# Sulfamide Instead Urea in Biginelli Reaction: From Black Box to Reality

Alexander Yu. Lyapunov, Andriy V. Tarnovskiy, Sergey Yu. Boron, Eduard B. Rusanov, Galyna P. Grabchuk, Dmytro M. Volochnyuk,\* Serhiy V. Ryabukhin\*

#### **Table of Contents**

| General Information                                                                                                         | S2  |
|-----------------------------------------------------------------------------------------------------------------------------|-----|
| Synthetic procedures                                                                                                        | S2  |
| Analytical data                                                                                                             | S2  |
| Figure S1. NMR reaction profile for <b>7ca</b>                                                                              | S7  |
| Figure S2. Degradation of <b>7cc</b> , 2 weeks                                                                              | S7  |
| Figure S3. Degradation of <b>7cd</b> , 2 weeks                                                                              | S8  |
| Figure S4. Degradation of <b>7ce</b> , 2 weeks                                                                              | S8  |
| Figure S5. Temperature NMR for <b>9cb</b>                                                                                   | S9  |
| Figure S6. Temperature NMR for <b>10cb</b>                                                                                  | S9  |
| Figure S7. Thermal profile of the initial steps of the reaction and the <sup>1</sup> H NMR spectra of the reaction mixtures | S10 |
| NMR spectra                                                                                                                 | S11 |

#### **General Information**

The solvents were purified according to the standard procedures. All starting materials were obtained from Enamine Ltd. Melting points were measured on automated melting point system. <sup>1</sup>H and <sup>13</sup>C, spectra were recorded on a Bruker Avance 500 spectrometer (at 500 MHz for Protons and 126 MHz for Carbon-13) and Varian Unity Plus 400 spectrometer (at 400 MHz for protons, 101 MHz for Carbon-13, and 376 MHz for Fluorine-19). Tetramethylsilane (<sup>1</sup>H, <sup>13</sup>C) was added as an internal standard. Preparative HPLC analyses were done on an Agilent 1200 instrument. Mass spectra were recorded on Agilent 1100 LCMSD SL instrument (chemical ionization (APCI)). High-resolution mass spectra (HRMS) were obtained on an Agilent 1260 Infinity UHPLC instrument coupled with an Agilent 6224 Accurate Mass TOF mass spectrometer.

All crystallographic measurements were performed on a Bruker Smart Apex II diffractometer operating in the  $\omega$  and  $\theta$  scans mode with graphite-monochromated Mo-K<sub>a</sub> radiation ( $\lambda$  = 0.71073 Å). The data were corrected for Lorentz-polarization effects and for the effects of absorption (multi-scans method was applied for all compounds). The structures were solved by direct methods and refined by the full-matrix least-squares technique in the anisotropic approximation for non-hydrogen atoms using the Bruker SHELXTL program package.

Full crystallographic details have been deposited at Cambridge Crystallographic Data Centre (CCDC). Any request to the CCDC for these materials should quote the full literature citation and reference number CCDC 2252701-2252705, 2309237.

#### Three-component condensation. General procedure.

Corresponding acetoacetamide **2.1-2.5** (2 mmol), aldehyde **3.1–3.12** (2 mmol) and sulfamide **1.1–1.3** (2 mmol) were dissolved in DMF (2 ml). TMSCI (1.4 ml, 11 mmol) was added to the mixture under vigorous stirring in an Ar atmosphere and stirred for 24 h and 40 h for sulfamide **1.1** and **1.2**, **1.3**, correspondingly. The lower layer of the reaction mixture was separated with a syringe and further processed as indicated:

**Protocol B (acidic**): the solution was poured into 50 ml of stirring water, stirred for 30 minutes, the precipitate formed was filtered, washed and dried on the filter.

**Protocol C (urotropine):** the solution was added dropwise (2 drops/s) to a cooled to 5° solution of hexamethylenetetramine (3.75 g, 26.8 mmol) in water (15 ml) under vigorous stirring. The precipitate formed was filtered in 10–15 minutes, washed and dried on the filter.

**Protocol D (morpholine):** the solution was added dropwise (2 drops/s) to cooled to 5° solution of N-methylmorpholine (3.0 ml, 27.2 mmol) in of water (15 ml) under vigorous stirring. The precipitate formed was filtered in 10–15 minutes, washed and dried on the filter.

For purification, the crude products were dissolved in a minimum volume of acetone (3–5 ml), hexane was added dropwise with stirring until the precipitation formed. The product was filtered off, washed with an acetone–hexane mixture with the same ratio and dried.

#### Two-component condensation.

The synthesis was performed similarly to the three-component one starting from 2 mmol of **8a,d** and acetoacetamide **2.3** in 2 ml of DMF and 0.7 ml of TMSCI (5.5 mmol). Processing was performed according to protocol C or D.

#### Analytical data

 $(3R^*,4S^*)$ -N,N-diethyl-5-methyl-3-phenyl-3,4-dihydro-2H-1,2,6-thiadiazine-4-carboxamide 1,1-dioxide (7ca).

White powder, mp = 204–206 °C. Yield = 64 % (416 mg). <sup>1</sup>H NMR (302 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  7.66 (d, *J* = 11.3 Hz, 1H), 7.35 (s, 5H), 4.80 (t, *J* = 10.8 Hz, 1H), 3.89 (d, *J* = 10.4 Hz, 1H), 3.27 – 3.03 (m, 2H), 3.08 – 2.91 (m, 1H), 2.93 – 2.74 (m, 1H), 2.08 (s, 3H), 0.85 (t, *J* = 6.9 Hz, 3H), 0.54 (t, *J* = 7.0 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (76 MHz, Chloroform-*d*)  $\delta$  184.6, 171.7, 141.8, 133.8, 132.4, 63.8, 54.6, 47.1, 45.1, 30.7, 18.5, 17.3. LCMS, positive mode, m/z: 324 [M+H]<sup>+</sup>. HRMS (ESI–TOF) calcd. for C<sub>15</sub>H<sub>22</sub>N<sub>3</sub>O<sub>3</sub>S<sup>+</sup> [M+H]<sup>+</sup>: 324.1376, found 324.1374. Anal. calcd. for C<sub>15</sub>H<sub>21</sub>N<sub>3</sub>O<sub>3</sub>S: C, 55.71; H, 6.55; N, 12.99; S, 9.91. Found: C, 56.07; H, 6.82; N, 12.90; S, 9.77.

#### $(3R^*, 4S^*)$ -5-methyl-N,3-diphenyl-3,4-dihydro-2H-1,2,6-thiadiazine-4-carboxamide 1,1-dioxide (7da)

Thin white needles, mp = 186–190 °C. Yield = 21% (144 mg). <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  10.43 (s, 1H), 7.73 (d, *J* = 12.0 Hz, 1H), 7.42 (d, *J* = 7.4 Hz, 2H), 7.39 – 7.30 (m, 5H), 7.26 (t, *J* = 7.8 Hz, 2H), 7.06 (t, *J* = 7.4 Hz, 1H), 4.89 (t, *J* = 11.4 Hz, 1H), 3.85 (d, *J* = 10.9 Hz, 1H), 2.20 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (76 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  179.4, 166.0, 138.1, 137.1, 129.3, 129.1, 129.0, 127.9, 124.8, 120.1, 58.1, 53.8, 26.0. LCMS, positive mode, m/z: 344 [M+H]<sup>+</sup>. HRMS (ESI–TOF) calcd. for C<sub>17</sub>H<sub>18</sub>N<sub>3</sub>O<sub>3</sub>S<sup>+</sup> [M+H]<sup>+</sup>: 344.1063, found 344.1062. Anal. calcd. for C<sub>17</sub>H<sub>17</sub>N<sub>3</sub>O<sub>3</sub>S: C, 59.46; H, 4.99; N, 12.24; S, 9.34. Found: C, 59.81; H, 5.29; N, 12.58; S, 9.12.

## (3*R*\*,4*S*\*)-*N*,5-dimethyl-N,3-diphenyl-3,4-dihydro-2*H*-1,2,6-thiadiazine-4-carboxamide 1,1-dioxide (**7ea**) Light-gray powder, mp = 200-205 °C. Yield = 50% (357 mg). <sup>1</sup>H NMR (302 MHz, DMSO-*d*<sub>6</sub>) δ 7.52 - 7.35 (m, 5H), 7.37 - 7.26 (m, 2H), 7.28 - 7.08 (m, 4H), 4.79 (d, *J* = 10.4 Hz, 1H), 3.40 (d, *J* = 10.5 Hz, 1H), 3.04 (s, 3H), 2.18 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (76 MHz, DMSO-*d*<sub>6</sub>) δ 179.1, 167.5, 142.4, 136.9, 130.2, 129.3, 129.2, 128.8, 127.7, 127.5, 58.8, 50.5, 37.8, 26.7. LCMS, positive mode, m/z: 552 MALUE 102 (551 MALUE 105 Mz, 100 Mz) (552 MALUE 105 Mz) (552 MZ) (55

358 [M+H]<sup>+</sup>. HRMS (ESI–TOF) calcd. for  $C_{18}H_{20}N_3O_3S^+$  [M+H]<sup>+</sup>: 358.1220, found 358.1220. Anal. calcd. for  $C_{18}H_{19}N_3O_3S$ : C, 60.49; H, 5.36; N, 11.76; S, 8.97. Found: C, 60.54; H, 5.43; N, 11.67; S, 8.67.

 $(3R^*,4S^*)$ -3-(4-methoxyphenyl)-N,N,5-trimethyl-3, 4-dihydro-2H-1,2, 6-thiadiazine-4-carboxamide 1,1-dioxide (**7bb**). White powder, mp = 165-168 °C. Yield = 14% (91 mg). <sup>1</sup>H NMR (500 MHz, DMSO- $d_6$ )  $\delta$  7.58 (d, J = 11.3 Hz, 1H), 7.27 (d, J = 8.6 Hz, 2H), 6.92 (d, J = 8.6 Hz, 2H), 4.64 (t, J = 10.8 Hz, 1H), 4.02 (d, J = 10.5 Hz, 1H), 3.74 (s, 3H), 2.69 (s, 3H), 2.55 (s, 3H), 2.08 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (76 MHz, DMSO- $d_6$ )  $\delta$  180.2, 168.1, 159.7, 129.0, 128.9, 114.4, 58.5, 55.6, 49.6, 37.7, 35.7, 26.0. LCMS, positive mode, m/z: 326 [M+H]<sup>+</sup>. HRMS (ESI-TOF) calcd. for C<sub>14</sub>H<sub>20</sub>N<sub>3</sub>O<sub>4</sub>S<sup>+</sup> [M+H]<sup>+</sup>: 326.1169, found 326.1167. Anal. calcd. for C<sub>14</sub>H<sub>19</sub>N<sub>3</sub>O<sub>4</sub>S: C, 51.68; H, 5.89; N, 12.91; S, 9.85. Found: C, 51.42; H, 5.99; N, 13.02; S, 9.95.

 $(3R^*,4S^*)$ -*N*,*N*-diethyl-3-(4-methoxyphenyl)-5-methyl-3,4-dihydro-2H-1,2,6-thiadiazine-4-carboxamide 1,1-dioxide (**7cb**). Colorless crystalline powder, mp = 180–184 °C. Yield = 45% (317 mg). <sup>1</sup>H NMR (302 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  7.56 (s, 1H), 7.26 (d, *J* = 8.3 Hz, 2H), 6.90 (d, *J* = 8.2 Hz, 2H), 4.72 (d, *J* = 10.2 Hz, 1H), 3.87 (d, *J* = 10.4 Hz, 1H), 3.71 (s, 3H), 3.31 – 3.06 (m, 2H), 3.08 – 2.77 (m, 2H), 2.07 (s, 3H), 0.86 (t, *J* = 7.0 Hz, 3H), 0.61 (t, *J* = 7.0 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (76 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  184.7, 171.9, 164.5, 134.0, 133.8, 119.1, 63.2, 60.3, 54.7, 47.0, 45.1, 30.7, 18.6, 17.3. LCMS, positive mode, m/z: 354 [M+H]<sup>+</sup>. HRMS (ESI–TOF) calcd. for C<sub>16</sub>H<sub>24</sub>N<sub>3</sub>O<sub>4</sub>S<sup>+</sup> [M+H]<sup>+</sup>: 354.1482, found 354.1479. Anal. calcd. for C<sub>16</sub>H<sub>23</sub>N<sub>3</sub>O<sub>4</sub>S: C, 54.37; H, 6.56; N, 11.89; S, 9.07. Found: C, 54.26; H, 6.82; N, 11.68; S, 8.80.

 $(3R^*,4S^*)$ -3-(4-methoxyphenyl)-5-methyl-N-phenyl-3, 4-dihydro-2H-1,2,6-thiadiazine-4-carboxamide 1,1-dioxide (7db) White powder, mp = 186–190 °C. Yield = 44% (328 mg). <sup>1</sup>H NMR (302 MHz, DMSO- $d_6$ )  $\delta$  10.43 (s, 1H), 7.62 (d, J = 11.9 Hz, 1H), 7.36 (dd, J = 11.9, 8.2 Hz, 4H), 7.25 (t, J = 7.8 Hz, 2H), 7.04 (t, J = 7.4 Hz, 1H), 6.88 (d, J = 8.3 Hz, 2H), 4.83 (t, J = 11.4 Hz, 1H), 3.83 (d, J = 10.9 Hz, 1H), 3.68 (s, 3H), 2.19 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (76 MHz, DMSO- $d_6$ )  $\delta$  179.4, 166.2, 159.6, 138.2, 129.3, 129.2, 124.8, 120.1, 114.4, 57.5, 55.5, 53.9, 26.0. LCMS, positive mode, m/z: 374 [M+H]<sup>+</sup>. HRMS (ESI–TOF) calcd. for C<sub>18</sub>H<sub>20</sub>N<sub>3</sub>O<sub>4</sub>S<sup>+</sup> [M+H]<sup>+</sup>: 374.1169, found 374.1167. Anal. calcd. for C<sub>18</sub>H<sub>19</sub>N<sub>3</sub>O<sub>4</sub>S: C, 57.90; H, 5.13; N, 11.25; S, 8.59. Found: C, 57.61; H, 5.07; N, 11.03; S, 8.91.

 $(3R^*,4S^*)$ -3-(4-methoxyphenyl)-N,5-dimethyl-N-phenyl-3, 4-dihydro-2H-1,2,6-thiadiazine-4-carboxamide 1,1-dioxide (**7eb**) White powder, mp = 173-175 °C. Yield = 50% (386 mg). <sup>1</sup>H NMR (500 MHz, DMSO- $d_6$ )  $\delta$  7.40 - 7.25 (m, 5H), 7.09 (d, J = 8.3 Hz, 2H), 6.96 (d, J = 8.5 Hz, 2H), 4.72 (t, J = 10.9 Hz, 1H), 3.81 (s, 3H), 3.39 (d, J = 10.4 Hz, 1H), 3.06 (s, 3H), 2.17 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (76 MHz, DMSO- $d_6$ )  $\delta$  183.8, 172.3, 164.7, 147.2, 134.9, 133.8, 133.5, 132.3, 119.2, 63.0, 60.5, 55.4, 42.5, 31.4. LCMS, negative mode, m/z: 386 [M]<sup>-</sup>. HRMS (ESI-TOF) calcd. for C<sub>19</sub>H<sub>22</sub>N<sub>3</sub>O<sub>4</sub>S<sup>+</sup> [M+H]<sup>+</sup>: 388.1326, found 388.1317. Anal. calcd. for C<sub>19</sub>H<sub>21</sub>N<sub>3</sub>O<sub>4</sub>S: C, 58.90; H, 5.46; N, 10.85; S, 8.27. Found: C, 59.25; H, 5.80; N, 11.00; S, 8.59.

 $(3R^*,4S^*)$ -3-(3,4-dimethoxyphenyl)-N,N,5-trimethyl-3,4-dihydro-2H-1,2,6-thiadiazine-4-carboxamide 1,1-dioxide (**7bc**) Colorless crystals, mp = 192–194 °C. Yield = 48% (340 mg). <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  7.59 (d, *J* = 10.9 Hz, 1H), 7.06 (s, 1H), 6.92 (d, *J* = 8.2 Hz, 1H), 6.81 (dd, *J* = 8.2, 2.0 Hz, 1H), 4.64 (t, *J* = 10.7 Hz, 1H), 4.06 (d, *J* = 10.5 Hz, 1H), 3.75 (s, 6H), 2.72 (s, 3H), 2.57 (s, 3H), 2.09 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (76 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  180.8, 168.8, 149.8, 149.8, 129.9, 120.6, 112.4, 111.6, 59.4, 56.6, 56.5, 50.2, 38.4, 36.3, 26.6. LCMS, negative mode, m/z: 354 [M-H]<sup>-</sup>. HRMS (ESI–TOF) calcd. for C<sub>15</sub>H<sub>22</sub>N<sub>3</sub>O<sub>5</sub>S<sup>+</sup> [M+H]<sup>+</sup>: 356.1275, found 356.1281. Anal. calcd. for C<sub>15</sub>H<sub>21</sub>N<sub>3</sub>O<sub>5</sub>S: C, 50.69; H, 5.96; N, 11.82; S, 9.02. Found: C, 50.68; H, 5.77; N, 11.89; S, 8.88.

 $(3R^*,4S^*)$ -3-(3,4-dimethoxyphenyl)-N,N-diethyl-5-methyl-3,4-dihydro-2H-1,2,6-thiadiazine-4-carboxamide 1,1-dioxide (7cc) White powder, mp = 173-176 °C. Yield = 49% (375 mg). <sup>1</sup>H NMR (302 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  7.56 (d, *J* = 10.6 Hz, 1H), 7.04 (s, 1H), 6.96 - 6.73 (m, 2H), 4.71 (t, *J* = 10.5 Hz, 1H), 3.90 (d, *J* = 10.4 Hz, 1H), 3.71 (d, *J* = 3.7 Hz, 6H), 3.23 - 3.08 (m, 2H), 3.11 - 2.80 (m, 2H), 2.07 (s, 3H), 0.86 (t, *J* = 7.0 Hz, 3H), 0.59 (t, *J* = 7.0 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (76 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  180.5, 167.8, 149.9, 130.1, 120.9, 112.5, 111.8, 59.4, 56.6, 50.5, 43.0, 41.1, 26.6, 14.5, 13.2. LCMS, negative mode, m/z: 382 [M-H]<sup>-</sup>. HRMS (ESI-TOF) calcd. for C<sub>17</sub>H<sub>26</sub>N<sub>3</sub>O<sub>5</sub>S<sup>\*</sup> [M+H]<sup>+</sup>: 384.1588, found 384.1586. Anal. calcd. for C<sub>17</sub>H<sub>25</sub>N<sub>3</sub>O<sub>5</sub>S: C, 53.25; H, 6.57; N, 10.96; S, 8.36. Found: C, 53.50; H, 6.69; N, 11.09; S, 8.40.

 $(3R^*,4S^*)$ -3-(4-bromophenyl)-N,N,5-trimethyl-3,4-dihydro-2H-1,2,6-thiadiazine-4-carboxamide 1,1-dioxide (**7bd**) White powder, mp = 183–187 °C. Yield = 12% (90 mg). <sup>1</sup>H NMR (302 MHz, DMSO- $d_6$ )  $\delta$  7.74 (d, J = 10.4 Hz, 1H), 7.59 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 4.72 (t, J = 10.6 Hz, 1H), 4.05 (d, J = 10.5 Hz, 1H), 2.70 (s, 3H), 2.57 (s, 3H), 2.09 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (76 MHz, DMSO- $d_6$ )  $\delta$  180.6, 168.4, 136.8, 132.7, 130.4, 123.0, 59.1, 49.8, 38.4, 36.3, 26.6. LCMS, negative mode, m/z: 374 [M]<sup>T</sup>. HRMS (ESI–TOF) calcd. for C<sub>13</sub>H<sub>17</sub>BrN<sub>3</sub>O<sub>3</sub>S<sup>+</sup> [M+H]<sup>+</sup>: 374.0169, found 374.0169. Anal. calcd. for C<sub>13</sub>H<sub>16</sub>BrN<sub>3</sub>O<sub>3</sub>S: C, 41.72; H, 4.31; N, 11.23; S, 8.57; Br, 21.35. Found: C, 41.71; H, 4.50; N, 11.17; S, 8.29; Br, 21.01.

 $(3R^*, 4S^*)$ -3-(4-bromophenyl)-N,N-diethyl-5-methyl-3,4-dihydro-2H-1,2,6-thiadiazine-4-carboxamide 1,1-dioxide (7cd).

White powder, mp = 193–196 °C. Yield = 29% (239 mg). <sup>1</sup>H NMR (302 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  7.72 (d, *J* = 11.2 Hz, 1H), 7.58 (d, *J* = 8.5 Hz, 2H), 7.31 (d, *J* = 8.5 Hz, 2H), 4.79 (t, *J* = 10.8 Hz, 1H), 3.89 (d, *J* = 10.4 Hz, 1H), 3.23 – 3.09 (m, 2H), 3.13 – 2.99 (m, 1H), 2.88 (dq, *J* = 14.3, 7.0 Hz, 1H), 2.08 (s, 3H), 0.86 (t, *J* = 7.0 Hz, 3H), 0.58 (t, *J* = 7.0 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (76 MHz, Chloroform-*d*)  $\delta$  184.5, 171.6, 141.1, 136.8, 134.7, 127.0, 63.2, 54.3, 47.1, 45.2, 30.7, 18.6, 17.3. LCMS, positive mode, m/z: 402 [M]<sup>+</sup>. HRMS (ESI–TOF) calcd. for C<sub>15</sub>H<sub>21</sub>BrN<sub>3</sub>O<sub>3</sub>S<sup>+</sup> [M+H]<sup>+</sup>: 402.0482, found 402.0474. Anal. calcd. for C<sub>15</sub>H<sub>20</sub>BrN<sub>3</sub>O<sub>3</sub>S: C, 44.78; H, 5.01; N, 10.44; S, 7.97; Br, 19.86. Found: C, 44.98; H, 4.82; N, 10.27; S, 8.08; Br, 19.74.

 $(3R^*,4S^*)$ -3-(4-bromophenyl)-N,5-dimethyl-N-phenyl-3,4-dihydro-2H-1,2,6-thiadiazine-4-carboxamide 1,1-dioxide (**7ed**). White powder, mp = 178–180 °C. Yield = 35% (305 mg). <sup>1</sup>H NMR (302 MHz, DMSO- $d_6$ )  $\delta$  7.62 (d, J = 8.0 Hz, 2H), 7.52 – 7.19 (m, 5H), 7.12 (d, J = 8.1 Hz, 2H), 6.38 (br, 1H), 4.76 (t, J = 10.6 Hz, 1H), 3.44 (d, J = 10.5 Hz, 1H), 3.07 (s, 3H), 2.19 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (76 MHz, DMSO- $d_6$ )  $\delta$  179.0, 167.4, 142.4, 136.2, 132.2, 130.2, 129.9, 128.8, 127.4, 122.5, 58.3, 50.2, 37.8, 26.8. LCMS, negative mode, m/z: 434 [M-H]<sup>-</sup>. HRMS (ESI–TOF) calcd. for C<sub>18</sub>H<sub>19</sub>BrN<sub>3</sub>O<sub>3</sub>S<sup>+</sup> [M+H]<sup>+</sup>: 436.0325, found 436.0326. Anal. calcd. for C<sub>18</sub>H<sub>18</sub>BrN<sub>3</sub>O<sub>3</sub>S: C, 49.55; H, 4.16; N, 9.63; S, 7.35; Br, 18.31. Found: C, 49.31; H, 4.15; N, 9.89; S, 7.59; Br, 18.42.

 $(3R^*,4S^*)$ -*N*,*N*-diethyl-5-methyl-3-(4-nitrophenyl)-3, 4-dihydro-2H-1,2, 6-thiadiazine-4-carboxamide 1,1-dioxide (**7ce**). Yellowish powder. Crude. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.25 (d, *J* = 8.5 Hz, 2H), 7.91 (s, 1H), 7.65 (d, *J* = 8.4 Hz, 2H), 4.98 (d, *J* = 10.4 Hz, 1H), 3.97 (d, *J* = 10.4 Hz, 1H), 3.24 - 3.11 (m, 2H), 3.14 - 2.79 (m, 2H), 2.11 (s, 3H), 0.87 (t, *J* = 7.0 Hz, 3H), 0.57 (t, *J* = 7.0 Hz, 3H). LCMS, positive mode, m/z: 369 [M+H]<sup>+</sup>. HRMS (ESI–TOF) calcd. for C<sub>15</sub>H<sub>21</sub>N<sub>4</sub>O<sub>5</sub>S<sup>+</sup> [M+H]<sup>+</sup>: 369.1227, found 369.1221.

 $(3R^*,4S^*)$ -3-(2-bromophenyl)-N,N-diethyl-5-methyl-3, 4-dihydro-2H-1,2,6-thiadiazine-4-carboxamide 1,1-dioxide (**7cf**) White powder, mp = 169-171 °C. Yield = 25% (201 mg). <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  7.80 (d, *J* = 7.8 Hz, 1H), 7.63 (d, *J* = 8.1 Hz, 1H), 7.57 - 7.43 (m, 2H), 7.30 (t, *J* = 7.7 Hz, 1H), 5.45 (t, *J* = 8.9 Hz, 1H), 4.20 (dd, *J* = 10.9, 2.9 Hz, 1H), 3.29 - 3.17 (m, 1H), 3.05 (p, *J* = 7.3 Hz, 3H), 2.10 (t, *J* = 2.0 Hz, 3H), 0.82 (t, *J* = 7.0 Hz, 3H), 0.73 (t, *J* = 7.0 Hz, 3H). <sup>13</sup>C(<sup>1</sup>H) NMR (76 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  180.0, 166.3, 136.5, 133.4, 131.2, 130.2, 128.8, 123.9, 57.3, 48.3, 42.4, 40.0, 26.1, 14.2, 12.5. LCMS, negative mode, m/z: 402 [M-H]<sup>-</sup>. HRMS (ESI-TOF) calcd. for C<sub>15</sub>H<sub>21</sub>BrN<sub>3</sub>O<sub>3</sub>S<sup>+</sup> [M+H]<sup>+</sup>: 402.0482, found 402.0480. Anal. calcd. for C<sub>15</sub>H<sub>20</sub>BrN<sub>3</sub>O<sub>3</sub>S: C, 44.78; H, 5.01; N, 10.44; S, 7.97; Br, 19.86. Found: C, 44.77; H, 5.00; N, 10.19; S, 7.99; Br, 20.10.

## $(3R^*,4S^*)$ -*N*,*N*-diethyl-5-methyl-3-(thiophen-3-yl)-3, 4-dihydro-2H-1,2, 6-thiadiazine-4-carboxamide 1,1-dioxide (7ci) Grey powder, mp = 196–199 °C. Yield = 39% (257 mg). <sup>1</sup>H NMR (302 MHz, DMSO-*d*<sub>6</sub>) $\delta$ 7.65 (d, *J* = 11.6 Hz, 1H), 7.54 (dd, *J* = 5.1, 2.9 Hz, 1H), 7.45 (s, 1H), 7.14 (d, *J* = 5.0 Hz, 1H), 4.92 (t, *J* = 11.0 Hz, 1H), 3.83 (d, *J* = 10.3 Hz, 1H), 3.19 (q, *J* = 7.5 Hz, 2H), 3.15 – 3.03 (m, 1H), 2.91 (dq, *J* = 14.2, 6.7 Hz, 1H), 2.07 (s, 3H), 0.90 (t, *J* = 7.0 Hz, 3H), 0.63 (t, *J* = 7.0 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (76 MHz, DMSO-*d*<sub>6</sub>) $\delta$ 179.8, 167.2, 138.0, 127.7, 127.0, 124.4, 54.8, 49.6, 42.4, 26.1, 13.9, 12.7. LCMS, positive mode, m/z: 330 [M+H]<sup>+</sup>. HRMS (ESI–TOF) calcd. for C<sub>13</sub>H<sub>20</sub>N<sub>3</sub>O<sub>3</sub>S<sub>2</sub><sup>+</sup> [M+H]<sup>+</sup>: 330.0941, found 330.0937. Anal. calcd. for C<sub>13</sub>H<sub>19</sub>N<sub>3</sub>O<sub>3</sub>S<sub>2</sub>: C, 47.40; H, 5.81; N, 12.76; S, 19.46. Found: C, 47.71; H, 5.46; N, 13.00; S, 19.51.

 $(3R^*,4S^*)-N,N-diethyl-5-methyl-3-(1-methyl-1H-pyrazol-4-yl)-3,4-dihydro-2H-1,2,6-thiadiazine-4-carboxamide 1,1-dioxide (7cj) White powder, mp = 161-165 °C. Yield = 35% (229 mg). <sup>1</sup>H NMR (500 MHz, DMSO-$ *d* $<sub>6</sub>) <math display="inline">\delta$  7.60 (d, *J* = 3.3 Hz, 1H), 7.53 (dd, *J* = 11.6, 3.2 Hz, 1H), 7.38 (d, *J* = 3.3 Hz, 1H), 4.81 - 4.68 (m, 1H), 3.83 - 3.78 (m, 1H), 3.76 (d, *J* = 3.3 Hz, 3H), 3.27 - 3.15 (m, 3H), 3.12 - 2.96 (m, 1H), 2.06 (d, *J* = 3.3 Hz, 3H), 0.93 (td, *J* = 7.0, 3.3 Hz, 3H), 0.72 (td, *J* = 7.2, 3.2 Hz, 3H). <sup>13</sup>C{1H} NMR (76 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  179.8, 167.3, 137.5, 129.7, 117.9, 51.0, 49.9, 42.6, 26.1, 14.0, 12.6. LCMS, positive mode, m/z: 328 [M+H]<sup>+</sup>. HRMS (ESI-TOF) calcd. for C<sub>13</sub>H<sub>20</sub>N<sub>3</sub>O<sub>3</sub>S<sub>2</sub><sup>+</sup> [M+H]<sup>+</sup>: 330.0941, found 330.0937. Anal. calcd. for C<sub>13</sub>H<sub>21</sub>N<sub>5</sub>O<sub>3</sub>S: C, 47.69; H, 6.47; N, 21.39; S, 9.79. Found: C, 47.30; H, 6.62; N, 21.51; S, 10.05.

 $(3R^*,4S^*)$ -*N*,*N*-diethyl-5-methyl-3-(5-methylfuran-2-yl)-3,4-dihydro-2H-1,2,6-thiadiazine-4-carboxamide 1,1-dioxide (**7ck**) White powder, mp = 169–171 °C. Yield = 36% (236 mg). <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  7.65 (d, *J* = 7.9 Hz, 1H), 6.28 (d, *J* = 3.2 Hz, 1H), 6.04 (d, *J* = 3.1 Hz, 1H), 4.82 (t, *J* = 9.5 Hz, 1H), 4.00 (d, *J* = 10.4 Hz, 1H), 3.31 – 3.08 (m, 4H), 2.21 (s, 3H), 2.08 (s, 3H), 0.93 (t, *J* = 7.0 Hz, 3H), 0.87 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (76 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  179.5, 166.8, 152.3, 148.1, 109.8, 107.2, 52.8, 47.3, 42.5, 26.1, 14.1, 13.7, 12.7. LCMS, negative mode, m/z: 326 [M-H]<sup>-</sup>. HRMS (ESI–TOF) calcd. for C<sub>14</sub>H<sub>22</sub>N<sub>3</sub>O<sub>4</sub>S<sup>+</sup> [M+H]<sup>+</sup>: 328.1326, found 328.1324. Anal. calcd. for C<sub>14</sub>H<sub>21</sub>N<sub>3</sub>O<sub>4</sub>S: C, 51.36; H, 6.47; N, 12.83; S, 9.79. Found: C, 51.41; H, 6.14; N, 12.72; S, 9.61.

#### $(S^*)-2-((R^*)-(3,4-dimethoxyphenyl)(sulfamoylamino)methyl)-N,N-diethyl-3-oxobutanamide (8cc)$

White powder, mp = 125–129 °C. Yield = 43% (345 mg). <sup>1</sup>H NMR (302 MHz, DMSO- $d_6$ )  $\delta$  7.29 (d, J = 10.9 Hz, 1H), 7.09 (d, J = 2.0 Hz, 1H), 6.97 – 6.69 (m, 2H), 6.41 (s, 2H), 4.93 (t, J = 11.0 Hz, 1H), 3.90 (d, J = 11.1 Hz, 1H), 3.69 (d, J = 9.5 Hz, 6H), 3.23 – 2.78 (m, 4H), 2.31 (s, 3H), 0.83 (t, J = 7.0 Hz, 3H), 0.66 (t, J = 7.0 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (76 MHz, DMSO- $d_6$ )  $\delta$  205.1, 165.7, 149.1, 148.8, 133.6, 121.2, 112.3, 111.9, 65.2, 58.7, 56.4, 55.9, 42.5, 27.4, 15.2, 13.5. HRMS (ESI–TOF) calcd. for C<sub>17</sub>H<sub>27</sub>N<sub>3</sub>NaO<sub>6</sub>S<sup>+</sup> [M+Na]<sup>+</sup>: 424.1513, found 424.1510. Anal. calcd. for C<sub>17</sub>H<sub>27</sub>N<sub>3</sub>O<sub>6</sub>S: C, 50.86; H, 6.78; N, 10.47; S, 7.99. Found: C, 50.92; H, 6.49; N, 10.07; S, 7.83.

#### $(S^*)-2-((R^*)-(4-bromophenyl)(sulfamoylamino)methyl)-3-oxo-N-phenylbutanamide (8dd).$

White powder, mp = 160–163 °C. Yield = 30% (253 mg). <sup>1</sup>H NMR (302 MHz, DMSO- $d_6$ )  $\delta$  10.09 (s, 1H), 7.67 (d, J = 10.1 Hz, 1H), 7.50 – 7.29 (m, 6H), 7.19 (t, J = 7.8 Hz, 2H), 6.98 (t, J = 7.4 Hz, 1H), 6.51 (s, 2H), 5.00 (t, J = 10.8 Hz, 1H), 3.89 (d, J = 11.3 Hz, 1H), 2.36 (s, 3H). <sup>13</sup>C(<sup>1</sup>H) NMR (76 MHz, DMSO- $d_6$ )  $\delta$  202.7, 164.3, 140.4, 138.6, 131.1, 130.5, 129.0, 124.3, 120.8, 120.0, 68.4, 56.9, 28.3. LCMS, positive mode, m/z: 440 [M+H]<sup>+</sup>. HRMS (ESI–TOF) calcd. for C<sub>17</sub>H<sub>18</sub>BrN<sub>3</sub>NaO<sub>4</sub>S<sup>+</sup> [M+Na]<sup>+</sup>: 462.0094, found 462.0092. Anal. calcd. for C<sub>17</sub>H<sub>18</sub>BrN<sub>3</sub>O<sub>4</sub>S: C, 46.37; H, 4.12; N, 9.54; S, 7.28; Br, 18.15. Found: C, 46.18; H, 3.96; N, 9.25; S, 7.63; Br, 17.91.

(S\*)-2-((R\*)-(4-nitrophenyl)(sulfamoylamino)methyl)-3-oxo-N-phenylbutanamide (8de).

Yellowish powder, mp = 175–179 °C. Yield = 30% (245 mg). <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  10.12 (s, 1H), 8.11 (d, *J* = 8.2 Hz, 2H), 7.84 (d, *J* = 10.0 Hz, 1H), 7.68 (d, *J* = 8.4 Hz, 2H), 7.30 (d, *J* = 7.9 Hz, 2H), 7.18 (t, *J* = 7.8 Hz, 2H), 6.98 (t, *J* = 7.4 Hz, 1H), 6.59 (s, 2H), 5.13 (t, *J* = 10.6 Hz, 1H), 3.93 (d, *J* = 11.4 Hz, 1H), 2.36 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (76 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  202.7, 164.6, 149.4, 147.7, 139.1, 130.2, 129.6, 125.0, 124.0, 120.6, 68.4, 57.4, 29.0. LCMS, negative mode, m/z: 405 [M-H]. HRMS (ESI–TOF) calcd. for C<sub>17</sub>H<sub>18</sub>N<sub>4</sub>NaO<sub>6</sub>S<sup>+</sup> [M+Na]<sup>+</sup>: 429.0839, found 429.0837. Anal. calcd. for C<sub>17</sub>H<sub>18</sub>N<sub>4</sub>O<sub>6</sub>S: C 50.24; H 4.46; N 13.79; S 7.89. Found: C 50.64; H 4.52; N 13.99; S 7.81.

#### Ethyl 3-(4-methoxyphenyl)-5,6-dimethyl-3,6-dihydro-2H-1,2,6-thiadiazine-4-carboxylate 1,1-dioxide (9ab)

Light yellow oil. Yield = 9% (61 mg). <sup>1</sup>H NMR (302 MHz, DMSO- $d_6$ )  $\delta$  7.96 (d, J = 7.8 Hz, 1H), 7.18 (d, J = 8.3 Hz, 2H), 6.83 (d, J = 8.2 Hz, 2H), 5.28 (d, J = 7.6 Hz, 1H), 3.79 (q, J = 7.1 Hz, 2H), 3.69 (s, 3H), 3.11 (s, 3H), 2.29 (s, 3H), 0.80 (t, J = 7.0 Hz, 3H). <sup>13</sup>C(<sup>1</sup>H) NMR (76 MHz, DMSO- $d_6$ )  $\delta$  166.6, 159.2, 148.4, 131.2, 129.8, 113.7, 108.0, 60.0, 58.4, 55.5, 32.0, 17.6, 14.0. LCMS, positive mode, m/z: 341 [M+H]<sup>+</sup>. HRMS (ESI–TOF) calcd. for C<sub>15</sub>H<sub>21</sub>N<sub>2</sub>O<sub>5</sub>S<sup>+</sup> [M+H]<sup>+</sup>: 341.1166, found 341.1164. Anal. calcd. for C<sub>15</sub>H<sub>20</sub>N<sub>2</sub>O<sub>5</sub>S: C, 52.93; H, 5.92; N, 8.23; S, 9.42. Found: C, 53.31; H, 5.91; N, 8.61; S, 9.18.

#### N,N-diethyl-3-(4-methoxyphenyl)-5,6-dimethyl-3,6-dihydro-2H-1,2,6-thiadiazine-4-carboxamide 1,1-dioxide (9cb)

White powder, mp = 155–157 °C. Yield = 51% (375 mg). <sup>1</sup>H NMR (302 MHz, DMSO- $d_6$ )  $\delta$  7.69 (dd, J = 51.5, 7.2 Hz, 1H), 7.28 (d, J = 8.3 Hz, 2H), 6.83 (dd, J = 11.6, 8.2 Hz, 2H), 5.31 – 4.73 (m, 1H), 3.70 (s, 3H), 3.29 – 3.06 (m, 2H), 3.02 (s, 3H), 2.98 – 2.73 (m, 2H), 1.90 – 1.67 (m, 3H), 1.08 (t, J = 7.0 Hz, 1H), 0.72 (t, J = 6.9 Hz, 2H), 0.65 (t, J = 6.2 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (76 MHz, DMSO- $d_6$ )  $\delta$  166.6, 165.9\*, 159.1, 136.3\*, 134.0, 130.3\*, 129.4, 128.8\*, 128.3, 118.8\*, 117.9, 113.5, 113.1\*, 60.2\*, 60.0, 55.2, 55.1\*, 41.4\*, 41.2, 37.5\*, 36.6, 34.2, 17.7, 14.4\*, 12.8, 12.1\*, 11.7 (\* - due to hindered rotation). LCMS, positive mode, m/z: 368 [M+H]\*. HRMS (ESI–TOF) calcd. for C<sub>17</sub>H<sub>26</sub>N<sub>3</sub>O<sub>4</sub>S<sup>+</sup> [M+H]\*: 368.1639, found 368.1635. Anal. calcd. for C<sub>17</sub>H<sub>25</sub>N<sub>3</sub>O<sub>4</sub>S: C, 55.57; H, 6.86; N, 11.44; S, 8.72. Found: C, 55.39; H, 6.88; N, 11.08; S, 8.41.

#### 3-(4-methoxyphenyl)-5,6-dimethyl-N-phenyl-3,6-dihydro-2H-1,2,6-thia diazine-4-carboxamide 1,1-dioxide (9db)

White powder. Yield = 15% (116 mg). <sup>1</sup>H NMR (302 MHz, DMSO- $d_6$ )  $\delta$  9.86 (s, 1H), 7.72 (d, J = 7.4 Hz, 1H), 7.36 (dd, J = 13.8, 8.2 Hz, 4H), 7.18 (t, J = 7.8 Hz, 2H), 6.95 (t, J = 7.4 Hz, 1H), 6.78 (d, J = 8.3 Hz, 2H), 5.38 (d, J = 7.0 Hz, 1H), 3.65 (s, 3H), 3.06 (s, 3H), 2.06 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (76 MHz, DMSO- $d_6$ )  $\delta$  166.1, 159.3, 139.8, 139.1, 130.5, 130.2, 128.9, 123.9, 120.1, 117.0, 113.6, 59.4, 55.4, 33.4, 18.5. LCMS, negative mode, m/z: 386 [M-H]<sup>-</sup>. HRMS (ESI–TOF) calcd. for C<sub>19</sub>H<sub>22</sub>N<sub>3</sub>O<sub>4</sub>S<sup>+</sup> [M+H]<sup>+</sup>: 388.1326, found 388.1321. Anal. calcd. for C<sub>19</sub>H<sub>21</sub>N<sub>3</sub>O<sub>4</sub>S: C, 58.90; H, 5.46; N, 10.85; S, 8.27. Found: C, 59.23; H, 5.76; N, 10.79; S, 8.49.

#### 5,6-dimethyl-3-(4-nitrophenyl)-N-phenyl-3,6-dihydro-2H-1,2,6-thiadiazine-4-carboxamide 1,1-dioxide (9de)

White powder, mp = 169–172 °C. Yield = 35% (283 mg). <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  10.07 (s, 1H), 8.22 (d, J = 4.2 Hz, 1H), 8.14 (d, J = 8.5 Hz, 2H), 7.74 (d, J = 8.5 Hz, 2H), 7.43 (d, J = 8.0 Hz, 2H), 7.22 (t, J = 7.8 Hz, 2H), 7.00 (t, J = 7.4 Hz, 1H), 5.65 (s, 1H), 3.13 (s, 3H), 2.17 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (76 MHz, DMSO- $d_6$ )  $\delta$  165.5, 147.0, 145.8, 141.1, 138.5, 130.0, 128.6, 123.6, 123.0, 119.6, 113.6, 58.0, 32.5, 18.1. LCMS, positive mode, m/z: 403 [M+H]<sup>+</sup>. HRMS (ESI–TOF) calcd. for C<sub>18</sub>H<sub>19</sub>N<sub>4</sub>O<sub>5</sub>S<sup>+</sup> [M+H]<sup>+</sup>: 403.1071, found 403.1066. Anal. calcd. for C<sub>18</sub>H<sub>18</sub>N<sub>4</sub>O<sub>5</sub>S: C, 53.72; H, 4.51; N, 13.92; S, 7.97. Found: C, 53.32; H, 4.37; N, 13.97; S, 7.93.

*N,N-diethyl-3-(4-methoxyphenyl)-5-methyl-6-phenyl-3,6-dihydro-2H-1,2,6-thiadiazine-4-carboxamide* 1,1-*dioxide* (10cb) White powder, mp = 187–190 °C. Yield = 56% (481 mg). <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.03 (dd, *J* = 55.2, 7.1 Hz, 1H), 7.51 (t, *J* = 7.2 Hz, 2H), 7.46 – 7.32 (m, 5H), 6.89 (dd, *J* = 15.1, 8.3 Hz, 2H), 5.21 (dd, *J* = 74.5, 7.0 Hz, 1H), 3.74 (d, *J* = 4.0 Hz, 3H), 3.54 – 3.34 (m, 1H), 3.29 – 2.84 (m, 3H), 1.62 – 1.42 (m, 3H), 1.14 (t, *J* = 6.9 Hz, 1H), 0.76 (t, *J* = 7.0 Hz, 1H), 0.69 (q, *J* = 6.8 Hz, 4H). LCMS, positive mode, m/z: 430 [M+H]<sup>+</sup>. HRMS (ESI–TOF) calcd. for C<sub>22</sub>H<sub>28</sub>N<sub>3</sub>O<sub>4</sub>S<sup>+</sup> [M+H]<sup>+</sup>: 430.1795, found 430.1792. Anal. calcd. for C<sub>22</sub>H<sub>27</sub>N<sub>3</sub>O<sub>4</sub>S: C, 61.52; H, 6.34; N, 9.78; S, 7.46. Found: C, 61.85; H, 6.07; N, 9.89; S, 7.09.

#### $(S^*)$ -2- $((R^*)$ -(4-bromophenyl)((N-methylsulfamoyl)amino)methyl)-3-oxo-N-phenylbutanamide (11dd)

White powder, mp = 146–151 °C. Yield = 18% (164 mg). <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  10.10 (s, 1H), 7.87 (d, *J* = 10.0 Hz, 1H), 7.45 (d, *J* = 8.5 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.20 (t, *J* = 7.8 Hz, 2H), 6.99 (t, *J* = 7.4 Hz, 1H), 6.67 (q, *J* = 5.0 Hz, 1H), 4.86 (t, *J* = 10.5 Hz, 1H), 3.97 (d, *J* = 11.0 Hz, 1H), 2.34 (s, 3H), 2.05 (d, *J* = 5.0 Hz, 3H). <sup>13</sup>C NMR (76 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  201.8, 163.6, 139.8, 138.1, 130.6, 130.0, 128.6, 123.8, 120.5, 119.5, 67.4, 56.3, 28.4, 27.7. LCMS, negative mode, m/z: 452 [M-H]<sup>-</sup>. HRMS (ESI–TOF) calcd. for C<sub>18</sub>H<sub>21</sub>BrN<sub>3</sub>O<sub>4</sub>S<sup>+</sup> [M+H]<sup>+</sup>: 454.0431, found 454.0425. Anal. calcd. for C<sub>18</sub>H<sub>20</sub>BrN<sub>3</sub>O<sub>4</sub>S: C, 47.58; H, 4.44; N, 9.28; S, 7.06; Br, 17.59. Found: C, 47.98; H, 4.54; N, 9.18; S, 7.12; Br, 17.95.

#### N-(4-methoxybenzylidene)sulfamide (12b)

White powder, mp = 169–171 °C. Yield = 41% (0.88 g). <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.81 (s, 1H), 7.93 (d, *J* = 8.7 Hz, 2H), 7.24 (s, 2H), 7.11 (d, *J* = 8.7 Hz, 2H), 3.85 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  165.86, 164.09, 132.64, 125.13, 114.85, 55.68. LCMS, positive mode, m/z: 215 [M+H]<sup>+</sup>. HRMS (ESI–TOF) calcd. for C<sub>8</sub>H<sub>11</sub>N<sub>2</sub>O<sub>3</sub>S<sup>+</sup> [M+H]<sup>+</sup>: 215.0485, found 215.0483. Anal. calcd. for C<sub>8</sub>H<sub>10</sub>N<sub>2</sub>O<sub>3</sub>S: C 44.85; H 4.70; N 13.08; S 14.97. Found: C 44.32; H 4.37; N 13.17; S 14.93.

#### N-(4-bromobenzylidene)sulfamide (12d)

White powder, mp = 241–243 °C. Yield = 9% (0.238 g). <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  8.91 (s, 1H), 7.92 (d, J = 8.2 Hz, 2H), 7.79 (d, J = 8.2 Hz, 2H), 7.37 (br. s, 2H). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, DMSO- $d_6$ )  $\delta$  192.28, 165.78, 132.45, 132.05, 128.13. LCMS, positive mode, m/z: 263 [M+H]<sup>+</sup>. HRMS (ESI–TOF) calcd. for C<sub>7</sub>H<sub>8</sub>BrN<sub>2</sub>O<sub>2</sub>S<sup>+</sup> [M+H]<sup>+</sup>: 262.9484, found 262.9474. Anal. calcd. for C<sub>7</sub>H<sub>7</sub>BrN<sub>2</sub>O<sub>2</sub>S: C 31.95; H 2.68; Br 30.37, N 10.65; S 12.19. Found: C 32.15; H 2.73; Br 30.12, N 10.34; S 12.29.

#### N-(4-methoxybenzylidene)-N'-methylsulfamide (14b)

White powder, mp = 115–117 °C. Yield = 41% (2.09 g). <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  8.83 (s, 1H), 7.98 (d, *J* = 8.5 Hz, 2H), 7.87 (br. d, *J* = 4.7 Hz, 1H), 7.12 (d, *J* = 8.5 Hz, 2H), 3.87 (s, 3H), 2.55 (d, *J* = 5.2 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, DMSO- $d_6$ )  $\delta$  168.09,

164.34, 132.93, 125.06, 114.83, 55.72, 29.01. LCMS, positive mode, m/z: 229 [M+H]<sup>+</sup>. HRMS (ESI–TOF) calcd. for  $C_9H_{13}N_2O_3S^+$  [M+H]<sup>+</sup>: 229.0641, found 229.0638. Anal. calcd. for  $C_9H_{12}N_2O_3S$ : C 47.35; H 5.50; N 12.27; S 14.05. Found: C 47.46; H 5.37; N 12.17; S 14.03.

#### $(3S^*,7S^*)$ -2,6-dimethyl-3,7-bis(4-nitrophenyl)-1,5,2,4,6,8-dithiatetrazocane 1,1,5,5-tetraoxide (15e)

Yellow crystalline powder. Yield = 30% (147mg). <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  9.47 (d, J = 10.6 Hz, 1H), 8.35 (d, J = 9.3 Hz, 2H), 7.70 (d, J = 8.5 Hz, 2H), 6.59 (d, J = 10.5 Hz, 1H), 3.34 (s, 3H), 2.63 (s, 3H). LCMS, negative mode, m/z: 485 [M-H]<sup>-</sup>. HRMS (ESI-TOF) calcd. for C<sub>16</sub>H<sub>19</sub>N<sub>6</sub>O<sub>8</sub>S<sub>2</sub><sup>+</sup> [M+H]<sup>+</sup>: 487.0700, found 487.0691. Anal. calcd. for C<sub>14</sub>H<sub>17</sub>N<sub>3</sub>O<sub>6</sub>S: C, 47.32; H, 4.82; N, 11.82; S, 9.02. Found: C, 47.09; H, 4.79; N, 11.66; S, 8.99.

#### 08h:42m:00s 410 0 ΗŅ 06h:43m:00s 0=\$ -9 05h:30m:00s -8 04h:37m:00s 02h:35m:00s 46 00h:57m:00s 45 00h:27m:15s 00h:01m:35s -3 00h:00m:00s initial 5.5 5.0 f1 (ppm) 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0

#### Figure S1. NMR reaction profile for 7ca.



Figure S2. Degradation of 7cc, 2 weeks.



#### Figure S3. Degradation of 7cd, 2 weeks.





Figure S7. Thermal profile of the initial steps of the reaction and the <sup>1</sup>H NMR spectra of the reaction mixtures (the time scale in hours).





#### NMR spectra













































![](_page_31_Figure_1.jpeg)

![](_page_32_Figure_1.jpeg)

![](_page_33_Figure_1.jpeg)

![](_page_34_Figure_1.jpeg)

![](_page_35_Figure_1.jpeg)

![](_page_36_Figure_0.jpeg)

![](_page_36_Figure_1.jpeg)

![](_page_37_Figure_1.jpeg)

![](_page_38_Figure_1.jpeg)

![](_page_39_Figure_1.jpeg)

![](_page_40_Figure_1.jpeg)

![](_page_41_Figure_1.jpeg)

![](_page_42_Figure_1.jpeg)

![](_page_43_Figure_1.jpeg)

![](_page_44_Figure_1.jpeg)

![](_page_45_Figure_1.jpeg)

![](_page_46_Figure_0.jpeg)

![](_page_47_Figure_1.jpeg)

![](_page_48_Figure_1.jpeg)

![](_page_49_Figure_1.jpeg)

![](_page_50_Figure_1.jpeg)

![](_page_51_Figure_1.jpeg)

![](_page_52_Figure_1.jpeg)

![](_page_53_Figure_1.jpeg)

![](_page_54_Figure_1.jpeg)

![](_page_55_Figure_1.jpeg)

![](_page_56_Figure_1.jpeg)

![](_page_57_Figure_1.jpeg)

![](_page_58_Figure_0.jpeg)

| Lay-40_C13.1.fi🖧 👼 | .21 | 945<br>945<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97 | 19           |      |      | 9.0          | 2 12         | 4    | <u>&gt; 9 6 0</u>            | 0,0  |
|--------------------|-----|------------------------------------------------------------------------------------------|--------------|------|------|--------------|--------------|------|------------------------------|------|
| 165,165            | 159 | 137<br>137<br>127<br>129<br>129<br>129<br>129<br>129<br>129<br>129<br>129<br>129<br>129  | 113          | 60.3 | 60.1 | 55.1<br>55.0 | 41.4<br>37.5 | 36.7 | 18.5<br>18.5<br>14.3<br>12.8 | 12.1 |
| 17                 |     |                                                                                          | $\mathbb{N}$ | 5    | 2    | $\mathbf{Y}$ | 15           | 1    | 4 55                         | 1    |

![](_page_58_Figure_2.jpeg)

![](_page_59_Figure_1.jpeg)

![](_page_60_Figure_1.jpeg)

![](_page_61_Figure_1.jpeg)

![](_page_62_Figure_1.jpeg)

![](_page_63_Figure_0.jpeg)

![](_page_63_Figure_1.jpeg)

![](_page_64_Figure_1.jpeg)

![](_page_65_Figure_1.jpeg)

![](_page_66_Figure_1.jpeg)

![](_page_67_Figure_1.jpeg)

![](_page_68_Figure_0.jpeg)