Cu-Catalyzed Arylalkylation of Alkenes via N-Directed

Remote C(sp³)-H Functionalization

Rong Rui, Bin Wang, Xiao-Jing Xu, Zhe Zhang, Xi Chen, Xue-Yuan Liu*

State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China E-mail: <u>liuxuey@lzu.edu.cn</u>

Table of Contents

I.	General Information	1		
II.	Optimization of the Reaction Conditions	2		
III.	Synthesis of Substrates			
	a) Preparation of 8-vinylquinoline ¹	6		
	b) Preparation of <i>N</i> -fluorocarboxamide substrates ²	6		
	c) Preparation of estrone-derived substrates ³	7		
IV.	Experimental procedures	9		
	d) General procedures for Alkylarylation of Vinylaromatics, N-fluoroamides, a	and		
	d) General procedures for Alkylarylation of Vinylaromatics, <i>N</i> -fluoroamides, a Arylboronic acids.	and 9		
	d) General procedures for Alkylarylation of Vinylaromatics, <i>N</i>-fluoroamides, a Arylboronic acids.e) Amplification reaction with 1.0 mmol scale	and 9 9		
V.	 d) General procedures for Alkylarylation of Vinylaromatics, <i>N</i>-fluoroamides, a Arylboronic acids e) Amplification reaction with 1.0 mmol scale	and 9 9 10		
V. VI.	 d) General procedures for Alkylarylation of Vinylaromatics, <i>N</i>-fluoroamides, a Arylboronic acids. e) Amplification reaction with 1.0 mmol scale	and 9 9 .10 .11		
V. VI. VII.	 d) General procedures for Alkylarylation of Vinylaromatics, <i>N</i>-fluoroamides, a Arylboronic acids. e) Amplification reaction with 1.0 mmol scale Radical trapping experiments. X-ray Crystallographic Information Spectra Date of Products 	and 9 9 .10 .11 .12		

I. General Information

All reactions were carried out under argon unless noted specifically. The various alkenes **1a-1l** and arylboronic acids **2a-2q** were commercially available without further purification. The raw materials **1m**, **1n**, **3a-3p** were prepared according to the method reported in the literature, and the copper catalysts, ligands, and bases were purchased from chemical companies and used directly without further purification. The products were purified by column chromatography on silica gel (300-400 mesh) using thin-layer chromatography observed under UV radiation at 254 nm. All solvents are commercially available and anhydrous.

¹H NMR spectra were recorded at 400 MHz in CDCl₃, ¹³C NMR spectra were recorded at 101 MHz in CDCl₃, and ¹⁹F NMR spectra were recorded at 376 MHz in CDCl₃. Chemical shifts (ppm) were recorded with TMS (tetramethylsilane) as the internal reference standard. The following abbreviations were used to describe peak splitting patterns when appropriate: s = singlet, d = doublet, t = triplet, q =quartet, m = multiplet, dd = doublet of doublet. Coupling constants J were reported in hertz unit (Hz). High-resolution mass-spectral analysis was performed on Bruker APEXII. **HRMS** was obtained using a Q-TOF instrument equipped with an ESI source. The date of crystal structure was collected by Mo K α radiation on a Bruker APEX II diffractometer. Melting points were measured with a micro melting point apparatus.

II. Optimization of the Reaction Conditions

 Table 1 Control Experiments.

^aStandard conditions was used. ^bYields were determined by ¹H NMR analysis of crude reaction mixture after workup by using 1,3,5-trimethoxybenzene as an internal standard.

Table 2 Optimization of Copper Catalysts.

1a	$\approx + \underbrace{\downarrow}_{HO'} + \underbrace{\downarrow}_{B'OH} + \underbrace{\downarrow}_{F} + $	10 mol%), bpy (12 mol%) ¹ BuONa (2 equiv.) acetone (2.0 mL) Ar, 70°C, 24 h	$ \begin{array}{c} \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $
entry	conditions	4a yield(%) ^{b}	3a' yield(%) ^{b}
1	Cu(ClO ₄) ₂	22	15
2	CuTc	20	18
3	CuBr ₂	28	12
4	CuI	18	trace
5	CuOAc	31	trace
6	Cu(pph ₃) ₂ BH ₄	25	trace
7	Cu(CH ₃ CN) ₄ PF ₆	36	17

Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.4 mmol, 2.0 equiv.), **3a** (0.2 mmol, 1.0 equiv.), catalyst (10 mol%), bpy (12 mol%), and 'BuONa (0.4 mmol 2 equiv.) in acetone (2.0 mL) at 70 °C for 24 h under an Ar atmosphere. ^{*b*}Yields were determined by ¹H NMR analysis of crude reaction mixture after work-up by using 1,3,5-trimethoxybenzene as an internal standard.

Table 3 Optimization of Bases.

1a	+ + + + + + + + + + + + + + + + + + +	CH ₃ CN) ₄ PF ₆ (10 mol%) (12 mol%), base (2 equiv.) acetone (2.0 mL) Ar, 70°C, 24 h	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $
entry	conditions	4a yield(%) ^b	3a' yield(%) ^{b}
1	Sodium phenol	11	19
2	^t BuOLi	16	23
3	^t BuONa	13	15
4	Cs_2CO_3	15	21
5	CsOPiv	7	trace
6	2.0 eq. ^t BuOK	23	16
7	3.0 eq. 'BuOK	19	12

Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.4 mmol, 2.0 equiv.), **3a** (0.2 mmol, 1.0 equiv.), Cu(CH₃CN)₄PF₆ (10 mol%), bpy (12 mol%), and base (0.4 mmol 2 equiv.) in acetone (2.0 mL) at 70 °C for 24 h under an Ar atmosphere. ^{*b*}Yields were determined by ¹H NMR analysis of crude reaction mixture after work-up by using 1,3,5-trimethoxybenzene as an internal standard.

Table 4 Optimization of Ligands.

Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.4 mmol, 2.0 equiv.), **3a** (0.2 mmol, 1.0 equiv.), Cu(CH₃CN)₄PF₆ (10 mol%), ligand (12 mol%), and 'BuOK (0.4 mmol 2 equiv.) in acetone (2.0 mL) at 70 °C for 24 h under an Ar atmosphere. Yields were determined by ¹H NMR analysis of crude reaction mixture after work-up by using 1,3,5-trimethoxybenzene as an internal standard.

1a	+ + + + + + + + + + + + + + + + + + +	CH ₃ CN) ₄ PF ₆ (10 mol%) mol%), 'BuOK (2 equiv.) acetone, (2.0 mL) Ar, 70°C, 24 h	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ } \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} } \\ } \\ \end{array} } \\ } } \\ \end{array} } \\ } \\ \end{array} } \\ } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ } \\ \end{array} } \\ } } \\ } \\ \end{array} } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } \\ } } \\ } } \\ } \\ } \\ } \\ } \\ } } } } } } } } } }
entry	Conditions (1a:2a:3a)	4a yield(%) ^b	3a' yield(%) ^b
1	2:1.5:2	18	13
2	1:1:1	22	trace
3	1:1.5:2.5	32	14
4	1:3:2.5	46	18
5	1:2:1	29	13
6	1:2.5:2.5	51	22

Table 5 Optimization of Ratios of Reactants.

Reaction conditions: **1a**, **2a**, **3a**, Cu(CH₃CN)₄PF₆ (10 mol%), L₁ (12 mol%), and 'BuOK (0.4mmol 2 equiv.) in acetone (2.0 mL) at 70 °C for 24 h under an Ar atmosphere. ^{*b*}Yields were determined by ¹H NMR analysis of crude reaction mixture after work-up by using 1,3,5-trimethoxybenzene as an internal standard.

° ∥ ←

Table 6 Optimization of Solvents.

	$ + \bigcup_{HO'^B \circ OH} + \bigcup_{F} \bigvee_{F} \bigvee_$	Cu 3u L₁ (1	(CH ₃ CN) ₄ PF ₆ (10 mol%) 12 mol%), ^t BuOK (2 equiv.) Solvent (2.0 mL) Ar, 70°C, 24 h		;Bu
1a	2a 3a		•	4a 3a'	
entry	conditions		4a yield(%) ^{b}	3a' yield(%) ^{b}	
1	DCM		47	25	
2	PhCF ₃		29	11	
3	THF		35	trace	
4	1,4-dioxane		28	trace	
5	MTBE		25	15	
6	Acetone		43	trace	
7	CH ₃ CN		37	17	
8	DCE		23	19	
9	DCM: 1,4-dioxane	9:1	57	23	
10	DCM: 1,4-dioxane	7:1	51	18	
11	DCM: 1,4-dioxane	5:1	65	16	
12	DCM: 1,4-dioxane	3:1	60	22	
13	DCM: 1,4-dioxane	1:1	43	19	
14	DCM: 1,4-dioxane	1:3	53	17	
15	DCM: 1,4-dioxane	1:5	49	14	

Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.5 mmol, 2.5 equiv.), **3a** (0.5 mmol, 2.5 equiv.), Cu(CH₃CN)₄PF₆ (10 mol%), **L**₁ (12 mol%), and 'BuOK (0.4 mmol 2 equiv.) in solvent (2.0 mL) at 70 °C for 24 h under an Ar atmosphere. ^{*b*}Yields were determined by ¹H NMR analysis of crude reaction mixture after work-up by using 1,3,5-trimethoxybenzene as an internal standard.

Table 7 Optimization of Temperature.

1a	$+ \underbrace{\downarrow}_{HO} + \underbrace{\downarrow}_{BOH} + \underbrace{\downarrow}_{F} \underbrace{\downarrow}_{F} \underbrace{\downarrow}_{F} \underbrace{\downarrow}_{DCM_{J}} \underbrace{\downarrow}_{DCM_{J}} \underbrace{\downarrow}_{DCM_{J}} \underbrace{\downarrow}_{DCM_{J}} \underbrace{\downarrow}_{A} \underbrace{\downarrow}$	₃ CN) ₄ PF ₆ (10 mol%) nol%), ¹ BuOK (2 equiv.) ¹ 1,5-dioxane (2.0 mL) r, T °C, 24 h	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \left(\begin{array}{c} \end{array} \\ \end{array} \left(\\ \end{array} \left(\\ \end{array} \left(\\ \end{array} \left) \\ \end{array} \left(\\ \end{array} \left(\\ \end{array} \left(\\ \end{array} \left(\\ \end{array} \left) \\ \end{array} \left(\\ \end{array} \left(\\ \end{array} \left) \\ \end{array} \left(\\ \end{array} \left(\\ \end{array} \left) \\ \end{array} \left(\\ \end{array} \left(\\ \end{array} \left) \\ \end{array} \left(\\ \end{array} \left(\\ \end{array} \left) \\ \end{array} \left(\\ \end{array} \left(\\ \end{array} \left) \\ \end{array} \left(\\ \end{array} \left) \\ \end{array} \left(\end{array} \end{array} \left) \\ \end{array} \left(\end{array} \\ \end{array} \left(\\ \end{array} \left) \\ \end{array} \left) \\ \end{array} \left(\\ \end{array} \left) \\ \end{array} \left) \\ \end{array} \left(\\ \end{array} \left) \\ \end{array} \left) \\ \end{array} \left(\\ \end{array} \left) \\ \end{array} \left) \\ \end{array} \left(\\ \end{array} \left) \\ \end{array} \left(\\ \end{array} \left) \\ \end{array} \left) \\ \end{array} \left) \\ \end{array} \left)
entry	Conditions (°C)	4a yield(%) ^b	3a' yield(%) ^{b}
1	40	21	29
2	60	35	17
3	70	57	14
4	80	69	19
5	100	43	26

Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.5 mmol, 2.5 equiv.), **3a** (0.5 mmol, 2.5 equiv.), Cu(CH₃CN)₄PF₆ (10 mol%), L₁ (12 mol%), and 'BuOK (0.4 mmol 2 equiv.) in solvent (2.0 mL) at T $^{\circ}$ C for 24 h under an Ar atmosphere. Yields were determined by ¹H NMR analysis of crude reaction mixture after work-up by using 1,3,5-trimethoxybenzene as an internal standard.

Table 8 Optimization of Time.

1a	$+ \underbrace{\downarrow}_{HO^{B}OH} + \underbrace{\downarrow}_{2a} \underbrace{\downarrow}_{3a} \underbrace{\downarrow}_{3a} \underbrace{\downarrow}_{1} \underbrace{\downarrow}_$	u(CH ₃ CN) ₄ PF ₆ (10 mol%) <u>12 mol%</u>), ^f BuOK (2 equiv.) CM/1,5-dioxane (2.0 mL) Ar, 80 °C, t h	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array} + \\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}}^{'Bu} \\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}}$ $\begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}$ $\begin{array}{c} \end{array}$ \end{array} $\begin{array}{c} \end{array}$ \end{array} $\begin{array}{c} \end{array}$ $\begin{array}{c} \end{array}$ \end{array} $\begin{array}{c} \end{array}$ \end{array} $\begin{array}{c} \end{array}$ \end{array} \end{array} $\begin{array}{c} \end{array}$ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array}
entry	Conditions (h)	4a yield(%) ^b	3a' yield(%) ^b
1	16	63	26
2	18	74	15
3	20	69	18
4	24	68	13
5	36	65	20

Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.5 mmol, 2.5 equiv.), **3a** (0.5 mmol, 2.5 equiv.), Cu(CH₃CN)₄PF₆ (10 mol%), L₁ (12 mol%), and 'BuOK (0.4 mmol 2 equiv.) in solvent (2.0 mL) at 80 °C for t h under an Ar atmosphere. ^{*b*}Yields were determined by ¹H NMR analysis of crude reaction mixture after work-up by using 1,3,5-trimethoxybenzene as an internal standard.

III. Synthesis of Substrates

a) **Preparation of 8-vinylquinoline**¹

To a solution of methyltriphenylphosphonium bromide (3.93 g, 11 mmol, 1.1 equiv.) in anhydrous THF (40 mL) was added dropwise *n*-BuLi (6.9 mL, 1.6 M in hexanes, 11 mmol, 1.1 equiv.) at 0 °C under a N₂ atmosphere. The solution was stirred at room temperature for 2 hours and then a solution of the quinoline-8-carboxaldehyde (10 mmol, 1 equiv.) in anhydrous THF (10 mL) was added dropwise at 0 °C. The reaction was stirred for 16 hours at room temperature and then quenched by additing saturated aqueous NH₄Cl solution. The aqueous layer was extracted with EtOAc, and the combined organic layers were washed with brine and then dried over Na₂SO₄. After filtration, the solvents were removed under reduced pressure, and the residue was purified by flash column chromatography (65% yield).

b) Preparation of *N*-fluorocarboxamide substrates²

According to previous reports, all *N*-fluorocarboxamide substrates (**3a-3p**) were synthesized as described in the literature, and were proved as identified known compounds with reported NMR spectra and HRMS analysis data. And the brief description of the synthesis method and properties of *N*-fluorocarboxamide substrates were illustrated in a 10 mmol scale reaction as below.

Oxalyl chloride (1.5 equiv.) was added dropwise to a DCM (0.3M, 33 mL) solution of substituted 2-methylbenzoic acid (10 mmol, 1.0 equiv.) and DMF (0.05 equiv.), and the mixture was stirred at room temperature until the bubbling stopped. Then, the crude reaction product was concentrated by vacuum distillation to remove volatiles and dissolved in DCM (0.3 M, 33 mL). After that, tert-butylamine (1.5 equiv.) and triethylamine (2.0 equiv.) were sequentially added at room temperature in this solution. After stirring for 1 to 3 h, this reaction was quenched with 1.0 M aqueous HCl. The crude mixture was extracted with DCM and saturated with aqueous NaHCO₃ three times, then dried with anhydrous Na₂SO₄ and concentrated by vacuum distillation. The product was purified by silica gel column chromatography with petroleum ether/ethyl acetate as eluent. All the N-fluorocarboxamides were prepared by N-fluorination of their parent carboxamides according to conventional methods. Amide (1.0 equiv.) was added to a predried round-bottom flask with a stir bar, and the flask was charged with argon (repeated five times). Then anhydrous THF (0.13 M) was injected and was cooled on an ice bath for 15 minutes. n-butyllithium (1.1 equiv., 2.4 M in hexanes) was added dropwise, and the reaction was conducted at 0 °C. After stirring for 1.5 h, NFSI (1.5 equiv., 0.6 M in THF) was added dropwise. The reaction was left overnight in the ice bath and warmed to room temperature. After 10 to 14 h, the reaction was quenched with 1 M aqueous HCl. The crude mixture was extracted with DCM and saturated with aqueous NaHCO₃ three times, then dried with anhydrous Na₂SO₄ and concentrated by vacuum distillation. The fluoroamides were purified by silica gel column chromatography with petroleum ether/ethyl acetate as eluent.

c) Preparation of estrone-derived substrates³

A 100 ml flask was flame-dried and charged with estrone (1.35 g, 5 mmol, 1.0 equiv.), CH_2Cl_2 (20 mL) and Et_3N (1.01 g, 10 mmol, 2.0 equiv.). The mixture was cooled to 0 °C in an ice water bath. Tf_2O (1.55 g, 5.5 mmol, 1.1 equiv.) was added for more than 10 minutes. The mixture was heated to room temperature and stirred with nitrogen at room temperature for 3 h. The resulting brown mixture was diluted with CH_2Cl_2 , washed with saturated NH_4Cl , and the aqueous layer extracted with CH_2Cl_2 . The complex organic layer was dried over MgSO₄, and the filtrate was concentrated. The above products, potassium vinyltrifluoroborate (0.74 g, 5.5 mmol, 1.1 equiv.) and $PdCl_2$ (17.7 mg, 0.1 mmol, 0.02 equiv.) were loaded into threaded tubes, and the tubes were placed in a nitrogen-filled glove box. PPh₃ (78.6 mg, 0.3 mmol, 0.06 equiv.), Cs_2CO_3 (4.89 g, 15 mmol, 3.0 equiv.) and THF (18 mL) were added, and the tube was sealed and removed from the glove box. 2.0 mL H₂O was added and stirred at 85 °C for 19 h. The resulting dark brown mixture was cooled to room temperature, diluted with CH_2Cl_2 and washed with H₂O. The aqueous layer was extracted with CH_2Cl_2 . The complex organic layer was dried over MgSO₄, and the tube room temperature, diluted with CH_2Cl_2 and washed with the resulting dark brown mixture was cooled to room temperature, diluted with CH_2Cl_2 and washed with H₂O. The aqueous layer was extracted with CH_2Cl_2 . The complex organic layer was dried over MgSO₄, and the filtrate was concentrated. The crude product was purified by column chromatography (petroleum ether/ethyl acetate 10/1) to give white solid (70% yield).

All of the NMR spectra of the know compounds were in full accordance with the data in the literatures. **References:**

- B. N. Bhawal, J. C. Reisenbauer, C. Ehinger and B. Morandi, Overcoming Selectivity Issues in Reversible Catalysis: A Transfer Hydrocyanation Exhibiting High Kinetic Control, J. Am. Chem. Soc., 2020, 142, 10914-10920.
- Y.-T. Wen, X.-T. Kong, H.-C. Liu, C.-T. Wang, W.-X. Wei, B. Wang, X.-Y. Liu and Y.-M. Liang, Ni-Catalyzed Remote Radical/Cross-Electrophile Coupling Cascade for Selective C(sp³)–H Arylation, *Org. Lett.*, 2022, 24, 2399-2403.
- W. Lu, C. Li, X. Wu, X. Xie and Z. Zhang, [Rh(COD)Cl]₂/PPh₃-Catalyzed Dehydrogenative Silylation of Styrene Derivatives with NBE as a Hydrogen Acceptor, *Organometallics*, 2020, **39**, 3780-3788.

IV. Experimental procedures

d) General procedures for Alkylarylation of Vinylaromatics, N-fluoroamides, and

Arylboronic acids.

The reaction is operated in a glove box and the sealing tube is pre-dried before use. Vinylaromatics (0.2 mmol, 1.0 equiv.), *N*-fluoroamides (0.5 mmol, 2.5 equiv.), Arylboronic acids (0.5 mmol, 2.5 equiv.), Cu(CH₃CN)₄PF₆ (10 mol%, 0.02 mmol), 2,2':6',2"-terpyridine as ligand (12 mol%, 0.024 mmol), and 'BuOK as base (0.4 mmol, 2 equiv.) were added in a 15 mL pre-dried sealing tube with stir bar. And then the solvent (DCM/1,4-dixane = 5/1, v/v, 2.0 mL in total) was injected. The resulting mixture was stirred at room temperature for about 15 minutes in advance and was carried out at 80 °C (oil bath) for 18 h subsequently. The completed reaction mixture was concentrated by vacuum distillation. Afterward, the product was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent.

e) Amplification reaction with 1.0 mmol scale

2-vinylnaphthalene (1a, 1.0 mmol 154.2 mg), *N*-(*tert*-butyl)-*N*-fluoro-2-methylbenzamide (2a, 2.5 mmol, 703.2 mg), phenylboronic acid (3a, 2.5 mmol, 304.8 mg), Cu(CH₃CN)₄PF₆ (10 mol%, 0.1 mmol, 37.3 mg), 2,2':6',2"-terpyridine (L₁) as ligand (12 mol%, 0.12 mmol, 28 mg), and base (2 mmol, 224 mg.) were added in a 25 mL pre-dried round-bottom flask with stir bar. And then the solvent (DCM/1,4-dixane = 5/1, v/v, 10.0 mL in total) was injected. The resulting mixture was stirred at room temperature for about 15 minutes in advance and was carried out at 80 °C (oil bath) for 18 h subsequently. The completed reaction mixture was concentrated by vacuum distillation. Afterward, the product was purified by silica gel column chromatography using petroleum ether/ethyl acetate as eluent. The pure product was obtained using petroleum ether/ethyl acetate=20/1 as eluent, and 53% isolated yield of 4a (235.4 mg) has been obtained.

V. Radical trapping experiments

Under standard conditions, the radical trapping agent was added separately, and then the experimental results were observed. when adding 2.0 equivalents 2,6-di-*tert*-butyl-4-methylphenol (BHT) into the standard conditions, the HRMS captured product **7** while no target product **4a** was detected. Subsequently, the reaction was completely inhibited using 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) as a scavenger, but the corresponding trap product **8** was isolated in 25% yield. These results suggested that the alkylarylation may proceed through a radical pathway.

VI. X-ray Crystallographic Information

Sample preparation: The crystal **61** was grown by slowly evaporating with a mixture of acetonitrile and dichloromethane at the refrigerator under the air conditions. (CCDC: 2293192)

Crystal measurement: X-ray crystal structures of **61** were determined at room temperature (293 K). Thermal ellipsoids are drawn at 50% probability level.

VII. Spectra Date of Products

N-(tert-butyl)-2-(3-(naphthalen-2-yl)-3-phenylpropyl)benzamide

White solid (55.6 mg, 66% yield); silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 15/1, m.p: 98-100 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.80 – 7.72 (m, 4H), 7.45 – 7.37 (m, 2H), 7.35 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.31–7.28 (m, 4H), 7.26 – 7.24 (m, 2H), 7.18 – 7.15 (m, 3H), 5.46 (s, 1H), 4.13 (t, *J* = 7.6 Hz, 1H), 2.79 – 2.75 (m, 2H), 2.54 – 2.45 (m, 2H), 1.33 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.6, 144.6, 142.2, 139.9, 137.8, 133.5, 132.2, 130.0, 129.4, 128.4, 128.1, 128.0, 127.7, 127.5, 126.8, 126.6, 126.2, 125.9, 125.8, 125.3, 51.6, 51.5, 37.1, 32.0, 28.7.
HRMS (ESI) *m*/*z*: Calcd for C₃₀H₃₁NNaO⁺ [M + Na]⁺: 444.2303; Found 444.2314.

N-(tert-butyl)-2-(3-(naphthalen-1-yl)-3-phenylpropyl)benzamide

White solid (53.9 mg, 64% yield); silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 20/1, m.p: 113-116 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.04 – 8.00 (m, 1H), 7.83 – 7.79 (m, 1H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.54 (dd, *J* = 7.2, 1.2 Hz, 1H), 7.48 – 7.44 (m, 1H), 7.42 – 7.38 (m, 2H), 7.32 – 7.27 (m, 3H), 7.26 – 7.22 (m, 3H), 7.19 – 7.12 (m, 3H), 5.43 (s, 1H), 4.78 (t, *J* = 7.2 Hz, 1H), 2.90 – 2.74 (m, 2H), 2.58 – 2.43 (m, 2H), 1.32 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.6, 144.6, 140.1, 139.8, 137.9, 134.0, 131.9, 130.1, 129.4, 128.8, 128.4, 128.1, 126.9, 126.6, 126.1, 125.83, 125.79, 125.5, 125.2, 124.5, 123.6, 51.6, 46.2, 37.9, 32.1, 28.7. HRMS (ESI) m/z: Calcd for C₃₀H₃₁NNaO⁺ [M + Na]⁺: 444.2298; Found 444.2298.

2-(3-(anthracen-9-yl)-3-phenylpropyl)-N-(tert-butyl)benzamide

Light yellow liquid (21.7 mg, 23% yield); silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 20/1.

¹**H NMR** (400 MHz, CDCl₃) δ 7.56 – 7.54 (m, 2H), 7.32 – 7.31 (m, 4H), 7.25–7.14 (m, 6H), 7.09 – 7.05 (m, 3H), 6.94 – 6.92 (m, 1H), 6.40 (dd, *J* = 7.6, 1.2 Hz, 1H), 6.27 (dd, *J* = 8.8, 6.0 Hz, 1H), 5.50 (s, 1H), 4.39 (t, *J* = 7.6 Hz, 1H), 4.08 – 4.02 (m, 1H), 3.96 – 3.91(m, 1H), 3.03 (dd, *J* = 7.6, 1.2 Hz, 2H), 1.48 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.9, 141.2, 140.9, 138.8, 138.5, 138.3, 137.4, 135.8, 134.2, 131.9, 128.7, 128.6, 128.43, 128.41, 127.8, 127.4, 126.8, 126.5, 126.3, 126.2, 126.14, 126.07, 125.6, 124.0, 51.7, 49.4, 42.6, 36.0, 28.9.

HRMS (ESI) *m/z*: Calcd for C₃₄H₃₃NNaO⁺ [M + Na]⁺: 494.2454; Found 494.2464.

2-(3-([1,1'-biphenyl]-4-yl)-3-phenylpropyl)-N-(tert-butyl)benzamide

White solid (57.2 mg, 64% yield); silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 20/1, m.p: 136-138 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.56 – 7.49 (m, 4H), 7.43 – 7.39 (m, 2H), 7.35 – 7.25 (m, 9H), 7.20 – 7.16 (m, 3H), 5.48 (s, 1H), 4.00 (t, *J* = 8.0 Hz, 1H), 2.78 – 2,74 (m, 2H), 2.46 – 2.40 (m, 2H), 1.38 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.6, 144.7, 143.9, 141.0, 139.8, 139.0, 137.9, 130.0, 129.4, 128.7, 128.5, 128.3, 127.9, 127.2, 126.99, 126.96, 126.6, 126.2, 125.8, 51.7, 51.2, 37.4, 32.1, 28.8.
HRMS (ESI) *m*/*z*: Calcd for C₃₂H₃₃NNaO⁺ [M + Na]⁺: 470.2454; Found 470.2464.

N-(tert-butyl)-2-(3-(4-methoxyphenyl)-3-phenylpropyl)benzamide

White solid (43.3 mg, 54% yield); silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 15/1, m.p: 100-102 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.30 – 7.27 (m, 1H), 7.26 – 7.20 (m, 5H), 7.19 – 7.12 (m, 5H), 6.83 – 6.79 (m, 2H), 5.47 (s, 1H), 3.91 (t, *J* = 7.6 Hz, 1H), 3.76 (s, 3H), 2.75 – 2.66 (m, 2H), 2.38 – 2.32 (m, 2H), 1.38 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.7, 157.9, 145.2, 139.9, 137.9, 136.9, 130.0, 129.4, 128.8, 128.4, 127.8, 126.6, 126.0, 125.8, 113.8, 55.2, 51.7, 50.6, 37.6, 32.0, 28.8.

HRMS (ESI) *m/z*: Calcd for C₂₇H₃₁NNaO₂⁺ [M + Na]⁺: 424.2247; Found 424.2249.

N-(tert-butyl)-2-(3-(4-chlorophenyl)-3-phenylpropyl)benzamide

Light yellow liquid (39.7 mg, 49% yield); silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 15/1.

¹**H NMR** (400 MHz, CDCl₃) δ 7.30 – 7.25 (m, 5H), 7.24 – 7.21 (m, 4H), 7.20 – 7.17 (m, 3H), 7.15 – 7.12 (m, 1H), 5.49 (s, 1H), 3.93 (t, *J* = 7.6 Hz, 1H), 2.75 – 2.64 (m, 2H), 2.41 – 2.32 (m, 2H), 1.38 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.6, 144.2, 143.3, 139.7, 137.8, 131.8, 130.0, 129.5, 129.3, 128.50, 128.46, 127.8, 126.6, 126.3, 125.9, 51.7, 50.8, 37.3, 32.0, 28.7.

HRMS (ESI) *m/z*: Calcd for C₂₆H₂₈ClNNaO⁺ [M + Na]⁺: 428.1752; Found 428.1766.

N-(tert-butyl)-2-(3-(4-chlorophenyl)-3-phenylpropyl)benzamide

White solid (49.4 mg, 55% yield); silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 15/1, m.p: 102-104 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.36 (m, 2H), 7.30 – 7.27 (m, 3H), 7.25 (s, 1H), 7.23 – 7.21 (m, 2H), 7.19 – 7.12 (m, 5H), 5.48 (s, 1H), 3.92 (t, *J* = 7.8 Hz, 1H), 2.75 – 2.64 (m, 2H), 2.40 – 2.31 (m, 2H), 1.38 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.6, 144.1, 143.8, 139.7, 137.8, 131.5, 130.0, 129.7, 129.5, 128.5, 127.8, 126.6, 126.3, 125.9, 119.9, 51.7, 50.9, 37.2, 32.0, 28.7.

HRMS (ESI) m/z: Calcd for C₂₆H₂₈BrNNaO⁺ [M + Na]⁺: 472.1246; Found 472.1238.

N-(tert-butyl)-2-(3-(4-cyanophenyl)-3-phenylpropyl)benzamide

Light yellow solid (38.0 mg, 48% yield); silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 15/1, m.p: 99-101 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.57 – 7.54 (m, 2H), 7.39 – 7.37 (m, 2H), 7.31 – 7.27 (m, 4H), 7.24 – 7.17 (m, 4H), 7.12 (dd, *J* = 7.6, 2.0 Hz, 1H), 5.51 (s, 1H), 4.02 (t, *J* = 8.0 Hz, 1H), 2.71 – 2.67 (m, 2H), 2.45 – 2.36 (m, 2H), 1.38 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.5, 150.4, 143.1, 139.5, 137.7, 132.3, 130.1, 129.5, 128.8, 128.7, 127.9, 126.7, 126.6, 126.1, 119.0, 109.9, 51.7, 51.6, 37.1, 32.1, 28.7.

HRMS (ESI) *m/z*: Calcd for C₂₇H₂₈N₂NaO⁺ [M + Na]⁺: 419.2094; Found 419.2104.

N-(tert-butyl)-2-(3-(4-nitrophenyl)-3-phenylpropyl)benzamide

Light yellow solid (21.6 mg, 26% yield,); silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 15/1, m.p: 106-108 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 8.15 – 8.11 (m, 2H), 7.46 – 7.42 (m, 2H), 7.33 – 7.28 (m, 4H), 7.26 – 7.17 (m, 4H), 7.13 (dd, *J* = 7.6, 1.6 Hz, 1H), 5.51 (s, 1H), 4.08 (t, *J* = 8.0 Hz, 1H), 2.72 – 2.68 (m, 2H), 2.47 – 2.41(m, 2H), 1.38 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.6, 152.6, 146.4, 143.0, 139.5, 137.7, 130.1, 129.6, 128.8, 127.9, 126.8, 126.6, 126.1, 123.7, 51.7, 51.4, 37.1, 32.1, 28.7.

HRMS (ESI) *m/z*: Calcd for C₂₆H₂₈N₂NaO₃⁺ [M + Na]⁺: 439.1992; Found 439.1992.

N-(tert-butyl)-2-(3-phenyl-3-(m-tolyl)propyl)benzamide

White solid (28.5 mg, 37% yield); silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 15/1, m.p: 96-98 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.30 – 7.27 (m, 3H), 7.26 – 7.26 (m, 3H), 7.19 – 7.14 (m, 4H), 7.07 – 7.05 (m, 2H), 6.97 (d, *J* = 7.2 Hz, 1H), 5.46 (s, 1H), 3.91 (t, *J* = 7.6 Hz, 1H), 2.74 – 2.70 (m, 2H), 2.40 – 2.34 (m, 2H), 2.30 (s, 3H), 1.38 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.7, 144.9, 144.7, 139.9, 137.87, 137.86, 130.0, 129.4, 128.7, 128.4, 128.3, 127.9, 126.9, 126.6, 126.0, 125.8, 124.9, 51.7, 51.5, 37.3, 32.0, 28.7, 21.5.

HRMS (ESI) m/z: Calcd for C₂₇H₃₁NNaO⁺ [M + Na]⁺: 408.2298; Found 408.2307.

2-(3-(3-bromophenyl)-3-phenylpropyl)-N-(tert-butyl)benzamide

White solid (24.3 mg, 27% yield); silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 15/1, m.p: 78-81 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.38 (m, 1H), 7.30 – 7.27 (m, 4H), 7.25 – 7.22 (m, 3H), 7.26 –7.17 (m, 3H), 7.15 – 7.11 (m, 2H), 5.49 (s, 1H), 3.92 (t, *J* = 7.6 Hz, 1H), 2.73 – 2.69 (m, 2H), 2.41 – 2.32 (m, 2H), 1.38 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.6, 147.2, 143.8, 139.6, 137.7, 130.9, 130.01, 129.99, 129.5, 129.2, 128.6, 127.9, 126.6, 126.4, 125.9, 122.5, 51.7, 51.2, 37.1, 32.0, 28.7.

HRMS (ESI) *m/z*: Calcd for C₂₆H₂₈BrNNaO⁺ [M + Na]⁺: 472.1246; Found 472.1242.

N-(tert-butyl)-2-(3,3-diphenylpropyl)benzamide

White solid (23.0 mg, 31% yield); silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 15/1, m.p: 70-73 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.28 – 7.24 (m, 10H), 7.19 – 7.16 (m, 2H), 7.15 – 7.13 (m, 2H), 5.47 (s, 1H), 3.95 (t, *J* = 7.6 Hz, 1H), 2.74 – 2.70 (m, 2H), 2.42 – 2.36 (m, 2H), 1.37 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.6, 144.7, 139.8, 137.8, 130.0, 129.4, 128.44, 128.40, 128.28, 128.25, 127.9, 127.6, 126.6, 126.1, 125.8, 51.7, 51.5, 37.3, 32.0, 28.7.

HRMS (ESI) *m/z*: Calcd for C₂₆H₂₉NNaO⁺ [M + Na]⁺ : 394.2141; Found 394.2151.

N-(tert-butyl)-2-(3-phenyl-3-(quinolin-7-yl)propyl)benzamide

White solid (29.6 mg, 35% yield). silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 15/1. m.p: 153-156 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.93 – 8.91 (m, 1H), 8.09 – 8.07 (m, 1H), 7.68 (dd, J = 7.2, 1.6 Hz, 1H), 7.62 (dd, J = 8.0, 1.2 Hz, 1H), 7.49 – 7.45 (m, 3H), 7.36 – 7.33 (m, 1H), 7.26 – 7.22 (m, 4H), 7.17 – 7.10 (m, 3H), 5.69 (t, J = 8.0 Hz, 1H), 5.50 (s, 1H), 2.86 – 2.72 (m, 2H), 2.58 – 2.49 (m, 2H), 1.33 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 169.7, 149.2, 146.3, 145.1, 143.7, 139.9, 137.9, 136.2, 130.0, 129.2, 128.4, 128.3, 128.2, 127.4, 126.4, 125.9, 125.8, 125.6, 120.8, 51.6, 43.4, 37.5, 32.2, 28.7. **HRMS** (ESI) m/z: Calcd for C₂₉H₃₀N₂NaO⁺ [M + Na]⁺ : 445.2250; Found 445.2252.

*N-(tert-*butyl)-2-(3-((8*R*,9*S*,13*S*,14*S*)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[a]phenanthren-3-yl)-3-phenylpropyl)benzamide

Light yellow liquid (39.4 mg, 36% yield). silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 15/1. dr = 2.8:1

¹**H NMR** (400 MHz, CDCl₃) δ 7.30 – 7.27 (m, 3H), 7.26 – 7.24 (m, 3H), 7.19 – 7.13 (m, 4H), 7.10 – 7.03 (m, 1H), 6.98 – 6.98 (m, 1H), 5.48 – 5.28 (s, 1H), 3.89 (t, *J* = 7.6 Hz, 1H), 2.86 (dd, *J* = 9.2, 4.4 Hz, 2H), 2.73 – 2.69 (m, 2H), 2.48 (dd, *J* = 19.2, 9.2 Hz, 1H), 2.41 – 2.33 (m, 3H), 2.28 – 2.21 (m, 1H), 2.17 – 2.07 (m, 1H), 2.02 – 1.91 (m, 2H), 1.64 – 1.55 (m, 2H), 1.54 – 1.42 (m, 5H), 1.37 (s, 9H), 0.88 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 169.6, 144.87, 144.83, 142.23, 142.18, 139.8, 137.8, 137.4, 136.31, 136.30, 129.9, 129.3, 128.39, 128.37, 127.9, 126.5, 126.0, 125.8, 125.32, 125.30, 125.17, 125.15, 51.6, 51.1, 50.5, 48.0, 44.3, 38.1, 37.38, 37.35, 35.8, 32.0, 31.6, 29.4, 28.8, 28.7, 26.5, 25.6, 21.5, 13.8. **HRMS** (ESI) *m*/*z*: Calcd for C₃₈H₄₅NNaO₂⁺ [M + Na]⁺ : 570.3343; Found 570.3335.

N-(tert-butyl)-2-(3-(naphthalen-2-yl)-3-(p-tolyl)propyl)benzamide

White solid (58.3 mg, 67% yield); silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 20/1, m.p: 114-116 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.78 – 7.70 (m, 4H), 7.43 – 7.33 (m, 3H), 7.28 – 7.24 (m, 2H), 7.20 – 7.13 (m, 4H), 7.08 – 7.04 (m, 2H), 5.46 (s, 1H), 4.08 (t, *J* = 7.6 Hz, 1H), 2.79 – 2.72 (m, 2H), 2.53 – 2.40 (m, 2H), 2.27 (s, 3H), 1.32 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.6, 142.4, 141.5, 139.8, 137.8, 135.6, 133.5, 132.1, 130.0, 129.4, 129.1, 128.0, 127.9, 127.7, 127.4, 126.8, 126.5, 125.80, 125.76, 125.2, 51.6, 51.0, 37.1, 32.0, 28.6, 20.9.
HRMS (ESI) *m/z*: Calcd for C₃₁H₃₃NNaO⁺ [M + Na]⁺ : 458.2460; Found 458.2452.

N-(tert-butyl)-2-(3-(4-(tert-butyl)phenyl)-3-(naphthalen-2-yl)propyl)benzamide

White solid (67.8 mg, 71% yield); silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 20/1, m.p: 115-118 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.79 – 7.72 (m, 4H), 7.44 – 7.36 (m, 4H), 7.30 – 7.27 (m, 2H), 7.23 – 7.21(m, 3H), 7.18 – 7.14 (m, 2H), 5.44 (s, 1H), 4.09 (t, *J* = 8.0 Hz, 1H), 2.78 – 2.74 (m, 2H), 2.52 – 2.46 (m, 2H), 1.32 (s, 9H), 1.27 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.6, 148.8, 142.4, 141.5, 139.9, 137.9, 133.6, 132.2, 129.9, 129.4, 128.0, 127.7, 127.54, 127.49, 126.8, 126.6, 126.0, 125.8, 125.3, 125.2, 51.6, 51.1, 37.2, 34.3, 32.0, 31.4, 28.7.

HRMS (ESI) *m/z*: Calcd for C₃₄H₃₉NNaO⁺ [M + Na]⁺ : 500.2929; Found 500.2944.

N-(tert-butyl)-2-(3-(4-methoxyphenyl)-3-(naphthalen-2-yl)propyl) benzamide

White solid (60.5 mg, 67% yield); silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 15/1, m.p: 98-101 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.79 – 7.71 (m, 4H), 7.45 – 7.37 (m, 2H), 7.33 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.30 – 7.26 (m, 2H), 7.23 – 7.20 (m, 2H), 7.18 – 7.14 (m, 2H), 6.83 – 6.79 (m, 2H), 5.47 (s, 1H), 4.07 (t, *J* = 7.6 Hz, 1H), 3.75 (s, 3H), 2.79 – 2.71 (m, 2H), 2.51 – 2.41 (m, 2H), 1.33 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.6, 157.9, 142.6, 139.9, 137.8, 136.7, 133.5, 132.1, 130.0, 129.4, 128.9, 128.0, 127.7, 127.5, 126.7, 126.5, 125.8, 125.7, 125.2, 113.8, 55.2, 51.6, 50.6, 37.3, 32.0, 28.7.
HRMS (ESI) *m/z*: Calcd for C₃₁H₃₃NNaO₂⁺ [M + Na]⁺: 474.2404; Found 474.2409.

N-(tert-butyl)-2-(3-(4-(methylthio)phenyl)-3-(naphthalen-2-yl)propyl)benzamide

White solid (59.8 mg, 64% yield). silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 25/1, m.p: 137-140 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.79 – 7.71 (m, 4H), 7.45 – 7.37 (m, 2H), 7.34 – 7.23 (m, 4H), 7.22 – 7.21 (m, 1H), 7.18 – 7.13 (m, 4H), 5.48 (s, 1H), 4.08 (t, *J* = 7.6 Hz, 1H), 2.81 – 2.69 (m, 2H), 2.51 – 2.43 (m, 2H), 2.41 (s, 3H), 1.33 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.6, 142.0, 141.6, 139.8, 137.8, 135.7, 133.5, 132.1, 130.0, 129.4, 128.5, 128.1, 127.7, 127.5, 127.0, 126.7, 126.5, 125.9, 125.84, 125.82, 125.8, 125.3, 51.6, 50.9, 37.0, 32.0, 28.6, 16.0.

HRMS (ESI) *m/z*: Calcd for C₃₁H₃₃NNaOS⁺ [M + Na]⁺: 490.2175; Found 490.2187.

White solid (65.6 mg, 66% yield); silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 15/1, m.p: 118-120 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.81 – 7.75 (m, 4H), 7.55 – 7.50 (m, 4H), 7.46– 7.40 (m, 4H), 7.39 – 7.37 (m, 3H), 7.31 – 7.28 (m, 3H), 7.19 – 7.17 (m, 2H), 5.47 (s, 1H), 4.17 (s, 1H), 2.84 – 2.76 (m, 2H), 2.58 – 2.49 (m, 2H), 1.33 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.6, 143.7, 142.1, 140.9, 139.8, 139.0, 137.8, 133.5, 132.2, 130.0, 129.4, 128.7, 128.4, 128.1, 127.7, 127.5, 127.2, 127.00, 126.95, 126.8, 126.6, 126.0, 125.89, 125.87, 125.4, 51.6, 51.2, 37.2 32.1, 28.7.

HRMS (ESI) *m/z*: Calcd for C₃₆H₃₅NNaO⁺ [M + Na]⁺: 520.2611; Found 520.2621.

2-(3-(4-(benzy loxy) pheny l)-3-(naph thal en-2-y l) propy l)-N-(tert-buty l) benzamide

White solid (71.7 mg, 68% yield). silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 15/1, m.p: 145-147 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.79 – 7.71 (m, 4H), 7.46 – 7.38 (m, 5H), 7.36 – 7.34 (m, 2H), 7.33 – 7.29 (m, 3H), 7.25 (s, 1H), 7.23 – 7.20 (m, 2H), 7.18 – 7.17 (m, 1H), 6.91 – 6.87 (m, 2H), 5.46 (s, 1H), 5.01 (s, 2H), 4.08 (t, *J* = 7.6 Hz, 1H), 2.81 – 2.70 (m, 2H), 2.51 – 2.40 (m, 2H), 1.34 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.6, 157.2, 142.5, 139.9, 137.9, 137.14, 137.06, 133.5, 132.1, 130.0, 129.4, 129.0, 128.5, 128.1, 127.9, 127.7, 127.50, 127.47, 126.8, 126.6, 125.83, 125.79, 125.3, 114.8, 70.0, 51.6, 50.6, 37.3, 32.1, 28.7.

HRMS (ESI) *m/z*: Calcd for C₃₇H₃₇NNaO₂⁺ [M + Na]⁺: 550.2717; Found 550.2736.

N-(tert-butyl)-2-(3-(4-chlorophenyl)-3-(naphthalen-2-yl)propyl)benzamide

White solid (60.1 mg, 66% yield); silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 25/1, m.p: 127-130 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.79 – 7.71 (m, 4H), 7.46 – 7.39 (m, 2H), 7.32 – 7.26 (m, 3H), 7.23 (s, 4H), 7.19 – 7.13 (m, 2H), 5.48 (s, 1H), 4.10 (t, *J* = 7.6 Hz, 1H), 2.79 – 2.68 (m, 2H), 2.53 – 2.40 (m, 2H), 1.34 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.6, 143.1, 141.6, 139.7, 137.8, 133.5, 132.2, 131.9, 130.0, 129.5, 129.4, 128.5, 128.2, 127.7, 127.5, 126.6, 126.0, 125.93, 125.91, 125.5, 51.6, 50.8, 37.1, 32.0, 28.7.
HRMS (ESI) *m*/*z*: Calcd for C₃₀H₃₀ClNNaO⁺ [M + Na]⁺: 478.1908; Found 478.1917.

N-(tert-butyl)-2-(3-(3-chlorophenyl)-3-(naphthalen-2-yl)propyl)benzamide

White solid (53.7 mg, 59% yield); silica gel column chromatography with eluent of petroleum ether/ethyl acetate = 25/1, m.p: 98-100 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.81 – 7.73 (m, 4H), 7.47 – 7.39 (m, 2H), 7.33 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.31 – 7.27 (m, 3H), 7.20 – 7.11 (m, 5H), 5.48 (s, 1H), 4.10 (t, *J* = 8.0 Hz, 1H), 2.77 – 2,71 (m, 2H), 2.55 – 2.41 (m, 2H), 1.34 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.6, 146.8, 141.3, 139.7, 137.8, 134.2, 133.5, 132.2, 130.1, 129.7, 129.5, 128.3, 128.1, 127.8, 127.5, 126.6, 126.5, 126.4, 126.3, 126.1, 125.99, 125.95, 125.5, 51.6, 51.2, 36.9, 32.0, 28.7.

HRMS (ESI) *m/z*: Calcd for C₃₀H₃₀ClNNaO⁺ [M + Na]⁺: 478.1908; Found 478.1924.

N-(tert-butyl)-2-(3-(3-methoxyphenyl)-3-(naphthalen-2-yl)propyl)benzamide

White solid (49.6 mg, 55% yield,); silica gel column chromatography with eluent of petroleum ether/ethyl acetate = 25/1, m.p: 108-110 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.78 – 7.70 (m, 4H), 7.43 – 7.34 (m, 3H), 7.28 – 7.24 (m, 2H), 7.20 – 7.12 (m, 3H), 6.92 – 6.84 (m, 2H), 6.69 (dd, *J* = 8.0, 2.4 Hz, 1H), 5.48 (s, 1H), 4.09 (t, *J* = 8.0 Hz, 1H), 3.73 (s, 3H), 2.78 – 2.74 (m, 2H), 2.52 – 2.43 (m, 2H), 1.31 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.6, 159.6, 146.2, 142.0, 139.8, 137.8, 133.5, 132.1, 129.9, 129.4, 129.3, 128.0, 127.7, 127.4, 126.7, 126.5, 125.84, 125.78, 125.3, 120.4, 114.0, 111.2, 55.0, 51.5, 51.4, 36.9, 31.9, 28.6.

HRMS (ESI) *m/z*: Calcd for C₃₁H₃₃NNaO₂⁺ [M + Na]⁺: 474.2404; Found 474.2425.

N-(tert-butyl)-2-(3-(naphthalen-2-yl)-3-(o-tolyl)propyl)benzamide

Light yellow solid (30.5 mg, 35% yield); silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 25/1, m.p: 107-110 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.76 – 7.70 (m, 3H), 7.65 – 7.65 (m, 1H), 7.44 – 7.37 (m, 3H), 7.32 (dd, J = 8.8, 2.0 Hz, 1H), 7.30 – 7.25 (m, 2H), 7.25 – 7.14 (m, 3H), 7.12 – 7.10 (m, 2H), 5.46 (s, 1H), 4.31 (t, J = 7.6 Hz, 1H), 2.88 – 2.74 (m, 2H), 2.49 – 2.40 (m, 2H), 2.26 (s, 3H), 1.33 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.6, 142.2, 141.9, 139.9, 137.9, 136.4, 133.5, 132.1, 130.5, 130.0, 129.4, 127.9, 127.7, 127.5, 127.1, 126.9, 126.6, 126.4, 126.11, 126.10, 125.84, 125.77, 125.2, 51.6, 47.1, 37.7, 32.0, 28.7, 19.9.

HRMS (ESI) m/z: Calcd for C₃₁H₃₃NNaO⁺ [M + Na]⁺: 458.2454; Found 458.2454.

N-(tert-butyl)-2-(3-(2-fluorophenyl)-3-(naphthalen-2-yl)propyl)benzamide

White solid (31.6 mg, 36% yield); silica gel column chromatography with eluent of petroleum ether/ethyl acetate = 25/1, m.p: 96-98 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.80 – 7.73 (m, 4H), 7.46 – 7.35 (m, 4H), 7.29 – 7.25 (m, 2H), 7.20 – 7.12 (m, 3H), 7.09 – 7.05 (m, 1H), 7.01 – 6.96 (m, 1H), 5.48 (s, 1H), 4.49 (t, *J* = 7.6 Hz, 1H), 2.85 – 2.73 (m, 2H), 2.57 – 2.43 (m, 2H), 1.35 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 169.6, 160.7 (d, J = 249.5 Hz), 140.9, 139.7, 137.9, 133.5, 132.2, 131.6 (d, J = 14.1 Hz), 130.1, 129.5, 128.8 (d, J = 5.1 Hz), 128.1, 127.79, 127.75, 127.7, 127.5, 126.8, 126.6, 126.2, 125.91, 125.87, 125.4, 124.2 (d, J = 3.0 Hz), 115.4 (d, J = 23.2 Hz), 51.7, 43.6 (d, J = 2.0 Hz), 36.3, 32.0, 28.7.

¹⁹F NMR (376 MHz, CDCl₃) δ -117.77 (s, 1F).

HRMS (ESI) *m/z*: Calcd for C₃₀H₃₀FNNaO⁺ [M + Na]⁺: 462.2204; Found 462.2217.

N-(tert-butyl)-2-(3-(2,4-dimethoxyphenyl)-3-(naphthalen-2-yl)propyl) benzamide

Light yellow solid (47.2 mg, 49% yield). silica gel column chromatography with eluent of petroleum ether/ethyl acetate = 15/1, m.p: 92-94 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.78 – 7.69 (m, 4H), 7.43 – 7.36 (m, 3H), 7.30 – 7.28 (m, 1H), 7.26 – 7.25 (m, 1H), 7.21 – 7.14 (m, 3H), 6.47 – 6.40 (m, 2H), 5.45 (s, 1H), 4.52 (t, *J* = 7.6 Hz, 1H), 3.77 (s, 3H), 3.74 (s, 3H), 2.82 – 2.71 (m, 2H), 2.47 – 2.34 (m, 2H), 1.33 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.7, 159.1, 158.0, 142.7, 140.0, 137.9, 133.5, 132.0, 130.0, 129.3, 128.3, 127.7, 127.6, 127.4, 127.3, 126.5, 125.9, 125.7, 125.61, 125.57, 125.0, 104.2, 98.7, 55.5, 55.3, 51.6, 43.0, 36.8, 32.0, 28.7.

HRMS (ESI) *m/z*: Calcd for C₃₂H₃₅NNaO₃⁺ [M + Na]⁺: 504.2509; Found 504.2525.

N-(tert-butyl)-2-(3-(3,5-dibromophenyl)-3-(naphthalen-2-yl)propyl)benzamide

Light yellow liquid (35.8 mg, 31% yield). silica gel column chromatography with eluent of petroleum ether/ethyl acetate = 30/1.

¹**H NMR** (400 MHz, CDCl₃) δ 7.83 – 7.77 (m, 3H), 7.72 – 7.72 (m, 1H), 7.49 – 7.42 (m, 3H), 7.36 (d, *J* = 1.6 Hz, 1H), 7.32 – 7.28 (m, 3H), 7.25 (s, 1H), 7.21 – 7.17 (m, 1H), 7.14 – 7.12 (m, 1H), 5.50 (s, 1H), 4.06 (t, *J* = 7.6 Hz, 1H), 2.77 – 2.70 (m, 2H), 2.54 – 2.38 (m, 2H), 1.36 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.5, 148.9, 140.3, 139.6, 137.7, 133.5, 132.4, 131.9, 130.1, 129.9, 129.6, 128.5, 127.8, 127.6, 126.6, 126.31, 126.25, 126.2, 126.1, 125.7, 122.9, 51.7, 51.0, 36.8, 32.0, 28.7. HRMS (ESI) m/z: Calcd for C₃₀H₂₉Br₂NNaO⁺ [M + Na]⁺: 600.0508; Found 600.0526.

N-(tert-butyl)-2-(3-(6-methoxypyridin-3-yl)-3-(naphthalen-2-yl)propyl)benzamide

White solid (32.6 mg, 36% yield). silica gel column chromatography with eluent of petroleum ether/ethyl acetate = 15/1, m.p: 82-84 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.12 (d, *J* = 2.4 Hz, 1H), 7.79 – 7.71 (m, 4H), 7.49 (dd, *J* = 8.4, 2.4 Hz, 1H), 7.46 – 7.39 (m, 2H), 7.33 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.29 – 7.25 (m, 2H), 7.20 – 7.14 (m, 2H), 6.66 (d, *J* = 8.4 Hz, 1H), 5.50 (s, 1H), 4.07 (t, *J* = 7.2 Hz, 1H), 3.89 (s, 3H), 2.81 – 2.70 (m, 2H), 2.55 – 2.39 (m, 2H), 1.34 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.6, 162.8, 145.9, 141.6, 139.7, 138.3, 137.8, 133.5, 132.7, 132.2, 130.1, 129.5, 128.2, 127.7, 127.5, 126.6, 126.5, 126.0, 125.9, 125.8, 125.5, 110.8, 53.3, 51.6, 48.1, 36.9, 32.0, 28.7.

HRMS (ESI) *m/z*: Calcd for C₃₀H₃₂N₂NaO₂⁺ [M + Na]⁺: 475.2356; Found 475.2379.

N-(tert-butyl)-2-(3-(naphthalen-2-yl)-3-(thiophen-2-yl)propyl) benzamide

Light yellow liquid (20.5 mg, 24% yield). silica gel column chromatography with eluent of petroleum ether/ethyl acetate = 20/1.

¹**H NMR** (400 MHz, CDCl₃) δ 7.79 – 7.75 (m, 3H), 7.69 – 7.69 (m, 1H), 7.46 – 7.38 (m, 2H), 7.35 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.32 – 7.28 (m, 1H), 7.25 – 7.24 (m, 1H), 7.22 – 7.13 (m, 3H), 7.10 – 7.09 (m, 1H), 6.94 (dd, *J* = 5.0, 1.3 Hz, 1H), 5.47 (s, 1H), 4.18 (t, *J* = 8.0 Hz, 1H), 2.85 – 2.67 (m, 2H), 2.58 – 2.37 (m, 2H), 1.35 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.6, 145.6, 141.9, 139.8, 137.8, 133.5, 132.3, 130.0, 129.4, 128.2, 127.9, 127.7, 127.5, 126.6, 126.4, 126.2, 125.88, 125.86, 125.4, 125.37, 120.4, 51.6, 47.2, 37.5, 32.0, 28.7.

HRMS (ESI) *m/z*: Calcd for C₂₈H₂₉NNaOS⁺ [M + Na]⁺ : 450.1862; Found 450.1873.

2-(3-(benzo[d][1,3]dioxol-5-yl)-3-(naphthalen-2-yl)propyl)-N-(tert-butyl)benzamide

White solid (59.5 mg, 64% yield); silica gel column chromatography with eluent of petroleum ether/ethyl acetate = 20/1, m.p: 112-114 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.79 – 7.71 (m, 4H), 7.45 – 7.37 (m, 2H), 7.33 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.30 – 7.26 (m, 2H), 7.19 – 7.15 (m, 2H), 6.79 – 6.77 (m, 2H), 6.73 – 6.70 (m, 1H), 5.87 (s, 2H), 5.48 (s, 1H), 4.04 (t, *J* = 7.6 Hz, 1H), 2.81 – 2.70 (m, 2H), 2.51 – 2.37 (m, 2H), 1.34 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.6, 147.7, 145.8, 142.3, 139.9, 138.7, 137.9, 133.5, 132.2, 130.0, 129.4, 128.1, 127.7, 127.5, 126.7, 126.6, 125.9, 125.8, 125.7, 125.3, 121.0, 108.5, 108.1, 100.8, 51.6, 51.1, 37.2, 32.0, 28.7.

HRMS (ESI) *m/z*: Calcd for C₃₁H₃₁NNaO₃⁺ [M + Na]⁺: 488.2196; Found 488.2209.

N-(tert-butyl)-2-(3-(dibenzo[b,d]furan-2-yl)-3-(naphthalen-2-yl)propyl) benzamide

White solid (13.3 mg, 13% yield). silica gel column chromatography with eluent of petroleum ether/ethyl acetate = 20/1, m.p: 140-143 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.94 – 7.91 (m, 2H), 7.82 – 7.73 (m, 4H), 7.53 – 7.51 (m, 1H), 7.47 – 7.37 (m, 6H), 7.32 – 7.28 (m, 3H), 7.20 – 7.16 (m, 2H), 5.47 (s, 1H), 4.31 (t, *J* = 7.6 Hz, 1H), 2.87 – 2.76 (m, 2H), 2.63 – 2.57 (m, 2H), 1.30 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.6, 156.5, 154.8, 142.5, 139.9, 139.3, 137.8, 133.6, 132.2, 130.1, 129.5, 128.2, 127.8, 127.5, 126.9, 126.8, 126.6, 125.91, 125.90, 125.86, 125.4, 124.29, 124.27, 122.5, 120.7, 119.8, 111.6, 111.5, 51.6, 51.3, 37.6, 32.2, 28.6.

HRMS (ESI) *m/z*: Calcd for C₃₆H₃₃NNaO₂⁺ [M + Na]⁺: 534.2404; Found 534.2403.

N-(tert-butyl)-3-methyl-2-(3-(naphthalen-2-yl)-3-phenylpropyl)benzamide

White solid (57.5 mg, 66% yield); silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 20/1, m.p: 104-106 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.80 – 7.72 (m, 4H), 7.45 – 7.37 (m, 3H), 7.34 – 7.32 (m, 2H), 7.28 – 7.24 (m, 2H), 7.19 – 7.04 (m, 4H), 5.46 (s, 1H), 4.16 (t, *J* = 8.0 Hz, 1H), 2.72 – 2.65 (m, 2H), 2.51 – 2.33 (m, 2H), 2.18 (s, 3H), 1.37 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 170.3, 144.6, 142.2, 138.7, 138.0, 137.1, 133.5, 132.2, 131.3, 128.4, 128.1, 128.0, 127.7, 127.5, 126.8, 126.2, 125.9, 125.8, 125.7, 125.3, 124.2, 52.3, 51.6, 36.0, 29.4, 28.8, 19.3.

HRMS (ESI) *m/z*: Calcd for C₃₁H₃₃NNaO⁺ [M + Na]⁺: 458.2454; Found 458.2455.

N-(tert-butyl)-3-methoxy-2-(3-(naphthalen-2-yl)-3-phenylpropyl)benzamide

White solid (56.9 mg, 63% yield). silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 20/1, m.p: 118-121 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.80 – 7.70 (m, 4H), 7.43 – 7.32 (m, 5H), 7.27 – 7.22 (m, 2H), 7.16 – 7.10 (m, 2H), 6.86 – 6.80 (m, 2H), 5.43 (s, 1H), 4.17 (t, *J* = 7.6 Hz, 1H), 3.76 (s, 3H), 2.72 – 2.68 (m, 2H), 2.51 – 2.36 (m, 2H), 1.33 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.4, 157.7, 145.0, 142.5, 139.4, 133.5, 132.1, 128.5, 128.3, 128.1, 127.8, 127.7, 127.5, 127.1, 126.8, 126.0, 125.9, 125.7, 125.1, 118.4, 111.1, 55.5, 52.1, 51.6, 35.7, 28.7, 26.4.

HRMS (ESI) *m/z*: Calcd for C₃₁H₃₃NNaO₂⁺ [M + Na]⁺: 474.2404; Found 474.2418.

N-(tert-butyl)-3-chloro-2-(3-(naphthalen-2-yl)-3-phenylpropyl) benzamide

White solid (64.6 mg, 71% yield). silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 20/1, m.p: 52-54 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.79 – 7.71 (m, 4H), 7.43 – 7.31 (m, 6H), 7.25 (t, *J* = 7.6 Hz, 2H), 7.16 – 7.04 (m, 3H), 5.45 (s, 1H), 4.19 (t, *J* = 7.6 Hz, 1H), 2.83 – 2.76 (m, 2H), 2.55 – 2.39 (m, 2H), 1.33 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 168.6, 144.4, 142.0, 140.0, 137.6, 135.1, 133.5, 132.2, 130.5, 128.4, 128.04, 127.96, 127.7, 127.5, 127.0, 126.9, 126.1, 125.9, 125.8, 125.2, 124.8, 52.2, 51.8, 35.3, 30.2, 28.6.
HRMS (ESI) *m/z*: Calcd for C₃₀H₃₀ClNNaO⁺ [M + Na]⁺: 478.1914; Found 478.1915.

N-(tert-butyl)-4-fluoro-2-(3-(naphthalen-2-yl)-3-phenylpropyl)benzamide

White solid (51.0 mg, 58% yield). silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 20/1, m.p: 123-125 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.78 – 7.70 (m, 4H), 7.43 – 7.29 (m, 4H), 7.28 – 7.27 (m, 1H), 7.25 – 7.11 (m, 4H), 6.85 – 6.78 (m, 2H), 5.50 (s, 1H), 4.09 (t, *J* = 8.0 Hz, 1H), 2.75 – 2.71 (m, 2H), 2.52 – 2.39 (m, 2H), 1.29 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 168.7, 162.9 (d, *J* = 249.5 Hz), 144.3, 142.9 (d, *J* = 7.1 Hz), 141.9, 133.9 (d, *J* = 3.0 Hz), 133.4, 132.1, 128.4, 128.1, 127.9, 127.6, 127.4, 126.6, 126.2, 125.8, 125.3, 116.6 (d, *J* = 21.2 Hz), 112.5 (d, *J* = 21.2 Hz), 51.6, 51.3, 36.7, 32.0, 28.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -111.39 (s, 1F).

HRMS (ESI) *m/z*: Calcd for C₃₀H₃₀FNNaO⁺ [M + Na]⁺: 462.2204; Found 462.2216.

N-(tert-butyl)-4-chloro-2-(3-(naphthalen-2-yl)-3-phenylpropyl)benzamide

White solid (45.5 mg, 50% yield). silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 20/1, m.p: 102-104 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.79 – 7.71 (m, 4H), 7.44 – 7.35 (m, 2H), 7.33 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.30 – 7.23 (m, 4H), 7.17 – 7.10 (m, 4H), 5.49 (s, 1H), 4.09 (t, *J* = 7.6 Hz, 1H), 2.73 – 2.68 (m, 2H), 2.51 – 2.38 (m, 2H), 1.30 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 168.6, 144.3, 142.0, 141.8, 136.1, 135.0, 133.5, 132.1, 129.9, 128.5, 128.1, 127.9, 127.7, 127.5, 126.6, 126.2, 125.91, 125.87, 125.3, 51.7, 51.4, 36.7, 31.9, 28.6.

HRMS (ESI) m/z: Calcd for C₃₀H₃₀ClNNaO⁺ [M + Na]⁺: 478.1908; Found 478.1910.

N-(tert-butyl)-5-methoxy-2-(3-(naphthalen-2-yl)-3-phenylpropyl)benzamide

White solid (51.4 mg, 57% yield); silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 15/1, m.p: 112-114 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.79 – 7.71 (m, 4H), 7.45 – 7.37 (m, 2H), 7.34 (dd, *J* = 8.6, 1.6 Hz, 1H), 7.31 – 7.23 (m, 4H), 7.19 – 7.13 (m, 1H), 7.07 – 7.04 (m, 1H), 6.84 – 6.81(m, 2H), 5.44 (s, 1H), 4.10 (t, *J* = 7.6 Hz, 1H), 3.77 (s, 3H), 2.71 – 2.65 (m, 2H), 2.52 – 2.39 (m, 2H), 1.32 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.3, 157.5, 144.6, 142.2, 138.7, 133.5, 132.1, 131.5, 131.1, 128.4, 128.04, 128.01, 127.7, 127.5, 126.8, 126.1, 125.9, 125.8, 125.3, 114.8, 112.3, 55.4, 51.6, 51.4, 37.2, 31.2, 28.6.

HRMS (ESI) *m/z*: Calcd for C₃₁H₃₃NNaO₂⁺ [M + Na]⁺: 474.2404; Found 474.2417.

N-(tert-butyl)-5-chloro-2-(3-(naphthalen-2-yl)-3-phenylpropyl) benzamide

White solid (32.8 mg, 36% yield); silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 15/1, m.p: 141-144 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.79 – 7.71 (m, 4H), 7.46 – 7.38 (m, 2H), 7.34 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.30 – 7.23 (m, 6H), 7.18 – 7.14 (m, 1H), 7.08 – 7.06 (m, 1H), 5.44 (s, 1H), 4.09 (t, *J* = 7.6 Hz, 1H), 2.75 – 2.68 (m, 2H), 2.52 – 2.39 (m, 2H), 1.32 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 168.1, 144.4, 142.0, 139.2, 138.4, 133.5, 132.2, 131.49, 131.47, 129.4, 128.5, 128.1, 128.0, 127.7, 127.5, 126.7, 126.6, 126.3, 125.94, 125.91, 125.4, 51.9, 51.4, 36.9, 31.5, 28.6. HRMS (ESI) *m/z*: Calcd for C₃₀H₃₀ClNNaO⁺ [M + Na]⁺: 478.1908; Found 478.1919.

N-(tert-butyl)-2-fluoro-6-(3-(naphthalen-2-yl)-3-phenylpropyl)benzamide

White solid (52.7 mg, 60% yield); silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 20/1, m.p: 145-147 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.80 – 7.72 (m, 4H), 7.46 – 7.39 (m, 2H), 7.35 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.31 – 7.27 (m, 3H), 7.27 – 7.14 (m, 3H), 6.96 – 6.87 (m, 2H), 5.47 (s, 1H), 4.12 (t, *J* = 8.0 Hz, 1H), 2.76 – 2.63 (m, 2H), 2.56 – 2.44 (m, 2H), 1.33 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 164.2, 158.9 (d, *J* = 246.4 Hz), 144.4, 142.4 (d, *J* = 3.0 Hz), 142.0, 133.5, 132.2, 130.1 (d, *J* = 8.1 Hz), 128.5, 128.2, 128.0, 127.7, 127.5, 126.7, 126.3, 125.9 (d, *J* = 2.0 Hz), 125.4, 125.2 (d, *J* = 2.0 Hz), 113.3, 113.1, 52.1, 51.5, 36.9, 31.8 (d, *J* = 2.0 Hz), 28.7

¹⁹**F NMR** (376 MHz, CDCl₃) δ -117.22 (s, 1F).

HRMS (ESI) *m/z*: Calcd for C₃₀H₃₀FNNaO⁺ [M + Na]⁺: 462.2204; Found 462.2210.

N-(tert-butyl)-2-methyl-6-(3-(naphthalen-2-yl)-3-phenylpropyl) benzamide

White solid (41.8 mg, 48% yield); silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 20/1, m.p: 117-119 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.79 – 7.72 (m, 4H), 7.45 – 7.34 (m, 3H), 7.32 – 7.23 (m, 4H), 7.18 – 7.13 (m, 2H), 7.00 (dd, *J* = 8.0, 2.4 Hz, 2H), 5.31 (s, 1H), 4.12 (t, *J* = 7.6 Hz, 1H), 2.69 – 2.58 (m, 2H), 2.56 – 2.46 (m, 2H), 2.32 (s, 3H), 1.27 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.2, 144.6, 142.2, 138.4, 138.3, 134.0, 133.5, 132.2, 128.47, 128.45, 128.1, 128.0, 127.72, 127.67, 127.5, 126.7, 126.4, 126.2, 125.89, 125.85, 125.3, 51.63, 51.61, 37.3, 32.0, 28.6, 19.0.

HRMS (ESI) *m*/*z*: Calcd for C₃₁H₃₃NNaO⁺ [M + Na]⁺: 458.2454; Found 458.2441.

$\label{eq:2-(3-(naphthalen-2-yl)-3-phenylpropyl)-N-(2,4,4-trimethylpentan-2-yl) benzamide$

White solid (35.4 mg, 37% yield); silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 25/1, m.p: 130-132 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) ¹H NMR (400 MHz, Chloroform-d) δ 7.80 – 7.72 (m, 4H), 7.45 – 7.39 (m, 2H), 7.37 – 7.35 (m, 1H), 7.32 – 7.28 (m, 4H), 7.27 – 7.25 (m, 2H), 7.19 – 7.13 (m, 3H), 5.48 (s, 1H), 4.13 (t, J = 7.6 Hz, 1H), 2.80 – 2.76 (m, 2H), 2.55 – 2.44 (m, 2H), 1.76 (s, 2H), 1.38 (s, 6H), 0.98 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) ¹³C NMR (101 MHz, Chloroform-d) δ 169.2, 144.6, 142.2, 140.1, 137.9, 133.5, 132.2, 130.1, 129.4, 128.4, 128.1, 128.0, 127.7, 127.5, 126.8, 126.3, 126.2, 126.0, 125.9, 125.8, 125.3, 55.7, 51.9, 51.5, 37.2, 32.0, 31.6, 31.5, 28.94, 28.92.

HRMS (ESI) *m/z*: Calcd for C₃₄H₄₀NO⁺ [M + H]⁺: 478.3104; Found 478.3080.

N-(tert-butyl)-2-(4-(naphthalen-2-yl)-4-phenylbutan-2-yl)benzamide

Light yellow liquid (49.6 mg, 57% yield). silica gel column chromatography with eluent of petroleum ether/ethyl acetate = 15/1. dr = 1.5:1

¹**H NMR** (400 MHz, Chloroform-d) δ 7.77 – 7.66 (m, 4H), 7.43 – 7.36 (m, 4H), 7.25 – 7.18(m, 1H), 7.25 – 7.18 (m, 6H), 7.15 – 7.10 (m, 1H), 5.20 – 5.08 (s, 1H), 4.08 – 3.99 (m, 1H), 3.11 – 3.00 (m, 1H), 2.64 – 2.39 (m, 2H), 1.34 (d, J = 6.8 Hz, 3H), 1.09 (s, 5H), 0.99 (s, 4H).

¹³C NMR (101 MHz, Chloroform-d) δ 169.5, 169.4, 144.8, 144.5, 144.4, 144.2, 142.2, 141.7, 138.3, 138.1, 133.53, 133.47, 132.2, 132.1, 129.6, 128.5, 128.4, 128.10, 128.06, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4, 126.64, 126.60, 126.5, 126.2, 126.1, 125.9, 125.8, 125.7, 125.4, 125.3, 51.4, 51.2, 49.1, 49.0, 42.7, 42.4, 33.82, 33.78, 28.3, 28.2, 23.6, 23.3.

HRMS (ESI) *m/z*: Calcd for C₃₁H₃₃NNaO⁺ [M + Na]⁺: 458.2454; Found 458.2450.

N-(tert-butyl)-3-(3-(naphthalen-2-yl)-3-phenylpropyl) thiophene-2-carboxamide

Light pink solid (44.4 mg, 52% yield); silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 20/1, m.p: 160-163 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.80 – 7.72 (m, 4H), 7.46 – 7.38 (m, 2H), 7.34 (dd, J = 8.8, 2.0 Hz, 1H), 7.31 – 7.27 (m, 3H), 7.27 – 7.24 (m, 1H), 7.21 – 7.14 (m, 2H), 6.86 (d, J = 5.1 Hz, 1H), 5.53 (s, 1H), 4.12 (t, J = 7.6 Hz, 1H), 2.93 – 2.86 (m, 2H), 2.57 – 2.43 (m, 2H), 1.34 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 162.3, 144.5, 144.4, 142.0, 133.5, 132.5, 132.2, 130.5, 128.5, 128.1, 128.0, 127.7, 127.5, 126.7, 126.2, 125.93, 125.91, 125.7, 125.4, 51.8, 51.1, 36.1, 28.8, 28.0.

HRMS (ESI) *m/z*: Calcd for C₂₈H₂₉NNaOS⁺ [M + Na]⁺: 450.1862; Found 450.1860.

N-(2,4,4-trimethyl-7-(naphthalen-2-yl)-7-phenylheptan-2-yl)benzamide

Colourless liquid (25.1 mg, 27% yield); silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 20/1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.79 – 7.71 (m, 3H), 7.67 (d, *J* = 2.0 Hz, 1H), 7.64 – 7.61 (m, 2H), 7.47 – 7.31 (m, 7H), 7.26 (s, 1H), 7.25 (s, 2H), 7.19 – 7.13 (m, 1H), 5.85 (s, 1H), 3.92 (t, *J* = 7.6 Hz, 1H), 2.21 – 2.07 (m, 2H), 1.864 – 1.861 (m, 2H), 1.46 (s, 6H), 1.35 – 1.31 (m, 2H), 1.02 (s, 6H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 166.5, 145.0, 142.5, 136.0, 133.5, 132.1, 131.0, 128.5, 128.4, 128.0, 127.9, 127.7, 127.5, 126.6, 126.52, 126.49, 126.1, 125.9, 125.8, 125.3, 55.4, 52.2, 49.5, 43.1, 34.2, 30.0, 29.40, 29.37, 28.6, 28.5.

HRMS (ESI) *m/z*: Calcd for C₃₃H₃₇NNaO [M + Na]⁺: 486.2767; Found 486.2787.

N-benzyl-2-methyl-7-(naphthalen-2-yl)-7-phenylheptan-2-yl)benzamide

Colourless liquid (26.3 mg, 25% yield); silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 15/1, dr=1:1.05.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.77 – 7.71 (m, 2H), 7.68 – 7.63 (m, 3H), 7.51 – 7.31 (m, 6H), 7.25 – 7.12 (m, 9H), 7.05 – 7.02 (m, 2H), 5.74 (d, *J* = 7.6 Hz, 1H), 4.20 – 4.14 (m, 1H), 2.70 – 2.57 (m, 2H), 2.21 – 1.99 (m, 2H), 1.93 – 1.76 (m, 2H), 1.67 (dt, *J* = 12.8, 6.4 Hz, 1H), 1.41 – 1.30 (m, 8H).

¹³C NMR (101 MHz, Chloroform-d) δ 166.7, 145.2, 144.4, 142.5, 141.7, 140.9, 140.9, 135.8, 133.5, 133.4, 132.1, 131.09, 131.06, 129.20, 129.18, 128.49, 128.46, 128.42, 128.37, 128.17, 128.15, 128.06, 128.0, 127.95, 127.89, 127.70, 127.67, 127.50, 127.46, 126.9, 126.68, 126.66, 126.10, 126.09, 125.91,

125.90, 125.86, 125.78, 125.74, 125.72, 125.30, 125.28, 54.1, 48.7, 48.5, 40.4, 40.3, 39.4, 39.1, 37.1, 36.0, 35.7, 27.22, 27.17, 27.14, 27.10, 27.0, 26.8.

HRMS (ESI) *m/z*: Calcd for C₃₈H₃₉NNaO [M + Na]⁺: 548.2924; Found 548.2912.

N-(2-methyl-5-(2-(naphthalen-2-yl)-2-phenylethyl)octan-2-yl)thiophene-2-carboxamide

Colourless liquid (32.9 mg, 34% yield); silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 15/1, dr = 1:1.07.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.79 – 7.65 (m, 4H), 7.45 – 7.34 (m, 5H), 7.32 – 7.23 (m, 2H), 7.24 (dd, J = 4.8, 2.0 Hz, 2H), 7.18 – 7.12 (m, 1H), 7.05 (td, J = 5.2, 3.6 Hz, 1H), 5.66 (s, 1H), 4.17 (td, J = 8.0, 5.2 Hz, 1H), 2.22 – 1.97 (m, 2H), 1.85 – 1.66 (m, 2H), 1.42 – 1.38 (m, 6H), 1.34 – 1.23 (m, 7H), 0.83 (td, J = 7.2, 2.4 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 161.0, 145.3, 144.8, 142.7, 142.3, 140.5, 133.5, 132.1, 129.38, 129.36, 128.4, 128.01, 127.97, 127.94, 127.68, 127.66, 127.48, 127.45, 127.36, 127.3, 126.8, 126.7, 126.1, 126.0, 125.8, 125.3, 54.5, 48.64, 48.57, 39.7, 39.6, 36.4, 36.0, 35.9, 35.8, 34.7, 34.5, 27.17, 27.15, 27.12, 27.05, 26.9, 19.6, 19.5, 14.5.

HRMS (ESI) *m/z*: Calcd for C₃₂H₃₇NNaOS [M + Na]⁺: 506.2488; Found 506.2510.

N-(2-methyl-5-(2-(naphthalen-2-yl)-2-phenylethyl)tetradecan-2-yl)benzamide

Colourless liquid (23.6 mg, 21% yield); silica gelcolumn chromatography with eluent of petroleum ether/ethyl acetate = 25/1, dr=1:1.05.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.79 – 7.65 (m, 6H), 7.51 – 7.39 (m, 5H), 7.37 – 7.27 (m, 3H), 7.25 – 7.22 (m, 2H), 7.18 – 7.13 (m, 1H), 5.80 (s, 1H), 4.17 (td, *J* = 7.6, 4.0 Hz, 1H), 2.16 – 1.98 (m, 2H), 1.86 – 1.66 (m, 2H), 1.43 – 1.40 (m, 6H), 1.35 – 1.20 (m, 19H), 0.90 – 0.86 (m, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 166.7, 145.2, 144.9, 142.7, 142.4, 136.0, 133.5, 132.0, 131.07, 131.05, 128.50, 128.48, 128.4, 128.01, 127.98, 127.96, 127.7, 127.6, 127.5, 126.80, 126.75, 126.7, 126.6, 126.1, 126.03, 126.01, 125.9, 125.8, 125.3, 54.1, 48.7, 48.6, 39.72, 39.65, 36.3, 35.9, 34.8, 34.7, 33.5, 33.3, 31.9, 30.0, 30.0, 29.7, 29.62, 29.61, 29.3, 27.3, 27.2, 27.1, 27.03, 26.98, 26.4, 26.3, 22.7, 14.1. **HRMS** (ESI) *m/z*: Calcd for C₄₀H₅₁NNaO [M + Na]⁺: 584.3863; Found 584.3880.

N-(tert-butyl)-2-(((2,2,6,6-tetramethylpiperidin-1-yl)oxy)methyl)benzamide

White solid (17.3 mg, 25% yield); silica gel column chromatography with eluent of petroleum ether/ethyl acetate = 20/1, m.p: 113-115 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.61 (d, *J* = 7.6 Hz, 1H), 7.40 – 7.35 (m, 2H), 7.28 – 7.24 (m, 1H), 5.80 (s, 1H), 5.00 (s, 2H), 1.45 (s, 15H), 1.19 – 1.15 (m, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 168.9, 136.5, 136.2, 129.4, 128.7, 127.0, 126.6, 76.0, 59.8, 51.7, 39.7, 33.1, 28.8, 20.4, 17.1.

HRMS (ESI) m/z: Calcd for $C_{21}H_{35}N_2O_2^+$ [M + H]⁺: 347.2693; Found 347.2682.

2-benzyl-N-(tert-butyl)benzamide

Yellow oil; silica gel column chromatography with eluent of petroleum ether/ethyl acetate = 25/1. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.35 – 7.20 (m, 5H), 7.18 – 7.13 (m, 4H), 5.47 (s, 1H), 4.17 (s, 2H), 1.28 (s, 9H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 169.3, 140.9, 137.9, 137.8, 130.9, 129.5, 128.7, 128.3, 127.1, 126.2, 125.9, 51.5, 38.6, 28.5.

HRMS (ESI) m/z: Calcd for $C_{21}H_{35}N_2O_2^+$ [M + H]⁺: 290.1515; Found 290.1519.

VIII. NMR Spectra of Products

¹H NMR (400 MHz, CDCl₃) of 4b

¹³C NMR (101 MHz, CDCl₃) of 4b

¹H NMR (400 MHz, CDCl₃) of 4c

¹³C NMR (101 MHz, CDCl₃) of 4c

¹H NMR (400 MHz, CDCl₃) of 4e

¹H NMR (400 MHz, CDCl₃) of 4f

7.302 7.292 7.292 7.292 7.293 7.293 7.293 7.293 7.293 7.293 7.293 7.293 7.293 7.293 7.293 7.293 7.293 7.293 7.214 7.214 7.214 7.211 7.211 7.211 7.233 7.233 7.233 7.233 7.233 7.233 7.233 7.233 7.233 7.214 7.214 7.211 7.223 7.2133 7.2133 7.2133 7.2133 7.2133 7.2133 7.2133 7.2133 7.2133 7.2133 7.2133 7.2133 7.2133 7.2133 7.2133 7.2233 7.2332 7.2332 7.2332 7.2332 7.2332 7.2332 7.2332 7.2332 7.2332 7.2332 7.2332 7.2233 7.23327

¹H NMR (400 MHz, CDCl₃) of 4g

7.391 7.391 7.3935 7.375 7.375 7.375 7.290 7.283 7.283 7.223 7.223 7.223 7.223 7.223 7.223 7.223 7.223 7.223 7.223 7.215 7.223 7.215 7.223 7.215 7.215 7.215 7.215 7.215 7.215 7.215 7.215 7.215 7.215 7.215 7.223 7.215 7.215 7.215 7.215 7.223 7.215 7.215 7.215 7.215 7.215 7.215 7.213 7.213 7.213 7.213 7.213 7.213 7.213 7.213 7.213 7.213 7.225 7.2125 7.2256 7.2567.256

¹H NMR (400 MHz, CDCl₃) of 4h

¹H NMR (400 MHz, CDCl₃) of 4i

¹H NMR (400 MHz, CDCl₃) of 4j

-0.000

^{'Bu} O N Me 4j

¹³C NMR (101 MHz, CDCl₃) of 4j

¹H NMR (400 MHz, CDCl₃) of 4k

120 110 100 90 fl (ppm))0 170 160 -1

¹H NMR (400 MHz, CDCl₃) of 4m

¹H NMR (400 MHz, CDCl₃) of 4n

¹³C NMR (101 MHz, CDCl₃) of 4n

¹H NMR (400 MHz, CDCl₃) of 5a

7.77 7.77 7.775 7.775 7.775 7.775 7.775 7.775 7.775 7.775 7.775 7.775 7.775 7.735 7.7557.7

¹³C NMR (101 MHz, CDCl₃) of 5a

¹H NMR (400 MHz, CDCl₃) of 5b

¹³C NMR (101 MHz, CDCl₃) of 5b

¹H NMR (400 MHz, CDCl₃) of 5c

7.7.84 7.7.7.75 7.7.76 7.7.76 7.7.76 7.7.76 7.7.76 7.7.75 7.7.75 7.7.75 7.7.74 7.7.75 7.75 7.55 7.75 7.55 7.75 7.557

¹³C NMR (101 MHz, CDCl₃) of 5c

-169.63 -157.87 -157.87 132.80 137.90 137.90 137.90 137.90 137.90 122.00 122.00 122.60 122.72 122.60 122.72 122.60 122.72	$\overbrace{76.68}^{77.32}$	∑55.16 ∑51.60 ∑50.56	-37.26 -32.03 -28.65
---	-----------------------------	----------------------------	----------------------------

¹H NMR (400 MHz, CDCl₃) of 5d

7.7817.7817.7837.77307.77337.77337.77337.77337.77337.77337.77337.77337.77337.77337.77337.725

¹H NMR (400 MHz, CDCl₃) of 5e

¹H NMR (400 MHz, CDCl₃) of 5f

 $\begin{array}{c} 7.73\\ 7.77\\ 7.78\\ 7.77\\ 7.78\\ 7.77\\ 7.78\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.73\\ 7.33\\ 7.73\\ 7.33\\ 7.73\\ 7.33\\ 7.73\\ 7.33\\ 7.73\\$

¹H NMR (400 MHz, CDCl₃) of 5g

7.7.90 7.7.790 7.7.790 7.7.743 7.7.743 7.7.743 7.7.711 7.7.743 7.7.723 7.7.433 7.7.425 7.7.

¹³C NMR (101 MHz, CDCl₃) of 5g

¹H NMR (400 MHz, CDCl₃) of 5h

7.810 7.810 7.810 7.810 7.810 7.779 7.779 7.779 7.779 7.779 7.779 7.779 7.779 7.7725 7.7429 7.7429 7.7429 7.7429 7.7429 7.7429 7.7429 7.725141 7.7429 7.725141 7.7415 7.725141 7.7415 7.7429 7.725141 7.7415 7.725141 7.725141 7.725141 7.725141 7.725141 7.725135 7.71677 7.717257.717

¹H NMR (400 MHz, CDCl₃) of 5i

 $\begin{array}{c} 7.783\\ 7.783\\ 7.761\\ 7.761\\ 7.761\\ 7.761\\ 7.761\\ 7.761\\ 7.761\\ 7.761\\ 7.761\\ 7.761\\ 7.731\\ 7.731\\ 7.735\\ 7.755\\ 7.$

¹³C NMR (101 MHz, CDCl₃) of 5i

¹H NMR (400 MHz, CDCl₃) of 5j

7.7.63 7.7.757 7.7.757 7.7.757 7.7.757 7.7.755 7.7.755 7.7.559 7.7.659 7.7.659 7.7.659 7.7.659 7.7.651 7.407 7.7.402 7.7.418 7.7.338 7.7.7358 7.7.7358 7.7.7358 7.7.7358 7.7.7358 7.7.7358 7.7.7358 7.7.7358 7.7.7358 7.7.7358 7.7.7358 7.7.7358 7.7.7358 7.7.7358 7.7.7358 7.7.7358 7.7.7358 7.7.7358 7.77256 7.77256 7.77256 7.77256 7.77256 7.77256 7.77256 7.77256 7.77256 7.77256 7.77256 7.77256 7.77256 7.77256 7.77256 7.77256 7.77256 7.77256 7.77257 7.77256 7.77256 7.77256 7.77256 7.77256 7.77256 7.77256 7.77257

¹³C NMR (101 MHz, CDCl₃) of 5j

¹H NMR (400 MHz, CDCl₃) of 5k

7.2800 7.7796 7.77796 7.7796 7.7796 7.7796 7.7731 7.731 7.731 7.7331 7.7405 7.745 7.7405 7.745 7.7405 7.745 7

¹⁹F NMR (376 MHz, CDCl₃) of 5k

-20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -1! fl (ppm)

¹H NMR (400 MHz, CDCl₃) of 5l

7.778 7.7758 7.775161 7.77577 7.777577 7.777577 7.7777777777777777377 7.77112775773762 7.7396 7.7396 7.73776 7.73776 7.73776 7.73776 7.73776 7.73776 7.73776 7.73776 7.737667.73

¹³C NMR (101 MHz, CDCl₃) of 5l

¹H NMR (400 MHz, CDCl₃) of 5m

7.831 7.831 7.826 7.777 7.826 7.775 7.721 7.722 7.721 7.722 7.7223 7.7233

¹³C NMR (101 MHz, CDCl₃) of 5m

¹H NMR (400 MHz, CDCl₃) of 5n

8.128 8.128 8.127

¹³C NMR (101 MHz, CDCl₃) of 5n

¹H NMR (400 MHz, CDCl₃) of 50

¹³C NMR (101 MHz, CDCl₃) of 50

¹H NMR (400 MHz, CDCl₃) of 5p

¹H NMR (400 MHz, CDCl₃) of 5q

¹³C NMR (101 MHz, CDCl₃) of 5q

¹H NMR (400 MHz, CDCl₃) of 6a

¹³C NMR (101 MHz, CDCl₃) of 6a

¹H NMR (400 MHz, CDCl₃) of 6b

 $\begin{array}{c} 7.7.96\\ -7.7.76\\ -7.7.77\\ -7.7.77\\ -7.7.77\\ -7.7.77\\ -7.7.77\\ -7.7.77\\ -7.7.77\\ -7.7.75\\ -7.7.75\\ -7.7.7\\ -7.41\\ -7.7.75\\ -7.7.7\\ -7.41\\ -7.7.35\\ -7.$

¹³C NMR (101 MHz, CDCl₃) of 6b

¹H NMR (400 MHz, CDCl₃) of 6c

¹³C NMR (101 MHz, CDCl₃) of 6c

¹H NMR (400 MHz, CDCl₃) of 6d

7.7.78 7.7.75 7.75

¹³C NMR (101 MHz, CDCl₃) of 6d

¹⁹F NMR (376 MHz, CDCl₃) of 6d

0 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -2 fl (ppm)

¹H NMR (400 MHz, CDCl₃) of 6e

7.787 7.787 7.776 7.776 7.776 7.776 7.776 7.776 7.776 7.777 7.777 7.777 7.777 7.777 7.732 7.777 7.777 7.777 7.777 7.7337 7.7337

¹³C NMR (101 MHz, CDCl₃) of 6e

¹H NMR (400 MHz, CDCl₃) of 6f

¹³C NMR (101 MHz, CDCl₃) of 6f

¹H NMR (400 MHz, CDCl₃) of 6g

7.797.797.7717.7717.7717.7717.7717.77397.77397.77397.77397.77397.73397.73397.73397.73397.73397.73397.73397.73397.73397.72357.72327

$^{13}\mathrm{C}$ NMR (101 MHz, CDCl_3) of 6g

¹H NMR (400 MHz, CDCl₃) of 6h

¹³C NMR (101 MHz, CDCl₃) of 6h

^{19}F NMR (376 MHz, CDCl₃) of 6h

0 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -2 fl (ppm)

--117.221

¹H NMR (400 MHz, CDCl₃) of 6i

7.7.91 7.7.72 7.7.72 7.7.72 7.7.759 7.7.759 7.7.759 7.7.759 7.7.759 7.7.7331 7.7.7331 7.7.7331 7.7.7331 7.7.7331 7.7.7331 7.7.7331 7.7.7331 7.7.7331 7.7.293 7.7.2007.7.

¹³C NMR (101 MHz, CDCl₃) of 6i

¹H NMR (400 MHz, CDCl₃) of 6j

¹H NMR (400 MHz, CDCl3) of 6k

77.769 77.7738 77.7738 77.7738 77.7738 77.712 77.712 77.712 77.712 77.712 77.766 77.7666 77.7666 77.7666 77.389 77.389 77.389 77.389 77.389 77.389 77.386 77.389 77.386 77.3756 77.3756 77.336 77.73736 77.73736 77.73736 77.73736 77.7346 77.7346 77.7346 77.7346 77.7346 77.7356 77.7356 77.7356 77.7356 77.7356

¹³C NMR (101 MHz, CDCl3) of 6k

169.47 169.47 169.42 144.19 144.19 144.19 144.19 144.14 144.19 144.19 144.19 144.19 144.19 144.19 144.19 144.19 143.49 142.65 142.75 142.65 142.75 142.65 142.75 142.65 142.75 14

0 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 fl (ppm)

¹H NMR (400 MHz, CDCl₃) of 6l

7.802 7.773 7.773 7.773 7.773 7.775 7.775 7.775 7.775 7.775 7.775 7.775 7.775 7.775 7.775 7.775 7.775 7.775 7.775 7.771 7.775 7.749 7.740 7.740 7.726 7.740 7.726 7.727 7.726 7.727 7.726 7.727 7.726 7.727 7.726 7.727 7.727 7.726 7.727 7.726 7.727 7.726 7.727 7.727 7.726 7.727 7.

¹³C NMR (101 MHz, CDCl₃) of 6l

¹H NMR (400 MHz, CDCl₃) of 6m

¹³C NMR (101 MHz, CDCl₃) of 6m

¹H NMR (400 MHz, CDCl₃) of 6n

7.763 7.765 7.765 7.765 7.765 7.765 7.765 7.765 7.765 7.765 7.765 7.765 7.743 7.743 7.741 7.751 7.7521 7.751

¹³C NMR (101 MHz, CDCl₃) of 6n

¹H NMR (400 MHz, CDCl₃) of 60

7.768 7.772 7.772 7.772 7.772 7.772 7.772 7.773 7.702 7.7439 7.7429 7.7429 7.7429 7.7414 7.7409 7.7409 7.7409 7.7409 7.7409 7.7409 7.7409 7.7409 7.7395 7.7391 7.7395 7.7391 7.7395 7.7391 7.7395 7.7391 7.73217.7

¹³C NMR (101 MHz, CDCl₃) of 60

¹H NMR (400 MHz, CDCl₃) of 6p

¹³C NMR (101 MHz, CDCl₃) of 6p

S80