Supporting Information

Continuous Synthesis of Homoallylic Ketones via Ketal–Claisen Rearrangement using Solid-Acid Catalysts

Kwihwan Kobayashi,*a Chie Negoro, Junko Takaishi, Koichiro Masuda,*a and Shū Kobayashi*a,b

a. Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology Central 5, Higashi 1-1-1, Tsukuba, Ibaraki 305-8565, Japan. E-mail: kobayashi-kwihwan@aist.go.jp, n-koumura@aist.go.jp, shu kobayashi@chem.s.u-tokyo.ac.jp

b. Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 111-0033, Japan.

Contents

1. General

- 2. Procedure and results for the catalyst screening under batch conditions (Table 1)
- 3. Experimental setup for the flow reaction
- 4. Procedure and results for the flow ketal-Claisen rearrangement without N₂ gas (Table 2)
- 5. Procedure for the amine-treatment of SO₃H-ZrO₂
- 6. Results of elemental analysis
- 7. Results of particle size distribution
- 8. Procedure and results for the catalyst screening under flow conditions with N2 gas (Table 3)
- 9. Procedure and calculation for the void volume of the catalyst column.
- 10. General Procedure for the substrate scope (Table 4)
- 11. Long-term operation for the flow ketal-Claisen rearrangement (Figure 2)
- 12. Spectroscopic data of nitriles and the results of continuous-flow reactions
- 13. References
- 14. ¹H and ¹³C NMR spectra

1. General

¹H and ¹³C NMR spectra were recorded on Bruker Avance NEO 400 MHz NMR spectrometer in CDCl₃ unless otherwise noted. Tetramethylsilane (TMS) served as an internal standard ($\delta = 0$) for ¹H NMR, and CDCl₃ served as an internal standard ($\delta = 77.16$) for ¹³C NMR. Gas chromatography was measured on a Shimadzu GC-2014 spectrometer with N₂ gas as a career, using Agilent Technologies DB-1 column (Length: 30 m, I.D.: 0.250 mm, Film: 0.25 µm). A dual plunger pump (UI-22 series) was purchased from FLOM, Inc., and flow reactor (LCR-1000), column (CLM-1010) and fraction collector (DC-1000) were purchased from EYELA. Other chemicals and solvents were purchased from Tokyo Chemical Industry Co., Ltd, FUJIFILM Wako pure chemicals, Kishida chemical Co., Ltd., and Sigma-Aldrich. IR spectra were recorded by Shimadzu IRSpirit. ESI high-resolution mass spectra (HRMS) were measured by JEOL JMS-700T MStation. JAI LaboAce LC-5060 Plus II was used for a recycling preparative GPC. Particle size distribution was measured by MICROTRACBELL MT3000II. SEM was measured by JEOL JSM-

IT800.

2. Procedure and results for the catalyst screening under batch conditions (Table 1)

A reaction mixture of a cinnamyl alcohol (**1a**; 0.50 mmol, 67.1 mg), cyclohexanone dimethyl ketal (**2a**; 1.0 mmol, 144.2 mg), and catalyst (10 wt%, 6.7 mg) in solvent (2.5 mL) was heated at 120 °C and stirred in an opened test tube. The reaction mixture was cooled to room temperature and filtered through a filter with ethyl acetate. Obtained filtrates were concentrated in vacuo and analyzed by ¹H NMR to determine yield and diastereomeric ratio.

	Ph OH + 1a 0.50 mmol	2a 2.0 equiv. <u>American decision</u> <u>catalyst (10 w</u> solvent (2.5 n 120 °C, time opened test tu	t%) hL) e ube 3aa	
entry	catalyst	solvent	time	yield [d.r.]
1	zeolite Hβ	toluene	4 h	3%
2	CO ₂ H-SiO ₂	toluene	4 h	0%
3	8% PO ₄ -ZrO ₂	toluene	4 h	2%
4	10% WO ₃ -ZrO ₂	toluene	4 h	8%
5	JRC-TIO10	toluene	4 h	0%
6	Amberlyst 15	toluene	4 h	23% [4.0/1]
7	SO ₃ H-SiO ₂	toluene	4 h	46% [5.6/1]
8	SO ₃ H-ZrO ₂	toluene	4 h	58% [7.7/1
9	SO ₃ H-ZrO ₂	toluene	21 h	71% [7.1/1]
10	SO ₃ H-ZrO ₂	AcO ⁿ Bu	21 h	88% [6.7/1]
11	SO ₃ H-ZrO ₂	CPME	21 h	77% [4/1]
12 ^[a]	SO ₃ H-ZrO ₂	CPME	21 h	40% [4.1/1]
13 ^[b]	SO ₃ H-ZrO ₂	CPME	21 h	49% [4.1/1]

[a] The reaction was conducted using sealed test tube. [b] The reaction was carried out using 10 mmol of **1a**, 20 mmol of **2a**, 10wt% of SO₃H-ZrO₂, and 50 mL of CPME.

Zeolite Hβ (HSZ-900, Tosoh corporation), CO₂H-SiO₂ (CHROMATOREX COOH MB100-75/200, FUJI SILYSIA CHEMICAL LTD.), Amberlyst 15 (hydrogen form, Merck), SO₃H-SiO₂ (CHROMATOREX SO₃H MB100-75/200, FUJI SILYSIA CHEMICAL LTD.), and SO₃H-ZrO₂ (Sulfated Zirconia, FUJIFILM Wako Chemicals), 8% PO₄-ZrO₂ (Catalysis Society of Japan), 10% WO₃-ZrO₂ (Catalysis Society of Japan), and JRC-TIO10 (Catalysis Society of Japan).

3. Experimental setup for the flow reaction

Pump: UI-22 110P, EYELA

Flow reactor (heating controller and column reactor): LCR-1000, EYELA

Back pressure regulator: BPR-1000B, EYELA

Mass Flow Controller: 8500MC, KOFLOC

Fraction collector: DC-1000, EYELA

The volume of total tubes connecting apparatuses was 2.81 mL (ID: 1 mm tube 250 cm, ID: 2 mm tube 10 cm).

4. Procedure and results for the flow ketal-Claisen rearrangement without N_2 gas (Table 2)

SO₃H-ZrO₂ was pre-mixed with celite (0.8/4.0g) and then packed into a column (I.D. $\varphi 10 \times 100$ mm, CLM-1010, EYELA). The catalyst column was set onto the reactor, and solvent was flowed at designed flow rate (0.1 mL/min, pump: UI-22 110P, EYELA) for 30 min to remove residual air inside. The catalyst column was heated at 120 °C (heating controller and column reactor: LCR-1000, EYELA) with solvent flow under 0.3 MPa of back pressure (BPR-1000B, EYELA), after stabilization the reaction was started by changing into feed solution of cinnamyl alcohol (**1a**; 0.1 M) and cyclohexanone dimethyl ketal (**2a**, 0.2 M) in solvent. The resulted solution was fractionated for every 1 hours (6 mL) (Fraction collector: DC-1000, EYELA), and selected fractions were analyzed ¹H NMR to determine yields.

entry	solvent	yield of 1a	yield of 3aa	main product
1	toluene	20-30%	3–4%	Ph 4 Me 35-40% yield
2	AcO ⁿ Bu	20-30%	3-4%	Ph O ⁿ Bu 5 36-38% yield
3	СРМЕ	20-30%	3–4%	Ph OMe 6 33-37% yield

5. Procedure for the amine-treatment of SO₃H-ZrO₂

 SO_3H - ZrO_2 (900 mg) was added to the amine (12 mL) at room temperature. After stirring for 3 hours, the suspension was filtered through a filter with ethyl acetate. Filtrated solid catalyst was dried in vacuo, amine-treated SO_3H - ZrO_2 was obtained.

6. Results of elemental analysis

Et₃N-treated SO₃H-ZrO₂

С	Н	Ν
1.1%	0.3%	0.3%

The amount of Et₃N on the SO₃H-ZrO₂ was 0.178 mmol/g.

TMEDA-treated SO₃H-ZrO₂

С	Н	Ν
1.1%	0.3%	0.5%

The amount of TMEDA on the SO_3H -Zr O_2 was 0.178 mmol/g.

7. Results of particle size distribution

SO₃H-ZrO₂[TMEDA]

9.42

MV: Mean volume diameter, MN: mean number diameter, MA: mean area diameter, CS: specific surface area.

2.73

0.63

CS

2.56

2.20

8. Procedure and results for the catalyst screening under flow conditions with N2 gas (Table 3)

A catalyst was pre-mixed with celite (0.8/4.0g) and then packed into a column (I.D. $\varphi 10 \times 100$ mm, CLM-1010, EYELA). The catalyst column was set onto the reactor, and CPME was flowed at designed flow rate (0.1 or 0.05 mL/min, pump: UI-22 110P, EYELA) for 30 min to remove residual air inside. N₂ gas was flowed with CPME at 10 mL/min (Mass Flow Controller: 8500MC, KOFLOC). The catalyst column was heated at 120 or 140 °C (heating controller and column reactor: LCR-1000, EYELA) with CPME and N₂ gas flow under 0.3 MPa of back pressure (BPR-1000B, EYELA), after stabilization the reaction was started by changing into feed solution of cinnamyl alcohol (**1a**; 0.1 M) and cyclohexanone dimethyl ketal (**2a**, 0.2 M) in solvent. The resulted solution was fractionated for every 1 hours (3 or 6 mL) (Fraction collector: DC-1000, EYELA), and selected fractions were analyzed ¹H NMR to determine yields.

1	SO ₃ H-ZrO ₂	120	0.1	28–30
2	SO ₃ H-ZrO ₂ [Et ₃ N]	120	0.1	28–30
3	SO ₃ H-ZrO ₂ [Et ₃ N]	140	0.1	51–53
4	SO ₃ H-ZrO ₂ [Et ₃ N]	140	0.05	70–75
5	SO ₃ H-ZrO ₂ [DIPEA]	140	0.05	57–58
6	SO ₃ H-ZrO ₂ [Et ₂ NH]	140	0.05	74–75
7	SO ₃ H-ZrO ₂ [TMEDA]	140	0.05	77–78
8	SO ₃ H-ZrO ₂ [TEEDA]	140	0.05	56–57
9	SO ₃ H-ZrO ₂ [DETA]	140	0.05	0-1
10	SO ₃ H-ZrO ₂ [pyridine]	140	0.05	60–62
11	SO ₃ H-ZrO ₂ [hexylamine]	140	0.05	55–74
12	SO ₃ H-ZrO ₂ [octylamine]	140	0.05	70–74

DIPEA: N,N-Diisopropylethylamine, TMEDA: N,N,N',N'-Tetramethylethylenediamine, TEEDA: N,N,N',N'-Tetraethylethylenediamine, DETA: Diethylenetriamine,

9. Procedure and calculation for the void volume of the catalyst column.

A TMEDA-treated SO₃H-ZrO₂ (1.0 g) was pre-mixed with celite (3.8 g) and then packed into a column (I.D. φ 10×100 mm, EYELA, CLM-1010). The catalyst column was sealed with plugs and weighted (237.06 g). Sealed plugs were removed, and the catalyst column was set onto a flow reactor (heating controller and column reactor: LCR-100, EYELA). The catalyst column was filled with CPME by a pump (UI-22 110P, EYELA) at 1.0 mL/min for 1 hours. After solvent filling, the catalyst column was sealed with plugs again and weighted (242.06 g). Therefore, the void volume of the catalyst column was calculated as follows with the density of CPME at 20 °C (0.86 g/mL); (242.06 – 237.06)/0.86 = 5.81 mL. If only CPME at 0.05 mL/min is used, the residence time is 5.81/0.05 = 116.2 min.

10. General Procedure for the substrate scope (Table 4)

TMEDA-treated SO₃H-ZrO₂ was pre-mixed with celite (1.0/3.8g) and then packed into a column (I.D. φ 10×100 mm, CLM-1010, EYELA). The catalyst column was set onto the reactor, and CPME was flowed at designed flow rate (0.05 mL/min, pump: UI-22 110P, EYELA) for 30 min to remove residual air inside. N₂ gas was flowed with CPME at 10 mL/min (Mass Flow Controller: 8500MC, KOFLOC). The catalyst column was heated at 140 °C (heating controller and column reactor: LCR-1000, EYELA) with CPME and N₂ gas flow under 0.3 MPa of back pressure (BPR-1000B, EYELA), after stabilization the reaction was started by changing into feed solution of allylic alcohol (1; 0.1 M) and dimethyl ketal (**2**, 0.2 M) in solvent. The resulted solution was fractionated for every 1 hours (3 mL) (Fraction collector: DC-1000, EYELA), and selected fractions were analyzed ¹H NMR to determine yields. Fractions were collected for the described time. After evaporation of solvent, the product was isolated over silica-gel column chromatography to obtain desired homoallylic ketones. If silica-gel column chromatography was not able to completely purify, the yield of product was determined by ¹H NMR analysis and the product was purified by recycling preparative GPC (chloroform) using part of reaction mixture.

11. Long-term operation for the flow ketal-Claisen rearrangement (Figure 2)

TMEDA-treated SO₃H-ZrO₂ was pre-mixed with celite (0.8/4.0g) and then packed into a column (I.D. φ 10×100 mm, CLM-1010, EYELA). The catalyst column was set onto the reactor, and CPME was flowed at designed flow rate (0.05 mL/min, pump: UI-22 110P, EYELA) for 30 min to remove residual air inside. N₂ gas was flowed with CPME at 10 mL/min (Mass Flow Controller: 8500MC, KOFLOC). The catalyst column was heated at 140 °C (heating controller and column reactor: LCR-1000, EYELA) with CPME and N₂ gas flow under 0.3 MPa of back pressure (BPR-1000B, EYELA), after stabilization the reaction was started by changing into feed solution of allylic alcohol (1; 0.1 M) and dimethyl ketal (2, 0.2 M) in solvent. The resulted solution was fractionated for every 1 hours (3 mL) (Fraction collector: DC-1000, EYELA), and selected fractions were analyzed ¹H NMR to determine yields. Fractions were collected from 7 to 156 hours. After evaporation of solvent, the product was isolated over column chromatography to obtain **3aa** (72% yield, 6.5 g). The space-time yield was 0.135 kg/L day.

12. Spectroscopic data of nitriles and the results of continuous-flow reactions

2-(1-Phenylallyl)cyclohexan-1-one (3aa)

According to General Procedure, a solution of cinnamyl alcohol (1a, 0.1 M) and cyclohexanone dimethyl ketal (2a, 0.2 M) in CPME (100 mL) was prepared. The profile about NMR yields of product was indicated as below. Fractions were collected from 6 h to 23 h. After evaporation of solvent and purification over silica-gel column chromatography (ethyl acetate/hexane), 3aa was obtained in 84% yield (d.r.: 4.5/1, 972.1 mg, 4.5 mmol) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃): δ 7.32–7.25 (m, 2H), 7.23–7.16 (m, 3H), 6.04 (ddd, J = 17.2, 10.0, 7.2 Hz, 0.84H), 5.88 (ddd, J = 17.2, 10.4, 9.2 Hz, 0.15H), 5.11–5.07 (m, 0.13H), 5.03–4.95 (m, 1.72H), 3.81 (t, J = 8.8 Hz, 0.15H), 3.72 (t, J = 8.8 Hz, 0.87H), 2.82–2.75 (m, 1H), 2.45–232 (m, 1.83H), 2.28–2.15 (m, 0.27H), 1.97–1.90 (m, 1.22 H), 1.84–1.53 (m, 3.87H), 1.39–1.30 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 212.6, 211.6, 143.3, 141.7, 140.1, 139.2, 128.6, 128.5, 128.4, 127.9, 126.5, 126.2, 116.2, 114.9, 55.4, 55.3, 49.3, 49.0, 42.3, 42.1, 31.9, 31.6, 28.5, 28.4, 24.4,

23.8. Spectroscopic data of ¹H and ¹³C NMR were identical to that of reference 1.

2-(1-(4-Bromophenyl)allyl)cyclohexan-1-one (3ba)

According to General Procedure, a solution of 4-bromocinnamyl alcohol (**1b**, 0.1 M) and cyclohexanone dimethyl ketal (**2a**, 0.2 M) in CPME (100 mL) was prepared. The profile about NMR yields of product was indicated as below. Fractions were collected from 6 h to 23 h. After evaporation of solvent and purification over silica-gel column chromatography (ethyl acetate/hexane), **3ba** was obtained in 70% yield (d.r.: 3.3/1, 1.1 g, 3.8 mmol) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃): δ 7.43–7.38 (m, 2H), 7.10–7.05 (m, 2H), 6.02 (ddd, *J* = 17.2, 10.4, 7.2 Hz, 0.89H), 5.83 (ddd, *J* = 17.2, 10.4, 9.2 Hz, 0.11H), 5.09–5.07 (m, 0.17H), 5.06–4.94 (m, 1.86H), 3.71 (t, *J* = 8.8 Hz, 1H), 2.77–2.71 (m, 1H), 2.43–2.31 (m, 2H), 1.99–1.83 (m, 1H), 1.82–1.54 (m, 4H), 1.35–1.25 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 212.0, 211.4, 142.5, 140.8, 139.6, 138.8, 131.6, 131.5, 130.3, 129.6, 120.3, 120.0, 116.6, 115.4, 55.1(2C), 49.0, 48.2, 42.5, 42.2, 32.0, 31.9, 28.4(2C), 24.6, 24.1. Spectroscopic data of ¹H and ¹³C NMR were identical to that of reference 2.

2-(1-(4-Nitrophenyl)allyl)cyclohexan-1-one (3ca)

According to General Procedure, a solution of 4-nitrocinnamyl alcohol (1c, 0.1 M) and cyclohexanone dimethyl ketal (2a, 0.2 M) in CPME (100 mL) was prepared. The profile about NMR yields of product was indicated as below. Fractions were collected from 5 h to 20 h. After evaporation of solvent and purification over silica-gel column chromatography (ethyl acetate/hexane), 3ca was obtained in 45% yield (d.r.: 4.7/1, 560.1 mg, 2.2 mmol) as a pale

¹H NMR (400 MHz, CDCl₃): δ 8.17–8.12 (m, 2H), 7.39–7.37 (m, 2H), 6.08 (ddd, J = 17.2, 10.4, 7.2 Hz, 0.83H), 5.83 (ddd, J = 17.2, 10.4, 9.2 Hz, 0.17H), 5.14–5.09 (m, 1.18H), 5.05–5.00 (m, 0.85H), 3.89 (t, J = 7.8 Hz, 0.85H), 3.82 (t, J = 9.2 Hz, 0.17H), 2.86–2.80 (m, 1H), 2.45–2.33 (m, 2H), 2.05–1.99 (m, 1H), 1.84–1.60 (m, 4H), 1.35–1.25 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 211.1, 211.0, 151.5, 149.7, 146.7, 146.4, 138.5, 137.9, 129.5, 128.6, 123.7, 123.7, 117.5, 116.6, 54.9(2C), 49.8, 48.6, 42.7, 42.4, 32.4, 32.1, 28.4, 28.2, 25.0, 24.5.; IR (ATR) cm⁻¹: 3079, 2937, 2862, 1708, 1638, 1603, 1596, 1559, 1514, 1464, 1463, 1448, 1431, 1414, 1342, 1257, 1243, 1206, 1181, 1157, 1125, 1109, 1066, 1014; ESI-HRMS m/z: 259.1208 ([M]+); Calcd. for C₁₅H₁₇NO₃: 259.1208.

2-(1-(4-Methoxyphenyl)allyl)cyclohexan-1-one (3da)

According to General Procedure, a solution of 4-methoxycinnamyl alcohol (1d, 0.1 M) and cyclohexanone dimethyl ketal (2a, 0.2 M) in CPME (100 mL) was prepared. The profile about NMR yields of product was indicated as below. Fractions were collected from 6 h to 20 h. After evaporation of solvent and purification over silica-gel column chromatography (ethyl acetate/hexane), 3da was obtained in 15% yield (d.r.: 2.3/1, 164.9 mg, 0.68 mmol) as a pale yellow oil. Further purification was performed by recycling preparative GPC (column: JAIGEL-2HR Plus, chloroform), and purified 3da (single diastereomer) was obtained.

¹H NMR (400 MHz, CDCl₃): δ 7.09 (d, J = 8.6 Hz, 2H), 6.84 (d, J = 8.6 Hz, 2H), 6.02 (ddd, J = 16.8, 10.4, 7.6 Hz, 1H), 5.01–4.93 (m, 2H), 3.78 (s, 3H), 3.68 (t, J = 1H), 2.76–2.70 (m, 1H), 2.45–2.31 (m, 2H), 1.96–1.89 (m, 1H), 1.82–1.66 (m, 3H), 1.62–1.53 (m, 1H), 1.39–1.30 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 212.8, 158.2, 140.4, 133.7, 129.4, 114.6, 114.0, 55.5. 55.2, 48.1, 42.0, 31.8, 28.5, 23.7. Spectroscopic data of ¹H and ¹³C NMR were identical to that of reference 2.

2-(2-Methyl-1-phenylallyl)cyclohexan-1-one (3ea)

According to General Procedure, a solution of 2-methyl-3-phenyl-2-propen-1-ol (1e, 0.1 M) and cyclohexanone dimethyl ketal (2a, 0.2 M) in CPME (100 mL) was prepared. The profile about NMR yields of product was indicated as below. Fractions were collected from 4 h to 23 h. After evaporation of solvent and purification over silica-gel column chromatography (ethyl acetate/hexane), **3ea** was obtained in 58% yield (d.r.: 4.6/1, 794.6 mg, 3.5 mmol) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃): δ 7.30–7.26 (m, 2H), 7.22–7.17 (m, 3H), 4.79 (s, 2H), 3.55 (d, *J* = 10.8 Hz, 1H), 3.08– 3.01 (m, 1H), 2.48–2.34 (m, 2H), 2.03–1.56 (m, 1H), 1.79–1.51 (m, 7H), 1.31–1.22 (m, 1H); ¹³C NMR (100 MHz,

CDCl₃): δ 212.9, 147.7 141.1, 128.6, 128.4, 126.6, 108.9, 54.0, 51.9, 42.3, 33.1, 29.2, 24.4, 22.6. Spectroscopic data of ¹H and ¹³C NMR were identical to that of reference 3.

2-(3-Methylene-1-(2,2,3-trimethylcyclopent-3-en-1-yl)pentan-2-yl)cyclohexan-1-one (3fa)

According to General Procedure, a solution of 2-(3-methylene-1-(2,2,3-trimethylcyclopent-3-en-1-yl)pentan-2-yl)cyclohexan-1-one (**1f**, 0.1 M) and cyclohexanone dimethyl ketal (**2a**, 0.2 M) in CPME (100 mL) was prepared. The profile about NMR yields of product was indicated as below. Fractions were collected from 8 h to 23 h. After evaporation of solvent and purification over silica-gel column chromatography (ethyl acetate/hexane), **3fa** was obtained in 45% yield (d.r.: 2.3/1, 623.1 mg, 2.2 mmol) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃): δ 5.24 (br, 0.70H), 5.20–5.19 (m, 0.29H), 4.84–4.74 (m, 2H), 2.73–2.68 (m, 1H), 2.45–2.20 (m, 4H), 2.01–1.58 (m, 13H), 1.45–1.239 (m, 2H), 1.04–1.00 (m, 3H), 0.98–0.91 (m, 3H), 0.80–0.75 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 212.9, 212.6, 152.5, 151.0, 148.6, 148.5, 122.0, 121.9, 109.5, 108.9, 54.2, 54.0, 49.3, 47.1, 47.0, 46.7, 43.3, 42.4, 41.6, 41.4, 36.7, 35.1, 29.9, 29.0, 28.4, 28.4, 27.6, 27.6, 27.3, 26.0, 25.4, 24.0, 23.3, 19.8, 19.4, 12.6, 12.6, 12.2, 12.1.; IR (ATR) cm⁻¹: 3649, 3080, 3033, 2934, 1748, 1734, 1708, 1671, 1664, 1654, 1641, 1623, 1618, 1559, 1540, 1521, 1517, 1507, 1490, 1448, 1437, 1405, 1395, 1382, 1375, 1359, 1339, 1312, 1289, 1260, 1233, 1219, 1201, 1128, 1115, 1072, 1051, 1012; ESI-HRMS m/z: 288.2453 ([M]+); Calcd. for C₂₀H₃₂O: 288.2453.

2-(Non-1-en-3-yl)cyclohexan-1-one (3ga)

According to General Procedure, a solution of *trans*-2-nonen-1-ol (**1g**, 0.1 M) and cyclohexanone dimethyl ketal (**2a**, 0.2 M) in CPME (100 mL) was prepared. The profile about NMR yields of product was indicated as below. Fractions were collected from 6 h to 23 h. After evaporation of solvent and purification over silica-gel column

chromatography (ethyl acetate/hexane), **3ga** was obtained in 50% yield (d.r.: 2.8/1, 600.4 mg, 2.7 mmol) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃): δ 5.71 (ddd, J = 16.8, 10.4, 9.2 Hz. 0.80H), 5.47 (ddd, J = 17.2, 10.4, 9.2 Hz, 0.19H), 5.07–5.03 (m, 0.28H), 5.00–4.93 (m, 1.71H), 2.42–2.21 (m, 4H), 1.97–1.55 (m, 7H), 1.43–1.19 (m, 10H), 0.89–0.56 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 213.2, 212.3, 140.7, 140.1, 116.2, 115.2, 55.1, 54.8, 43.5, 42.9, 42.2, 41.9, 32.4, 31.8, 31.1, 30.7, 29.6, 29.3, 29.2, 28.0, 27.6, 27.5, 27.3, 24.3, 23.8, 22.7(2C), 14.1(2C).; IR (ATR) cm⁻¹: 3074, 2927, 2856, 1709, 1638, 1464, 1450, 1428, 1378, 1338, 1312, 1276, 1260, 1223, 1206, 1127, 1062; ESI-HRMS m/z: 222.1989 ([M]+); Calcd. for C₁₅H₂₆O: 222.1984.

3-(1-phenylallyl)decan-2-one (3ab)

According to General Procedure, a solution of cinnamyl alcohol (**1a**, 0.1 M) and 2,2-dimethoxydecane (**2b**, 0.2 M) in CPME (100 mL) was prepared. The profile about NMR yields of product was indicated as below. Fractions were collected from 5 h to 23 h. After evaporation of solvent, the yield of **3ab** (60%, d.r.: 3.2/1) was determined ¹H NMR using ethylene carbonate as an internal standard. Purified **3ab** (d.r.: 1/1) was obtained by recycling preparative GPC (column: JAIGEL-2HR Plus, chloroform) using part of reaction mixture as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃): δ 7.32–7.14 (m, 5H), 5.98–5.85 (m, 1H), 5.12–4.97 (m, 2H), 3.43–3.37 (m, 1H), 2.93–2.85 (m, 1H), 2.11 (s, 1.48H), 1.77 (s, 1.56H), 1.67–1.58 (m, 1H), 1.29–1.13 (m, 11H), 0.89–0.81 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 212.3, 212.2, 142.3, 141.8, 139.5, 139.4, 128.7, 128.7, 127.9, 127.7, 126.7, 126.6, 116.3, 115.7, 58.2, 57.7, 53.4, 53.1, 31.8, 31.7, 31.0, 30.8, 30.6, 30.5, 29.7, 29.4, 29.1, 29.0, 27.5, 27.3, 22.6, 22.6, 14.1, 14.0.; IR (ATR) cm⁻¹: 3080, 3063, 3030, 3001, 2954, 2925, 2856, 1711, 1638, 1602, 1493, 1454, 1418, 1353, 1243, 1160, 1132, 1075, 1029; ESI-HRMS m/z: 272.2144 ([M]+); Calcd. for C₁₉H₂₈O: 272.2140.

3-Phenyl-4-propylon-1-en-5-one (3ac)

According to General Procedure, a solution of cinnamyl alcohol (**1a**, 0.1 M) and 5,5-dimethoxynonane (**2c**, 0.2 M) in CPME (100 mL) was prepared. The profile about NMR yields of product was indicated as below. Fractions were collected from 7 h to 23 h. After evaporation of solvent and purification over silica-gel column chromatography (ethyl acetate/hexane), **3ac** was obtained in 52% yield (d.r.: 1/1, 685.3 mg, 2.7 mmol) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃): δ 7.33–7.14 (m, 5H), 5.98–5.88 (m, 1H), 5.12–4.95 (m, 2H), 3.44–3.38 (m, 1H), 2.93–2.85 (m, 1H), 2.38 (t, *J* = 7.4 Hz, 1H), 2.14–2.06 (m, 0.47H), 1.88–1.80 (m, 0.47H), 1.63–0.97 (m, 8H), 0.92–0.87 (m, 3H), 0.76–0.70 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 214.3, 214.2, 142.5, 142.0, 139.5(2C), 128.7, 128.6, 127.9, 127.8, 126.6, 126.5, 116.3, 115.8, 57.1, 57.0, 53.4, 53.2, 44.6, 44..4, 33.2, 33.0, 25.0, 24.8, 22.3, 22.0, 20.7, 20.6, 14.3, 14.1, 13.9, 13.7. ; IR (ATR) cm⁻¹: 3080, 3063, 3030, 2958, 2932, 2873, 1708, 1671, 1638, 1602, 1493, 1464, 1454, 1404, 1378, 1300, 1256, 1240, 1165, 1124, 1071, 1043; ESI-HRMS m/z: 258.1981 ([M+H]+); Calcd. for C₁₈H₂₆O: 258.1984.

1,3-Diphenylpent-4-ene-1-one (3ad)

According to General Procedure, a solution of cinnamyl alcohol (**1a**, 0.1 M) and (1,1-dimethyletheyl)benzene (**2d**, 0.2 M) in CPME (100 mL) was prepared. The profile about NMR yields of product was indicated as below. Fractions were collected from 5 h to 23 h. After evaporation of solvent and purification over silica-gel column chromatography (ethyl acetate/hexane), **3ad** was obtained in 66% yield (889.0 mg, 3.8 mmol) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃): δ 7.94–7.91 (m, 2H), 7.56–7.52 (m, 1H), 7.45–7.42 (m, 2H), 7.32–7.24 (m, 4H), 7.22–7.18 (m, 1H), 6.05 (ddd, *J* = 17.2, 10.0, 6.4 Hz, 1H), 5.08–5.01 (m, 2H), 4.13 (q, *J* = 6.9 Hz, 1H), 3.47–3.33 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 198.3, 143.2, 140.7, 137.2, 133.0, 128.6, 128.1, 127.7, 126.6, 114.7, 44.6, 44.1. Spectroscopic data of ¹H and ¹³C NMR were identical to that of reference 4.

1-(Naphthalen-2-yl)-3-phenylpent-4-en-1-one (3ae)

According to General Procedure, a solution of cinnamyl alcohol (**1a**, 0.1 M) and 2-(1,1-dimethoxyethyl)naphthalene (**2e**, 0.2 M) in CPME (100 mL) was prepared. The profile about NMR yields of product was indicated as below. Fractions were collected from 7 h to 23 h. After evaporation of solvent and purification over silica-gel column chromatography (ethyl acetate/hexane), **3ae** was obtained in 62% yield (905.5 mg, 3.2 mmol) as a pale yellow solid.

¹H NMR (400 MHz, CDCl₃): δ 8.44 (s, 1H), 8.00 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.94 (d, *J* = 8.0 Hz, 1H), 7.89–7.86 (m, 2H), 7.62–7.53 (m, 2H), 7.32–7.30 (m, 4H), 7.23–7.19 (m, 1H), 6.09 (ddd, *J* = 17.2, 10.4, 6.8 Hz, 1H), 5.10–5.04 (m, 2H), 4.23–4.18 (m, 1H), 3.61–3.47 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 198.2, 143.3, 140.8, 135.6, 134.6, 132.6, 129.8, 129.6, 128.7, 128.5, 127.9, 127.8, 126.8, 126.7, 124.0, 114.9, 44.8, 44.2. Spectroscopic data of ¹H and ¹³C NMR were identical to that of reference 5.

2-(1-Phenylallyl)-3,4-dihydronaphthalen-1(2H)-one (3af)

According to General Procedure, a solution of cinnamyl alcohol (1a, 0.1 M) and 4-methoxy-1,2dihydronaphthalene (2f, 0.2 M) in CPME (100 mL) was prepared. The profile about NMR yields of product was indicated as below. Fractions were collected from 6 h to 23 h. After evaporation of solvent and purification over silica-gel column chromatography (ethyl acetate/hexane), 3af was obtained in 56% yield (d.r.: 5.6/1, 793.4 mg, 3.0 mmol) as a pale yellow oil.

¹H NMR (400 MHz, CDCl₃): δ 8.01 (dd, J = 8.0, 1.2 Hz, 1H), 7.45 (ddd, J = 7.4, 7.4, 1.4 Hz, 1H), 7.32–7.19 (m, 7H), 6.17 (ddd, J = 15.6, 10.4, 8.0 Hz, 0.90H), 6.07 (ddd, J = 17.2, 10.4, 8.8 Hz, 0.08H), 5.20 (ddd, J = 17.2, 2.0, 1.2 Hz, 0.09H), 5.15 (ddd, J = 10.4, 1.2, 1.2 Hz, 0.09H), 5.07 (ddd, J = 10.4, 1.2, 1.2 Hz, 0.91H), 4.97 (ddd, J = 17.2, 1.2, 1.2 Hz, 0.91H), 4.29 (dd, J = 8.4, 5.2 Hz, 0.08H), 4.01 (dd, J = 8.0, 8.0 Hz, 0.92H), 3.06–2.84 (m, 3H), 2.22–2.16 (m, 0.09H), 2.15–2.09 (m, 0.98H), 1.78–1.69 (m, 1H);¹³C NMR (100 MHz, CDCl₃): δ 198.0, 197.3, 142.8, 142.5, 142.1, 139.1, 136.5, 132.3, 132.3, 132.1, 131.8, 127.8(2C), 127.7, 127.6, 127.6, 127.2, 126.8, 126.7, 125.8(2C), 125.7, 125.5, 116.7, 114.4, 52.4, 51.3, 47.4, 47.2, 27.6, 26.4, 24.8, 23.9.; IR (ATR) cm⁻¹: 3062, 3027, 2978, 2866, 2838, 1679, 1638, 1599, 1491, 1453, 1434, 1417, 1352, 1328, 1305, 1287, 1275, 1239, 1220, 1196, 1184, 1155, 1112, 1023; ESI-HRMS m/z: 262.1360 ([M]+); Calcd. for C₁₉H₁₈O: 262.1358.

13. References

1. Steven A. Fleming, Alexander A. Parent, Ephraim E. Parent, James A. Pincock, and Lise Renault, *J. Org. Chem.* **2007**, *72*, 9464–9470.

2. Jian-Ping Chen, Qian Peng, Bai-Lin Lei, Xue-Long Hou, and Yun-Dong Wu, J. Am. Chem. Soc. 2011, 133. 14180–14183.

3. G. William Daub, David A Griffith, *Tetrahedron Lett.* 1986, 27, 6311–6314.

4. Changkun Li and Bernhard Breit, J. Am. Chem. Soc. 2014, 136, 862-865.

5. Naoya Kanbayashi, Arisa Yamazawa, Koichiro Takii, Taka-aki Okamura, Kiyotaka Onitsuka, *Adv. Symth. Catal.* **2016**, *358*, 555–560.

14. ¹H and ¹³C NMR spectra

¹H NMR of **3aa** (CDCl₃, 400 Hz)

¹³C NMR of **3aa** (CDCl₃, 100 Hz)

¹H NMR of **3ba** (CDCl₃, 400 Hz)

¹³C NMR of **3ba** (CDCl₃, 100 Hz)

¹H NMR of 3ca (CDCl₃, 400 Hz)

¹³C NMR of **3ca** (CDCl₃, 100 Hz)

¹H NMR of **3da** (CDCl₃, 400 Hz)

¹³C NMR of **3da** (CDCl₃, 100 Hz)

¹H NMR of 3ea (CDCl₃, 400 Hz)

¹³C NMR of **3ea** (CDCl₃, 100 Hz)

¹H NMR of **3fa** (CDCl₃, 400 Hz)

¹³C NMR of **3fa** (CDCl₃, 100 Hz)

¹H NMR of **3ga** (CDCl₃, 400 Hz)

¹³C NMR of **3ga** (CDCl₃, 100 Hz)

¹H NMR of **3ab** (CDCl₃, 400 Hz)

¹³C NMR of **3ab** (CDCl₃, 100 Hz)

¹H NMR of **3ac** (CDCl₃, 400 Hz)

¹³C NMR of **3ac** (CDCl₃, 100 Hz)

¹H NMR of **3ad** (CDCl₃, 400 Hz)

¹³C NMR of **3ad** (CDCl₃, 100 Hz)

¹H NMR of **3ae** (CDCl₃, 400 Hz)

¹³C NMR of **3ae** (CDCl₃, 100 Hz)

¹H NMR of **3af** (CDCl₃, 400 Hz)

¹³C NMR of **3af** (CDCl₃, 100 Hz)

