Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2024

CrCl₂-Catalyzed α-Alkylation of Carbonyl Compounds via Borrowing Hydrogen Approach

Dongyue Wei, ‡ Baojin Feng, ‡ Qing Chen, Wantong Yue, Yilei Wang, and Zhihua Peng*

Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China.

zpech@upc.edu.cn

Table of Contents	Page No
General Information	S2
Typical procedure (TP1) for $CrCl_2$ -catalyzed α -alkylation reaction of	S2
carbonyl compounds with alcohols	
Typical procedure (TP2) for CrCl ₂ -catalyzed dialkylation of	S2
cyclohexanone with alcohols	
¹ H NMR, ¹³ C NMR, HRMS and IR Data	S3
Gas Chromatography analysis	S24
Deuterium labelling experiments	S25
Isolation of the intermediate 4-methoxychalcone 3a	S27
References	S28
¹ H and ¹³ C{ ¹ H} NMR Spectra of Compounds	S29

General Information. All reactions were carried out under nitrogen atmosphere in flame-dried glassware. Syringes which were used to transfer anhydrous solvents or reagents were purged with nitrogen prior to use. Toluene was continuously refluxed and freshly distilled from sodium benzophenone ketyl under nitrogen. Yields refer to isolated yields of compounds estimated to be > 95% pure as determined by ¹H NMR (25 °C) and capillary-GC. NMR spectra were recorded on solutions in deuterated chloroform (CDCl₃) with residual chloroform (δ 7.25 ppm for ¹H NMR and δ 77.0 ppm for ¹³C NMR). Abbreviations for signal coupling are as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet, br., broad. ESI-QTOF-MS measurements were performed in the positive ion mode (m/z 50–2000 range). Column chromatographical purifications were performed using SiO₂ (200 – 300 mesh ASTM) from Branch of Qingdao Haiyang Chemical Co., Ltd if not indicated otherwise.

Typical procedure (TP1) for CrCl₂-catalyzed α -alkylation reaction of carbonyl compounds with alcohols. To a clean, oven-dried, screw cap reaction tube was added CrCl₂ (0.05 mmol, 5 mol%), PPh₃ (0.1 mmol, 10 mol%), alcohol (1.2 mmol), ketone (1 mmol), LiOH (1.2 mmol), and chlorobenznene (2 mL) under nitrogen atmosphere. The reaction mixture was stirred at 130 °C in an oil bath for 25 h. Then, the reaction mixture was diluted with water (5 mL) and extracted with EtOAc (3 × 10 mL). The resultant organic layer was dried over anhydrous MgSO₄ and the solvent was evaporated under reduced pressure. The crude mixture was purified by silica gel column chromatography using petroleum ether/EtOAc as the eluting system.

Typical procedure (TP2) for CrCl₂-catalyzed dialkylation of cyclohexanone with alcohols. To a clean, oven-dried, screw cap reaction tube was added $CrCl_2$ (0.10 mmol, 10 mol%), PPh₃ (0.2 mmol, 20 mol%), alcohol (2.4 mmol), cyclohexanone (1 mmol), LiOH (2.4 mmol), and chlorobenznene (2 mL) under nitrogen atmosphere. The reaction mixture was stirred at 130 °C in an oil bath for 25 h. Then, the reaction mixture was diluted with water (5 mL) and extracted with EtOAc (3 × 10 mL). The resultant organic layer was dried over anhydrous MgSO₄ and the solvent was evaporated under reduced pressure. The crude mixture was purified by silica gel column chromatography using petroleum ether/EtOAc as the eluting system.

3-(4-Methoxyphenyl)-1-phenylpropan-1-one (3). According to **TP1**, the reaction of acetophenone (120 mg, 1 mmol) with (4-methoxyphenyl)methanol (166 mg, 1.2 mmol) afforded the desired product **3** as a white solid (193 mg, 80%): mp 65-66 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 7.7 Hz, 2 H), 7.55 (t, *J* = 7.4 Hz, 1 H), 7.45 (t, *J* = 7.6 Hz, 2 H), 7.18 (d, *J* = 8.1 Hz, 2 H), 6.86 (d, *J* = 8.1 Hz, 2 H), 3.78 (s, 3 H), 3.27 (t, *J* = 7.7 Hz, 2 H), 3.03 (t, *J* = 7.6 Hz, 2 H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 199.2, 157.9, 136.8, 133.2, 132.9, 129.2, 128.4, 127.9, 113.8, 55.1, 40.5, 29.1; IR (Diamond-ATR, neat) 3012, 2965, 2937, 1675, 1620, 1595, 1513, 818, 776, 523 cm⁻¹; *R_f* 0.33 (petroleum ether/EtOAc, 30/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.¹

1-Phenyl-3-(p-tolyl)propan-1-one (4). According to **TP1**, the reaction of acetophenone (120 mg, 1 mmol) with *p*-tolylmethanol (147 mg, 1.2 mmol) afforded the desired product **4** as a pale yellow oil (184 mg, 82%): ¹H NMR (400 MHz, CDCl₃) δ 8.02–7.93 (m, 2 H), 7.59–7.53 (m, 1 H), 7.52–7.40 (m, 2 H), 7.14 (q, *J* = 8.1 Hz, 4 H), 3.34–3.22 (m, 2H), 3.12–2.97 (m, 2H), 2.34 (s, 3 H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 199.2, 138.1, 136.8, 135.6, 132.9, 129.2, 128.5, 128.2, 127.9, 40.6, 29.7, 20.9; IR (Diamond-ATR, neat) 3021, 2922, 1680, 1514, 1449, 1362, 1292, 971, 806, 741 cm⁻¹; *R*_f 0.4 (petroleum ether/EtOAc, 50/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.²

3-(3-Phenoxyphenyl)-1-phenylpropan-1-one (5). According to **TP1**, the reaction of acetophenone (120 mg, 1 mmol) with 3-phenoxybenzyl alcohol (240 mg, 1.2 mmol) afforded the desired product **5** as a colorless oil (234 mg, 77%): ¹H NMR (400 MHz, CDCl₃) δ 7.95–7.91 (m, 2 H), 7.60–7.50 (m, 1 H), 7.48–7.40 (m, 2 H), 7.35–7.28 (m, 2 H), 7.23 (t, *J* = 7.7 Hz, 1 H), 7.09 (t, *J* = 7.4 Hz, 1 H), 7.03–6.94 (m, 3 H), 6.91 (s, 1 H), 6.83 (dd, *J* = 8.1, 2.2 Hz, 1 H), 3.28 (t, *J* = 7.6 Hz, 2 H); ¹³C{H¹} NMR (101 MHz, CDCl₃) δ 198.9, 157.3, 157.1, 143.3, 136.8, 133.1, 129.7, 129.6, 128.6, 128.0, 123.3, 123.2, 118.9, 118.8, 116.5, 40.1, 29.9; IR (diamond-ATR, neat) 3060, 3036, 2931, 1685, 1578, 1486, 1447, 1245, 1212, 967, 755, 689 cm⁻¹; HRMS (ESI⁺) calcd for C₂₁H₁₉O₂ [M + H]⁺ 303.1385, found 303.1382; *R*_f 0.30 (petroleum ether/EtOAc, 30/1).

1,3-Diphenylpropan-1-one (6). According to **TP1**, the reaction of acetophenone (120 mg, 1 mmol) with benzyl alcohol (132 mg, 1.2 mmol) afforded the desired product **6** as a white solid (164 mg, 78%): mp 63-64 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.02–7.90 (m, 2H), 7.59–7.52 (m, 1H), 7.49–7.42 (m, 2H), 7.34–7.25 (m, 4H), 7.24–7.18 (m, 1H), 3.37–3.26 (m, 2H), 3.13–3.03 (m, 2H); ¹³C {H¹} NMR (101 MHz, CDCl₃) δ 199.1, 141.2, 136.8, 133.0, 128.6, 128.5, 128.4, 127.9, 126.1, 40.4, 30.1; IR (diamond-ATR, neat) 3060, 2922, 1679, 1595, 1580, 1492, 1445, 1364, 1290, 971, 743, 689 cm⁻¹; *R*_f 0.41 (petroleum ether/EtOAc, 30/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.³

1-Phenyl-3-(4-(trifluoromethyl)phenyl)propan-1-one (7). According to **TP1**, the reaction of acetophenone (120 mg, 1 mmol) with 4-(trifluoromethyl)benzyl alcohol (211 mg, 1.2 mmol) afforded the desired product 7 as a pale yellow oil (181 mg, 65%): ¹H NMR (400 MHz, CDCl₃) δ 8.02–7.87 (m, 2H), 7.61–7.50 (m, 3H), 7.46 (dd, *J* = 8.4, 7.0 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 3.32 (t, *J* = 7.5 Hz, 2H), 3.13 (t, *J* = 7.5 Hz, 2H); ¹³C {H¹} NMR (101 MHz, CDCl₃) δ 198.5, 145.4, 136.6, 133.2, 128.8, 128.6, 128.4 (q, *J* = 30.1 Hz), 127.9, 125.4 (q, *J* = 3.8 Hz), 124.2 (q, *J* = 270.1 Hz), 39.8, 29.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.4; IR (diamond-ATR, neat) 3058, 2937, 1675, 1617, 1595, 1580, 1449, 1323, 1292, 1204, 829, 743, 689 cm⁻¹; *R*_f 0.32 (petroleum ether/EtOAc, 30/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.¹

3-(4-Fluorophenyl)-1-phenylpropan-1-one (8). According to **TP1**, the reaction of acetophenone (120 mg, 1 mmol) with 4-fluorobenzyl alcohol (151 mg, 1.2 mmol) afforded the desired product 8 as a white solid (119 mg, 52%): mp 59–60 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.98–7.89 (m, 2 H), 7.62–7.50 (m, 1 H), 7.50–7.38 (m, 2 H), 7.24–7.17 (m, 2 H), 7.02-6.91 (m, 2 H), 3.28 (t, J = 7.5 Hz, 2 H), 3.04 (t, J = 7.5 Hz, 2 H); ¹³C {H¹} NMR (101 MHz, CDCl₃) δ 198.9, 161.4 (d, J = 243.9 Hz), 136.8 (d, J = 3.2 Hz), 136.8, 133.1, 129.8 (d, J = 7.8 Hz), 128.6, 127.9, 115.2 (d, J = 21.1 Hz), 40.4, 29.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -117.3; IR (diamond-ATR, neat) 3052, 2937, 1679, 1597, 1576, 1508, 1447, 1360, 1288, 1214, 973, 823, 743, 689 cm⁻¹; R_f 0.34 (petroleum ether/EtOAc, 30/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.²

3-(4-Chlorophenyl)-1-phenylpropan-1-one (9). According to **TP1**, the reaction of acetophenone (120 mg, 1 mmol) with 4-chlorobenzyl alcohol (171 mg, 1.2 mmol) afforded the desired product **9** as a pale yellow solid (174 mg, 71%): mp 47–49 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.99–7.90 (m, 2 H), 7.60–7.52 (m, 1 H), 7.50–7.41 (m, 2 H), 7.30–7.21 (m, 2 H), 7.22–7.14 (m, 2 H), 3.27 (t, *J* = 7.5 Hz, 2 H), 3.04 (t, *J* = 7.5 Hz, 2 H); ¹³C{H¹} NMR (101 MHz, CDCl₃) δ 198.8, 139.7, 136.7, 133.1, 131.8, 129.8, 128.6, 128.5, 127.9, 40.1, 29.3; IR (diamond-ATR, neat) 3065, 2929, 1665, 1593, 1580, 1490, 1447, 1368, 1265, 1206, 981, 825, 741, 687 cm⁻¹; *R_f* 0.31 (petroleum ether/EtOAc, 30/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.²

3-(4-Bromophenyl)-1-phenylpropan-1-one (10). According to **TP1**, the reaction of acetophenone (120 mg, 1 mmol) with 4-bromobenzyl alcohol (224 mg, 1.2 mmol) afforded the desired product **10** as a white solid (211 mg, 73%): mp 59–60 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.98–7.90 (m, 2 H), 7.59–7.51 (m, 1 H), 7.50–7.36 (m, 4 H), 7.15–7.06 (m, 2 H), 3.27 (t, *J* = 7.5 Hz, 2 H), 3.02 (t, *J* = 7.5 Hz, 2 H); ¹³C {H¹} NMR (101 MHz, CDCl₃) δ 198.7, 140.2, 136.7, 133.1, 131.5, 130.2, 128.6, 127.9, 119.8, 40.0, 29.4. IR (diamond-ATR, neat) 3062, 2931, 1665, 1593, 1578, 1486, 1445, 1364, 1265, 821, 776, 741, 685 cm⁻¹. *R*_f 0.31 (petroleum ether/EtOAc, 30/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.²

1-Phenyl-3-(pyridin-3-yl)propan-1-one (11). According to **TP1**, the reaction of acetophenone (120 mg, 1 mmol) with 3-pyridinemethanol (131 mg, 1.2 mmol) afforded the desired product **11** as a white solid (108 mg, 51%): mp 86–87 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, J = 2.2 Hz, 1 H), 8.44 (dd, J = 4.8, 1.6 Hz, 1 H), 8.01–7.85 (m, 2 H), 7.61–7.49 (m, 2 H), 7.44 (t, J = 7.6 Hz, 2 H), 7.19 (dd, J = 7.7, 4.8 Hz, 1 H), 3.30 (t, J = 7.4 Hz, 2 H), 3.06 (t, J = 7.4 Hz, 2 H); ¹³C{H¹} NMR (101 MHz, CDCl₃) δ 198.4, 149.9, 147.6, 136.6, 136.5, 135.9, 133.2, 128.6, 127.9, 123.3, 39.7, 27.0; IR (diamond-ATR, neat) 3025, 2931, 1679, 1591, 1574, 1482, 1362, 1288, 806, 745, 689 cm⁻¹; R_f 0.50 (petroleum ether/EtOAc, 1/2). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.¹

1-Phenyl-3-(thiophen-2-yl)propan-1-one (12). According to **TP1**, the reaction of acetophenone (240 mg, 2 mmol) with 2-thiophenemethanol (274 mg, 2.4 mmol) afforded the desired product **12** as a pale yellow oil (264 mg, 61%): ¹H NMR (400 MHz, CDCl₃) δ 8.02–7.92 (m, 2 H), 7.61–7.52 (m, 1 H), 7.52–7.42 (m, 2 H), 7.12 (dd, J = 5.1, 1.2 Hz, 1 H), 6.95–6.89 (m, 1 H), 6.90–6.83 (m, 1 H), 3.36 (t, J = 7.5 Hz, 2 H), 3.30 (t, J = 7.5 Hz, 2 H); ¹³C {H¹} NMR (101 MHz, CDCl₃) δ 198.5, 143.8, 136.7, 133.1, 128.6, 127.9, 126.8, 124.6, 123.3, 40.5, 24.2; IR (diamond-ATR, neat) 3054, 2920, 2857, 1681, 1595, 1578, 1531, 1445, 1358, 1294, 1200, 969, 829, 747, 687 cm⁻¹; R_f 0.34 (petroleum ether/EtOAc, 20/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.¹

1-Phenyl-3-(thiophen-3-yl)propan-1-one (13). According to **TP1**, the reaction of acetophenone (240 mg, 2 mmol) with 3-thiophenemethanol (274 mg, 2.4 mmol) afforded the desired product **13** as a pale yellow oil (147 mg, 34%): ¹H NMR (400 MHz, CDCl₃) δ 8.01–7.89 (m, 2 H), 7.59–7.50 (m, 1 H), 7.49–7.36 (m, 2 H), 7.25–7.22 (m, 1 H), 7.04–6.93 (m, 2 H), 3.29 (t, *J* = 7.5 Hz, 2 H), 3.08 (t, *J* = 7.5 Hz, 2 H); ¹³C {H¹} NMR (101 MHz, CDCl₃) δ 199.1, 141.4, 136.8, 133.1, 128.6, 128.1, 127.9, 125.6, 120.5, 39.5, 24.5. IR (diamond-ATR, neat) 3056, 2924, 2857, 1681, 1595, 1578, 1407, 1358, 835, 741, 687 cm⁻¹; *R*_f 0.30 (petroleum ether/EtOAc, 30/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.⁴

3-(*Furan-2-yl*)-1-phenylpropan-1-one (14). According to **TP1**, the reaction of acetophenone (120 mg, 1 mmol) with 2-furanmethanol (118 mg, 1.2 mmol) afforded the desired product **14** as a pale yellow oil (60 mg, 30%): ¹H NMR (400 MHz, CDCl₃) δ 8.05–7.91 (m, 2 H), 7.64–7.51 (m, 1 H), 7.51–7.40 (m, 2 H), 7.30 (dd, J = 1.9, 0.8 Hz, 1 H), 6.28 (dd, J = 3.2, 1.9 Hz, 1 H), 6.05 (dd, J = 3.2, 1.0 Hz, 1 H), 3.33 (t, J = 7.5 Hz, 2 H), 3.09 (t, J = 7.5 Hz, 2 H); ¹³C {H¹} NMR (101 MHz, CDCl₃) δ 198.6, 154.7, 141.1, 136.69, 133.1, 128.6, 128.0, 110.2, 105.3, 36.9, 22.5; IR (diamond-ATR, neat) 3060, 2910, 2852, 1681, 1595, 1447, 1296, 741, 689 cm⁻¹; R_f 0.20 (petroleum ether/EtOAc, 100/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.³

3-(Benzo[d][*1,3]dioxol-5-yl)-1-phenylpropan-1-one* (*15*). According to **TP1**, the reaction of acetophenone (120 mg, 1 mmol) with 1,3-benzodioxole-5-methanol (183 mg, 1.2 mmol) afforded the desired product **11** as a white solid (211 mg, 83%): mp 56–58 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.07–7.86 (m, 2 H), 7.62–7.49 (m, 1 H), 7.44 (dd, *J* = 8.3, 6.9 Hz, 2 H), 6.83–6.63 (m, 3 H), 5.90 (s, 2 H), 3.25 (t, *J* = 7.5 Hz, 2 H), 2.98 (t, *J* = 7.5 Hz, 2 H); ¹³C{H¹} NMR (101 MHz, CDCl₃) δ 199.1, 147.5, 145.7, 136.7, 134.9, 132.9, 128.5, 127.9, 121.1, 108.8, 108.2, 100.7, 40.6, 29.8; IR (diamond-ATR, neat) 3060, 2927, 2799, 1683, 1597, 1578, 1445, 1362, 1292, 800, 747, 658 cm⁻¹; *R*_f 0.29 (petroleum ether/EtOAc, 30/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.³

3-(2-Methoxyphenyl)-1-phenylpropan-1-one (16). According to **TP1**, the reaction of acetophenone (120 mg, 1 mmol) with (2-methoxyphenyl)methanol (166 mg, 1.2 mmol) afforded the desired product **16** as a colorless oil (144 mg, 60%): ¹H NMR (400 MHz, CDCl₃) δ 8.09–7.90 (m, 2 H), 7.64–7.50 (m, 1 H), 7.51–7.40 (m, 2 H), 7.25–7.19 (m, 2 H), 6.98–6.82 (m, 2 H), 3.84 (s, 3 H), 3.28 (t, *J* = 7.5 Hz, 2 H), 3.07 (t, *J* = 7.5 Hz, 2 H); ¹³C {H¹} NMR (101 MHz, CDCl₃) δ 199.9, 157.4, 136.9, 132.8, 130.1, 129.4, 128.4, 128.0, 127.4, 120.4, 110.1, 55.1, 38.8, 25.6; IR (diamond-ATR, neat) 3054, 2935, 2832, 1679, 1595, 1492, 1286, 736, 687 cm⁻¹; *R*_f 0.33 (petroleum ether/EtOAc, 30/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.²

3-(2-Chlorophenyl)-1-phenylpropan-1-one (17). According to **TP1**, the reaction of acetophenone (120 mg, 1 mmol) with 2-chlorobenzyl alcohol (171 mg, 1.2 mmol) afforded the desired product **17** as a pale yellow oil (162 mg, 66%): ¹H NMR (400 MHz, CDCl₃) δ 8.02–7.92 (m, 2 H), 7.59–7.51 (m, 1 H), 7.49–7.41 (m, 2 H), 7.35 (dd, *J* = 7.4, 1.9 Hz, 1 H), 7.31 (dd, *J* = 7.2, 2.1 Hz, 1 H), 7.22–7.12 (m, 2 H), 3.31 (t, *J* = 7.5 Hz, 2 H), 3.17 (t, *J* = 7.5 Hz, 2 H); ¹³C{H¹} NMR (101 MHz, CDCl₃) δ 198.9, 138.8, 136.7, 133.9, 133.1, 130.8, 129.5, 128.6, 128.0, 127.7, 126.9, 38.4, 28.3; IR (diamond-ATR, neat) 3064, 2918, 1683, 1595, 1473, 1368, 1267, 747, 687 cm⁻¹; *R*_f 0.22 (petroleum ether/EtOAc, 100/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.⁵

4-(3-Oxo-3-phenylpropyl)benzonitrile (18). According to **TP1**, the reaction of acetophenone (120 mg, 1 mmol) with 4-bromobenzyl alcohol (165 mg, 1.2 mmol) afforded the desired product **18** as a white solid (83 mg, 35%): mp 86–87 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.97–7.90 (m, 2 H), 7.59–7.53 (m, 3 H), 7.49–7.41 (m, 2 H), 7.39–7.33 (m, 2 H), 3.32 (t, *J* = 7.3 Hz, 2 H), 3.13 (t, *J* = 7.3 Hz, 2 H); ¹³C{H¹} NMR (101 MHz, CDCl₃) δ 198.2, 146.9, 136.5, 133.3, 132.3, 129.3, 128.7, 127.9, 118.9, 109.9, 39.4, 29.9; IR (diamond-ATR, neat) 3060, 2920, 2852, 1677, 1597, 1578, 1447, 1336, 1212, 977, 827, 745, 687 cm⁻¹; *R*_f0.30 (petroleum ether/EtOAc, 10/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.⁶

3-(3,4-Dimethoxyphenyl)-1-phenylpropan-1-one (19). According to **TP1**, the reaction of acetophenone (120 mg, 1 mmol) with 3,4-dimethoxybenzyl alcohol (212 mg, 1.2 mmol) afforded the desired product **19** as a white solid (105 mg, 39%): mp 68–70 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.98–7.91 (m, 2H), 7.58–7.51 (m, 1H), 7.44 (dd, J = 8.4, 7.0 Hz, 2H), 6.81–6.74 (m, 3H), 3.86 (s, 3H), 3.84 (s, 3H), 3.27 (t, J = 7.6 Hz, 2H), 3.01 (t, J = 7.6 Hz, 2H); ¹³C{H¹} NMR (101 MHz, CDCl₃) δ 199.4, 148.9, 147.4, 136.9, 133.9, 133.0, 128.6, 128.0, 120.1, 111.8, 111.3, 55.9, 55.8, 40.7, 29.8; IR (diamond-ATR, neat) 3058, 2838, 1677, 1593, 1578, 1445, 1356, 1294, 1235, 854, 761, 745, 691 cm⁻¹; R_f 0.31 (petroleum ether/EtOAc, 5/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.⁷

3-(2,3-Difluorophenyl)-1-phenylpropan-1-one (20). According to **TP1**, the reaction of acetophenone (120 mg, 1 mmol) with 2,3-difluorobenzyl alcohol (178 mg, 1.2 mmol) afforded the desired product **20** as a pale yellow oil (113 mg, 46%): ¹H NMR (400 MHz, CDCl₃) δ 8.00–7.89 (m, 2 H), 7.62–7.51 (m, 1 H), 7.45 (dd, J = 8.4, 7.0 Hz, 2 H), 7.08–6.91 (m, 3 H), 3.31 (t, J = 7.5 Hz, 2 H), 3.12 (t, J = 7.5 Hz, 2 H); ¹³C{H¹} NMR (101 MHz, CDCl₃) δ 198.5, 151.1 (dd, J = 150.3, 12.8 Hz), 148.6(dd, J = 149.2, 12.8 Hz), 136.6, 133.2, 130.5(d, J = 12.4 Hz), 128.6, 127.9, 125.5 (t, J = 3.6 Hz), 123.9(dd, J = 7.0, 4.6 Hz), 115.2(d, J = 17.1 Hz), 38.5(d, J = 1.1 Hz), 23.6 (t, J = 2.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -134.70–140.84 (m), -143.68 (dt, J = 20.9, 5.9 Hz); IR (diamond-ATR, neat) 3058, 2930, 2852, 1683, 1595, 1580, 11445, 1360, 1272, 833, 776, 743 cm⁻¹; HRMS (ESI⁺) calcd for C₁₅H₁₂F₂ONa [M + Na]⁺ 269.0754, found 269.0754; *R*_f 0.32 (petroleum ether/EtOAc, 20/1).

3-([1,1'-Biphenyl]-4-yl)-1-phenylpropan-1-one (21). According to **TP1**, the reaction of acetophenone (120 mg, 1 mmol) with 4-phenylbenzyl alcohol (223 mg, 1.2 mmol) afforded the desired product **21** as a white solid (189 mg, 66%): mp 66–67 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.02–7.94 (m, 2 H), 7.59–7.52 (m, 5 H), 7.48–7.41 (m, 4 H), 7.35–7.31 (m, 3 H), 3.35 (t, *J* = 7.7 Hz, 2 H), 3.12 (t, *J* = 7.7 Hz, 2 H). ¹³C {H¹} NMR (101 MHz, CDCl₃) δ 199.2, 140.9, 140.4, 139.1, 136.8, 133.1, 128.8, 128.7, 128.6, 128.0, 127.2, 127.1, 126.9, 40.4, 29.7; IR (diamond-ATR, neat) 3027, 2933, 1685, 1593, 1447, 1358, 827, 743, 689 cm⁻¹; *R*_f 0.25 (petroleum ether/EtOAc, 20/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.⁸

3-(*Naphthalen-2-yl*)-1-phenylpropan-1-one (22). According to **TP1**, the reaction of acetophenone (120 mg, 1 mmol) with naphthalen-2-ylmethanol (194 mg, 1.2 mmol) afforded the desired product **22** as a pale yellow oil (193 mg, 74%): ¹H NMR (400 MHz, CDCl₃) δ 8.10–8.04 (m, 1H), 8.00–7.93 (m, 2H), 7.89 (dd, *J* = 8.1, 1.5 Hz, 1H), 7.75 (dd, *J* = 5.7, 3.9 Hz, 1H), 7.58–7.47 (m, 3H), 7.47–7.37 (m, 4H), 3.56 (t, *J* = 7.5 Hz, 2H), 3.43 (t, *J* = 7.5 Hz, 2H); ¹³C{H¹} NMR (101 MHz, CDCl₃) δ 199.2, 137.3, 136.7, 133.9, 133.1, 131.6, 128.9, 128.5, 127.9, 126.9, 126.1, 126.0, 125.6, 125.6, 123.5, 39.7, 27.1; IR (diamond-ATR, neat) 3054, 2935, 1681, 1595, 1508, 1360, 1292, 860, 776, 743, 689 cm⁻¹; *R*_f 0.35 (petroleum ether/EtOAc, 50/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.⁹

l-(4-Methoxyphenyl)-3-(p-tolyl)propan-1-one (23). According to **TP1**, the reaction of 4'methoxyacetophenone (150 mg, 1 mmol) with *p*-tolylmethanol (147 mg, 1.2 mmol) afforded the desired product 23 as a white solid (214 mg, 84%): mp 65–66 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.98–7.91 (m, 2 H), 7.18–7.08 (m, 4 H), 6.96–6.87 (m, 2 H), 3.86 (s, 3 H), 3.23 (t, *J* = 7.5 Hz, 2 H), 3.02 (t, *J* = 7.5 Hz, 2 H), 2.32 (s, 3 H); ¹³C{H¹} NMR (101 MHz, CDCl₃) δ 197.9, 163.4, 138.3, 135.5, 130.2, 129.9, 129.1, 128.2, 113.7, 55.4, 40.2, 29.9, 20.9; IR (diamond-ATR, neat) 3013, 2964, 2914, 2842, 1667, 1601, 1574, 1469, 1414, 1251, 806, 712, 631 cm⁻¹; *R_f* 0.27 (petroleum ether/EtOAc, 30/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.¹⁰

1,3-Bis(4-methylphenyl)-1-propanone (24). According to **TP1**, the reaction of 4'methylacetophenone (134 mg, 1 mmol) with *p*-tolylmethanol (147 mg, 1.2 mmol) afforded the desired product **24** as a white solid (203 mg, 85%): mp 133–135 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.2 Hz, 2 H), 7.19–7.12 (m, 2 H), 7.10–6.99 (m, 4 H), 3.17 (t, *J* = 7.5 Hz, 2 H), 2.94 (t, *J* = 7.5 Hz, 2 H), 2.32 (s, 3 H), 2.24 (s, 3 H); ¹³C{H¹} NMR (101 MHz, CDCl₃) δ 198.9, 143.7, 138.2, 135.5, 134.4, 129.2, 129.1, 128.2, 128.1, 40.5, 29.7, 21.6, 20.9; IR (diamond-ATR, neat) 3023, 2945, 1677, 1603, 1572, 1532, 1366, 1265, 800, 720 cm⁻¹; HRMS (ESI⁺) calcd for C₁₇H₁₉O [M + H]⁺ 239.1436, found 239.1429; *R*_f 0.51 (petroleum ether/EtOAc, 30/1).

l-([1,1'-Biphenyl]-4-yl)-3-(p-tolyl)propan-1-one (25). According to **TP1**, the reaction of 4acetylbiphenyl (200 mg, 1 mmol) with *p*-tolylmethanol (147 mg, 1.2 mmol) afforded the desired product **25** as a white solid (243 mg, 81%): mp 120–121 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.07– 8.00 (m, 2 H), 7.71–7.65 (m, 2 H), 7.62 (dt, J = 6.1, 1.3 Hz, 2 H), 7.47 (dd, J = 8.3, 6.6 Hz, 2 H), 7.44–7.36 (m, 1 H), 7.19–7.10 (m, 4 H), 3.31 (t, J = 7.7 Hz, 2 H), 3.05 (t, J = 7.7 Hz, 2 H), 2.33 (s, 3 H); ¹³C{H¹} NMR (101 MHz, CDCl₃) δ 198.9, 145.7, 139.8, 138.2, 135.6, 135.5, 129.2, 128.9, 128.6, 128.3, 128.2, 127.2, 127.2, 40.7, 29.8, 21.0; IR (diamond-ATR, neat) 3054, 2912, 1669, 1601, 1560, 1447, 1323, 1267, 811, 767 cm⁻¹; HRMS (ESI⁺) calcd for C₂₂H₂₀ONa [M + Na]⁺ 323.1412, found 323.1415; R_f 0.50 (petroleum ether/EtOAc, 30/1).

1-(3-Aminophenyl)-3-(p-tolyl)propan-1-one (26). According to **TP1**, the reaction of 3'aminoacetophenone (138 mg, 1 mmol) with *p*-tolylmethanol (147 mg, 1.2 mmol) afforded the desired product 26 as a yellow solid (96 mg, 40%): mp 64–65 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (dt, *J* = 7.7, 1.3 Hz, 1 H), 7.38–7.34 (m, 1 H), 7.31 (t, *J* = 7.8 Hz, 1 H), 7.27–7.18 (m, 4 H), 7.00–6.88 (m, 1 H), 3.88 (s, 2 H), 3.33 (t, *J* = 7.5 Hz, 2 H), 3.10 (t, *J* = 7.5 Hz, 2 H), 2.42 (s, 3 H); ¹³C{H¹} NMR (101 MHz, CDCl₃) δ 199.5, 146.7, 138.2, 137.9, 135.5, 129.4, 129.1, 128.2, 119.5, 118.4, 113.9, 40.6, 29.7, 20.9; IR (diamond-ATR, neat) 3441, 3353, 3054, 2918, 2850, 1673, 1624, 1601, 1587, 1514, 1455, 1368, 1321, 1282, 992, 883, 821, 780, 683 cm⁻¹; HRMS (ESI⁺) calcd for C₁₆H₁₈NO [M + H]⁺ 240.1388, found 240.1380; *R*_f0.31 (petroleum ether/EtOAc, 10/1).

3-(*p*-Tolyl)-1-(4-(trifluoromethyl)phenyl)propan-1-one (27). According to **TP1**, the reaction of 4-(trifluoromethyl)acetophenone (188 mg, 1 mmol) with *p*-tolylmethanol (147 mg, 1.2 mmol) afforded the desired product **27** as a yellow solid (208 mg, 71%): mp 69–70 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.1 Hz, 2 H), 7.71 (d, *J* = 8.1 Hz, 2 H), 7.19–7.05 (m, 4 H), 3.30 (t, *J* = 7.6 Hz, 2 H), 3.05 (t, *J* = 7.6 Hz, 2 H), 2.33 (s, 3 H); ¹³C{H¹} NMR (101 MHz, CDCl₃) δ 198.3, 139.5, 137.7, 135.8, 134.3 (q, *J* = 32.7 Hz), 129.2, 128.3, 128.2, 125.6 (q, *J* = 3.7 Hz), 123.6 (q, *J* = 272.7 Hz), 40.9, 29.5, 20.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.07; IR (diamond-ATR, neat) 3023, 2920, 2869, 1680, 1578, 1407, 1321, 1267, 808, 693 cm⁻¹; HRMS (ESI⁺) calcd for C₁₇H₁₆F₃O [M + H]⁺ 293.1153, found 293.1151; *R*_f0.30 (petroleum ether/EtOAc, 50/1).

l-(*4-Fluorophenyl*)-*3*-(*p*-tolyl)propan-*l*-one (28). According to **TP1**, the reaction of 4'fluoroacetophenone (138 mg, 1 mmol) with *p*-tolylmethanol (147 mg, 1.2 mmol) afforded the desired product **28** as a yellow solid (196 mg, 81%): mp 48–50 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.03–7.91 (m, 2 H), 7.17–7.06 (m, 6 H), 3.24 (t, J = 7.7 Hz, 2 H), 3.02 (t, J = 7.7 Hz, 2 H), 2.32 (s, 3 H); ¹³C {H¹} NMR (101 MHz, CDCl₃) δ 197.7, 165.7 (d, J = 254.6 Hz), 138.0, 135.7, 133.3 (d, J = 2.9 Hz), 130.6 (d, J = 9.3 Hz), 129.2, 128.3, 115.6 (d, J = 21.9 Hz), 40.5, 29.7, 20.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -105.38; IR (diamond-ATR, neat) 3023, 2920, 2857, 1679, 1650, 1506, 1434, 1364, 1296, 841, 720, 693 cm⁻¹; HRMS (ESI⁺) calcd for C₁₆H₁₅FONa [M + Na]⁺ 265.1005, found 265.1001; *R*_f 0.33 (petroleum ether/EtOAc, 50/1).

l-(4-Chlorophenyl)-3-(p-tolyl)propan-1-one (29). According to **TP1**, the reaction of 4'chloroacetophenone (155 mg, 1 mmol) with *p*-tolylmethanol (147 mg, 1.2 mmol) afforded the desired product **29** as a yellow solid (176 mg, 68%): mp 76–77 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.99–7.79 (m, 2 H), 7.49–7.35 (m, 2 H), 7.20–7.03 (m, 4 H), 3.24 (t, *J* = 7.7 Hz, 2 H), 3.01 (t, *J* = 7.7 Hz, 2 H), 2.32 (s, 3 H); ¹³C {H¹} NMR (101 MHz, CDCl₃) δ 198.1, 139.4, 137.9, 135.7, 135.2, 129.4, 129.2, 128.9, 128.2, 40.6, 29.6, 20.9; IR (diamond-ATR, neat) 3023, 2916, 1677, 1587, 1512, 1426, 1397, 1319, 1200, 806, 745, 689 cm⁻¹; HRMS (ESI⁺) calcd for C₁₆H₁₅ClO [M + Na]⁺ 281.0709, found 281.0708; *R*_f 0.30 (petroleum ether/EtOAc, 50/1).

1-(4-Bromophenyl)-3-(p-tolyl)propan-1-one (30). According to **TP1**, the reaction of 4'bromoacetophenone (199 mg, 1 mmol) with *p*-tolylmethanol (147 mg, 1.2 mmol) afforded the desired product **30** as a yellow solid (243 mg, 80%): mp 84–85 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.89–7.74 (m, 2 H), 7.66–7.52 (m, 2 H), 7.18–7.03 (m, 4 H), 3.24 (t, *J* = 7.6 Hz, 2 H), 3.02 (t, *J* = 7.6 Hz, 2 H), 2.32 (s, 3 H); ¹³C {H¹} NMR (101 MHz, CDCl₃) δ 198.2, 137.9, 135.7, 135.5, 131.9, 129.5, 129.2, 128.2, 128.1, 40.5, 29.6, 20.9; IR (diamond-ATR, neat) 3021, 2916, 2857, 1673, 1601, 1582, 1512, 1482, 1395, 1267, 1200, 804, 720, 693 cm⁻¹; *R_f* 0.50 (petroleum ether/EtOAc, 30/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.¹¹

l-(4-Iodophenyl)-3-(p-tolyl)propan-1-one (*31*). According to **TP1**, the reaction of 4'iodoacetophenone (246 mg, 1 mmol) with *p*-tolylmethanol (147 mg, 1.2 mmol) afforded the desired product **31** as a white solid (267 mg, 76%): mp 108–110 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87– 7.75 (m, 2 H), 7.70–7.60 (m, 2 H), 7.16–7.06 (m, 4 H), 3.22 (t, *J* = 7.6 Hz, 2 H), 3.01 (t, *J* = 7.6 Hz, 2 H), 2.31 (s, 3 H); ¹³C{H¹} NMR (101 MHz, CDCl₃) δ 198.6, 137.9, 137.8, 136.1, 135.7, 129.4, 129.2, 128.2, 100.9, 40.5, 29.6, 20.9. IR (diamond-ATR, neat) 3023, 2914, 2855, 1671, 1648, 1576, 1512, 1436, 1364, 1270, 1200, 802, 693, 668 cm⁻¹; HRMS (ESI⁺) calcd for C₁₆H₁₆IO [M + H]⁺ 351.0246, found 351.0244; *R*_f 0.32 (petroleum ether/EtOAc, 50/1).

l-(*Naphthalen-2-yl*)-3-(*p-tolyl*)*propan-1-one* (32). According to **TP1**, the reaction of 2acetylnaphthalene (170 mg, 1 mmol) with *p*-tolylmethanol (147 mg, 1.2 mmol) afforded the desired product **32** as a white solid (233 mg, 85%): mp 97–98 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.47 (s, 1 H), 8.06 (dd, *J* = 8.6, 1.8 Hz, 1 H), 7.96–7.85 (m, 3 H), 7.63–7.53 (m, 2 H), 7.24–7.13 (m, 4 H), 3.43 (t, *J* = 7.7 Hz, 2 H), 3.11 (t, *J* = 7.7 Hz, 2 H), 2.36 (s, 3 H); ¹³C{H¹} NMR (101 MHz, CDCl₃) δ 199.1, 138.2, 135.6, 135.5, 134.1, 132.4, 129.6, 129.5, 129.2, 128.4, 128.3, 128.3, 127.7, 126.7, 123.8, 40.7, 29.8, 20.9; IR (diamond-ATR, neat) 3020, 2951, 2852, 1673, 1624, 1591, 1467, 1364, 1270, 870, 738, 695 cm⁻¹; *R*_f 0.30 (petroleum ether/EtOAc, 50/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.¹²

1-(2-Methoxyphenyl)-3-(p-tolyl)propan-1-one (**33**). According to **TP1**, the reaction of 2'methoxyacetophenone (150 mg, 1 mmol) with *p*-tolylmethanol (147 mg, 1.2 mmol) afforded the desired product **33** as a pale yellow solid (99 mg, 39%): mp 69–71 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (dd, *J* = 7.7, 1.8 Hz, 1 H), 7.51–7.41 (m, 1 H), 7.20–7.07 (m, 4 H), 7.04–6.94 (m, 2 H), 3.88 (s, 3 H), 3.29 (t, *J* = 7.6 Hz, 2 H), 2.99 (t, *J* = 7.6 Hz, 2 H), 2.33 (s, 3 H); ¹³C {H¹} NMR (101 MHz, CDCl₃) δ 201.8, 158.5, 138.6, 135.3, 133.3, 130.3, 129.0, 128.3, 120.6, 111.4, 55.4, 45.6, 30.0, 20.9; IR (diamond-ATR, neat) 3019, 2960, 1667, 1593, 1512, 1482, 1393, 1288, 806, 757, 638 cm⁻¹; HRMS (ESI⁺) calcd for C₁₇H₁₉O₂ [M + H]⁺ 255.1385, found 255.1380; *R_f* 0.28 (petroleum ether/EtOAc, 30/1).

1-(2-Hydroxyphenyl)-3-(p-tolyl)propan-1-one (34). According to **TP1**, the reaction of 2'hydroxyacetophenone (136 mg, 1 mmol) with *p*-tolylmethanol (147 mg, 1.2 mmol) afforded the desired product **34** as a pale yellow oil (111 mg, 46%): ¹H NMR (400 MHz, CDCl₃) δ 12.34 (s, 1 H), 7.75 (dd, *J* = 8.0, 1.6 Hz, 1 H), 7.47 (ddd, *J* = 8.6, 7.2, 1.6 Hz, 1 H), 7.20–7.10 (m, 4 H), 7.00 (dd, *J* = 8.4, 1.1 Hz, 1 H), 6.93–6.84 (m, 1 H), 3.31 (t, *J* = 7.7 Hz, 2 H), 3.04 (t, *J* = 7.7 Hz, 2 H), 2.34 (s, 3 H); ¹³C{H¹} NMR (101 MHz, CDCl₃) δ 205.4, 162.4, 137.6, 136.3, 135.8, 129.8, 129.2, 128.2, 119.2, 118.9, 118.5, 40.1, 29.6, 20.9; IR (diamond-ATR, neat) 3326, 3023, 2920, 1636, 1613, 1582, 1442, 1360, 1282, 813, 751, 654 cm⁻¹; *R*_f 0.50 (petroleum ether/EtOAc, 30/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.¹³

1-(2-Bromophenyl)-3-(4-methoxyphenyl)propan-1-one (35). According to **TP1**, the reaction of 2'bromoacetophenone (199 mg, 1 mmol) with 4-methoxyphenylmethanol (167 mg, 1.2 mmol) afforded the desired product **35** as a pale yellow oil (32 mg, 10%): ¹H NMR (400 MHz, CDCl₃) δ 7.58 (dd, J = 7.9, 1.2 Hz, 1 H), 7.36–7.25 (m, 3 H), 7.16–7.11 (m, 2 H), 6.85–6.79 (m, 2 H), 3.77 (s, 3 H), 3.20 (t, *J* = 7.6 Hz, 2 H), 2.99 (t, *J* = 7.6 Hz, 2 H); ¹³C{H¹} NMR (101 MHz, CDCl₃) δ 203.5, 158.0, 141.7, 133.6, 132.7, 131.5, 129.3, 128.4, 127.4, 118.6, 113.9, 55.3, 44.6, 29.2; IR (diamond-ATR, neat) 3060, 2930, 2834, 1698, 1584, 1428, 1358, 1245, 825, 755, 671 cm⁻¹; HRMS (ESI⁺) calcd for C₁₆H₁₆BrO₂ [M + H]⁺ 319.0334, found 319.0332; *R*_f 0.28 (petroleum ether/EtOAc, 20/1).

1-(Thiophen-2-yl)-3-(p-tolyl)propan-1-one (**36**). According to **TP1**, the reaction of 2acetylthiophene (126 mg, 1 mmol) with *p*-tolylmethanol (147 mg, 1.2 mmol) afforded the desired product **36** as a pale yellow oil (175 mg, 76%): ¹H NMR (400 MHz, CDCl₃) δ 7.68 (dd, *J* = 3.8, 1.1 Hz, 1 H), 7.61 (dd, *J* = 4.9, 1.1 Hz, 1 H), 7.20–7.03 (m, 5 H), 3.21 (t, *J* = 7.6 Hz, 2 H), 3.03 (t, *J* = 7.6 Hz, 2 H), 2.32 (s, 3 H); ¹³C{H¹} NMR (101 MHz, CDCl₃) δ 192.2, 144.2, 137.9, 135.7, 133.5, 131.7, 129.2, 128.3, 128.0, 41.3, 29.9, 20.9; IR (diamond-ATR, neat) 3019, 2920, 1661, 1514, 1414, 1292, 852, 724, 652 cm⁻¹; R_f 0.33 (petroleum ether/EtOAc, 50/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.¹⁴

1-(Pyridin-4-yl)-3-(p-tolyl)propan-1-one (37). According to **TP1**, the reaction of 4-acetylpyridine (121 mg, 1 mmol) with *p*-tolylmethanol (147 mg, 1.2 mmol) afforded the desired product **37** as a pale yellow solid (43 mg, 19%): mp 63–64 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.83–8.74 (m, 2 H), 7.74–7.65 (m, 2 H), 7.16–7.06 (m, 4 H), 3.27 (t, *J* = 7.6 Hz, 2 H), 3.02 (t, *J* = 7.6 Hz, 2 H), 2.31 (s, 3 H); ¹³C{H¹} NMR (101 MHz, CDCl₃) δ 198.7, 150.9, 142.6, 137.5, 135.9, 129.3, 128.2, 120.9, 40.8, 29.3, 20.9; IR (diamond-ATR, neat) 3027, 2916, 2855, 1685, 1650, 1556, 1370, 1267, 800, 648 cm⁻¹; HRMS (ESI⁺) calcd for C₁₅H₁₆NO [M + H]⁺ 226.1232, found 226.1230; *R_f* 0.32 (petroleum ether/EtOAc, 3/1).

2-(4-Methylbenzyl)-3,4-dihydronaphthalen-1(2H)-one (38). According to **TP1**, the reaction of 1-tetralone (146 mg, 1 mmol) with *p*-tolylmethanol (147 mg, 1.2 mmol) afforded the desired product **38** as a pale yellow solid (205 mg, 82%): mp 67–69 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.08 (dd, *J* = 7.9, 1.4 Hz, 1 H), 7.46 (td, *J* = 7.4, 1.4 Hz, 1 H), 7.32 (t, *J* = 7.5 Hz, 1 H), 7.22 (d, *J* = 7.7 Hz, 1 H), 7.17–7.09 (m, 4 H), 3.46 (dd, *J* = 13.7, 4.0 Hz, 1 H), 2.93 (dt, *J* = 9.8, 4.7 Hz, 2 H), 2.77–2.69 (m, 1 H), 2.62 (dd, *J* = 13.7, 9.6 Hz, 1 H), 2.34 (s, 3 H), 2.12 (dq, *J* = 13.4, 4.5 Hz, 1 H), 1.79 (dddd, *J* = 13.4, 11.5, 10.2, 5.4 Hz, 1 H); ¹³C{H¹} NMR (101 MHz, CDCl₃) δ 199.4, 143.9, 136.8, 135.5, 133.2, 132.4, 129.1, 129.0, 128.6, 127.5, 126.5, 49.4, 35.2, 28.5, 27.6, 20.9; IR (diamond-ATR, neat) 3019, 2920, 2850, 1679, 1510, 1484, 1360, 1286, 802, 757, 720, 623 cm⁻¹; *R*_f 0.52 (petroleum ether/EtOAc, 30/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.¹²

5,6-Dimethoxy-2-(4-methylbenzyl)-2,3-dihydro-1H-inden-1-one (**39**). According to **TP1**, the reaction of 5,6-dimethoxy-1-indanone (192 mg, 1 mmol) with *p*-tolylmethanol (147 mg, 1.2 mmol) afforded the desired product **39** as a white solid (154 mg, 52%): mp 134–135 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.18 (s, 1 H), 7.15–7.04 (m, 4 H), 6.79 (s, 1 H), 3.92 (s, 3 H), 3.89 (s, 3 H), 3.31 (dd, *J* = 13.9, 4.2 Hz, 1 H), 3.04 (dd, *J* = 16.8, 7.4 Hz, 1 H), 2.99–2.90 (m, 1 H), 2.74 (dd, *J* = 16.8, 3.2 Hz, 1 H), 2.59 (dd, *J* = 13.9, 10.3 Hz, 1 H), 2.30 (s, 3 H); ¹³C {H¹} NMR (101 MHz, CDCl₃) δ 206.5, 155.5, 149.4, 148.9, 136.6, 135.7, 129.2, 129.1, 128.7, 107.3, 104.3, 56.1, 56.0, 49.1, 36.8, 31.8, 20.9; IR (diamond-ATR, neat) 3015, 2920, 2850, 1681, 1591, 1463, 1434, 1364, 1216, 874, 837, 780, 650 cm⁻¹; *R*_f 0.25 (petroleum ether/EtOAc, 5/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.¹⁵

l-(Naphthalen-2-yl)tetradecan-1-one (40). According to **TP1**, the reaction of 2-acetylnaphthalene (170 mg, 1 mmol) with 1-dodecanol (224 mg, 1.2 mmol) afforded the desired product **40** as a pale yellow solid (122 mg, 36%): mp 81–82 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.46 (s, 1 H), 8.03 (dd, J = 8.7, 1.7 Hz, 1 H), 7.96 (d, J = 8.0 Hz, 1 H), 7.91–7.84 (m, 2 H), 7.56 (dt, J = 18.6, 7.0 Hz, 2 H), 3.09 (t, J = 7.4 Hz, 2 H), 1.79 (p, J = 7.4 Hz, 2 H), 1.4–1.23 (m, 20 H), 0.87 (t, J = 6.6 Hz, 3 H); ¹³C {H¹} NMR (101 MHz, CDCl₃) δ 200.6, 135.5, 134.4, 132.5, 129.6, 129.5, 128.4, 128.3, 127.7, 126.7, 123.9, 38.7, 31.9, 29.7, 29.6, 29.6, 29.5, 29.5, 29.4, 29.4, 24.6, 22.7, 14.1; IR (diamond-ATR, neat) 3054, 2953, 2846, 1683, 1626, 1574, 1434, 1375, 1224, 1195, 942, 854, 751 cm⁻¹; HRMS (ESI⁺) calcd for C₂₄H₃₄ONa [M + Na]⁺ 361.2507, found 361.2507; *R_f* 0.33 (petroleum ether/EtOAc, 100/1).

1-(Naphthalen-2-yl)decan-1-one (41). According to **TP1**, the reaction of 2-acetylnaphthalene (170 mg, 1 mmol) with 1-octanol (156 mg, 1.2 mmol) afforded the desired product **41** as a pale yellow solid (136 mg, 48%): mp 48–50 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.46 (s, 1 H), 8.03 (dd, *J* = 8.7, 1.8 Hz, 1 H), 7.96 (d, *J* = 7.8 Hz, 1 H), 7.93–7.83 (m, 2 H), 7.65–7.47 (m, 2 H), 3.08 (t, *J* = 7.4 Hz, 2 H), 1.79 (p, *J* = 7.4 Hz, 2 H), 1.45–1.25 (m, 12 H), 0.93–0.79 (m, 3 H); ¹³C {H¹} NMR (101 MHz, CDCl₃) δ 200.6, 135.5, 134.4, 132.5, 129.6 129.5, 128.4, 128.3, 127.7, 126.7, 123.9, 38.7, 31.9, 29.5, 29.4, 29.3, 24.6, 22.7, 14.1; IR (diamond-ATR, neat) 3059, 2957, 2848, 1667, 1628, 1578, 1467, 1372, 1280, 817, 749 cm⁻¹; HRMS (ESI⁺) calcd for C₂₀H₂₆ONa [M + Na]⁺ 305.1881, found 305.1875; *R*_f 0.34 (petroleum ether/EtOAc, 100/1).

1-(Naphthalen-2-yl)nonan-1-one (42). According to **TP1**, the reaction of 2-acetylnaphthalene (170 mg, 1 mmol) with 1-heptanol (140 mg, 1.2 mmol) afforded the desired product **42** as a pale yellow solid (140 mg, 52%): mp 49–50 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.46 (s, 1 H), 8.03 (dd, *J* = 8.7, 1.8 Hz, 1 H), 7.96 (d, *J* = 8.0 Hz, 1 H), 7.92–7.83 (m, 2 H), 7.62–7.50 (m, 2 H), 3.08 (t, *J* = 7.4 Hz, 2 H), 1.79 (p, J = 7.4 Hz, 2 H), 1.43–1.25 (m, 10 H), 0.95–0.79 (m, 3 H); ¹³C{H¹} NMR (101 MHz, CDCl₃) δ 200.6, 135.5, 134.4, 132.5, 129.6, 129.5, 128.4, 128.3, 127.7, 126.7, 123.9, 38.7, 31.8, 29.5, 29.4, 29.2, 24.6, 22.7, 14.1. IR (diamond-ATR, neat) 3058, 2846, 1681, 1626, 1504, 1434, 1276, 942, 802, 753 cm⁻¹. *R*_f 0.34 (petroleum ether/EtOAc, 100/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.¹⁶

1-(Naphthalen-2-yl)octan-1-one (43). According to **TP1**, the reaction of 2-acetylnaphthalene (170 mg, 1 mmol) with 1-hexanol (123 mg, 1.2 mmol) afforded the desired product 43 as a pale yellow solid (142 mg, 56%): mp 51–53 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.46 (s, 1 H), 8.03 (dd, *J* = 8.6, 1.7 Hz, 1 H), 7.96 (d, *J* = 8.0 Hz, 1 H), 7.90–7.85 (m, 2 H), 7.61–7.52 (m, 2 H), 3.12–3.03 (m, 2 H), 1.84–1.74 (m, 2 H), 1.42–1.28 (m, 8 H), 0.89 (t, *J* = 6.9 Hz, 3 H); ¹³C {H¹} NMR (101 MHz, CDCl₃) δ 200.5, 135.5, 134.4, 132.5, 129.6, 129.5, 128.3, 128.2, 127.7, 126.7, 123.9, 38.7, 31.7, 29.4, 29.2, 24.5, 22.6, 14.1; IR (diamond-ATR, neat) 3054, 2848, 1667, 1628, 1578, 1467, 1372, 1280, 940, 821, 747 cm⁻¹; HRMS (ESI⁺) calcd for C₁₈H₂₂ONa [M + Na]⁺ 277.1568, found 277.1567; R_f 0.28 (petroleum ether/EtOAc, 100/1).

1-(Naphthalen-2-yl)heptan-1-one (44). According to **TP1**, the reaction of 2-acetylnaphthalene (170 mg, 1 mmol) with 1-pentanol (106 mg, 1.2 mmol) afforded the desired product **44** as a pale yellow solid (60 mg, 25%): mp 55–56 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.46 (s, 1 H), 8.03 (dd, *J* = 8.6, 1.8 Hz, 1 H), 7.96 (d, *J* = 7.5 Hz, 1 H), 7.90–7.84 (m, 2 H), 7.61–7.51 (m, 2 H), 3.09 (t, *J* = 7.4 Hz, 2 H), 1.85–1.72 (m, 2 H), 1.48–1.27 (m, 6 H), 0.90 (t, *J* = 7.0 Hz, 3 H); ¹³C{H¹} NMR (101 MHz, CDCl₃) δ 200.5, 135.5, 134.4, 132.5, 129.6, 129.5, 128.4, 128.3, 127.7, 126.7, 123.9, 38.7, 31.7, 29.1, 24.5, 22.5, 14.0; IR (diamond-ATR, neat) 3060, 2855, 1680, 1626, 1593, 1465, 1364, 1288, 963, 817, 794, 747 cm⁻¹; HRMS (ESI⁺) calcd for C₁₇H₂₀ONa [M + Na]⁺ 263.1412, found 263.1413; *R*_f 0.27 (petroleum ether/EtOAc, 100/1).

2-*Cyclohexyl-1-(naphthalen-2-yl)ethan-1-one* (45). According to **TP1**, the reaction of 2-acetylnaphthalene (170 mg, 1 mmol) with cyclohexanol (120 mg, 1.2 mmol) afforded the desired product 45 as a colorless oil (36 mg, 14%): ¹H NMR (400 MHz, CDCl₃) δ 8.45 (s, 1 H), 8.02 (dd, *J* = 8.6, 1.8 Hz, 1 H), 7.96 (d, *J* = 8.0 Hz, 1 H), 7.92–7.83 (m, 2 H), 7.64–7.49 (m, 2 H), 2.95 (d, *J* = 6.8 Hz, 2 H), 2.13–1.95 (m, 1 H), 1.87–1.75 (m, 2 H), 1.74–1.68 (m, 2 H), 1.63–1.60 (m, 1 H), 1.32–1.25 (m, 2 H), 1.22–1.13 (m, 1 H), 1.13–0.99 (m, 2 H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 200.3, 135.5, 134.8, 132.5, 129.7, 129.5, 128.4, 128.3, 127.7, 126.7, 124.0, 46.3, 34.8, 33.5, 26.3, 26.2; IR (diamond-ATR, neat) 3056, 2850, 1677, 1626, 1434, 1354, 1278, 823, 745, 693 cm⁻¹; *R_f* 0.31 (petroleum ether/EtOAc, 100/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.¹⁷

(*E*)-1-(*Naphthalen-2-yl*)-5-phenylpent-4-en-1-one (46). According to **TP1**, the reaction of 2acetylnaphthalene (170 mg, 1 mmol) with cinnamyl alcohol (161 mg, 1.2 mmol) afforded the desired product 46 as a pale yellow solid (106 mg, 37%): mp 74–76 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.49 (s, 1 H), 8.05 (dd, J = 8.6, 1.8 Hz, 1 H), 7.96 (d, J = 8.0 Hz, 1 H), 7.93–7.84 (m, 2 H), 7.65– 7.50 (m, 2 H), 7.35 (d, J = 7.2 Hz, 2 H), 7.32–7.25 (m, 2 H), 7.22–7.16 (m, 1 H), 6.50 (d, J = 15.8Hz, 1 H), 6.34 (dt, J = 15.8, 6.8 Hz, 1 H), 3.29 (t, J = 7.4 Hz, 2 H), 2.72 (dd, J = 7.8, 7.3 Hz, 2 H); ¹³C {H¹} NMR (101 MHz, CDCl₃) δ 199.3, 137.4, 135.6, 134.2, 132.5, 130.8, 129.7, 129.5, 129.1, 128.5, 128.5, 128.4, 127.8, 127.1, 126.8, 126.0, 123.8, 38.3, 27.6; IR (diamond-ATR, neat) 3062, 3021, 2846, 1679, 1624, 1553, 1492, 1368, 1274, 963, 815, 743, 693 cm⁻¹; R_f 0.50 (petroleum ether/EtOAc, 20/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.¹⁸

(*E*)-1-(6-Methoxynaphthalen-2-yl)-5,9-dimethyldeca-4,8-dien-1-one (47). According to **TP1**, the reaction of 2-acetyl-6-methoxynaphthalene (200 mg, 1 mmol) with geraniol (185 mg, 1.2 mmol) afforded the desired product 47 as a colorless oil (64 mg, 19%): ¹H NMR (400 MHz, CDCl₃) δ 8.40 (d, *J* = 2.1 Hz, 1 H), 8.00 (dd, *J* = 8.6, 1.8 Hz, 1 H), 7.84 (d, *J* = 8.9 Hz, 1 H), 7.76 (d, *J* = 8.6 Hz, 1 H), 7.19 (dd, *J* = 8.9, 2.5 Hz, 1 H), 7.14 (d, *J* = 2.5 Hz, 1 H), 5.22 (ddt, *J* = 7.2, 5.9, 1.3 Hz, 1 H), 5.08 (tt, *J* = 6.9, 1.4 Hz, 1 H), 3.94 (s, 3 H), 3.10 (dd, *J* = 8.1, 7.0 Hz, 2 H), 2.47 (q, *J* = 7.4 Hz, 2 H), 2.16–1.85 (m, 4 H), 1.66 (s, 3 H), 1.64 (s, 3 H), 1.58 (s, 3 H); ¹³C{H¹} NMR (101 MHz, CDCl₃) δ 199.8, 159.6, 137.2, 136.4, 132.5, 131.4, 131.1, 129.5, 127.8, 127.1, 124.7, 124.2, 122.9, 119.7, 105.7, 55.4, 39.7, 38.7, 26.7, 25.7, 23.1, 17.7, 16.1; IR (diamond-ATR, neat) 3056, 2852, 1673,

1624, 1576, 1438, 1387, 854, 745 cm⁻¹. HRMS (ESI⁺) calcd for $C_{23}H_{29}O_2$ [M + H]⁺ 337.2168, found 337.2161. R_f 0.50 (petroleum ether/EtOAc, 50/1).

(*Z*)-*1*-(*Naphthalen-2-yl*)*icos-11-en-1-one* (*48*). According to **TP1**, the reaction of 2acetylnaphthalene (170 mg, 1 mmol) with oleyl alcohol (322 mg, 1.2 mmol) afforded the desired product **48** as a yellow oil (211 mg, 50%): ¹H NMR (400 MHz, CDCl₃) δ 8.46 (s, 1 H), 8.03 (dd, *J* = 8.6, 1.7 Hz, 1 H), 7.96 (d, *J* = 8.0 Hz, 1 H), 7.91–7.84 (m, 2 H), 7.62–7.51 (m, 2 H), 5.41–5.27 (m, 2 H), 3.09 (t, *J* = 7.4 Hz, 2 H), 2.06–1.93 (m, 4 H), 1.83–1.73 (m, 2 H), 1.34–1.20 (m, 24 H), 0.87 (t, *J* = 6.7 Hz, 3 H); ¹³C {H¹} NMR (101 MHz, CDCl₃) δ 200.6, 135.5, 134.4, 132.5, 129.9, 129.8, 129.6, 129.5, 128.4, 128.3, 127.7, 126.7, 123.9, 38.7, 31.9, 29.8, 29.5, 29.5, 29.4, 29.3, 29.3, 27.2, 24.6, 22.7, 14.1; IR (diamond-ATR, neat) 3058, 2852, 1681, 1622, 1463, 1368, 1276, 858, 745 cm⁻¹; HRMS (ESI⁺) calcd for C₃₀H₄₅O [M + H]⁺ 421.3470, found 421.3466. *R*_f 0.31 (petroleum ether/EtOAc, 50/1).

(*S*)-5,9-Dimethyl-1-(naphthalen-2-yl)dec-8-en-1-one (49). According to **TP1**, the reaction of 2acetylnaphthalene (170 mg, 1 mmol) with (S)-(-)-β-citronellol (188 mg, 1.2 mmol) afforded the desired product 49 as a yellow oil (158 mg, 51%): ¹H NMR (400 MHz, CDCl₃) δ 8.46 (s, 1 H), 8.03 (dd, *J* = 8.6, 1.7 Hz, 1 H), 7.96 (d, *J* = 8.0 Hz, 1 H), 7.91–7.84 (m, 2 H), 7.64–7.49 (m, 2 H), 5.16– 5.03 (m, 1 H), 3.07 (t, *J* = 7.4 Hz, 2 H), 2.06–1.89 (m, 2 H), 1.89–1.70 (m, 2 H), 1.68 (s, 3 H), 1.60 (s, 3 H), 1.52–1.32 (m, 3 H), 1.28–1.16 (m, 2 H), 0.91 (d, *J* = 6.5 Hz, 3 H); ¹³C {H¹} NMR (101 MHz, CDCl₃) δ 200.5, 135.5, 134.4, 132.5, 131.1, 129.6, 129.5, 128.3, 128.2, 127.7, 126.7, 124.9, 123.9, 38.9, 36.9, 36.6, 32.3, 25.7, 25.5, 22.0, 19.5, 17.6; IR (diamond-ATR, neat) 3062, 2912, 2850, 1679, 1626, 1595, 1455, 1375, 1276, 858, 819, 745, 695 cm⁻¹; HRMS (ESI⁺) calcd for C₂₂H₂₉O [M + H]⁺ 309.2218, found 309.2213; *R*_f 0.33 (petroleum ether/EtOAc, 50/1).

1-Phenyloctan-1-one (*50*). According to **TP1**, the reaction of acetophenone (120 mg, 1 mmol) with 1-hexanol (123 mg, 1.2 mmol) afforded the desired product **50** as a colorless oil (46 mg, 23%): ¹H NMR (400 MHz, CDCl₃) δ 7.98–7.92 (m, 2 H), 7.58–7.51 (m, 1 H), 7.48–7.42 (m, 2 H), 3.01–2.90 (m, 2 H), 1.78–1.68 (m, 2 H), 1.36–1.25 (m, 8 H), 0.89–0.84 (m, 3 H); ¹³C{H¹} NMR (101 MHz, CDCl₃) δ 200.6, 137.1, 132.8, 128.5, 128.0, 38.6, 31.7, 29.3, 29.1, 24.4, 22.6, 14.0; IR (diamond-ATR, neat) 3060, 3025, 2955, 2857, 1667, 1597, 1578, 1447, 1315, 1282, 973, 749 cm⁻¹; R_f 0.32

(petroleum ether/EtOAc, 100/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.¹⁹

2-Benzylcyclohexan-1-one (51). According to TP1, the reaction of cyclohexanone (98 mg, 1 mmol) with benzyl alcohol (130 mg, 1.2 mmol) afforded the desired product 51 as a yellow oil (53 mg, 28%): ¹H NMR (400 MHz, CDCl₃) δ 7.36–7.31 (m, 2 H), 7.28–7.17 (m, 3 H), 3.30 (dd, J = 13.9, 4.7 Hz, 1 H), 2.66–2.56 (m, 1 H), 2.54–2.34 (m, 3 H), 2.18–2.02 (m, 2 H), 1.95–1.84 (m, 1 H), 1.77–1.71 (m, 1 H), 1.67–1.57 (m, 1 H), 1.47–1.36 (m, 1 H); ¹³C {H¹} NMR (101 MHz, CDCl₃) δ 212.5, 140.3, 129.1, 128.2, 125.9, 52.4, 42.1, 35.4, 33.4, 28.0, 25.0; IR (diamond-ATR, neat) 3025, 2929, 2857, 1706, 1603, 1494, 1274, 1117, 720, 697 cm⁻¹; R_f 0.34 (petroleum ether/EtOAc, 20/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.²⁰

2-(4-Methylbenzyl)cyclohexan-1-one (52). According to **TP1**, the reaction of cyclohexanone (98 mg, 1 mmol) with 4-methylbenzyl alcohol (147 mg, 1.2 mmol) afforded the desired product **52** as a yellow oil (55 mg, 27%): ¹H NMR (400 MHz, CDCl₃) δ 7.08 (d, *J* = 8.1 Hz, 2 H), 7.04 (d, *J* = 8.1 Hz, 2 H), 3.18 (dd, *J* = 13.9, 4.8 Hz, 1 H), 2.57–2.46 (m, 1 H), 2.46–2.32 (m, 3 H), 2.31 (s, 3 H), 2.10–1.97 (m, 2 H), 1.86–1.78 (m, 1 H), 1.68–1.51 (m, 2 H), 1.40–1.27 (m, 1 H); ¹³C{H¹} NMR (101 MHz, CDCl₃) δ 212.7, 137.2, 135.4, 128.9, 128.9, 52.5, 42.1, 34.9, 33.3, 28.0, 25.0, 20.9; IR (diamond-ATR, neat) 3017, 2922, 2857, 1685, 1510, 1447, 1354, 1280, 825, 780, 615 cm⁻¹; *R*_f 0.33 (petroleum ether/EtOAc, 20/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.²⁰

2-(4-Methoxybenzyl)cyclohexan-1-one (53). According to **TP1**, the reaction of cyclohexanone (98 mg, 1 mmol) with 4-methoxybenzyl alcohol (166 mg, 1.2 mmol) afforded the desired product 53 as a colorless oil (48 mg, 22%): ¹H NMR (400 MHz, CDCl₃) δ 7.06 (d, J = 8.6 Hz, 2 H), 6.80 (d, J = 8.6 Hz, 2 H), 3.77 (s, 3 H), 3.14 (dd, J = 14.0, 4.9 Hz, 1 H), 2.55–2.25 (m, 4 H), 2.10–1.96 (m, 2 H), 1.87–1.77 (m, 1 H), 1.69–1.51 (m, 2 H), 1.40–1.30 (m, 1 H); ¹³C{H¹} NMR (101 MHz, CDCl₃) δ 212.7, 157.8, 132.3, 129.9, 113.7, 55.2, 52.6, 42.1, 34.5, 33.3, 28.0, 24.9; IR (diamond-ATR, neat) 3032, 2929, 2855, 1685, 1609, 1582, 1508, 1440, 1358, 1298, 829, 734 cm⁻¹; R_f 0.30 (petroleum ether/EtOAc, 20/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.²⁰

2-(3-Phenoxybenzyl)cyclohexan-1-one (54). According to **TP1**, the reaction of cyclohexanone (98 mg, 1 mmol) with 3-phenoxybenzyl alcohol (240 mg, 1.2 mmol) afforded the desired product **54** as a colorless oil (64 mg, 23%): ¹H NMR (400 MHz, CDCl₃) δ 7.39–7.27 (m, 2 H), 7.24–7.18 (m, 1 H), 7.09 (td, J = 7.4, 1.2 Hz, 1H), 7.02–6.97 (m, 2 H), 6.89 (dt, J = 7.5, 1.3 Hz, 1 H), 6.81 (dd, J = 6.5, 1.2 Hz, 2 H), 3.20 (dd, J = 13.9, 4.8 Hz, 1 H), 2.58–2.47 (m, 1 H), 2.46–2.27 (m, 3 H), 2.04 (dddd, J = 11.9, 10.7, 6.0, 2.8 Hz, 2 H), 1.87–1.78 (m, 1 H), 1.74–1.63 (m, 1 H), 1.60–1.51 (m, 1 H), 1.41–1.27 (m, 1 H); ¹³C{H¹} NMR (101 MHz, CDCl₃) δ 212.3, 157.2, 157.1, 142.5, 129.7, 129.5, 124.1, 123.1, 119.6, 118.8, 116.3, 52.2, 42.1, 35.3, 33.4, 27.9, 25.0; IR (diamond-ATR, neat) 3056, 2927, 2859, 1706, 1578, 1486, 1360, 1245, 883, 751, 691 cm⁻¹; HRMS (ESI⁺) calcd for C₁₉H₂₁O₂ [M + H]⁺ 281.1542, found 281.1538; *R*_f 0.31 (petroleum ether/EtOAc, 20/1).

2-(4-Bromobenzyl)cyclohexan-1-one (55). According to **TP1**, the reaction of cyclohexanone (98 mg, 1 mmol) with 4-bromobenzyl alcohol (224 mg, 1.2 mmol) afforded the desired product **55** as a yellow oil (60 mg, 22%): ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 8.3 Hz, 2 H), 7.02 (d, *J* = 8.3 Hz, 2 H), 3.14 (dd, *J* = 13.9, 5.1 Hz, 1 H), 2.55–2.45 (m, 1 H), 2.45–2.25 (m, 3 H), 2.11–1.94 (m, 2 H), 1.87–1.77 (m, 1 H), 1.72–1.51 (m, 2 H), 1.40–1.27 (m, 1 H); ¹³C {H¹} NMR (101 MHz, CDCl₃) δ 212.2, 139.4, 131.3, 130.9, 119.7, 52.3, 42.2, 34.9, 33.5, 27.9, 25.1; IR (diamond-ATR, neat) 3021, 2922, 2852, 1706, 1486, 1311, 1010, 831, 792, 631 cm⁻¹; *R*_f 0.28 (petroleum ether/EtOAc, 20/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.²⁰

2,6-Bis(naphthalen-2-ylmethyl)cyclohexan-1-one (56). According to **TP2**, the reaction of cyclohexanone (98 mg, 1 mmol) with 2-naphthalenemethanol (380 mg, 2.4 mmol) afforded the desired product **56** as a pale yellow solid (64 mg, 17%): mp 114–116 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.99–7.90 (m, 2 H), 7.90–7.83 (m, 2 H), 7.73 (d, J = 8.1 Hz, 2 H), 7.54–7.45 (m, 4 H), 7.43–7.37 (m, 2 H), 7.34 (dd, J = 7.1, 1.4 Hz, 2 H), 3.85 (dd, J = 14.2, 4.3 Hz, 2 H), 2.87 (dd, J = 14.2, 9.0 Hz, 2 H), 2.80–2.68 (m, 2 H), 2.05–1.94 (m, 2 H), 1.73–1.66 (m, 1 H), 1.53–1.35 (m, 3 H); ¹³C {H¹} NMR (101 MHz, CDCl₃) δ 212.8, 136.4, 133.9, 131.9, 128.9, 127.5, 126.8, 125.8, 125.4, 125.3, 123.7, 51.7, 35.2, 32.4, 25.2; IR (diamond-ATR, neat) 3045, 2927, 2853, 1695, 1594, 11447, 1395, 1362, 1282, 858, 788 cm⁻¹; HRMS (ESI⁺) calcd for C₂₈H₂₆ONa [M + Na]⁺ 401.1881, found 401.1877; *R*_f 0.50 (petroleum ether/EtOAc, 20/1).

2,6-*Bis(benzo[d]*[1,3]*dioxol-5-ylmethyl)cyclohexan-1-one (57).* According to **TP2**, the reaction of cyclohexanone (98 mg, 1 mmol) with piperonyl alcohol (365 mg, 2.4 mmol) afforded the desired product **57** as a pale yellow solid (73 mg, 20%): mp 147–149 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.70 (d, *J* = 7.9 Hz, 2 H), 6.64 (d, *J* = 1.7 Hz, 2 H), 6.59 (dd, *J* = 7.9, 1.7 Hz, 2 H), 5.90 (s, 4 H), 3.12 (dd, *J* = 14.0, 4.9 Hz, 2 H), 2.58–2.43 (m, 2 H), 2.34 (dd, *J* = 14.1, 8.5 Hz, 2 H), 2.12–1.99 (m, 2 H), 1.84–1.71 (m, 1 H), 1.56–1.49 (m, 1 H), 1.35–1.26 (m, 2 H); ¹³C {H¹} NMR (101 MHz, CDCl₃) δ 212.8, 147.5, 145.7, 134.3, 121.9, 109.5, 108.0, 100.8, 53.0, 35.2, 34.8, 25.3; IR (diamond-ATR, neat) 2950, 2922, 2854, 1693, 1608, 1500, 1487, 1363, 1246, 1194, 927, 866, 818, 790, 637 cm⁻¹; HRMS (ESI⁺) calcd for C₂₂H₂₃O₅ [M + H]⁺ 367.1545, found 367.1542; *R_f* 0.20 (petroleum ether/EtOAc, 20/1).

2,6-Bis(3-phenoxybenzyl)cyclohexan-1-one (58). According to **TP2**, the reaction of cyclohexanone (98 mg, 1 mmol) with 3-phenoxybenzyl alcohol (481 mg, 2.4 mmol) afforded the desired product **58** as a white solid (125 mg, 27%): mp 76–78 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.32 (m, 4 H), 7.27–7.22 (m, 2 H), 7.14–7.09 (m, 2 H), 7.04–6.99 (m, 4 H), 6.92 (dt, J = 7.7, 1.3 Hz, 2 H), 6.87–6.81 (m, 4 H), 3.22 (dd, J = 14.0, 4.8 Hz, 2 H), 2.58 (ddt, J = 13.2, 9.5, 5.1 Hz, 2 H), 2.42 (dd, J = 14.0, 8.7 Hz, 2 H), 2.12–2.03 (m, 2 H), 1.86–1.77 (m, 1 H), 1.62–1.52 (m, 1 H), 1.41–1.27 (m, 2 H); ¹³C {H¹} NMR (101 MHz, CDCl₃): δ 212.3, 157.2, 157.1, 142.6, 129.7, 129.5, 124.1, 123.1, 119.5, 118.8, 116.3, 52.6, 35.3, 34.7, 25.3; IR (diamond-ATR, neat) 3040, 2926, 2855, 1708, 1582, 1443, 1252, 887, 783, 693 cm⁻¹; HRMS (ESI⁺) calcd for C₃₂H₃₀O₃Na [M + Na]⁺ 485.2093, found 485.2084; R_f 0.33 (petroleum ether/EtOAc, 20/1).

2-(4-Methoxyphenyl)quinoline (59). According to **TP1**, the reaction of 4'-methoxyacetophenone (150 mg, 1 mmol) with 2-aminobenzyl alcohol (148 mg, 1.2 mmol) afforded the desired product **59** as a white solid (115 mg, 49%): mp 122–123 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.22–8.05 (m, 4 H), 7.87–7.75 (m, 2 H), 7.76–7.62 (m, 1 H), 7.56–7.42 (m, 1 H), 7.12–6.93 (m, 2 H), 3.87 (s, 3 H); ¹³C {H¹} NMR (101 MHz, CDCl₃) δ 160.7, 156.8, 148.2, 136.6, 132.2, 129.5, 129.4, 128.8, 127.4, 126.8, 125.9, 118.5, 114.2, 55.3; IR (diamond-ATR, neat) 3038, 2957, 2840, 1595, 1517, 1496, 1319, 1247, 1027, 946, 815, 747, 646 cm⁻¹; R_f 0.31 (petroleum ether/EtOAc, 20/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.³

2-(4-Fluorophenyl)quinoline (60). According to **TP1**, the reaction of 4'-fluoroacetophenone (138 mg, 1 mmol) with 2-aminobenzyl alcohol (148 mg, 1.2 mmol) afforded the desired product 60 as a white solid (103 mg, 46%): mp 88–89 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 8.7 Hz, 1 H), 8.18–8.12 (m, 3 H), 7.81 (d, J = 8.6 Hz, 2 H), 7.76–7.69 (m, 1 H), 7.55–7.49 (m, 1 H), 7.24–7.16 (m, 2 H); ¹³C{H¹} NMR (101 MHz, CDCl₃) δ 163.8 (d, J = 249.0 Hz), 156.2, 148.2, 136.9, 135.8 (d, J = 3.1 Hz), 129.8, 129.6, 129.4 (d, J = 8.4 Hz), 127.4, 127.0, 126.3, 118.6, 115.7 (d, J = 21.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -112.52; IR (diamond-ATR, neat) 3042, 2924, 2855, 1554, 1492, 1321, 1267, 852, 755, 648 cm⁻¹; R_f 0.48 (petroleum ether/EtOAc, 20/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.³

5,6-Dihydrobenzo[c]acridine (61). According to **TP1**, the reaction of 1-tetralone (146 mg, 1 mmol) with 2-aminobenzyl alcohol (148 mg, 1.2 mmol) afforded the desired product 61 as a white solid (130 mg, 56%): mp 60–61 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.59 (dd, J = 7.6, 1.4 Hz, 1 H), 8.15 (d, J = 8.4 Hz, 1 H), 7.90 (s, 1 H), 7.73 (dd, J = 8.0, 1.4 Hz, 1 H), 7.70–7.60 (m, 1 H), 7.53–7.41 (m, 2 H), 7.41–7.34 (m, 1 H), 7.27 (d, J = 7.4 Hz, 1 H), 3.11 (t, J = 7.5 Hz, 2 H), 3.00 (t, J = 7.5 Hz, 2 H); ¹³C NMR (101 MHz, CDCl₃) δ 153.3, 147.6, 139.4, 134.7, 133.6, 130.5, 129.6, 129.3, 128.6, 127.9, 127.8, 127.3, 126.9, 125.9, 28.8, 28.3; IR (diamond-ATR, neat) 3036, 2931, 2846, 1554, 1434, 1344, 1253, 911, 860, 767, 613 cm⁻¹; R_f 0.50 (petroleum ether/EtOAc, 20/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.¹²

2-(*Naphthalen-2-yl*)quinoline (62). According to **TP1**, the reaction of 2-acetylnaphthalene (170 mg, 1 mmol) with 2-aminobenzyl alcohol (148 mg, 1.2 mmol) afforded the desired product 62 as a white solid (135 mg, 53%): mp 160–161 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.61 (s, 1 H), 8.38 (dd, *J* = 8.6, 1.8 Hz, 1 H), 8.24 (d, *J* = 8.5 Hz, 2 H), 8.07–7.95 (m, 3 H), 7.95–7.86 (m, 1 H), 7.84 (dd, *J* = 8.1, 1.4 Hz, 1 H), 7.78–7.72 (m, 1 H), 7.57–7.49 (m, 3 H); ¹³C{H¹} NMR (101 MHz, CDCl₃) δ 157.1, 148.3, 136.9, 136.8, 133.8, 133.5, 129.7, 129.6, 128.8, 128.5, 127.7, 127.5, 127.2, 127.1, 126.7, 126.3, 126.3, 125.0, 119.1; IR (diamond-ATR, neat) 3050, 2927, 2852, 1556, 1494, 1358, 1249, 817, 736, 691 cm⁻¹; *R*_f 0.50 (petroleum ether/EtOAc, 20/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.²¹

2-((1-Benzylpiperidin-4-yl)methyl)-5,6-dimethoxy-2,3-dihydro-1H-inden-1-one (63). According to **TP1**, the reaction of 5,6-dimethoxy-1-indanone (384 mg, 2 mmol) with (1-benzyl-4-piperidyl)methanol (493 mg, 2.4 mmol) afforded the desired product 63 as a yellow oil (205 mg, 27%): ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.26 (m, 4 H), 7.26–7.19 (m, 1 H), 7.14 (s, 1 H), 6.83 (s, 1 H), 3.93 (s, 3 H), 3.88 (s, 3 H), 3.48 (s, 2 H), 3.20 (dd, *J* = 17.5, 8.1 Hz, 1 H), 2.95–2.82 (m, 2 H), 2.73–2.61 (m, 2 H), 2.02–1.84 (m, 3 H), 1.77–1.58 (m, 2 H), 1.52–1.25 (m, 4 H); ¹³C {H¹} NMR (101 MHz, CDCl₃) δ 207.7, 155.4, 149.3, 148.7, 138.3, 129.2, 129.2, 128.1, 126.8, 107.3, 104.3, 63.4, 56.1, 56.0, 53.7, 53.7, 45.4, 38.6, 34.4, 33.3, 32.9, 31.7; IR (diamond-ATR, neat) 3060, 2920, 2842, 1689, 1589, 1453, 1364, 1261, 973, 862, 732, 646 cm⁻¹; *R*_f 0.31 (petroleum ether/EtOAc, 1/1). All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.²²

Gas Chromatography analysis

The reactions were set up following the general procedure for $CrCl_2$ -catalyzed α -alkylation of ketones with alcohols. As depicted in Figure S1 and Figure S2, H₂ was detected by GC analysis (TCD detection) of the reaction headspace, which was performed on a SCION 436-GC instrument equipped with dual TCD detectors and nitrogen as the carrier gas.

Figure S2. Evidence for H₂ evolution from the dehydrogenation of 4-methoxybenzyl alcohol via GC analysis

Deuterium labelling experiments

Acetophenone (51 mg, 0.42 mmol) reacted with deuterated 4-methoxybenzyl alcohol (71 mg, 0.5 mmol) in the presence of LiOH (12 mg, 0.15 mmol), $CrCl_2$ (3 mg, 0.02 mmol) and PPh₃ (11 mg, 0.042 mmol) in chlorobenzene (1 mL) at 130 °C for 25 h under nitrogen atmosphere, giving the expected product in the yield of 92% (81 mg).

Standard ¹H NMR spectra of compound **3**

¹H NMR spectra of the product from the reaction of acetophenone with deuterated 4-methoxybenzyl alcohol

11 10 9	8 7 6 5 4 fl (ppm)	3 2 1 0 -1
Deuterium incorporation in α Deuterium incorporation in β		
	position	position
Singnal δ	3.27 (2 H)	3.03 (2 H)
Integral value	1.94	1.06
Calculated ratio	{(2-1.94)/2}×100=3%	{(2-1.06)/2}×100=47%

4-Methoxychalcone (119 mg, 0.5 mmol) reacted with deuterated 4-methoxybenzyl alcohol (85 mg, 0.6 mmol) in the presence of LiOH (15 mg, 0.6 mmol), $CrCl_2$ (4 mg, 0.02 mmol) and PPh₃ (13 mg, 0.05 mmol) in chlorobenzene (1 mL) at 130 °C for 25 h under nitrogen atmosphere, giving the expected product in the yield of 49% (59 mg).

Standard ¹H NMR spectra of compound **3**.

¹H NMR spectra of the product from the reaction of 4-methoxychalcone deuterated 4-methoxybenzyl alcohol.

Isolation of the intermediate 4-methoxychalcone 3a

Acetophenone (60 mg, 0.5 mmol) reacted with 4-methoxybenzaldehyde (82 mg, 0.6 mmol) in the presence of LiOH (15 mg, 0.6 mmol), CrCl₂ (4 mg, 0.02 mmol) and PPh₃ (13 mg, 0.05 mmol) in chlorobenzene (1 mL) at 130 °C for 25 h under nitrogen atmosphere, giving the expected product **3a** in the yield of 29% (35 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.0 –7.98 (m, 2 H), 7.78 (d, *J* = 15.6 Hz, 1 H), 7.62–7.59 (m, 2 H), 7.58–7.54 (m, 1 H), 7.52–7.47 (m, 2 H), 7.41 (d, *J* = 15.6 Hz, 1 H), 6.96–6.91 (m, 2 H), 3.85 (s, 3 H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 190.6, 161.7, 144.7, 138.5, 132.6, 130.2, 128.6, 128.4, 127.6, 119.8, 114.4, 55.4. All the resonances in the ¹H and ¹³C NMR spectra were consistent with reported values.²³

Hydrogenation of the intermediate 4-methoxychalcone 3a

4-Methoxychalcone (119 mg, 0.5 mmol) reacted with 4-methoxybenzyl alcohol (85 mg, 0.6 mmol) in the presence of LiOH (15 mg, 0.6 mmol), CrCl₂ (4 mg, 0.02 mmol) and PPh₃ (13 mg, 0.05 mmol) in chlorobenzene (1 mL) at 130 °C for 25 h under nitrogen atmosphere, giving the expected product **3** in the yield of 51% (56 mg).

References

[1] Piehl, P.; Amuso, R.; Alberico, E.; Junge, H.; Gabriele, B.; Neumann, H.; Beller, M. *Chem. Eur. J.* **2020**, *26*, 6050–6055.

[2] Prasanna, R.; Guha, S.; Sekar, G. Org. Lett. 2019, 21, 2650–2653.

[3] Tan, D.-W.; Li, H.-X.; Zhu, D.-L.; Li, H.-Y.; Young, D. J.; Yao, J.-L.; Lang, J.-P. *Org. Lett.* **2018**, *20*, 608–611.

[4] Yang, J.; Seto, Y. W.; Yoshikai, N. ACS Catal. 2015, 5, 3054-3057.

[5] Liang, Y.-F.; Zhou, X.-F.; Tang, S.-Y.; Huang, Y.-B.; Feng, Y.-S.; Xu, H.-J. *RSC Adv.* **2013**, *3*, 7739.

[6] Schedler, M.; Wang, D.-S.; Glorius, F. Angew. Chem. Int. Ed. 2013, 52, 2585–2589.

[7] Verma, A.; Hazra, S.; Dolui, P.; Elias, A. J. Asian J. Org. Chem. 2021, 10 (3), 626-633.

[8] Zhao, X.; Li, B.; Xia, W. Org. Lett. 2020, 22, 1056–1061.

[9] Guo, J.-Y.; Guan, T.; Tao, J.-Y.; Zhao, K.; Loh, T.-P. Org. Lett. 2019, 21, 8395–8399.

[10] Ramar, T.; Subbaiah, M. A. M.; Ilangovan, A. J. Org. Chem. 2020, 85, 7711-7727.

[11] Kuwahara, T.; Fukuyama, T.; Ryu, I. Org. Lett. 2012, 14, 4703–4705.

[12] Mamidala, R.; Samser, S.; Sharma, N.; Lourderaj, U.; Venkatasubbaiah, K. *Organometallics* **2017**, *36*, 3343–3351.

[13] Ivković, B. M.; Nikolic, K.; Ilić, B. B.; Žižak, Ž. S.; Novaković, R. B.; Čudina, O. A.; Vladimirov, S. M. *Eur. J. Med. Chem.* **2013**, *63*, 239–255.

[14] Girish, Y. R.; Raghavendra, K. R.; Nagaraja, D.; Kumar, K. S. S.; Shashikanth, S. Chin. J. Chem. 2015, 33, 181–184.

[15] Cao, X.-N.; Wan, X.-M.; Yang, F.-L.; Li, K.; Hao, X.-Q.; Shao, T.; Zhu, X.; Song, M.-P. J. Org. Chem. 2018, 83, 3657–3668.

[16] Sumino, S.; Ui, T.; Ryu, I. Org. Lett. 2013, 15, 3142-3145.

[17] Thiyagarajan, S.; Vijaya Sankar, R.; Gunanathan, C. Org. Lett. 2020, 22, 7879–7884.

[18] Belhomme, M.-C.; Wang, D.; Szabó, K. J. Org. Lett. 2016, 18, 2503–2506.

[19] Pandey, B.; Xu, S.; Ding, K. Org. Lett. 2019, 21, 7420-7423.

[20] Peng, J.; Chen, C.; Xi, C. Chem. Sci. 2016, 7, 1383-1387.

[21] Joshi, G.; Wani, A. A.; Sharma, S.; Bhutani, P.; Bharatam, P. V.; Paul, A. T.; Kumar, R. *ACS Omega* **2018**, *3*, 18783–18790.

[22] Tinnis, F.; Volkov, A.; Slagbrand, T.; Adolfsson, H. Angew. Chem. Int. Ed. 2016, 55, 4562–4566.

[23] Tiecco, M.; Germani, R.; Cardellini, F. RSC Adv. 2016, 6, 43740-43747.

¹H and ¹³C{¹H} NMR Spectra of Compounds

Figure S4. ¹³C{¹H} NMR (101 MHz) spectrum of compound 3 in CDCl₃

 ^{1}H and $^{13}C{^{1}H}$ NMR spectra of compound 4

Figure S6. ¹³C{¹H} NMR (101 MHz) spectrum of compound 4 in CDCl₃

Figure S8. ¹³C{¹H} NMR (101 MHz) spectrum of compound 5 in CDCl₃

 ^{1}H and $^{13}C{^{1}H}$ NMR spectra of compound 6

Figure S9. ¹H NMR (400 MHz) spectrum of compound 6 in CDCl₃

Figure S10. ¹³C{¹H} NMR (101 MHz) spectrum of compound 6 in CDCl₃

 1H and $^{13}C\{^1H\}$ NMR spectra of compound 7

Figure S13. ¹⁹F NMR (376 MHz) spectrum of compound 7 in CDCl₃

 1H and $^{13}C\{^1H\}$ NMR spectra of compound ${\bf 8}$

Figure S16. ¹⁹F NMR (376 MHz) spectrum of compound 8 in CDCl₃

 1H and $^{13}C\{^1H\}$ NMR spectra of compound $\boldsymbol{9}$

Figure S18. ¹³C{¹H} NMR (101 MHz) spectrum of compound 9 in CDCl₃

Figure S19. ¹H NMR (400 MHz) spectrum of compound 10 in CDCl₃

Figure S20. ¹³C{¹H} NMR (101 MHz) spectrum of compound 10 in CDCl₃

Figure S22. ¹³C{¹H} NMR (101 MHz) spectrum of compound 11 in CDCl₃

Figure S24. ¹³C{¹H} NMR (101 MHz) spectrum of compound 12 in CDCl₃

Figure S26. ¹³C{¹H} NMR (101 MHz) spectrum of compound 13 in CDCl₃

 1H and $^{13}C\{^1H\}$ NMR spectra of compound 14

Figure S27. ¹H NMR (400 MHz) spectrum of compound 14 in CDCl₃

Figure S28. ¹³C{¹H} NMR (101 MHz) spectrum of compound 14 in CDCl₃

Figure S30. ¹³C{¹H} NMR (101 MHz) spectrum of compound 15 in CDCl₃

70 60 50 40 30 20 10 0 -10

90 80

Figure S32. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (101 MHz) spectrum of compound 16 in CDCl_3

150 140 130 120 110 100 f1 (ppm)

 1H and $^{13}C\{^1H\}$ NMR spectra of compound 17

210 200

190 180 170 160

Figure S34. ¹³C{¹H} NMR (101 MHz) spectrum of compound 17 in CDCl₃

 1H and $^{13}C\{^1H\}$ NMR spectra of compound $\boldsymbol{18}$

Figure S36. ¹³C{¹H} NMR (101 MHz) spectrum of compound 18 in CDCl₃

110 100 f1 (ppm) -10

Figure S38. ¹³C{¹H} NMR (101 MHz) spectrum of compound 19 in CDCl₃

Figure S39. ¹H NMR (400 MHz) spectrum of compound 20 in CDCl₃

Figure S41. ¹⁹F NMR (376 MHz) spectrum of compound 20 in CDCl₃

Figure S43. ¹³C{¹H} NMR (101 MHz) spectrum of compound 21 in CDCl₃

 1H and $^{13}C\{^1H\}$ NMR spectra of compound ${\bf 22}$

Figure S44. ¹H NMR (400 MHz) spectrum of compound 22 in CDCl₃

Figure S45. ¹³C{¹H} NMR (101 MHz) spectrum of compound 22 in CDCl₃

Figure S46. ¹H NMR (400 MHz) spectrum of compound 23 in CDCl₃

Figure S47. ¹³C{¹H} NMR (101 MHz) spectrum of compound 23 in CDCl₃

Figure S49. ¹³C{¹H} NMR (101 MHz) spectrum of compound 24 in CDCl₃

Figure S51. ¹³C{¹H} NMR (101 MHz) spectrum of compound 25 in CDCl₃

 1H and $^{13}C\{^1H\}$ NMR spectra of compound $\mathbf{26}$

Figure S53. ¹³C{¹H} NMR (101 MHz) spectrum of compound 26 in CDCl₃

Figure S56. ¹⁹F NMR (376 MHz) spectrum of compound 27 in CDCl₃

Figure S59. ¹⁹F NMR (376 MHz) spectrum of compound 28 in CDCl₃

Figure S61. ¹³C{¹H} NMR (101 MHz) spectrum of compound 29 in CDCl₃

Figure S63. ¹³C{¹H} NMR (101 MHz) spectrum of compound 30 in CDCl₃

 1H and $^{13}C\{^1H\}$ NMR spectra of compound $\boldsymbol{31}$

Figure S64. ¹H NMR (400 MHz) spectrum of compound 31 in CDCl₃

Figure S65. ¹³C{¹H} NMR (101 MHz) spectrum of compound 31 in CDCl₃

Figure S67. ¹³C{¹H} NMR (101 MHz) spectrum of compound 32 in CDCl₃

Figure S69. ¹³C{¹H} NMR (101 MHz) spectrum of compound 33 in CDCl₃

Figure S71. ¹³C{¹H} NMR (101 MHz) spectrum of compound 34 in CDCl₃

Figure S73. ¹³C{¹H} NMR (101 MHz) spectrum of compound 35 in CDCl₃

Figure S75. ¹³C{¹H} NMR (101 MHz) spectrum of compound 36 in CDCl₃

Figure S76. ¹H NMR (400 MHz) spectrum of compound 37 in CDCl₃

Figure S77. ¹³C{¹H} NMR (101 MHz) spectrum of compound 37 in CDCl₃

Figure S79. ¹³C{¹H} NMR (101 MHz) spectrum of compound 38 in CDCl₃

Figure S81. ¹³C{¹H} NMR (101 MHz) spectrum of compound 39 in CDCl₃

Figure S83. ¹³C{¹H} NMR (101 MHz) spectrum of compound 40 in CDCl₃

Figure S85. ¹³C{¹H} NMR (101 MHz) spectrum of compound 41 in CDCl₃

Figure S86. ¹H NMR (400 MHz) spectrum of compound 42 in CDCl₃

Figure S87. ¹³C{¹H} NMR (101 MHz) spectrum of compound 42 in CDCl₃

Figure S89. ¹³C{¹H} NMR (101 MHz) spectrum of compound 43 in CDCl₃

Figure S91. ¹³C{¹H} NMR (101 MHz) spectrum of compound 44 in CDCl₃

 1H and $^{13}C\{^1H\}$ NMR spectra of compound 45

Figure S93. ¹³C{¹H} NMR (101 MHz) spectrum of compound 45 in CDCl₃

Figure S95. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (101 MHz) spectrum of compound 46 in CDCl3

Figure S97. ¹³C{¹H} NMR (101 MHz) spectrum of compound 47 in CDCl₃

Figure S98. ¹H NMR (400 MHz) spectrum of compound 48 in CDCl₃

Figure S99. ¹³C{¹H} NMR (101 MHz) spectrum of compound 48 in CDCl₃

Figure S101. ¹³C{¹H} NMR (101 MHz) spectrum of compound 49 in CDCl₃

Figure S103. ¹³C{¹H} NMR (101 MHz) spectrum of compound 50 in CDCl₃

Figure S105. ¹³C{¹H} NMR (101 MHz) spectrum of compound 51 in CDCl₃

Figure S107. ¹³C{¹H} NMR (101 MHz) spectrum of compound 52 in CDCl₃

Figure S108. ¹H NMR (400 MHz) spectrum of compound 53 in CDCl₃

Figure S109. ¹³C{¹H} NMR (101 MHz) spectrum of compound 53 in CDCl₃

Figure S111. ¹³C{¹H} NMR (101 MHz) spectrum of compound 54 in CDCl₃

Figure S113. ¹³C{¹H} NMR (101 MHz) spectrum of compound 55 in CDCl₃

Figure S115. ¹³C{¹H} NMR (101 MHz) spectrum of compound 56 in CDCl₃

Figure S116. ¹H NMR (400 MHz) spectrum of compound 57 in CDCl₃

Figure S117. ¹³C{¹H} NMR (101 MHz) spectrum of compound 57 in CDCl₃

S99

Figure S119. ¹³C{¹H} NMR (101 MHz) spectrum of compound 58 in CDCl₃

Figure S121. ¹³C{¹H} NMR (101 MHz) spectrum of compound 59 in CDCl₃

Figure S124. ¹⁹F NMR (376 MHz) spectrum of compound 60 in CDCl₃

Figure S126. ¹³C{¹H} NMR (101 MHz) spectrum of compound 61 in CDCl₃

Figure S128. ¹³C{¹H} NMR (101 MHz) spectrum of compound 62 in CDCl₃

Figure S129. ¹H NMR (400 MHz) spectrum of compound 63 in CDCl₃

Figure S130. ¹³C{¹H} NMR (101 MHz) spectrum of compound 63 in CDCl₃

`OMe

Figure S130. ¹³C{¹H} NMR (101 MHz) spectrum of compound 3a in CDCl₃