8	120.7
3	154.9	155.1	154.9
4	179.1	179.2	179.3
5	126.7	126.8	126.7
6	133.6	133.8	133.6
7	134.3	134.4	134.3
8	126.7	126.8	126.7
9	131.9	132.1	131.9
10	131.1	131.1	131.1
11	35.5	35.7	35.5
12	53.5	53.7	53.6
13	87.1	87.2	87.1
14	21.6	21.7	21.5
15	48.7	48.9	48.7
1'	193.5	193.6	193.5
2'	73.4	73.6	73.4
3'	203.7	203.8	203.6
4'	85.9	86.0	85.8
5'	124.8	124.9	124.8
6'	135.7	135.8	135.5
7'	129.2	129.3	129.1
8'	127.6	127.8	127.6
9'	129.7	129.9	129.7
10'	144.6	144.8	144.6
11'	36.8	37.0	36.8
12'	133.9	122.5	122.4
13'	122.4	134.0	133.9
14'	18.1	18.2	18.1
15'	26.3	26.4	26.3

2. Comparison of synthetic 11'-epi-peshawaraquinone

11'-*epi*-peshawaraquinone

	¹ H NMR	¹³ C NMF	R (CDCl ₃)		
No.	Our sample (500 Hz)	George 's sample ^[1] (500 Hz)	Our sample (125 Hz)	George 's sample ^[1] (125 Hz)	Different (∆ ppm)
1			184.0	184.2	- 0.2
2			121.2	121.3	- 0.1
3			154.4	154.5	- 0.1
4			179.0	179.2	-0.2
5	8.13 (dd, <i>J</i> = 7.3, 1.6 Hz, 1H)	8.14 (d, <i>J</i> =7.4 Hz, 1H)	126.6	126.8	- 0.2
6	7.79 – 7.71 (m, 1H)	7.82 – 7.70 (m, 1H)	133.5	133.7	- 0.2
7	7.79 – 7.71 (m, 1H)	7.82 – 7.70 (m, 1H)	134.2	134.4	- 0.2
8	8.18 (dd, <i>J</i> = 7.3, 1.7 Hz, 1H)	8.18 (d, <i>J</i> = 7.4 Hz, 1H)	126.6	126.7	- 0.1
9			132.0	132.0	0
10			131.2	131.3	- 0.1
11	3.87 (d, <i>J</i> = 10.2 Hz, 1H)	3.88 (d, <i>J</i> = 10.1 Hz, 1H)	36.0	36.0	0
12	2.65 (d, <i>J</i> = 10.2 Hz, 1H)	2.65 (d, <i>J</i> = 10.2 Hz, 1H)	53.1	53.2	-0.1
13			89.0	89.2	- 0.2
14	1.34 (s, 3H)	1.34 (s, 3H)	23.6	23.7	- 0.1
	2.40 (dd $I = 14.4.5.1$ Hz 1H).	2.49 (dd, <i>J</i> = 14.4, 5.1 Hz,			
15	2.49 (dd, $J = 14.4, 5.1$ Hz, 111), 2.41 (dd, $I = 14.4, 9.5$ Hz, 1H)	1H); 2.41 (dd, <i>J</i> = 14.4, 9.6	47.5	47.7	- 0.2
	2.41 (uu, 3 - 14.4, 9.5 Hz, 111)	Hz, 1H)			
1'			193.0	193.2	- 0.2
2'			75.2	75.3	- 0.1
3'			202.4	202.6	- 0.2
4'	3.50 (s, 1H)	3.48, (s, 1H)	85.2	85.3	- 0.1
5'	7.98 (d, <i>J</i> = 7.8 Hz, 1H)	7.99 (d, <i>J</i> = 7.8 Hz, 1H)	124.5	124.6	- 0.1
6'	7.79 – 7.71 (m, 1H)	7.82 – 7.70 (m, 1H)	135.9	136.1	- 0.2
7'	7.53 (d, <i>J</i> = 7.5, 1.2 Hz, 1H)	7.54 (t, <i>J</i> = 7.7 Hz, 1H)	129.0	129.2	- 0.2
8'	8.10 (dd, <i>J</i> = 7.9, 1.3 Hz, 1H)	8.10 (d, <i>J</i> = 7.8 Hz, 1H)	127.9	128.0	- 0.1
9'			128.7	128.8	- 0.1
10'			146.6	146.7	- 0.1
11'	4.33 (td, <i>J</i> = 9.9, 5.1 Hz, 1H)	4.35 (td, <i>J</i> = 9.9, 5.1 Hz, 1H)	35.0	35.1	- 0.1
12'	5.59 (d, <i>J</i> = 10.3 Hz, 1H)	5.60 (d, <i>J</i> = 10.3 Hz, 1H)	123.1	123.2	-0.1
13 14'	1.75 (s. 3H)	1.76 (s. 3H)	133.2	155.4 18.1	- 0.2 - 0.1
15'	1.72 (s, 3H)	1.73 (s, 3H)	25.8	26.0	- 0.2

S8

3. Evolution of synthetic strategy for Peshawaraquinone.

3.1 Asymmetric investigation.

We tried racemic intermediate **10** as substrate for [3+2] cycloaddition:

From catalyst 1 (22), Peshawaraquinone (82:18 er)

HPLC (CHIRALCEL, *n*-Hex/Ethanol/Diethylamine = 75/25/0.1 (v/v/v), flow rate = 1 mL/min, UV 254 nm), t_R = 5.556 min (major), t_R = 6.896 min (minor).

Racemic mixture of peshawaraquinone

peshawaraquinone (82:18 er)

From catalyst 1 (22), 11'-epi-peshawaraquinone (93:7 er)

HPLC (CHIRALCEL, *n*-Hex/Ethanol/Diethylamine = 75/25/0.1 (v/v/v), flow rate = 1 mL/min, UV 254 nm), t_R = 5.256 min (major), t_R = 6.298 min (minor).

Racemic mixture of 11'-epi-peshawaraquinone

11'-epi-peshawaraquinone (93:7 er)

From intermediate **20**, chiral prep-HPLC was performed and two enantiopure products were isolated, their absolute configuration was confirmed by comparing the experimental and calculated electronic circular dichroism (ECD) spectra. (Figure S1)

HPLC (CHIRALPAK IG, *n*-Hex/IPA = 90/10 (v/v), flow rate = 1 mL/min, UV 254 nm), $t_R = 3.602$ min ((+)-20), $t_R = 4.360$ min ((-)-20).

R-20: $[\alpha]_D^{20} = -22.50$ (c = 0.1, CHCl₃); *S*-20: $[\alpha]_D^{20} = +19.40$ (c = 0.1, CHCl₃).

Figure S1. Experimental and calculated ECD spectra of S-20 and R-20.

From (–)-20, through the synthetic route, (–)-peshawaraquinone and (+)-11'-*epi*-peshawaraquinone were synthesized.

Natural product peshawaraquinone was re-isolated by Abdur Rauf and sent to us, chiral HPLC measurement confirmed that natural sample was a racemic mixture.

We also tried Takemoto's catalyst on George's sequence and found both 1 and 23 could be prepared.

To a stirred solution of dehydro- α -lapachone (50 mg, 0.21 mmol) in dry toluene (1 mL) at 50 °C was added (S, S)-Takemoto's catalyst (8.6 mg, 0.021 mmol) for 48 h. Solvent removal under reduced pressure and flash chromatography (petroleum ether/ethyl acetate = 10:1 to 2:1) afforded a mixture of (–)-**peshawaraquinone (1)** and (+)-**11'-epi-peshawaraquinone (23)** (22 mg, 0.046 mmol, 44%) in a ratio of 1:4, which was further separated through preparative TLC.

HPLC measurment:

For peshawaraquinone (72:28 er)

For 11'-epi-peshawaraquinone (77:23 er)

3.2 Attempted synthesis peshawaraquinone through allylic substitution.

Several Lewis acids were screened for coupling 9 with lawsone:

^aReaction conditions: **9** (1 equiv), lawsone (2.5 equiv), acid (0.05 equiv) in dry CH₂Cl₂ at 0 °C. ^bReaction set up at r.t. ^cused as reaction solvent.

Coupling reaction between **9** and three other aromatic compounds (furan, 1,2,4-benzenetriol and 1,2,4-naphthalenetriol) were also investigated.

Several Lewis acids were screened for coupling **16** with lawsone:

OAc 16	COH lawsone	AcO HO HO 17
Entry	Conditions ^a	Result
1	BF ₃ •OEt ₂	No reaction
2	Yb(OTf) ₃	No reaction
3	Sc(OTf) ₃	No reaction
4	SnCl ₄	No reaction
5	TFA ^b	No reaction
6	TFE, ^c 70 ^o C	No reaction
7	HFIP, ^c 50 °C	95% 17

^aReaction conditions: **16** (1 equiv), lawsone (2.5 equiv), acid (0.05 equiv) in dry CH_2CI_2 at 0 °C. ^bReaction set up at r.t. ^cused as reaction solvent.

This HFIP-promoted allylation was further tested on different substrates.^[a,b]

^aReaction conditions: alcohol (1 equiv), naphthoquinone (2.5 equiv) in HFIP (1 mmol/mL for alcohol), 50 °C. ^bYields of isolated products are given.

3.3 Dead-end when methoxy group was used as protecting group.

entry	conditions	result	entry	conditions	result	
1	Lil (10 eq), DMSO, 50 °C	SM decomposition	13	TMSOK (0.5 eq), THF, rt	SM decomposition	
2	Lil (2 eq), 2,6-lutidine, toluene, rt	No reaction	14	TMSI (1.3 eq), CHCl ₃ , rt	SM decomposition	
3	KOH (22 eq or 5 eq), MeOH, rt	SM decomposition	15	TMSI (0.4 eq), 2.6-lutidine CHCl ₃ , 0 °C	No reaction	
4	AICI ₃ (2 eq), DCE, - 78 °C	No reaction	16	HCI (0.5 eq), THF, 0 ^o C	No reaction	
5	AICI ₃ (15 eq), DCM, rt	SM decomposition	17	LiOH (2 eq), dioxane/H ₂ O=2:1, rt	SM decomposition	
6	AICI ₃ (5 eq), DCM, 0 °C	SM decomposition	18	LiCl (5 eq), DMSO, rt	SM decomposition	
7	MgI ₂ (7.5 eq), quinoline, THF, rt	SM decomposition	19	MeTeAIMe ₂ (5 eq), toluene, rt	No reaction	
8	Mgl ₂ (7.5 eq), quinoline	SM decomposition	20	(PhSe) ₂ (4 eq), NaBH ₄ , EtOH, 0 °C-75 °C	No reaction	
9	SiO ₂ , DCM, rt	No reaction	21	NBS (1 eq), THF, 0 °C	No reaction	
10	HFIP, rt	No reaction	22	BF ₃ ·Et ₂ O, DCM, rt		
11	K ₂ CO ₃ (1.2 eq), MeOH, rt	SM decomposition	LL	нз	No reaction	
12	K ₂ CO ₃ (5 eq), MeOH/H ₂ O=1:1, rt	No reaction	23	BBr ₃ (1eq, 2eq, 5eq), DCM, -78 °C	SM decomposition	

4. Experimental Procedures and Characterization Data

4.1 General Experimental Details

Unless otherwise stated, all reactions were performed with magnetic stirring under a positive pressure of nitrogen or argon gas. Oven-dried glassware (70 °C oven temperature) was further dried with a heat-gun at 650 °C under vacuum, followed by back-filling with inert gas, three times and fitted with rubber septa prior to use. Solids were added under inert gas counter flow or were dissolved and transferred in the appropriate solvent. Solutions and liquids reagents were transferred to reaction vessels by ovendried stainless-steel cannulas or nitrogen flushed syringes. Low temperature reactions were carried out in a Dewar vessel filled with acetone/dry ice (-78 °C) or distilled water/ice (0 °C). High temperature reactions were conducted using a heated silicon oil bath in reaction vessels equipped with a reflux condenser.

4.2 Materials

Dry tetrahydrofuran (THF), *t*-BuOMe, dichloromethane (CH₂Cl₂), ethanol (EtOH), toluene (PhMe) and methanol (MeOH) were purchased from Tansoole company as extra dry regents under inert gas atmosphere and stored over molecular sieves. Ethyl acetate (EtOAc), pentane, *t*-BuOMe, CH₂Cl₂ and MeOH used specifically for extraction and flash column chromatography were purchased at technical grade from commercial sources and distilled under reduced pressure. All other solvents and regents were used as received from commercial sources (Sigma Aldrich, Energy chemical, 3A, Innochem, and Adamas).

Reactions were monitored by thin-layer chromatography (TLC) using silica gel F254 precoated glass plates (*Merck*) and visualized by exposure to ultraviolet light ($\lambda = 254$ nm) or by staining with aqueous potassium permanganate (KMnO₄) solution (1.05 g KMnO₄, 7.2 g K₂CO₃, 1.5 mL 1N NaOH, 150 mL distilled H₂O), phosphomolybdic acid hydrate (PMA) solution (10.0 g 12MoO₃•H₃PO₄, 100 mL distilled EtOH) followed by heating with a heat gun (150–600 °C). Flash column chromatography was performed using silica gel (60 Å, 40–63 µm, Merck) and a forced flow of eluent.

4.3 Instrumentation

Proton (¹H) and carbon (¹³C) nuclear magnetic resonance spectra were recorded on a Brucker Avance III HD 500 MHz and 400 MHz spectrometer equipped with a CryoProbeTM. Proton chemical shifts are expressed in parts per million (ppm, δ scale) and referenced to residual undeuterated solvent signals (CDCl₃: 7.26 ppm; C₆D₆: 7.16 ppm). Carbon chemical shifts are expressed in parts per million (ppm, δ scale) and referenced to the central carbon resonance of the solvent (CDCl₃: 77.16 ppm; C₆D₆: 128.06 ppm). The reported data is represented as follows: chemical shift in parts per million (ppm, δ scale) (multiplicity, coupling constants J in Hz, integration intensity, proton assignment). Abbreviations used for analysis of multiplets are as follows: s (singlet), br (broad singlet), d (doublet), t (triplet), q (quartet), quin (quintet), h (hextet), and m (multiplet). Variable temperature NMR spectroscopy was performed at the *Northwest A&F University* NMR facility.

Mass spectroscopy (MS) experiments were performed in high resolution with an AB SCIEX Triple TOF 5600+ spectrometer (AB SCIEX, Boston, MA, USA) at the *Northwest A&F University* mass spectrometry facility.

IR spectra were recorded on a PerkinElmer Spectrum BXII FTIR spectrometer equipped with an attenuated total reflection (ATR) measuring unit. IR data is recorded in frequency of absorption (wavenumber in cm⁻¹) with bands described as weak (w), medium (m), strong (s), broad (br) and combinations thereof.

4.4 Experimental Procedures

Attempted synthesis peshawaraquinone through allylation. Compound 13

To a stirred solution of geranyl acetate (3.0 g, 15.3 mmol) in dry CH₂Cl₂ (180 mL) at 0 °C was added NaHCO₃ (1.28 g, 15.3 mmol), then a solution of *m*-CPBA (70%-75%, 3.66 g, 15.3 mmol) in dry CH₂Cl₂ (60 mL) was added dropwise over 30 mins. After stirring at r.t for 8 h, the reaction mixture was directly washed with sat. NaHCO₃ (3×80 mL) and sat. NaCl (80 mL), dried over anhydrous Na₂SO₄. Solvent removal under reduced pressure and flash chromatography (petroleum ether/ethyl acetate = 10:1) afforded compound **13**³ (3.21 g, 15.22 mmol, 99 %) as a colorless oil.

 $\mathbf{R}_f = 0.48$ (petroleum ether/ethyl acetate = 5:1, stains with PMA);

¹**H NMR (500 MHz, CDCl₃)**: δ = 5.22 (t, *J* = 7.8 Hz, 1 H), 5.17 (s, 1H), 4.41 (d, *J* = 7.2 Hz, 2H), 2.52 (t, *J* = 6.3 Hz, 1H), 2.09–1.96 (m, 2H), 1.87 (s, 3H), 1.56 (s, 3H), 1.51–1.47 (m, 2H), 1.13 (s, 3H), 1.09 (s, 3H).

Compound 14

To a stirred solution of diphenyl diselenide (3.68 g, 11.8 mmol) in anhydrous ethanol (20 mL) at 0 °C was added NaBH₄ (870 mg, 23.5 mmol) in portions. After the bubbling ceased and the yellow color of reaction mixture disappeared, a solution of epoxide **13** (1.0 g, 4.7 mmol) in anhydrous ethanol (20 mL) was added in one portion. The reaction mixture was refluxed for 10 mins (pre-heated oil bath) and then directly cooled down to r.t. Then the reaction mixture was directly concentrated to remove most of the solvent under reduced pressure and re-dissolved in EtOAc (30 mL). The reaction mixture was quenched

with sat. NaHCO₃ (30 mL), extracted with EtOAc (3×30 mL), and the combined organic layers were dried over anhydrous Na₂SO₄. Solvent removal under reduced pressure and flash chromatography (petroleum ether/ethyl acetate = 15:1) afforded compound **14** (1.44 g, 3.90 mmol, 83%) as a pale-yellow oil.

 $\mathbf{R}_f = 0.44$ (petroleum ether/ethyl acetate = 5:1, stains with PMA);

¹**H NMR (500 MHz, CDCl**₃): δ = 7.45–7.43 (m, 2H), 7.08–7.06 (m, 3H), 5.06 (t, *J* = 7.2 Hz, 1H), 4.40–4.32 (m, 2H), 2.92–2.90 (m, 1H), 2.36–2.31 (m, 1H), 2.08–2.02 (m, 1H), 1.96–1.90 (m, 1H), 1.85 (s, 3H), 1.51 (s, 3H), 1.49–1.44 (m, 1H), 1.19 (s, 3H), 1.13 (s, 3H);

¹³C NMR (125 MHz, CDCl₃): *δ* = 170.7, 140.9, 133.4 (2C), 131.4, 129.0 (2C), 127.0, 119.5, 72.9, 62.8, 61.1, 38.4, 30.2, 27.6, 26.6, 20.9, 16.2;

HRMS (**ESI**) calcd. for C₁₈H₂₆O₃SeNa [M+Na]⁺ 393.0939; found: 393.0938;

IR (neat) v_{max} 2967, 1730, 1451, 1374, 1240, 1024, 958, 741 cm⁻¹.

Compound S2

To a stirred solution of compound **14** (1.25 g, 3.4 mmol) in MeOH (15 mL) at r.t was added K₂CO₃ (937 mg, 6.8 mmol). After 5 h, the reaction mixture was directly concentrated to remove most of the solvent under reduced pressure and re-dissolved in EtOAc (15 mL). The reaction mixture was quenched with 1N HCl (7 mL), extracted with EtOAc (3×10 mL), and the combined organic layers were dried over anhydrous Na₂SO₄. Solvent removal under reduced pressure and flash chromatography (petroleum ether/ethyl acetate = 2:1) afforded compound **S2** (1.06 g, 3.24 mmol, 95%) as a pale-yellow oil.

 $\mathbf{R}_f = 0.29$ (petroleum ether/ethyl acetate = 2:1, stains with PMA);

¹**H NMR (500 MHz, CDCl₃)**: δ = 7.54–7.53 (m, 2H), 7.19–7.17 (m, 3H), 5.14 (t, *J* = 7.0 Hz, 1H), 4.00– 3.94 (m, 2H), 3.00 (dd, *J* = 11.7, 2.1 Hz, 1H), 2.67 (br, 1H), 2.42–2.37 (m, 1H), 2.14–2.08 (m, 1H), 1.97– 1.90 (m, 1H), 1.62–1.58 (m, 1H), 1.55 (s, 3H), 1.28 (s, 3H), 1.18 (s, 3H) ;

¹³C NMR (125 MHz, CDCl₃): *δ* = 138.3, 133.5 (2C), 131.4, 129.2 (2C), 127.2, 124.7, 72.8, 64.5, 59.2, 38.5, 30.9, 27.0, 26.8, 16.1;

HRMS (ESI) calcd. for C₁₆H₂₄O₂SeNa [M+Na]⁺ 351.0833; found: 351.0833;

IR (neat) v_{max} 2966, 1452, 1374, 1001, 739 cm⁻¹.

Compound S3

To a stirred solution of allylic alcohol **S2** (300 mg, 0.92 mmol) in CH_2Cl_2 (6 mL) at r.t was added Dess-Martin periodinane (466 mg, 1.1 mmol), after stirred for 20 mins, the reaction mixture was quenched with sat. Na₂SO₃ (5 mL), then extracted with CH_2Cl_2 (3 × 5 mL). The combined organic layers were washed with sat. NaCl (10 mL) and dried over anhydrous Na₂SO₄. Concentrated afford compound **15** which was directly used for the next step.

A solution of unsaturated aldehyde **15** (298 mg, 0.92 mmol), lawsone (240 mg, 1.38mmol), β -alanine (12 mg, 0.14 mmol) and AcOH (0.03 mL) in toluene (15 mL) was heated at 120 °C for 8 h. Then solvent removal under reduced pressure and flash chromatography (petroleum ether/ethyl acetate = 15:1) afforded compound **S3** (233 mg, 0.48 mmol, 53% over two steps) as an orange oil.

Compound S3 is a 1:1 diastereisomer mixture.

Data for compound S3:

 $\mathbf{R}_f = 0.50$ (petroleum ether/ethyl acetate = 2:1, stains with PMA);

¹**H NMR (500 MHz, CDCl₃)**: δ = 8.07–8.04 (m, 2H), 7.71–7.65 (m, 2H), 7.55–7.53 (m, 2H), 7.23–7.16 (m, 3H), 6.66 (dd, *J* = 22.4, 10.0 Hz, 1H), 5.61 (dd, *J* = 10.1, 5.7 Hz, 1H), 3.07 (td, *J* = 13.4, 2.4 Hz,, 1H), 2.37–2.22 (m, 1H), 2.15–2.04 (m, 1H), 2.00–1.79 (m, 1H), 1.75–1.56 (m, 1H), 1.48 (d, *J* = 10.4 Hz, 3H), 1.32 (d, *J* = 5.9 Hz, 3H), 1.24 (d, *J* = 9.2 Hz, 3H);

HRMS (ESI) calcd. for C₂₆H₂₆O₄SeNa [M+Na]⁺ 505.0888; found: 505.0890;

IR (neat) v_{max} 2971, 1723, 1659, 1364, 1162, 970 cm⁻¹.

Compound 9

To a stirred solution of compound **S3** (553 mg, 1.15 mmol) in CH₂Cl₂ (5 mL) at 0 °C was added pyridine (0.32 mL, 4.03 mmol) followed by H₂O₂ (0.94 mL, 9.19 mmol, 30% wt in H₂O). After stirred at 0 °C for 1 h, the reaction mixture was quenched with water (5 mL), extracted with EtOAc (3×5 mL), and the combined organic layers were dried over anhydrous Na₂SO₄. Solvent removal under reduced pressure and flash chromatography (petroleum ether/ethyl acetate = 5:1) afforded compound **9** (237 mg, 0.73 mmol, 64%) as an orange oil.

 $\mathbf{R}_f = 0.24$ (petroleum ether/ethyl acetate = 2:1, stains with PMA);

¹**H** NMR (500 MHz, CDCl₃): δ = 8.07 (d, *J* = 7.3 Hz, 2H), 7.72–7.65 (m, 2H), 6.68 (d, *J* = 10.0 Hz, 1H), 5.73–5.63 (m, 3H), 2.56 (dd, *J* = 14.1, 6.8 Hz, 1H), 2.43 (dd, *J* = 14.1, 6.3 Hz, 1H), 1.55 (br, 1H), 1.54 (s, 3H), 1.22 (s, 3H), 1.21 (s, 3H);

¹³C NMR (125 MHz, CDCl₃): *δ* = 181.8, 179.6, 152.7, 143.3, 134.0, 133.3, 131.50, 131.47, 129.5, 126.3, 126.2, 119.7, 117.9, 116.3, 82.4, 70.6, 44.3, 29.74, 29.68, 27.1;

HRMS (ESI) calcd. for C₂₀H₂₀O₄Na [M+Na]⁺ 347.1253; found: 347.1255;

IR (neat) v_{max} 2971, 2924, 1660, 1595, 1354, 1268, 1207, 1152, 968, 722 cm⁻¹.

Compound 16

To a stirred solution of (PhSe)₂ (1.6 g, 5.09 mmol) in CH₂Cl₂ (15 mL) at 0 °C was added H₂O₂ (0.5 mL, 5.09 mmol, 30% wt in H₂O). After stirring vigorously for 0.5 h, powered anhydrous MgSO₄ (3.1 g, 25.47 mmol) was added to the reaction mixture and stirred at 0 °C for 0.5 h. Geranyl acetate (500 mg, 2.55 mmol) was added to the mixture, after stirred at r.t for 5 h, the reaction mixture was cooled down to 0 °C and chilled *t*-BuOOH (70% wt solution in H₂O, 3.3 mL, 25.47 mmol) was added. The reaction mixture was warmed up to r.t and stirred for 12 h, quenched with sat. Na₂SO₃ (20 mL) and extracted with EtOAc (3 × 30 mL). The combined organic layers were washed with sat. NaCl (100 mL) and dried over anhydrous Na₂SO₄. Solvent removal under reduced pressure and flash chromatography (petroleum ether/ethyl acetate = 30:1 to 2:1) afforded compound **16** (487 mg, 2.29 mmol, 90%) as a colorless oil.

 $\mathbf{R}_f = 0.53$ (petroleum ether/ethyl acetate = 2:1, stains with PMA);

¹**H** NMR (500 MHz, C₆D₆): δ = 5.57–5.49 (m, 2H), 5.44–5.42 (m, 1H), 4.59 (d, *J* = 7.1 Hz, 2H), 2.55 (d, *J* = 5.2 Hz, 2H), 1.69 (s, 3H), 1.50 (s, 3H), 1.18 (s, 6H);

¹³C NMR (125 MHz, C₆D₆): δ = 169.9, 140.8, 140.3, 123.3, 119.6, 69.8, 60.9, 42.1, 29.7 (2C), 20.2, 16.0;

HRMS (ESI) calcd. for C₁₂H₂₀O₃Na [M+Na]⁺ 235.1304; found: 235.1305;

IR (neat) v_{max} 2929, 2872, 1458, 1215, 1140, 1122, 1083, 1042 cm⁻¹.

Compound 17

To a stirred solution of compound **16** (262 mg, 1.23 mmol) in HFIP (1.0 mL) in a sealed tube was added lawsone (537 mg, 3.08 mmol), then the flask was sealed and the reaction mixture was stirred at

 $50 \degree C$ for 15 h. Solvent removal under reduced pressure and flash chromatography (petroleum ether/ethyl acetate = 30:1 to 5:1) afforded compound **17** (421 mg, 1.14 mmol, 95%) as an orange oil.

 $\mathbf{R}_f = 0.50$ (petroleum ether/ethyl acetate = 5:1, stains with PMA);

¹**H NMR** (**500 MHz**, **CDCl**₃): δ = 8.08 (d, J = 8.0 Hz, 1H), 8.03 (d, J = 7.2 Hz, 1H), 7.72 (t, J = 7.5 Hz, 1H), 7.64 (t, J = 7.5 Hz, 1H), 7.49 (br, 1H), 5.54 (d, J = 9.2 Hz, 1H), 5.25 (t, J = 7.1 Hz, 1H), 4.42 (d, J = 7.1 Hz, 2H), 4.31–4.26 (m, 1H), 2.63 (dd, J = 13.2, 9.2 Hz, 1H), 2.38 (dd, J = 13.2, 6.8 Hz, 1H), 1.80 (s, 3H), 1.71 (s, 3H), 1.66 (s, 6H);

¹³C NMR (125 MHz, CDCl₃): δ = 184.2, 181.7, 170.9, 152.6, 140.7, 134.9, 133.1, 132.9, 132.8, 129.3, 126.9, 125.9, 125.6, 125.0, 120.2, 61.1, 43.0, 33.3, 25.7, 20.7, 18.1, 16.3;

HRMS (ESI) calcd. for C₂₂H₂₄O₅Na [M+Na]⁺: 391.1515; found: 391.1515;

IR (neat) v_{max} 2976, 2926, 1737, 1668, 1648, 1614, 1595, 1368, 1338, 1267, 1234, 1022, 726 cm⁻¹. Compound S4

To a stirred solution of compound **17** (494 mg, 1.34 mmol) in MeOH (7 mL) at r.t was added K₂CO₃ (278 mg, 2.01 mmol). After 5 h, the reaction mixture was quenched with 1N HCl (5 mL), extracted with CH₂Cl₂ (3×5 mL), and the combined organic layers were dried over anhydrous Na₂SO₄. Solvent removal under reduced pressure and flash chromatography (petroleum ether/ethyl acetate = 10:1 to 2:1) afforded compound **S4** (325 mg, 0.99 mmol, 74%) as an orange oil.

 $\mathbf{R}_f = 0.38$ (petroleum ether/ethyl acetate = 2:1, stains with PMA);

¹**H NMR (500 MHz, CDCl**₃): δ = 8.05 (dd, J = 7.7, 1.3 Hz, 1H), 7.99 (dd, J = 7.6, 1.3 Hz, 1H), 7.76 (s, 1H), 7.70 (td, J = 7.6, 1.4 Hz, 1H), 7.62 (td, J = 7.5, 1.3 Hz, 1H), 5.54 (d, J = 9.3 Hz, 1H), 5.35 (td, J = 7.1, 4.2 Hz, 1H), 4.27 (td, J = 9.0, 6.9 Hz, 1H), 4.04 (dd, J = 12.4, 7.0 Hz, 1H), 3.98 (dd, J = 12.3, 6.8 Hz, 1H), 2.59 (dd, J = 13.4, 8.7 Hz, 1H), 2.39 (dd, J = 13.4, 6.9 Hz, 1H), 1.67 (s, 3H), 1.65 (s, 6H);

¹³C NMR (125 MHz, CDCl₃): δ = 184.4, 181.8, 152.8, 138.0, 134.8, 132.9, 132.85, 132.79, 129.3, 126.9, 125.99, 125.95, 125.21, 125.17, 59.3, 43.0, 33.3, 25.8, 18.1, 16.2;

HRMS (ESI) calcd. for C₂₀H₂₂O₄Na [M+Na]⁺: 349.1410; found: 349.1409;

IR (neat) v_{max} 2969, 2918, 1668, 1645, 1594, 1367, 1269, 1218, 996, 726 cm⁻¹.

Compound 19

To a stirred solution of allylic alcohol **S4** (315 mg, 0.96 mmol) in CH_2Cl_2 (5 mL) at r.t was added Dess-Martin periodinane (400 mg, 0.96 mmol), after stirred for 10 mins, the reaction was quenched with sat. Na₂SO₃ (5 mL) and extracted with CH_2Cl_2 (3 × 5 mL). The combined organic layers were washed with sat. NaCl (10 mL) and dried over anhydrous Na₂SO₄. Concentrated afford crude compound **18** which was directly used for the next step.

To a stirred solution of compound **18** (0.96 mmol) in dry CH_2Cl_2 (5 mL) at r.t was added 1,3dimercaptopropane (0.14 mL, 1.45 mmol) and BF₃•2AcOH (23.8 µL, 0.19 mmol) for 2.5 h. Solvent removal under reduced pressure and flash chromatography (petroleum ether/ethyl acetate = 5:1) afforded compound **19** (338 mg, 0.81 mmol, 84% over two steps) as a yellow oil.

*We found that, after protecting the aldehyde group, compound **19** could be isolated as a mixture of geometric isomers in a ratio of 1:1.

Compound 20a and compound 20b

To a stirred solution of compound **19** (273.0 mg, 0.66 mmol) in dry THF (4 mL) at r.t was added PPh₃ (432.8 mg, 1.65 mmol), allyl alcohol (0.22 mL, 3.29 mmol), then DEAD (0.2 mL, 1.27 mmol) was added dropwise. After the reaction mixture was stirred at r.t for 12 h. Solvent removal under reduced pressure and flash chromatography (petroleum ether/ethyl acetate = 30:1 to 5:1) afforded compound **20** (230 mg, 0.50 mmol, 77%) as a yellow oil.

*20a and 20b was obtained in a ratio of 1:1 and further isolated by prep TLC, then (+)-20a and (-)-20a were separated through chiral HPLC separation. Details were described in page S3.

*For racemic synthesis, the mixture of **20a** and **20b** was used directly for next steps.

 $\mathbf{R}_f = 0.68$ (petroleum ether/ethyl acetate = 5:1, stains with PMA);

Data for compound 20a:

¹**H NMR** (**400 MHz, CDCl**₃): δ = 8.05–8.03 (m, 1H), 7.97–7.95 (m, 1H), 7.69–7.58 (m, 2H), 6.16–6.03 (m, 1H), 5.61 (dt, *J* = 8.8, 1.4 Hz, 1H), 5.43 (dd, *J* = 17.2, 1.4 Hz, 1H), 5.29 (dd, *J* = 10.5, 1.4 Hz, 1H), 5.06–4.99 (m, 2H), 4.73–4.68 (m, 2H), 4.32 (td, *J* = 9.6, 5.3 Hz, 1H), 3.02 (dd, *J* = 13.1, 10.2 Hz, 1H), 2.88–2.81 (m, 1H), 2.72–2.61 (m, 1H), 2.42 (d, *J* = 12.8 Hz, 1H), 2.31 (d, *J* = 14.0 Hz, 1H), 2.22 (d, *J* = 13.1, 5.3 Hz, 1H), 1.97–1.90 (m, 1H), 1.79 (d, *J* = 1.4 Hz, 3H), 1.68 (d, *J* = 1.4 Hz, 3H), 1.66–1.62 (m, 1H), 1.61 (d, *J* = 1.4 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃): *δ* = 185.3, 181.7, 157.2, 139.2, 137.1, 133.5, 133.4, 133.0, 132.9, 132.3, 131.7, 126.3, 126.1, 125.8, 123.1, 118.4, 74.3, 44.7, 37.2, 33.4, 30.7, 30.5, 25.8, 24.8, 23.7, 18.2;

HRMS (ESI) calcd. for C₂₆H₃₀O₃S₂Na [M+Na]⁺: 477.1528; found: 477.1531;

IR (neat) v_{max} 2915, 1660, 1594, 1297, 1258, 1195, 993, 722 cm⁻¹.

Data for compound 20b:

¹**H NMR** (**400 MHz**, **CDCl**₃): $\delta = 8.03$ (d, J = 7.1 Hz, 1H), 7.98 (d, J = 6.7 Hz, 1H), 7.69–7.62 (m, 2H), 6.14–6.04 (m, 1H), 5.50 (d, J = 9.1 Hz, 1H), 5.41 (d, J = 17.2 Hz, 1H), 5.29 (d, J = 10.4 Hz, 1H), 5.07 (d, J = 10.1 Hz, 1H), 4.93 (dd, J = 12.4, 5.8 Hz, 1H), 4.83 (dd, J = 12.4, 5.9 Hz, 1H), 4.72 (d, J = 10.0 Hz, 1H), 4.32 (q, J = 8.3 Hz, 1H), 2.96–2.69 (m, 3H), 2.62 (dt, J = 14.1,3.8 Hz, 1H), 2.52 (dd, J = 13.0, 8.4 Hz, 1H), 2.38 (dd, J = 13.0, 7.3 Hz, 1H), 2.03–1.96 (m, 1H), 1.75 (s, 3H), 1.71 (d, J = 2.6 Hz, 1H),1.67 (s, 3H), 1.63 (s, 3H);

¹³C NMR (100 MHz, CDCl₃): *δ* = 185.1, 182.0, 156.8, 139.0, 137.1, 133.7, 133.4, 133.1, 133.0, 132.1, 131.4, 126.4, 125.9, 125.5, 123.2, 118.5, 74.2, 44.0, 43.4, 33.7, 30.3(2C), 25.7, 24.9, 18.2, 16.7;

HRMS (**ESI**) calcd. for C₂₆H₃₀O₃S₂Na [M+Na]⁺: 477.1528; found: 477.1531;

IR (neat) v_{max} 2918, 1663, 1595, 1438, 1379, 1268, 1185, 999, 724 cm⁻¹.

Compound 21

To a stirred solution of (–)-**20a** (133 mg, 0.29 mmol) in MeCN/H₂O (1 mL) at 0 °C was added PIFA (126 mg, 0.29 mmol) for 5 h. The reaction mixture was quenched with H₂O (5 mL), extracted with EtOAc (3 × 5 mL), and the combined organic layers were dried over anhydrous Na₂SO₄. Concentrated to afford crude product **S5** which was directly used for the next step.

A solution of above **S5** (0.29 mmol), lawsone (101 mg, 0.58 mmol), β -alanine (3.9 mg, 0.044 mmol) and AcOH (10 µL) in toluene (5 mL) was heated at 75 °C for 12 h. Solvent removal under reduced pressure and flash chromatography (petroleum ether/ethyl acetate = 5:1) afforded compound **21** (86 mg, 0.16 mmol, 57%) as an orange oil.

 $\mathbf{R}_f = 0.53$ (petroleum ether/ethyl acetate = 5:1, stains with PMA);

¹**H** NMR (500 MHz, CDCl₃): $\delta = 8.05-7.89$ (m, 3H), 7.79–7.77 (m, 1H), 7.73–7.52 (m, 4H), 6.64 (d, J = 10.2 Hz, 0.5H), 6.55 (d, J = 10.1 Hz, 0.5H), 6.09–5.96 (m, 1H), 5.69 (d, J = 10.2 Hz, 0.5H), 5.55 (d, J = 10.0 Hz, 0.5H), 5.54–5.49 (m, 1H), 5.37 (d, J = 17.1 Hz, 0.5H), 5.31 (dd, J = 17.1, 1.5 Hz, 0.5H), 5.23–5.19 (m, 1H), 4.94–4.91 (m, 1H), 4.87 (dd, J = 12.2, 5.8 Hz, 0.5H), 4.79 (dd, J = 12.2, 6.0 Hz, 0.5H), 4.53–4.43 (m, 1H), 2.68 (dd, J = 15.0, 8.4 Hz, 0.5H), 2.35–2.26 (m, 1.5H), 1.62 (d, J = 5.0 Hz, 3H), 1.54 (d, J = 22.8 Hz, 3H), 1.48 (d, J = 3.8 Hz, 3H);

HRMS (ESI) calcd. for C₃₃H₂₈O₆Na [M+Na]⁺: 543.1778; found: 543.1778;

IR (neat) v_{max} 2971, 2924, 1673, 1650, 1595, 1572, 1334, 1303, 1260, 1197, 965, 721 cm⁻¹.

Compound 10

To a stirred solution of **21** (120 mg, 0.23 mmol) in MeOH (2 mL) at r.t was added $[CpRu(CH_3CN)_3]PF_6$ (10 mg, 0.023 mmol) and quinaldic acid (4 mg, 0.023 mmol) for 5 h. Solvent removal under reduced pressure and flash chromatography (petroleum ether/ethyl acetate = 5:1) afforded compound **10** (93 mg, 0.19 mmol, 84%) as an orange oil. Compound **10** is not stable and was directly used for the next step.

Peshawaraquinone (1) and 11'-epi-peshawaraquinone (23)

To a stirred solution of compound **10** (30 mg, 0.062 mmol) in CH₂Cl₂ (1 mL) at r.t was added (*S*, *S*)-Takemoto's catalyst (2.6 mg, 0.0062 mmol) for 12 h. Solvent removal under reduced pressure and flash chromatography (petroleum ether/ethyl acetate = 5:1) afforded a mixture of (–)-**peshawaraquinone (1)** and (+)-**11'**-*epi*-**peshawaraquinone (23)** (26 mg, 0.054 mmol, 87%) in a ratio of 1:1, which was further separated through preparative TLC.

We found peshawaraquinone decomposed slowly in CDCl₃.

Data for peshawaraquinone (1):

 $\mathbf{R}_f = 0.35$ (petroleum ether/ethyl acetate = 5:1, stains with PMA);

 $[\alpha]_{D}^{20} = -132.72 (c = 0.2, CHCl_3);$

¹**H** NMR (500 MHz, CDCl₃): δ = 8.16 (dd, J = 7.4, 1.6 Hz, 1H), 8.10 (dd, J = 7.3, 1.6 Hz, 1H), 8.04 (dd, J = 7.8, 1.3 Hz, 1H), 7.98 (d, J = 7.8 Hz, 1H), 7.77–7.70 (m, 3H), 7.51 (t, J = 7.5 Hz, 1H), 5.94 (d, J = 9.7 Hz, 1H), 3.85 (d, J = 10.3 Hz, 1H), 3.85–3.76 (m, 1H), 3.64 (br, 1H), 2.77 (d, J = 10.2 Hz, 1H), 2.62 (dd, J = 13.6, 6.5 Hz, 1H), 2.17 (t, J = 13.2 Hz, 1H), 1.764 (s, 3H), 1.758 (s, 3H), 1.31 (s, 3H);

¹³C NMR (125 MHz, CDCl₃): δ = 203.7, 193.5, 184.4, 179.1, 154.9, 144.6, 135.7, 134.3, 133.8, 133.6, 131.9, 131.1, 129.7, 129.2, 127.6, 126.7 (2C), 124.8, 122.4, 120.7, 87.1, 85.9, 73.4, 53.5, 48.7, 36.8, 35.5, 26.3, 21.5, 18.1;

HRMS (ESI) calcd. for C₃₀H₂₄O₆Na [M+Na]⁺: 503.1465; found: 503.1468;

IR (neat) v_{max} 2926, 1768, 1680, 1608, 1353, 1265, 1190, 965, 724 cm⁻¹.

Data for 11'-epi-peshawaraquinone (23):

 $\mathbf{R}_f = 0.35$ (petroleum ether/ethyl acetate =5:1, stains with PMA);

 $[\alpha]D^{20} = +144.06 (c = 0.2, CHCl_3);$

¹**H NMR** (**500 MHz**, **CDCl**₃): $\delta = 8.18$ (dd, J = 7.3, 1.7 Hz, 1H), 8.13 (dd, J = 7.3, 1.6 Hz, 1H), 8.10 (dd, J = 7.9, 1.3 Hz, 1H), 7.98 (d, J = 7.8 Hz, 1H), 7.79–7.71 (m, 3H), 7.53 (td, J = 7.5, 1.2 Hz, 1H), 5.59 (d, J = 10.3 Hz, 1H), 4.34 (td, J = 9.9, 5.1 Hz, 1H), 3.87 (d, J = 10.2 Hz, 1H), 3.50 (br, 1H), 2.65 (d, J = 10.2 Hz, 1H), 2.49 (dd, J = 14.4, 5.1 Hz, 1H), 2.41 (dd, J = 14.4, 9.5 Hz, 1H), 1.75 (s, 3H), 1.72 (s, 3H), 1.34(s, 3H);

¹³C NMR (125 MHz, CDCl₃): *δ* = 202.4, 193.0, 184.0, 179.0, 154.4, 146.6, 135.9, 134.2, 133.5, 133.2, 132.0, 131.2, 129.0, 128.7, 127.9, 126.6 (2C), 124.5, 123.1, 121.2, 89.0, 85.2, 75.2, 53.1, 47.5, 36.0, 35.0, 25.8, 23.6, 18.0;

HRMS (ESI) calcd. for C₃₀H₂₄O₆Na [M+Na]⁺:503.1465; found: 503.1468;

IR (neat) v_{max} 2925, 1763, 1678, 1373,1264, 1211, 973, 725 cm⁻¹.

 α -ketol rearrangement approach to peshawaraquinone

Compound (±)-25

A solution of (±)-21 (139 mg, 0.27 mmol) in CH_2Cl_2 (1.3 mL) was illuminated with a 360 *nm* UVA lamp for 12 h. Solvent removal under reduced pressure and flash chromatography (petroleum ether/ethyl acetate = 5:1) afforded compound (±)-25 (50 mg, 0.096 mmol, 36%) as a yellow solid.

 $\mathbf{R}_{f} = 0.12$ (petroleum ether/ethyl acetate = 5:1, stains with PMA);

¹**H** NMR (400 MHz, CDCl₃): $\delta = 8.15$ (ddd, J = 11.0, 7.2, 1.8 Hz, 2H), 8.17-8.12 (m, 1H), 8.08-8.06 (m, 1H), 7.82-7.68 (m, 4H), 5.54-5.45 (m, 1H), 5.19 (d, J = 9.5 Hz, 1H), 4.91 (dd, J = 17.2, 1.8 Hz, 1H), 4.80 (dd, J = 10.6, 1.8 Hz, 1H), 4.14 (d, J = 10.0 Hz, 1H), 4.00-3.93 (m, 1H), 3.81-3.93 (m, 1H), 3.67-3.61 (m, 1H), 2.94 (d, J = 10.0 Hz, 1H), 2.50 (dd, J = 13.2, 5.9 Hz, 1H), 2.26 (t, J = 13.2 Hz, 1H), 1.54 (s, 3H), 1.49 (s, 3H), 1.37 (s, 3H);

¹³C NMR (100 MHz, CDCl₃): δ = 197.3, 193.1, 182.0, 178.6, 155.7, 135.8, 134.8, 134.7, 133.5, 133.3, 133.0, 132.4, 132.1, 130.9, 130.2, 126.4, 125.7, 125.6, 125.4, 120.7, 117.6, 114.6, 86.2, 79.9, 65.3, 64.0, 48.7, 46.9, 38.8, 29.9, 24.8, 23.6, 17.3;

HRMS (ESI) calcd. for C₃₃H₂₈O₆Na [M+Na]⁺: 543.1778; found: 543.1780;

IR (neat) v_{max} 2926, 1676, 1604, 1374, 1331, 1264, 1097, 996, 798, 725 cm⁻¹.

Peshawaraquinone (1)

To a stirred solution of compound (\pm)-25 (35 mg, 0.067 mmol) in dry CH₂Cl₂ (1 mL) at r.t was added TfOH (3.0 µL, 0.034 mmol) for 27 h. Solvent removal under reduced pressure and flash chromatography (petroleum ether/ethyl acetate = 5:1) afforded (\pm)-peshawaraquinone (1) (25 mg, 0.052 mmol, 77%) as a yellow solid. *The data matched with the natural product synthesized through [3+2] cycloaddition.

Compound S6

To a stirred solution of compound **17** (312 mg, 0.85 mmol) in dry THF (5 mL) at r.t was added PPh₃ (278 mg, 1.06 mmol), MeOH (0.2 mL, 4.23 mmol), then DEAD (0.2 mL, 1.27 mmol) was added dropwise. The reaction mixture was stirred at r.t for 12 h. Solvent removal under reduced pressure and flash chromatography (petroleum ether/ethyl acetate = 30:1 to 5:1) afforded compound **S6** (280 mg, 0.73 mmol, 87%) as an orange oil.

 $\mathbf{R}_f = 0.50$ (petroleum ether/ethyl acetate = 5:1, stains with PMA);

¹**H NMR (500 MHz, CDCl₃):** δ = 5.48 (dd, J = 7.7, 1.4 Hz, 1H), 7.99 (dd, J = 7.2, 1.8 Hz, 1H), 7.69–7.63 (m, 2H), 5.48 (d, J = 9.4 Hz, 1H), 5.23 (t, J = 7.2 Hz, 1H), 4.42 (d, J = 7.2 Hz, 2H), 4.30 (q, J = 8.8 Hz, 1H), 4.08 (s, 3H), 2.55 (dd, J = 13.1, 8.8 Hz, 1H), 2.36 (dd, J = 13.2, 6.9 Hz, 1H), 1.80 (s, 3H), 1.70 (s, 3H), 1.66 (s, 3H), 1.62 (s, 3H);

¹³C NMR (125 MHz, CDCl₃): δ = 185.0, 181.8, 170.8, 157.6, 140.6, 137.0, 133.7, 133.1, 132.9, 132.0, 131.5, 126.3, 125.9, 125.8, 120.4, 61.14, 61.07, 43.6, 33.5, 25.7, 20.7, 18.1, 16.3;

HRMS (ESI) for $C_{23}H_{26}O_5Na \ [M+Na]^+$ calcd. 405.1672, found: 405.1671;

IR (neat) v_{max} 2932, 1734, 1665, 1597, 1448, 1371, 1240, 1028, 723 cm⁻¹.

Compound S1

To a stirred solution of compound **S6** (280 mg, 0.73 mmol) in MeOH (3 mL) at r.t was added K₂CO₃ (304 mg, 2.20 mmol). After stirred for 5 h, the reaction mixture was quenched with 1N HCl (5 mL), extracted with EtOAc (3×5 mL), and the combined organic layers were dried over anhydrous Na₂SO₄. Solvent removal under reduced pressure and flash chromatography (petroleum ether/ethyl acetate = 5:1 to 2:1) afforded compound **S1** (225 mg, 0.66 mmol, 90%) as an orange oil.

 $\mathbf{R}_f = 0.47$ (petroleum ether/ethyl acetate = 2:1, stains with PMA);

¹**H** NMR (500 MHz, CDCl₃): δ = 8.01 (dd, J = 6.9, 1.9 Hz, 1H), 7.98 (dd, J = 7.1, 1.8 Hz, 1H), 7.68–7.62 (m, 2H), 5.48 (d, J = 8.2 Hz, 1H), 5.33 (t, J = 6.9 Hz, 1H), 4.28 (q, J = 8.2 Hz, 1H), 4.07 (s, 3H), 4.05–3.96 (m, 2H), 2.49 (dd, J = 13.3, 8.3 Hz, 1H), 2.37 (dd, J = 13.3, 7.2 Hz, 1H), 1.67 (s, 3H), 1.66 (s, 3H), 1.61 (s, 3H);

¹³C NMR (125 MHz, CDCl₃): δ = 185.2, 181.8, 157.6, 137.8, 137.5, 133.8, 133.2, 132.8, 132.0, 131.4, 126.3, 126.0, 125.9, 125.5, 61.2, 59.2, 43.8, 33.6, 25.8, 18.1, 16.2;

HRMS (ESI) for C₂₁H₂₄O₄Na [M+Na]⁺ calcd. 363.1566, found: 363.1566;

IR (neat) v_{max} 2927, 1728, 1662, 1594, 1447, 1257, 1009, 724 cm⁻¹.

Compound (±)-24

To a stirred solution of allylic alcohol **S1** (295 mg, 0.87 mmol) in CH_2Cl_2 (5 mL) at r.t was added Dess-Martin periodinane (441 mg, 1.04 mmol), after stirred for 10 mins, the reaction was quenched with sat. Na₂SO₃ (5 mL), extracted with CH_2Cl_2 (3 × 5 mL). The combined organic layers were washed with sat. NaCl (5 mL) and dried over anhydrous Na₂SO₄. Concentrated afford crude aldehyde which was directly used for the next step.

A solution of crude aldehyde (0.87 mmol), lawsone (377 mg, 2.17 mmol), β -alanine (12 mg, 0.13 mmol) and AcOH (40 µL) in toluene (25 mL) was heated at 75 °C for 12 h. Solvent removal under reduced pressure and flash chromatography (petroleum ether/ethyl acetate = 5:1) afforded (±)-24 (255 mg, 0.51 mmol, 59% over 2 steps) as an orange oil. *This intermediate was directly used for next step.

Compound (±)-26

A solution of (\pm) -24 (100 mg, 0.20 mmol) in CH₂Cl₂ (1 mL) at r.t was illuminated with a 360 *nm* UVA lamp for 12 h. Then solvent removal under reduced pressure and flash chromatography (petroleum ether/ethyl acetate = 5:1) afforded compound (\pm)-26 (36 mg, 0.072 mmol, 36%) as a yellow oil.

 $\mathbf{R}_f = 0.62$ (petroleum ether/ethyl acetate = 2:1, stains with PMA);

¹**H NMR (400 MHz, CDCl₃):** δ = 8.24–8.22 (m, 1H), 8.16–8.10 (m, 3H), 7.83–7.81 (m, 2H), 7.73–7.67 (m, 2H), 5.47 (dt, *J* = 9.4, 1.4 Hz, 1H), 4.05 (d, *J* = 10.2 Hz, 1H), 3.86–3.79 (m, 1H), 3.03 (s, 3H), 2.86 (d, *J* = 10.2 Hz, 1H), 2.45 (dd, *J* = 13.2, 6.0 Hz, 1H), 2.35 (t, *J* = 13.2 Hz, 1H), 1.60 (s, 3H), 1.55 (s, 3H), 1.49 (s, 3H);

¹³C NMR (100 MHz, CDCl₃): δ = 197.3, 194.22, 182.9, 179.7, 156.1, 135.7, 135.33, 135.1, 134.8, 134.6, 134.0, 133.1, 132.0, 131.3, 127.8, 127.3, 126.8, 126.4, 121.6, 117.5, 86.6, 81.4, 84.9, 53.6, 50.1, 48.0, 40.1, 31.2, 25.9, 25.1, 18.4;

HRMS (ESI) calcd. for C₃₁H₂₆O₆Na [M+Na]⁺ 517.1622, found: 517.1625;

IR (neat) v_{max} 2926, 2859, 1673, 1381, 1330, 1265, 1161, 975, 723 cm⁻¹.

Peshawaraquinone (1)

To a stirred solution of compound (\pm)-26 (32 mg, 0.064 mmol) in dry CH₂Cl₂ (1 mL) at r.t was added TfOH (2.85 uL, 0.032 mmol) for 27 h. Then solvent removal under reduced pressure and flash chromatography (petroleum ether/ethyl acetate = 5:1) afforded (\pm)-peshawaraquinone (1) (25 mg, 0.052 mmol, 49%) as a yellow solid. *The data matched with the natural product synthesized through [3+2] cycloaddition.

HFIP promoted allylation. (Table 1)

Compound S8

To a stirred solution of compound $\mathbf{S7}^{4,5}$ (200 mg, 1.04 mmol) in HFIP (0.9 mL) in a sealed tube was added lawsone (453 mg, 2.60 mmol), then the flask was sealed and the reaction mixture stirred at 50 °C for 15 h. Solvent removal under reduced pressure and flash chromatography (petroleum ether/ethyl acetate = 30:1 to 5:1) afforded compound **S8** (257 mg, 0.74 mmol, 71%) as an orange oil.

 $\mathbf{R}_{f} = 0.48$ (petroleum ether/ethyl acetate = 5:1, stains with PMA);

¹**H NMR** (**500 MHz**, **CDCl**₃): $\delta = 8.10$ (d, J = 7.5 Hz, 1H), 8.04 (d, J = 7.7 Hz, 1H), 7.72 (td, J = 7.5, 1.5 Hz, 1H), 7.64 (dd, J = 13.1, 8.4 Hz, 1H), 7.62 (br, 1H), 7.20 (t, J = 8.1 Hz, 1H), 6.98 (d, J = 2.6 Hz, 2H), 6.74 (dd, J = 8.0, 2.6 Hz, 1H), 6.00 (d, J = 9.7 Hz, 1H), 5.46 (d, J = 9.5 Hz, 1H), 3.78 (s, 3H), 1.83 (s, 3H), 1.77 (s, 3H);

¹³C NMR (125 MHz, CDCl₃): *δ* = 183.9, 181.9, 159.6, 152.9, 144.2, 135.0, 134.7, 132.91, 132.89, 129.3, 129.2, 127.1, 126.0, 125.8, 123.0, 120.1, 114.0, 111.0, 55.2, 39.0, 26.0, 18.2;

HRMS (ESI) calcd. for C₂₂H₂₀O₄Na [M+Na]⁺: 371.1253; found: 371.1253;

IR (neat) v_{max} 3421, 3359, 1655, 1363, 1275, 1106, 1043 cm⁻¹.

Compound S9

To a stirred solution of compound $\mathbf{S7}^{4,5}$ (200 mg, 1.04 mmol) in HFIP (0.9 mL) in a sealed tube was added naphthoquinone (531 mg, 2.60 mmol), then the flask was sealed and the reaction mixture stirred at 50 °C for 15 h. Solvent removal under reduced pressure and flash chromatography (petroleum ether/ethyl acetate = 10:1) afforded compound **S9** (236 mg, 0.62 mmol, 60%) as an orange oil.

 $\mathbf{R}_f = 0.27$ (petroleum ether/ethyl acetate = 5:1, stains with PMA);

¹**H** NMR (500 MHz, CDCl₃): δ = 8.02 (d, *J* = 8.6 Hz, 1H), 7.51 (br, 1H), 7.48 (d, *J* = 2.7 Hz, 1H), 7.23–7.13 (m, 2H), 6.99–6.92 (m, 2H), 6.72 (d, *J* = 6.9 Hz, 1H), 5.97 (d, *J* = 9.0 Hz, 1H), 5.44 (d, *J* = 9.4 Hz, 1H), 3.90 (s, 3H), 3.78 (s, 3H), 1.82 (s, 3H), 1.76 (s, 3H);

¹³C NMR (125 MHz, CDCl₃): δ = 183.6, 182.1, 163.4, 159.5, 152.7, 144.3, 134.7, 131.1, 129.3, 129.1, 126.2, 125.5, 123.1, 120.9, 120.1, 114.0, 110.9, 109.8, 55.9, 55.1, 38.9, 25.9, 18.1;

HRMS (ESI) calcd. for C₂₃H₂₂O₅Na [M+Na]⁺: 401.1359; found: 401.1358;

IR (neat) v_{max} 3400, 2964, 2930, 1736, 1646, 1368, 1262, 1091 cm⁻¹.

Compound S11

To a stirred solution of compound **S10**⁶ (630 mg, 4.37 mmol) in anhydrous *t*-BuOMe (20 mL) at r.t was added MeMgBr (7.3 mL, 21.85 mmol, 3.0 M solution in hexane) dropwise. The reaction mixture was stirred at r.t for 5 h, then quenched with sat. NH₄Cl (20 mL) and extracted with EtOAc (3×20 mL). The combined organic layers were washed with sat. NaCl (40 mL) and dried over anhydrous Na₂SO₄. Solvent removal under reduced pressure and flash chromatography (petroleum ether/ethyl acetate = 1:2) afforded compound **S11** (625 mg, 4.33 mmol, 99%) as a colorless oil.

 $\mathbf{R}_f = 0.40$ (petroleum ether/ethyl acetate = 1:4, stains with PMA);

¹**H** NMR (500 MHz, CDCl₃): δ = 5.63 (t, *J* = 2.7 Hz, 2H), 3.63 (t, *J* = 6.5 Hz, 2H), 2.12–2.08 (m, 2H), 1.75 (br, 2H), 1.75–1.61 (m, 2H), 1.29 (s, 6H);

¹³C NMR (125 MHz, CDCl₃): δ = 138.6, 126.4, 70.6, 62.3, 32.2, 29.8 (2C), 28.5;

HRMS (ESI) calcd. for C₈H₁₆O₂Na [M+Na]⁺: 167.1042; found: 167.1044;

IR (neat) v_{max} 2936, 1446, 1370, 1223, 1151, 1056, 973, 910 cm⁻¹.

Compound S12

To a stirred solution of compound **S11** (100 mg, 0.69 mmol) in CH_2Cl_2 (3 mL) at r.t was added DMAP (8.5 mg, 0.069 mmol), Et_3N (96 µL, 0.69 mmol) and acetic anhydride (98 µL, 1.04 mmol) for 1 h. Solvent removal under reduced pressure and flash chromatography (petroleum ether/ethyl acetate = 2:1) afforded compound **S12** (66 mg, 0.35 mmol, 51%) as a colorless oil.

 $\mathbf{R}_f = 0.47$ (petroleum ether/ethyl acetate = 2:1, stains with PMA);

¹**H** NMR (500 MHz, CDCl₃): δ = 5.65–5.56 (m, 2H), 4.05 (t, *J* = 6.7 Hz, 2H), 2.10–2.05 (m, 2H), 2.04 (s, 3H), 1.73–1.67 (m, 2H), 1.52 (br, 1H), 1.29 (s, 6H);

¹³C NMR (125 MHz, CDCl₃): δ = 171.1, 139.0, 125.7, 70.6, 63.8, 29.8 (2C), 28.5, 28.2, 21.0;

HRMS (**ESI**) calcd. for C₁₀H₁₈O₃Na [M+Na]⁺: 209.1148; found: 209.1150;

IR (neat) v_{max} 2968, 1733, 1452, 1372, 1245, 1149, 1042, 972, 909 cm⁻¹.

Compound S13

To a stirred solution of compound **S12** (34 mg, 0.18 mmol) in HFIP (0.3 mL) in a sealed tube was added lawsone (78 mg, 0.45 mmol), then the flask was sealed and the reaction mixture was stirred at 50 °C for 15 h. Solvent removal under reduced pressure and flash chromatography (petroleum ether/ethyl acetate = 10:1) afforded compound **S13** (37 mg, 0.11 mmol, 59%) as an orange oil.

 $\mathbf{R}_f = 0.42$ (petroleum ether/ethyl acetate = 5:1, stains with PMA);

¹**H** NMR (500 MHz, CDCl₃): δ = 8.10 (d, *J* = 7.7 Hz, 1H), 8.05 (d, *J* = 7.6 Hz, 1H), 7.74 (t, *J* = 7.5 Hz, 1H), 7.66 (t, *J* = 7.5 Hz, 1H), 7.43 (br, 1H), 5.54 (d, *J* = 9.3 Hz, 1H), 4.08–4.01 (m, 3H), 2.02 (s, 3H), 1.87–1.80 (m, 2H), 1.69 (s, 3H), 1.67 (s, 3H), 1.63–1.62 (m, 1H), 1.59–1.51 (m, 1H);

¹³C NMR (125 MHz, CDCl₃): δ = 184.3, 181.8, 171.2, 152.6, 134.9, 133.5, 133.0, 132.8, 129.3, 126.9, 126.1, 126.0, 125.1, 64.5, 34.5, 29.5, 27.1, 25.8, 21.0, 18.1;

HRMS (**ESI**) calcd. for C₂₀H₂₂O₅Na [M+Na]⁺: 365.1359; found: 365.1352;

IR (neat) v_{max} 2920, 2864, 1671, 1365, 1273, 720 cm⁻¹.

Compound S15

To a stirred solution of compound $S14^{7.8}$ (66 mg, 0.37 mmol) in HFIP (0.4 mL) in a sealed tube was added lawsone (160 mg, 0.92 mmol), then the flask was sealed and the reaction mixture stirred at 50 °C for 15 h. Solvent removal under reduced pressure and flash chromatography (petroleum ether/ethyl acetate = 10:1) afforded compound S15 (93 mg, 0.28 mmol, 74%) as an orange oil.

 $\mathbf{R}_f = 0.62$ (petroleum ether/ethyl acetate = 5:1, stains with PMA);

¹**H** NMR (500 MHz, CDCl₃): δ = 8.08 (d, *J* = 7.7 Hz, 1H), 8.00 (d, *J* = 7.6 Hz, 1H), 7.71 (t, *J* = 7.4 Hz, 1H), 7.62 (t, *J* = 7.5 Hz, 1H), 7.22–7.18 (m, 4H), 7.13–7.10 (m, 1H), 5.68 (d, *J* = 9.1 Hz, 1H), 4.42 (q, *J* = 8.4 Hz, 1H), 3.19 (dd, *J* = 13.5, 8.2 Hz, 1H), 3.11 (dd, *J* = 13.5, 7.7 Hz, 1H), 1.69 (s, 3H), 1.60 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ = 184.3, 181.8, 152.7, 140.5, 134.9, 133.6, 132.9, 132.8, 129.2, 129.0 (2C), 128.1 (2C), 126.9, 126.0, 125.9, 125.8, 124.7, 39.4, 36.8, 25.8, 18.1; HRMS (ESI) calcd. for C₂₂H₂₀O₃Na [M+Na]⁺: 355.1304; found: 355.1304; IR (neat) v_{max} 2921, 2852, 1662, 1592, 1369, 1265, 1214, 727 cm⁻¹.

Compound S16

To a stirred solution of diphenyl diselenide (2.6 g, 8.25 mmol) in anhydrous ethanol (30 mL) at 0 °C was added NaBH₄ (624 mg, 37.83 mmol) in portions. After the bubbling ceased and the yellow color of reaction mixture disappeared, a solution of allyl alcohol **16** (500 mg, 2.36 mmol) in anhydrous ethanol (20 mL) was added in one portion. The reaction mixture was heated to reflux for 12 h. After the reaction mixture was cooled down to r.t, concentrated to remove most of the solvent and re-dissolved in EtOAc (30 mL). The reaction mixture was quenched with sat. NaHCO₃ (30 mL), extracted with EtOAc (3 × 30 mL), and the combined organic layers were dried over anhydrous Na₂SO₄. Solvent removal under reduced

pressure and flash chromatography (petroleum ether/ethyl acetate = 15:1) afforded compound **S16** (410 mg, 1.33 mmol, 56%) as a colorless oil.

 $\mathbf{R}_f = 0.47$ (petroleum ether/ethyl acetate = 5:1, stains with PMA);

¹**H** NMR (500 MHz, CDCl₃): δ = 7.51–7.49 (m, 2H), 7.24–7.22 (m, 3H), 5.58 (d, *J* = 15.4 Hz, 1H), 5.38 (td, *J* = 15.5, 6.8 Hz, 1H), 5.38 (dt, *J* = 8.2, 1.3 Hz, 1H), 3.53 (d, *J* = 8.2 Hz, 2H), 2.64 (d, *J* = 6.7 Hz, 2H), 1.76 (br, 1H), 1.42(s, 3H), 1.28 (s, 6H);

¹³C NMR (125 MHz, CDCl₃): *δ* = 139.9, 137.9, 134.0 (2C), 130.2, 128.8 (2C), 127.2, 124.5, 121.1, 70.7, 42.2, 29.9 (2C), 25.9, 15.8;

HRMS (ESI) calcd. for C₁₆H₂₂OSeNa [M+Na]⁺: 333.0728; found: 333.0726;

IR (neat) v_{max} 2967, 2923, 1658, 1433, 1372, 1143, 1086, 1026, 974, 801, 737 cm⁻¹.

Compound S17

To a stirred solution of compound **S16** (205 mg, 0.66 mmol) in HFIP (0.7 mL) in a sealed tube was added lawsone (287 mg, 1.65 mmol), then the flask was sealed and the reaction mixture was stirred at 50 °C for 15 h. Solvent removal under reduced pressure and flash chromatography (petroleum ether/ethyl acetate = 10:1) afforded compound **S17** (240 mg, 0.51 mmol, 78%) as an orange oil.

 $\mathbf{R}_f = 0.52$ (petroleum ether/ethyl acetate = 10:1, stains with PMA);

¹**H NMR (500 MHz, CDCl**₃): δ = 8.08 (d, *J* = 7.7 Hz, 1H), 8.03(d, *J* = 7.4 Hz, 1H), 7.72 (td, *J* = 7.6, 1.3 Hz, 1H), 7.64 (td, *J* = 7.5, 1.3 Hz, 1H), 7.32–7.30 (m, 2H), 7.15–7.14 (m, 3H), 5.55 (d, *J* = 9.2 Hz, 1H), 5.35 (t, *J* = 8.1 Hz, 1H), 4.27 (td, *J* = 9.2, 6.6 Hz, 1H), 3.48–3.40 (m, 2H), 2.63 (dd, *J* = 13.2, 9.3 Hz, 1H), 2.35 (dd, *J* = 13.2, 6.6 Hz, 1H), 1.68 (s, 6H), 1.60 (s, 3H);

¹³C NMR (125 MHz, CDCl₃): δ = 184.3, 181.7, 152.6, 137.8, 134.8, 133.1, 133.0, 132.8, 132.6 (2C), 131.0, 129.3, 128.8 (2C), 126.9, 126.7, 126.0, 125.7, 125.2, 121.8, 43.0, 33.4, 25.8, 25.7, 18.2, 15.8; HRMS (ESI) calcd. for C₂₆H₂₆O₃SeNa [M+Na]⁺: 489.0939; found: 489.0940;

IR (neat) v_{max} 2924, 1765, 1682, 1594, 1378, 1335, 1264, 1209, 975, 725 cm⁻¹.

Compound S18

To a stirred solution of sodium hydride (33.3 mg, 1.38 mmol) in anhydrous, degassed THF (2 mL) at 0 °C was added allyl alcohol **S11** (100 μ L, 0.69 mmol) dropwise. After hydrogen gas evolution finished, allyl bromide (167.8 mg, 1.38 mmol) was added dropwise. The reaction mixture was warm up to r.t and stirred for 12 h. Then the reaction mixture was quenched with water (4 mL), extracted with EtOAc (3 ×

5 mL), and the combined organic layers were dried over anhydrous Na_2SO_4 . Solvent removal under reduced pressure and flash chromatography (petroleum ether/ethyl acetate = 5:1) afforded compound **S18** (83 mg, 0.45 mmol, 65%) as a colorless oil.

 $\mathbf{R}_{f} = 0.38$ (petroleum ether/ethyl acetate = 5:1, stains with PMA);

¹**H NMR (500 MHz, CDCl₃)**: δ = 5.59–5.87 (m, 1H), 5.62 (s, 2H), 5.26 (d, *J* = 17.2 Hz, 1H), 5.16 (d, *J* = 10.3 Hz, 1H), 3.95 (d, *J* = 5.0 Hz, 2H), 3.42 (t, *J* = 6.5 Hz, 2H), 2.12–2.08 (m, 2H), 1.69–1.63 (m, 2H), 1.44 (br, 1H), 1.29 (s, 6H);

¹³C NMR (125 MHz, CDCl₃): δ = 138.4, 135.1, 126.5, 116.7, 71.8, 70.6, 69.6, 29.9 (2C), 29.3, 28.7; HRMS (ESI) calcd. for C₁₁H₂₀O₂Na [M+Na]⁺: 207.1355; found: 207.1357.

IR (neat) v_{max} 2957, 2860, 1365, 1104, 978, 922 cm⁻¹.

Compound S19

To a stirred solution of compound **S18** (68 mg, 0.37 mmol) in HFIP (0.4 mL) in a sealed tube was added lawsone (160 mg, 0.92 mmol), then the flask was sealed and the reaction mixture was stirred at 50 °C for 15 h. Solvent removal under reduced pressure and flash chromatography (petroleum ether/ethyl acetate = 5:1) afforded compound **S19** (104 mg, 0.31 mmol, 83%) as an orange oil.

 $\mathbf{R}_f = 0.52$ (petroleum ether/ethyl acetate = 5:1, stains with PMA);

¹**H NMR** (**500 MHz**, **CDCl**₃): $\delta = 8.09$ (d, J = 7.6 Hz, 1H), 8.04 (d, J = 7.5 Hz, 1H), 7.73 (t, J = 7.5 Hz, 1H), 7.65 (t, J = 7.4 Hz, 1H), 7.42 (br, 1H), 5.93–5.85 (m, 1H) 5.55 (d, J = 9.4 Hz, 1H), 5.24 (dd, J = 17.2, 1.9 Hz, 1H), 5.13 (dd, J = 10.4, 1.8 Hz, 1H), 4.03 (q, J = 8.2 Hz, 1H), 3.94 (d, J = 5.7 Hz, 2H), 3.43–3.41 (m, 2H), 1.84 (q, J = 7.8 Hz, 2H), 1.68 (s, 3H), 1.67 (s, 3H), 1.62 (q, J = 7.3 Hz, 1H), 1.56–1.49 (m, 1H);

¹³C NMR (125 MHz, CDCl₃): δ = 184.3, 181.8, 152.5, 135.1, 134.9, 133.1, 133.0, 132.8, 129.3, 126.9, 126.4, 125.9, 125.4, 116.7, 71.8, 70.3, 34.7, 29.7, 28.2, 25.8, 18.1;

HRMS (ESI) calcd. for C₂₁H₂₄O₄Na [M+Na]⁺: 363.1566; found: 363.1564;

IR (neat) v_{max} 2922, 1592, 1369, 1262, 1214 cm⁻¹.

5. Crystal data for compound 25.

Bond precision:		C-C = 0.0048 A			Wavelength=0.71073				
Cell:	a=10.3950(8)		b=11.4001(8)	c=12	2. 5959 (10)				
	alpha=96.504	(2)	beta=103.662(2)	gamm	a=110.075(2)				
Temperature:	296 K								
		Calculate	ed		Reported				
Volume		1331.07(18)		1331.06(18)				
Space group		P -1			P -1				
Hall group		-P 1			-P 1				
Moiety formu	la	C33 H28 (06		?				
Sum formula		C33 H28 (06		C33 H28 06				
Mr		520. 55			520.55				
Dx,g cm-3		1.299			1.299				
Z		2			2				
Mu (mm-1)		0.089			0.089				
F000		548.0			548.0				
F000'		548.28							
h,k,1max		13, 14, 15			13, 14, 15				
Nref		5526			5517				
Tmin, Tmax		0.970,0.9	974		0.745, 0.745				
Tmin'		0.970							
Correction m SCAN	ethod= # Repo	orted T L:	imits: Tmin=0.74	45 Tmax=0.74	45 AbsCorr = MULTI-				
Data complet	eness= 0. 998		Theta(m	ax)= 26.513	3				
R(reflection	s)= 0.0747(2	2537)		V	wR2(reflections) = 0.1443(5517)				
S = 1.015		Npar	= 355						

6. References

- 1. T. V. de Castro, D. M. Huang, C. J. Sumby, A. L. Lawrence and J. H. George, A bioinspired, one-step total synthesis of peshawaraquinone, *Chem. Sci.*, 2023, **14**, 950–954.
- 2. Z. A. Shah and M. R. Khan, Peshawaraquinone a novel naphthoquinone and a new indanone from the stem of *Heterophragma adenophyllum* Seem, *Rec. Nat. Prod.*, 2015, **9**, 169–174.
- 3. H. Steinmetz, J. Li, C. Fu, N. Zaburannyi and R. Müller, Isolation, Structure Elucidation, and (Bio)Synthesis of Haprolid, a Cell-Type-Specific Myxobacterial Cytotoxin, *Angew. Chem. Int. Ed.*, 2016, **55**, 10113–10117.
- 4. S. Pape, L. Daukšaitė, S. Lucks, X. Gu, H. Brunner, An in Situ Generated Palladium on Aluminum Oxide: Applications in Gram-Scale Matsuda–Heck Reactions, *Org. Lett.*, 2016, **18**, 6376–6379.
- A. Guthertz, M. Leutzsch, L. M. Wolf, P. Gupta, S. M. Rummelt, R. Goddard, Half-Sandwich Ruthenium Carbene Complexes Link trans-Hydrogenation and gem-Hydrogenation of Internal Alkynes, *J. Am. Chem. Soc.*, 2018, 140, 3156–3169.
- I. R. Hazelden, R. C. Carmona, T. Langer, P. G. Pringle, J. F. Bower, Pyrrolidines and Piperidines by Ligand-Enabled Aza-Heck Cyclizations and Cascades of N-(Pentafluorobenzoyloxy)carbamates, *Angew. Chem. Int. Ed.*, 2018, 57, 5124–5128.
- A. Fürstner, R. Martin, H. Krause, G. Seidel, R. Goddard, C. W. Lehmann, Preparation, Structure, and Reactivity of Nonstabilized Organoiron Compounds. Implications for Iron-Catalyzed Cross Coupling Reactions, *J. Am. Chem. Soc.*, 2008, 130, 8773–8787.
- H. J. Reich, S. K. Shah, F. Chow, Selenium stabilized carbanions. α-Lithio selenoxides as reagents for the synthesis of olefins, allyl alcohols, and dienes, *J. Am. Chem. Soc.*, 1979, 101, 6648–6656.

7. ¹H and ¹³C NMR Spectra

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

100 f1 (ppm)

$\begin{array}{c} - 185. \ 0 \\ - 181. \ 8 \\ - 181. \ 8 \\ - 181. \ 8 \\ - 181. \ 8 \\ - 181. \ 8 \\ - 181. \ 8 \\ - 181. \ 6 \\ - 187. \ 0 \\ - 187. \ 0 \\ - 187. \ 0 \\ - 187. \ 0 \\ - 187. \ 0 \\ - 126. \ 8$

compound S6 $^{13}\mathrm{C}$ NMR 125 MHz CDCl_3

185.2 181.8 181.8 181.8 181.8 187.6 137.5 135.5 15

compound S1 $^{\rm 13}{\rm C}$ NMR 125 MHz CDCI $_{\rm 3}$

compound 26 13 C NMR 100 MHz CDCl₃

220	210	200	190	180	170	160	150	140	130	120	110 f1	100 (ppm)	90	80	70	60	50	40	30	20	10	0	-10
	68, 11 8, 10 8, 10	8,05 7,74 7,73 7,73	7, 72	7. 64 7. 64 7. 22 7. 22 7. 23	Å Å Å 6.99 6.98	6. 74 6. 73 6. 73 6. 72	6.01	2: 33	< 5. 47 5. 45								3 F 1						

- 183. 9 - 184. 9 - 184. 6 - 189. 6 - 189. 6 - 182. 9 - 184. 2 - 182. 9 - 184. 7 - 184.

Compound S8 ¹³C NMR 125 MHz CDCl₃

100 f1 (ppm) 210 200 190 180 170 160 150 140 130 120 90 80 70 60 50 40 20 10 0 -10 110 30 6.5399 6.5391 6. <5.98 5.97 5.97 \lesssim 5.455.43 _____3.90 ____3.78 $\bigwedge_{1.76}^{1.82}$

OMe MeO OF Ö

compound S9 ¹H NMR 500 MHz CDCI₃

S52

compound S13 13 C NMR 125 MHz CDCl₃

210 200 190 180 170 160	150 140	130 120 110 1	oo so so	70 60	50 40	30 2	0 i0	0 -10	
		f1	(ppm)						
000111110000000000000000000000000000000	69	4 5 4 5 6	12 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2	3	<u>6</u> 8				
00000000000000000000000000000000000000	ம் ம்	ਚ ਚ ਚ ਚ	ਜ ਜ ਜ ਜ ਜ ਜ ਜ ਜ	i	4.4				
	Υ.	Y	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		11				

compound S15 ¹H NMR 500 MHz CDCI₃

	70.7	 29.9 25.9	15.8
у SePh			
compound S16 ¹³ C NMR 125 MHz CDCI ₃			

-184.3 -184.3 -184.3 -184.3 -184.3 -184.4 -184.4 -184.4 -184.4 -134.4 -116.7 -26.8 -25.8 -25.8 -18.1

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)