Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supporting Information

Access to Disulfides through Ligand controlling Nickel-catalyzed Dithiosulfonate and Alkyl Halides

Wang Chen,^{a,§} Xin-yu Liu,^a Daopeng Sheng,^{b,c} Yi-Fan Jiang,^a Weidong Rao,^b Shu-Su Shen,^d Zhao-Ying Yang,^e Shun-Yi Wang,^{a,*}

^aKey Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China.

^bKey Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.

^cState Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China

^dSchool of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99, Xuefu road, Huqiu district, Suzhou, PR China, 215009.

^eSoochow College, Soochow University, Suzhou, 215123, China.

Table of Contents

1.	General Information						
2.	Synthesis of Substrates						
3.	General procedures						
4.	Spectroscopic Data of Compounds						
5.	Reference						
6.	Copies	of	¹ H、 ¹³	C、 ¹⁹ F	NMR	Spectra	for
	compoundsS14						

1. General Information

Unless otherwise stated, all commercially available compounds are used as specified without further purification. All reactions were carried out in flame-dried sealed tubes with magnetic stirring. The solvents used for chromatographic analysis were of analytical grade and did not require further purification. Anhydrous DMSO, was purchased from Beijing InnoChem Science & Technology Co., Ltd. Analytical thin-layer chromatography (TLC) was performed on silica gel, visualized by I_2 or irradiation with UV light. For column chromatography, 200-300 mesh silica gel was used. Flash chromatography was performed with SepaBean® machine of Santai Technologies. ¹H-NMR and ¹³C-NMR were recorded on a BRUKER 300 MHz or 400 MHz spectrometer in $CDCl_3$. Chemical shifts (δ) were reported referenced to an internal tetramethylsilane standard or the CDCl₃ residual peak (δ 7.26) for 1H NMR. Chemical shifts of 13C NMR are reported relative to CDCl₃ (& 77.16). Data are reported in the following order: chemical shift (δ) in ppm; multiplicities are indicated s (singlet), bs (broad singlet), d (doublet), t (triplet), m (multiplet); coupling constants (J) are in Hertz (Hz). Melting points were measured on an Electrothermal digital melting point apparatus and were uncorrected. IR spectra were recorded on a BRUKER VERTEX 70 spectrophotometer and are reported in terms of frequency of absorption (cm⁻¹). HRMS spectra were obtained by using BRUKER micrOTOF-Q III instrument with ESI or EI source.

2. Synthesis of Substrates Synthesis of 1a-1g according to the following procedure¹

A flame-dried Schlenk-tube equipped with a magnetic stir bar was sealed with a septum, and degassed by alternating vacuum evacuation and argon backfilling (three times) before a solution of RSSR (10.00 mmol, 1.0 equiv) in Et₂O (40 mL) was added. SO₂Cl₂ (1.350 g, 10.00 mmol, 1.0 equiv) was slowly added to the result solution at 0 °C and the mixture was stirred at the same temperature for 1 h. Then a solution of PhSO₂SNa²(3.919 g, 20.00 mmol, 2.0 equiv) in acetone (50 mL) was added slowly at 0 °C and then the mixture was allowed to warm to room temperature stirred for 2 h. The precipitate was filtered and the filtrate was evaporated under reduced pressure with the aid of a rotary evaporator the crude residue was purified by column chromatography to give the desired product.

Synthesis of alkyl halides

Alkyl halides 2a-2r are commercially available from Energy Chemical, Aladdin, Leyan, Alfa Aesar China. All commercially available substrates were used as received. Alkyl halides 2s^{3,4}, 2t⁵ and 2u⁵, were prepared according to previously reported literature procedures.

3. General procedures

In glovebox, an oven-dried screw-capped 8-mL vial equipped with a magnetic stir bar was charged with dithiosulfonylation (1a) (73.4 mg, 0.28 mmol), 1- bromo-3-phenylpropane (2c) (39.8 mg, 0.2 mmol), Ni(acac)₂ (2.6 mg, 5.0 mol %), L3 (3.6 mg, 10 mol %), Mn (16.5 mg, 2.5 equiv.), DMSO (1.5 mL) was added via syringe and the mixture was stirred at 50 °C for 12 h. After 12 h, the crude reaction mixture was diluted with ethyl acetate (20 mL) and washed with water (20 mL \times 3). The organic layer was dried over Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography to afford pure product 3c.

In glovebox, an oven-dried screw-capped 8-mL vial equipped with a magnetic stir bar was charged with dithiosulfonylation (1a) (73.4 mg, 0.28 mmol), 6-bromohex-1-ene (2v) (32.4 mg, 0.2 mmol), Ni(acac)₂ (2.6 mg, 5.0 mol %), L3 (3.6 mg, 10 mol %), Mn (16.5 mg, 2.5 equiv.), DMSO (1.5 mL) was added via syringe and the mixture was stirred at 50 °C for 12 h. After 12 h, the crude reaction mixture was diluted with ethyl acetate (20 mL) and washed with water (20 mL \times 3). The organic layer was dried over Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography to afford pure product 3v and 3v'.

¹H NMR Spectra of 3v and 3v' (400 MHz, CDCl₃)

4. Spectroscopic Data of Compounds

SS-phenyl benzenesulfono(dithioperoxoate) (1g)

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.49 (t, *J* = 8.4 Hz, 3H), 7.36 (dt, *J* = 15.6, 7.3 Hz, 3H), 7.26 (d, *J* = 7.1 Hz, 4H).¹³**C NMR** (101 MHz, Chloroform-*d*) δ 142.9, 136.6, 133.7, 131.4, 129.5, 128.8, 127.8, 127.6. HRMS (ESI): calcd. for C₁₂H₁₁S₃O₂ [M+H]+: 282.9916, found: 282.9916.

1-(tert-butyl)-2-phenethyldisulfane (3a)

Colorless liquid. yield 46% (20.8 mg, 0.2 mmol scale), and purified by flash column chromatography on silica gel (PE). **IR (neat)**: v = 2961, 2928, 1452, 1361, 1164, 747, 699, 489 cm⁻¹. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 (dd, J = 8.4, 6.3 Hz, 2H), 7.26 – 7.17 (m, 3H), 2.98 (q, J = 3.3 Hz, 4H), 1.36 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 140.3, 128.6, 128.5, 126.4, 47.9, 41.9, 35.8, 30.0. HRMS (ESI): calcd. for C₁₂H₁₈S₂Na [M+Na]+: 249.0742, found: 249.0748.

1-(tert-butyl)-2-(4-fluorophenethyl)disulfane (3b)

Colorless liquid. yield 58% (20.8 mg, 0.2 mmol scale), and purified by flash column chromatography on silica gel (PE). **IR (neat)**: v = 2962, 1508, 1223, 1161, 823 cm⁻¹. ¹H **NMR** (400 MHz, Chloroform-*d*) δ 7.16 (dd, J = 8.5, 5.5 Hz, 2H), 6.98 (t, J = 8.7 Hz, 2H), 2.97 – 2.89 (m, 4H), 1.35 (s, 9H). ¹³C **NMR** (100 MHz, Chloroform-*d*) δ 162.8, 160.3, 135.8, 135.8, 130.1, 130.0, 115.4, 115.1, 47.9, 41.9, 41.9, 34.9, 30.0. ¹⁹F **NMR** (376 MHz, Chloroform-*d*) δ -116.79. HRMS (ESI): calcd. for C₁₂H₁₇FS₂Na [M+Na]+: 267.0648, found: 267.0645.

1-(tert-butyl)-2-(3-phenylpropyl)disulfane (3c)

Colorless liquid. yield 70% (33.6 mg, 0.2 mmol scale), and purified by flash column chromatography on silica gel (PE). **IR (neat)**: v = 2958, 2928, 1450, 1165, 741, 697 cm⁻¹. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 (dd, J = 8.0, 6.8 Hz, 2H), 7.24 – 7.19 (m, 3H), 2.74 (td, J = 7.5, 5.5 Hz, 4H), 2.08 – 1.99 (m, 2H), 1.35 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 141.4, 128.5, 128.4, 125.9, 47.8, 39.9, 34.5, 30.7, 30.0. HRMS (ESI): calcd. for C₁₃H₂₀S₂Na [M+Na]+: 263.0899 , found: 263.0905.

S^{∕S}⁺Bu

1-(tert-butyl)-2-(2-phenoxyethyl)disulfane (3d)

Colorless liquid. yield 50% (24.2 mg, 0.2 mmol scale), and purified by flash column chromatography on silica gel (PE). **IR (neat)**: v = 2962, 1235, 1165, 1024, 750, 689 cm⁻¹. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 (dd, J = 8.7, 7.3 Hz, 2H), 6.99 – 6.91 (m, 3H), 4.23 (t, J = 7.0 Hz, 2H), 3.06 (t, J = 7.0 Hz, 2H), 1.37 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 158. 5, 129.5, 121.0, 114.7, 66.5, 48.0, 39.0, 29.9. HRMS (ESI): calcd. for C₁₂H₁₈OS₂Na [M+Na]+: 265.0691 , found: 265.0698.

1-(tert-butyl)-2-(4-phenylbutyl)disulfane (3e)

Colorless liquid. yield 62% (31.5 mg, 0.2 mmol scale), and purified by flash column chromatography on silica gel (PE). **IR (neat)**: v = 2934, 1454, 1361, 1165, 745, 697 cm⁻¹. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.32 – 7.27 (m, 2H), 7.22 – 7.17 (m, 3H), 2.78 – 2.72 (m, 2H), 2.69 – 2.62 (m, 2H), 1.73 (qd, J = 3.7, 2.4, 1.9 Hz, 4H), 1.34 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 142.2, 128.4, 128.3, 125.8, 47.7, 40.8, 35.5, 30.3, 30.0, 29.0. HRMS (ESI): calcd. for C₁₄H₂₃ [M+H]+: 255.1236, found: 255.1233.

O S S'Bu

1-(2-(benzyloxy)ethyl)-2-(tert-butyl)disulfane (3f)

Colorless liquid. yield 62% (31.7 mg, 0.2 mmol scale), and purified by flash column chromatography on silica gel (PE). **IR (neat)**: v = 2961, 2858, 1360, 1096, 736 cm⁻¹. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.26 (d, J = 4.4 Hz, 4H), 7.23 – 7.19 (m, 1H), 4.47 (s, 2H), 3.63 (t, J = 6.7 Hz, 2H), 2.84 (t, J = 6.7 Hz, 2H), 1.25 (s, 9H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 138. 1, 128.4, 127.7, 127.7, 73.1, 68.9, 47.9, 40.3, 29.9. HRMS (ESI): calcd. for C₁₃H₂₀OS₂Na [M+Na]+: 279.0848 , found: 279.0858.

1-(tert-butyl)-2-(5-phenylpentyl)disulfane (3g)

Colorless liquid. yield 63% (33.7 mg, 0.2 mmol scale), and purified by flash column chromatography on silica gel (PE). **IR (neat)**: v = 2927, 2856, 1455, 1165, 740, 698 cm⁻¹. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.32 – 7.27 (m, 2H), 7.19 (ddt, J = 7.5, 3.0, 1.8 Hz, 3H), 2.74 – 2.69 (m, 2H), 2.66 – 2.61 (m, 2H), 1.68 (ddt, J = 21.0, 15.4, 7.5 Hz, 4H), 1.50 – 1.41 (m, 2H), 1.35 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 142.5, 128.4, 128.3, 125.7, 47.7, 40.8, 35.8, 31.1, 30.0, 29.2, 28.2. HRMS (ESI): calcd. for C₁₅H₂₄S₂Na [M+Na]+: 291.1212, found: 291.1221.

__S__^tBu MeC

1-(tert-butyl)-2-(4-methoxyphenethyl)disulfane (3h)

Colorless liquid. yield 48% (24.5 mg, 0.2 mmol scale), and purified by flash column chromatography on silica gel (PE). **IR (neat)**: v = 2960, 1510, 1243, 1170, 1034, 816 cm⁻¹. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.12 (d, J = 8.7 Hz, 2H), 6.84 (d, J = 8.6 Hz, 2H), 3.79 (s, 3H), 2.92 (s, 4H), 1.35 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 158.1, 132.3, 129.5, 113.9, 55.3, 47.9, 42.2, 34.9, 30.0. HRMS (ESI): calcd. for C₁₃H₂₀OS₂Na [M+Na]⁺: 279.0848 , found: 279.0858.

3-(2-(tert-butyldisulfanyl)ethyl)-1H-indole (3i)

Yellow solid. yield 70% (37.1 mg, 0.2 mmol scale), and purified by flash column chromatography on silica gel (PE). **Mp**: 27.1-27.5 °C. **IR (neat)**: v = 3412, 2959, 1452, 1353, 1162, 738 cm⁻¹. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.89 (s, 1H), 7.60 (ddt, J = 7.9, 1.5, 0.8 Hz, 1H), 7.31 (dt, J = 8.2, 1.0 Hz, 1H), 7.22 – 7.15 (m, 1H), 7.12 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H), 6.98 (d, J = 2.3 Hz, 1H), 3.15 – 3.10 (m, 2H), 3.02 (ddd, J = 8.2, 6.7, 1.2 Hz, 2H), 1.34 (s, 9H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 136.3, 127.2, 122.1, 121.9, 119.4, 118.7, 114.6, 111.3, 47.9, 41.1, 30.1, 25.5. HRMS (ESI): calcd. for C₁₄H₁₉NS₂Na [M+Na]⁺: 288.0851, found: 288.0859.

tert-butyl(2-(tert-butyldisulfanyl)ethoxy)dimethylsilane (3j)

Colorless liquid. yield 51% (28.5 mg, 0.2 mmol scale), and purified by flash column chromatography on silica gel (PE). **IR (neat)**: v = 2954, 2858, 1253, 1089, 835, 775 cm⁻¹. ¹H NMR (400 MHz, Chloroform-*d*) δ 3.75 (t, J = 6.9 Hz, 2H), 2.74 (t, J = 6.9 Hz, 2H), 1.26 (s, 9H), 0.82 (s, 9H), -0.00 (s, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 62.2, 47.7, 43.0, 29.9, 25.9, 18.4, -5.2. HRMS (ESI): calcd. for C₁₂H₂₈OS₂NaSi [M+Na]⁺: 303.1243 , found: 303.1253.

ethyl 6-(tert-butyldisulfanyl)hexanoate (3k)

Colorless liquid. yield 24% (12.6 mg, 0.2 mmol scale), and purified by flash column chromatography on silica gel (PE). **IR (neat)**: v = 2931, 1733, 1250, 1168, 1029 cm⁻¹. ¹**H NMR** (400 MHz, Chloroform*d*) δ 4.12 (q, J = 7.1 Hz, 2H), 2.69 (t, J = 7.4 Hz, 2H), 2.30 (t, J = 7.5 Hz, 2H), 1.70 – 1.61 (m, 4H), 1.46 – 1.38 (m, 2H), 1.32 (s, 9H), 1.25 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 173.6, 60.3, 47.7, 40.6, 34.2, 30.0, 28.9, 28.0, 24.6, 14.3. HRMS (ESI): calcd. for C₁₂H₂₄O₂S₂Na [M+Na]⁺: 287.1110 , found: 287.1119.

2-(3-(tert-butyldisulfanyl)propyl)isoindoline-1,3-dione (31)

Colorless liquid. yield 66% (40.7 mg, 0.2 mmol scale), and purified by flash column chromatography on silica gel (PE). **IR (neat)**: v =1706, 1393, 1359, 1165, 1008, 715 cm⁻¹. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.83 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.70 (dd, *J* = 5.4, 3.1 Hz, 2H), 3.76 (t, *J* = 6.9 Hz, 2H), 2.74 – 2.68 (m, 2H), 2.05 (p, *J* = 7.1 Hz, 2H), 1.29 (s, 9H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 168.3, 134.0, 132.1, 123.2, 47.8, 37.7, 36.9, 29.9, 28.3. HRMS (ESI): calcd. for C₁₅H₁₉NO₂S₂Na [M+Na]⁺: 332.0749 , found: 332.0758.

,∽S_{`t}Bu

1-benzyl-2-(tert-butyl)disulfane (3m)

Colorless liquid. yield 78% (33.0 mg, 0.2 mmol scale), and purified by flash column chromatography on silica gel (PE). **IR (neat)**: v = 2961, 1455, 1164, 763, 696 cm⁻¹. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.35 – 7.28 (m, 4H), 7.29 – 7.24 (m, 1H), 3.94 (s, 2H), 1.34 (s, 9H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 137.4, 129.2, 128.5, 127.4, 48.1, 45.8, 30.0. HRMS (ESI): calcd. for C₁₁H₁₇S₂ [M+H]⁺: 213.0766, found: 213.0773.

1-(tert-butyl)-2-(4-fluorobenzyl)disulfane (3n)

Yellow liquid. yield 75% (34.5 mg, 0.2 mmol scale), and purified by flash column chromatography on silica gel (PE). **IR (neat)**: v = 2962, 1507, 1225, 1159, 833 cm⁻¹. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.30 – 7.24 (m, 2H), 6.99 (t, J = 8.7 Hz, 2H), 3.89 (s, 2H), 1.33 (s, 9H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 163.4, 160.9, 133.3, 133.2, 130.9, 130.8, 115.5, 115.3, 48.1, 44.8, 30.0, 29.9. ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -114.93. HRMS (ESI): calcd. for C₁₁H₁₅FS₂Na [M+Na]⁺: 253.0491 , found: 253.0499.

1-(tert-butyl)-2-(4-chlorobenzyl)disulfane (30)

Colorless liquid. yield 74% (36.4 mg, 0.2 mmol scale), and purified by flash column chromatography on silica gel (PE). **IR (neat)**: v = 2962, 1486, 1164, 1091, 824, 496 cm⁻¹. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 – 7.27 (m, 2H), 7.24 (d, J = 8.5 Hz, 2H), 3.88 (s, 2H), 1.34 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 136.0, 133.2, 130.6, 128.7, 48.2, 44.8, 30.0. HRMS (ESI): calcd. for C₁₁H₁₅ClS₂Na [M+Na]⁺: 269.0196 , found: 269.0199.

`S^{∕ S}`^tBu

1-(4-bromobenzyl)-2-(tert-butyl)disulfane (3p)

Colorless solid. yield 71% (41.1 mg, 0.2 mmol scale), and purified by flash column chromatography on silica gel (PE). **Mp**: 28.0-28.4 °C. **IR (neat)**: v = 2959, 1479, 1161, 829, 488 cm⁻¹. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.44 (d, J = 8.4 Hz, 2H), 7.18 (d, J = 8.4 Hz, 2H), 3.86 (s, 2H), 1.34 (s, 9H).¹³**C NMR** (100 MHz, Chloroform-*d*) δ 136.5, 131.6, 130.9, 121.3, 48.2, 44.8, 30.0. HRMS (ESI): calcd. for C₁₁H₁₅BrS₂Na [M+Na]⁺: 312.9691 , found: 312.9688.

1-(tert-butyl)-2-(4-methoxybenzyl)disulfane (3q)

Yellow liquid. yield 70% (33.8 mg, 0.2 mmol scale), and purified by flash column chromatography on silica gel (PE). **IR (neat)**: v = 2959, 1509, 1243, 1168, 1032, 828 cm⁻¹. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.24 (d, J = 8.6 Hz, 2H), 6.86 (d, J = 8.6 Hz, 2H), 3.91 (s, 2H), 3.80 (s, 3H), 1.36 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 159.0, 130.4, 129.4, 114.0, 55.3, 48.0, 45.2, 30.1. HRMS (ESI): calcd. for C₁₂H₁₈OS₂Na [M+Na]⁺: 265.0691 , found: 265.0687.

1-(tert-butyl)-2-(4-methylbenzyl)disulfane (3r)

Colorless liquid. yield 69% (31.1 mg, 0.2 mmol scale), and purified by flash column chromatography on silica gel (PE). **IR (neat)**: v = 2961, 1457, 1164, 813, 469 cm⁻¹. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.21 (d, J = 8.1 Hz, 2H), 7.13 (d, J = 7.8 Hz, 2H), 3.92 (s, 2H), 2.34 (s, 3H), 1.36 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 137.1, 134.3, 129.2, 129.1, 48.0, 45.6, 30.1, 21.2. HRMS (ESI): calcd. for C₁₂H₁₈S₂Na [M+Na]⁺: 249.0742 , found: 249.0733.

(3-(2-(tert-Butyldisulfaneyl)ethyl)-5-methoxy-2-methyl-1H-indol-1-yl)(4-chlorophenyl)methanone (11r) (3s)

Yellow solid. yield 69% (31.1 mg, 0.2 mmol scale), and purified by flash column chromatography on silica gel (PE:EA = 10:1). **Mp**: 80.0-80.4 °C. **IR (neat)**: v = 2961, 1682, 1362, 1312, 1220 cm⁻¹. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.67 – 7.63 (m, 2H), 7.49 – 7.43 (m, 2H), 6.97 – 6.87 (m, 2H), 6.67 (dd, J = 9.0, 2.6 Hz, 1H), 3.84 (s, 3H), 3.03 (dd, J = 9.2, 6.7 Hz, 2H), 2.91 (dd, J = 8.6, 6.1 Hz, 2H), 2.35 (s, 3H), 1.36 (s, 9H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 168.3, 156.0, 139.1, 134.8, 134.1, 131.1, 131.0, 130.8, 129.1, 117.8, 115.1, 111.3, 101.1, 55.7, 48.0, 39.7, 30.0, 24.3, 13.5. HRMS (ESI): calcd. for C₂₃H₂₆CINOS₂Na [M+Na]⁺: 454.1037, found: 454.1047.

2-(tert-butyldisulfanyl)ethyl 4-(N,N-dipropylsulfamoyl)benzoate (3t)

Colorless liquid. yield 40% (34.6 mg, 0.2 mmol scale), and purified by flash column chromatography on silica gel (PE:EA = 10:1). **IR (neat)**: v = 2965, 1725, 1267, 1159, 1097, 732, 602 cm⁻¹. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.16 (d, J = 8.6 Hz, 2H), 7.88 – 7.84 (m, 2H), 4.58 (t, J = 6.6 Hz, 2H), 3.11 – 3.02 (m, 6H), 1.58 – 1.48 (m, 4H), 1.34 (s, 9H), 1.25 (s, 1H), 0.85 (t, J = 7.4 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.0, 144.4, 133.3, 130.3, 127.0, 63.7, 49.9, 48.1, 38.5, 29.9, 21.9, 11.2. HRMS (ESI): calcd. for C₁₉H₃₁NO₄S₃Na [M+Na]⁺: 456.1307, found: 456.1304.

2-(tert-butyldisulfanyl)ethyl (tert-butoxycarbonyl)-L-phenylalaninate (3u)

Colorless liquid. yield 51% (42.1 mg, 0.2 mmol scale), and purified by flash column chromatography on silica gel (PE:EA = 10:1). **IR (neat)**: v = 2968, 1709, 1498, 1358, 1159, 1055 cm⁻¹. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.32 – 7.21 (m, 3H), 7.18 – 7.12 (m, 2H), 5.00 (d, J = 8.4 Hz, 1H), 4.58 (d, J = 7.9 Hz, 1H), 4.33 (td, J = 7.0, 2.3 Hz, 2H), 3.18 – 2.96 (m, 2H), 2.83 (t, J = 6.8 Hz, 2H), 1.41 (s, 9H), 1.34 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 155.1, 136.0, 129.4, 128.5, 127.0, 79.9, 63.5, 54.5, 48.0, 38.4, 38.1, 29.9, 28.3. HRMS (ESI): calcd. for C₂₀H₃₁NO₄S₂Na [M+Na]⁺: 436.1587 , found: 436.1581.

3-(2-(isopropyldisulfanyl)ethyl)-1H-indole (4a)

Yellow liquid. yield 61% (30.6 mg, 0.2 mmol scale), and purified by flash column chromatography on silica gel (PE). **IR (neat)**: v = 3411, 2960, 1449, 1235, 738, 473 cm⁻¹. ¹H NMR (400 MHz, Chloroform*d*) δ 7.90 (s, 1H), 7.60 (dt, J = 7.9, 1.0 Hz, 1H), 7.32 (dd, J = 8.0, 1.1 Hz, 1H), 7.19 (tt, J = 8.0, 1.1 Hz, 1H), 7.15 – 7.08 (m, 1H), 6.99 (dd, J = 2.3, 1.0 Hz, 1H), 3.18 – 3.10 (m, 2H), 3.05 – 2.97 (m, 3H), 1.32 (dd, J = 6.8, 1.0 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 136.3, 127.2, 122.1, 121.8, 119.4, 118.7, 114.6, 111.2, 41.3, 40.4, 25.5, 22.7. HRMS (ESI): calcd. for C₁₃H₁₈NS₂ [M+H]⁺: 252.0875, found: 252.0882.

3-(2-(butyldisulfanyl)ethyl)-1H-indole (4b)

Yellow liquid. yield 63% (33.4 mg, 0.2 mmol scale), and purified by flash column chromatography on silica gel (PE). **IR (neat)**: v = 3412, 2922, 1452, 738, 472 cm⁻¹. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 (s, 1H), 7.65 (dq, J = 7.9, 0.9 Hz, 1H), 7.37 (dt, J = 8.1, 1.0 Hz, 1H), 7.23 (ddd, J = 8.2, 7.0, 1.3 Hz, 1H), 7.16 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H), 7.06 – 7.01 (m, 1H), 3.25 – 3.14 (m, 2H), 3.11 – 3.01 (m, 2H), 2.81 – 2.70 (m, 2H), 1.78 – 1.66 (m, 2H), 1.45 (h, J = 7.4 Hz, 2H), 0.96 (t, J = 7.4 Hz, 3H). ¹³C **NMR** (100 MHz, Chloroform-*d*) δ 136.3, 127.3, 122.1, 121.9, 119.4, 118.7, 114.6, 111.2, 39.5, 39.0, 31.4, 25.5, 21.7, 13.8. HRMS (ESI): calcd. for C₁₄H₂₀NS₂ [M+H]⁺: 266.1032, found: 266.1029.

3-(2-(cyclohexyldisulfanyl)ethyl)-1H-indole (4c)

Yellow solid. yield 63% (33.4 mg, 0.2 mmol scale), and purified by flash column chromatography on silica gel (PE). **Mp**: 30.1-30.4 °C. **IR (neat)**: v = 3409, 2924, 2850, 1448, 738 cm⁻¹. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.96 (s, 1H), 7.63 (dd, J = 7.9, 1.1 Hz, 1H), 7.37 (dt, J = 8.1, 1.0 Hz, 1H), 7.22 (ddd, J = 8.2, 7.0, 1.3 Hz, 1H), 7.15 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H), 7.05 (d, J = 2.4 Hz, 1H), 3.21 – 3.12 (m, 2H), 3.07 – 2.98 (m, 2H), 2.76 (tt, J = 10.8, 3.7 Hz, 1H), 2.11 – 2.01 (m, 2H), 1.85 – 1.73 (m, 2H), 1.48 – 1.18 (m, 6H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 136.3, 127.2, 122.1, 121.8, 119.4, 118.7, 114.6, 111.2, 49.7, 40.5, 33.0, 26.1, 25.7, 25.4. HRMS (ESI): calcd. for C₁₆H₂₂NS₂ [M+H]⁺: 292.1188, found: 292.1195.

3-(2-(sec-butyldisulfanyl)ethyl)-1H-indole (4d)

Yellow liquid. yield 63% (33.4 mg, 0.2 mmol scale), and purified by flash column chromatography on silica gel (PE). **IR (neat)**: v =3412, 2961, 2919, 1450, 739 cm⁻¹. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.95 (s, 1H), 7.67 – 7.62 (m, 1H), 7.37 (dt, J = 8.2, 1.0 Hz, 1H), 7.23 (ddd, J = 8.2, 7.0, 1.3 Hz, 1H), 7.16 (ddd, J = 8.0, 7.0, 1.2 Hz, 1H), 7.04 (d, J = 2.4 Hz, 1H), 3.22 – 3.14 (m, 2H), 3.09 – 2.99 (m, 2H), 2.81 (q, J = 6.7 Hz, 1H), 1.76 (ddd, J = 13.8, 7.4, 6.4 Hz, 1H), 1.59 (dt, J = 14.1, 7.2 Hz, 1H), 1.35 (d, J = 6.8 Hz, 3H), 1.02 (t, J = 7.4 Hz, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 136.3, 127.2, 122.1, 121.8, 119.4, 118.7, 114.6, 111.2, 48.2, 40.2, 29.0, 25.5, 20.3, 11.6. HRMS (ESI): calcd. for C₁₄H₁₉NS₂Na [M+Na]+: 288.0851, found: 288.0850.

S-S H

3-(2-(propyldisulfanyl)ethyl)-1H-indole (4e)

Yellow liquid. yield 58% (29.1 mg, 0.2 mmol scale), and purified by flash column chromatography on silica gel (PE). **IR (neat)**: v = 3412, 2958, 1451, 1087, 738 cm⁻¹. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.97 (s, 1H), 7.63 (dq, J = 7.8, 0.9 Hz, 1H), 7.37 (dt, J = 8.1, 1.0 Hz, 1H), 7.21 (ddd, J = 8.2, 7.0, 1.3 Hz, 1H), 7.14 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H), 7.05 (dd, J = 2.3, 1.1 Hz, 1H), 3.22 – 3.14 (m, 2H), 3.08 – 2.99 (m, 2H), 2.76 – 2.65 (m, 2H), 1.74 (h, J = 7.3 Hz, 2H), 1.01 (t, J = 7.3 Hz, 3H). ¹³C **NMR** (100 MHz, Chloroform-*d*) δ 136.3, 127.2, 122.1, 121.8, 119.4, 118.7, 114.6, 111.2, 41.3, 39.4, 25.4, 22.6, 13.2. HRMS (ESI): calcd. for C₁₃H₁₇NS₂Na [M+Na]+: 274.0695, found: 274.0702.

3-(2-(hexyldisulfanyl)ethyl)-1H-indole (4f)

Yellow liquid. yield 58% (34.0 mg, 0.2 mmol scale), and purified by flash column chromatography on silica gel (PE). **IR (neat)**: v =3417, 2920, 2855, 1455, 739 cm⁻¹. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.98 (s, 1H), 7.62 (dd, *J* = 7.9, 1.1 Hz, 1H), 7.37 (dd, *J* = 8.1, 1.1 Hz, 1H), 7.21 (ddd, *J* = 8.2, 7.0, 1.3 Hz, 1H), 7.13 (ddd, *J* = 8.0, 7.0, 1.1 Hz, 1H), 7.05 (d, *J* = 2.4 Hz, 1H), 3.21 – 3.13 (m, 2H), 3.08 – 2.98 (m, 2H), 2.79 – 2.66 (m, 2H), 1.75 – 1.64 (m, 3H), 1.27 (d, *J* = 3.1 Hz, 4H), 0.89 (t, *J* = 6.8 Hz, 4H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 136.3, 127.2, 122.1, 121.8, 119.4, 118.7, 114.6, 111.2, 39.3, 31.5, 29.7, 29.3, 28.3, 25.4, 22.6, 14.1. HRMS (ESI): calcd. for C₁₆H₂₃NS₂Na [M+Na]⁺: 316.1164 , found: 316.1157.

phenyl(3-phenylpropyl)sulfane (4g)

Yellow liquid. yield 90% (50.7 mg, 0.2 mmol scale), and purified by flash column chromatography on silica gel (PE). **IR (neat)**: v =2925, 1483, 1444, 736, 692, 483 cm⁻¹. ¹**H NMR** (400 MHz, Chloroform*d*) δ 7.25 – 7.14 (m, 6H), 7.13 – 7.04 (m, 4H), 2.86 – 2.79 (m, 2H), 2.66 (t, *J* = 7.6 Hz, 2H), 1.88 (p, *J* = 7.4 Hz, 2H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 141.3, 136.6, 129.2, 128.9, 128.5, 128.4, 126.0, 125.9, 34.7, 32.9, 30.7. HRMS (ESI): calcd. for C₁₅H₁₆SNa [M+Na]⁺: 251.0865 , found: 251.0875.

5. References

[1] Z. Wu, D. A. Pratt, Angew. Chem. Int. Ed., 2021, 60, 15598.; Chem. Commun., 2023, 59, 458-461.; Org. Lett. 2022, 24, 7222-7226.; J. Org. Chem. 2022, 87, 16297-16306.; Angew. Chem. Int. Ed. 2023, 62, e202302199.; J. Org. Chem. 2019, 84, 2862–2869.; Org. Lett. 2021, 23, 7428–7433.; J. Org. Chem. 2023, 88, 13, 7953–7961.

[2] W. Gao, J. Tian, Y. Shang, X. F. Jiang, Chem. Sci. 2020, 11, 3903.

- [3] H.-Q. Cao, H.-N. Liu, Z.-Y. Liu, B. Qiao, F.-G. Z, J.-A. Ma, Org. Lett. 2020, 22, 6414–6419.
- [4] S. Li, C. Lian, G. Yue, J. Zhang, D. Qiu, and F. Mo, J. Org. Chem. 2022, 87, 4291-4297
- [5] X. Ren,Q. Ke,Y. Zhou,J. Jiao,G. Li,S. Cao,X. Wang,Q. Gao, X. Wang. Angew. Chem. Int. Ed. 2023, 62, e2023021.

6. Copies of ¹H, ¹³C, ¹⁹F NMR Spectra for compounds

¹³C NMR Spectra of 1g (100 MHz, CDCl₃)

¹³C NMR Spectra of 3a (100 MHz, CDCl₃)

¹³C NMR Spectra of 3b (100 MHz, CDCl₃)

¹⁹F NMR Spectra of 3b (376 MHz, CDCl₃)

H NMR Spectra of 3c (400 MHz, CDCl3) (400 MHz, CDCl3)

³C NMR Spectra of 3c (100 MHz, CDCl₃)

¹H NMR Spectra of 3d (400 MHz, CDCl₃) (400 MHz, CDCl₃)

¹H NMR Spectra of 3e (400 MHz, CDCl₃) (400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR Spectra of 3e (100 MHz, CDCl₃)

¹H NMR Spectra of 3g (400 MHz, CDCl₃) (400 MHz, CDCl₃)

¹H NMR Spectra of 3h (400 MHz, CDCl₃) (400 MHz, CDCl₃)

¹H NMR Spectra of 3i (400 MHz, CDCl₃) (400 MHz, CDCl₃)

¹³C NMR Spectra of 3i (100 MHz, CDCl₃)

¹H NMR Spectra of 3j (400 MHz, CDCl₃) (400 MHz, CDCl₃)

¹H NMR Spectra of 3k (400 MHz, CDCl₃) (400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR Spectra of 3k (100 MHz, CDCl₃)

¹H NMR Spectra of 3l (400 MHz, CDCl₃) (400 MHz, CDCl₃)

¹H NMR Spectra of 3m (400 MHz, CDCl₃) (400 MHz, CDCl₃)

¹³C NMR Spectra of 3m (100 MHz, CDCl₃)

¹H NMR Spectra of 3n (400 MHz, CDCl₃) (400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹⁹F NMR Spectra of 3n (376 MHz, CDCl₃)

¹³C NMR Spectra of 3o (100 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR Spectra of 3p (100 MHz, CDCl₃)

¹³C NMR Spectra of 3q (100 MHz, CDCl₃)

¹³C NMR Spectra of 3r (100 MHz, CDCl₃)

¹H NMR Spectra of 3s (400 MHz, CDCl₃) (400 MHz, CDCl₃)

13C NMR Spectra of 3s (100 MHz, CDCl3)

¹H NMR Spectra of 3t (400 MHz, CDCl₃) (400 MHz, CDCl₃)

¹³C NMR Spectra of 3t (100 MHz, CDCl₃)

¹H NMR Spectra of 3u (400 MHz, CDCl₃) (400 MHz, CDCl₃)

13C NMR Spectra of 3u (100 MHz, CDCl3)

¹H NMR Spectra of 4a (400 MHz, CDCl₃) (400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR Spectra of 4a (100 MHz, CDCl₃)

¹³C NMR Spectra of 4b (100 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR Spectra of 4c (100 MHz, CDCl₃)

¹³C NMR Spectra of 4d (100 MHz, CDCl₃)

¹³C NMR Spectra of 4e (100 MHz, CDCl₃)

¹³C NMR Spectra of 4f (100 MHz, CDCl₃)

¹H NMR Spectra of 4g (400 MHz, CDCl₃) (400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR Spectra of 4g (100 MHz, CDCl₃)

¹H NMR Spectra of 5a (400 MHz, CDCl₃) (400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

