Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © The Royal Society of Chemistry 2023

## **Electronic Supplementary Information for:**

**Radical-triggered base-free 1,3-C→C migrations:** 

## chemodivergent synthesis of cyclic imines from N-allyl enamines

Baihui Zheng, Junsheng Zhi, Nan Wang, Dandan Zhang, Hisashi Shimakoshi, Yifei Li,

Qun Liu and Ling Pan\*

## **Table of Contents**

| I. General information                                                                  | S3  |
|-----------------------------------------------------------------------------------------|-----|
| II. Additional optimizations of reaction conditions                                     | S4  |
| III. Procedures for solar synthesis                                                     | S6  |
| IV. Mechanistic studies                                                                 | S7  |
| 1) UV-vis absorption spectra                                                            | S7  |
| 2) Emission quenching studies                                                           | S9  |
| 3) Cyclic voltammetry experiments                                                       | S11 |
| 4) Plausible mechanisms                                                                 | S12 |
| i) Mechanism for 1,3-C $\rightarrow$ C acyl migration                                   | S12 |
| ii) Mechanism for 1,3-C $\rightarrow$ C cyano migration                                 | S12 |
| iii) Mechanism for cyclization reaction                                                 | S13 |
| 5) Radical trapping experiments                                                         | S14 |
| 6) Carbocation trapping experiments                                                     | S19 |
| 7) HMBC spectra analyses                                                                | S20 |
| 8) Hydrogen-deuterium-exchange experiments                                              | S22 |
| V. Computational details                                                                | S26 |
| VI. Experimental procedures and analytical data                                         | S49 |
| VII. Crystal data of compounds                                                          | S84 |
| VIII. Copies of <sup>1</sup> H NMR, <sup>13</sup> C NMR and <sup>19</sup> F NMR spectra | S88 |

### I. General information

All reagents and catalysts were purchased from commercial sources and used without further purification. Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm Tsingdao silica gel plates (GF-254) using UV light as visualizing agent. Tsingdao silica gel (60, particle size 0.040–0.063 mm) was used for flash column chromatography. NMR spectra were recorded on a Brüker Advance 600 (<sup>1</sup>H: 600 MHz, <sup>13</sup>C: 150 MHz, <sup>19</sup>F NMR: 565 MHz) and Brüker Advance 500 (<sup>1</sup>H: 500 MHz, <sup>13</sup>C: 125 MHz) at ambient temperature. Data were reported as chemical shifts in ppm relative to TMS (0 ppm) for <sup>1</sup>H NMR and CDCl<sub>3</sub> (77.0 ppm) for <sup>13</sup>C NMR. All <sup>1</sup>H NMR spectra were reported in delta (d) units, parts per million (ppm) downfield from the internal standard. Coupling constants are reported in Hertz (Hz). High-resolution mass spectra (HRMS) were obtained using a Bruker micro TOF II focusspectrometer (ESI).

Blue LEDs (5 W,  $\lambda = 465$  nm) was purchased from Wattecs (parallel light reactor, WP-TEC-1020HC). Quartz tube (20 mL) was used as the irradiation vessel and the Blue LEDs irradiated at the bottom with a 1–1.5 cm distance. Blue LEDs (15 W,  $\lambda = 465-470$  nm) was purchased from Merck (SynLEDZ742680). Airtight glass tube (15 mL) was used as the irradiation vessel and the Blue LEDs irradiated at the bottom with a 1–1.5 cm distance. Blue LEDs (40 W,  $\lambda = 456$  nm) was purchased from Kessil (PR160) with flask (35 mL) as the irradiation vessel with a 5–6 cm distance.

Varian cary50 was used for UV-*vis* absorption analysis; spectrofluorometer (Edinburgh FS5) was used for Stern-Volmer fluorescence quenching experiments; and CH Instruments (CHI 660E) was used for Cyclic voltammetry experiments.

Abbreviations:

PE: Petroleum ether;

EA: Ethyl acetate;

Explain for the multiplicities: s: singlet; d: doublet; t: triplet; q: quartet; dd: doublet of doublet; m: multiplet.

### II. Additional optimizations of reaction conditions

## Table S1. Optimization for 1,3-C $\rightarrow$ C cyano migration<sup>*a*</sup>

|                 |                                                                                                        |                  | Ph              |                 |                 |
|-----------------|--------------------------------------------------------------------------------------------------------|------------------|-----------------|-----------------|-----------------|
|                 | Ph                                                                                                     | FII CN           | NC              |                 |                 |
|                 | 3a                                                                                                     | 4a               | 5a              |                 |                 |
| Entime          | $C_{\text{stabust}}(\alpha, \alpha, 10/2)$                                                             | Light source     | Colourt (mJ)    | Yield           | l (%)           |
| Entry           | Catalyst (mol%)                                                                                        | Light source     | Solvent (mL)    | $4\mathbf{a}^b$ | $5\mathbf{a}^b$ |
| 1               | $\label{eq:linear} \begin{split} Ir[dF(CF_3)ppy]_2(dtbpy))PF_6(3)_+ \\ Co(dmgH)_2PyCl~(8) \end{split}$ | Blue LEDs (5 W)  | DCE (2)         | 8               | 12              |
| 2               | $Ir[dF(CF_3)ppy]_2(dtbpy))PF_6(3)$                                                                     | Blue LEDs (5 W)  | DCE (2)         | 48              | N.O.            |
| 3               | Ir(ppy) <sub>3</sub> (3)                                                                               | Blue LEDs (5 W)  | DCE (2)         | 6               | trace           |
| 4               | $[Ir(ppy)_2(bpy)]PF_6(3)$                                                                              | Blue LEDs (5 W)  | DCE (2)         | N.O.            | N.O.            |
| 5               | $[Ir(dtbbpy)(ppy)_2][PF_6](3)$                                                                         | Blue LEDs (5 W)  | DCE (2)         | N.O.            | N.O.            |
| 6               | $Ru(bpy)_3Cl_2(3)$                                                                                     | Blue LEDs (5 W)  | DCE (2)         | N.O.            | N.O.            |
| 7               | Acr <sup>+</sup> -Mes $ClO_4^-(3)$                                                                     | Blue LEDs (5 W)  | DCE (2)         | N.O.            | N.O.            |
| 8               | $(Ir[dF(CF_3)ppy]_2(dtbpy))PF_6(5)$                                                                    | Blue LEDs (5 W)  | DCE (2)         | 63              | N.O.            |
| 9               | $(Ir[dF(CF_3)ppy]_2(dtbpy))PF_6(8)$                                                                    | Blue LEDs (5 W)  | DCE (2)         | 19              | N.O.            |
| 10              | $(Ir[dF(CF_3)ppy]_2(dtbpy))PF_6(5)$                                                                    | Blue LEDs (15 W) | DCE (2)         | 53              | N.O.            |
| 11              | $(Ir[dF(CF_3)ppy]_2(dtbpy))PF_6(5)$                                                                    | Blue LEDs (40 W) | DCE (2)         | 30              | N.O.            |
| 12              | $(Ir[dF(CF_3)ppy]_2(dtbpy))PF_6(5)$                                                                    | Blue LEDs (15 W) | 1,4-Dioxane (2) | 41              | N.O.            |
| 13              | $(Ir[dF(CF_3)ppy]_2(dtbpy))PF_6(5)$                                                                    | Blue LEDs (15 W) | EtOAc (2)       | 47              | N.O.            |
| 14              | $(Ir[dF(CF_3)ppy]_2(dtbpy))PF_6(5)$                                                                    | Blue LEDs (15 W) | EtOH (2)        | 33              | N.O.            |
| 15 <sup>c</sup> | $(Ir[dF(CF_3)ppy]_2(dtbpy))PF_6(5)$                                                                    | Blue LEDs (15 W) | DCE (2)         | 85              | <i>N.O</i> .    |
| 16 <sup>c</sup> | -                                                                                                      | Blue LEDs (15 W) | DCE (2)         | N.R.            | N.O.            |
| 17 <sup>c</sup> | $(Ir[dF(CF_3)ppy]_2(dtbpy))PF_6(3)$                                                                    | -                | DCE (2)         | N.R.            | N.O.            |
| 18              | Acr <sup>+</sup> -Mes ClO <sub>4</sub> <sup>-</sup> (3) + Co(dmgH) <sub>2</sub> PyCl (8)               | Blue LEDs (5 W)  | DCE (3)         | N.O.            | 72              |

<sup>a</sup>Reaction scale: 0.3 mmol; <sup>b</sup>Isolated yields; <sup>c</sup>Nitrogen atmosphere.

# Table S2. Optimization for the formation of 5a<sup>a</sup>



| Entry  | Photosensitizer (mol%)                                     | Catalyst (mol%)                                      | Light source     | Solvent (mL) | Yield of <b>5a</b> $(\%)^b$ |
|--------|------------------------------------------------------------|------------------------------------------------------|------------------|--------------|-----------------------------|
| 1      | $Acr^+-Mes-Ph ClO_4^-(5)$                                  | Co(dmgH) <sub>2</sub> PyCl (10)                      | Blue LEDs (5 W)  | DCE (2)      | 43                          |
| 2      | Acr <sup>+</sup> -Mes-Ph $BF_4^-(5)$                       | Co(dmgH) <sub>2</sub> PyCl (10)                      | Blue LEDs (10 W) | DCE (2)      | 35                          |
| 3      | Acr <sup>+</sup> -Mes-Ph Cl <sup>-</sup> (5)               | Co(dmgH) <sub>2</sub> PyCl (10)                      | Blue LEDs (10 W) | DCE (2)      | 19                          |
| 4      | Acr <sup>+</sup> -Mes-dMe-Ph $BF_4^-(5)$                   | Co(dmgH) <sub>2</sub> PyCl (10)                      | Blue LEDs (10 W) | DCE (2)      | 44                          |
| 5      | Acr <sup>+</sup> -Mes-Ph ClO <sub>4</sub> <sup>-</sup> (3) | Co(dmgH) <sub>2</sub> PyCl (10)                      | Blue LEDs (5 W)  | DCE (2)      | 44                          |
| 6      | Acr <sup>+</sup> -Mes-Ph $\text{ClO}_4^-(8)$               | Co(dmgH) <sub>2</sub> PyCl (10)                      | Blue LEDs (5 W)  | DCE (2)      | 40                          |
| 7      | Acr <sup>+</sup> -Mes-Ph ClO <sub>4</sub> <sup>-</sup> (3) | Co(dmgH) <sub>2</sub> PyCl (8)                       | Blue LEDs (5 W)  | DCE (2)      | 54                          |
| 8      | Acr <sup>+</sup> -Mes-Ph $\text{ClO}_4^-(3)$               | Co(dmgH) <sub>2</sub> (4-CO <sub>2</sub> MePy)Cl (8) | Blue LEDs (5 W)  | DCE (2)      | 44                          |
| 9      | Acr <sup>+</sup> -Mes-Ph ClO <sub>4</sub> <sup>-</sup> (3) | CoCl <sub>2</sub> •6H <sub>2</sub> O (8)             | Blue LEDs (5 W)  | DCE (2)      | 24                          |
| 10     | Acr <sup>+</sup> -Mes-Ph $\text{ClO}_4^-(3)$               | Co(dmgH) <sub>2</sub> PyCl (8)                       | Blue LEDs (5 W)  | DCE (1)      | 36                          |
| 11     | Acr <sup>+</sup> -Mes-Ph $\text{ClO}_4^-(3)$               | Co(dmgH) <sub>2</sub> PyCl (8)                       | Blue LEDs (5 W)  | DCE (3)      | 61                          |
| $12^c$ | Acr <sup>+</sup> -Mes-Ph ClO <sub>4</sub> <sup>-</sup> (3) | Co(dmgH) <sub>2</sub> PyCl (8)                       | Blue LEDs (5 W)  | DCE (3)      | 72                          |
| 13     | -                                                          | Co(dmgH) <sub>2</sub> PyCl (8)                       | Blue LEDs (5 W)  | DCE          | N.R.                        |
| 14     | Acr <sup>+</sup> -Mes-Ph $\text{ClO}_4^-(3)$               | -                                                    | Blue LEDs (5 W)  | DCE          | N.R.                        |
| 15     | Acr <sup>+</sup> -Mes-Ph $ClO_4^-(3)$                      | Co(dmgH) <sub>2</sub> PyCl (8)                       | -                | DCE          | N.R.                        |

<sup>*a*</sup>Reaction scale: 0.3 mmol, ambient atmosphere; <sup>*b*</sup>Isolated yields; <sup>*c*</sup>Reaction scale: 0.2 mmol.

### **III.** Procedures for solar synthesis

0.3 mmol-scale synthesis: To a flask (15 mL) equipped with a stir-bar was added N-allyl enamine 1a (69.3 mg, 0.3 mmol), (Ir[dF(CF<sub>3</sub>)ppy]<sub>2</sub>(dtbpy))PF<sub>6</sub> (16.8 mg, 0.015 mmol), and DCE (2 mL). The reaction mixture was exposed to sunlight for 2 days at ambient atmosphere. After the completion of the reaction as indicated by TLC, the solution was concentrated *in vacuo*. Then the residue was purified by silica gel flash column chromatography (PE/EA = 4/1) to afford product 2a (41.6 mg, 60%).



Gram-scale synthesis: To a flask (75 mL) equipped with a stir-bar was added N-allyl enamine 1a (2.31 g, 10 mmol), (Ir[dF(CF<sub>3</sub>)ppy]<sub>2</sub>(dtbpy))PF<sub>6</sub> (0.56 g, 0.5 mmol), and DCE (40 mL). The reaction mixture was exposed to sunlight for 7 days at ambient atmosphere. After the completion of the reaction as indicated by TLC, the solution was concentrated in vacuo. Then the residue was purified by silica gel flash column chromatography (PE/EA = 4/1) to afford product **2a** (1.41 g, 61%).



Beginning

After 7 days

### **IV. Mechanistic studies**

### 1) UV-vis absorption spectra

UV-*vis* spectra were carried out using the DCE solution of *N*-allyl enamine **1a** ( $1 \times 10^{-5}$  mol,  $2 \times 10^{-4}$  M in DCE), (Ir[dF(CF<sub>3</sub>)ppy]<sub>2</sub>(dtbpy))PF<sub>6</sub> ( $5 \times 10^{-6}$  mol,  $1 \times 10^{-4}$  M in DCE) respectively, and their mixture. It was shown that (Ir[dF(CF<sub>3</sub>)ppy]<sub>2</sub>(dtbpy))PF<sub>6</sub> has strongest ultraviolet absorption at the reaction wavelength and is the best photosensitizer.



**Figure S1.** UV-*vis* spectra of *N*-allyl enamine **1a**, [Ir(dtbbpy)(ppy)<sub>2</sub>][PF<sub>6</sub>] respectively and their mixture.

UV-*vis* spectra were carried out using the DCE solution of *N*-allyl enamine **3a** ( $1 \times 10^{-5}$  mol,  $2 \times 10^{-4}$  M in DCE), (Ir[dF(CF<sub>3</sub>)ppy]<sub>2</sub>(dtbpy))PF<sub>6</sub> ( $5 \times 10^{-6}$  mol,  $1 \times 10^{-4}$  M in DCE) respectively, and their mixture. It was shown that (Ir[dF(CF<sub>3</sub>)ppy]<sub>2</sub>(dtbpy))PF<sub>6</sub> has strongest ultraviolet absorption at the reaction wavelength and is the best photosensitizer.



**Figure S2.** UV-*vis* spectra of *N*-allyl enamine **3a**,  $[Ir(dtbbpy)(ppy)_2][PF_6]$  respectively and their mixture.

UV-*vis* spectra were carried out using the DCE solution of *N*-allyl enamine **3a**  $(1 \times 10^{-5} \text{ mol}, 2 \times 10^{-4} \text{ M in DCE})$ , Acr<sup>+</sup>-Mes-Ph ClO<sub>4</sub><sup>-</sup> (5×10<sup>-6</sup> mol, 1×10<sup>-4</sup> M in DCE), Co(dmgH)<sub>2</sub>PyCl (5×10<sup>-6</sup> mol, 1×10<sup>-4</sup> M in DCE) respectively, and their mixture. It was shown that Acr<sup>+</sup>-Mes-Ph ClO<sub>4</sub><sup>-</sup> has strongest ultraviolet absorption at the reaction wavelength and is the best photosensitizer.



**Figure S3.** UV-*vis* spectra of *N*-allyl enamine **3a**, Acr<sup>+</sup>-Mes-Ph  $ClO_4^-$ , Co(dmgH)<sub>2</sub>PyCl respectively and their mixture.

### 2) Emission quenching studies

Emission intensities were recorded by spectrofluorometer (Edinburgh FS5) at ambient temperature. The DCE solution of  $(Ir[dF(CF_3)ppy]_2(dtbpy))PF_6$  were excited at 355 nm and the emission intensity at 467 and 496 nm was observed. Firstly, the emission spectrum of a  $5 \times 10^{-5}$  M solution of  $(Ir[dF(CF_3)ppy]_2(dtbpy))PF_6$  in DCE was collected. Then, appropriate amount of quencher was added to the measured solution and the emission spectrum of the sample was collected. The Stern-Volmer emission quenching studies tell that the *N*-allyl enamines **1a** and **3a** both can quench the excited  $(Ir[dF(CF_3)ppy]_2(dtbpy))PF_6$ .



Figure S4. (Ir[dF(CF<sub>3</sub>)ppy]<sub>2</sub>(dtbpy))PF<sub>6</sub> emission quenching by *N*-allyl enamine 1a.



Figure S5. (Ir[dF(CF<sub>3</sub>)ppy]<sub>2</sub>(dtbpy))PF<sub>6</sub> emission quenching by *N*-allyl enamine 3a.

Emission intensities were recorded by spectrofluorometer (Edinburgh FS5) at ambient temperature. The DCE solution of Acr<sup>+</sup>-Mes-Ph ClO<sub>4</sub><sup>-</sup> were excited at 462 nm and the emission intensity at 516 nm was observed. Firstly, the emission spectrum of a  $5 \times 10^{-5}$  M solution of Acr<sup>+</sup>-Mes-Ph ClO<sub>4</sub><sup>-</sup> in DCE was collected. Then, appropriate amount of quencher was added to the measured solution and the emission spectrum of the sample was collected. The Stern-Volmer emission quenching studies tell that the *N*-allyl enamine **3a** can quench the excited Acr<sup>+</sup>-Mes-Ph ClO<sub>4</sub><sup>-</sup>.



Figure S6. Acr<sup>+</sup>-Mes-Ph ClO<sub>4</sub><sup>-</sup> emission quenching by *N*-allyl enamine 3a.



Figure S7. Acr<sup>+</sup>-Mes-Ph ClO<sub>4</sub><sup>-</sup> emission quenching by Co(dmgH)<sub>2</sub>PyCl.

### 3) Cyclic voltammetry experiments

For the electrochemical measurements, a three-electrode system connected to an electrochemical station was used: A reference electrode, Ag/AgCl in 0.1 M KCl; A glassy carbon electrode as the working electrode; and a Pt wire as the counter electrode. All electrochemical measurements were performed in degassed DMF under dry  $N_2$  atmosphere.



**Figure S8.** CV spectra of *N*-allyl enamine **1a** (3 mM) in 0.1 M NBu<sub>4</sub>PF<sub>6</sub> in degassed DMF (20 mL) with scan rate 100 mV/s.



**Figure S9.** CV spectra of *N*-allyl enamine **3a** (3 mM) in 0.1 M NBu<sub>4</sub>PF<sub>6</sub> in degassed DMF (20 mL) with scan rate 100 mV/s.

## 4) Plausible mechanisms



i) Mechanism for 1,3-C $\rightarrow$ C acyl migration

ii) Mechanism for 1,3-C $\rightarrow$ C cyano migration



# iii) Mechanism for cyclization reaction



### 5) Radical trapping experiments

To a flask (15 mL) equipped with a stir-bar was added *N*-allyl enamine **1a** (69.3 mg, 0.3 mmol),  $(Ir[dF(CF_3)ppy]_2(dtbpy))PF_6$  (16.8 mg, 0.015 mmol), TEMPO (46.8 mg, 0.3 mmol) and DCE (2 mL). The reaction mixture was stirred under the irradiation of blue LED light (15 W) at ambient atmosphere in a parallel light reactor. After the completion of the reaction as indicated by TLC, 3 uL of mixture was extracted from the system and intermediate **I**-A was detected by the HPLC analysis. The remaining solution was concentrated *in vacuo*. Then the residue was purified by silica gel flash column chromatography to afford product **2a** (18.7 mg, 27%).



The TEMPO-trapping product I-A has been isolated as a mixture and analyzed by <sup>1</sup>H NMR spectrum (Figure S10). It was calculated that the ratio of two isomers is 10:1. The major isomer was isolated and further analyzed by <sup>1</sup>H NMR (Figure S11) and <sup>1</sup>H-<sup>1</sup>H NOE spectra (Figure S12), while the minor one could not be isolated. As a result, *cis*-I-A was deduced as the major isomer since H<sub>a</sub> and H<sub>b</sub> has a strong interaction, indicating the same orientation of H<sub>a</sub> and H<sub>b</sub>, while H<sub>b</sub> nearly has no interaction with H<sub>e</sub> and H<sub>f</sub> in Figure S12. Furthermore, compared to the formation of **2a**, the formation of **I-A** didn't undergo the formation of the highly strained four-membered ring intermediates, thus the formation of trans-I-A is unavoidable.



Figure S10. <sup>1</sup>H NMR of mixed I-A

### 7.967 7.958 7.958 7.359 7.359 7.3356 7.335 7.335 7.335 7.335 7.335 7.335

### -5.055 -5.055 -5.057 -4.007 -4.007 -4.007 -4.007 -4.007 -2.255 -2.463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2463 -2.2253 -2.2253 -2.2253 -2.2253 -2.2253 -2.2253 -2.2253 -2.2253 -2.2253 -2.2253 -2.2253 -2.2253 -2.2253 -2.2253 -2.2253 -2.2253 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263 -2.2263















To a flask (15 mL) equipped with a stir-bar was added *N*-allyl enamine **1a** (69.3 mg, 0.3 mmol),  $(Ir[dF(CF_3)ppy]_2(dtbpy))PF_6$  (16.8 mg, 0.015 mmol), 1,1-diphenylethylene (53 µL, 0.3 mmol) and DCE (2 mL). The reaction mixture was stirred under the irradiation of blue LED light (15 W) at ambient atmosphere in a parallel light reactor. After the completion of the reaction as indicated by TLC, 3 uL of mixture was extracted from the system and intermediate **I-B** was detected by the HPLC analysis. The remaining solution was concentrated *in vacuo*. Then the residue was purified by silica gel flash column chromatography to afford product **2a** (39.5 mg, 57%).



To a flask (20 mL) equipped with a stir-bar was added *N*-allyl enamine **3a** (36.8 mg, 0.2 mmol), Acr<sup>+</sup>-Mes-Ph ClO<sub>4</sub><sup>-</sup> (2.5 mg, 0.06 mmol), Co(dmgH)<sub>2</sub>PyCl (6.5 mg, 0.016 mmol), 1,1-diphenylethylene (53  $\mu$ L, 0.3 mmol) and DCE (3 mL). The reaction mixture was stirred under the irradiation of blue LED light (5 W) at ambient atmosphere in a parallel light reactor. After the completion of the reaction as indicated by TLC, 3 uL of mixture was extracted from the system and intermediate **I-C** was detected by the HPLC analysis. The remaining solution was concentrated *in vacuo*. Then the residue was purified by silica gel flash column chromatography to afford product **5a** (13.5 mg, 37%).



### 6) Carbocation trapping experiments

To a flask (20 mL) equipped with a stir-bar was added *N*-allyl enamine **3a** (36.8 mg, 0.2 mmol), Acr<sup>+</sup>-Mes-Ph ClO<sub>4</sub><sup>-</sup> (2.5 mg, 0.06 mmol), Co(dmgH)<sub>2</sub>PyCl (6.5 mg, 0.016 mmol), 1,1-diphenylethylene (53  $\mu$ L, 0.3 mmol), CH<sub>3</sub>CN (0.5 mL), H<sub>2</sub>O (0.2 mL) and DCE (3 mL). The reaction mixture was stirred under the irradiation of blue LED light (5 W) at ambient atmosphere in a parallel light reactor for 24 hours, 3 uL of mixture was extracted from the system and intermediate **I-D** was detected by the HPLC analysis.



242.1295 1 C14H16N3O 242.1288 2.8 n.a. 1 -1.#J 8.5 even ok

## 7) HMBC spectra analyses

The structure of the products (**4r**, **2s**, **2d**, **2u**) were further verified through HMBC spectra analysis. The site e is associated with d and f, respectively.

## HMBC spectrum of 4r







## HMBC spectrum of 2d



HMBC spectrum of 2u



### 8) Hydrogen-deuterium-exchange experiments

To a flask (15 mL) equipped with a stir-bar was added *N*-allyl enamine **1a** (69.3 mg, 0.3 mmol),  $(Ir[dF(CF_3)ppy]_2(dtbpy))PF_6$  (16.8 mg, 0.015 mmol), D<sub>2</sub>O (11 µL, 0.6 mmol) and DCE (2 mL). The reaction mixture was stirred under the irradiation of blue LED light (15 W) at ambient atmosphere in a parallel light reactor. After the completion of the reaction as indicated by TLC, the solution was concentrated *in vacuo*. Then the residue was purified by silica gel flash column chromatography to afford product **2a-D** and characterized by <sup>1</sup>H NMR. The results showed that carbanion may be involved in the crucial 1,3-acyl migration step.



To a flask (15 mL) equipped with a stir-bar was added *N*-allyl enamine **3a** (55.2 mg, 0.3 mmol),  $(Ir[dF(CF_3)ppy]_2(dtbpy))PF_6$  (16.8 mg, 0.015 mmol), D<sub>2</sub>O (11 µL, 0.6 mmol) and DCE (2 mL) under nitrogen atmosphere. The reaction mixture was stirred under the irradiation of blue LED light (15 W) at ambient atmosphere in a parallel light reactor. After the completion of the reaction as indicated by TLC, the solution was concentrated *in vacuo*. Then the residue was purified by silica gel flash column chromatography to afford product **4a-D** and characterized by <sup>1</sup>H NMR. The results showed that carbanion may be involved in the crucial 1,3-cyano migration step.



To a flask (15 mL) equipped with a stir-bar was added 1,3-C $\rightarrow$ C migration product **2a** (69.3 mg, 0.3 mmol), D<sub>2</sub>O (11 µL, 0.6 mmol) and DCE (2 mL). The reaction mixture was stirred at ambient atmosphere for 48 h, then the solution was concentrated *in vacuo* and the residue was tested by <sup>1</sup>H **NMR**. The results showed that the 1,3-C $\rightarrow$ C acyl migration process was proposed to be triggered by the carbanion **IV** but not radical **III**, since H<sup>3</sup> of **2a-D**' in the hydrogen-deuterium-exchange investigation of **2a** could not be exchanged while H<sup>3</sup> of **2a-D** from **1a** was exchanged.



To a flask (20 mL) equipped with a stir-bar was added *N*-allyl enamine **3a** (36.8 mg, 0.2 mmol), Acr<sup>+</sup>-Mes-Ph ClO<sub>4</sub><sup>-</sup> (2.5 mg, 0.06 mmol), Co(dmgH)<sub>2</sub>PyCl (6.5 mg, 0.016 mmol), D<sub>2</sub>O (7  $\mu$ L, 0.6 mmol) and DCE (3 mL). The reaction mixture was stirred under the irradiation of blue LED light (5 W) at ambient atmosphere in a parallel light reactor. After the completion of the reaction as indicated by TLC, the solution was concentrated *in vacuo*. Then the residue was purified by silica gel flash column chromatography to afford product **5a** without any deuterium substitution and characterized by <sup>1</sup>H NMR. The results showed that with the mediation of Co(dmgH)<sub>2</sub>PyCl, carbanion may not be involved as the key intermediate in the formation of **5a**.



No H/D exchange phenomenon

### V. Computational details

All calculations in this work were performed using Gaussian 09 program package.<sup>1</sup> Full geometry optimizations were performed to locate all the stationary points, using the B3LYP-D3 functional<sup>2,3</sup> with the 6-311+G<sup>\*\*4-5</sup> basis set in gas phase model. The intrinsic reaction coordinate (IRC) path was traced to check the energy profiles connecting each transition state to two associated minima of the proposed mechanism.<sup>6</sup> Harmonic vibrational frequency was performed at the same level to guarantee that there is no imaginary frequency in the molecules, i.e. they locate on the minima of potential energy surface. Convergence parameters of the default threshold were retained (maximum force within  $4.5 \times 10^{-4}$  Hartrees/Bohr and root mean square (RMS) force within  $3.0 \times 10^{-4}$  Hartrees/Radian) to obtain the optimization were successfully converged within the convergence threshold of no imaginary frequency, during the process of vibration analysis.

<sup>(1)</sup> J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Taroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, Tomasi, J. M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. R. E. Gomperts, O. Stratmann, azyev, J. Y. A. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09 (Revision D.01), Gaussian, Inc., 2013, Wallingford, CT.

<sup>(2)</sup> R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, Self-Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions. J. Chem. Phys., 1980, 72, 650–654.

<sup>(3)</sup> S. Grimme, J. Antony, S. Ehrlich and H. Krieg, A Consistent and Accurate *ab initio* Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. *J. Chem. Phys.*, 2010, **132**, 15410.

<sup>(4)</sup> F. Weigend and R. Ahlrichs, Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297–3305.

<sup>(5)</sup> S. Xu, T. He, J. Li, Z. Huang and C. Hu, Enantioselective Synthesis of D-Lactic Acid via Chemocatalysis using MgO: Experimental and Molecular-Based Rationalization of the Triose's Reactivity and Preliminary Insights with Raw Biomass. *Appl. Catal. B: Environ.*, 2021, **292**, 120145.

<sup>(6)</sup> C. Gonzalez and H. B. Schlegel, An improved Algorithm for Reaction Path Following. J. Chem. Phys., 1989, 90, 2154-2161.

# Cartesian coordinates of all stationary points

## Date: 1

| Zero-point correction=                       | 0.283004(Hartree/Particle) |
|----------------------------------------------|----------------------------|
| Thermal correction to Energy=                | 0.300213                   |
| Thermal correction to Enthalpy=              | 0.301157                   |
| Thermal correction to Gibbs Free Energy=     | 0.236468                   |
| Sum of electronic and zero-point Energies=   | -748.060508                |
| Sum of electronic and thermal Energies=      | -748.043298                |
| Sum of electronic and thermal Enthalpies=    | -748.042354                |
| Sum of electronic and thermal Free Energies= | -748.107043                |
| Standard orientation:                        |                            |

| <br>Center | Coord       | linates (Angstroms) | )           |  |
|------------|-------------|---------------------|-------------|--|
| Number     | Х           | Y                   | Z           |  |
| С          | -0.53173400 | 0.05618200          | 0.31577900  |  |
| С          | -2.00275100 | 0.01959600          | 0.04886700  |  |
| С          | -2.62193700 | -1.16155700         | -0.39869900 |  |
| С          | -2.80157300 | 1.16306400          | 0.23681600  |  |
| С          | -3.99584600 | -1.20001200         | -0.64172600 |  |
| Н          | -2.01047900 | -2.04947100         | -0.57201600 |  |
| С          | -4.17653500 | 1.12452400          | -0.00584600 |  |
| Н          | -2.34872700 | 2.08592600          | 0.60842900  |  |
| С          | -4.77861000 | -0.05733800         | -0.44687900 |  |
| Н          | -4.45727100 | -2.12580100         | -0.99474000 |  |
| Н          | -4.78153200 | 2.01963400          | 0.15968800  |  |
| Н          | -5.85391000 | -0.08777900         | -0.63974900 |  |
| Ν          | 0.09241600  | 1.22508000          | -0.07194300 |  |
| Н          | -0.48900800 | 1.84597900          | -0.62230300 |  |
| С          | 1.21515600  | 1.88211700          | 0.59946700  |  |
| Н          | 0.82666900  | 2.75231700          | 1.16794000  |  |
| Н          | 1.64637000  | 1.20012700          | 1.34130800  |  |
| С          | 2.28113600  | 2.36954600          | -0.34837300 |  |

| Н | 1.93453500  | 3.02519800  | -1.15885300 |
|---|-------------|-------------|-------------|
| С | 3.58319100  | 2.09546500  | -0.23848700 |
| Н | 4.31320000  | 2.51496200  | -0.93676300 |
| Н | 3.96516500  | 1.43773000  | 0.54821700  |
| С | 0.06673100  | -1.01302300 | 0.92336300  |
| Н | -0.59089400 | -1.74482700 | 1.39473200  |
| С | 1.49945100  | -1.23671200 | 1.22774100  |
| 0 | 2.41520700  | -1.07572000 | 0.22867600  |
| 0 | 1.89413500  | -1.57708000 | 2.31748800  |
| С | 2.06231600  | -1.19053300 | -1.15550200 |
| Н | 1.35854300  | -2.02907000 | -1.28755700 |
| Н | 1.55950000  | -0.27082600 | -1.49467800 |
| С | 3.33786200  | -1.42856000 | -1.94115700 |
| Н | 3.10728900  | -1.53906200 | -3.01288100 |
| Н | 4.03205100  | -0.58263100 | -1.82268200 |
| Н | 3.84569700  | -2.34211800 | -1.59597500 |
|   |             |             |             |

## Date: TS1

| Zero-point correction=                    |               |                   | 0.276078(Hartree | e/Particle) |
|-------------------------------------------|---------------|-------------------|------------------|-------------|
| Thermal correction to Energy=             |               |                   | 0.288959         |             |
| Thermal correction to Enthalpy=           |               |                   | 0.289904         |             |
| Thermal correction to Gib                 | bs Free Energ | gy=               | 0.235860         |             |
| Sum of electronic and zero                | o-point Energ | gies=             | -748.034851      |             |
| Sum of electronic and thermal Energies=   |               |                   | -748.017641      |             |
| Sum of electronic and thermal Enthalpies= |               |                   | -748.016697      |             |
| Sum of electronic and ther                | mal Free Ene  | ergies=           | -748.081386      |             |
|                                           | Standard      | orientation:      |                  |             |
| Center                                    | Coordin       | nates (Angstroms) |                  |             |
| Number                                    | Х             | Y                 | Ζ                |             |
|                                           |               |                   |                  |             |

| С | -1.73820000 | 1.33480000  | -1.25500000 |
|---|-------------|-------------|-------------|
| С | -3.00960000 | 1.28320000  | -0.55450000 |
| С | -3.91240000 | 0.22420000  | -0.81220000 |
| С | -3.35960000 | 2.25770000  | 0.38950000  |
| С | -5.14630000 | 0.16440000  | -0.14730000 |
| Н | -3.67900000 | -0.51990000 | -1.51660000 |
| С | -4.59350000 | 2.19870000  | 1.05740000  |
| Н | -2.69750000 | 3.04330000  | 0.61110000  |
| С | -5.49070000 | 1.15210000  | 0.78830000  |
| Н | -5.81560000 | -0.61940000 | -0.35320000 |
| Н | -4.84610000 | 2.93830000  | 1.76010000  |
| Н | -6.41540000 | 1.10890000  | 1.28550000  |
| Ν | -1.02110000 | 2.54050000  | -1.47640000 |
| Н | -1.45610000 | 3.45030000  | -1.36170000 |
| С | 0.42180000  | 2.40640000  | -1.56960000 |
| Н | 0.79690000  | 2.95170000  | -2.42090000 |
| Н | 0.87030000  | 2.75300000  | -0.64810000 |
| С | 0.82360000  | 1.00630000  | -1.83160000 |
| Н | 0.66280000  | 0.59750000  | -2.77540000 |
| С | 1.72260000  | 0.28770000  | -0.93220000 |
| Н | 2.64700000  | 0.40590000  | -1.34420000 |
| Н | 1.60000000  | 0.21390000  | 0.10820000  |
| С | -0.97910000 | 0.10500000  | -1.21700000 |
| Н | -0.71590000 | -0.23740000 | -0.26580000 |
| С | -1.01200000 | -0.90970000 | -2.27730000 |
| 0 | -1.52760000 | -0.74840000 | -3.51240000 |
| 0 | -0.83730000 | -2.03510000 | -1.86200000 |
| С | -1.81770000 | 0.42350000  | -4.21200000 |
| Н | -2.68640000 | 0.91230000  | -3.77050000 |
| Н | -0.96640000 | 1.10450000  | -4.18840000 |
| С | -2.13550000 | 0.07600000  | -5.68350000 |
| Н | -2.36510000 | 0.98980000  | -6.23370000 |
| Н | -1.27490000 | -0.41170000 | -6.14360000 |
| Н | -2.99560000 | -0.59370000 | -5.72830000 |

## Date: 2

| Zero-point correction=                       | 0.278022(Hartree/Particle) |
|----------------------------------------------|----------------------------|
| Thermal correction to Energy=                | 0.290471                   |
| Thermal correction to Enthalpy=              | 0.291415                   |
| Thermal correction to Gibbs Free Energy=     | 0.239255                   |
| Sum of electronic and zero-point Energies=   | -748.0719819               |
| Sum of electronic and thermal Energies=      | -748.0547719               |
| Sum of electronic and thermal Enthalpies=    | -748.0538279               |
| Sum of electronic and thermal Free Energies= | -748.1185169               |
|                                              |                            |

Standard orientation:

| Center | Coordin     |             |             |
|--------|-------------|-------------|-------------|
| Number | X           | Y           | Z           |
|        |             |             |             |
| С      | -1.71140000 | 1.34420000  | -1.25700000 |
| С      | -3.00620000 | 1.27270000  | -0.55460000 |
| С      | -3.91010000 | 0.22380000  | -0.81260000 |
| С      | -3.35930000 | 2.25720000  | 0.38920000  |
| С      | -5.14630000 | 0.16430000  | -0.14750000 |
| Н      | -3.67830000 | -0.51960000 | -1.51650000 |
| С      | -4.59380000 | 2.19860000  | 1.05740000  |
| Н      | -2.69750000 | 3.04330000  | 0.61110000  |
| С      | -5.49070000 | 1.15230000  | 0.78840000  |
| Н      | -5.81570000 | -0.61930000 | -0.35320000 |
| Н      | -4.84620000 | 2.93840000  | 1.76020000  |
| Н      | -6.41560000 | 1.10900000  | 1.28550000  |
| Ν      | -1.03090000 | 2.55950000  | -1.47580000 |
| Н      | -1.45620000 | 3.45070000  | -1.36170000 |
| С      | 0.40480000  | 2.39490000  | -1.56820000 |
| Н      | 0.80200000  | 2.94190000  | -2.42340000 |
| Н      | 0.87100000  | 2.74990000  | -0.64790000 |
| С      | 0.60720000  | 0.86410000  | -1.75030000 |
| Н      | 0.78000000  | 0.66440000  | -2.81080000 |
| С      | 1.79720000  | 0.35590000  | -0.97540000 |

| Н | 2.75560000  | 0.47580000  | -1.39290000 |
|---|-------------|-------------|-------------|
| Н | 1.72530000  | 0.26530000  | 0.07060000  |
| С | -0.73040000 | 0.19550000  | -1.30300000 |
| Н | -0.62490000 | -0.18810000 | -0.28440000 |
| С | -1.12200000 | -0.94020000 | -2.22400000 |
| 0 | -1.64470000 | -0.80840000 | -3.47380000 |
| 0 | -0.95600000 | -2.09160000 | -1.81800000 |
| С | -1.93380000 | 0.36490000  | -4.17260000 |
| Н | -2.80310000 | 0.85400000  | -3.73070000 |
| Н | -1.08330000 | 1.04620000  | -4.14890000 |
| С | -2.25230000 | 0.01780000  | -5.64390000 |
| Н | -2.48180000 | 0.93160000  | -6.19380000 |
| Н | -1.39170000 | -0.47010000 | -6.10380000 |
| Н | -3.11240000 | -0.65200000 | -5.68860000 |
|   |             |             |             |

# Date: 3

| Zero-point correction=                       | 0.265835(Hartree/Particle) |
|----------------------------------------------|----------------------------|
| Thermal correction to Energy=                | 0.279358                   |
| Thermal correction to Enthalpy=              | 0.280302                   |
| Thermal correction to Gibbs Free Energy=     | 0.224587                   |
| Sum of electronic and zero-point Energies=   | -748.0794719               |
| Sum of electronic and thermal Energies=      | -748.0622619               |
| Sum of electronic and thermal Enthalpies=    | -748.0613179               |
| Sum of electronic and thermal Free Energies= | -748.1260069               |
| Standard orientation:                        |                            |

| Center | Coordinates (Angstroms) |             |             |  |
|--------|-------------------------|-------------|-------------|--|
| Number | Х                       | Y           | Z           |  |
| с      | -1.45880000             | 1.24050000  | -0.88950000 |  |
| С      | -2.86530000             | 1.17190000  | -0.45130000 |  |
| С      | -3.42610000             | -0.03350000 | 0.01520000  |  |

\_\_\_\_\_

| С | -3.67660000 | 2.32280000  | -0.50350000 |
|---|-------------|-------------|-------------|
| С | -4.77340000 | -0.09100000 | 0.40930000  |
| Н | -2.84250000 | -0.90490000 | 0.07950000  |
| С | -5.02410000 | 2.26770000  | -0.10840000 |
| Н | -3.28320000 | 3.23440000  | -0.84970000 |
| С | -5.57540000 | 1.05940000  | 0.34640000  |
| Н | -5.18150000 | -0.99680000 | 0.75230000  |
| Н | -5.62060000 | 3.13180000  | -0.15640000 |
| Н | -6.58340000 | 1.01660000  | 0.64060000  |
| Ν | -0.81450000 | 2.35350000  | -0.97450000 |
| С | 0.56950000  | 2.20100000  | -1.38520000 |
| Н | 0.78840000  | 2.85090000  | -2.23240000 |
| Н | 1.22380000  | 2.44810000  | -0.54810000 |
| С | 0.70170000  | 0.70740000  | -1.78790000 |
| Н | 0.72830000  | 0.63850000  | -2.87810000 |
| С | 1.95420000  | 0.07260000  | -1.23870000 |
| Н | 2.85320000  | 0.19290000  | -1.77240000 |
| Н | 2.01760000  | -0.12590000 | -0.20710000 |
| С | -0.59980000 | 0.04990000  | -1.24430000 |
| Н | -0.38490000 | -0.49170000 | -0.31920000 |
| С | -1.21570000 | -0.90150000 | -2.24970000 |
| 0 | -2.01220000 | -0.54960000 | -3.29560000 |
| 0 | -1.10610000 | -2.10940000 | -2.03310000 |
| С | -2.19470000 | 0.71130000  | -3.86670000 |
| Н | -3.06660000 | 1.18940000  | -3.41730000 |
| Н | -1.32070000 | 1.34350000  | -3.71720000 |
| С | -2.43360000 | 0.55130000  | -5.38440000 |
| Н | -2.56090000 | 1.53400000  | -5.84050000 |
| Н | -1.57840000 | 0.05280000  | -5.84300000 |
| Н | -3.33220000 | -0.04250000 | -5.55750000 |
|   |             |             |             |

## Date: 4

| Zero-point correction=                       | 0.95105 (Hartree/Particle) |
|----------------------------------------------|----------------------------|
| Thermal correction to Energy=                | 1.01578                    |
| Thermal correction to Enthalpy=              | 1.017669                   |
| Thermal correction to Gibbs Free Energy=     | 0.817128                   |
| Sum of electronic and zero-point Energies=   | -3687.399506               |
| Sum of electronic and thermal Energies=      | -3687.334775               |
| Sum of electronic and thermal Enthalpies=    | -3687.332886               |
| Sum of electronic and thermal Free Energies= | -3687.533428               |

| Standard | orientation: |
|----------|--------------|
|          |              |

| Center | Coordin     | Coordinates (Angstroms) |            |  |
|--------|-------------|-------------------------|------------|--|
| Number | Х           | Y                       | Z          |  |
| с      | -4.48540000 | 0.83070000              | 4.15470000 |  |
| С      | -3.62550000 | 0.19520000              | 3.24070000 |  |
| С      | -2.33510000 | -0.17090000             | 3.66050000 |  |
| С      | -1.96240000 | 0.13560000              | 4.98010000 |  |
| С      | -2.88660000 | 0.77070000              | 5.82550000 |  |
| N      | -4.09720000 | 1.08980000              | 5.39370000 |  |
| Н      | -3.92550000 | 0.01050000              | 2.25200000 |  |
| Н      | -0.99830000 | -0.09090000             | 5.33180000 |  |
| Н      | -2.58610000 | 1.00760000              | 6.80110000 |  |
| С      | -1.34400000 | -0.77450000             | 2.69260000 |  |
| Н      | -1.87500000 | -1.40450000             | 1.97530000 |  |
| Н      | -0.63420000 | -1.39900000             | 3.23970000 |  |
| С      | -0.57720000 | 0.34230000              | 1.93630000 |  |
| Н      | -0.05200000 | 0.97030000              | 2.65990000 |  |
| Н      | -1.29260000 | 0.96110000              | 1.38860000 |  |
| С      | 0.45060000  | -0.25110000             | 0.93780000 |  |
| Н      | 1.17650000  | -0.86000000             | 1.48200000 |  |
| Н      | -0.06860000 | -0.88470000             | 0.21550000 |  |
| С      | 1.20490000  | 0.86320000              | 0.17350000 |  |
| н      | 1.74290000  | 1.50090000              | 0.87670000 |  |

| Н | 1.92030000  | 0.41210000 | -0.51570000 |
|---|-------------|------------|-------------|
| Н | 0.49890000  | 1.47010000 | -0.39520000 |
| С | -7.68380000 | 2.39490000 | 4.69600000  |
| С | -8.35510000 | 2.32840000 | 3.46440000  |
| С | -7.71610000 | 1.73120000 | 2.36470000  |
| С | -6.42980000 | 1.19910000 | 2.56010000  |
| С | -5.83190000 | 1.31140000 | 3.82790000  |
| Ν | -6.45940000 | 1.90830000 | 4.82880000  |
| Н | -8.16840000 | 2.85380000 | 5.50440000  |
| Н | -9.31670000 | 2.74150000 | 3.36750000  |
| Н | -5.92000000 | 0.75290000 | 1.75840000  |
| С | -8.36350000 | 1.72080000 | 1.00020000  |
| Н | -9.39380000 | 1.37200000 | 1.10870000  |
| Н | -7.84110000 | 1.01780000 | 0.34750000  |
| С | -8.38490000 | 3.12150000 | 0.32720000  |
| Н | -8.94660000 | 3.82260000 | 0.94830000  |
| Н | -8.92310000 | 3.01440000 | -0.61960000 |
| С | -6.98110000 | 3.70850000 | 0.00600000  |
| Н | -6.29100000 | 2.90380000 | -0.25610000 |
| Н | -7.08140000 | 4.36390000 | -0.86370000 |
| С | -6.37880000 | 4.55300000 | 1.15750000  |
| Н | -6.16520000 | 3.93190000 | 2.02560000  |
| Н | -5.44680000 | 5.00900000 | 0.81860000  |
| Н | -7.07260000 | 5.34450000 | 1.44430000  |
| С | -5.77250000 | 4.87830000 | 6.35860000  |
| С | -5.59040000 | 6.19700000 | 5.90180000  |
| С | -4.65350000 | 6.45020000 | 4.88880000  |
| С | -3.91660000 | 5.37820000 | 4.35910000  |
| С | -4.12620000 | 4.10400000 | 4.91670000  |
| Ν | -5.03940000 | 3.89160000 | 5.85320000  |
| Н | -4.52120000 | 7.42910000 | 4.53200000  |
| Н | -6.15130000 | 6.99470000 | 6.28320000  |
| Н | -3.55460000 | 3.30380000 | 4.55520000  |
| С | -7.68400000 | 2.50560000 | 8.49840000  |
| С | -8.56600000 | 3.33110000 | 9.21300000  |

| С | -8.54190000 | 4.72150000  | 9.01340000  |
|---|-------------|-------------|-------------|
| С | -7.64590000 | 5.29970000  | 8.09590000  |
| С | -6.76160000 | 4.47420000  | 7.37440000  |
| С | -6.78620000 | 3.08690000  | 7.58920000  |
| Н | -7.69990000 | 1.46780000  | 8.64960000  |
| Н | -9.20220000 | 5.33580000  | 9.55380000  |
| С | -2.88900000 | 5.57580000  | 3.26810000  |
| F | -1.52660000 | 5.65080000  | 3.86740000  |
| F | -3.14480000 | 6.82590000  | 2.49530000  |
| F | -2.92630000 | 4.43320000  | 2.30810000  |
| F | -7.67650000 | 6.74140000  | 7.94280000  |
| F | -9.49780000 | 2.74830000  | 10.16040000 |
| С | -5.24040000 | -0.05050000 | 8.41860000  |
| С | -5.49230000 | -1.29960000 | 9.01530000  |
| С | -6.36510000 | -2.19800000 | 8.38320000  |
| С | -6.95630000 | -1.83070000 | 7.16280000  |
| С | -6.66970000 | -0.54970000 | 6.65660000  |
| Ν | -5.83260000 | 0.27100000  | 7.27280000  |
| Н | -6.57120000 | -3.12760000 | 8.82720000  |
| Н | -5.05260000 | -1.57510000 | 9.92500000  |
| Н | -7.13750000 | -0.24360000 | 5.76970000  |
| С | -3.54530000 | 3.25470000  | 8.58230000  |
| С | -2.81000000 | 3.20440000  | 9.77670000  |
| С | -2.85250000 | 2.04860000  | 10.57440000 |
| С | -3.62840000 | 0.93940000  | 10.19060000 |
| С | -4.36610000 | 0.98830000  | 8.99140000  |
| С | -4.31040000 | 2.14420000  | 8.19790000  |
| Н | -3.52480000 | 4.11570000  | 7.98800000  |
| Н | -2.30110000 | 2.01420000  | 11.46860000 |
| С | -7.94930000 | -2.73080000 | 6.46450000  |
| F | -7.85050000 | -2.57710000 | 4.98320000  |
| F | -9.32940000 | -2.36790000 | 6.89800000  |
| F | -7.70210000 | -4.16590000 | 6.78960000  |
| F | -3.62790000 | -0.21760000 | 11.06520000 |
| F | -2.00930000 | 4.34350000  | 10.18500000 |

| Ir | -5.42070000 | 2.05410000  | 6.50730000 |
|----|-------------|-------------|------------|
| С  | -0.35040000 | 9.43790000  | 7.49040000 |
| С  | -0.33930000 | 10.91070000 | 7.56260000 |
| С  | -1.39600000 | 11.67880000 | 7.03510000 |
| С  | 0.74220000  | 11.57430000 | 8.17550000 |
| С  | -1.36800000 | 13.08170000 | 7.11120000 |
| Н  | -2.22320000 | 11.21270000 | 6.58550000 |
| С  | 0.77170000  | 12.97680000 | 8.25390000 |
| Н  | 1.54380000  | 11.02480000 | 8.57640000 |
| С  | -0.28340000 | 13.73300000 | 7.72000000 |
| Н  | -2.16190000 | 13.64460000 | 6.71370000 |
| Н  | 1.58490000  | 13.46000000 | 8.71200000 |
| Н  | -0.26260000 | 14.78210000 | 7.77770000 |
| Ν  | 0.39000000  | 8.70990000  | 8.25420000 |
| С  | 0.19940000  | 7.28320000  | 8.07390000 |
| Н  | 1.15530000  | 6.79160000  | 7.89260000 |
| Н  | -0.27030000 | 6.86540000  | 8.96520000 |
| С  | -0.72630000 | 7.16310000  | 6.83450000 |
| Н  | -0.13070000 | 6.82920000  | 5.98240000 |
| С  | -1.84170000 | 6.17630000  | 7.05370000 |
| Н  | -1.64080000 | 5.15470000  | 6.90260000 |
| Н  | -2.63890000 | 6.43620000  | 7.68920000 |
| C  | -1.24130000 | 8.61130000  | 6.59390000 |
| Н  | -2.26610000 | 8.70670000  | 6.96290000 |
| С  | -1.20270000 | 8.99210000  | 5.12830000 |
| 0  | -0.08850000 | 9.27890000  | 4.40240000 |
| 0  | -2.27760000 | 9.09420000  | 4.53530000 |
| C  | 1.24710000  | 9.26290000  | 4.80680000 |
| Н  | 1.46190000  | 10.15470000 | 5.39690000 |
| Н  | 1.46470000  | 8.37510000  | 5.39950000 |
| С  | 2.15460000  | 9.26010000  | 3.55660000 |
| Н  | 3.20150000  | 9.25390000  | 3.86340000 |
| Н  | 1.95320000  | 8.37270000  | 2.95460000 |
| Н  | 1.96300000  | 10.15190000 | 2.95790000 |
|    |             |             |            |
| Date: 5                                      |                             |
|----------------------------------------------|-----------------------------|
| Zero-point correction=                       | 0.930157 (Hartree/Particle) |
| Thermal correction to Energy=                | 1.145340                    |
| Thermal correction to Enthalpy=              | 1.084124                    |
| Thermal correction to Gibbs Free Energy=     | 0.822141                    |
| Sum of electronic and zero-point Energies=   | -3687.395137                |
| Sum of electronic and thermal Energies=      | -3687.331054                |
| Sum of electronic and thermal Enthalpies=    | -3687.330014                |
| Sum of electronic and thermal Free Energies= | -3687.530878                |
| Standard orientation:                        |                             |

| Center | Coordinates (Angstroms) |             |             |  |
|--------|-------------------------|-------------|-------------|--|
| Number | Х                       | Y           | Z           |  |
| C      | -4.63620000             | 0.68030000  | 4.11410000  |  |
| С      | -3.77690000             | 0.07310000  | 3.18080000  |  |
| С      | -2.51280000             | -0.37010000 | 3.60630000  |  |
| С      | -2.16350000             | -0.16320000 | 4.95160000  |  |
| С      | -3.08560000             | 0.45110000  | 5.81480000  |  |
| Ν      | -4.27170000             | 0.84380000  | 5.37610000  |  |
| Н      | -4.05980000             | -0.04000000 | 2.17620000  |  |
| Н      | -1.21950000             | -0.45270000 | 5.31190000  |  |
| Н      | -2.80480000             | 0.60920000  | 6.81200000  |  |
| С      | -1.52690000             | -0.96070000 | 2.62530000  |  |
| Н      | -2.06940000             | -1.52140000 | 1.86090000  |  |
| Н      | -0.86060000             | -1.64950000 | 3.14890000  |  |
| С      | -0.69120000             | 0.16030000  | 1.95270000  |  |
| Н      | -0.14140000             | 0.70800000  | 2.72200000  |  |
| Н      | -1.36450000             | 0.85300000  | 1.44160000  |  |
| С      | 0.31340000              | -0.42290000 | 0.92480000  |  |
| Н      | 0.98790000              | -1.11800000 | 1.42990000  |  |
| Н      | -0.23350000             | -0.96440000 | 0.14950000  |  |
| С      | 1.15240000              | 0.69330000  | 0.25770000  |  |
| Н      | 1.72270000              | 1.23520000  | 1.01380000  |  |
| Н      | 1.84540000              | 0.24880000  | -0.45830000 |  |

| Н | 0.49760000  | 1.39000000 | -0.26760000 |
|---|-------------|------------|-------------|
| С | -7.82440000 | 2.24890000 | 4.69170000  |
| С | -8.47520000 | 2.26280000 | 3.44740000  |
| С | -7.82000000 | 1.73110000 | 2.32390000  |
| С | -6.54050000 | 1.17990000 | 2.50940000  |
| С | -5.96470000 | 1.20940000 | 3.79200000  |
| Ν | -6.60460000 | 1.74830000 | 4.81770000  |
| Н | -8.32520000 | 2.65650000 | 5.51670000  |
| Н | -9.43360000 | 2.68490000 | 3.36030000  |
| Н | -6.02110000 | 0.77640000 | 1.69140000  |
| С | -8.44250000 | 1.80610000 | 0.95020000  |
| Н | -9.47640000 | 1.45740000 | 1.01790000  |
| Н | -7.91130000 | 1.14040000 | 0.26580000  |
| С | -8.44390000 | 3.24440000 | 0.36090000  |
| Н | -9.01530000 | 3.91060000 | 1.01090000  |
| Н | -8.96260000 | 3.19690000 | -0.60140000 |
| С | -7.03070000 | 3.84070000 | 0.10410000  |
| Н | -6.33900000 | 3.04820000 | -0.18880000 |
| Н | -7.10880000 | 4.54540000 | -0.72850000 |
| С | -6.44930000 | 4.61380000 | 1.31490000  |
| Н | -6.26020000 | 3.94330000 | 2.15130000  |
| Н | -5.50680000 | 5.07990000 | 1.02280000  |
| Н | -7.14380000 | 5.39390000 | 1.62980000  |
| С | -5.90310000 | 4.60030000 | 6.54550000  |
| С | -5.66200000 | 5.94480000 | 6.20680000  |
| С | -4.61940000 | 6.25520000 | 5.32040000  |
| С | -3.83050000 | 5.21280000 | 4.80660000  |
| С | -4.14950000 | 3.89880000 | 5.19410000  |
| Ν | -5.15080000 | 3.63800000 | 6.02150000  |
| Н | -4.43690000 | 7.25590000 | 5.05870000  |
| Н | -6.24380000 | 6.72380000 | 6.59570000  |
| Н | -3.57020000 | 3.11290000 | 4.81230000  |
| С | -7.94550000 | 2.12250000 | 8.43130000  |
| С | -8.87330000 | 2.91100000 | 9.12990000  |
| С | -8.84250000 | 4.30950000 | 8.99940000  |

| C | -7.89110000 | 4.93280000  | 8.17210000  |
|---|-------------|-------------|-------------|
| C | -6.95950000 | 4.14490000  | 7.46810000  |
| C | -6.99500000 | 2.74830000  | 7.60960000  |
| Н | -7.97350000 | 1.07840000  | 8.52390000  |
| Н | -9.54080000 | 4.89520000  | 9.52330000  |
| C | -2.69370000 | 5.45910000  | 3.84140000  |
| F | -1.45800000 | 4.78040000  | 4.33050000  |
| F | -2.39420000 | 6.91190000  | 3.68380000  |
| F | -3.05160000 | 4.90070000  | 2.50540000  |
| F | -7.92110000 | 6.38020000  | 8.08480000  |
| F | -9.86450000 | 2.28100000  | 9.98230000  |
| C | -5.49180000 | -0.42100000 | 8.33780000  |
| C | -5.77320000 | -1.69290000 | 8.86930000  |
| C | -6.63510000 | -2.55220000 | 8.17150000  |
| C | -7.18580000 | -2.12380000 | 6.95210000  |
| C | -6.87140000 | -0.82470000 | 6.51210000  |
| Ν | -6.04580000 | -0.04250000 | 7.19060000  |
| Н | -6.86240000 | -3.49910000 | 8.56620000  |
| Н | -5.36190000 | -2.01520000 | 9.77720000  |
| Н | -7.30770000 | -0.47330000 | 5.62580000  |
| C | -3.71940000 | 2.83270000  | 8.67940000  |
| С | -3.02230000 | 2.71300000  | 9.89220000  |
| С | -3.12260000 | 1.53060000  | 10.64390000 |
| С | -3.91520000 | 0.45970000  | 10.19360000 |
| С | -4.61750000 | 0.57770000  | 8.97830000  |
| C | -4.51300000 | 1.76380000  | 8.23500000  |
| Н | -3.64480000 | 3.71520000  | 8.11930000  |
| Н | -2.59960000 | 1.44660000  | 11.55200000 |
| C | -8.16660000 | -2.98140000 | 6.18680000  |
| F | -8.02170000 | -2.76550000 | 4.71700000  |
| F | -9.55490000 | -2.62050000 | 6.59520000  |
| F | -7.94530000 | -4.43210000 | 6.45730000  |
| F | -3.96860000 | -0.73040000 | 11.02060000 |
| F | -2.20240000 | 3.80970000  | 10.37080000 |

| Ir | -5.59500000 | 1.76870000  | 6.52190000  |
|----|-------------|-------------|-------------|
| C  | 0.70540000  | 8.80310000  | 7.89030000  |
| C  | 1.49040000  | 9.81240000  | 8.62660000  |
| C  | 0.98640000  | 10.42640000 | 9.79030000  |
| С  | 2.76960000  | 10.18180000 | 8.16470000  |
| C  | 1.74250000  | 11.39290000 | 10.47480000 |
| Н  | 0.03990000  | 10.16640000 | 10.16540000 |
| С  | 3.52730000  | 11.14830000 | 8.84710000  |
| Н  | 3.16870000  | 9.74200000  | 7.29690000  |
| C  | 3.01400000  | 11.75650000 | 10.00360000 |
| Н  | 1.35570000  | 11.84400000 | 11.34180000 |
| Н  | 4.47860000  | 11.41750000 | 8.49040000  |
| Н  | 3.57970000  | 12.47970000 | 10.51490000 |
| Ν  | 1.23480000  | 8.02890000  | 7.00740000  |
| C  | 0.30560000  | 7.09080000  | 6.40700000  |
| Н  | 0.24900000  | 7.26220000  | 5.33170000  |
| Н  | 0.63830000  | 6.07050000  | 6.59940000  |
| C  | -1.06210000 | 7.38580000  | 7.08100000  |
| Н  | -1.77710000 | 7.71480000  | 6.32440000  |
| C  | -1.61470000 | 6.16140000  | 7.76800000  |
| Н  | -2.09910000 | 5.43610000  | 7.18170000  |
| Н  | -1.17720000 | 5.84530000  | 8.67130000  |
| C  | -0.76730000 | 8.53730000  | 8.08580000  |
| Н  | -0.91380000 | 8.18240000  | 9.10940000  |
| C  | -1.65570000 | 9.74250000  | 7.85210000  |
| 0  | -1.46960000 | 10.70170000 | 6.90470000  |
| 0  | -2.56080000 | 9.94840000  | 8.66250000  |
| C  | -0.64290000 | 10.66050000 | 5.78140000  |
| Н  | 0.39680000  | 10.80030000 | 6.07900000  |
| Н  | -0.74980000 | 9.70670000  | 5.26430000  |
| C  | -1.03780000 | 11.79990000 | 4.81600000  |
| Н  | -0.39850000 | 11.76860000 | 3.93270000  |
| Н  | -2.07800000 | 11.68230000 | 4.50940000  |
| Н  | -0.91520000 | 12.76430000 | 5.31150000  |
|    |             |             |             |

## Date: 6

| Zero-point correction=                       | 0.268904 (Hartree/Particle) |
|----------------------------------------------|-----------------------------|
| Thermal correction to Energy=                | 0.282852                    |
| Thermal correction to Enthalpy=              | 0.283796                    |
| Thermal correction to Gibbs Free Energy=     | 0.228454                    |
| Sum of electronic and zero-point Energies=   | -748.0848901                |
| Sum of electronic and thermal Energies=      | -748.0676801                |
| Sum of electronic and thermal Enthalpies=    | -748.0667361                |
| Sum of electronic and thermal Free Energies= | -748.1314251                |
|                                              |                             |

Standard orientation:

| Center | Coordi      |             |             |  |
|--------|-------------|-------------|-------------|--|
| Number | Х           | Y           | Ζ           |  |
| C      | 0.15160000  | -0.74980000 | -0.32950000 |  |
| С      | 1.55880000  | -0.34040000 | -0.15290000 |  |
| С      | 2.03380000  | 0.21840000  | 1.05470000  |  |
| С      | 2.47980000  | -0.49940000 | -1.21600000 |  |
| С      | 3.37270000  | 0.59060000  | 1.19280000  |  |
| Н      | 1.34230000  | 0.37580000  | 1.88520000  |  |
| С      | 3.81090000  | -0.11610000 | -1.07590000 |  |
| Н      | 2.10590000  | -0.93820000 | -2.14310000 |  |
| С      | 4.27230000  | 0.43050000  | 0.13110000  |  |
| Н      | 3.71580000  | 1.01730000  | 2.14040000  |  |
| Н      | 4.50360000  | -0.24810000 | -1.91380000 |  |
| Н      | 5.31840000  | 0.73160000  | 0.23990000  |  |
| Ν      | -0.24280000 | -1.33130000 | -1.41860000 |  |
| С      | -1.60930000 | -1.77070000 | -1.29370000 |  |
| Н      | -2.24850000 | -1.24190000 | -2.02960000 |  |
| Н      | -1.69310000 | -2.84440000 | -1.55830000 |  |
| С      | -2.12180000 | -1.57790000 | 0.17110000  |  |
| Н      | -3.02370000 | -0.93940000 | 0.18880000  |  |
| С      | -2.38340000 | -2.85020000 | 0.84770000  |  |
| Н      | -2.97110000 | -2.80980000 | 1.77760000  |  |

| Н | -1.52550000 | -3.54140000 | 0.90460000  |  |
|---|-------------|-------------|-------------|--|
| С | -0.87600000 | -0.63820000 | 0.77250000  |  |
| Н | -0.50750000 | -1.14970000 | 1.67640000  |  |
| С | -1.25780000 | 0.72040000  | 1.27210000  |  |
| 0 | -1.80160000 | 1.66810000  | 0.43500000  |  |
| 0 | -1.18440000 | 1.03610000  | 2.44510000  |  |
| С | -1.80120000 | 1.59350000  | -0.98280000 |  |
| Н | -0.77540000 | 1.45980000  | -1.36390000 |  |
| Н | -2.39790000 | 0.73680000  | -1.33200000 |  |
| С | -2.39770000 | 2.89100000  | -1.50410000 |  |
| Н | -2.42340000 | 2.88830000  | -2.60620000 |  |
| Н | -3.42560000 | 3.02350000  | -1.13030000 |  |
| Н | -1.80190000 | 3.75480000  | -1.16890000 |  |
|   |             |             |             |  |

# Date: TS2

| Zero-point correction=                       | 0.268863 (Hartree/Particle) |
|----------------------------------------------|-----------------------------|
| Thermal correction to Energy=                | 0.279615                    |
| Thermal correction to Enthalpy=              | 0.280559                    |
| Thermal correction to Gibbs Free Energy=     | 0.232079                    |
| Sum of electronic and zero-point Energies=   | -748.0573208                |
| Sum of electronic and thermal Energies=      | -748.0401108                |
| Sum of electronic and thermal Enthalpies=    | -748.0391668                |
| Sum of electronic and thermal Free Energies= | -748.1038558                |
| Standard orientation:                        |                             |

| Center | Coordin    | nates (Angstroms) |             |  |
|--------|------------|-------------------|-------------|--|
| Number | Х          | Y                 | Z           |  |
|        |            |                   |             |  |
| С      | 0.22900000 | -1.36150000       | -0.40290000 |  |
| С      | 1.41770000 | -0.51780000       | -0.51090000 |  |
| С      | 1.90360000 | 0.15900000        | 0.63420000  |  |

| С | 2.11770000  | -0.38810000 | -1.72050000 |
|---|-------------|-------------|-------------|
| С | 3.05360000  | 0.95580000  | 0.54890000  |
| Н | 1.40240000  | 0.06290000  | 1.54740000  |
| С | 3.27370000  | 0.40640000  | -1.80550000 |
| Н | 1.78130000  | -0.88200000 | -2.59100000 |
| С | 3.74180000  | 1.08660000  | -0.65960000 |
| Н | 3.40060000  | 1.45850000  | 1.40940000  |
| Н | 3.79440000  | 0.50170000  | -2.71430000 |
| Н | 4.60450000  | 1.68480000  | -0.72060000 |
| Ν | 0.07150000  | -2.47110000 | -1.05490000 |
| С | -1.19960000 | -3.12700000 | -0.75330000 |
| Н | -1.62840000 | -3.64090000 | -1.59840000 |
| Н | -1.11780000 | -3.78500000 | 0.10860000  |
| С | -2.00580000 | -1.86420000 | -0.38550000 |
| Н | -2.08320000 | -1.24840000 | -1.29710000 |
| С | -3.09720000 | -1.64400000 | 0.40260000  |
| Н | -3.25880000 | -2.56020000 | 0.90110000  |
| Н | -3.92420000 | -1.38020000 | -0.19310000 |
| С | -0.94470000 | -1.23810000 | 0.52960000  |
| Н | -0.73620000 | -1.83240000 | 1.40800000  |
| С | -1.79590000 | -0.23720000 | 0.94350000  |
| 0 | -2.15570000 | 0.75590000  | 0.12400000  |
| 0 | -1.95930000 | 0.18550000  | 2.24720000  |
| С | -1.38850000 | 1.83490000  | 0.40990000  |
| Н | -1.71530000 | 2.20250000  | 1.38440000  |
| Н | -0.37610000 | 1.44030000  | 0.48200000  |
| С | -1.40920000 | 2.94260000  | -0.64220000 |
| Н | -0.69720000 | 3.69400000  | -0.30270000 |
| Н | -1.10260000 | 2.53030000  | -1.60250000 |
| Н | -2.41340000 | 3.35380000  | -0.69420000 |

## Date: 7

| Zero-point correction=                       | 0.264422 (Hartree/Particle) |
|----------------------------------------------|-----------------------------|
| Thermal correction to Energy=                | 0.277290                    |
| Thermal correction to Enthalpy=              | 0.278234                    |
| Thermal correction to Gibbs Free Energy=     | 0.225805                    |
| Sum of electronic and zero-point Energies=   | -748.0834559                |
| Sum of electronic and thermal Energies=      | -748.0662459                |
| Sum of electronic and thermal Enthalpies=    | -748.0653019                |
| Sum of electronic and thermal Free Energies= | -748.1299909                |
| Standard arientation                         |                             |

Standard orientation:

| Center | Coordina    | ates (Angstroms) |             |  |
|--------|-------------|------------------|-------------|--|
| Number | Х           | Y                | Z           |  |
| С      | 0.21390000  | -1.33860000      | -0.44890000 |  |
| С      | 1.42280000  | -0.51170000      | -0.51610000 |  |
| С      | 1.90170000  | 0.15610000       | 0.62710000  |  |
| С      | 2.12420000  | -0.38660000      | -1.73020000 |  |
| С      | 3.05350000  | 0.95670000       | 0.55300000  |  |
| Н      | 1.39970000  | 0.06320000       | 1.54630000  |  |
| С      | 3.27940000  | 0.40980000       | -1.80420000 |  |
| Н      | 1.78220000  | -0.88080000      | -2.59310000 |  |
| С      | 3.74210000  | 1.08650000       | -0.66400000 |  |
| Н      | 3.39960000  | 1.45890000       | 1.40900000  |  |
| Н      | 3.79640000  | 0.50150000       | -2.71450000 |  |
| Н      | 4.60360000  | 1.68530000       | -0.71990000 |  |
| Ν      | 0.07490000  | -2.47940000      | -1.06200000 |  |
| С      | -1.20610000 | -3.14510000      | -0.73120000 |  |
| Н      | -1.62490000 | -3.66100000      | -1.59220000 |  |
| Н      | -1.12090000 | -3.80090000      | 0.13300000  |  |
| С      | -1.93910000 | -1.83340000      | -0.43900000 |  |
| Н      | -2.02930000 | -1.24500000      | -1.36090000 |  |
| С      | -3.03040000 | -1.36750000      | 0.54350000  |  |
| Н      | -3.93400000 | 0.06310000       | -1.00500000 |  |

| Н | -3.21200000 | -2.07410000 | 1.35030000  |
|---|-------------|-------------|-------------|
| С | -0.88420000 | -1.22660000 | 0.56380000  |
| Н | -0.68830000 | -1.88780000 | 1.41310000  |
| С | -2.01020000 | -0.21590000 | 0.92990000  |
| 0 | -2.14770000 | 0.91350000  | 0.04850000  |
| 0 | -2.08530000 | 0.08840000  | 2.32490000  |
| С | -1.28470000 | 2.00490000  | 0.41050000  |
| Н | -1.59420000 | 2.42810000  | 1.36800000  |
| Н | -0.25120000 | 1.67220000  | 0.48280000  |
| С | -1.37380000 | 3.09970000  | -0.67490000 |
| Н | -0.70640000 | 3.92370000  | -0.41920000 |
| Н | -1.07800000 | 2.68670000  | -1.64050000 |
| Н | -2.39640000 | 3.47380000  | -0.74070000 |
|   |             |             |             |

Date: TS3

| Zero-point correction=                       | 0.265790 (Hartree/Particle) |
|----------------------------------------------|-----------------------------|
| Thermal correction to Energy=                | 0.279732                    |
| Thermal correction to Enthalpy=              | 0.280676                    |
| Thermal correction to Gibbs Free Energy=     | 0.224511                    |
| Sum of electronic and zero-point Energies=   | -748.0614642                |
| Sum of electronic and thermal Energies=      | -748.0442542                |
| Sum of electronic and thermal Enthalpies=    | -748.0433102                |
| Sum of electronic and thermal Free Energies= | -748.1079992                |
| Standard orientation:                        |                             |

| Center | nter Coordinates (Angstroms) |             |             |
|--------|------------------------------|-------------|-------------|
| Number | Х                            | Y           | Z           |
| C      | 0.50400000                   | -1.66240000 | -0.42760000 |
| С      | 1.66300000                   | -0.77560000 | -0.53480000 |
| С      | 1.99870000                   | 0.02710000  | 0.58420000  |
| С      | 2.25450000                   | -0.48000000 | -1.77530000 |

| С | 3.05130000  | 0.94870000  | 0.52260000  |
|---|-------------|-------------|-------------|
| Н | 1.44480000  | -0.03690000 | 1.48020000  |
| С | 3.31770000  | 0.43850000  | -1.84570000 |
| Н | 1.88290000  | -0.92380000 | -2.65680000 |
| С | 3.76080000  | 1.11300000  | -0.68540000 |
| Н | 3.34280000  | 1.46910000  | 1.37160000  |
| Н | 3.81230000  | 0.58110000  | -2.74050000 |
| Н | 4.60890000  | 1.70810000  | -0.71470000 |
| Ν | 0.11880000  | -2.68620000 | -1.13820000 |
| С | -1.25730000 | -3.08290000 | -0.76200000 |
| Н | -1.83310000 | -3.49290000 | -1.58230000 |
| Н | -1.19780000 | -3.78390000 | 0.06190000  |
| С | -1.80500000 | -1.67260000 | -0.34150000 |
| Н | -1.85470000 | -1.03360000 | -1.22300000 |
| С | -3.04490000 | -1.34890000 | 0.53330000  |
| Н | -3.87550000 | -1.01780000 | -0.11760000 |
| Н | -3.40120000 | -2.19660000 | 1.12030000  |
| С | -0.58420000 | -1.29570000 | 0.44430000  |
| Н | -0.37700000 | -1.69960000 | 1.40300000  |
| С | -2.16320000 | -0.58130000 | 1.32620000  |
| 0 | -2.13130000 | 0.78720000  | 1.20200000  |
| 0 | -2.08700000 | -0.89950000 | 2.68990000  |
| С | -1.41180000 | 1.69810000  | 2.02180000  |
| Н | -1.56080000 | 1.48050000  | 3.08160000  |
| Н | -0.33700000 | 1.65640000  | 1.81160000  |
| С | -1.90410000 | 3.13540000  | 1.72260000  |
| Н | -1.42230000 | 3.83150000  | 2.41240000  |
| Н | -1.65610000 | 3.42450000  | 0.69810000  |
| Н | -2.98530000 | 3.17890000  | 1.86400000  |
|   |             |             |             |

## Date: 8

| Zero-point correction=                       | 0.269465 (Hartree/Particle) |
|----------------------------------------------|-----------------------------|
| Thermal correction to Energy=                | 0.282685                    |
| Thermal correction to Enthalpy=              | 0.283629                    |
| Thermal correction to Gibbs Free Energy=     | 0.227181                    |
| Sum of electronic and zero-point Energies=   | -748.090149                 |
| Sum of electronic and thermal Energies=      | -748.072939                 |
| Sum of electronic and thermal Enthalpies=    | -748.071995                 |
| Sum of electronic and thermal Free Energies= | -748.136684                 |
| Standard arientation                         |                             |

Standard orientation:

| Center | Coordin     |             |             |  |
|--------|-------------|-------------|-------------|--|
| Number | Х           | Y           | Z           |  |
| с      | 0.79210000  | -1.18120000 | -0.84600000 |  |
| С      | 2.21560000  | -0.80970000 | -0.83070000 |  |
| С      | 2.68930000  | 0.22900000  | -0.00470000 |  |
| С      | 3.13260000  | -1.49520000 | -1.65220000 |  |
| С      | 4.05010000  | 0.57920000  | -0.00420000 |  |
| Н      | 2.03220000  | 0.75260000  | 0.62600000  |  |
| С      | 4.49350000  | -1.14630000 | -1.65370000 |  |
| Н      | 2.80530000  | -2.27460000 | -2.27780000 |  |
| С      | 4.95470000  | -0.10730000 | -0.82970000 |  |
| Н      | 4.39190000  | 1.35580000  | 0.61600000  |  |
| Н      | 5.16740000  | -1.66340000 | -2.27290000 |  |
| Н      | 5.97240000  | 0.15410000  | -0.82970000 |  |
| N      | 0.32000000  | -2.22090000 | -1.44400000 |  |
| С      | -1.12830000 | -2.35420000 | -1.32550000 |  |
| Н      | -1.57930000 | -2.42500000 | -2.31570000 |  |
| Н      | -1.36340000 | -3.24980000 | -0.74940000 |  |
| С      | -1.61020000 | -1.06350000 | -0.59670000 |  |
| Н      | -2.13700000 | -0.42020000 | -1.30470000 |  |
| С      | -2.50360000 | -1.35420000 | 0.63740000  |  |
| Н      | -3.42860000 | -1.83070000 | 0.30500000  |  |

| Н | -1.98290000 | -2.03780000 | 1.31220000  |
|---|-------------|-------------|-------------|
| С | -0.29620000 | -0.43020000 | -0.22700000 |
| Н | -0.21290000 | 0.57120000  | 0.07050000  |
| С | -2.85630000 | -0.09030000 | 1.38470000  |
| 0 | -3.28480000 | 0.99550000  | 0.68910000  |
| 0 | -2.68640000 | -0.04500000 | 2.60410000  |
| С | -3.43690000 | 2.28610000  | 1.20290000  |
| Н | -4.50050000 | 2.49560000  | 1.33030000  |
| Н | -2.93730000 | 2.38880000  | 2.16780000  |
| С | -2.82800000 | 3.30250000  | 0.21080000  |
| Н | -2.94460000 | 4.31370000  | 0.60340000  |
| Н | -1.76580000 | 3.09400000  | 0.07190000  |
| Н | -3.33660000 | 3.23100000  | -0.75160000 |
|   |             |             |             |

### VI. Experimental procedures and analytical data

General Procedure for the synthesis of 2 and 4 (with 2a as an example) To a flask (15 mL) equipped with a stir-bar was added *N*-allyl enamine **1a** (69.3 mg, 0.3 mmol),  $(Ir[dF(CF_3)ppy]_2(dtbpy))PF_6$  (16.8 mg, 0.015 mmol), and DCE (2 mL). The reaction mixture was stirred under the irradiation of blue LED light (15 W) at ambient atmosphere in a parallel light reactor. After the completion of the reaction as indicated by TLC, the solution was concentrated *in vacuo*. Then the residue was purified by silica gel flash column chromatography (PE/EA = 4/1) to afford product **2a** (50.6 mg, 73%).



## 2a: ethyl 2-(5-phenyl-3,4-dihydro-2H-pyrrol-3-yl)acetate

Brown oil. 50.6 mg (73%). <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) 7.82 (d, J = 6.6 Hz, 2H), 7.43 – 7.39 (m, 3H), 4.26 (dd, J = 16.2, 7.8 Hz, 1H), 4.16 (q, J = 6.6 Hz, 2H), 3.75 (dd, J = 16.2, 4.8 Hz, 1H), 3.21 (dd, J = 16.8, 9.0 Hz, 1H), 2.91 – 2.86 (m, 1H), 2.71 (dd, J = 16.8, 5.4 Hz, 1H), 2.50 – 2.41 (m, 2H), 1.27 (t, J = 6.6 Hz, 3H). <sup>13</sup>**C NMR** (150 MHz, CDCl<sub>3</sub>) 172.5, 172.4, 134.2, 130.4, 128.4, 127.5, 66.7, 60.4, 41.0, 39.3, 33.3, 14.2. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>14</sub>H<sub>18</sub>NO<sub>2</sub><sup>+</sup> 232.1332; Found 232.1335.



#### 2b: ethyl 2-(5-(4-fluorophenyl)-3,4-dihydro-2H-pyrrol-3-yl)acetate

Brown oil. 52.3 mg (70%). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>) 7.81 (dd, J = 8.5, 5.5 Hz, 2H), 7.09 (t, J = 8.5 Hz, 2H), 4.25 (dd, J = 16.5, 8.0 Hz, 1H), 4.16 (q, J = 7.0 Hz, 2H), 3.74 (dd, J = 16.0, 5.0 Hz, 1H), 3.19 (dd, J = 17.0, 9.5 Hz, 1H), 2.92 – 2.84 (m, 1H), 2.69 (dd, J = 17.0, 5.5 Hz, 1H), 2.51 – 2.41 (m, 2H), 1.27 (t, J = 7.0 Hz, 3H). <sup>13</sup>**C NMR** (150 MHz, CDCl<sub>3</sub>) 172.3, 171.4, 164.1 (d, J = 249.2

Hz), 130.5 (d, J = 3.2 Hz), 129.5 (d, J = 8.6 Hz), 115.4 (d, J = 21.5 Hz), 66.6, 60.5, 41.1, 39.3, 33.4, 14.1. <sup>19</sup>F NMR (565 MHz, CDCl<sub>3</sub>): -109.8. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>14</sub>H<sub>17</sub>FNO<sub>2</sub><sup>+</sup> 250.1238; Found 250.1239.



#### 2c: ethyl 2-(5-(4-chlorophenyl)-3,4-dihydro-2H-pyrrol-3-yl)acetate

Yellow oil. 53.3 mg (67%). <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) 7.67 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.4 Hz, 2H), 4.18 (dd, J = 16.8, 8.4 Hz, 1H), 4.08 (q, J = 7.2 Hz, 2H), 3.66 (dd, J = 16.2, 4.8 Hz, 1H), 3.11 (dd, J = 16.8, 9.0 Hz, 1H), 2.83 – 2.79 (m, 1H), 2.60 (dd, J = 16.8, 6.0 Hz, 1H), 2.42 – 2.33 (m, 2H), 1.19 (t, J = 7.2 Hz, 3H). <sup>13</sup>**C NMR** (150 MHz, CDCl<sub>3</sub>) 172.3, 171.4, 136.5, 132.7, 128.8, 128.6, 66.7, 60.5, 41.0, 39.2, 33.4, 14.2. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>14</sub>H<sub>17</sub>ClNO<sub>2</sub><sup>+</sup> 266.0942; Found 266.0945.



#### 2d: ethyl 2-(5-(4-bromophenyl)-3,4-dihydro-2H-pyrrol-3-yl)acetate

Brown oil. 58.4 mg (63%). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>) 7.68 (d, J = 8.5 Hz, 2H), 7.53 (d, J = 8.5 Hz, 2H), 4.25 (dd, J = 16.5, 8.0 Hz, 1H), 4.16 (q, J = 7.0 Hz, 2H), 3.73 (dd, J = 16.0, 5.0 Hz, 1H), 3.18 (dd, J = 17.0, 9.5 Hz, 1H), 2.91 – 2.86 (m, 1H), 2.68 (dd, J = 17.0, 5.5 Hz, 1H), 2.51 – 2.41 (m, 2H), 1.27 (t, J = 7.0 Hz, 3H). <sup>13</sup>**C NMR** (150 MHz, CDCl<sub>3</sub>) 172.2, 171.6, 133.0, 131.6, 129.0, 125.0, 66.7, 60.4, 40.9, 39.2, 33.3, 14.1. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>14</sub>H<sub>17</sub>BrNO<sub>2</sub><sup>+</sup> 310.0437; Found 310.0432.



### 2e: ethyl 2-(5-(4-(trifluoromethyl)phenyl)-3,4-dihydro-2H-pyrrol-3-yl)acetate

Brown oil. 76.3 mg (85%). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) 7.84 (d, J = 7.8 Hz, 2H), 7.58 (d, J = 8.4 Hz, 2H), 4.22 (dd, J = 16.8, 7.8 Hz, 1H), 4.08 (q, J = 7.2 Hz, 2H), 3.71 (dd, J = 16.2, 4.8 Hz, 1H), 3.15 (dd, J = 17.4, 9.0 Hz, 1H), 2.86 – 2.81 (m, 1H), 2.65 (m, J = 16.8, 5.4 Hz, 1H), 2.44 – 2.35 (m, 2H), 1.19 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 172.2, 171.4, 137.4, 132.0 (q, J = 32.4 Hz), 127.8, 125.3 (q, J = 3.8 Hz), 123.9 (q, J = 270.6 Hz), 66.9, 60.5, 41.1, 39.2, 33.4, 14.1. <sup>19</sup>F NMR (565 MHz, CDCl<sub>3</sub>): -62.8. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>15</sub>H<sub>17</sub>F<sub>3</sub>NO<sub>2</sub><sup>+</sup> 300.1206. Found 300.1208.



## 2f: ethyl 2-(5-(p-tolyl)-3,4-dihydro-2H-pyrrol-3-yl)acetate

Brown oil. 44.1 mg (60%). <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) 7.63 (d, J = 7.8 Hz, 2H), 7.13 (d, J = 8.4 Hz, 2H), 4.17 (dd, J = 16.2, 8.4 Hz, 1H), 4.08 (q, J = 7.2 Hz, 2H), 3.65 (dd, J = 16.2, 5.4 Hz, 1H), 3.12 (dd, J = 16.8, 9.0 Hz, 1H), 2.81 – 2.77 (m, 1H), 2.62 (dd, J = 16.8, 6.0 Hz, 1H), 2.41– 2.33 (m, 2H), 2.30 (s, 3H), 1.19 (t, J = 7.2 Hz, 3H). <sup>13</sup>**C NMR** (150 MHz, CDCl<sub>3</sub>) 172.4, 172.4, 140.7, 131.5, 129.1, 127.5, 66.5, 60.4, 41.0, 39.3, 33.3, 21.4, 14.2. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>15</sub>H<sub>20</sub>NO<sub>2</sub><sup>+</sup> 246.1489; Found 246.1490.



#### 2g: ethyl 2-(5-(4-methoxyphenyl)-3,4-dihydro-2H-pyrrol-3-yl)acetate

Yellow solid. 52.5 mg (67%). mp: 64–65 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) 7.77 (d, J = 8.4 Hz, 2H), 6.91 (d, J = 9.0 Hz, 2H), 4.23 (dd, J = 15.6, 7.8 Hz, 1H), 4.17 (q, J = 6.6 Hz, 2H), 3.84 (s, 3H), 3.72 (dd, J = 16.2, 5.4 Hz, 1H), 3.18 (dd, J = 16.8, 9.0 Hz, 1H), 2.89 – 2.84 (m, 1H), 2.68 (dd, J = 17.4, 6.0 Hz, 1H), 2.50 – 2.42 (m, 2H), 1.27 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 172.5, 171.8, 161.5, 129.1, 127.2, 113.8, 66.6, 60.4, 55.3, 41.0, 39.4, 33.4, 14.2. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>15</sub>H<sub>20</sub>NO<sub>3</sub><sup>+</sup> 262.1438; Found 262.1427.



#### 2h: ethyl 2-(5-(4-(methylthio)phenyl)-3,4-dihydro-2H-pyrrol-3-yl)acetate

Brown solid. 45.7 mg (55%). mp: 49–50 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) 7.72 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 8.4 Hz, 2H), 4.24 (dd, J = 16.8, 8.4 Hz, 1H), 4.15 (q, J = 7.2 Hz, 2H), 3.73 (dd, J = 16.2, 5.4 Hz, 1H), 3.18 (dd, J = 16.8, 9.0 Hz, 1H), 2.89 – 2.84 (m, 1H), 2.67 (dd, J = 17.4, 6.0 Hz, 1H), 2.50 (s, 3H), 2.49 – 2.41 (m, 2H), 1.27 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 172.4, 171.9, 141.9, 130.8, 127.8, 125.5, 66.6, 60.4, 40.9, 39.3, 33.3, 15.1, 14.2. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>15</sub>H<sub>20</sub>NO<sub>2</sub>S<sup>+</sup> 278.1209; Found 278.1202.



#### 2i: ethyl 2-(5-(3-bromophenyl)-3,4-dihydro-2H-pyrrol-3-yl)acetate

Brown oil. 78.8 mg (85%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) 7.97 (s, 1H), 7.72 (d, J = 8.0 Hz, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.27 (t, J = 7.5 Hz, 1H), 4.27 (dd, J = 16.5, 8.0 Hz, 1H), 4.16 (q, J = 7.5 Hz, 2H), 3.75 (dd, J = 16.5, 5.5 Hz, 1H), 3.18 (dd, J = 17.0, 9.0 Hz, 1H), 2.91 – 2.86 (m, 1H), 2.68 (dd, J = 17.0, 6.0 Hz, 1H), 2.51 – 2.41 (m, 2H), 1.27 (t, J = 7.0 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)

172.2, 171.3, 136.2, 133.3, 130.5, 129.9, 126.0, 122.6, 66.7, 60.5, 41.0, 39.2, 33.3, 14.1. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>14</sub>H<sub>17</sub>BrNO<sub>2</sub><sup>+</sup> 310.0437; Found 310.0431.



### 2j: ethyl 2-(5-(m-tolyl)-3,4-dihydro-2H-pyrrol-3-yl)acetate

Brown oil. 43.4 mg (59%). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) 7.60 (s, 1H), 7.50 (d, J = 7.2 Hz, 1H), 7.21 (t, J = 7.8 Hz, 1H), 7.17 (d, J = 7.2 Hz, 1H), 4.18 (dd, J = 16.2, 7.8 Hz, 1H), 4.08 (q, J = 7.2 Hz, 2H), 3.66 (dd, J = 16.2, 5.4 Hz, 1H), 3.13 (dd, J = 17.4, 9.0 Hz, 1H), 2.82 – 2.77 (m, 1H), 2.63 (dd, J = 16.8, 6.0 Hz, 1H), 2.42 – 2.33 (m, 2H), 2.30 (s, 3H), 1.19 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 172.7, 172.4, 138.1, 134.1, 131.2, 128.3, 128.0, 124.7, 66.6, 60.4, 41.1, 39.3, 33.3, 21.2, 14.2. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>15</sub>H<sub>20</sub>NO<sub>2</sub><sup>+</sup> 246.1489; Found 246.1496.



### 2k: ethyl 2-(5-(3-methoxyphenyl)-3,4-dihydro-2H-pyrrol-3-yl)acetate

Brown oil. 47.8 mg (61%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) 7.43 (s, 1H), 7.33 (d, J = 8.5 Hz, 1H), 7.31 (t, J = 7.5 Hz, 1H), 6.99 (d, J = 7.5 Hz, 1H), 4.26 (dd, J = 16.5, 8.0 Hz, 1H), 4.16 (q, J = 7.5 Hz, 2H), 3.85 (s, 3H), 3.75 (dd, J = 16.5, 5.5 Hz, 1H), 3.21 (dd, J = 17.0, 9.0 Hz, 1H), 2.91 – 2.85 (m, 1H), 2.70 (dd, J = 17.0, 5.5 Hz, 1H), 2.50 – 2.41 (m, 2H), 1.27 (t, J = 7.0 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) 172.5, 172.4, 159.6, 135.6, 129.4, 120.3, 117.1, 111.6, 66.6, 60.4, 55.3, 41.2, 39.3, 33.3, 14.2. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>15</sub>H<sub>20</sub>NO<sub>3</sub><sup>+</sup> 262.1438; Found 262.1427.



## 21: ethyl 2-(5-(2-fluorophenyl)-3,4-dihydro-2H-pyrrol-3-yl)acetate

Brown oil. 45.6 mg (61%). <sup>1</sup>**H** NMR (600 MHz, CDCl<sub>3</sub>) 7.93 (t, J = 7.8 Hz, 1H), 7.39 (dd, J = 13.8, 6.6 Hz, 1H), 7.18 (t, J = 7.2 Hz, 1H), 7.08 (dd, J = 11.4, 8.4 Hz, 1H), 4.21 (dd, J = 16.2, 7.8 Hz, 1H), 4.16 (q, J = 7.2 Hz, 2H), 3.71 (dd, J = 16.8, 5.4 Hz, 1H), 3.26 (dd, J = 17.4, 9.0 Hz, 1H), 2.89 – 2.84 (m, 1H), 2.78 (dd, J = 18.0, 2.4 Hz, 1H), 2.45 (d, J = 7.2 Hz, 2H), 1.27 (t, J = 7.2 Hz, 3H). <sup>13</sup>**C** NMR (150 MHz, CDCl<sub>3</sub>) 172.3, 169.7 (d, J = 2.9 Hz), 161.3 (d, J = 251.1 Hz), 131.9 (d, J = 8.7 Hz), 129.9 (d, J = 3.5 Hz), 124.1 (d, J = 3.3 Hz), 122.5 (d, J = 11.6 Hz), 116.2 (d, J = 22.8 Hz), 65.8, 60.4, 43.9 (d, J = 6.8 Hz), 39.2, 33.5, 14.1. <sup>19</sup>**F** NMR (565 MHz, CDCl<sub>3</sub>): -112.6. HRMS (ESI) m/z: (M+Na)<sup>+</sup> Calcd for C<sub>14</sub>H<sub>16</sub>FNNaO<sub>2</sub><sup>+</sup> 272.1057; Found 272.1067.



## 2m: ethyl 2-(5-(2,4-difluorophenyl)-3,4-dihydro-2H-pyrrol-3-yl)acetate

Brown oil. 48.9 mg (61%). <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) 7.89 (dd, J = 15.6, 9.0 Hz, 1H), 6.84 (t, J = 8.4 Hz, 1H), 6.76 (t, J = 11.4 Hz, 1H), 4.12 (dd, J = 16.2, 7.8 Hz, 1H), 4.08 (q, J = 7.2 Hz, 2H), 3.62 (dd, J = 16.2, 5.4 Hz, 1H), 3.16 (dd, J = 17.4, 8.4 Hz, 1H), 2.82 – 2.77 (m, 1H), 2.68 (dd, J = 18.0, 2.4 Hz, 1H), 2.37 (m, 2H), 1.19 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 172.3, 168.7 (d, J = 2.7 Hz), 164.2 (dd, J = 251.6, 12.2 Hz), 161.7 (dd, J = 253.8, 12.0 Hz), 131.3 (q, J = 4.8 Hz), 118.9 (q, J = 7.95 Hz), 111.8 (dd, J = 21.2, 3.5 Hz), 104.3 (dd, J = 26.3, 25.4 Hz), 65.6, 60.5, 43.7 (d, J = 6.6 Hz), 39.2, 33.5, 14.2. <sup>19</sup>F NMR (565 MHz, CDCl<sub>3</sub>): -106.5, 108.4. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>14</sub>H<sub>16</sub>F<sub>2</sub>NO<sub>2</sub><sup>+</sup> 268.1144; Found 268.1153.



## 2n: ethyl 2-(5-(benzo[d][1,3]dioxol-5-yl)-3,4-dihydro-2H-pyrrol-3-yl)acetate

Brown solid. 41.3 mg (50%). mp: 46–47 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) 7.40 (s, 1H), 7.24 (d, J = 7.8 Hz, 1H), 6.81 (d, J = 7.8 Hz, 1H), 6.00 (s, 2H), 4.22 (dd, J = 16.2, 8.4 Hz, 1H), 4.15 (q, J = 7.2 Hz, 2H), 3.70 (dd, J = 16.2, 4.8 Hz, 1H), 3.15 (dd, J = 16.8, 9.6 Hz, 1H), 2.88 – 2.82 (m, 1H), 2.66 (dd, J = 16.8, 6.0 Hz, 1H), 2.49 – 2.40 (m, 2H), 1.27 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 172.4, 171.7, 149.5, 147.9, 128.8, 122.6, 107.8, 107.2, 101.3, 66.4, 60.4, 41.1, 39.3, 33.4, 14.2. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>15</sub>H<sub>18</sub>NO<sub>4</sub><sup>+</sup> 276.1230; Found 276.1225.



## 20: ethyl 2-(5-(6-bromonaphthalen-2-yl)-3,4-dihydro-2H-pyrrol-3-yl)acetate

Yellow solid. 73.2 mg (68%). mp: 72–73 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) 8.09 (s, 1H), 8.08 (d, J = 7.5 Hz, 1H), 8.00 (s, 1H), 7.74 (t, J = 9.5 Hz, 2H), 7.57 (d, J = 9.0 Hz, 1H), 4.32 (dd, J = 16.5, 8.0 Hz, 1H), 4.17 (q, J = 7.0 Hz, 2H), 3.80 (dd, J = 16.0, 5.0 Hz, 1H), 3.32 (dd, J = 17.0, 9.0 Hz, 1H), 2.96 – 2.90 (m, 1H), 2.82 (dd, J = 16.5, 5.5 Hz, 1H), 2.51 – 2.47 (m, 2H), 1.28 (t, J = 7.0 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) 172.4, 172.2, 135.3, 132.2, 131.3, 130.2, 129.8, 128.0, 127.2, 125.4, 121.2, 66.9, 60.5, 41.0, 39.3, 33.4, 14.2. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>18</sub>H<sub>19</sub>BrNO<sub>2</sub><sup>+</sup> 360.0594; Found 360.0594.



#### 2p: ethyl 2-(5-(thiophen-2-yl)-3,4-dihydro-2H-pyrrol-3-yl)acetate

Brown oil. 51.2 mg (72%). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>) 7.42 (d, J = 5.0 Hz, 1H), 7.30 (d, J = 3.5 Hz, 1H), 7.06 (dd, J = 4.5, 3.5 Hz, 1H), 4.22 (dd, J = 16.5, 8.0 Hz, 1H), 4.16 (q, J = 7.0 Hz, 2H), 3.71 (dd, J = 16.5, 5.5 Hz, 1H), 3.20 (dd, J = 16.5, 9.0 Hz, 1H), 2.92 – 2.86 (m, 1H), 2.70 (dd, J = 16.5, 5.5 Hz, 1H), 2.51 –2.41 (m, 2H), 1.27 (t, J = 7.0 Hz, 3H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 172.3, 167.1, 139.3, 129.2, 129.2, 127.4, 66.5, 60.5, 41.6, 39.2, 33.7, 14.2. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>12</sub>H<sub>16</sub>NO<sub>2</sub>S<sup>+</sup> 238.0896; Found 238.0897.



## 2q: ethyl 2-(5-(furan-2-yl)-3,4-dihydro-2H-pyrrol-3-yl)acetate

Brown oil. 46.4 mg (70%). <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) 7.45 (s, 1H), 6.73 (s, 1H), 6.41 (s, 1H), 4.17 (dd, J = 15.6, 7.2 Hz, 1H), 4.08 (dd, J = 12.6, 6.0 Hz, 2H), 3.66 (d, J = 16.2, 3.6 Hz, 1H), 3.05 (dd, J = 15.6, 9.0 Hz, 1H), 2.79 – 2.77 (m, 1H), 2.57 (d, J = 16.8, 4.2 Hz, 1H), 2.40 – 2.33 (m, 2H), 1.19 (t, J = 6.6 Hz, 3H). <sup>13</sup>**C NMR** (150 MHz, CDCl<sub>3</sub>) 172.3, 163.3, 149.9, 144.5, 112.9, 111.5, 66.8, 60.5, 40.9, 39.1, 33.1, 14.2. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>12</sub>H<sub>16</sub>NO<sub>3</sub><sup>+</sup> 222.1125; Found 222.1115.



#### 2r: ethyl 2-(5-(benzofuran-2-yl)-3,4-dihydro-2H-pyrrol-3-yl)acetate

Brown oil. 39.9 mg (49%). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>) 7.62 (d, J = 7.5 Hz, 1H), 7.55 (d, J = 8.5 Hz, 1H), 7.37 (t, J = 7.0 Hz, 1H), 7.26 (t, J = 7.5 Hz, 1H), 7.10 (s, 1H), 4.34 (dd, J = 16.5, 8.0 Hz, 1H), 4.17 (q, J = 7.0 Hz, 2H), 3.82 (dd, J = 17.0, 5.5 Hz, 1H), 3.23 (dd, J = 17.0, 9.0 Hz, 1H), 2.94 – 2.89 (m, 1H), 2.74 (dd, J = 17.0, 5.5 Hz, 1H), 2.53 – 2.43 (m, 2H), 1.28 (t, J = 7.0 Hz, 3H). <sup>13</sup>C **NMR** (125 MHz, CDCl<sub>3</sub>) 172.2, 163.9, 155.4, 150.8, 127.7, 126.3, 123.2, 121.9, 111.8, 109.5,

67.1, 60.5, 41.0, 39.1, 33.2, 14.1. **HRMS** (ESI) m/z: (M+Na)<sup>+</sup> Calcd for C<sub>16</sub>H<sub>17</sub>NNaO<sub>3</sub><sup>+</sup> 294.1101; Found 294.1093.



## 2s: methyl 2-(5-phenyl-3,4-dihydro-2H-pyrrol-3-yl)acetate

Brown oil. 46.9 mg (72%). <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) 7.82 (d, J = 6.6 Hz, 2H), 7.42 – 7.39 (m, 3H), 4.26 (dd, J = 16.8, 8.4 Hz, 1H), 3.74 (dd, J = 16.2, 4.8 Hz, 1H), 3.69 (s, 3H), 3.21 (dd, J = 16.8, 9.0 Hz, 1H), 2.90 – 2.85 (m, 1H), 2.70 (dd, J = 16.8, 5.4 Hz, 1H), 2.51 – 2.42 (m, 2H). <sup>13</sup>**C NMR** (150 MHz, CDCl<sub>3</sub>) 172.8, 172.4, 134.2, 130.4, 128.3, 127.4, 66.7, 51.5, 41.0, 39.0, 33.2. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>13</sub>H<sub>16</sub>NO<sub>2</sub><sup>+</sup> 218.1176; Found 218.1175.



## 2t: methyl 2-(5-(p-tolyl)-3,4-dihydro-2H-pyrrol-3-yl)acetate

Yellow solid. 52.7 mg (76%). mp: 109–110 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) 7.63 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 8.0 Hz, 2H), 4.16 (dd, J = 16.0, 7.5 Hz, 1H), 3.64 (dd, J = 16.0, 5.5 Hz, 1H), 3.61 (s, 3H), 3.11 (dd, J = 17.0, 9.0 Hz, 1H), 2.80 – 2.77 (m, 1H), 2.60 (dd, J = 17.0, 5.0 Hz, 1H), 2.43 – 2.33 (m, 2H), 2.30 (s, 3H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 172.8, 172.3, 140.7, 131.5, 129.1, 127.4, 66.5, 51.6, 41.0, 39.0, 33.2, 21.3. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>14</sub>H<sub>18</sub>NO<sub>2</sub><sup>+</sup> 232.1332; Found 232.1337.



## 2u: 1-phenyl-2-(5-phenyl-3,4-dihydro-2H-pyrrol-3-yl)ethan-1-one

Brown solid. 57.6 mg (73%). mp: 76–73 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) 7.96 (d, J = 7.5 Hz, 2H), 7.83 (d, J = 6.5 Hz, 2H), 7.57 (t, J = 7.5 Hz, 1H), 7.47 (t, J = 8.0 Hz, 2H), 7.43 – 7.38 (m, 3H), 4.36 (dd, J = 16.5, 8.0 Hz, 1H), 3.79 (dd, J = 16.5, 5.0 Hz, 1H), 3.32 (dd, J = 17.0, 9.0 Hz, 1H), 3.23 – 3.10 (m, 2H), 3.10 – 3.06 (m, 1H), 2.70 (dd, J = 17.0, 5.5 Hz, 1H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 199.0, 172.7, 136.7, 134.3, 133.2, 130.4, 128.6, 128.4, 127.9, 127.5, 67.0, 43.9, 41.4, 32.4. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>18</sub>H<sub>18</sub>NO<sup>+</sup> 264.1383; Found 264.1383.



## 2v: prop-2-yn-1-yl 2-(5-phenyl-3,4-dihydro-2H-pyrrol-3-yl)acetate

Yellow oil. 58.6 mg (81%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) 7.81 (d, J = 7.0 Hz, 2H), 7.43 – 7.399 (m, 3H), 4.70 (s, 2H), 4.27 (dd, J = 16.5, 8.0 Hz, 1H), 3.75 (dd, J = 16.5, 5.0 Hz, 1H), 3.22 (dd, J = 17.0, 9.0 Hz, 1H), 2.92 – 2.86 (m, 1H), 2.71 (dd, J = 17.0, 5.5 Hz, 1H), 2.56 – 2.46 (m, 3H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 172.4, 171.4, 134.1, 130.4, 128.3, 127.4, 77.4, 74.9, 66.5, 51.9, 40.9, 38.8, 33.2. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>15</sub>H<sub>16</sub>NO<sub>2</sub><sup>+</sup> 242.1176; Found 242.1178.



2w: allyl 2-(5-phenyl-3,4-dihydro-2H-pyrrol-3-yl)acetate

Substrate 1w was synthesized from 1a via transesterification with a few 1a mixed, resulting in the formation of the mixture of product 2w and 2a, which were difficult to be isolated (2w : 2a = 1: 1.72).

**2w**, 18.8 mg (70%). <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) 7.73 (d, J = 7.8 Hz, 2H), 7.34 – 7.30 (m, 3H), 5.87 – 5.80 (m, 1H), 5.24 (d, J = 16.8 Hz, 1H), 5.16 (d, J = 10.8 Hz, 1H), 4.52 (d, J = 6.0 Hz, 2H), 4.18 (dd, J = 16.2, 7.8 Hz, 1H), 3.68 – 3.65 (m, 1H), 3.16 – 3.10 (m, 1H), 2.80 – 2.78 (m, 1H), 2.64 – 2.61 (m, 1H), 2.44 – 2.33 (m, 2H). <sup>13</sup>**C NMR** (150 MHz, CDCl<sub>3</sub>, mixed with 2a) 172.5, 172.5, 172.3, 171.9, 134.1, 131.9, 130.4, 130.4, 128.3, 127.4, 118.3, 66.6, 65.1, 60.4, 41.0, 39.2, 39.1, 33.2, 33.2, 14.1. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>15</sub>H<sub>18</sub>NO<sub>2</sub><sup>+</sup> 244.1332; Found 244.1327.



2x: cinnamyl 2-(5-phenyl-3,4-dihydro-2H-pyrrol-3-yl)acetate

**2x** may undergo configuration transformation under the irradiation of visible light (Z : E = 1 : 2.62)<sup>7</sup> Yellow oil. 71.8 mg (75%). <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) Z-**2x**: 7.73 (d, J = 6.6 Hz, 2H), 7.34 – 7.28 (m, 4H), 7.24 – 7.14 (m, 4H), 6.59 (t, J = 11.4 Hz, 1H), 6.22 – 6.19 (m, 1H), 4.68 (d, J = 6.0 Hz, 2H), 4.19 (dd, J = 16.2, 8.4 Hz, 1H), 3.68 (dd, J = 16.2, 5.4 Hz, 1H), 3.13 (dd, J = 17.4, 9.0 Hz, 1H), 2.82 – 2.80 (m, 1H), 2.63 (dd, J = 16.8, 5.4 Hz, 1H), 2.46 – 2.37 (m, 2H). *E*-**2x**: 7.73 (d, J = 6.6 Hz, 2H), 7.34 – 7.28 (m, 4H), 7.24 – 7.14 (m, 4H), 6.59 (t, J = 11.4 Hz, 1H), 5.75 – 5.71 (m, 1H), 4.80 (d, J = 6.0 Hz, 2H), 4.19 (dd, J = 16.2, 8.4 Hz, 1H), 3.68 (dd, J = 16.2, 5.4 Hz, 1H), 3.13 (dd, J = 17.4, 9.0 Hz, 1H), 2.82 – 2.80 (m, 1H), 2.63 (dd, J = 16.8, 5.4 Hz, 1H), 2.46 – 2.37 (m, 2H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub> mixture of *Z*-**2x** and *E*-**2x**) 172.5, 172.2, 172.1, 136.1, 135.9, 134.4, 134.2, 133.1, 130.5, 128.7, 128.6, 128.4, 128.3, 128.1, 127.5, 127.5, 126.6, 125.5, 122.9, 66.7, 65.1, 61.5, 41.0, 39.3, 33.3. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>21</sub>H<sub>22</sub>NO<sub>2</sub><sup>+</sup> 320.1645; Found 320.1645.



<sup>(7)</sup> H. Zhang, X. He, X.-A. Yuan and S. Yu, Kinetic Resolution of 2-Cinnamylpyrrolines Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene  $E \rightarrow Z$  Isomerization. *ACS Catal.*, 2023, **13**, 2857–2866.

#### 2y: furan-3-ylmethyl 2-(5-phenyl-3,4-dihydro-2H-pyrrol-3-yl)acetate

Brown oil. 58.6 mg (69%). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>) 7.80 (d, J = 8.0 Hz, 2H), 7.42 – 7.39 (m, 4H), 6.41 (d, J = 3.0 Hz, 1H), 6.36 (t, J = 3.0 Hz, 1H), 5.09 (s, 2H), 4.25 (dd, J = 16.0, 8.0 Hz, 1H), 3.73 (dd, J = 16.5, 5.5 Hz, 1H), 3.19 (dd, J = 17.0, 9.0 Hz, 1H), 2.90 – 2.85 (m, 1H), 2.69 (dd, J = 17.0, 6.0 Hz, 1H), 2.54 – 2.44 (m, 2H). <sup>13</sup>**C NMR** (150 MHz, CDCl<sub>3</sub>) 172.5, 172.0, 149.3, 143.2, 134.2, 130.5, 128.4, 127.5, 110.6, 110.5, 66.6, 58.0, 41.0, 39.1, 33.3. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>17</sub>H<sub>18</sub>NO<sub>3</sub><sup>+</sup> 284.1281; Found 284.1270.



2z: 2-(naphthalen-2-yl)ethyl 2-(5-phenyl-3,4-dihydro-2H-pyrrol-3-yl)acetate

Yellow solid. 86.8 mg (81%). mp: 60–61 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) 8.07 (d, J = 8.4 Hz, 1H), 7.84 (d, J = 7.8 Hz, 1H), 7.77 (d, J = 6.6 Hz, 2H), 7.74 (d, J = 8.4 Hz, 1H), 7.52 (t, J = 7.2 Hz, 1H), 7.46 (t, J = 7.2 Hz, 1H), 7.42 – 7.37 (m, 4H), 7.36 (d, J = 7.2 Hz, 1H), 4.45 (t, J = 7.2 Hz, 2H), 4.21 (dd, J = 16.2, 7.8 Hz, 1H), 3.69 (dd, J = 16.2, 5.4 Hz, 1H), 3.40 (t, J = 7.2 Hz, 2H), 3.07 (dd, J = 16.8, 9.0 Hz, 1H), 2.82 – 2.77 (m, 1H), 2.61 (dd, J = 16.8, 5.4 Hz, 2H), 2.46 – 2.36 (m, 1H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 172.4, 172.3, 134.2, 133.8, 133.5, 132.0, 130.4, 128.8, 128.3, 127.5, 127.4, 126.9, 126.1, 125.6, 125.4, 123.4, 66.7, 64.4, 41.0, 39.3, 33.2, 32.1. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>24</sub>H<sub>24</sub>NO<sub>2</sub><sup>+</sup> 358.1802; Found 358.1807.



2aa: adamantan-1-yl 2-(5-phenyl-3,4-dihydro-2H-pyrrol-3-yl)acetate

Yellow oil. 40.5 mg (40%). <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) 7.82 (d, *J* = 7.2 Hz, 2H), 7.43 – 7.39 (m, 3H), 4.25 (dd, *J* = 16.2, 7.8 Hz, 1H), 3.75 (dd, *J* = 16.2, 4.8 Hz, 1H), 3.19 (dd, *J* = 16.8, 9.0 Hz, 1H), 2.85 – 2.81 (m, 1H), 2.71 (dd, *J* = 16.8, 5.4 Hz, 1H), 2.42 – 2.33 (m, 2H), 2.17 (s, 3H), 2.12 (s, 6H), 1.66 (s, 6H). <sup>13</sup>**C NMR** (150 MHz, CDCl<sub>3</sub>) 172.6, 171.5, 134.4, 130.4, 128.4, 127.5, 80.7, 66.7,

41.4, 41.0, 40.8, 36.1, 33.5, 30.8. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>22</sub>H<sub>28</sub>NO<sub>2</sub><sup>+</sup> 338.2115; Found 338.2124.



**2ab**: (adamantan-1-yl)methyl 2-(5-phenyl-3,4-dihydro-2H-pyrrol-3-yl)acetate Yellow oil. 67.4 mg (64%). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) 7.82 (J = 7.8 Hz, 2H), 7.43 – 7.39 (m, 3H), 4.28 (dd, J = 16.2, 7.8 Hz, 1H), 3.77 (dd, J = 16.2, 5.4 Hz, 1H), 3.73 – 3.69 (m, 2H), 3.22 (dd, J = 16.8, 9.0 Hz, 1H), 2.91 – 2.87 (m, 1H), 2.72 (dd, J = 16.8, 6.0 Hz, 1H), 2.53 – 2.45 (m, 2H), 1.98 (s, 3H), 1.73 (d, J = 12.6 Hz, 3H), 1.64 (d, J = 12.0 Hz, 3H), 1.54 (d, J = 2.4 Hz, 6H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 172.5, 172.4, 134.2, 130.4, 128.4, 127.4, 74.1, 66.8, 41.1, 39.4, 39.2, 36.8, 33.3,





**2ac**: 3,7-dimethylocta-2,6-dien-1-yl 2-(5-phenyl-3,4-dihydro-2H-pyrrol-3-yl)acetate Brown oil. 66.1 mg (65%). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) 7.81 (d, J = 7.2 Hz, 2H), 7.42 – 7.38 (m, 3H), 5.35 (t, J = 7.2 Hz, 1H), 5.10 (t, J = 6.6 Hz, 1H), 4.59 (d, J = 7.2 Hz, 2H), 4.26 (dd, J = 16.2, 7.8 Hz, 1H), 3.74 (dd, J = 16.2, 5.4 Hz, 1H), 3.20 (dd, J = 16.8, 9.0 Hz, 1H), 2.90 – 2.85 (m, 1H), 2.70 (dd, J = 16.8, 5.4 Hz, 1H), 2.50 – 2.42 (m, 2H), 2.12 – 2.10 (m, 2H), 2.10 – 2.07 (m, 2H), 1.77 (s, 3H), 1.68 (s, 3H), 1.60 (s, 3H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 172.4, 172.3, 142.7, 134.3, 132.1, 130.4, 128.4, 127.5, 123.5, 119.0, 66.7, 61.1, 41.0, 39.3, 33.3, 32.1, 26.6, 25.6, 23.4, 17.6. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>22</sub>H<sub>30</sub>NO<sub>2</sub><sup>+</sup> 340.2271; Found 340.2280.



**2ad**: 3,7,11,15-tetramethylhexadec-2-en-1-yl 2-(5-phenyl-3,4-dihydro-2H-pyrrol-3-yl)acetate Yellow oil. 85.2 mg (59%). <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) 7.81 (d, J = 8.4 Hz, 2H), 7.42 – 7.38 (m, 3H), 5.34 (t, J = 6.6 Hz, 1H), 4.62 (d, J = 7.2 Hz, 2H), 4.26 (dd, J = 16.2, 8.4 Hz, 1H), 3.74 (dd, J =16.2, 4.8 Hz, 1H), 3.20 (dd, J = 16.8, 9.0 Hz, 1H), 2.90 – 2.85 (m, 1H), 2.70 (dd, J = 17.4, 6.0 Hz, 1H), 2.50 – 2.42 (m, 2H), 2.02 – 1.99 (m, 2H), 1.70 (s, 3H), 1.53 – 1.51 (m, 1H), 1.38 – 1.34 (m, 4H), 1.32 – 1.18 (m, 8H), 1.15 – 1.09 (m, 2H), 1.09 – 1.04 (m, 4H), 0.87 – 0.84 (m, 12H). <sup>13</sup>**C NMR** (150 MHz, CDCl<sub>3</sub>) 172.4, 172.3, 142.9, 134.3, 130.4, 128.4, 127.4, 117.8, 66.7, 61.4, 41.0, 39.8, 39.3, 39.3, 37.3, 37.3, 37.2, 36.5, 33.3, 32.7, 32.6, 27.9, 25.0, 24.7, 24.4, 22.6, 22.6, 19.7, 19.6, 16.3. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>32</sub>H<sub>52</sub>NO<sub>2</sub><sup>+</sup> 482.3993; Found 482.4006.



## 2ae: ethyl 2-(3-methyl-5-phenyl-3,4-dihydro-2H-pyrrol-3-yl)acetate

Yellow oil. 32.4 mg (44%). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>) 7.81 (d, J = 8.0 Hz, 2H), 7.43 – 7.37 (m, 3H), 4.13 (q, J = 7.5 Hz, 2H), 3.98 (d, J = 16.0 Hz, 1H), 3.88 (d, J = 16.5 Hz, 1H), 3.10 (d, J = 17.0 Hz, 1H), 2.85 (d, J = 17.0 Hz, 1H), 2.49 (s, 2H), 1.25 (t, J = 7.5 Hz, 3H), 1.23 (s, 3H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 172.8, 171.8, 134.2, 130.7, 128.5, 127.6, 72.9, 60.4, 48.1, 44.6, 40.4, 26.1, 14.2. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>15</sub>H<sub>20</sub>NO<sub>2</sub><sup>+</sup> 246.1489; Found 246.1487.



4a: 2-(5-phenyl-3,4-dihydro-2H-pyrrol-3-yl)acetonitrile

Brown oil. 49.2 mg (89%). <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) 7.81 (d, J = 7.2 Hz, 2H), 7.44 – 7.40 (m, 3H), 4.24 (dd, J = 16.2, 7.8 Hz, 1H), 3.83 (dd, J = 16.2, 3.6 Hz, 1H), 3.21 (dd, J = 18.0, 9.6 Hz, 1H), 2.84 – 2.80 (m, 2H), 2.47– 2.37 (m, 2H). <sup>13</sup>**C NMR** (150 MHz, CDCl<sub>3</sub>) 171.7, 133.6, 130.7, 128.4, 127.4, 118.3, 66.0, 40.6, 33.5, 22.1. **HRMS** (ESI) m/z: (M+Na)<sup>+</sup> Calcd for C<sub>12</sub>H<sub>12</sub>N<sub>2</sub>Na<sup>+</sup> 207.0893; Found 207.0896.



**4b**: 2-(5-(4-fluorophenyl)-3,4-dihydro-2H-pyrrol-3-yl)acetonitrile

Brown solid. 50.9 mg (84%). mp: 48–49 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) 7.81 (dd, J = 8.4, 5.4 Hz, 2H), 7.10 (t, J = 8.4 Hz, 2H), 4.26 (dd, J = 16.2, 6.0 Hz, 1H), 3.85 (dd, J = 16.8, 3.6 Hz, 1H), 3.23 (dd, J = 18.0, 9.6 Hz, 1H), 2.88 – 2.81 (m, 2H), 2.51– 2.40 (m, 2H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 170.6, 165.1 (d, J = 249.8 Hz), 130.0 (d, J = 3.3 Hz), 129.6 (d, J = 8.7 Hz), 118.3, 115.6 (d, J = 21.6 Hz), 66.1, 40.8, 33.7, 22.3. <sup>19</sup>F NMR (565 MHz, CDCl<sub>3</sub>): -109.1. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>12</sub>H<sub>12</sub>FN<sub>2</sub><sup>+</sup> 203.0979; Found 203.0970.



4c: 2-(5-(4-chlorophenyl)-3,4-dihydro-2H-pyrrol-3-yl)acetonitrile

Brown solid. 49.1 mg (75%). mp: 59–60 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) 7.75 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H), 4.27 (dd, J = 16.8, 6.6 Hz, 1H), 3.86 (dd, J = 16.2, 3.0 Hz, 1H), 3.23 (dd, J = 16.2, 7.8 Hz, 1H), 2.87 – 2.81 (m, 2H), 2.51 – 2.04 (m, 2H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 170.9, 137.0, 132.2, 128.9, 128.8, 118.2, 66.2, 40.7, 33.8, 22.3. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>12</sub>H<sub>12</sub>ClN<sub>2</sub><sup>+</sup> 219.0684; Found 219.0674.



4d: 2-(5-(4-bromophenyl)-3,4-dihydro-2H-pyrrol-3-yl)acetonitrile

Yellow solid. 65.2 mg (83%). mp: 65–66 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) 7.68 (d, J = 8.4 Hz, 2H), 7.56 (d, J = 8.4 Hz, 2H), 4.26 (dd, J = 16.2, 7.8 Hz, 1H), 3.85 (dd, J = 16.2, 3.0 Hz, 1H), 3.22 (dd, J = 16.8, 8.4 Hz, 1H), 2.88 – 2.81 (m, 2H), 2.52 – 2.41 (m, 2H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 170.9, 132.6, 131.8, 129.1, 125.4, 118.3, 66.2, 40.7, 33.7, 22.3. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>12</sub>H<sub>12</sub>BrN<sub>2</sub><sup>+</sup> 263.0178; Found 263.0169.



4e: 2-(5-([1,1'-biphenyl]-4-yl)-3,4-dihydro-2H-pyrrol-3-yl)acetonitrile

Yellow solid. 55.4 mg (71%). mp: 122–123 °C. <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) 7.88 (d, J = 7.8 Hz, 2H), 7.65 (d, J = 7.8 Hz, 2H), 7.62 (d, J = 7.2 Hz, 2H), 7.45 (t, J = 7.2 Hz, 2H), 7.37 (t, J = 7.2 Hz, 1H), 4.27 (dd, J = 15.6, 6.6 Hz, 1H), 3.87 (dd, J = 16.2, 2.4 Hz, 1H), 3.25 (dd, J = 15.6, 7.8 Hz, 1H), 2.87 – 2.85 (m, 2H), 2.49 – 2.38 (m, 2H). <sup>13</sup>**C NMR** (150 MHz, CDCl<sub>3</sub>) 171.5, 143.4, 140.0, 132.5, 128.8, 128.0, 127.8 127.1, 127.0, 118.4, 66.1, 40.8, 33.7, 22.2. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>18</sub>H<sub>17</sub>N<sub>2</sub><sup>+</sup> 261.1386; Found 261.1367.



4f: 2-(5-(p-tolyl)-3,4-dihydro-2H-pyrrol-3-yl)acetonitrile

Yellow solid. 41.0 mg (69%). mp: 49–50 °C. <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) 7.70 (d, *J* = 7.8 Hz, 2H), 7.22 (d, *J* = 7.8 Hz, 2H), 4.24 (dd, *J* = 16.8, 7.8 Hz, 1H), 3.84 (dd, *J* = 16.2, 3.6 Hz, 1H), 3.22

(dd, J = 18.0, 10.2 Hz, 1H), 2.84 - 2.82 (m, 2H), 2.52 - 2.40 (m, 2H), 2.39 (s, 3H).<sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 171.8, 141.2, 131.0, 129.2, 127.5, 118.4, 66.0, 40.7, 33.7, 22.3, 21.4. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>13</sub>H<sub>15</sub>N<sub>2</sub><sup>+</sup> 199.1230; Found 199.1239.



4g: 2-(5-(4-methoxyphenyl)-3,4-dihydro-2H-pyrrol-3-yl)acetonitrile

Brown solid. 42.4 mg (66%). mp: 50–51 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) 7.69 (d, J = 9.0 Hz, 2H), 6.85 (d, J = 9.0 Hz, 2H), 4.15 (dd, J = 16.2, 7.2 Hz, 1H), 3.77 (s, 3H), 3.74 (dd, J = 16.2, 4.2 Hz, 1H), 3.14 (dd, J = 18.0, 10.2, 1H), 2.77 – 2.73 (m, 2H), 2.42 – 2.31 (m, 2H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 171.2, 161.7, 129.2, 126.4, 118.5, 113.8, 65.8, 55.3, 40.7, 33.7, 22.3. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>13</sub>H<sub>15</sub>N<sub>2</sub>O<sup>+</sup> 215.1179; Found 215.1184.



4h: methyl 4-(3-(cyanomethyl)-3,4-dihydro-2H-pyrrol-5-yl)benzoate

Yellow solid. 66.8 mg (92%). mp: 101–102 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) 8.08 (d, J = 8.0 Hz, 2H), 7.88 (d, J = 8.5 Hz, 2H), 4.31 (dd, J = 17.0, 8.0 Hz, 1H), 3.94 (s, 3H), 3.90 (dd, J = 17.0, 4.5 Hz, 1H), 3.28 (dd, J = 18.5, 10.0 Hz, 1H), 2.89 – 2.87 (m, 2H), 2.54 – 2.43 (m, 2H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) 171.2, 166.4, 137.5, 131.9, 129.7, 127.4, 118.2, 66.2, 52.2, 40.8, 33.6, 22.2. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>14</sub>H<sub>15</sub>N<sub>2</sub>O<sub>2</sub><sup>+</sup> 243.1128; Found 243.1132.



## 4i: 2-(5-(3-chlorophenyl)-3,4-dihydro-2H-pyrrol-3-yl)acetonitrile

Yellow solid. 60.8 mg (93%). mp: 95–96 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) 7.82 (s, 1H), 7.67 (d, J = 7.2 Hz, 1H), 7.42 (d, J = 8.4 Hz, 1H), 7.36 (t, J = 7.8 Hz, 1H), 4.28 (dd, J = 16.2, 7.8 Hz, 1H), 3.87 (dd, J = 16.8, 3.6 Hz, 1H), 3.22 (dd, J = 16.8, 8.4 Hz, 1H), 2.87 – 2.80 (m, 2H), 2.51 – 2.41 (m, 2H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 170.6, 135.4, 134.6, 130.7, 129.8, 127.5, 125.6, 118.2, 66.1, 40.7, 33.6, 22.2. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>12</sub>H<sub>12</sub>ClN<sub>2</sub><sup>+</sup> 219.0684; Found 219.0677.



4j: 2-(5-(3-bromophenyl)-3,4-dihydro-2H-pyrrol-3-yl)acetonitrile

Yellow solid. 59.0 mg (75%). mp: 96–97 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) 7.99 (s, 1H), 7.72 (d, J = 7.8 Hz, 1H), 7.58 (d, J = 8.4 Hz, 1H), 7.30 (t, J = 7.8 Hz, 1H), 4.28 (dd, J = 16.2, 7.2 Hz, 1H), 3.88 (dd, J = 16.2, 3.0 Hz, 1H), 3.22 (dd, J = 16.8, 8.4 Hz, 1H), 2.88 – 2.81 (m, 2H), 2.52 – 2.41 (m, 2H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 170.6, 135.7, 133.7, 130.6, 130.1, 126.1, 122.8, 118.2, 66.2, 40.7, 33.7, 22.3. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>12</sub>H<sub>12</sub>BrN<sub>2</sub><sup>+</sup> 263.0178; Found 263.0178.



4k: 2-(5-(3-(trifluoromethyl)phenyl)-3,4-dihydro-2H-pyrrol-3-yl)acetonitrile

Brown oil. 62.8 mg (83%). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) 8.10 (s, 1H), 7.99 (d, J = 7.8 Hz, 1H), 7.71 (d, J = 7.8 Hz, 1H), 7.56 (t, J = 7.8 Hz, 1H), 4.32 (dd, J = 16.8, 7.2 Hz, 1H), 3.91 (dd, J = 16.8, 3.6 Hz, 1H), 3.28 (dd, J = 18.6, 10.2 Hz, 1H), 2.92 – 2.87 (m, 2H), 2.48 (m, 2H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 170.6, 134.5, 131.2 (q, J = 32.4 Hz), 130.7, 129.1, 127.3 (q, J = 3.6 Hz), 124.4 (q, J = 3.9 Hz), 123.8 (q, J = 270.9 Hz), 118.2, 66.3, 40.8, 33.8, 22.3. <sup>19</sup>F NMR (565 MHz, CDCl<sub>3</sub>) -62.8. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>13</sub>H<sub>12</sub>F<sub>3</sub>N<sub>2</sub><sup>+</sup> 253.0947; Found 253.0949.



41: 2-(5-(m-tolyl)-3,4-dihydro-2H-pyrrol-3-yl)acetonitrile

Yellow solid. 50.5 mg (85%). mp: 53–54 °C. <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) 7.67 (s, 1H), 7.58 (d, J = 7.8 Hz, 1H), 7.31 (t, J = 7.2 Hz, 1H), 7.27 (d, J = 8.4 Hz, 1H), 4.26 (dd, J = 15.0, 6.6 Hz, 1H), 3.86 (dd, J = 16.2, 3.6 Hz, 1H), 3.24 (dd, J = 18.0, 9.6 Hz, 1H), 2.88 – 2.83 (m, 2H), 2.50 – 2.41 (m, 2H), 2.39 (s, 3H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 172.1, 138.3, 133.6, 131.7, 128.4, 128.1, 124.8, 118.4, 66.0, 40.8, 33.7, 22.3, 21.3. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>13</sub>H<sub>15</sub>N<sub>2</sub><sup>+</sup> 199.1230; Found 199.1222.



4m: 2-(5-(3-methoxyphenyl)-3,4-dihydro-2H-pyrrol-3-yl)acetonitrile

Brown oil. 46.9 mg (73%). <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) 7.43 (s, 1H), 7.33 – 7.32 (m, 2H), 7.02 – 7.00 (m, 1H), 4.27 (dd, J = 16.2, 7.8 Hz, 1H), 3.86 (dd, J = 18.6, 3.6 Hz, 1H), 3.85 (s, 3H), 3.24 (dd, J = 18.0, 9.6 Hz, 1H), 2.85 – 2.83 (m, 2H), 2.50 – 2.40 (m, 2H). <sup>13</sup>**C NMR** (150 MHz, CDCl<sub>3</sub>) 171.8, 159.6, 135.0, 129.5, 120.3, 118.4, 117.4, 111.7, 66.0, 55.3, 40.9, 33.7, 22.3. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>13</sub>H<sub>15</sub>N<sub>2</sub>O<sup>+</sup> 215.1179; Found 215.1169.



**4n**: 2-(5-(2-fluorophenyl)-3,4-dihydro-2H-pyrrol-3-yl)acetonitrile Brown oil. 44.3 mg (73%). <sup>1</sup>**H** NMR (600 MHz, CDCl<sub>3</sub>) 7.95 (t, J = 7.8 Hz, 1H), 7.42 (dd, J =

15.0, 7.8 Hz, 1H), 7.19 (t, *J* = 7.8 Hz, 1H), 7.10 (dd, *J* = 11.4, 8.4 Hz, 1H), 4.22 (dd, *J* = 16.2, 7.8 Hz,

1H), 3.83 (dd, J = 16.2, 4.2 Hz, 1H), 3.31 (dd, J = 17.4, 9.0 Hz, 1H), 2.91 (dd, J = 18.0, 1.8 Hz, 1H), 2.85 - 2.81 (m, 1H), 2.49 - 2.41 (m, 2H). <sup>13</sup>**C NMR** (150 MHz, CDCl<sub>3</sub>) 169.0 (d, J = 2.7 Hz), 161.2 (d, J = 251.1 Hz), 132.3 (d, J = 8.7 Hz), 129.8 (d, J = 3.2 Hz), 124.2 (d, J = 3.3 Hz), 121.8 (d, J = 11.4 Hz), 118.4, 116.2 (d, J = 22.7 Hz), 65.1, 43.5 (d, J = 7.1 Hz), 33.7, 22.1. <sup>19</sup>**F NMR** (565 MHz, CDCl<sub>3</sub>): -112.5. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>12</sub>H<sub>12</sub>FN<sub>2</sub><sup>+</sup> 203.0979; Found 203.0984.



40: 2-(5-(2-methoxyphenyl)-3,4-dihydro-2H-pyrrol-3-yl)acetonitrile

Brown solid. 44.3 mg (69%). mp: 36–37 °C. <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) 7.77 (d, J = 7.2, 1H), 7.40 (t, J = 8.4, 1H), 6.99 (t, J = 7.8 Hz, 1H), 6.94 (d, J = 7.8 Hz, 1H), 4.15 (dd, J = 16.2, 7.8 Hz, 1H), 3.87 (s, 3H), 3.78 (dd, J = 16.2, 4.2 Hz, 1H), 3.31 (dd, J = 18.0, 9.0 Hz, 1H), 2.97 (dd, J = 18.0, 4.8 Hz, 1H), 2.81 – 2.77 (m, 1H), 2.47 – 2.38 (m, 2H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 172.6, 158.2, 131.8, 129.9, 123.5, 120.7, 118.6, 111.2, 64.7, 55.4, 44.1, 34.1, 22.1. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>13</sub>H<sub>15</sub>N<sub>2</sub>O<sup>+</sup> 215.1179; Found 215.1184.



4p: 2-(5-(4-vinylphenyl)-3,4-dihydro-2H-pyrrol-3-yl)acetonitrile

Yellow oil. 27.7 mg (44%). <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) 7.71 (d, J = 7.8 Hz, 2H), 7.39 (d, J = 8.4 Hz, 2H), 6.67 (dd, J = 17.4, 10.8 Hz, 1H), 5.76 (d, J = 17.4 Hz, 1H), 5.27 (d, J = 11.4 Hz, 1H), 4.23 (dd, J = 16.2, 7.2 Hz, 1H), 3.79 (dd, J = 16.2, 4.2 Hz, 1H), 3.17 (dd, J = 18.0, 9.6 Hz, 1H), 2.79 – 2.77 (m, 2H), 2.44 – 2.33 (m, 2H). <sup>13</sup>**C NMR** (150 MHz, CDCl<sub>3</sub>) 171.6, 140.0, 136.1, 133.0, 127.9, 126.3, 118.4, 115.5, 66.1, 40.8, 33.7, 22.3. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>14</sub>H<sub>15</sub>N<sub>2</sub><sup>+</sup> 211.1230; Found 211.1230.



**4q**: 2-(5-(4-(1H-imidazol-1-yl)phenyl)-3,4-dihydro-2H-pyrrol-3-yl)acetonitrile Yellow solid. 48.8 mg (65%). mp: 130−131 °C. **<sup>1</sup>H NMR** (600 MHz, CDCl<sub>3</sub>) 7.86 (d, *J* = 9.0 Hz, 2H), 7.85 (s, 1H), 7.39 (d, *J* = 8.4 Hz, 2H), 7.27 (s, 1H), 7.16 (s, 1H), 4.23 (dd, *J* = 16.8, 6.6 Hz, 1H), 3.82 (dd, *J* = 16.8, 4.2 Hz, 1H), 3.20 (dd, *J* = 18.6, 10.2 Hz, 1H), 2.84 – 2.79 (m, 2H), 2.47 – 2.37 (m, 2H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 170.5, 138.9, 135.3, 132.7, 130.8, 129.2, 120.9, 118.2, 117.7, 66.2, 40.7, 33.7, 22.2. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>15</sub>H<sub>15</sub>N<sub>4</sub><sup>+</sup> 251.1291; Found 251.1284.



4r: 2-(5-(3,4-dichlorophenyl)-3,4-dihydro-2H-pyrrol-3-yl)acetonitrile

Yellow solid. 49.9 mg (66%). mp: 100–101 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) 7.91 (s, 1H), 7.63 (d, J = 8.4 Hz, 1H), 7.49 (d, J = 7.8 Hz, 1H), 4.28 (dd, J = 16.8, 7.8 Hz, 1H), 3.87 (dd, J = 16.8, 4.2 Hz, 1H), 3.21 (dd, J = 16.8, 8.4 Hz, 1H), 2.89 – 2.85 (m, 1H), 2.81 (dd, J = 16.8, 4.8 Hz, 1H), 2.52 – 2.42 (m, 2H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 169.8, 134.9, 133.6, 132.9, 130.5, 129.4, 126.6, 118.1, 66.2, 40.6, 33.7, 22.2. HRMS (ESI) m/z: (M+Na)<sup>+</sup> Calcd for C<sub>12</sub>H<sub>10</sub>Cl<sub>2</sub>N<sub>2</sub>Na<sup>+</sup> 275.0113; Found 275.0109.



**4s**: 2-(5-(3-bromo-4-methylphenyl)-3,4-dihydro-2H-pyrrol-3-yl)acetonitrile Yellow solid. 53.0 mg (64%). mp: 36–37 °C. <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) 7.99 (s, 1H), 7.63 (d, *J* = 7.8 Hz, 1H), 7.27 (d, *J* = 7.8 Hz, 1H), 4.26 (dd, *J* = 16.8, 7.8 Hz, 1H), 3.85 (dd, *J* = 16.8, 3.6 Hz, 1H), 3.20 (dd, J = 16.8, 8.4 Hz, 1H), 2.86 – 2.79 (m, 2H), 2.50 – 2.40 (m, 5H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 170.5, 140.8, 133.1, 131.3, 130.8, 126.3, 125.1, 118.2, 66.0, 40.7, 33.6, 22.9, 22.2. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>13</sub>H<sub>14</sub>BrN<sub>2</sub><sup>+</sup> 277.0335; Found 277.0336.



**4t**: 2-(5-(3,4-dimethoxyphenyl)-3,4-dihydro-2H-pyrrol-3-yl)acetonitrile

Brown oil. 43.2 mg (59%). <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) 7.53 (s, 1H), 7.24 (d, J = 7.8 Hz, 1H), 6.88 (d, J = 8.4 Hz, 1H), 4.24 (dd, J = 16.2, 7.8 Hz, 1H), 3.94 (s, 3H), 3.93 (s, 3H), 3.83 (dd, J = 16.2, 4.2 Hz, 1H), 3.23 (dd, J = 18.0, 9.6 Hz, 1H), 2.85 – 2.83 (m, 2H), 2.51 – 2.40 (m, 2H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 171.3, 151.4, 149.0, 126.7, 121.5, 118.4, 110.2, 109.2, 65.8, 55.8, 40.6, 33.8, 22.2. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>14</sub>H<sub>17</sub>N<sub>2</sub>O<sub>2</sub><sup>+</sup> 245.1285; Found 245.1288.



4u: 2-(5-(benzo[d][1,3]dioxol-5-yl)-3,4-dihydro-2H-pyrrol-3-yl)acetonitrile

Brown solid. 46.5 mg (68%). mp: 30–31 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) 7.40 (s, 1H), 7.24 (d, J = 7.8 Hz, 1H), 6.82 (d, J = 7.8 Hz, 1H), 6.01 (s, 2H), 4.22 (dd, J = 16.8, 7.8 Hz, 1H), 3.82 (dd, J = 16.8, 4.2 Hz, 1H), 3.18 (dd, J = 16.2, 8.4 Hz, 1H), 2.85 – 2.77 (m, 2H), 2.50 – 2.39 (m, 2H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 171.0, 149.8, 148.0, 128.2, 122.7, 118.4, 107.9, 107.1, 101.4, 65.8, 40.7, 33.7, 22.2. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>13</sub>H<sub>13</sub>N<sub>2</sub>O<sub>2</sub><sup>+</sup> 229.0972; Found 229.0963.



4v: 2-(5-(furan-2-yl)-3,4-dihydro-2H-pyrrol-3-yl)acetonitrile

Brown solid. 40.2 mg (77%). mp: 82–83 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) 7.55 (s, 1H), 6.84 (d, J = 3.0 Hz, 1H), 6.50 (dd, J = 3.6, 1.8 Hz, 1H), 4.25 (dd, J = 16.8, 7.2 Hz, 1H), 3.86 (dd, J = 16.2, 3.6 Hz, 1H), 3.17 (dd, J = 16.8, 8.4 Hz, 1H), 2.84 – 2.77 (m, 2H), 2.50 – 2.39 (m, 2H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 162.5, 149.3, 144.8, 118.3, 113.4, 111.7, 66.1, 40.6, 33.5, 22.1. HRMS (ESI) m/z: (M+Na)<sup>+</sup> Calcd for C<sub>10</sub>H<sub>10</sub>N<sub>2</sub>NaO<sup>+</sup> 197.0685; Found 197.0677.



4w: 2-(5-(thiophen-2-yl)-3,4-dihydro-2H-pyrrol-3-yl)acetonitrile

Brown solid. 47.3 mg (83%). mp: 44–45 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) 7.45 (d, J = 4.8 Hz, 1H), 7.33 (d, J = 3.6 Hz, 1H), 7.09 (dd, J = 4.8, 3.6 Hz, 1H), 4.23 (dd, J = 16.2, 7.2 Hz, 1H), 3.81 (dd, J = 16.2, 3.6 Hz, 1H), 3.24 (dd, J = 18.0, 9.6 Hz, 1H), 2.88 – 2.83 (m, 2H), 2.51 – 2.41 (m, 2H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 166.4, 138.5, 129.7, 129.6, 127.5, 118.3, 65.8, 41.3, 34.0, 22.2. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>10</sub>H<sub>11</sub>N<sub>2</sub>S<sup>+</sup> 191.0637; Found 191.0633.



4x: 2-(5-(pyridin-4-yl)-3,4-dihydro-2H-pyrrol-3-yl)acetonitrile

Yellow solid. 43.3 mg (78%). mp: 111–112 °C. <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) 8.72 (d, J = 4.8 Hz, 2H), 7.66 (d, J = 6.0 Hz, 2H), 4.33 (dd, J = 16.8, 7.8 Hz, 1H), 3.93 (dd, J = 16.8, 4.8 Hz, 1H), 3.25 (dd, J = 17.4, 9.0 Hz, 1H), 2.92 – 2.83 (m, 2H), 2.55 – 2.44 (m, 2H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 170.4, 150.4, 140.4, 121.3, 118.0, 66.5, 40.5, 33.5, 22.2. **HRMS** (ESI) m/z: (M+Na)<sup>+</sup> Calcd for C<sub>11</sub>H<sub>11</sub>N<sub>3</sub>Na<sup>+</sup> 208.0845; Found 208.0850.



4y: 2-(5-(pyridin-3-yl)-3,4-dihydro-2H-pyrrol-3-yl)acetonitrile

Brown solid. 45.5 mg (82%). mp: 53–54 °C. <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) 9.00 (s, 1H), 8.69 (s, 1H), 8.16 (d, J = 7.8 Hz, 1H), 7.38 (s, 1H), 4.31 (dd, J = 16.8, 7.2 Hz, 1H), 3.90 (d, J = 16.8 Hz, 1H), 3.27 (dd, J = 16.8, 9.0 Hz, 1H), 2.88 – 2.86 (m, 2H), 2.55 – 2.45 (m, 2H). <sup>13</sup>**C NMR** (150 MHz, CDCl<sub>3</sub>) 169.5, 151.5, 148.8, 134.5, 129.3, 123.4, 118.1, 66.1, 40.5, 33.4, 22.1. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>11</sub>H<sub>12</sub>N<sub>3</sub><sup>+</sup> 186.1026; Found 186.1021.



4z: 2-(5-(naphthalen-1-yl)-3,4-dihydro-2H-pyrrol-3-yl)acetonitrile

Brown oil. 56.9 mg (81%). <sup>1</sup>**H** NMR (600 MHz, CDCl<sub>3</sub>) 9.03 (d, J = 8.4 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.85 (d, J = 8.4 Hz, 1H), 7.62 (d, J = 7.2 Hz, 1H), 7.57 (t, J = 7.2 Hz, 1H), 7.51 (t, J = 6.6 Hz, 1H), 7.46 (t, J = 7.8 Hz, 1H), 4.38 (dd, J = 16.8, 7.8 Hz, 1H), 4.00 (dd, J = 16.2, 4.2 Hz, 1H), 3.34 (dd, J = 17.4, 9.0 Hz, 1H), 2.93 (dd, J = 16.8, 4.8 Hz, 1H), 2.80 – 2.77 (m, 1H), 2.48 – 2.39 (m, 2H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 172.8, 133.9, 131.0, 130.9, 130.8, 128.3, 127.8, 127.2, 126.4, 126.1, 124.5, 118.4, 66.9, 44.0, 33.1, 22.1. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>16</sub>H<sub>15</sub>N<sub>2</sub><sup>+</sup> 235.1230; Found 235.1227.



**4aa**: 2-(5-(naphthalen-2-yl)-3,4-dihydro-2H-pyrrol-3-yl)acetonitrile Yellow solid. 57.6 mg (82%). mp: 36–37 °C. <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) 8.10 (s, 1H), 8.05 (d, *J* = 8.4, 1H), 7.87 (d, *J* = 7.2, 1H), 7.84 (t, *J* = 9.0, 2H), 7.53 – 7.49 (m, 2H), 4.27 (dd, *J* = 16.8, 7.8 Hz,
1H), 3.86 (dd, J = 16.8, 4.8 Hz, 1H), 3.29 (dd, J = 17.4, 9.0 Hz, 1H), 2.92 (dd, J = 17.4, 4.8 Hz, 1H), 2.84 – 2.79 (m, 1H), 2.47 – 2.36 (m, 2H). <sup>13</sup>**C NMR** (150 MHz, CDCl<sub>3</sub>) 171.7, 134.3, 132.7, 131.1, 128.6, 128.3, 128.2, 127.6, 127.3, 126.5, 124.0, 118.4, 66.1, 40.6, 33.6, 22.2. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>16</sub>H<sub>15</sub>N<sub>2</sub><sup>+</sup> 235.1230; Found 235.1220.



**4ab**: 2-(5-(1-methyl-1H-indol-6-yl)-3,4-dihydro-2H-pyrrol-3-yl)acetonitrile Brown solid. 42.0 mg (59%). mp: 37–38 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) 7.86 (s, 1H), 7.63 (d, J = 8.4 Hz, 1H), 7.54 (d, J = 7.8 Hz, 1H), 7.14 (d, J = 3.0 Hz, 1H), 6.49 (d, J = 3.0 Hz, 1H), 4.26 (dd, J = 16.2, 7.8 Hz, 1H), 3.85 (dd, J = 16.2, 3.6 Hz, 1H), 3.82 (s, 3H), 3.32 (dd, J = 16.8, 8.4 Hz, 1H), 2.94 (dd, J = 16.8, 4.2 Hz, 1H), 2.86 – 2.83 (m, 1H), 2.49 – 2.38 (m, 2H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 172.8, 136.4, 131.2, 130.6, 127.1, 120.6, 119.1, 118.6, 108.8, 101.1, 65.8, 41.0, 33.8, 32.9, 22.3. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>15</sub>H<sub>16</sub>N<sub>3</sub><sup>+</sup> 238.1339; Found 238.1333.

General Procedure for the synthesis of 5 (with 5a as an example) To a flask (20 mL) equipped with a stir-bar was added *N*-allyl enamine **3a** (36.8 mg, 0.2 mmol), Acr<sup>+</sup>-Mes-Ph ClO<sub>4</sub><sup>-</sup> (2.5 mg, 0.06 mmol), Co(dmgH)<sub>2</sub>PyCl (6.5 mg, 0.016 mmol) and DCE (3 mL). The reaction mixture was stirred under the irradiation of blue LED light (5 W) at ambient atmosphere in a parallel light reactor. After the completion of the reaction as indicated by TLC, the solution was concentrated *in vacuo*. Then the residue was purified by silica gel flash column chromatography (PE/EA = 3/1) to afford product **5a** (26.6 mg, 73%).



5a: 2-phenyl-3-azabicyclo[3.1.0]hex-2-ene-1-carbonitrile

Brown oil. 26.6 mg (73%). <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) 7.98 (d, J = 7.2 Hz, 2H), 7.52 (t, J = 7.2 Hz, 1H), 7.48 (t, J = 7.8 Hz, 2H), 4.23 (dd, J = 18.0, 6.0 Hz, 1H), 4.09 (d, J = 18.0 Hz, 1H), 2.82 (dd, J = 14.4, 6.0 Hz, 1H), 1.88 (dd, J = 8.4, 4.8 Hz, 1H), 0.99 (t, J = 5.4 Hz, 1H). <sup>13</sup>**C NMR** (150 MHz, CDCl<sub>3</sub>) 168.5, 131.5, 131.4, 128.7, 128.3, 118.6, 62.0, 29.8, 24.7, 22.9. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>12</sub>H<sub>11</sub>N<sub>2</sub><sup>+</sup> 183.0917; Found 183.0912.



5b: 2-(4-fluorophenyl)-3-azabicyclo[3.1.0]hex-2-ene-1-carbonitrile

Brown oil. 26.0 mg (65%). <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) 7.99 (dd, J = 8.4, 5.4 Hz, 2H), 7.16 (t, J = 9.0 Hz, 2H), 4.22 (dd, J = 18.0, 6.0 Hz, 1H), 4.08 (d, J = 18.0 Hz, 1H), 2.83 (dd, J = 14.4, 7.2 Hz, 1H), 1.89 (dd, J = 9.0, 4.8 Hz, 1H), 1.00 (t, J = 5.4 Hz, 1H). <sup>13</sup>**C NMR** (150 MHz, CDCl<sub>3</sub>) 167.3, 164.7 (d, J = 251.1 Hz), 130.5 (d, J = 8.9 Hz), 127.7 (d, J = 3.2 Hz), 118.5, 115.9 (d, J = 21.9 Hz), 62.0, 30.0, 24.7, 23.0. <sup>19</sup>**F NMR** (565 MHz, CDCl<sub>3</sub>) -107.7. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>12</sub>H<sub>10</sub>FN<sub>2</sub><sup>+</sup> 201.0823; Found 201.0831



5c: 2-(4-chlorophenyl)-3-azabicyclo[3.1.0]hex-2-ene-1-carbonitrile

Brown oil. 32.8 mg (76%). <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) 7.92 (d, J = 8.4 Hz, 2H), 7.45 (d, J = 8.4 Hz, 2H), 4.23 (dd, J = 18.0, 6.0 Hz, 1H), 4.08 (d, J = 18.0 Hz, 1H), 2.83 (dd, J = 13.2, 6.0 Hz, 1H), 1.89 (dd, J = 9.0, 4.8 Hz, 1H), 1.00 (t, J = 5.4 Hz, 1H). <sup>13</sup>**C NMR** (150 MHz, CDCl<sub>3</sub>) 167.5, 137.8, 129.9, 129.6, 129.1, 118.4, 62.1, 30.0, 24.6, 23.0. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>12</sub>H<sub>10</sub>ClN<sub>2</sub><sup>+</sup> 217.0527; Found 217.0534.



5d: 2-(4-bromophenyl)-3-azabicyclo[3.1.0]hex-2-ene-1-carbonitrile

Brown solid. 38.0 mg (73%). mp: 38–39 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) 7.85 (d, J = 8.5 Hz, 2H), 7.62 (d, J = 8.5 Hz, 2H), 4.21 (dd, J = 18.5, 6.0 Hz, 1H), 4.08 (d, J = 18.0 Hz, 1H), 2.84 (dd, J = 13.5, 6.0 Hz, 1H), 1.88 (dd, J = 9.0, 5.0 Hz, 1H), 0.99 (t, J = 5.0 Hz, 1H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 167.5, 132.0, 130.2, 129.7, 126.2, 118.4, 62.1, 30.0, 24.6, 22.9. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>12</sub>H<sub>10</sub>BrN<sub>2</sub><sup>+</sup> 261.0022; Found 261.0022.



5e: 2-([1,1'-biphenyl]-4-yl)-3-azabicyclo[3.1.0]hex-2-ene-1-carbonitrile

Brown solid. 33.6 mg (65%). mp: 31–32 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) 7.98 (d, J = 8.4 Hz, 2H), 7.63 (d, J = 8.4 Hz, 2H), 7.56 (d, J = 7.2 Hz, 2H), 7.39 (t, J = 7.2 Hz, 2H), 7.31 (t, J = 7.2 Hz, 1H), 4.18 (dd, J = 18.0, 6.0 Hz, 1H), 4.03 (d, J = 18.0 Hz, 1H), 2.76 (dd, J = 13.2, 6.0 Hz, 1H), 1.83 (dd, J = 8.4, 4.2 Hz, 1H), 0.94 (t, J = 4.8 Hz, 1H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 168.2, 144.2, 140.0, 130.2, 128.9, 128.8, 128.0, 127.4, 127.1, 118.7, 62.1, 29.9, 24.7, 23.0. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>18</sub>H<sub>15</sub>N<sub>2</sub><sup>+</sup> 259.1230; Found 259.1236.



5f: 2-(p-tolyl)-3-azabicyclo[3.1.0]hex-2-ene-1-carbonitrile

Brown oil. 27.5 mg (70%). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>) 7.87 (d, *J* = 8.0 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 4.21 (dd, *J* = 18.0, 6.0 Hz, 1H), 4.06 (d, *J* = 18.0 Hz, 1H), 2.80 (dd, *J* = 13.5, 6.0 Hz, 1H),

2.41 (s, 3H), 1.86 (dd, J = 9.0, 5.0 Hz, 1H), 0.98 (t, J = 5.0 Hz, 1H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 168.4, 141.9, 129.4, 128.7, 128.2, 118.8, 61.9, 29.7, 24.7, 22.9, 21.5. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>13</sub>H<sub>13</sub>N<sub>2</sub><sup>+</sup> 197.1073; Found 197.1079.



**5g**: 2-(4-methoxyphenyl)-3-azabicyclo[3.1.0]hex-2-ene-1-carbonitrile Brown oil. 29.3 mg (69%). <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) 7.94 (d, J = 8.4 Hz, 2H), 6.98 (d, J = 8.4 Hz, 2H), 4.19 (dd, J = 18.0, 6.0 Hz, 1H), 4.04 (d, J = 18.0 Hz, 1H), 3.86 (s, 3H), 2.79 (dd, J = 13.2, 6.0 Hz, 1H), 1.86 (dd, J = 8.4, 4.2 Hz, 1H), 0.97 (t, J = 5.4 Hz, 1H). <sup>13</sup>**C NMR** (150 MHz, CDCl<sub>3</sub>) 167.7, 162.2, 130.0, 124.2, 118.9, 114.1, 61.8, 55.4, 29.9, 24.6, 22.9. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>13</sub>H<sub>13</sub>N<sub>2</sub>O<sup>+</sup> 213.1022; Found 213.1020.



**5h**: methyl 4-(1-cyano-3-azabicyclo[3.1.0]hex-2-en-2-yl)benzoate

Brown oil. 37.0 mg (77%). <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) 8.05 (d, J = 8.4 Hz, 2H), 7.96 (d, J = 8.4 Hz, 2H), 4.17 (dd, J = 18.0, 5.4 Hz, 1H), 4.03 (d, J = 18.6 Hz, 1H), 3.85 (s, 3H), 2.77 (dd, J = 13.2, 6.0 Hz, 1H), 1.82 (dd, J = 9.0, 4.8 Hz, 1H), 0.93 (t, J = 4.8 Hz, 1H). <sup>13</sup>**C NMR** (150 MHz, CDCl<sub>3</sub>) 167.7, 166.1, 135.1, 132.4, 129.8, 128.1, 118.2, 62.2, 52.2, 29.9, 24.7, 22.8. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>14</sub>H<sub>13</sub>N<sub>2</sub>O<sub>2</sub><sup>+</sup> 241.0972; Found 241.0961.



#### 5i: 2-(3-chlorophenyl)-3-azabicyclo[3.1.0]hex-2-ene-1-carbonitrile

Brown oil. 34.1 mg (79%). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>) 7.96 (s, 1H), 7.86 (d, J = 7.5 Hz, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.42 (t, J = 8.0 Hz, 1H), 4.24 (dd, J = 18.0, 6.0 Hz, 1H), 4.10 (d, J = 18.0 Hz, 1H), 2.84 (dd, J = 14.0, 6.5 Hz, 1H), 1.90 (dd, J = 8.5, 4.5 Hz, 1H), 1.00 (t, J = 5.0 Hz, 1H). <sup>13</sup>C **NMR** (150 MHz, CDCl<sub>3</sub>) 167.3, 134.9, 133.1, 131.5, 130.0, 128.1, 126.4, 118.2, 62.1, 30.0, 24.7, 22.9. **HRMS** (ESI) m/z: (M+Na)<sup>+</sup> Calcd for C<sub>12</sub>H<sub>9</sub>ClN<sub>2</sub>Na<sup>+</sup> 239.0346; Found 239.0324.



5j: 2-(3-bromophenyl)-3-azabicyclo[3.1.0]hex-2-ene-1-carbonitrile

Brown oil. 38.5 mg (74%). <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) 8.12 (s, 1H), 7.91 (d, J = 7.8 Hz, 1H), 7.64 (d, J = 7.8 Hz, 1H), 7.36 (t, J = 7.8 Hz, 1H), 4.24 (dd, J = 18.0, 6.0 Hz, 1H), 4.09 (d, J = 18.6 Hz, 1H), 2.84 (dd, J = 13.8, 6.6 Hz, 1H), 1.89 (dd, J = 9.0, 4.8 Hz, 1H), 0.99 (t, J = 5.4 Hz, 1H). <sup>13</sup>C **NMR** (150 MHz, CDCl<sub>3</sub>) 167.2, 134.4, 133.3, 131.1, 130.2, 126.9, 122.9, 118.2, 62.1, 30.0, 24.6, 23.0. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>12</sub>H<sub>10</sub>BrN<sub>2</sub><sup>+</sup> 261.0022; Found 261.0026.



5k: 2-(3-(trifluoromethyl)phenyl)-3-azabicyclo[3.1.0]hex-2-ene-1-carbonitrile

Yellow oil. 36.5 mg (73%). <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) 8.26 (s, 1H), 8.17 (d, J = 7.8 Hz, 1H), 7.77 (d, J = 7.8 Hz, 1H), 7.63 (t, J = 7.8 Hz, 1H), 4.27 (dd, J = 18.0, 6.0 Hz, 1H), 4.13 (d, J = 18.6 Hz, 1H), 2.87 (dd, J = 13.8, 6.0 Hz, 1H), 1.93 (dd, J = 8.4, 4.8 Hz, 1H), 1.03 (t, J = 4.8 Hz, 1H). <sup>13</sup>C **NMR** (150 MHz, CDCl<sub>3</sub>) 167.3, 132.2, 131.5, 131.4 (q, J = 32.6 Hz), 129.4, 128.0 (q, J = 3.5 Hz), 123.6 (q, J = 3.9 Hz), 123.7 (q, J = 270.8 Hz), 118.2, 62.2, 30.1, 24.7, 23.0. <sup>19</sup>F **NMR** (565 MHz, CDCl<sub>3</sub>) -62.8. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>13</sub>H<sub>10</sub>F<sub>3</sub>N<sub>2</sub><sup>+</sup> 251.0791; Found 251.0795.



51: 2-(m-tolyl)-3-azabicyclo[3.1.0]hex-2-ene-1-carbonitrile

Brown oil. 29.4 mg (75%). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>) 7.78 (s, 1H), 7.77 (d, J = 6.5, 1H), 7.37 (t, J = 8.0 Hz, 1H), 7.33 (d, J = 7.5 Hz, 1H), 4.22 (dd, J = 18.0, 6.0 Hz, 1H), 4.08 (d, J = 18.0 Hz, 1H), 2.81 (dd, J = 13.5, 6.0 Hz, 1H), 2.42 (s, 3H), 1.88 (dd, J = 8.5, 4.5 Hz, 1H), 0.98 (t, J = 5.0 Hz, 1H). <sup>13</sup>**C NMR** (150 MHz, CDCl<sub>3</sub>) 168.7, 138.5, 132.3, 131.3, 128.7, 128.6, 125.5, 118.7, 62.0, 29.7, 24.8, 22.9, 21.3. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>13</sub>H<sub>13</sub>N<sub>2</sub><sup>+</sup> 197.1073; Found 197.1066.



5m: 2-(3-methoxyphenyl)-3-azabicyclo[3.1.0]hex-2-ene-1-carbonitrile

Brown oil. 33.5 mg (79%). <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) 7.51 (d, J = 7.2 Hz, 1H), 7.42 (s, 1H), 7.32 (t, J = 7.8 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 4.17 (dd, J = 18.0, 6.0 Hz, 1H), 4.02 (d, J = 18.0 Hz, 1H), 3.80 (s, 3H), 2.75 (dd, J = 13.8, 6.0 Hz, 1H), 1.82 (dd, J = 9.0, 4.8 Hz, 1H), 0.93 (t, J = 5.4 Hz, 1H). <sup>13</sup>**C NMR** (150 MHz, CDCl<sub>3</sub>) 168.5, 159.8, 132.6, 129.8, 121.0, 118.7, 118.3, 112.4, 62.0, 55.4, 29.9, 24.9, 23.0. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>13</sub>H<sub>13</sub>N<sub>2</sub>O<sup>+</sup> 213.1022; Found 213.1025.



**5n**: 2-(2-fluorophenyl)-3-azabicyclo[3.1.0]hex-2-ene-1-carbonitrile

Yellow oil. 18.8 mg (47%). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>) 7.76 (t, *J* = 7.0 Hz, 1H), 7.52 – 7.48 (m, 1H), 7.26 – 7.18 (m, 2H), 4.21 (dd, *J* = 18.0, 6.0 Hz, 1H), 4.10 (d, *J* = 18.0 Hz, 1H), 2.85 (dd, *J* =

13.5, 6.5 Hz, 1H), 1.90 (dd, J = 8.5, 5.0 Hz, 1H), 1.07 (t, J = 5.0 Hz, 1H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 165.9, 161.1 (d, J = 251.9 Hz), 133.3 (d, J = 8.6 Hz), 130.6 (d, J = 2.7 Hz), 124.6 (d, J = 3.3 Hz), 120.0 (d, J = 12.3 Hz), 118.1, 116.4 (d, J = 21.5 Hz), 62.1, 30.1, 27.6, 22.5. <sup>19</sup>F NMR (565 MHz, CDCl<sub>3</sub>) -111.0. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>12</sub>H<sub>10</sub>FN<sub>2</sub><sup>+</sup> 201.0823; Found 201.0820.



50: 2-(2-methoxyphenyl)-3-azabicyclo[3.1.0]hex-2-ene-1-carbonitrile

Brown oil. 24.6 mg (58%). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>) 7.64 (d, J = 7.5 Hz, 1H), 7.46 (t, J = 7.0 Hz, 1H), 7.02 – 7.00 (m, 2H), 4.13 (dd, J = 18.0, 6.0 Hz, 1H), 4.02 (d, J = 18.0 Hz, 1H), 3.97 (s, 3H), 2.79 (dd, J = 14.0, 6.5 Hz, 1H), 1.81 (dd, J = 8.5, 4.5 Hz, 1H), 1.01 (t, J = 5.5 Hz, 1H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 168.5, 158.3, 132.7, 130.7, 121.3, 120.9, 118.9, 111.4, 61.5, 55.6, 30.1, 28.5, 22.5. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>13</sub>H<sub>13</sub>N<sub>2</sub>O<sup>+</sup> 213.1022; Found 213.1015.



5r: 2-(3,4-dichlorophenyl)-3-azabicyclo[3.1.0]hex-2-ene-1-carbonitrile

Yellow oil. 46.5 mg (93%). <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) 8.00 (s, 1H), 7.74 (d, J = 8.4 Hz, 1H), 7.49 (d, J = 8.4 Hz, 1H), 4.17 (dd, J = 18.6, 6.0 Hz, 1H), 4.03 (d, J = 18.0 Hz, 1H), 2.79 (dd, J = 14.4, 6.0 Hz, 1H), 1.84 (dd, J = 9.0, 4.8 Hz, 1H), 0.93 (t, J = 5.4 Hz, 1H). <sup>13</sup>**C NMR** (150 MHz, CDCl<sub>3</sub>) 166.5, 136.0, 133.3, 131.2, 130.8, 130.0, 127.3, 118.1, 62.2, 30.2, 24.6, 23.0. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>12</sub>H<sub>9</sub>Cl<sub>2</sub>N<sub>2</sub><sup>+</sup> 251.0137; Found 251.0137.



**5**s: 2-(3-bromo-4-methylphenyl)-3-azabicyclo[3.1.0]hex-2-ene-1-carbonitrile Brown oil. 40.0 mg (73%). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>) 8.14 (s, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.34 (d, J = 7.5 Hz, 1H), 4.23 (dd, J = 18.0, 5.5 Hz, 1H), 4.08 (d, J = 18.0 Hz, 1H), 2.83 (dd, J = 13.5, 6.0 Hz, 1H), 2.45 (s, 3H), 1.89 (dd, J = 8.5, 4.5 Hz, 1H), 0.99 (t, J = 5.0 Hz, 1H). <sup>13</sup>**C NMR** (150 MHz, CDCl<sub>3</sub>) 167.1, 141.7, 131.9, 130.9, 130.7, 127.1, 125.3, 118.4, 62.0, 29.9, 24.6, 23.0, 22.9. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>13</sub>H<sub>12</sub>BrN<sub>2</sub><sup>+</sup> 275.0178; Found 275.0184.



**5t**: 2-(3,4-dimethoxyphenyl)-3-azabicyclo[3.1.0]hex-2-ene-1-carbonitrile Brown oil. 32.9 mg (68%). <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) 7.56 (d, J = 8.4 Hz, 1H), 7.43 (s, 1H), 6.88 (d, J = 8.4 Hz, 1H), 4.14 (dd, J = 18.0, 6.0 Hz, 1H), 3.98 (d, J = 18.0 Hz, 1H), 3.87 (s, 6H), 2.74 (dd, J = 13.2, 6.0 Hz, 1H), 1.81 (dd, J = 9.0, 4.8 Hz, 1H), 0.92 (t, J = 5.4 Hz, 1H). <sup>13</sup>**C NMR** (150 MHz, CDCl<sub>3</sub>) 167.8, 152.0, 149.1, 124.3, 122.3, 118.9, 110.5, 110.1, 61.7, 55.9, 55.9, 29.9, 24.5, 23.0. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>14</sub>H<sub>15</sub>N<sub>2</sub>O<sub>2</sub><sup>+</sup> 243.1128; Found 243.1121.



**5u**: 2-(benzo[d][1,3]dioxol-5-yl)-3-azabicyclo[3.1.0]hex-2-ene-1-carbonitrile

Brown oil. 21.7 mg (48%). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>) 7.47 (d, J = 8.5 Hz, 1H), 7.35 (s, 1H), 6.82 (d, J = 8.5 Hz, 1H), 5.97 (s, 2H), 4.12 (dd, J = 18.0, 6.0 Hz, 1H), 3.98 (d, J = 18.0 Hz, 1H), 2.73 (dd, J = 14.0, 6.0 Hz, 1H), 1.80 (dd, J = 8.5, 4.5 Hz, 1H), 0.91 (t, J = 5.5 Hz, 1H). <sup>13</sup>C NMR (150

MHz, CDCl<sub>3</sub>) 167.7, 150.5, 148.2, 125.8, 123.8, 118.8, 108.2, 107.9, 101.6, 61.7, 30.0, 24.6, 22.9. **HRMS** (ESI) m/z: (M+Na)<sup>+</sup> Calcd for C<sub>13</sub>H<sub>10</sub>N<sub>2</sub>NaO<sub>2</sub><sup>+</sup> 249.0634; Found 249.0620.



5v: 2-(furan-2-yl)-3-azabicyclo[3.1.0]hex-2-ene-1-carbonitrile

Brown oil. 13.4 mg (39%). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>) 7.62 (s, 1H), 7.28 (d, J = 4.0 Hz, 1H), 6.58 – 6.57 (m, 1H), 4.27 (dd, J = 18.5, 6.0 Hz, 1H), 4.08 (d, J = 18.0 Hz, 1H), 2.84 (dd, J = 13.5, 6.0 Hz, 1H), 1.84 (dd, J = 9.0, 5.0 Hz, 1H), 0.99 (t, J = 5.5 Hz, 1H). <sup>13</sup>**C NMR** (150 MHz, CDCl<sub>3</sub>) 158.4, 146.9, 145.8, 118.1, 115.5, 112.1, 62.2, 30.0, 24.6, 23.0. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>10</sub>H<sub>9</sub>N<sub>2</sub>O<sup>+</sup> 173.0709; Found 173.0711.



5w: 2-(thiophen-2-yl)-3-azabicyclo[3.1.0]hex-2-ene-1-carbonitrile

Brown oil. 25.9 mg (69%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) 7.89 (d, J = 3.5 Hz, 1H), 7.50 (d, J = 5.0 Hz, 1H), 7.15 (t, J = 4.5 Hz, 1H), 4.22 (dd, J = 18.5, 6.0 Hz, 1H), 4.03 (d, J = 18.5 Hz, 1H), 2.85 (dd, J = 14.0, 6.0 Hz, 1H), 1.86 (dd, J = 8.5, 4.5 Hz, 1H), 1.02 (t, J = 5.0 Hz, 1H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 162.4, 135.9, 130.9, 130.7, 128.0, 118.5, 61.8, 30.6, 24.8, 23.0. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>10</sub>H<sub>9</sub>N<sub>2</sub>S<sup>+</sup> 189.0481; Found 189.0475.



5x: 2-(pyridin-4-yl)-3-azabicyclo[3.1.0]hex-2-ene-1-carbonitrile

Brown oil. 10.3 mg (28%). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>) 8.79 (s, 2H), 7.85 (s, 2H), 4.31 (dd, J = 18.5, 5.5 Hz, 1H), 4.16 (d, J = 18.5 Hz, 1H), 2.90 (dd, J = 13.0, 6.0 Hz, 1H), 1.94 (dd, J = 8.0, 4.5 Hz, 1H), 1.03 (t, J = 5.0 Hz, 1H). <sup>13</sup>**C NMR** (150 MHz, CDCl<sub>3</sub>) 167.0, 150.6, 138.2, 121.9, 118.0, 62.6, 30.0, 24.6, 23.0. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>11</sub>H<sub>10</sub>N<sub>3</sub><sup>+</sup> 184.0869; Found 184.0869.



5y: 2-(pyridin-3-yl)-3-azabicyclo[3.1.0]hex-2-ene-1-carbonitrile

Brown solid. 14.6 mg (40%). mp: 86–87 °C. <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) 9.22 (s, 1H), 8.75 (d, J = 4.2 Hz, 1H), 8.27 (d, J = 7.8 Hz, 1H), 7.43 – 7.42 (m, 1H), 4.28 (dd, J = 18.0, 6.0 Hz, 1H), 4.14 (d, J = 18.6 Hz, 1H), 2.88 (dd, J = 13.8, 6.0 Hz, 1H), 1.94 (dd, J = 8.4, 4.8 Hz, 1H), 1.03 (t, J = 5.4 Hz, 1H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 166.4, 152.2, 149.3, 135.4, 127.3, 123.5, 118.1, 62.4, 29.9, 24.7, 23.0. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>11</sub>H<sub>10</sub>N<sub>3</sub><sup>+</sup> 184.0869; Found 184.0872.



5aa: 2-(naphthalen-2-yl)-3-azabicyclo[3.1.0]hex-2-ene-1-carbonitrile

Yellow oil. 39.9 mg (86%). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>) 8.43 (s, 1H), 7.96 (d, J = 8.5 Hz, 1H), 7.91 (d, J = 7.5 Hz, 1H), 7.83 (d, J = 8.5 Hz, 1H), 7.79 (d, J = 7.5 Hz, 1H), 7.51 – 7.46 (m, 2H), 4.21 (dd, J = 18.0, 6.0 Hz, 1H), 4.05 (dd, J = 18.0 Hz, 1H), 2.78 (dd, J = 13.5, 6.0 Hz, 1H), 1.87 (dd, J = 9.0, 5.0 Hz, 1H), 0.98 (t, J = 5.5 Hz, 1H). <sup>13</sup>**C NMR** (150 MHz, CDCl<sub>3</sub>) 168.5, 134.7, 132.7, 129.3, 129.0, 128.8, 128.7, 127.8, 127.7, 126.7, 124.4, 118.8, 62.1, 30.0, 24.7, 23.0. **HRMS** (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>16</sub>H<sub>13</sub>N<sub>2</sub><sup>+</sup> 233.1073; Found 233.1063.



**5ab**: 2-(1-methyl-1H-indol-6-yl)-3-azabicyclo[3.1.0]hex-2-ene-1-carbonitrile Brown solid. 15.0 mg (32%). mp: 91–92 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) 7.99 (s, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.69 (d, J = 8.5 Hz, 1H), 7.18 (d, J = 2.5 Hz, 1H), 6.52 (d, J = 3.0 Hz, 1H), 4.25 (dd, J = 18.0, 6.0 Hz, 1H), 4.10 (d, J = 18.0 Hz, 1H), 3.86 (s, 3H), 2.83 (dd, J = 14.0, 6.0 Hz, 1H), 1.93 (dd, J = 8.5, 4.5 Hz, 1H), 1.05 (t, J = 5.0 Hz, 1H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) 169.5, 136.4, 131.7, 131.2, 124.7, 121.0, 119.6, 119.2, 109.9, 101.4, 61.7, 33.0, 29.9, 24.9, 23.1. HRMS (ESI) m/z: (M+H)<sup>+</sup> Calcd for C<sub>15</sub>H<sub>14</sub>N<sub>3</sub><sup>+</sup> 236.1182; Found 236.1176.



5ac: 2-(4-ethynylphenyl)-3-azabicyclo[3.1.0]hex-2-ene-1-carbonitrile

Brown oil. 14.0 mg (34%). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>) 7.87 (d, J = 8.5 Hz, 2H), 7.52 (d, J = 8.5 Hz, 2H), 4.18 (dd, J = 18.5, 6.0 Hz, 1H), 4.04 (d, J = 18.5 Hz, 1H), 3.15 (s, 1H), 2.77 (dd, J = 13.5, 6.0 Hz, 1H), 1.83 (dd, J = 9.0, 5.0 Hz, 1H), 0.94 (t, J = 5.5 Hz, 1H). <sup>13</sup>**C NMR** (150 MHz, CDCl<sub>3</sub>) 167.8, 132.5, 131.5, 128.2, 125.4, 118.5, 82.9, 79.7, 62.2, 30.0, 24.7, 23.0. **HRMS** (ESI) m/z: (M+Na)<sup>+</sup> Calcd for C<sub>14</sub>H<sub>10</sub>N<sub>2</sub>Na<sup>+</sup> 229.0736; Found 229.0740.

#### VII. Crystal data of compounds

Single-crystal X-ray diffraction data was collected at room temperature on a Oxford Diffraction Gemini R Ultra diffractometer, the X-ray generator using Mo-K $\alpha$  ( $\lambda$  =0.71073 Å) radiation with a  $\omega$  scan technique. The crystal structures were solved bydirect method of SHELXS-97<sup>8</sup> and refined by full-matrix least-squares techniques using the SHELXL-97 program. Drawing of the compound shows ellipsoid contour at the 30% probability level. Non-hydrogen atoms were refined anisotropic. CCDC deposition number: 2282774 (**4r**) and 2282777 (**5h**). Data can be obtained free of charge viawww.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Center, 12 Union Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or deposit@ccdc.cam.ac.uk).

The single crystals of **4r**, **5h** were cultivated from the mixed solvent of dichloromethane, ethyl acetate and petroleum ether via solvent volatilization, respectively.



| Empirical formula                       | $C_{12}H_{10}Cl_2N_2$ |
|-----------------------------------------|-----------------------|
| Formula weight                          | 253.12                |
| Crystal system                          | Orthorhombic          |
| Space group                             | P c a 21              |
| a (Å)                                   | 7.8855(7)             |
| b (Å)                                   | 13.1039(9)            |
| c (Å)                                   | 11.2372(10)           |
| α (deg)                                 | 90                    |
| $\beta$ (deg)                           | 90                    |
| γ (deg)                                 | 90                    |
| Volume (Å3)                             | 1161.15(17)           |
| Z                                       | 4                     |
| Calculated density (mg/m <sup>3</sup> ) | 1.448                 |
| Absorption coefficient (mm-1)           | 0.530                 |

Table S3. Crystallographic data and structural refinement for 4r.

<sup>(8)</sup> G. M. Sheldrick, SHELXS-97, Programs for X-ray crystal Structure Solution, University of Göttingen, Göttingen, Germany, 1997.

| F(000)                                | 520.0                    |
|---------------------------------------|--------------------------|
| Theta range for data collection (deg) | 3.519 to 29.275          |
| Reflections collected/unique          | 5190/2293                |
| Goodness-of-fit on F2                 | 1.062                    |
| Final R indices $[I \ge 2\sigma(I)]$  | R1= 0.0390, WR2 = 0.0791 |
| R indices (all data)                  | R1= 0.0574, WR2 =0.0934  |

## Table S4. Bond lengths [Å] and angles [°] for 4r.

| Cl(1)-C(5)  | 1.728(4) | C(3)-C(1)-C(8)    | 120.7(3) |
|-------------|----------|-------------------|----------|
| Cl(2)-C(4)  | 1.735(4) | C(9)-C(1)-C(3)    | 118.9(3) |
| C(1)-C(3)   | 1.390(5) | C(9)-C(1)-C(8)    | 120.4(3) |
| C(1)-C(8)   | 1.475(5) | C(8)-N(1)-C(10)   | 109.3(3) |
| C(1)-C(9)   | 1.390(6) | C(4)-C(3)-C(1)    | 120.1(4) |
| N(1)-C(8)   | 1.278(5) | C(3)-C(4)-Cl(2)   | 119.1(3) |
| N(1)-C(10)  | 1.475(5) | C(3)-C(4)-C(5)    | 120.4(4) |
| C(3)-C(4)   | 1.382(5) | C(5)-C(4)-Cl(2)   | 120.5(3) |
| C(4)-C(5)   | 1.394(5) | C(4)-C(5)-Cl(1)   | 120.3(3) |
| C(5)-C(7)   | 1.371(6) | C(7)-C(5)-Cl(1)   | 119.7(3) |
| C(6)-C(8)   | 1.502(6) | C(7)-C(5)-C(4)    | 119.9(4) |
| C(6)-C(11)  | 1.533(6) | C(8)-C(6)-C(11)   | 103.3(4) |
| C(6)-C(9)   | 1.391(5) | C(5)-C(7)-C(9)    | 119.7(4) |
| C(10)-C(11) | 1.541(7) | C(1)-C(8)-C(6)    | 122.3(3) |
| C(11)-C(12) | 1.514(6) | N(1)-C(8)-C(1)    | 121.9(4) |
| C(11)-C(14) | 1.449(9) | N(1)-C(8)-C(6)    | 115.7(3) |
| C(14)-N(2)  | 1.136(8) | C(1)-C(9)-C(7)    | 120.9(4) |
|             |          | N(1)-C(10)-C(11)  | 107.7(3) |
|             |          | C(6)-C(11)-C(10)  | 103.7(3) |
|             |          | C(12)-C(11)-C(6)  | 113.3(4) |
|             |          | C(12)-C(11)-C(10) | 114.5(4) |
|             |          | C(14)-C(12)-C(11) | 112.4(5) |
|             |          | N(2)-C(14)-C(12)  | 177.3(7) |
|             |          |                   |          |



Table S5. Crystallographic data and structural refinement for 5h.

| Empirical formula                       | $C_{14}H_{12}N_2O_2$     |
|-----------------------------------------|--------------------------|
| Formula weight                          | 240.26                   |
| Crystal system                          | Triclinic                |
| Space group                             | P -1                     |
| a (Å)                                   | 5.5922(6)                |
| b (Å)                                   | 6.7269(13)               |
| c (Å)                                   | 17.374(3)                |
| a (deg)                                 | 87.781(16)               |
| β (deg)                                 | 85.060(12)               |
| γ (deg)                                 | 70.579(14)               |
| Volume (Å3)                             | 614.08(19)               |
| Z                                       | 2                        |
| Calculated density (mg/m <sup>3</sup> ) | 1.299                    |
| Absorption coefficient (mm-1)           | 0.089                    |
| F(000)                                  | 252.0                    |
| Theta range for data collection (deg)   | 3.408 to 29.293          |
| Reflections collected/unique            | 4360/2774                |
| Goodness-of-fit on F2                   | 1.066                    |
| Final R indices $[I \ge 2\sigma(I)]$    | R1= 0.0742, WR2 = 0.1224 |
| R indices (all data)                    | R1= 0.1865, WR2 =0.1741  |

| C(1)-C(3)   | 1.389(4) | C(3)-C(1)-C(10)   | 122.3(3)  |
|-------------|----------|-------------------|-----------|
| C(1)-C(9)   | 1.382(4) | C(9)-C(1)-C(3)    | 118.6(3)  |
| C(1)-C(10)  | 1.485(4) | C(9)-C(1)-C(10)   | 119.1(3)  |
| C(2)-C(3)   | 1.373(4) | C(3)-C(2)-C(4)    | 120.2(3)  |
| C(2)-C(4)   | 1.390(4) | C(2)-C(3)-C(1)    | 121.1(3)  |
| C(4)-C(5)   | 1.383(4) | C(2)-C(4)-C(7)    | 120.6(3)  |
| C(4)-C(7)   | 1.475(4) | C(5)-C(4)-C(2)    | 118.9(3)  |
| C(5)-C(9)   | 1.381(4) | C(5)-C(4)-C(7)    | 120.5(3)  |
| N(2)-C(7)   | 1.279(3) | C(9)-C(5)-C(4)    | 120.6(3)  |
| N(2)-C(14)  | 1.463(4) | C(7)-N(2)-C(14)   | 109.5(3)  |
| C(7)-C(12)  | 1.495(4) | C(4)-C(7)-C(12)   | 122.6(3)  |
| O(2)-C(10)  | 1.325(3) | N(2)-C(7)-C(4)    | 122.7(3)  |
| O(2)-C(18)  | 1.449(4) | N(2)-C(7)-C(12)   | 114.6(3)  |
| C(10)-O(1)  | 1.202(4) | C(10)-O(8)-C(1)   | 117.0(3)  |
| C(12)-C(13) | 1.440(4) | C(5)-C(9)-C(1)    | 120.6(3)  |
| C(12)-C(15) | 1.516(4) | O(2)-C(10)-C(1)   | 112.5(3)  |
| C(12)-C(16) | 1.515(4) | O(1)-C(10)-C(1)   | 123.8(3)  |
| C(13)-N(1)  | 1.143(4) | O(1)-C(10)-O(2)   | 123.7(3)  |
| C(14)-C(16) | 1.516(4) | C(7)-C(12)-C(15)  | 113.5(3)  |
| C(15)-C(16) | 1.475(4) | C(7)-C(12)-C(16)  | 103.6(2)  |
|             |          | C(13)-C(12)-C(7)  | 120.9(2)  |
|             |          | C(13)-C(12)-C(15) | 121.1(2)  |
|             |          | C(13)-C(12)-C(16) | 122.7(3)  |
|             |          | C(16)-C(12)-C(15) | 58.22(19) |
|             |          | N(1)-C(13)-C(12)  | 179.2(4)  |
|             |          | N(1)-C(14)-C(16)  | 107.6(3)  |
|             |          | C(16)-C(15)-C(12) | 60.9(2)   |
|             |          | C(12)-C(16)-C(14) | 104.2(3)  |
|             |          | C(15)-C(16)-C(12) | 60.9(2)   |
|             |          | C(15)-C(16)-C(14) | 117.6(3)  |

 Table S6. Bond lengths [Å] and angles [°] for 5h.

# VIII. Copies of <sup>1</sup>H NMR, <sup>13</sup>C NMR and <sup>19</sup>F NMR spectra





# $^{13}\mathrm{C}$ spectrum (150 MHz, CDCl\_3) of compound 2b





<sup>1</sup>H spectrum (600 MHz, CDCl<sub>3</sub>) of compound 2c





### <sup>13</sup>C spectrum (150 MHz, CDCl<sub>3</sub>) of compound 2d



#### <sup>1</sup>H spectrum (600 MHz, CDCl<sub>3</sub>) of compound 2e





<sup>19</sup>F spectrum (565 MHz, CDCl<sub>3</sub>) of compound 2e







<sup>13</sup>C spectrum (150 MHz, CDCl<sub>3</sub>) of compound 2g





#### <sup>1</sup>H spectrum (600 MHz, CDCl<sub>3</sub>) of compound 2h





<sup>1</sup>H spectrum (500 MHz, CDCl<sub>3</sub>) of compound 2i

<sup>13</sup>C spectrum (125 MHz, CDCl<sub>3</sub>) of compound 2i





#### <sup>1</sup>H spectrum (600 MHz, CDCl<sub>3</sub>) of compound 2j







<sup>13</sup>C spectrum (125 MHz, CDCl<sub>3</sub>) of compound 2k





<sup>1</sup>H spectrum (600 MHz, CDCl<sub>3</sub>) of compound 2l

100 90 fl (ppm)



<sup>1</sup>H spectrum (600 MHz, CDCl<sub>3</sub>) of compound 2m









#### <sup>1</sup>H spectrum (600 MHz, CDCl<sub>3</sub>) of compound 2n



<sup>13</sup>C spectrum (125 MHz, CDCl<sub>3</sub>) of compound 20





<sup>13</sup>C spectrum (150 MHz, CDCl<sub>3</sub>) of compound 2p











## <sup>13</sup>C spectrum (125 MHz, CDCl<sub>3</sub>) of compound 2r





#### <sup>1</sup>H spectrum (600 MHz, CDCl<sub>3</sub>) of compound 2s








fl (ppm) 

-1





#### <sup>1</sup>H spectrum (500 MHz, CDCl<sub>3</sub>) of compound 2v

#### <sup>1</sup>H spectrum (600 MHz, CDCl<sub>3</sub>) of compound 2w and 2a



<sup>13</sup>C spectrum (150 MHz, CDCl<sub>3</sub>) of compound 2w and 2a











#### <sup>1</sup>H spectrum (600 MHz, CDCl<sub>3</sub>) of compound 2z



---0.000  $\overbrace{7,390}^{7,824}$  $\begin{array}{c} +4.267\\ +4.254\\ +2.27\\ +4.227\\ +2.2758\\ -3.758\\ -3.779\\ -3.779\\ -3.779\\ -2.382\\ -2.268\\ +2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.2352\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\ -2.252\\$ 0 2.01-I 3.02-1 1.01H 1.03-1F10.1 1.014 F10.1 2.04 3.12 6.12 6.13-I 4.5 4.0 fl (ppm) 7.5 2.5 1.0 0.5 -0.5 8.5 5.5 5.0 3.5 1.5 8.0 7.0 6.5 6.0 3.0 2.0 0.0

<sup>13</sup>C spectrum (150 MHz, CDCl<sub>3</sub>) of compound 2aa



<sup>1</sup>H spectrum (600 MHz, CDCl<sub>3</sub>) of compound 2ab





### <sup>13</sup>C spectrum (150 MHz, CDCl<sub>3</sub>) of compound 2ac





#### <sup>1</sup>H spectrum (600 MHz, CDCl<sub>3</sub>) of compound 2ad

100 90 f1 (ppm) 



<sup>1</sup>H spectrum (500 MHz, CDCl<sub>3</sub>) of compound 2ae







 $^{13}\mathrm{C}$  spectrum (150 MHz, CDCl\_3) of compound 4a





<sup>1</sup>H spectrum (600 MHz, CDCl<sub>3</sub>) of compound 4b

<sup>13</sup>C spectrum (150 MHz, CDCl<sub>3</sub>) of compound 4b



<sup>19</sup>F spectrum (565 MHz, CDCl<sub>3</sub>) of compound 4b



<sup>1</sup>H spectrum (600 MHz, CDCl<sub>3</sub>) of compound 4c











4.5 4.0 fl (ppm) 2.5 8.5 7.5 7.0 5.0 3.5 2. 0 0.5 8.0 6.5 6.0 5.5 3.0 1.5 1.0 0.0







# 13C spectrum (150 MHz, CDCl<sub>3</sub>) of compound 4f 09 500 15 500 27 56 500 27 56 09 500 15 500 27 56 500 27 56



<sup>1</sup>H spectrum (600 MHz, CDCl<sub>3</sub>) of compound 4g





































<sup>13</sup>C spectrum (150 MHz, CDCl<sub>3</sub>) of compound 4m



<sup>1</sup>H spectrum (600 MHz, CDCl<sub>3</sub>) of compound 4m



#### <sup>1</sup>H spectrum (600 MHz, CDCl<sub>3</sub>) of compound 4n





## <sup>19</sup>F spectrum (565 MHz, CDCl<sub>3</sub>) of compound 4n






































S145









S147

## $^{13}C$ spectrum (150 MHz, CDCl\_3) of compound 4z















<sup>13</sup>C spectrum (150 MHz, CDCl<sub>3</sub>) of compound 4ab









## <sup>13</sup>C spectrum (150 MHz, CDCl<sub>3</sub>) of compound 5b



<sup>19</sup>F spectrum (565 MHz, CDCl<sub>3</sub>) of compound 5b



<sup>1</sup>H spectrum (600 MHz, CDCl<sub>3</sub>) of compound 5c



fl (ppm) 

<sup>1</sup>H spectrum (500 MHz, CDCl<sub>3</sub>) of compound 5d









<sup>1</sup>H spectrum (500 MHz, CDCl<sub>3</sub>) of compound 5f





-1.836 -1.828 -1.821 -1.821 74.193 74.184 -4.163 -4.153 -4.153 -4.047 14.016 13.854 70.943 -0.935 -0.926 L<sup>8.057</sup> L<sup>8.043</sup> T<sup>7.962</sup> T<sup>7.948</sup> -2.788 -2.778 -2.766 -0.000MeO<sub>2</sub>C<sup>2</sup> 1.024 1.014 3.004 2.01¥ 2.00Æ 1.00-I 1.03-1 1.02 - ₹ 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 f1 (ppm) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

# <sup>13</sup>C spectrum (150 MHz, CDCl<sub>3</sub>) of compound 5h



<sup>1</sup>H spectrum (600 MHz, CDCl<sub>3</sub>) of compound 5h

<sup>1</sup>H spectrum (500 MHz, CDCl<sub>3</sub>) of compound 5i



<sup>1</sup>H spectrum (600 MHz, CDCl<sub>3</sub>) of compound 5j



<sup>1</sup>H spectrum (600 MHz, CDCl<sub>3</sub>) of compound 5k





## <sup>13</sup>C spectrum (150 MHz, CDCl<sub>3</sub>) of compound 51





## <sup>13</sup>C spectrum (150 MHz, CDCl<sub>3</sub>) of compound 5m

S164

4.5 4.0 fl (ppm)

3.5

3.0

2.5

2.0

1. 0

0.5

1. 5

0.0

5.5

5.0

6.0

8.5

7.5

7. 0

6.5

8.0

## <sup>13</sup>C spectrum (150 MHz, CDCl<sub>3</sub>) of compound 5n











## <sup>1</sup>H spectrum (600 MHz, CDCl<sub>3</sub>) of compound 5r

<sup>1</sup>H spectrum (500 MHz, CDCl<sub>3</sub>) of compound 5s









<sup>1</sup>H spectrum (500 MHz, CDCl<sub>3</sub>) of compound 5u











<sup>1</sup>H spectrum (600 MHz, CDCl<sub>3</sub>) of compound 5y





S175







<sup>1</sup>H spectrum (500 MHz, CDCl<sub>3</sub>) of compound 5ac