Rapid Synthesis of Benzofulvenes from α-Bromodiarylethylenes Based on a 1,4-Palladium Shift Strategy

Abdur Rahim,^a Shuming Zhan,^a Biqiong Hong^{*,b} Longhui Duan^a and Zhenhua Gu^{*,a}

^a Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China

^b College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, P. R. China

zhgu@ustc.edu.cn

Table of Contents

1.	. General Information	S1
2.	. Experimental Procedure and Characteristic Data	. S2
	2.1 General Procedure for Synthesis of Benzofulvenes (2)	S2
	2.2 Gram-Scale Synthesis and Derivatization of Benzofulvenes	S22
	2.3 General Procedure for Synthesis of 2-Bromobenzofulvenes (4)	S22
	2.4 Bromination Reaction and its Isomerization	S27
	2.5 General Procedure for Synthesis of Dibenzopentalenes (5)	S27
3.	. Reference	S33
4.	. Copies of ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR Spectra of products	S34
5.	. Single Crystal Data	S85

1. General Information

Nuclear magnetic resonances were recorded on Bruker-400 MHz, Bruker-500 MHz, or JEOL 600 MHz. Reference values for residual solvents were taken as $\delta = 7.26$ ppm (CDCl₃), 2.50 ppm (DMSO-d₆) for ¹H NMR; $\delta = 77.00$ ppm (CDCl₃) for ¹³C NMR. High resolution mass spectra [HRMS (ESI)] was recorded on a high-resolution mass spectrometer (Waters XEVO-G2 Q-TOF). Single crystal data were collected at 100 K on a Rigaku Oxford Diffraction Supernova Dual Source. All reactions were performed under an inert atmosphere of dry nitrogen in flame-dried glassware, unless otherwise stated. The temperature above room temperature is heated by using oil as the medium, and the temperature also refers to the temperature of oil bath. All reagents were used as received from commercial sources. Flash column chromatography was performed using 200-300 mesh silica gel as the stationary phase. Toluene was distilled over calcium hydride under an atmosphere of nitrogen.

The synthesis of aryl bromides,¹ aryl iodides² and aryl trifluoromethanesulfonate³ was according to the reported references.

2. Experimental Procedure and Characteristic Data

2.1. General Procedure for Synthesis of Benzofulvenes (2)

To a 25-mL Schlenk tube charged with a stir bar, aryl bromides (1) (0.20 mmol, 1.0 equiv), Pd(OAc)₂ (4.5 mg, 0.02 mmol, 10 mol%), 2'-methoxy-[1,1'-binaphthalen]-2-yl)diphenylphosphane (MOP) (18.7 mg, 0.04 mmol, 20 mol%), 2-FC₆H₄OH (44.9 mg, 0.40 mmol, 2.0 equiv, if added) and dry Cs₂CO₃ (97.7 mg, 0.30 mmol, 1.5 equiv) were added. After filled with nitrogen, anhydrous DMF (2 mL) were added via a syringe. The mixture was stirred at 110 °C in an oil bath for 12 h or up to completion of reaction. Upon completion, the reaction mixture was cooled to room temperature. Thereafter the mixture was quenched with brine (20 mL) and extracted with ethyl acetate (3×10 mL). The combined organic phase was dried over anhydrous Na₂SO₄. After that the mixture was filtered, and the filtrate was concentrated under reduced pressure. The crude products were purified by silica gel chromatography to afford products (2) and (3).

1-(Diphenylmethylene)-3-phenyl-1H-indene (2a)

The reaction of 1-bromo-2-(1'-phenylvinyl)benzene (51.8 mg, 0.20 mmol, 1.0 equiv), Pd(OAc)₂ (4.5 mg, 0.02 mmol, 10 mol%), MOP (18.7 mg, 0.04 mmol, 20 mol%), 2-fluorophenol (44.9 mg, 0.40 mmol, 2 equiv) and Cs_2CO_3 (97.7 mg, 0.30 mmol, 1.5 equiv) in 1 hour afforded **2a** (33.2 mg, 93%) as a light orange solid and a trace amount of 3a, eluent: petroleum ether/dichloromethane = 50:1 to 20:1.

Data of **2a**:

¹**H NMR** (500 MHz, CDCl₃) δ 7.72 – 7.64 (m, 2H), 7.58 (d, *J* = 7.5 Hz, 1H), 7.53 – 7.41 (m, 7H), 7.41 -7.34 (m, 6H), 7.24 - 7.17 (m, 1H), 7.00 - 6.90 (m, 1H), 6.78 (s, 1H), 6.71 (d, J = 7.5 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 146.7, 144.3, 142.8, 142.4, 141.6, 138.0, 137.2, 135.8, 131.6, 130.4, 128.6, 128.5, 128.1, 127.9, 127.8, 127.7, 126.9, 124.9, 123.8, 120.1.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{28}H_{21}^+$ 357.1638; Found 357.1637.

4.50 mmol scale reaction for the preparation of 9-phenyl-1-(1-phenylvinyl)phenanthrene (3a)

The reaction of 1-bromo-2-(1'-phenylvinyl)benzene (1.17 g, 4.50 mmol, 1.0 equiv), Pd(OAc)₂ (101 mg, 0.45 mmol, 10 mol%), MOP (421 mg, 0.90 mmol, 20 mol%) and Cs₂CO₃ (2.20 g, 6.75 mmol, 1.5 equiv) afforded 2a (650 mg, 81%) as a light orange solid and 3a (25.3 mg, 3%) as a colorless liquid, eluent: petroleum ether/dichloromethane = 50:1 to 20:1.

Data of 3a:

¹**H NMR** (500 MHz, CDCl₃) δ 8.83 (d, J = 8.5 Hz, 1H), 8.78 (d, J = 8.0 Hz, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.83 – 7.65 (m, 3H), 7.64 – 7.51 (m, 2H), 7.47 – 7.37 (m, 3H), 7.35 – 7.30 (m, 4H), 7.31 – 7.25 (m, 3H), 6.01 (d, J = 1.0 Hz, 1H), 5.45 (d, J = 1.0 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 148.2, 141.1, 140.8, 140.6, 138.3, 130.73, 130.66, 130.2, 130.0, 129.8, 128.33, 128.29, 128.2, 127.7, 127.2, 126.8, 126.54, 126.46, 126.1, 125.8, 123.1, 122.2, 116.3.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₈H₂₁⁺ 357.1638; Found 357.1640.

1-(Di-*p*-tolylmethylene)-6-methyl-3-(*p*-tolyl)-1*H*-indene (2b)

The reaction of 2-bromo-4-methyl-1-(1'-(*p*-tolyl)vinyl)benzene (57.4 mg, 0.20 mmol, 1.0 equiv), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol, 10 mol%), MOP (18.7 mg, 0.04 mmol, 20 mol%), 2-fluorophenol (44.9 mg, 0.40 mmol, 2 equiv) and Cs_2CO_3 (97.7 mg, 0.30 mmol, 1.5 equiv) in 2 hours afforded **2b** (35.1 mg, 86%) as a light orange solid and a trace amount of **3b**, eluent: petroleum ether/dichloromethane = 50:1 to 20:1.

Data of 2b:

¹**H** NMR (500 MHz, CDCl₃) δ 7.55 (d, *J* = 8.0 Hz, 2H), 7.45 (d, *J* = 7.5 Hz, 1H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.26 – 7.22 (m, 6H), 7.17 (d, *J* = 8.0 Hz, 2H), 7.01 (d, *J* = 8.0 Hz, 1H), 6.70 (s, 1H), 6.58 (s, 1H), 2.47 (s, 3H), 2.40 (s, 3H), 2.39 (s, 3H), 2.16 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 146.2, 143.4, 140.3, 140.0, 138.9, 138.3, 138.0, 137.7, 137.6, 137.4, 134.2, 133.2, 131.7, 130.7, 129.2, 129.1, 128.5, 127.5, 127.3, 127.0, 124.6, 119.7, 21.6, 21.4, 21.31, 21.29.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{32}H_{29}^+$ 413.2264; Found 413.2271.

0.80 mmol scale reaction for the preparation of 3,6-dimethyl-9-(*p*-tolyl)-1-(1'-(*p*-tolyl)vinyl)phenanthrene (3b)

The reaction of 2-bromo-4-methyl-1-(1'-(p-tolyl)vinyl)benzene (229.6 mg, 0.80 mmol, 1.0 equiv), Pd(OAc)₂ (18 mg, 0.08 mmol, 10 mol%), MOP (75 mg, 0.16 mmol, 20 mol%) and Cs₂CO₃ (391 mg, 1.20 mmol, 1.5 equiv) afforded **2b** (91.1 mg, 55%) as an orange solid and **3b** (19.8 mg, 12%) as a colorless liquid, eluent: petroleum ether/dichloromethane = 50:1 to 20:1.

Data of 3b:

¹**H** NMR (500 MHz, CDCl₃) δ 8.72 (s, 1H), 7.85 (d, *J* = 8.0 Hz, 1H), 7.66 (s, 1H), 7.51 (d, *J* = 7.5 Hz, 1H), 7.43 (d, *J* = 7.5 Hz, 1H), 7.36 – 7.34 (m, 1H), 7.23 – 7.20 (m, 6H), 7.06 (d, *J* = 8.5 Hz, 2H), 5.94 (d, *J* = 1.0 Hz, 1H), 5.35 (d, *J* = 1.0 Hz, 1H), 3.20 (s, 3H), 2.63 (s, 3H), 2.43 (s, 3H), 2.33 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 148.5, 138.8, 138.5, 138.0, 137.6, 137.3, 136.7, 134.50, 134.49, 132.1, 131.5, 130.3, 130.0, 129.8, 128.9, 128.8, 127.9, 127.4, 127.3, 126.7, 126.4, 125.6, 115.4, 27.2, 22.2, 21.2, 21.1.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₃₂H₂₉⁺ 413.2264; Found 413.2267.

1-(Bis(4'-methoxyphenyl)methylene)-6-methoxy-3-(4"-methoxyphenyl)-1H-indene (2c)

The reaction of 2-bromo-4-methoxy-1-(1'-(4'-methoxyphenyl)vinyl)benzene (63.8 mg, 0.20 mmol, 1.0 equiv), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol, 10 mol%), MOP (18.7 mg, 0.04 mmol, 20 mol%), 2-fluorophenol (44.9 mg, 0.40 mmol, 2 equiv) and Cs_2CO_3 (97.7 mg, 0.30 mmol, 1.5 equiv) in 2.5 hours afforded **2c** (35.3 mg, 74%) as an orange solid (chemoselectivity >20:1), eluent: petroleum ether/ethyl acetate = 50:1 to 20:1.

Data of 2c:

¹**H** NMR (500 MHz, CDCl₃) δ 7.60 (d, J = 8.5 Hz, 2H), 7.45 (d, J = 8.0 Hz, 1H), 7.36 – 7.26 (m, 4H), 6.97 (dd, J = 6.0, 2.5 Hz, 4H), 6.91 (d, J = 8.5 Hz, 1H), 6.75 (dd, J = 6.0, 2.0 Hz, 1H), 6.63 (s, 1H), 6.41 (d, J = 2.5 Hz, 1H), 3.88 (s, 3H), 3.85 (s, 6H), 3.56 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 160.0, 159.7, 159.1, 157.5, 145.4, 142.6, 139.3, 136.8, 135.9, 135.2, 134.1, 133.3, 132.2, 128.8, 128.7, 125.5, 120.3, 113.94, 113.89, 113.3, 112.2, 109.7, 55.4, 55.3, 55.2, 55.1.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{32}H_{29}O_4^+$ 477.2060; Found 477.2061.

1-(Bis(4'-fluorophenyl)methylene)-6-fluoro-3-(4"-fluorophenyl)-1H-indene (2d)

The reaction of 2-bromo-4-fluoro-1-(1'-(4'-fluorophenyl)vinyl)benzene (59.0 mg, 0.20 mmol, 1.0 equiv), Pd(OAc)₂ (4.5 mg, 0.02 mmol, 10 mol%), MOP (18.7 mg, 0.04 mmol, 20 mol%), 2-fluorophenol (44.9 mg, 0.40 mmol, 2 equiv) and Cs₂CO₃ (97.7 mg, 0.30 mmol, 1.5 equiv) in 1.5 hours afforded **2d** (30.6 mg, 71%) as an orange solid (chemoselectivity >20:1), eluent: petroleum ether/dichloromethane = 50:1 to 20:1.

Data of 2d:

¹**H** NMR (500 MHz, DMSO- d_6) δ 7.74 – 7.69 (m, 2H), 7.53 (dd, J = 8.0, 5.0 Hz, 1H), 7.45 – 7.36 (m, 6H), 7.34 – 7.27 (m, 4H), 7.09 (td, J = 6.5, 2.5 Hz, 1H), 6.71 (s, 1H), 6.11 (dd, J = 8.0, 2.5 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 163.2 (d, ¹*J*_{C-F} = 251.5 Hz), 162.9 (d, ¹*J*_{C-F} = 251.5 Hz), 162.5 (d, ¹*J*_{C-F} = 248.5 Hz), 161.3 (d, ¹*J*_{C-F} = 243.4 Hz), 145.2, 143.1, 138.8 (d, ³*J*_{C-F} = 9.1 Hz), 138.6 (d, ⁴*J*_{C-F} = 2.0

Hz), 137.9 (d, ${}^{4}J_{C-F} = 3.0$ Hz), 137.4 (d, ${}^{4}J_{C-F} = 2.0$ Hz), 136.7 (d, ${}^{4}J_{C-F} = 3.0$ Hz), 133.3 (d, ${}^{3}J_{C-F} = 9.1$ Hz), 132.4 (d, ${}^{3}J_{C-F} = 8.1$ Hz), 131.4 (d, ${}^{4}J_{C-F} = 3.0$ Hz), 129.2 (d, ${}^{3}J_{C-F} = 8.1$ Hz), 127.0 (d, ${}^{4}J_{C-F} = 3.0$ Hz), 120.5 (d, ${}^{3}J_{C-F} = 9.1$ Hz), 116.0 (d, ${}^{2}J_{C-F} = 21.2$ Hz), 115.7 (d, ${}^{2}J_{C-F} = 21.2$ Hz), 115.2 (d, ${}^{2}J_{C-F} = 22.2$ Hz), 113.6 (d, ${}^{2}J_{C-F} = 23.2$ Hz), 111.2 (d, ${}^{2}J_{C-F} = 25.3$ Hz).

¹⁹**F NMR** (471 MHz, DMSO-*d*₆) δ -112.0, -112.3, -113.2, -117.0.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₈H₁₇F₄⁺ 429.1261; Found 429.1211.

1.0 mmol scale reaction for the preparation of 1-(bis(4'-chlorophenyl)methylene)-6-chloro-3-(4''-chlorophenyl)-1*H*-indene (2e)

The reaction of 2-bromo-4-chloro-1-(1'-(4'-chlorophenyl)vinyl)benzene (328 mg, 1.0 mmol, 1.0 equiv), Pd(OAc)₂ (22.4 mg, 0.10 mmol, 10 mol%), MOP (93 mg, 0.20 mmol, 20 mol%) and Cs₂CO₃ (488 mg, 1.50 mmol, 1.5 equiv) afforded **2e** (130.9 mg, 53%) as an orange solid (chemoselectivity >20:1), eluent: petroleum ether/dichloromethane = 50:1 to 20:1.

Data of **2e**:

¹**H NMR** (500 MHz, CDCl₃) δ 7.57 – 7.50 (m, 2H), 7.50 – 7.44 (m, 2H), 7.44 – 7.35 (m, 5H), 7.34 – 7.29 (m, 2H), 7.25 – 7.21 (m, 2H), 7.19 (dd, *J* = 8.0, 2.0 Hz, 1H), 6.73 (d, *J* = 1.5 Hz, 1H), 6.64 (s, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 149.6, 143.1, 140.7, 135.1, 133.9, 128.8, 128.7, 128.5, 127.8, 127.4, 122.5, 121.9.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₈H₁₇Cl₄⁺ 495.0049; Found 495.0011.

0.50 mmol scale reaction for the preparation of 1-(Bis(4'-(trifluoromethyl)phenyl)methylene)-6-(trifluoromethyl)-3-(4"-(trifluoromethyl)phenyl)-1*H*-indene (2f)

The reaction of 2-bromo-4-(trifluoromethyl)-1-(1'-(4'-(trifluoromethyl)phenyl)vinyl)benzene (197.5 mg, 0.50 mmol, 1.0 equiv), Pd(OAc)₂ (11.2 mg, 0.05 mmol, 10 mol%), MOP (46.8 mg, 0.10 mmol, 20

mol%), 2-fluorophenol (56 mg, 0.50 mmol, 1 equiv) and Cs_2CO_3 (224 mg, 0.75 mmol, 1.5 equiv) in 12 hours afforded **2f** (86.9 mg, 55%) as an orange solid (chemoselectivity >20:1), eluent: petroleum ether/dichloromethane = 50:1 to 30:1.

Data of 2f:

¹**H** NMR (500 MHz, CDCl₃) δ 7.79 (d, J = 8.0 Hz, 2H), 7.75 – 7.67 (m, 6H), 7.60 (d, J = 8.0 Hz, 1H), 7.54 (d, J = 8.0 Hz, 2H), 7.52 - 7.45 (m, 3H), 6.86 (s, 1H), 6.77 (s, 1H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 145.7, 145.2, 144.3, 144.2, 143.5, 138.8, 138.1, 136.5, 131.66 (q, ${}^{2}J_{C-F} = 33.2 \text{ Hz}$), 131.65, 131.0 (q, ${}^{2}J_{C-F} = 33.2 \text{ Hz}$), 130.7, 130.5 (q, ${}^{2}J_{C-F} = 33.2 \text{ Hz}$), 130.0, 127.9, 127.7 (q, ${}^{2}J_{C-F} = 31.7 \text{ Hz}$), 126.0 (q, ${}^{3}J_{C-F} = 3.0 \text{ Hz}$), 125.9 (q, ${}^{3}J_{C-F} = 3.0 \text{ Hz}$), 125.4 (q, ${}^{3}J_{C-F} = 3.0 \text{ Hz}$), 125.0 (q, ${}^{3}J_{C-F} = 3.0 \text{ Hz}$), 124.1 (q, ${}^{1}J_{C-F} = 271.8 \text{ Hz}$), 124.0 (q, ${}^{1}J_{C-F} = 271.8 \text{ Hz}$), 123.8 (q, ${}^{1}J_{C-F} = 273.3 \text{ Hz}$), 120.69, 120.67, 120.2.

¹⁹F NMR (471 MHz, CDCl₃) δ -61.30, -61.34, -61.8, -62.2, -62.3, -62.45, -62.56, -62.61, -62.7, -62.8, -62.9, -63.07, -63.12, -63.2.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{32}H_{17}F_{12}^+$ 629.1134; Found 629.1197.

1-(Di-*m*-tolylmethylene)-5-methyl-3-(*m*-tolyl)-1*H*-indene (2g)

The reaction of 1-bromo-4-methyl-2-(1'-(*m*-tolyl)vinyl)benzene (57.4 mg, 0.20 mmol, 1.0 equiv), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol, 10 mol%), MOP (18.7 mg, 0.04 mmol, 20 mol%), 2-fluorophenol (44.9 mg, 0.40 mmol, 2 equiv) and Cs_2CO_3 (97.7 mg, 0.30 mmol, 1.5 equiv) in 1.5 hours afforded **2g** (36.1 mg, 88%) as an orange solid (chemoselectivity >20:1), eluent: petroleum ether/dichloromethane = 50:1 to 20:1.

Data of 2g:

¹**H NMR** (500 MHz, CDCl₃) δ 7.47 – 7.41 (m, 2H), 7.38 – 7.30 (m, 3H), 7.29 – 7.26 (m, 2H), 7.22 – 7.12 (m, 6H), 6.75 (d, *J* = 8.0 Hz, 1H), 6.71 (s, 1H), 6.56 (d, *J* = 8.0 Hz, 1H), 2.42 (s, 3H), 2.38 (s, 3H), 2.36 (s, 3H), 2.35 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 146.1, 144.0, 143.2, 142.5, 141.7, 138.13, 138.09, 137.8, 137.4, 136.7, 136.0, 134.6, 131.9, 130.8, 129.0, 128.7, 128.5, 128.4, 128.3, 128.1, 127.7, 127.4, 125.5, 124.8, 123.5, 120.8, 21.7, 21.53, 21.45, 21.4.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₃₂H₂₉⁺ 413.2264; Found 413.2270.

1.40 mmol scale reaction for the preparation of 3,7-dimethyl-9-(*m*-tolyl)-1-(1'-(*m*-tolyl)vinyl)phenanthrene (3g)

The reaction of 1-bromo-4-methyl-2-(1'-(*m*-tolyl)vinyl)benzene (401 mg, 1.40 mmol, 1.0 equiv), $Pd(OAc)_2$ (31.4 mg, 0.14 mmol, 10 mol%), MOP (131.2 mg, 0.28 mmol, 20 mol%) and Cs_2CO_3 (684 mg, 2.10 mmol, 1.5 equiv) afforded **2g** (185.4 mg, 64%) as an orange solid and **3g** (8.1 mg, 3%) as a colorless liquid, eluent: petroleum ether/dichloromethane = 50:1 to 20:1.

Data of 3g:

¹**H** NMR (500 MHz, CDCl₃) δ 8.69 (d, J = 8.5 Hz, 1H), 8.49 (s, 1H), 7.69 (s, 1H), 7.60 (s, 1H), 7.48 (dd, J = 6.5, 2.0 Hz, 1H), 7.36 (d, J = 1.5 Hz, 1H), 7.31 (t, J = 7.5 Hz, 1H), 7.19 (d, J = 7.5 Hz, 1H), 7.17 – 7.12 (m, 3H), 7.10 – 7.05 (m, 3H), 5.93 (d, J = 1.5 Hz, 1H), 5.38 (d, J = 1.5 Hz, 1H), 2.64 (s, 3H), 2.46 (s, 3H), 2.38 (s, 3H), 2.28 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 148.5, 141.4, 141.1, 140.5, 137.80, 137.78, 137.0, 136.1, 135.5, 130.9, 130.8, 130.3, 129.4, 128.34, 128.27, 128.2, 127.90, 127.87, 127.7, 127.5, 127.4, 127.2, 126.2, 125.9, 124.2, 123.0, 121.7, 116.0, 22.1, 21.7, 21.5, 21.4.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₃₂H₂₉⁺ 413.2264; Found 413.2284.

1-(Bis(4'-methoxyphenyl)methylene)-6-methoxy-3-(4"-methoxyphenyl)-1H-indene (2h)

The reaction of 1-bromo-4-methoxy-2-(1'-(3'-methoxyphenyl)vinyl)benzene (63.8 mg, 0.20 mmol, 1.0 equiv), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol, 10 mol%), MOP (18.7 mg, 0.04 mmol, 20 mol%) and Cs_2CO_3 (97.7 mg, 0.30 mmol, 1.5 equiv) afforded **2h** (31.6 mg, 66%) as an orange solid and a trace amount of **3h**, eluent: petroleum ether/ethyl acetate = 50:1 to 20:1.

¹**H NMR** (500 MHz, CDCl₃) δ 7.41 – 7.34 (m, 2H), 7.31 – 7.27 (m, 1H), 7.22 (d, *J* = 7.5 Hz, 1H), 7.16 (bs, 1H), 7.11 (d, *J* = 2.0 Hz, 1H), 7.04 – 6.97 (m, 2H), 6.97 – 6.88 (m, 5H), 6.79 (s, 1H), 6.65 (d, *J* = 8.5 Hz, 1H), 6.50 (dd, *J* = 8.5, 2.5 Hz, 1H), 3.86 (s, 3H), 3.80 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 159.71, 159.65, 159.3, 159.0, 144.5, 143.8, 143.5, 142.8, 137.5, 137.1, 129.8, 129.6, 129.0, 128.8, 124.8, 124.0, 122.7, 120.2, 117.0, 115.3, 114.3, 113.4, 113.3, 113.2, 110.0, 106.4, 55.5, 55.34, 55.28, 55.26.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₃₂H₂₉O₄⁺ 477.2060; Found 477.2059.

1-(Phenyl(p-tolyl)methylene)-3-(p-tolyl)-1H-indene (2i)

The reaction of 1-bromo-2-(1'-(*p*-tolyl)vinyl)benzene (54.6 mg, 0.20 mmol, 1.0 equiv), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol, 10 mol%), MOP (18.7 mg, 0.04 mmol, 20 mol%), 2-fluorophenol (44.9 mg, 0.40 mmol, 2 equiv) and Cs_2CO_3 (97.7 mg, 0.30 mmol, 1.5 equiv) in 1 hour afforded **2i** (31.1 mg, 81%) as a mixture of *E*- and *Z*-isomers, 6:1, orange solid (chemoselectivity >20:1), eluent: petroleum ether/dichloromethane = 50:1 to 20:1.

Data of 2i:

¹**H NMR** (500 MHz, CDCl₃) δ 7.60 – 7.53 (m, 3.5H), 7.47 – 7.43 (m, 2.6H), 7.42 – 7.38 (m, 2H), 7.38 – 7.33 (m, 1H), 7.30 (d, J = 7.5 Hz, 0.5H), 7.24 (s, 2H), 7.20 – 7.16 (m, 3H), 6.91 (t, J = 7.5 Hz, 1H), 6.81 (d, J = 7.5 Hz, 0.2H), 6.79 (s, 1H), 6.73 (s, 0.2H), 6.66 (d, J = 8.0 Hz, 1H), 2.47 (s, 0.5H), 2.41 (s, 3H), 2.40 (s, 2.5H).

¹³C NMR (101 MHz, CDCl₃) δ 146.4, 143.9, 142.8, 141.8, 139.6, 138.2, 137.7, 137.6, 137.3, 133.0, 131.7, 130.52, 130.49, 129.2, 128.6, 128.5, 128.4, 127.8, 127.6, 127.5, 126.7, 124.7, 123.72, 123.66, 120.0, 21.33, 21.30.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₃₀H₂₅⁺ 385.1951; Found 385.1948.

1.0 mmol scale reaction for the preparation of 9-(p-tolyl)-1-(1'-(p-tolyl)vinyl)phenanthrene (3i)

The reaction of 1-bromo-2-(1'-(*p*-tolyl)vinyl)benzene (273 mg, 1.0 mmol, 1.0 equiv), Pd(OAc)₂ (22.5 mg, 0.10 mmol, 10 mol%), MOP (93.7 mg, 0.20 mmol, 20 mol%) and Cs₂CO₃ (488 mg, 1.50 mmol, 1.5

equiv) afforded 2i (133.7 mg, 70%) as a mixture of *E*- and *Z*-isomers, 1:1, orange solid and 3i (14.2 mg, 7%) as a colorless liquid, eluent: petroleum ether/dichloromethane = 50:1 to 20:1.

Data of 3i:

¹**H** NMR (500 MHz, CDCl₃) δ 8.84 (d, *J* = 8.5 Hz, 1H), 8.77 (d, *J* = 8.5 Hz, 1H), 7.96 (d, *J* = 8.5 Hz, 1H), 7.73 (s, 1H), 7.69 (t, *J* = 8.0 Hz, 1H), 7.26 – 7.52 (m, 2H), 7.28 (s, 1H), 7.26 – 7.24 (m, 3H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.09 (d, *J* = 8.0 Hz, 2H), 5.98 (s, 1H), 5.39 (s, 1H), 2.46 (s, 3H), 2.36 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 147.9, 140.7, 138.2, 137.9, 137.4, 136.8, 130.8, 130.7, 130.1, 130.0, 129.0, 128.9, 128.1, 126.8, 126.6, 126.5, 126.4, 125.9, 125.7, 123.1, 122.1, 115.3, 21.2, 21.1.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{30}H_{25}^+$ 385.1951; Found 385.1955.

3-(4'-Methoxyphenyl)-1-((4"-methoxyphenyl)(phenyl)methylene)-1H-indene (2j)

The reaction of 1-bromo-2-(1'-(4'-methoxyphenyl)vinyl)benzene (57.8 mg, 0.20 mmol, 1.0 equiv), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol, 10 mol%), MOP (18.7 mg, 0.04 mmol, 20 mol%), 2-fluorophenol (44.9 mg, 0.40 mmol, 2 equiv) and Cs₂CO₃ (97.7 mg, 0.30 mmol, 1.5 equiv) in 1 hour afforded **2j** (34.4 mg, 82%) as a mixture of *E*- and *Z*-isomers, 8:1, orange solid (chemoselectivity >20:1), eluent: petroleum ether/ethyl acetate = 50:1 to 20:1.

Data of **2j**:

¹**H** NMR (500 MHz, CDCl₃) δ 7.61 (d, J = 8.5 Hz, 2H), 7.57 (d, J = 8.0 Hz, 1H), 7.48 – 7.42 (m, 3H), 7.41 – 7.37 (m, 2H), 7.29 (d, J = 8.5 Hz, 2H), 7.18 (t, J = 7.5 Hz, 1H), 6.99 ((d, J = 8.5 Hz, 2H), 6.93 – 6.87 (m, 3H), 6.77 (s, 1H), 6.68 (s, 0.1H), 6.64 (d, J = 7.5 Hz, 0.9H), 3.86 (s, 3H), 3.85 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 159.7, 159.2, 145.9, 143.3, 142.8, 141.9, 137.4, 137.2, 135.0, 133.2, 130.6, 132.3, 131.8, 128.8, 128.5, 128.48, 128.41, 127.8, 127.0, 126.6, 124.6, 119.9, 114.0, 113.3, 55.33, 55.32.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{30}H_{25}O_2^+$ 417.1849; Found 417.1852.

(3-(4'-Fluorophenyl)-1-((4"-fluorophenyl)(phenyl)methylene)-1*H*-indene (2k)

The reaction of 1-bromo-2-(1'-(4'-fluorophenyl)vinyl)benzene (55.4 mg, 0.20 mmol, 1.0 equiv), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol, 10 mol%), MOP (18.7 mg, 0.04 mmol, 20 mol%), 2-fluorophenol (44.9 mg, 0.40 mmol, 2 equiv) and Cs₂CO₃ (97.7 mg, 0.30 mmol, 1.5 equiv) in 1.5 hours afforded **2k** (27.9 mg, 71%) as a mixture of *E*- and *Z*-isomers, 2:1, orange solid (chemoselectivity >20:1), eluent: petroleum ether/ dichloromethane = 50:1 to 20:1.

Data of **2k**:

¹**H** NMR ¹H NMR (500 MHz, DMSO- d_6) δ 7.73 – 7.67 (m, 2H), 7.55 – 7.50 (m, 2.5H), 7.46 – 7.25 (m, 9.5H), 7.24 – 7.19 (m, 1H), 7.00 (t, J = 7.5 Hz, 0.4H), 6.94 (t, J = 7.5 Hz, 0.6H), 6.69 (s, 0.6H), 6.67 (s, 0.4H), 6.54 (d, J = 8.0 Hz, 0.4H), 6.46 (d, J = 8.0 Hz, 0.6H).

¹³C NMR (101 MHz, CDCl₃) δ 162.7 (d, ¹*J*_{C-F} = 250.5 Hz), 162.4 (d, ¹*J*_{C-F} = 248.5 Hz), 145.5, 143.5, 143.4, 142.7, 142.6, 142.2, 141.3, 138.4 (d, ⁴*J*_{C-F} = 3.0 Hz), 138.2, 138.0, 137.05, 136.99, 133.3 (d, ³*J*_{C-F} = 9.1 Hz), 132.4 (d, ³*J*_{C-F} = 8.1 Hz), 131.7 (d, ⁴*J*_{C-F} = 3.0 Hz), 131.6, 131.0, 130.4, 129.3 (d, ³*J*_{C-F} = 8.1 Hz), 128.70, 128.65, 128.4, 128.0, 127.7, 127.4, 127.12, 127.05, 125.0, 123.8, 123.6, 120.0, 119.9, 115.7 (d, ²*J*_{C-F} = 21.2 Hz), 115.6 (d, ²*J*_{C-F} = 22.2 Hz), 115.0 (d, ²*J*_{C-F} = 22.2 Hz).

¹⁹**F NMR** (471 MHz, DMSO-*d*₆) δ -112.6, -113.0, -113.4, -113.5.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₈H₁₉F₂⁺ 393.1449; Found 393.1454.

1-(Phenyl(4'-(trifluoromethyl)phenyl)methylene)-3-(4"-(trifluoromethyl)phenyl)-1H-indene (21)

The reaction of 1-bromo-2-(1'-(4'-(trifluoromethyl)phenyl)vinyl)benzene (65.4 mg, 0.20 mmol, 1.0 equiv), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol, 10 mol%), MOP (18.7 mg, 0.04 mmol, 20 mol%), 2-fluorophenol (44.9 mg, 0.40 mmol, 2 equiv) and Cs_2CO_3 (97.7 mg, 0.30 mmol, 1.5 equiv) in 1.5 hours afforded **21** (37.2 mg, 75%) as a mixture of *E*- and *Z*-isomers, 1.1:1, orange solid (chemoselectivity >20:1), eluent: petroleum ether/ dichloromethane = 50:1 to 20:1.

Data of 21:

¹**H** NMR (500 MHz, CDCl₃) δ 7.76 – 7.68 (m, 5H), 7.65 (d, J = 8.5 Hz, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.53 – 7.44 (m, 3.5H), 7.43 – 7.36 (m, 2.5H), 7.33 – 7.29 (m, 1H), 7.25 – 7.20 (m, 1H), 7.01 – 6.95 (m, 1H), 6.79 (s, 1H), 6.75 (d, J = 7.5 Hz, 0.5H), 6.70 (s, 0.5H), 6.68 (d, J = 8.0 Hz, 0.5H).

¹³C NMR (151 MHz, Chloroform-*d*) Since it is a pair of *E*/*Z* isomer (1:1), the NMR spectra are relatively complicated along with C-F couplings. The followings are the selected peaks: δ 145.74, 145.72, 145.0, 144.0 143.7, 142.4, 142.3, 141.5, 140.6, 139.13, 139.07, 139.0, 138.6, 136.8, 136.6, 131.7, 131.5, 130.8, 130.3, 129.9 (q, ²*J*_{C-F} = 33.2 Hz), 129.8 (q, ²*J*_{C-F} = 33.2 Hz), 129.0, 128.89, 128.85, 128.7, 128.3, 128.2, 127.9, 127.60, 127.57, 125.64 (q, ³*J*_{C-F} = 3.0 Hz), 125.55 (q, ³*J*_{C-F} = 3.0 Hz), 125.0 (q, ³*J*_{C-F} = 3.0 Hz), 124.2 (q, ¹*J*_{C-F} = 271.8 Hz), 124.11, 124.07 (q, ¹*J*_{C-F} = 271.8 Hz), 123.8, 123.5 (q, ¹*J*_{C-F} = 271.8 Hz), 120.1, 120.0.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -128.6, -133.3, -136.4, -139.7, -139.7, -139.7.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₃₀H₁₉F₆⁺ 493.1369; Found 493.1380.

3-(4'-Chlorophenyl)-1-((4"-chlorophenyl)(phenyl)methylene)-1*H*-indene (2m)

The reaction of 1-bromo-2-(1'-(4'-chlorophenyl)vinyl)benzene (294 mg, 1.0 mmol, 1.0 equiv), Pd(OAc)₂ (22.4 mg, 0.10 mmol, 10 mol%), MOP (93.7 mg, 0.20 mmol, 20 mol%), 2-fluorophenol (224.2 mg, 2 mmol, 2 equiv) and Cs₂CO₃ (488 mg, 3.0 mmol, 1.5 equiv) in 1 hour afforded **2m** (120.4 mg, 57%) as a mixture of *E*- and *Z*-isomers, 6:1, orange solid (chemoselectivity >10:1), eluent: petroleum ether/ dichloromethane = 50:1 to 20:1.

Data of **2m**:

¹**H** NMR (500 MHz, CDCl₃) δ 7.60 – 7.55 (m, 2H), 7.53 – 7.43 (m, 4H), 7.44 – 7.34 (m, 6H), 7.33 – 7.30 (m, 0.5H), 7.30 – 7.27 (m, 1.5H), 7.24 – 7.19 (m, 1H), 7.01 (t, *J* = 7.5 Hz, 0.2H), 6.95 (t, *J* = 7.5 Hz, 0.8H), 6.80 (d, *J* = 7.5 Hz, 0.2H), 6.72 – 6.68 (m, 1.8H).

¹³C NMR (126 MHz, CDCl₃) δ 145.6, 145.5, 143.5, 143.4, 142.5, 142.4, 142.0, 141.0, 140.7, 139.8, 138.3, 137.0, 136.9, 134.7, 134.5, 134.1, 134.0, 133.62, 133.58, 132.8, 132.0, 131.6, 130.4, 128.9, 128.8, 128.7, 128.5, 128.2, 128.1, 128.0, 127.6, 127.3, 127.2, 125.2, 123.9, 123.7, 120.0, 119.9.

HRMS (ESI) m/z: [M + H]+ Calcd for C₂₈H₁₉Cl₂⁺ 425.0859; Found 425.0838.

1.0 mmol scale reaction for the preparation of **3-(4'-(***tert***-Butyl)phenyl)-1-((4''-(***tert***-butyl)phenyl)(phenyl)methylene)-1***H***-indene (2n)**

The reaction of 1-bromo-2-(1'-(4'-(*tert*-butyl)phenyl)vinyl)benzene (315.3 mg, 1.0 mmol, 1.0 equiv.), $Pd(OAc)_2$ (22.4 mg, 0.10 mmol, 10 mol%), MOP (93.7 mg, 0.20 mmol, 20 mol%) and Cs_2CO_3 (488 mg, 3.0 mmol, 1.5 equiv) afforded **2n** (154.6 mg, 69%) as a mixture of *E*- and *Z*-isomers, 1.2:1, orange solid (chemoselectivity >20:1), eluent: petroleum ether/ dichloromethane = 50:1 to 20:1.

Data of 2n:

¹**H** NMR (500 MHz, CDCl₃) δ 7.63 – 7.56 (m, 3H), 7.49 – 7.42 (m, 4.5H), 7.42 – 7.39 (m, 1H), 7.39 – 7.34 (m, 3.5H), 7.32 (d, J = 8.0 Hz, 1H), 7.28 (d, J = 8.5 Hz, 1H), 7.19 (dd, J = 7.0, 6.5 Hz, 1H), 6.95 – 6.89 (m, 1H), 6.83 (s, 0.5H), 6.77 (d, J = 7.5 Hz, 0.5H), 6.73 (s, 0.5H), 6.63 (d, J = 7.5 Hz, 0.5H), 1.41 (s, 4.5H), 1.36 (d, J = 1.5 Hz, 9H), 1.35 (s, 4.5H).

¹³C NMR (126 MHz, CDCl₃) & 151.7, 151.2, 150.7, 146.6, 146.5, 143.8, 143.7, 142.87, 142.85, 142.7, 141.8, 139.4, 138.5, 137.9, 137.7, 137.3, 133.1, 133.0, 131.7, 131.4, 130.4, 130.2, 128.5, 128.3, 128.0, 127.76, 127.71, 127.38, 127.35, 126.74, 126.69, 125.4, 125.3, 124.8, 124.7, 124.6, 123.7, 120.1, 34.8, 34.67, 34.65, 31.4, 31.3, 31.3.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₃₆H₃₇⁺ 469.2890; Found 469.2880.

3-([1,1'-Biphenyl]-4-yl)-1-([1,1'-biphenyl]-4-yl(phenyl)methylene)-1H-indene (20)

The reaction of 4-(1'-(2'-bromophenyl)vinyl)-1,1'-biphenyl (67.0 mg, 0.20 mmol, 1.0 equiv), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol, 10 mol%), MOP (18.7 mg, 0.04 mmol, 20 mol%) and Cs_2CO_3 (97.7 mg, 0.30 mmol, 1.5 equiv) afforded **20** (35.5 mg, 70%) as a mixture of *E*- and *Z*-isomers, 6.5:1, orange solid and a trace amount of **30**, eluent: petroleum ether/ dichloromethane = 50:1 to 20:1.

Data of 20:

¹**H NMR** (500 MHz, CDCl₃) δ 7.79 – 7.74 (m, 2H), 7.70 – 7.67 (m, 2H), 7.66 – 7.61 (m, 6.5H), 7.512 – 7. 43 (m, 11H), 7.41 (t, *J* = 3.5 Hz, 0.5H), 7.39 – 7.35 (m, 2H), 7.25 – 7.20 (m, 1H), 6.98 – 6.93 (m, 1H), 6.92 (s, 0.9H), 6.83 (s, 0.1H), 6.71 (d, *J* = 7.5 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 146.3, 143.8, 142.7, 141.5, 141.4, 140.9, 140.7, 140.6, 140.4, 138.2, 137.3, 134.8, 132.2, 131.8, 131.2, 130.6, 128.84, 128.81, 128.6, 128.1, 127.9, 127.6, 127.4, 127.3, 127.1, 127.01, 126.97, 126.6, 124.9, 123.8, 120.1.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₄₀H₂₉⁺ 509.2264; Found 509.2268.

1-(Phenyl(*m*-tolyl)methylene)-3-(*m*-tolyl)-1*H*-indene (2p)

(a) The reaction without 2-fluorophenol additive

The reaction of 1-bromo-2-(1-(*m*-tolyl)vinyl)benzene (54.6 mg, 0.20 mmol, 1.0 equiv), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol, 10 mol%), MOP (18.7 mg, 0.04 mmol, 20 mol%) and Cs_2CO_3 (97.7 mg, 0.30 mmol, 1.5 equiv) in 12 hours afforded **2p** (26.9 mg, 70%) as a mixture of *E*- and *Z*-isomers, 1:1, orange solid and a trace amount of **3p**, eluent: petroleum ether/ dichloromethane = 50:1 to 20:1.

(b) The reaction with 2-fluorophenol additive

The reaction of 1-bromo-2-(1-(*m*-tolyl)vinyl)benzene (54.6 mg, 0.20 mmol, 1.0 equiv), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol, 10 mol%), MOP (18.7 mg, 0.04 mmol, 20 mol%), 2-fluorophenol (44.9 mg, 0.40 mmol, 2 equiv) and Cs_2CO_3 (97.7 mg, 0.30 mmol, 1.5 equiv) in 2 hours afforded **2p** (33.8 mg, 88%) as a mixture of *E*- and *Z*-isomers, 6:1, orange solid (chemoselectivity >20:1), eluent: petroleum ether/ dichloromethane = 50:1 to 20:1.

Data of **2p**:

¹**H** NMR (500 MHz, CDCl₃) δ 7.57 (d, J = 7.5 Hz, 1H), 7.49 – 7.44 (m, 4.5H), 7.44 – 7.39 (m, 2H), 7.38 – 7.32 (m, 1.5H), 7.30 – 7.27 (m, 1H), 7.23 – 7.14 (m, 5H), 6.93 (t, J = 7.5 Hz, 1H), 6.76 (s, 1H), 6.72 (d, J = 8.0 Hz, 0.1H), 6.67 (d, J = 7.5 Hz, 0.9H), 2.42 (s, 3H), 2.38 (s, 0.3H) 2.36 (s, 2.7H).

¹³C NMR (101 MHz, CDCl₃) δ 146.8, 144.2, 142.9, 142.4, 141.7, 138.2, 138.0, 137.5, 137.2, 135.8, 132.0, 131.6, 130.7, 130.4, 129.2, 128.9, 128.8, 128.5, 128.43, 128.38, 128.3, 127.8, 127.7, 127.5, 126.8, 124.8, 124.7, 123.8, 123.7, 120.1, 21.52, 21.45.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₃₀H₂₅⁺ 385.1951; Found 385.1957.

1.0 mmol scale reaction for the preparation of 9-(*m*-tolyl)-1-(1'-(*m*-tolyl)vinyl)phenanthrene (3p)

The reaction of 1-bromo-2-(1-(*m*-tolyl)vinyl)benzene (273 mg, 1.0 mmol, 1.0 equiv), $Pd(OAc)_2$ (22.5 mg, 0.20 mmol, 10 mol%), MOP (93.7 mg, 0.40 mmol, 20 mol%), and Cs_2CO_3 (488 mg, 1.50 mmol, 1.5 equiv) afforded **2p** (126.3 mg, 66%) as an orange solid and **3p** (8.1 mg, 4%) as a colorless liquid, eluent: petroleum ether/ dichloromethane = 50:1 to 20:1.

Data of **3p**:

¹**H** NMR (500 MHz, DMSO-d₆) δ 8.98 (d, J = 8.0 Hz, 1H), 8.93 (d, J = 7.5 Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.79 – 7.71 (m, 2H), 7.78 – 7.72 (m, 2H), 7.46 (s, 1H), 7.34 (t, J = 7.6 Hz, 1H), 7.23 (d, J = 7.5 Hz, 1H), 7.20 – 7.17 (m, 2H), 7.12 (d, J = 7.5 Hz, 1H), 7.06 (d, J = 7.5 Hz, 1H), 6.98 (d, J = 8.5 Hz, 2H), 6.04 (s, 1H), 5.41 (s, 1H), 2.32 (s, 3H), 2.23 (s, 3H).

¹³C NMR (126 MHz, DMSO-d₆) δ 147.8, 140.6, 140.0, 139.9, 137.73, 137.70, 130.3, 130.1, 129.7, 128.9, 128.6, 128.5, 128.3, 128.2, 127.1, 127.0, 126.72, 126.67, 126.6, 126.1, 125.0, 123.8, 123.7, 122.8, 116.7, 21.03, 21.00.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{30}H_{25}^+$ 385.1951; Found 385.1949.

3-(3'-Fluorophenyl)-1-((3'-fluorophenyl)(phenyl)methylene)-1*H*-indene (2q)

The reaction of 1-bromo-2-(1'-(3'-fluorophenyl)vinyl)benzene (55.4 mg, 0.20 mmol, 1.0 equiv), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol, 10 mol%), MOP (18.7 mg, 0.04 mmol, 20 mol%), 2-fluorophenol (44.9 mg, 0.40 mmol, 2 equiv) and Cs₂CO₃ (97.7 mg, 0.30 mmol, 1.5 equiv) in 1.5 hours afforded **2q** (35.0 mg, 89%) as a mixture of *E*- and *Z*-isomers, 2:1, orange solid (chemoselectivity >20:1), eluent: petroleum ether/ dichloromethane = 50:1 to 20:1.

Data of **2q**:

¹**H NMR** (500 MHz, CDCl₃) δ 7.57 – 7.52 (m, 1H), 7.50 – 7.45 (m, 1.5H), 7.45 – 7.37 (m, 5H), 7.37 – 7.31 (m, 2.5H), 7.25 – 7.20 (m, 1.5H), 7.20 – 7.13 (m, 1H), 7.13 – 7.02 (m, 2.5H), 7.00 – 7.92 (m, 1H), 6.70 – 6.71 (m, 1.5H), 6.69 (d, J = 8.0 Hz, 0.5H).

¹³C NMR (101 MHz, CDCl₃) δ 162.9 (d, ¹*J*_{C-F} = 246.4 Hz), 162.3 (d, ¹*J*_{C-F} = 247.5 Hz), 145.6 (d, ⁴*J*_{C-F} = 2.0 Hz), 145.5, 144.4 (d, ³*J*_{C-F} = 7.1 Hz), 143.7 (d, ⁴*J*_{C-F} = 2.0 Hz), 143.5 (d, ³*J*_{C-F} = 7.1 Hz), 142.38,

142.36, 141.7, 140.9, 138.5, 138.3, 137.8 (d, ${}^{3}J_{C-F} = 8.0 \text{ Hz}$), 136.9, 136.7, 131.5, 131.0, 130.3, 130.2, 130.11 (d, ${}^{3}J_{C-F} = 9.1 \text{ Hz}$), 130.08 (d, ${}^{3}J_{C-F} = 8.1 \text{ Hz}$), 129.4 (d, ${}^{3}J_{C-F} = 8.1 \text{ Hz}$), 128.8, 128.7, 128.5, 128.3, 128.1, 128.0, 127.35, 127.32, 126.2 (d, ${}^{4}J_{C-F} = 3.0 \text{ Hz}$), 125.2, 124.0, 123.8, 123.4 (d, ${}^{4}J_{C-F} = 3.0 \text{ Hz}$), 120.03, 120.01, 118.1 (d, ${}^{2}J_{C-F} = 22.2 \text{ Hz}$), 117.3 (d, ${}^{2}J_{C-F} = 21.1 \text{ Hz}$), 115.5 (d, ${}^{2}J_{C-F} = 21.1 \text{ Hz}$), 115.2 (d, ${}^{2}J_{C-F} = 21.1 \text{ Hz}$), 114.74 (d, ${}^{2}J_{C-F} = 21.1 \text{ Hz}$), 114.68 (d, ${}^{2}J_{C-F} = 22.2 \text{ Hz}$), 114.4.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -112.5, -112.5, -112.9, -112.9, -112.9, -113.0, -113.2, -113.3.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₈H₁₈F₂Na⁺ 415.1269; Found 415.1238.

2-(1-(Naphthalen-2-yl(phenyl)methylene)-1*H*-inden-3-yl)naphthalene (2r)

The reaction of 2-(1'-(2'-bromophenyl)vinyl)naphthalene (61.8 mg, 0.20 mmol, 1.0 equiv), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol, 10 mol%), MOP (18.7 mg, 0.04 mmol, 20 mol%), 2-fluorophenol (44.9 mg, 0.40 mmol, 2 equiv) and Cs₂CO₃ (97.7 mg, 0.30 mmol, 1.5 equiv) in 1 hour afforded **2r** (34.2 mg, 75%) as a mixture of *E*- and *Z*-isomers, 4:1, orange solid (chemoselectivity >20:1), eluent: petroleum ether/dichloromethane = 50:1 to 20:1.

Data of **2r**:

¹**H** NMR (500 MHz, CDCl₃) δ 7.92 (s, 1H), 7.68 – 7.59 (m, 7H), 7.55 (dd, *J* = 7.0, 1.5 Hz, 1H), 7.51 (d, *J* = 7.5 Hz, 1H), 7.32 – 7.26 (m, 6H), 7.26 – 7.22 (m, 4H), 7.03 (t, *J* = 7.5 Hz, 2H), 6.76 (t, *J* = 7.5 Hz, 1H), 6.71 (s, 1H), 6.57 (d, *J* = 7.5 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 146.8, 144.3, 142.8, 141.5, 139.9, 138.5, 137.4, 133.5, 133.2, 132.9, 132.8, 131.5, 130.7, 128.9, 128.64, 128.62, 128.52, 128.45, 128.1, 127.7, 127.6, 127.5, 127.0, 126.7, 126.4, 126.3, 126.2, 126.1, 126.0, 125.0, 123.9, 120.2.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₆H₂₅⁺ 457.1951; Found 457.1955.

3-(2,4-Dimethylphenyl)-1-((2,4-dimethylphenyl)(phenyl)methylene)-1*H*-indene (2s)

The reaction of 1-(1'-(2'-bromophenyl)vinyl)-2,4-dimethylbenzene (57.4 mg, 0.20 mmol, 1.0 equiv), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol, 10 mol%), MOP (18.7 mg, 0.04 mmol, 20 mol%), 2-fluorophenol (44.9 mg, 0.40 mmol, 2 equiv) and Cs₂CO₃ (97.7 mg, 0.30 mmol, 1.5 equiv) in 1.5 hours afforded **2s** (35.0 mg, 85%) as a mixture of *E*- and *Z*-isomers, 10:1, orange solid (chemoselectivity >20:1), eluent: petroleum ether/ dichloromethane = 50:1 to 20:1.

Data of 2s:

¹**H** NMR (500 MHz, CDCl₃) δ 7.55 – 7.47 (m, 1.9H), 7.45 – 7.37 (m, 3H), 7.24 (d, J = 7.5 Hz, 1H), 7.19 – 7.06 (m, 5H), 7.06 – 6.99 (m, 3H), 6.96 (t, J = 7.0 Hz, 1H), 6.73 (s, 0.1H), 6.40 (d, J = 8.0 Hz, 0.1H), 6.20 (s, 0.9H), 2.46 (s, 0.3H), 2.39 (s, 0.3H), 2.37 (s, 3H), 2.35 (s, 2.7H), 2.28 (s, 2.7H), 2.18 (s, 2.7H), 2.10 (s, 0.3H).

¹³C NMR (126 MHz, CDCl₃) δ 146.0, 145.3, 144.7, 144.4, 144.0, 143.6, 141.5, 140.8, 139.3, 138.8, 138.4, 138.07, 138.05, 137.5, 137.23, 137.17, 136.5, 136.4, 136.22, 136.15, 136.1, 135.7, 132.4, 132.3, 131.4, 131.2, 131.1, 131.0, 130.9, 130.1, 129.9, 129.23, 129.19, 129.12, 128.3, 128.2, 128.1, 127.9, 127.8, 127.0, 126.9, 126.8, 126.3, 126.2, 125.9, 124.9, 124.6, 123.3, 123.2, 120.3, 120.1, 21.4, 21.2, 21.1, 20.5, 20.4, 19.8.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{32}H_{29}^+$ 413.2264; Found 413.2260.

1-(Phenyl(o-tolyl)methylene)-3-(o-tolyl)-1H-indene (2t)

The reaction of 1-bromo-2-(1'-(*o*-tolyl)vinyl)benzene (54.6 mg, 0.20 mmol, 1.0 equiv), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol, 10 mol%), MOP (18.7 mg, 0.04 mmol, 20 mol%), 2-fluorophenol (44.9 mg, 0.40 mmol, 2 equiv) and Cs₂CO₃ (97.7 mg, 0.30 mmol, 1.5 equiv) in 2 hours afforded **2t** (35.7 mg, 93%) as a mixture of *E*- and *Z*-isomers, 6:1, orange solid (chemoselectivity >20:1), eluent: petroleum ether/ dichloromethane = 50:1 to 20:1.

Data of 2t:

¹**H** NMR (500 MHz, CDCl₃) δ 7.54 – 7.47 (m, 2H), 7.44 – 7.36 (m, 3.5H), 7.36 – 7.29 (m, 2H), 7.28 – 7.27 (m, 0.5H), 7.25 – 7.23 (m, 1H), 7.23 – 7.16 (m, 4H), 7.16 – 7.13 (m, 1H), 7.09 (dd, *J* = 3.0, 4.5 Hz, 2H), 6.98 – 6.93 (m, 1H), 6.73 (s, 0.1H), 6.16 (s, 0.9H), 2.35 (s, 0.3H), 2.28 (s, 2.7H), 2.21 (s, 2.7H), 2.13 (s, 0.3H).

¹³C NMR (151 MHz, CDCl₃) δ 146.0, 145.4, 144.7, 144.6, 143.93, 143.89, 142.1, 141.1, 140.9, 140.5, 138.8, 138.4, 136.5, 136.4, 136.34, 136.28, 135.6, 135.4, 135.2, 131.0, 130.8, 130.7, 130.4, 130.33, 130.32, 130.2, 130.1, 129.9, 129.3, 129.2, 129.1, 128.4, 128.32, 128.28, 128.1, 127.9, 127.8, 127.6, 127.1, 126.9, 126.2, 125.54, 125.49, 125.2, 125.1, 124.8, 123.3, 123.2, 120.4, 120.2, 20.6, 20.53, 20.46, 19.9.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{30}H_{24}Na^+$ 407.1770; Found 407.1792.

5-Methyl-3-phenyl-1-(phenyl(m-tolyl)methylene)-1*H*-indene (2u)

The reaction of 1-bromo-4-methyl-2-(1'-phenylvinyl)benzene (54.6 mg, 0.20 mmol, 1.0 equiv), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol, 10 mol%), MOP (18.7 mg, 0.04 mmol, 20 mol%), 2-fluorophenol (44.9 mg, 0.40 mmol, 2 equiv) and Cs_2CO_3 (97.7 mg, 0.30 mmol, 1.5 equiv) in 2 hours afforded **2u** (35.8 mg, 93%) as a mixture of *E*- and *Z*-isomers, 1:6, orange solid (chemoselectivity >20:1), eluent: petroleum ether/ dichloromethane = 50:1 to 20:1.

Data of 2u:

¹**H** NMR (500 MHz, CDCl₃) δ 7.65 (d, J = 7.5 Hz, 2H), 7.48 – 7.43 (m, 3.5H), 7.43 – 7.39 (m, 1H), 7.39 – 7.31 (m, 5.5H), 7.29 – 7.27 (m, 0.5H), 7.22 (d, J = 9.5 Hz, 1H), 7.17 (d, J = 9.0 Hz, 1.5H), 6.78 – 6.73 (m, 2H), 6.60 (d, J = 7.5 Hz, 0.5H), 6.56 (d, J = 7.5 Hz, 0.5H), 2.39 (s, 1.5H), 2.36 (s, 4.5H).

¹³C NMR (101 MHz, CDCl₃) δ 146.0, 144.1, 144.0, 143.10, 143.06, 142.5, 142.4, 141.8, 141.6, 138.1, 137.9, 137.8, 137.4, 136.9, 135.99, 135.97, 134.60, 134.55, 132.0, 131.5, 130.9, 130.4, 129.1, 128.82, 128.77, 128.52, 128.48, 128.38, 128.29, 128.26, 128.16, 128.0, 127.8, 127.71, 127.67, 127.5, 125.6, 125.5, 123.6, 123.5, 120.8, 21.7, 21.5, 21.4.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₃₀H₂₅⁺ 385.1951; Found 385.1944.

5-Fluoro-1-((3'-fluorophenyl)(phenyl)methylene)-3-phenyl-1*H*-indene (2v)

The reaction of 1-bromo-4-fluoro-2-(1'-phenylvinyl)benzene (55.4 mg, 0.20 mmol, 1.0 equiv), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol, 10 mol%), MOP (18.7 mg, 0.04 mmol, 20 mol%), 2-fluorophenol (44.9 mg, 0.40 mmol, 2 equiv) and Cs_2CO_3 (97.7 mg, 0.30 mmol, 1.5 equiv) in 3 hours afforded **2v** (34.6 mg, 88%) as a mixture of *E*- and *Z*-isomers, 1:1.2, orange solid (chemoselectivity >20:1), eluent: petroleum ether/dichloromethane = 50:1 to 20:1.

Data of 2v:

¹**H NMR** (500 MHz, CDCl₃) δ 7.61 (d, *J* = 7.5 Hz, 2H), 7.50 – 7.42 (m, 3.5H), 7.42 – 7.36 (m, 4H), 7.36 – 7.32 (m, 1.5H), 7.25 – 7.20 (m, 1.5H), 7.20 – 7.14 (m, 1H), 7.11 (d, *J* = 9.5 Hz, 1H), 7.08 – 7.02 (m, 0.5H), 6.80 (s, 1H), 6.68 – 6.57 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 162.9 (d, ¹*J*_{C-F} = 248.5 Hz), 162.5 (d, ¹*J*_{C-F} = 246.4 Hz), 145.0 (d, ³*J*_{C-F} = 8.1 Hz), 144.8, 143.9 (d, ³*J*_{C-F} = 9.1 Hz), 143.4 (d, ³*J*_{C-F} = 7.1 Hz), 141.6, 140.8, 137.7, 137.5, 135.1, 132.5 (d, ⁴*J*_{C-F} = 3.0 Hz), 131.4, 130.3 (d, ⁴*J*_{C-F} = 2.0 Hz), 130.2, 129.4 (d, ³*J*_{C-F} = 8.1 Hz), 129.2, 128.8, 128.7, 128.5, 128.14, 128.07, 127.5, 126.2 (d, ⁴*J*_{C-F} = 3.0 Hz), 124.9 (d, ³*J*_{C-F} = 9.1 Hz), 124.7 (d, ³*J*_{C-F} = 9.1 Hz), 118.1 (d, ²*J*_{C-F} = 22.2 Hz), 117.3 (d, ²*J*_{C-F} = 22.2 Hz), 115.6 (d, ²*J*_{C-F} = 21.2 Hz), 115.1 (d, ²*J*_{C-F} = 23.2 Hz), 107.6 (d, ²*J*_{C-F} = 24.2 Hz).

¹⁹F NMR (471 MHz, CDCl₃) δ -112.4, -112.4, -112.4, -113.2, -113.2, -113.2, -114.0, -114.1, -114.1.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{28}H_{18}F_2Na^+$ 415.1269; Found 415.1263.

5-Methyl-3-phenyl-1-(phenyl(*m*-tolyl)methylene)-1*H*-indene (2w)

The reaction of 1-bromo-4-methoxy-2-(1'-phenylvinyl)benzene (57.8 mg, 0.20 mmol, 1.0 equiv), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol, 10 mol%), MOP (18.7 mg, 0.04 mmol, 20 mol%), 2-fluorophenol (44.9 mg, 0.40 mmol, 2 equiv) and Cs_2CO_3 (97.7 mg, 0.30 mmol, 1.5 equiv) in 1 hour afforded **2w** (31.3 mg, 75%) as a mixture of *E*- and *Z*-isomers, 1:1.2, orange solid (chemoselectivity >20:1), eluent: petroleum ether/ethyl acetate = 50:1 to 20:1.

Data of **2w**:

¹**H** NMR (600 MHz, CDCl₃) δ 7.63 (d, J = 6.5 Hz, 2H), 7.47 – 6.41 (m, 2.5H), 7.40 – 7.32 (m, 6.5H), 7.11 (bs, 1H), 7.03 – 6.98 (m, 1.75H), 6.97 – 6.93 (m, 1H), 6.91 – 6.88 (m, 0.25H), 6.80 (bs, 0.15H), 6.77 (bs, 0.85H), 6.67 (d, J = 7.5 Hz, 0.9H), 6.59 (d, J = 7.5 Hz, 0.1H), 6.512 – 6.45 (m, 1H), 3.80 (s, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 159.7, 159.3, 159.0, 144.6, 144.5, 144.0, 143.9, 143.8, 143.0, 142.2, 141.6, 137.6, 137.5, 135.8, 131.4, 130.3, 129.9, 129.6, 129.0, 128.6, 127.94, 127.85, 127.8, 127.6, 124.8, 124.6, 124.1, 122.8, 117.1, 115.4, 114.2, 113.4, 109.9, 106.4, 55.5, 55.4.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{30}H_{25}O_2^+$ 417.1849; Found 417.1847.

6-Methyl-3-phenyl-1-(phenyl(p-tolyl)methylene)-1H-indene (2x)

The reaction of 2-bromo-4-methyl-1-(1'-phenylvinyl)benzene (54.6 mg, 0.20 mmol, 1.0 equiv), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol, 10 mol%), MOP (18.7 mg, 0.04 mmol, 20 mol%) and Cs_2CO_3 (97.7 mg, 0.30 mmol, 1.5 equiv) afforded **2x** (19.6 mg, 50%) as a mixture of *E*- and *Z*-isomers,1:1.2, orange solid and a trace amount of **3x**, eluent: petroleum ether/ dichloromethane = 50:1 to 20:1.

Data of **2x**:

¹**H NMR** (500 MHz, CDCl₃) δ 7.67 – 7.61 (m, 2H), 7.47 – 7.38 (m, 5.5H), 7.37 – 7.31 (m, 4H), 7.31 – 7.28 (m, 1H), 7.25 (d, *J* = 2.5 Hz, 1.5H), 7.18 (d, *J* = 8.0 Hz, 1H), 7.01 (t, *J* = 7.0 Hz, 1H), 6.74 (s, 0.4H), 6.68 (s, 0.6H), 6.62 (s, 0.6H), 6.45 (s, 0.4H), 2.47 (s, 1.8H), 2.39 (s, 1.2H), 2.16 (s, 1.8H), 2.13 (s, 1.2H).

¹³C NMR (101 MHz, CDCl₃) δ 146.5, 146.3, 143.91, 143.87, 142.8, 141.8, 140.23, 140.16, 139.6, 138.7, 138.4, 138.2, 137.9, 137.8, 137.6, 136.1, 136.0, 134.4, 134.3, 131.64, 131.60, 130.6, 130.5, 129.1, 128.6, 128.5, 128.43, 128.35, 128.0, 127.8, 127.6, 127.5, 127.4, 127.33, 127.29, 124.7, 119.7, 21.63, 21.57, 21.4, 21.3.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{30}H_{25}O_2^+$ 385.1951; Found 385.1951.

6-Fluoro-1-((4'-fluorophenyl)(phenyl)methylene)-3-phenyl-1*H*-indene (2y)

The reaction of 2-bromo-4-fluoro-1-(1'-phenylvinyl)benzene (55.4 mg, 0.20 mmol, 1.0 equiv), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol, 10 mol%), MOP (18.7 mg, 0.04 mmol, 20 mol%), 2-fluorophenol (44.9 mg, 0.40 mmol, 2 equiv) and Cs_2CO_3 (97.7 mg, 0.30 mmol, 1.5 equiv) in 3 hours afforded **2y** (28.9 mg, 74%) as a mixture of *E*- and *Z*-isomers, 1:1.1, orange solid (chemoselectivity >20:1), eluent: petroleum ether/dichloromethane = 50:1 to 20:1.

Data of 2y:

¹**H NMR** (500 MHz, CDCl₃) δ 7.67 – 7.58 (m, 2H), 7.51 – 7.42 (m, 4.5H), 7.42 – 7.35 (m, 4.5H), 7.35 – 7.30 (m, 2H), 7.17 (t, J = 8.5 Hz, 1H), 7.08 (t, J = 8.5 Hz, 1H), 6.94 – 6.86 (m, 1H), 6.71 (d, J = 8.0 Hz, 1H), 6.42 (d, J = 10.0 Hz, 0.5H), 6.33 (d, J = 10.5 Hz, 0.5H).

¹³C NMR (101 MHz, CDCl₃) δ 163.1 (d, ¹*J*_{C-F} = 250.5 Hz), 161.6, 161.4 (d, ¹*J*_{C-F} = 242.4 Hz), 146.3 (d, ⁴*J*_{C-F} = 3.0 Hz), 144.0, 143.9, 142.0, 140.8, 139.05, 138.96, 138.8, 138.7, 138.1, 137.5, 137.4, 137.0, 135.5, 133.3 (d, ³*J*_{C-F} = 8.1 Hz), 132.3 (d, ³*J*_{C-F} = 8.1 Hz), 131.6, 130.3, 129.0, 128.8, 128.6 (d, ⁴*J*_{C-F} = 3.0 Hz), 128.55, 128.0 (d, ⁴*J*_{C-F} = 3.0 Hz), 127.6, 127.1 (d, ⁴*J*_{C-F} = 3.0 Hz), 120.7, 120.6 (d, ³*J*_{C-F} = 9.1 Hz), 115.9 (d, ²*J*_{C-F} = 21.2 Hz), 115.1 (d, ²*J*_{C-F} = 22.2 Hz), 113.5 (d, ³*J*_{C-F} = 7.1 Hz), 113.3 (d, ³*J*_{C-F} = 7.1 Hz), 111.4 (d, ²*J*_{C-F} = 16.2 Hz), 111.1 (d, ²*J*_{C-F} = 15.2 Hz).

¹⁹**F NMR** (471 MHz, CDCl₃) δ -109.7, -112.0, -112.0, -112.6, -112.6, -114.7, -117.4, -117.4, -117.4, -117.5.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₈H₁₉F₂⁺ 393.1450; Found 393.1402.

6-Methoxy-1-((4'-methoxyphenyl)(phenyl)methylene)-3-phenyl-1*H*-indene (2z)

The reaction of 2-bromo-4-methoxy-1-(1'-phenylvinyl)benzene (57.8 mg, 0.20 mmol, 1.0 equiv), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol, 10 mol%), MOP (18.7 mg, 0.04 mmol, 20 mol%), 2-fluorophenol (44.9 mg, 0.40 mmol, 2 equiv) and Cs_2CO_3 (97.7 mg, 0.30 mmol, 1.5 equiv) in 2 hours afforded **2z** (30.1 mg, 72%) as a mixture of *E*- and *Z*-isomers, 1:20, orange red solid (chemoselectivity >20:1), eluent: petroleum ether/ethyl acetate = 50:1 to 20:1.

Data of 2z:

¹**H NMR** (500 MHz, CDCl₃) δ 7.65 (d, J = 7.5 Hz, 2H), 7.48 – 7.41 (m, 3H), 7.40 – 7.33 (m, 8H), 6.99 (d, J = 8.5 Hz, 2H), 6.77 (dd, J = 6.0, 2.0 Hz, 1H), 6.65 (s, 1H), 6.49 (d, J = 2.5 Hz, 1H), 3.89 (s, 3H), 3.58 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 160.0, 157.7, 146.3, 143.7, 142.7, 139.0, 137.7, 136.0, 135.9, 133.8, 132.1, 131.7, 128.5, 128.1, 127.8, 127.6, 127.5, 126.4, 120.4, 114.0, 112.4, 110.0, 55.4, 55.2.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{30}H_{25}O_2^+$ 417.1849; Found 417.1847.

6-Chloro-1-((4-chlorophenyl)(phenyl)methylene)-3-phenyl-1*H*-indene (2aa)

The reaction of 2-bromo-4-chloro-1-(1'-phenylvinyl)benzene (58.6 mg, 0.20 mmol, 1.0 equiv), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol, 10 mol%), MOP (18.7 mg, 0.04 mmol, 20 mol%), 2-fluorophenol (44.9 mg, 0.40 mmol, 2 equiv) and Cs_2CO_3 (97.7 mg, 0.30 mmol, 1.5 equiv) afforded **2aa** (15.8 mg, 37%) as a mixture of *E*- and *Z*-isomers, 1:1, orange solid and a trace amount of **3aa**, eluent: petroleum ether/dichloromethane = 50:1 to 20:1.

Data of 2aa:

¹**H NMR** (500 MHz, CDCl₃) δ 7.63 – 7.57 (m, 2H), 7.53 – 7.42 (m, 5.5H), 7.41 – 7.34 (m, 5H), 7.33 (s, 0.5H), 7.32 – 7.28 (m, 1.5H), 7.27 (s, 0.5H), 7.20 – 7.15 (m, 1H), 6.74 (d, *J* = 1.5 Hz, 0.5H), 6.72 (d, *J* = 4.5 Hz, 1H), 6.58 (d, *J* = 2.0 Hz, 0.5H).

¹³C NMR (126 MHz, CDCl₃) δ 146.4, 144.2, 143.9, 141.8, 141.2, 141.0, 140.53, 140.46, 139.3, 138.6, 138.5, 137.50, 137.47, 135.23, 135.21, 135.1, 134.7, 132.8, 132.0, 131.6, 130.9, 130.4, 129.2, 129.0, 128.8, 128.69, 128.66, 128.3, 128.1, 128.09, 128.07, 128.05, 127.6, 127.5, 126.9, 126.8, 124.1, 123.9, 120.9, 120.8.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{28}H_{18}Cl_2Na^+$ 447.0678; Found 447.0668.

2.2 Gram-Scale Synthesis and Derivatization of Benzofulvenes

To a 250-mL Schlenk tube charged with a stir bar, 1-bromo-2-(1'-phenylvinyl)benzene (1.17 g, 4.50 mmol, 1.0 equiv), $Pd(OAc)_2$ (101 mg, 0.45 mmol, 10 mol%), MOP (421.7 mg, 0.90 mmol, 20 mol%) and Cs_2CO_3 (2.2 g, 6.75 mmol, 1.5 equiv) were added. After filled with nitrogen, anhydrous DMF (25 mL) was added via a syringe. The mixture was stirred at 110 °C in an oil bath for 12 h. Upon completion, the reaction mixture was washed with brine (100 mL) and extracted with ethyl acetate (3×25 mL). The combined organic phase was dried over anhydrous Na₂SO₄. After that the organic phase was filtered, and the filtrate was concentrated under reduced pressure. The crude products were purified by silica gel chromatography which afforded **2a** (650 mg, 81%) as a light orange solid and byproduct (**3a**) (25.3 mg, 3%) as a colorless liquid, eluent: petroleum ether/ dichloromethane = 50:1 to 30:1.

2.3 General Procedure for Synthesis of 2-Bromobenzofulvenes (4)

To a 25-mL Schlenk tube, benzofulvene (2) (0.20 mmol, 1.0 equiv) and 1-bromopyrrolidine-2,5-dione (NBS) (42.7 mg, 0.24 mmol, 1.2 equiv) were added. After filled with nitrogen, anhydrous DMF (2 mL) were added via a syringe. The mixture was stirred at room temperature for 12 hours. The resulting solution was quenched with $Na_2S_2O_3$ (aq) and extracted with ethyl acetate (15 mL × 3). The combined organic layer was washed with brine then dried over anhydrous Na_2SO_4 . The sodium sulfate was filtered off, and the filtrate was concentrated by evaporation under vacuum and the residue was purified by flash column chromatography on silica gel to afford the desired compound **4** as red solid.

1.8 mmol scale reaction for the preparation of 2-bromo-1-(diphenylmethylene)-3-phenyl-1*H***-indene (4a)**

The reaction of 1-(diphenylmethylene)-3-phenyl-1*H*-indene (641 mg, 1.80 mmol, 1.0 equiv.) and 1-bromopyrrolidine-2,5-dione (NBS) (382 mg, 2.16 mmol, 1.2 equiv) afforded **4a** (624.1 mg, 80%) as a red solid, eluent: petroleum ether/ dichloromethane = 50:1 to 20:1.

Data of **4a**:

¹**H** NMR (500 MHz, CDCl₃) δ 7.60 – 7.54 (m, 2H), 7.52 – 7.45 (m, 3H), 7.46 – 7.34 (m, 8H), 7.33 – 7.27 (m, 2H), 7.18 (d, J = 7.5 Hz, 1H), 7.09 (td, J = 7.5, 1.0 Hz, 1H), 6.89 – 6.82 (m, 1H), 6.45 (d, J = 8.0 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 150.5, 145.9, 142.6, 141.8, 141.3, 137.0, 136.2, 134.2, 132.2, 131.0, 129.5, 129.2, 128.8, 128.6, 128.3, 128.2, 127.7, 126.9, 125.3, 123.3, 119.8, 115.8.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{28}H_{20}Br^+$ 435.0743; Found 435.0735.

The reaction of 1-(di-*p*-tolylmethylene)-6-methyl-3-(*p*-tolyl)-1*H*-indene (82.1 mg, 0.20 mmol, 1.0 equiv) and 1-bromopyrrolidine-2,5-dione (NBS) (42.7 mg, 0.24 mmol, 1.2 equiv) afforded **4b** (51.8 mg, 53%) as a red solid, eluent: petroleum ether/ dichloromethane = 50:1 to 20:1.

Data of **4b**:

¹**H NMR** (500 MHz, CDCl₃) δ 7.46 (d, J = 8.0 Hz, 2H), 7.29 – 7.26 (m, 3H), 7.25 (s, 1H), 7.21 (d, J = 8.0 Hz, 2H), 7.16 (s, 4H), 7.06 (d, J = 8.0 Hz, 1H), 6.89 (d, J = 7.0 Hz, 1H), 6.30 (s, 1H), 2.45 (s, 3H), 2.41 (s, 3H), 2.40 (s, 3H) 2.07 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 150.1, 145.3, 139.9, 139.3, 139.2, 138.9, 137.8, 137.5, 135.8, 134.8, 132.6, 131.5, 131.4, 129.4, 129.1, 128.9, 128.4, 127.2, 124.3, 124.0, 122.1, 119.4, 114.5, 21.7, 21.49, 21.46, 21.45.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{32}H_{28}Br^+$ 491.1369; Found 491.1370.

2-Bromo-1-(di-m-tolylmethylene)-5-methyl-3-(m-tolyl)-1H-indene (4g)

The reaction of 1-(di-*m*-tolylmethylene)-5-methyl-3-(*m*-tolyl)-1*H*-indene (180.6 mg, 0.44 mmol, 1.0 equiv) and 1-bromopyrrolidine-2,5-dione (NBS) (94.0 mg, 0.53 mmol, 1.2 equiv) afforded **4g** (150.6 mg, 70%) as a red solid, eluent: petroleum ether/ dichloromethane = 50:1 to 20:1.

Data of 4g:

¹**H NMR** (500 MHz, CDCl₃) δ 7.40 – 7.32 (m, 3H), 7.31 (t, *J* = 7.5Hz, 1H), 7.27 (d, *J* = 3.0 Hz, 1H), 7.27 – 7.20 (m, 2H), 7.20 – 7.14 (m, 3H), 7.12 – 7.06 (m, 2H), 6.95 (s, 1H), 6.67 (d, *J* = 7.5 Hz, 1H), 6.31–6.27 (m, 1H), 2.43 (s, 3H), 2.38 – 2.33 (m, 6H), 2.27 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ150.0, 145.7, 142.7, 142.0, 141.2, 138.2, 137.8, 137.1, 136.8, 135.8, 134.43, 134.36, 132.8, 132.7, 131.4, 130.0, 129.7, 129.3, 128.8, 128.4, 128.1, 128.0, 127.5, 126.6, 126.0, 123.1, 120.3, 115.9, 21.6, 21.43, 21.40, 21.36.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{32}H_{28}Br^+$ 491.1369; Found 491.1361.

2-Bromo-1-(phenyl(p-tolyl)methylene)-3-(p-tolyl)-1H-indene (4i)

The reaction of 1-(phenyl(*p*-tolyl)methylene)-3-(*p*-tolyl)-1*H*-indene (**2i**, E/Z = 1:1, 115.3 mg, 0.30 mmol, 1.0 equiv) and 1-bromopyrrolidine-2,5-dione (NBS) (64.0 mg, 0.36 mmol, 1.2 equiv) afforded **4i** (86.7 mg, 62%) as a mixture of *E*- and *Z*-isomers, 1:1, red solid, eluent: petroleum ether/ dichloromethane = 50:1 to 20:1.

Data of 4i:

¹**H** NMR (500 MHz, CDCl₃) δ 7.58 – 7.52 (m, 3H), 7.52 – 7.47 (m, 1H), 7.47 – 7.40 (m, 3H), 7.39 – 7.32 (m, 5H), 7.30 (d, J = 8.0 Hz, 1H), 7.27 (s, 1H), 7.19 – 7.13 (m, 1H), 6.97 – 6.89 (m, 1H), 6.64 (d, J = 8.0 Hz, 0.5H), 6.49 (d, J = 8.0 Hz, 0.5H), 2.54 (s, 1.5H), 2.50 (s, 3H), 2.49 (s, 1.5H).

¹³C NMR (126 MHz, CDCl₃) δ 150.44, 150.42, 145.6, 142.8, 141.7, 141.6, 139.7, 139.4, 139.0, 138.5, 138.0, 137.2, 135.9, 132.5, 132.4, 131.3, 131.2, 129.45, 129.43, 129.3, 129.1, 129.0, 128.7, 128.52, 128.46, 127.7, 126.74, 126.69, 125.19, 125.17, 123.2, 123.1, 119.7, 115.5, 21.49, 21.45.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{30}H_{24}Br^+$ 463.1056; Found 463.1079.

2-Bromo-3-(4'-methoxyphenyl)-1-((4"-methoxyphenyl)(phenyl)methylene)-1H-indene (4j)

The reaction of 3-(4'-methoxyphenyl)-1-((4"-methoxyphenyl)(phenyl)methylene)-1*H*-indene (**2j**, E/Z = 6:1, 83.3 mg, 0.20 mmol, 1.0 equiv) and 1-bromopyrrolidine-2,5-dione (NBS) (39.2 mg, 0.22 mmol, 1.1 equiv) afforded **4j** (98.2 mg, 99%) as a mixture of *E*- and *Z*-isomers, 1:1, red solid, eluent: petroleum ether/ ethyl acetate = 50:1 to 20:1.

Data of **4***j*:

¹**H** NMR (500 MHz, CDCl₃) δ 7.55 – 7.50 (m, 2H), 7.49 – 7.45 (m, 0.5H), 7.43 – 7.40 (m, 1H), 7.39 – 7.33 (m, 2.5H), 7.31 – 7.27 (m, 2H), 7.23 – 7.18 (m, 2H), 7.11 – 7.05 (m, 1H), 7.03 – 6.99 (m, 2H), 6.95 – 6.92 (m, 1H), 6.91 – 6.86 (m, 1.5H), 6.85 – 6.81 (m, 0.5H), 6.63 (d, *J* = 7.5 Hz, 0.5H), 6.40 (d, *J* = 8.0 Hz, 0.5H), 3.90 (s, 1.5H), 3.88 (s, 1.5H), 3.87 (s, 1.5H), 3.86 (s, 1.5H).

¹³C NMR (126 MHz, CDCl₃) δ 160.7, 160.5, 159.4, 150.0, 144.9, 142.8, 141.7, 141.6, 137.3, 134.9, 134.3, 133.8, 133.2, 132.6, 131.5, 130.9, 129.2, 128.8, 128.5, 127.7, 126.6, 125.1, 123.0, 119.7, 113.9, 113.69, 113.67, 113.1, 55.4, 55.3.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₀H₂₄BrO₂⁺ 495.0955; Found 495.0951.

2-Bromo-3-(4'-chlorophenyl)-1-((4"-chlorophenyl)(phenyl)methylene)-1H-indene (4m)

The reaction of 3-(4'-chlorophenyl)-1-((4"-chlorophenyl)(phenyl)methylene)-1*H*-indene (**2m**, E/Z = 4:1, 85.0 mg, 0.2 mmol, 1.0 equiv) and 1-bromopyrrolidine-2,5-dione (NBS) (42.7 mg, 0.24 mmol, 1.2 equiv) afforded **4m** (74.6 mg, 74%) as a mixture of *E*- and *Z*-isomers, 1.5:1, red solid, eluent: petroleum ether/ dichloromethane = 50:1 to 20:1.

Data of 4m:

¹**H NMR** (500 MHz, CDCl₃) δ 7.51 –7.47 (m, 2.5H), 7.47 – 7.43 (m, 3H), 7.42 – 7.38 (m, 2H), 7.37 – 7.32 (m, 3.5H), 7.32 – 7.30 (m, 0.5H), 7.25 – 7.23 (m, 0.5H), 7.23 – 7.20 (m, 1H), 7.14 – 7.08 (m, 2H), 6.93 – 6.89 (m, 0.5H), 6.88 – 6.84 (m, 0.5H), 6.56 (d, *J* = 7.5 Hz, 0.5H), 6.44 (d, *J* = 7.5 Hz, 0.5H).

¹³C NMR (126 MHz, CDCl₃) & 149.4, 149.3, 145.15, 145.05, 142.0, 141.5, 141.4, 140.9, 140.8, 139.6, 136.8, 136.7, 136.5, 136.4, 135.6, 135.2, 134.14, 134.11, 133.5, 132.6, 132.50, 132.48, 132.3, 131.1, 130.9, 129.5, 129.1, 129.0, 128.7, 128.63, 128.62, 128.1, 127.9, 127.3, 127.2, 125.7, 125.6, 123.4, 123.2, 119.7, 119.6, 116.0, 115.7.

HRMS (ESI) m/z: [M + Na]+ Calcd for C₂₈H₁₇BrCl₂Na⁺ 502.9964; Found 502.9961.

2-Bromo-3-(4'-(*tert*-butyl)phenyl)-1-((4"-(*tert*-butyl)phenyl)(phenyl)methylene)-1*H*-indene (4n)

The reaction of 3-(4'-(tert-butyl)phenyl)-1-((4''-(tert-butyl)phenyl)(phenyl)methylene)-1H-indene (**2n**, <math>E/Z = 1.2:1, 93.7 mg, 0.20 mmol, 1.0 equiv) and 1-bromopyrrolidine-2,5-dione (NBS) (42.7 mg, 0.24 mmol, 1.2 equiv) afforded **4n** (64.3 mg, 59%) as a mixture of *E*- and *Z*-isomers, 1:1, red solid, eluent: petroleum ether/ dichloromethane = 50:1 to 20:1.

Data of **4n**:

¹**H** NMR (500 MHz, CDCl₃) δ 7.52 (d, J = 7.5 Hz, 0.5H), 7.51 – 7.49 (m, 1H), 7.49 – 7.45 (m, 2.5H), 7.43 – 7.38 (m, 3H), 7.38 – 7.33 (m, 3H), 7.31 – 7.27 (m, 2H), 7.24 – 7.18 (m, 2H), 7.09 – 7.04 (m, 1H), 6.86 – 6. 81 (m, 1H), 6.47 (d, J = 8.0 Hz, 0.5H), 6.41 (d, J = 8.0 Hz, 0.5H), 1.39 (s, 4.5H), 1.37 (s, 9H), 1.34 (s, 4.5H).

¹³C NMR (126 MHz, CDCl₃) δ 152.6, 151.0, 150.4, 145.4, 142.8, 138.4, 137.2, 132.4, 132.2, 131.2, 130.9, 129.2, 129.1, 128.6, 128.5, 127.6, 126.6, 125.4, 125.1, 124.6, 123.1, 119.9, 115.6, 34.8, 34.7, 31.4, 31.3.

HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₆H₃₅BrNa⁺ 569.1814; Found 569.1823.

2-Bromo-1-[phenyl(m-tolyl)methylene]-3-(m-tolyl)-1H-indene (4t)

The reaction of 1-(phenyl(*m*-tolyl)methylene)-3-(*m*-tolyl)-1*H*-indene (**2t**, E/Z = 9:1, 115.3 mg, 0.3 mmol, 1.0 equiv) and 1-bromopyrrolidine-2,5-dione (NBS) (64.0 mg, 0.36 mmol, 1.2 equiv) afforded **4t** (101.9 mg, 73%) as a mixture of *E*- and *Z*-isomers, 1.5:1, red solid, eluent: petroleum ether/dichloromethane = 50:1 to 20:1.

Data of **4t**:

¹**H NMR** (500 MHz, CDCl₃) δ 7.49 – 7.45 (m, 0.5H), 7.45 – 7.41 (m, 1H), 7.41 – 7.35 (m, 5H), 7.34 – 7.27 (m, 2H), 7.25 – 7.15 (m, 4H), 7.13 – 7.05 (m, 2.5H), 6.89 – 6.82 (m, 1H), 6.47 (d, *J* = 7.5 Hz, 0.5H), 6.42 (d, *J* = 7.5 Hz, 0.5H), 2.44 (s, 2H), 2.43 (s, 1H), 2.37 (s, 1H), 2.36 (s, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 150.6, 146.0, 145.9, 142.7, 142.5, 141.9, 141.8, 141.4, 141.2, 138.3, 137.8, 137.2, 137.1, 137.0, 136.02, 136.00, 134.2, 132.9, 132.21, 132.15, 131.4, 131.0, 130.0, 129.9, 129.5, 129.4, 129.1, 128.9, 128.7, 128.6, 128.55, 128.47, 128.2, 128.1, 127.69, 127.65, 127.55, 126.8, 126.62, 126.69, 125.3, 125.2, 123.3, 123.2, 119.8, 115.8, 115.6, 21.5, 21.38, 21.36.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₃₀H₂₄Br⁺ 485.0875; Found 485.0865.

2.4 Bromination Reaction and its Isomerization

The bromination reaction would induce isomerization of the exocyclic double bond present in benzofulvenes. For instance, treating compound 2p, with an E/Z ratio of 6:1, with NBS resulted in a decreased E/Z ratio for compound 4p. This is true for a variety of solvents such as DMF, AcOH, THF or toluene. The isomerization was believed to be associated with the formation of a stable carbocation intermediate known as IntA, where rotation around the single C–C bond can easily occur. This rotation contributes to the isomerization phenomenon observed.

Entry	Solvent	Temp (°C)	Isolated Yields (%)	E/Z ratio
1	DMF	25	84	1.2:1
2	AcOH	60	54	1:1
3	THF	60	51	4:1
4	Toluene	60	97	2.5:1

2.5 General Procedure for Synthesis of Dibenzopentalenes (5)

To a 25-mL Schlenk tube charged with a stir bar, 2-bromobenzofulvenes (4) (0.1 mmol, 1.0 equiv), $Pd(OAc)_2$ (2.3 mg, 0.01 mmol, 10 mol%), PPh_3 (5.2 mg, 0.02 mmol, 20 mol%), dry Cs_2CO_3 (65.2 mg, 0.2 mmol, 2 equiv) and 4Å molecular sieve (4Å MS) (25 mg) were added. After filled with nitrogen, anhydrous DMF (2 mL) were added via a syringe. The mixture was stirred at 110 °C in an oil bath for 12 h. Upon completion, the reaction mixture was quenched with brine (20 mL) and extracted with ethyl acetate (3×10 mL). The combined organic phase was dried over anhydrous Na₂SO₄. After that the organic phase was filtered, and concentrated under reduced pressure. The crude products were purified by silica gel chromatography to afford products **5** and **5'** as a brown solid.

2,7-Dimethyl-5,10-di-p-tolylindeno[2,1-a]indene (5a)

The reaction of 2-bromo-1-(diphenylmethylene)-3-phenyl-1*H*-indene (**4a**, 43.5 mg, 0.1 mmol, 1.0 equiv), $Pd(OAc)_2$ (2.3 mg, 0.01 mmol, 10 mol%), PPh_3 (5.2 mg, 0.02 mmol, 20 mol%), Cs_2CO_3 (65.2 mg, 0.20 mmol, 1.5 equiv) and 4Å MS (25 mg) afforded **5a** (34.8 mg, 98%) as a brown solid, eluent: petroleum ether/ dichloromethane = 50:1 to 20:1.

Data of 5a:

¹**H** NMR (500 MHz, CDCl₃) δ 7.70 – 7.65 (m, 4H), 7.55 – 7.50 (m, 4H), 7.48 – 7.42 (m, 2H), 7.21 (d, J = 7.0 Hz, 2H), 7.03 (d, J = 7.0 Hz, 2H), 6.95 – 6.88 (m, 2H), 6.85 (td, J = 7.5, 1.0 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 149.6, 143.1, 140.7, 135.1, 133.9, 128.8, 128.7, 128.5, 127.8, 127.4, 122.5, 121.9.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{28}H_{19}^+$ 355.1481; Found 355.1462.

2,7-Dimethyl-5,10-di-p-tolylindeno[2,1-a]indene (5b)

The reaction of 2-bromo-1-(di-*p*-tolylmethylene)-6-methyl-3-(*p*-tolyl)-1*H*-indene (**4b**, 19.0 mg, 0.035 mmol, 1.0 equiv), $Pd(OAc)_2$ (1 mg, 0.004 mmol, 10 mol%), PPh_3 (2 mg, 0.008 mmol, 20 mol%), Cs_2CO_3 (22.0 mg, 0.07 mmol, 2 equiv) and 4Å MS (15 mg) afforded **5b** (13.5 mg, 94%) as a brown solid, eluent: petroleum ether/ dichloromethane = 50:1 to 20:1.

Data of 5b:

¹**H** NMR (500 MHz, CDCl₃) δ 7.56 (d, J = 8.0 Hz, 4H), 7.32 (d, J = 8.0 Hz, 4H), 7.03 (s, 2H), 6.90 (d, J = 7.5 Hz, 2H), 6.68 (d, J = 8.0 Hz, 2H), 2.46 (s, 6H), 2.16 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 146.9, 142.1, 140.4, 138.6, 137.2, 135.6, 131.2, 129.3, 128.4, 127.7, 122.8, 122.1, 21.5, 21.4.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{32}H_{27}^+$ 411.2107; Found 411.2105.

3,8-Dimethyl-5,10-di-*m*-tolylindeno[2,1-a]indene (5g)

The reaction of 2-bromo-1-(di-*m*-tolylmethylene)-5-methyl-3-(*m*-tolyl)-1*H*-indene (**4g**, 24.5 mg, 0.05 mmol, 1.0 equiv), Pd(OhgAc)₂ (1.1 mg, 0.005 mmol, 10 mol%), PPh₃ (2.7 mg, 0.01 mmol, 20 mol%), Cs₂CO₃ (32.5 mg, 0.10 mmol, 2 equiv) and 4Å MS (25 mg) afforded **5g** (19.4 mg, 95%) as a brown solid, eluent: petroleum ether/ dichloromethane = 50:1 to 20:1.

Data of **5g**:

¹**H NMR** (500 MHz, CDCl₃) δ 7.49 – 7.43 (m, 4H), 7.41 (t, *J* = 7.5 Hz, 2H), 7.25 (d, *J* = 7.0 Hz, 2H), 7.07 (d, *J* = 7.5 Hz, 2H), 6.83 (s, 2H), 6.64 (d, *J* = 7.5 Hz, 2H), 2.46 (s, 6H), 2.20 (s, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 150.1, 143.4, 139.6, 138.2, 137.6, 134.0, 132.4, 129.3, 129.0, 128.5, 127.4, 125.6, 123.4, 121.6, 21.53, 21.51.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{32}H_{27}^+$ 411.2107; Found 411.2110.

2-Methyl-5-phenyl-10-(p-tolyl)indeno[2,1-a]indene (5i) and 5,10-di-p-tolylindeno[2,1-a]indene (5i')

The reaction of 2-bromo-1-(phenyl(*p*-tolyl)methylene)-3-(*p*-tolyl)-1*H*-indene (**4i**, E/Z = 1:1, 23.2 mg, 0.05 mmol, 1.0 equiv), Pd(OAc)₂ (1.1 mg, 0.005 mmol, 10 mol%), PPh₃ (2.7 mg, 0.01 mmol, 20 mol%) and Cs₂CO₃ (32.5 mg, 0.10 mmol, 2 equiv) afforded **5i** and **5i'** (16.3 mg, 85%) as a mixture of inseparable regio-isomers in a molar ratio of 1:1 of brown solid, eluent: petroleum ether/dichloromethane = 50:1 to 20:1.

Data of 5i and 5i':

¹**H NMR** (500 MHz, CDCl₃) δ 7.66 (d, J = 7.0 Hz, 1H), 7.57 (d, J = 8.0 Hz, 3H), 7.53 – 7.48 (m, 1H), 7.45 – 7.41 (m, 0.5H), 7.36 – 7.30 (m, 3H), 7.21 (dd, J = 7.0, 7.0 Hz, 1.5H), 7.06 – 7.00 (m, 2H), 6.91 – 6.86 (m, 2H), 6.85 – 6.80 (m, 1.5H), 6.70 (d, J = 7.5 Hz, 0.5H), 2.46 (d, J = 7.0 Hz, 4.5H), 2.17 (s, 1.5H).

¹³C NMR (126 MHz, CDCl₃) δ 149.6, 146.9, 142.7, 142.5, 140.6, 138.8, 137.3, 135.5, 135.3, 134.1, 131.01, 130.95, 129.4, 129.3, 128.7, 128.6, 128.4, 127.9, 127.6, 127.5, 127.28, 127.26, 123.0, 122.41, 122.37, 122.2, 121.8, 121.6, 21.5, 21.4.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₃₀H₂₃⁺ 383.1794; Found 383.1783.

2-Methoxy-10-(4'-methoxyphenyl)-5-phenylindeno[2,1-a]indene (5j) and 5,10-bis(4'methoxyphenyl)indeno[2,1-a]indene (5j')

The reaction of 2-bromo-3-(4'-methoxyphenyl)-1-((4"-methoxyphenyl)(phenyl)methylene)-1*H*-indene (**4j**, E/Z = 1:1, 24.7 mg, 0.05 mmol, 1.0 equiv), Pd(OAc)₂ (1.1 mg, 0.005 mmol, 10 mol%), PPh₃ (2.7 mg, 0.01 mmol, 20 mol%), Cs₂CO₃ (32.5 mg, 0.10 mmol, 2 equiv) and 4Å MS (25 mg) afforded **5j** and **5j**' (18.2 mg, 88%) as a mixture of inseparable regio-isomers in a molar ratio of 1:1 of brown solid, eluent: petroleum ether/ ethyl acetate = 50:1 to 20:1.

Data of 5j and 5j':

¹**H** NMR (500 MHz, CDCl₃) δ 7.66 (d, J = 7.0 Hz, 1H), 7.62 (d, J = 8.5 Hz, 3H), 7.54 – 7.48 (m, 1H), 7.45 – 7.40 (m, 1H), 7.23 (d, J = 7.5 Hz, 1H), 7.20 (d, J = 7.5 Hz, 0.5H), 7.05 (d, J = 8.0 Hz, 2H), 6.94 – 6.80 (m, 4H), 6.38 (d, J = 6.0 Hz, 0.5H), 3.90 (s, 4H), 3.73 (s, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 159.99, 159.96, 149.6, 149.3, 142.33, 142.26, 141.8, 141.7, 140.7, 140.4, 140.0, 137.2, 135.4, 130.0, 129.9, 128.7, 128.6, 128.4, 127.5, 127.3, 127.26, 127.20, 126.3, 126.2, 122.9, 122.44, 122.35, 121.7, 121.4, 114.13, 114.06, 110.3, 110.1, 55.42, 55.36.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{30}H_{23}O_2^+$ 415.1693; Found 415.1696.

The reaction of 2-bromo-3-(4'-chlorophenyl)-1-((4"-chlorophenyl)(phenyl)methylene)-1*H*-indene (4**m**, $E/Z = 1.5:1, 25.2 \text{ mg}, 0.05 \text{ mmol}, 1.0 \text{ equiv}), Pd(OAc)_2 (1.1 \text{ mg}, 0.005 \text{ mmol}, 10 \text{ mol}\%), PPh₃ (2.7 \text{ mg}, 0.01 \text{ mmol}, 20 \text{ mol}\%), Cs₂CO₃ (32.5 mg, 0.10 mmol, 2 equiv) and 4Å MS (25 mg) afforded 5$ **m**and 5**m'**(16.7 mg, 78%) as a mixture of inseparable regio-isomers in a molar ratio of 1:1 of brown solid, eluent: petroleum ether/ dichloromethane = 50:1 to 20:1.

Data of 5m and 5m':

¹**H** NMR (500 MHz, CDCl₃) δ 7.68 – 7.55 (m, 4H), 7.55 – 7.42 (m, 4.5H), 7.21 (d, *J* = 7.5 Hz, 1H), 7.15 (d, *J* = 7.0 Hz, 0.5H), 7.07 (s, 1H), 7.00 – 6.94 (t, *J* = 7.5 Hz, 1H), 6.94 – 6.80 (m, 4H).

¹³C NMR (126 MHz, CDCl₃) δ 149.3, 148.9, 148.0, 143.1, 142.1, 140.6, 136.6, 135.0, 134.9, 134.8, 134.7, 133.5, 133.3, 132.2, 131.9, 129.8, 129.7, 129.2, 129.1, 129.0, 128.8, 128.3, 128.04, 127.97, 127.7, 127.4, 123.1, 122.6, 122.3, 122.12, 122.05, 121.9.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₈H₁₆Cl₂Na⁺ 445.0521; Found 445.0536.

2-(*tert*-Butyl)-10-(4-(tert-butyl)phenyl)-5-phenylindeno[2,1-a]indene (5n) and 5,10-bis(4-(*tert*-butyl)phenyl)indeno[2,1-a]indene (5n')

The reaction of 2-bromo-3-(4'-(*tert*-butyl)phenyl)-1-((4"-(*tert*-butyl)phenyl)(phenyl)methylene)-1*H*-indene (**4n**, E/Z = 1:1, 27.4 mg, 0.05 mmol, 1.0 equiv), Pd(OAc)₂ (1.1 mg, 0.005 mmol, 10 mol%), PPh₃ (2.7 mg, 0.01 mmol, 20 mol%), Cs₂CO₃ (32.5 mg, 0.10 mmol, 2 equiv) and 4ÅMS (25 mg) afforded **5n** and **5n'** (19.8 mg, 85%) as a mixture of inseparable regio-isomers in a molar ratio of 1:1 of brown solid, eluent: petroleum ether/ dichloromethane = 50:1 to 20:1.

Data of **5n** and **5n'**:

¹**H NMR** (500 MHz, CDCl₃): δ 7.68 – 7.64 (m, 2.5H), 7.63 – 7.60 (m, 1H), 7.56 – 7.48 (m, 4H), 7.43 (t, *J* = 7.5 Hz, 1H), 7.37 (d, *J* = 1.5 Hz, 1H), 7.27 (d, *J* = 7.5 Hz, 0.5H), 7.21 (d, *J* = 7.0 Hz, 1H), 7.11 – 7.06 (m, 1H), 6.97 – 6.81 (m, 4H), 1.41 (d, *J* = 2.0 Hz, 12H), 1.23 (s, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 152.0, 151.9, 150.7, 149.64, 149.57, 146.9, 143.1, 142.8, 140.4, 140.1, 135.4, 135.3, 134.1, 131.0, 128.61, 128.58, 128.4, 128.31, 128.26, 127.52, 127.46, 127.3, 127.2, 125.5, 125.3, 124.2, 122.53, 122.46, 121.93, 121.88, 121.6, 119.5, 34.9, 34.6, 31.3, 31.0.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₆H₃₅⁺ 467.2733; Found 467.2729.

3-Methyl-5-phenyl-10-(*m*-tolyl)indeno[2,1-a]indene and 5,10-Di-*m*-tolylindeno[2,1-a]indene (5t) and (5t')

The reaction of 2-bromo-1-(phenyl(*m*-tolyl)methylene)-3-(*m*-tolyl)-1*H*-indene (**4t**, E/Z = 1:1, 23.2 mg, 0.05 mmol, 1.0 equiv), Pd(OAc)₂ (1.1 mg, 0.005 mmol, 10 mol%), PPh₃ (2.7 mg, 0.01 mmol, 20 mol%) and Cs₂CO₃ (32.5 mg, 0.10 mmol, 2 equiv) afforded **5t** and **5t'** (16.0 mg, 83%) as a mixture of inseparable regio-isomers in a molar ratio of 1:1 of brown solid, eluent: petroleum ether/ dichloromethane = 50:1 to 20:1.

Data of 5t and 5t':

¹**H NMR** (500 MHz, CDCl₃) δ 7.68 – 7.64 (m, 1H), 7.55 – 7.50 (m, 1H), 7.50 – 7.44 (m, 4H), 7.42 – 7.38 (m, 2H), 7.27 (s, 0.5H), 7.21 (d, *J* = 7.0 Hz, 1H), 7.18 (d, *J* = 7.0 Hz, 0.5H), 7.11 (d, *J* = 7.5 Hz,

0.5H), 7.05 – 7.00 (m, 1.5H), 6.92 – 6.87 (m, 1.5H), 6.86 – 6.80 (m, 2H), 6.66 (d, *J* = 7.5 Hz, 0.5H), 2.46 (s, 3.6H), 2.45 (s, 1.2H), 2.20 (s, 1.2H).

¹³C NMR (126 MHz, CDCl₃) δ 149.9, 149.8, 149.7, 143.5, 143.0, 140.7, 140.4, 139.9, 138.3, 137.7, 135.2, 134.0, 133.8, 132.4, 129.5, 129.4, 129.0, 128.6, 128.55, 128.51, 127.7, 127.4, 127.2, 125.6, 123.5, 122.5, 122.3, 121.8, 121.7, 21.5.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{30}H_{23}^+$ 383.1794; Found 383.1786.

3. References

- 1 T.-J. Hu, G. Zhang, Y.-H. Chen, C.-G. Feng and G.-Q. Lin, Borylation of Olefin C–H Bond via Aryl to Vinyl Palladium 1,4-Migration, *J. Am. Chem. Soc.*, 2016, **138**, 2897.
- 2 G. Zhang, X.-J. Feng, M.-Y. Li, X.-M. Ji, G.-Q. Lin and C.-G. Feng, Synthesis of Tetrasubstituted Allenes via a 1,4-Palladium Migration/Carbene insertion/β-H Elimination Sequence, Org. Biomol. Chem., 2022, 20, 5383.
- **3** H. Chen, L.-Z. Gao, X.-T. Liu, G.-Q. Wang, S.-H. Li, B(C₆F₅)₃-Catalyzed Hydroarylation of Aryl Alkynes for the Synthesis of 1,1-Diaryl and Triaryl Substituted Alkenes, *Eur. J. Org. Chem.*, 2021, **2021**, 5238.

4. Copies of ¹H NMR, ¹³C NMR and ¹⁹F NMR Spectra of Products

Figure S8. ¹³C NMR (151 MHz, CDCl₃) of 2c

Figure S10. ¹³C NMR (101 MHz, DMSO) of 2d

Figure S12. ¹H NMR (500 MHz, CDCl₃) of 2e

Figure S16. ¹⁹F NMR (471 MHz, CDCl₃) of 2f

S41

Figure S20. ¹³C NMR (101 MHz, CDCl₃) of 2h

Figure S22. ¹³C NMR (101 MHz, CDCl₃) of 2i

S44

Figure S26. ¹³C NMR (101 MHz, CDCl₃) of 2k

Figure S30. ¹⁹F NMR (471 MHz, CDCl₃) of 21

S48

Figure S36. ¹³C NMR (126 MHz, CDCl₃) of 20

Figure S38. ¹³C NMR (101 MHz, CDCl₃) of 2p

Figure S40. ¹³C NMR (101 MHz, CDCl₃) of 2q

S53

S54

Figure S46. ¹H NMR (500 MHz, CDCl₃) of 2t

Figure S52. ¹³C NMR (101 MHz, CDCl₃) of 2v

Figure S54. ¹³C NMR (151 MHz, CDCl₃) of 2w

Figure S56. ¹³C NMR (101 MHz, CDCl₃) of 2x

Figure S58. ¹³C NMR (101 MHz, CDCl₃) of 2y

Figure S64. ¹H NMR (500 MHz, CDCl₃) of 3a

S67

Figure S82. ¹H NMR (500 MHz, CDCl₃) of 4j

Figure S88. ¹H NMR (500 MHz, CDCl₃) of 4t

S81

Figure S104. ¹H NMR (500 MHz, CDCl₃) of 5t

S85

5. Single Crystal Data

Crystal growth for compounds 2a, 2b, 2t, 3w, 4a and 5a:

General procedure: The above compounds 2a, 2b, 2t, 4a and 5a (solid, $10 \sim 20$ mg) was dissolved with minimal dichloromethane followed by about 1/5 (volume) petroleum ether was added and the compound 3w (oil, $10 \sim 15$ mg) was dissolved with minimal petroleum ether followed by about 1/5 (volume) methanol was added. The solvent was slowly volatizing under open air to afford crystalline, which was suitable for single crystal X-ray analysis.

Single Crystal Data for 2a

Figure S106. Thermal ellipsoid plot of 2a (50% probability levels)

Table S1 Crystal data and structure refinement for 2a.

Identification code	AR-1-94
Empirical formula	$C_{28}H_{20}$
Formula weight	356.44
Temperature/K	100.01(10)
Crystal system	orthorhombic
Space group	Pbca
a/Å	20.2193(10)
b/Å	9.1043(5)
c/Å	20.3772(16)
α/°	90
β/°	90

$\gamma/^{\circ}$	90
Volume/Å ³	3751.1(4)
Z	8
$\rho_{calc}g/cm^3$	1.262
μ/mm^{-1}	0.071
F(000)	1504.0
Crystal size/mm ³	$0.13 \times 0.12 \times 0.11$
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/ ^c	^o 4.476 to 49.998
Index ranges	$\textbf{-16} \leq h \leq 24, \textbf{-10} \leq k \leq 10, \textbf{-17} \leq l \leq 24$
Reflections collected	11414
Independent reflections	$3302 [R_{int} = 0.0484, R_{sigma} = 0.0561]$
Data/restraints/parameters	3302/0/253
Goodness-of-fit on F ²	1.059
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0471, wR_2 = 0.0992$
Final R indexes [all data]	$R_1 = 0.0655, wR_2 = 0.1088$
Largest diff. peak/hole / e Å ⁻³ 0.23/-0.26	
Single Crystal Data for 2i	

Figure S107. Thermal ellipsoid plot of 2i (50% probability levels)

Table S2 Crystal data and structure refinement for 2i.

Identification code	AR-1-166
Empirical formula	$C_{30}H_{24}$
Formula weight	384.49

Temperature/K	100.00(10)	
Crystal system	orthorhombic	
Space group	Pca2 ₁	
a/Å	23.5706(16)	
b/Å	9.7419(7)	
c/Å	9.0959(6)	
α/°	90	
β/°	90	
γ/°	90	
Volume/Å ³	2088.6(2)	
Z	4	
$\rho_{calc}g/cm^3$	1.223	
μ/mm^{-1}	0.069	
F(000)	816.0	
Crystal size/mm ³	$0.13 \times 0.12 \times 0.09$	
Radiation	Mo Ka ($\lambda = 0.71073$)	
20 range for data collection/° 4.182 to 49.988		
Index ranges	-28 \leq h \leq 23, -11 \leq k \leq 10, -7 \leq l \leq 10	
Reflections collected	6289	
Independent reflections	2844 [$R_{int} = 0.0303$, $R_{sigma} = 0.0394$]	
Data/restraints/parameters	2844/1/273	
Goodness-of-fit on F ²	1.057	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0408, wR_2 = 0.1001$	
Final R indexes [all data]	$R_1 = 0.0444, wR_2 = 0.1030$	
Largest diff. peak/hole / e Å ⁻³	0.43/-0.23	
Flack parameter	-6.5(10)	
Single Crystal Data for 2j	İ	

Figure S108. Thermal ellipsoid plot of 2j (50% probability levels)

Table S3 Crystal data and structure refinement for 2j.

Identification code	AR-3-105
Empirical formula	$C_{30}H_{24}O_2$
Formula weight	416.49
Temperature/K	120.01(16)
Crystal system	triclinic
Space group	P-1
a/Å	10.42730(10)
b/Å	10.44380(10)
c/Å	10.5389(2)
$\alpha/^{\circ}$	103.0090(10)
β/°	99.5880(10)
γ/°	93.9210(10)
Volume/Å ³	1095.90(3)
Ζ	2
$ ho_{calc}g/cm^3$	1.262
µ/mm ⁻¹	0.606
F(000)	440.0
Crystal size/mm ³	$0.16 \times 0.14 \times 0.12$
Radiation	Cu Ka (λ = 1.54184)
2Θ range for data collection	/° 8.652 to 148.396
Index ranges	$-13 \le h \le 9, -12 \le k \le 13, -12 \le l \le 13$
Reflections collected	11287
Independent reflections	4300 [$R_{int} = 0.0177, R_{sigma} = 0.0173$]
Data/restraints/parameters	4300/0/292
Goodness-of-fit on F ²	1.004

Single Crystal Data for 2z

Figure S109. Thermal ellipsoid plot of **2z** (50% probability levels) **Table S4 Crystal data and structure refinement for 2z.**

Identification code	AR-3-85
Empirical formula	$C_{30}H_{24}O_2$
Formula weight	416.49
Temperature/K	120.00(14)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	12.03370(10)
b/Å	10.36980(10)
c/Å	17.3479(2)
α/°	90
β/°	91.4450(10)
γ/°	90

Volume/Å ³	2164.11(4)
Ζ	4
$\rho_{calc}g/cm^3$	1.278
µ/mm ⁻¹	0.614
F(000)	880.0
Crystal size/mm ³	$0.15 \times 0.13 \times 0.11$
Radiation	Cu Ka (λ = 1.54184)
2Θ range for data collection/°	8.84 to 148.368
Index ranges	$-14 \le h \le 14, -6 \le k \le 12, -21 \le l \le 21$
Reflections collected	11485
Independent reflections	4272 [$R_{int} = 0.0213$, $R_{sigma} = 0.0259$]
Data/restraints/parameters	4272/0/291
Goodness-of-fit on F ²	1.029
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0369, wR_2 = 0.0954$
Final R indexes [all data]	$R_1 = 0.0397, wR_2 = 0.0976$
Largest diff. peak/hole / e Å ⁻³	0.16/-0.25

Single Crystal Data for 2aa

Figure S110. Thermal ellipsoid plot of 2aa (50% probability levels) S91

Table S5 Crystal data and structure refinement for 2aa.		
Identification code	AR-2-150	
Empirical formula	$C_{28}H_{18}Cl_2$	
Formula weight	425.32	
Temperature/K	150.00(10)	
Crystal system	orthorhombic	
Space group	P2 ₁ 2 ₁ 2 ₁	
a/Å	9.0640(3)	
b/Å	9.5665(3)	
c/Å	24.1643(8)	
α/°	90	
β/°	90	
γ/°	90	
Volume/Å ³	2095.29(11)	
Ζ	4	
$\rho_{calc}g/cm^3$	1.348	
μ/mm^{-1}	2.865	
F(000)	880.0	
Crystal size/mm ³	$0.13 \times 0.12 \times 0.1$	
Radiation	Cu Kα (λ = 1.54184)	
2Θ range for data collection/°	7.316 to 142.496	
Index ranges	$-10 \le h \le 9, -11 \le k \le 11, -29 \le l \le 29$	
Reflections collected	6701	
Independent reflections	$3574 \; [R_{int} = 0.0271, R_{sigma} = 0.0409]$	
Data/restraints/parameters	3574/0/271	
Goodness-of-fit on F ²	1.108	
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0422, wR_2 = 0.1123$	
Final R indexes [all data]	$R_1 = 0.0468, wR_2 = 0.1147$	
Largest diff. peak/hole / e Å ⁻³	0.58/-0.37	
Flack/Hooft parameter	0.014(11)/0.007(9)	

Single Crystal Data for 3b

Figure S111. Thermal ellipsoid plot of **3b** (50% probability levels) **Table S6 Crystal data and structure refinement for 3b.**

Identification code	AR-3-36
Empirical formula	$C_{32}H_{28}$
Formula weight	412.54
Temperature/K	100.00(10)
Crystal system	monoclinic
Space group	C2/c
a/Å	22.982(2)
b/Å	7.2386(5)
c/Å	28.738(2)
α/°	90
β/°	100.556(8)
γ/°	90
Volume/Å ³	4699.9(6)
Z	8
$\rho_{calc}g/cm^3$	1.166
μ/mm^{-1}	0.066
F(000)	1760.0
Crystal size/mm ³	$0.15 \times 0.13 \times 0.12$
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/ ^c	4.184 to 49.99
Index ranges	-26 \leq h \leq 27, -8 \leq k \leq 8, -34 \leq l \leq 29
Reflections collected	11686
Independent reflections	$4150 \; [R_{int} = 0.0339, R_{sigma} = 0.0437]$
Data/restraints/parameters	4150/0/338
Goodness-of-fit on F ²	1.018
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0530, wR_2 = 0.1241$

Final R indexes [all data] $R_1=0.0701,\,wR_2=0.1376$ Largest diff. peak/hole / e Å $^{-3}$ 0.24/-0.17

Single Crystal Data for 4a

Figure S112. Thermal ellipsoid plot of **4a** (50% probability levels) **Table S7 Crystal data and structure refinement for 4a.**

Identification code	AR-2-165-2
Empirical formula	$C_{28}H_{19}Br$
Formula weight	435.34
Temperature/K	220.01(10)
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	10.31429(10)
b/Å	13.70396(12)
c/Å	14.53348(13)
α/\circ	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	2054.26(3)
Z	4
$\rho_{calc}g/cm^3$	1.408
µ/mm ⁻¹	2.790
F(000)	888.0
Crystal size/mm ³	0.14 imes 0.12 imes 0.1
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/	° 8.87 to 143.224
Index ranges	$\text{-}12 \leq h \leq 10, \text{-}16 \leq k \leq 16, \text{-}17 \leq l \leq 17$

Reflections collected 11758 Independent reflections 3928 [$R_{int} = 0.0178$, $R_{sigma} = 0.0189$] Data/restraints/parameters 3928/0/262 Goodness-of-fit on F^2 1.069 Final R indexes $[I \ge 2\sigma(I)]$ $R_1 = 0.0182, wR_2 = 0.0450$ $R_1 = 0.0186, wR_2 = 0.0451$ Final R indexes [all data] Largest diff. peak/hole / e Å⁻³ 0.22/-0.18 Flack/Hooft parameter -0.019(5)/-0.007(5) Single Crystal Data for 5a

Figure S113. Thermal ellipsoid plot of 5a (50% probability levels)

Table S8 Crystal data and structure refinement for 5a.

Identification code	AR-2-181
Empirical formula	$C_{28}H_{18}$
Formula weight	354.42
Temperature/K	149.99(10)
Crystal system	monoclinic
Space group	I2/a
a/Å	18.7488(4)
b/Å	9.7469(2)
c/Å	39.4094(10)
$\alpha/^{\circ}$	90
β/°	99.102(2)
γ/°	90
Volume/Å ³	7111.1(3)

Z	16
$ ho_{calc}g/cm^3$	1.324
μ/mm^{-1}	0.569
F(000)	2976.0
Crystal size/mm ³	$0.16 \times 0.12 \times 0.1$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	9.09 to 133.146
Index ranges	$\text{-}22 \leq h \leq 21, \text{-}7 \leq k \leq 11, \text{-}46 \leq l \leq 46$
Reflections collected	16785
Independent reflections	$6223 \ [R_{int} = 0.1082, R_{sigma} = 0.1732]$
Data/restraints/parameters	6223/0/578
Goodness-of-fit on F ²	1.015
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0879, wR_2 = 0.2637$
Final R indexes [all data]	$R_1 = 0.1292, wR_2 = 0.3177$
Largest diff. peak/hole / e Å ⁻³	0.28/-0.54