Supporting Information

Palladium-Catalyzed Thiocarbonylation of Alkenes toward Branched Thioesters using CO_{2}

Huan Wang, ${ }^{\dagger}$ Chen $\mathrm{Li},{ }^{\dagger}$ Yudong $\mathrm{Li},{ }^{\dagger}$ Jianbin Chen, ${ }^{\text {II }}$ Shaoli Liu ${ }^{\ddagger}$ and Yuehui $\mathrm{Li}^{\dagger}{ }^{*}$ *${ }^{\dagger}$ Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.${ }^{\ddagger}$ College of Chemistry and Chemical Engineering, Yantai, University, Yantai, 264005, P. R. China.${ }^{\text {IS School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 2503535, P. R. China. }}$yhli@licp.cas.cn
CONTENTS

1. General information S2
2. Ligand synthesis S2
3. Typical procedure for thiocarbonylation of styrenes using CO_{2} S4
3.1 Screening of reaction conditions S4
4. Deuterium-labelling experiments S6
5. Mechanism verification experiments S15
5.1 Mechanism of free radical elimination 15
5.2 Verification of palladium hydrogen species S15
5.3 Reduction of CO_{2} with phenylsilane S16
5.4 Carboxylic acid species capture experiment S18
$5.5 \mathrm{CO}_{2}$ and ${ }^{13} \mathrm{CO}$ competition experiments. S20
5.6 Details of DFT calculations S22
6. Competition reations S27
7. Procedures for gram-scale experiment S28
8. General procedure for the preparation of Estrone Derivatives S29
9. General procedure for the preparation of naproxen S29
10. Asymmetric thiocarbonylation reation S30
11. Characterization spectra data of compounds S31
12. References S40
13. NMR spectra S40
14. Chiral HPLC chromatogram 887

1. General information

All of the reagents except for the ligand $\mathbf{L} \mathbf{1}$ and $\mathbf{L} \mathbf{2}$ were purchased commercially and were used as received. Unless otherwise noted, all experiments were conducted under a nitrogen atmosphere. All chemicals were purchased from Adamas, Aldrich, TCI, Alfa etc. Unless otherwise noted, all commercial reagents were used without further purification. And the NMR spectroscopy was in full accordance with the data in the literature. The products of thiocarbonylation were characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19} \mathrm{~F}$ NMR, GC, HRMS spectroscopy. NMR spectra were measured using a Bruker NMR (400 MHz). $\mathrm{CDCl}_{3}, \mathrm{C}_{6} \mathrm{D}_{6}$ or DMSO- d_{6} was used as the solvent and chemical shifts are reported in ppm relative to solvent: reference to $\mathrm{CDCl}_{3}: 7.26 \mathrm{ppm}\left({ }^{1} \mathrm{H} \mathrm{NMR}\right)$ and $77.00 \mathrm{ppm}\left({ }^{13} \mathrm{C} \mathrm{NMR}\right)$, to $\mathrm{C}_{6} \mathrm{D}_{6}: 7.16 \mathrm{ppm}\left({ }^{1} \mathrm{H} \mathrm{NMR}\right)$ and 128.00 $\mathrm{ppm}\left({ }^{13} \mathrm{C}\right.$ NMR) and to DMSO- $d_{6}: 2.50 \mathrm{ppm}\left({ }^{1} \mathrm{H} \mathrm{NMR}\right)$ and $39.50 \mathrm{ppm}\left({ }^{13} \mathrm{C} \mathrm{NMR}\right)$. The coupling constant between fluorine and carbon is not discussed due to the complexity. Gas chromatographic analyses were performed on SHIMADZU GC-2010 Plus spectrometer. GC-MS was obtained using electron ionization (SHIMADZU GCMSQP2010SE). ESI (electrospray ionization) high resolution mass spectra were recorded on an Agilent Technologies 6530 Q-TOF LC/MS spectrometer. High performance liquid chromatography (HPLC) was performed on Shimadzu LC-20AT instruments using Daicel Chiralcel OJH column.

2. Ligand synthesis

L1

L2

Ligand $\mathbf{L 1}$ and $\mathbf{L} 2$ were synthesized by following a literature procedure. ${ }^{1}$ Other ligands (L3-L11) were purchased from commercial sources and used without further purification.

2-bromo-9-(diphenylphosphanyl)-9H-carbazole (L1)
White solid (Yield $=85 \% ; 3.65 \mathrm{~g}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.91(\mathrm{~m}, 1 \mathrm{H}), 7.80(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.61$ $(\mathrm{m}, 1 \mathrm{H}), 7.32(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 7 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=133.9,133.8,131.4,131.2$, $129.5,128.8,128.8,126.0,124.0,121.1,121.1,120.1,116.7,116.5,114.1,114.0 .{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=33.68$. HRMS (ESI) $\left[\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{BrNP}+\mathrm{H}\right]+$ calculated mass 430.0355, measured mass 430.0360.

Single-Crystal Structure Analysis

Single crystal of ligand $\mathbf{L} 1$ was obtained by recrystallization in dichloromethane and n-hexane. CCDC: 2100007 contains the supplementary crystallographic data which can be obtained free of charge from the Cambridge Crystallography Data Center via www.ccdc.cam.ac.uk/data_request/cif.

Figure S1. Thermal Ellipsoid Depiction of Compound L1
Table S1. Crystal data and structure refinement for compound L1

Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{BrNP}$
Formula weigh	430.26
Crystal system	monoclinic
Space group	P 21
a (\AA)	$10.659(2)$
$\mathrm{b}(\AA)$	$8.1881(16)$
$\mathrm{c}(\AA)$	$11.525(2)$
$\alpha\left(^{\circ}\right)$	90.000
$\beta\left(^{\circ}\right)$	$101.380(3)$
$\gamma\left({ }^{\circ}\right)$	90.000
$\mathrm{~V}\left(\AA^{3}\right)$	$986.1(3)$
Z	2
Temperature/K	$296(2)$
$\mathrm{F}(000)$	436
Crystal size/mm ${ }^{3}$	$0.30 \times 0.30 \times 0.20$
θ min, θ max (deg)	$1.802,24.992$
Reflections collected	4998
Independent reflections	$3353\left(\mathrm{R}_{\text {int }}=0.0214, \mathrm{R}_{\text {sigma }}=0.0823\right)$
Data/restraints/parameters	$3353 / 1 / 244$
Goodness-of-fit on F^{2}	0.974
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0366, \mathrm{wR}_{2}=0.0896$
Final R indexes [all data $]$	$\mathrm{R}_{1}=0.0502, \mathrm{wR}_{2}=0.0980$
Largest diff. peak and hole/ e \AA^{-3}	$0.415 /-0.262$

9-(diphenylphosphanyl)-9H-carbazole (L2) ${ }^{2}$

Yellow liquid (Yield $=80 \% ; 2.80 \mathrm{~g}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.13-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=4.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.45(\mathrm{~m}, 4 \mathrm{H}), 7.34(\mathrm{t}, J=4.0 \mathrm{~Hz}, 5 \mathrm{H}), 7.26(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=143.7,134.3,131.2,129.2,128.6$, 125.6, 120.7, 120.1, 113.8, 113.7. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=31.87$.

3. Typical procedure for thiocarbonylation of styrenes using CO_{2}

To a 4 mL sealing tube in a nitrogen-filled glovebox, the alkene (0.2 mmol), thiol (1.7 equiv, 0.34 mmol), palladiumcatalyst ($5.0 \mathrm{mmol} \%, 0.01 \mathrm{mmol}$), ligand ($10.0 \mathrm{mmol} \%, 0.02 \mathrm{mmol}$), PhSiH_{3} (1.8 equiv, 0.36 mmol), ZnI_{2} ($20.0 \mathrm{mmol} \%$, $0.04 \mathrm{mmol}) / \mathrm{DABCO}(20.0 \mathrm{mmol} \%, 0.04 \mathrm{mmol})$ were added followed by addition of solvent N-methylpyrrolidone (NMP) $(0.5 \mathrm{~mL})$. Then the tube was sealed, taken out of the glovebox and placed into the autoclave. The autoclave was sealed and purged three times with CO_{2} gas, then pressurized to 20 atm . Finally, the autoclave was heated at $80{ }^{\circ} \mathrm{C}$ for 18 h with stirring. After the reaction finished, the autoclave was cooled to room temperature and the pressure was carefully released. The result was measured by GC and GC-MS analysis using dodecane as internal standard or the product was purified by silica gel giving the isolated yield.

3.1 Screening of reaction conditions

Scheme S1. Ligand screening for the thiocarbonylation of styrene ${ }^{a}$

${ }^{a}$ Reaction conditions: $\mathbf{1 a}(0.2 \mathrm{mmol}), \mathbf{2 a}(1.7$ equiv. $), \mathrm{PdCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}(5.0 \mathrm{~mol} \%)$, ligand ($10.0 \mathrm{~mol} \%$), $\mathrm{ZnI}_{2}(20.0 \mathrm{~mol} \%), \mathrm{PhSiH}_{3}(1.8 \mathrm{equiv})$, $\mathrm{CO}_{2}(20 \mathrm{bar})$, NMP $(0.5 \mathrm{~mL})$, stirred at $80^{\circ} \mathrm{C}$ for 18 h . Yield of $\mathbf{3 a}$ and $\mathbf{4 a}$ was determined by GC analysis using dodecane as the internal standard.

Table S2. Solvent screening for the thiocarbonylation of styrene ${ }^{a}$

${ }^{a}$ Reaction conditions: $\mathbf{1 a}(0.2 \mathrm{mmol}), \mathbf{2 a}\left(1.7\right.$ equiv.), $\mathrm{PdCl}_{2}(\mathrm{PCy})_{2}(5.0 \mathrm{~mol} \%)$, ligand ($10.0 \mathrm{~mol} \%$), $\mathrm{ZnI}_{2}(20 \mathrm{~mol} \%), \mathrm{PhSiH} 3$ (1.8 equiv.), CO_{2} (20 bar), solvent $(0.5 \mathrm{~mL})$, stirred at $80^{\circ} \mathrm{C}$ for 18 h . Yield of $\mathbf{3 a}$ and $\mathbf{4 a}$ was determined by GC analysis using dodecane as the internal standard.

Table S3. Temperature and time screening for the thiocarbonylation of styrene ${ }^{a}$

${ }^{a}$ Reaction conditions: 1a $(0.2 \mathrm{mmol})$, 2a (1.7 equiv.), $\mathrm{PdCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}(5 \mathrm{~mol} \%)$, ligand ($\left.10.0 \mathrm{~mol} \%\right), \mathrm{ZnI}_{2}(20 \mathrm{~mol} \%), \mathrm{PhSiH}_{3}(1.8$ equiv.), CO_{2} (20 bar), NMP (0.5 mL). Yield of 3a and 4a was determined by GC analysis using dodecane as the internal standard.

Table S4. The amount of solvent screening for the thiocarbonylation of styrene ${ }^{a}$

Entry	NMP/mL	Yield of $\mathbf{3 a} / \%$	Yield of $\mathbf{4 a} / \%$
$\mathbf{1}$	$\mathbf{0 . 5}$	$\mathbf{7 7}$	$\mathbf{0 . 5}$
2	0.3	69	1
3	0.7	75	1

${ }^{a}$ Reaction conditions: 1a $(0.2 \mathrm{mmol})$, 2a (1.7 equiv.), $\mathrm{PdCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}(5.0 \mathrm{~mol} \%)$, ligand ($10.0 \mathrm{~mol} \%$), $\mathrm{ZnI}_{2}(20 \mathrm{~mol} \%)$, PhSiH 3 (1.8 equiv.), CO_{2} (20 bar), stirred at $80^{\circ} \mathrm{C}$ for 18 h . Yield of $\mathbf{3 a}$ and $\mathbf{4 a}$ was determined by GC analysis using dodecane as the internal standard.

Table S5. The pressure of carbon dioxide screening for the thiocarbonylation of styrene ${ }^{a}$

${ }^{a}$ Reaction conditions: $\overline{19}(0.2 \mathrm{mmol})$, 2a (1.7 equiv.), $\mathrm{PdCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}(5.0 \mathrm{~mol} \%)$, ligand ($10.0 \mathrm{~mol} \%$), $\mathrm{ZnI}_{2}(20 \mathrm{~mol} \%), \mathrm{PhSiH} 33(1.8 \mathrm{equiv}$.), NMP $(0.5 \mathrm{~mL})$, stirred at $80^{\circ} \mathrm{C}$ for 18 h . Yield of $\mathbf{3 a}$ and $\mathbf{4 a}$ was determined by GC analysis using dodecane as the internal standard.

4. Deuterium-labelling experiments

Scheme S2. Deuterium-labeling experiments ${ }^{a}$

a)

1a

c)

${ }^{a}$ Reaction conditions: $\mathbf{d}^{\mathbf{2}} \mathbf{- 1 k} / \mathbf{1 a}(0.2 \mathrm{mmol}), \mathbf{2 a} / \mathbf{d}-\mathbf{2 v}\left(1.7\right.$ equiv.), $\mathrm{PdCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}(5.0 \mathrm{~mol} \%), \mathbf{L 1}(10.0 \mathrm{~mol} \%),[\mathrm{Si}-\mathrm{H} / \mathrm{D}]\left(1.8 \mathrm{equiv}\right.$), CO_{2} (20 bar), NMP (0.5 mL), and stirred at $80^{\circ} \mathrm{C}$ for 18 h . Isolated yields of branched products.

4.1 Deuterium-labeled heptanethiol ($\mathrm{d}-2 \mathrm{v}$) were synthesized by following a literature procedure. ${ }^{3}$

heptane-1-thiol- d (d-2v)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.50(\mathrm{q}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.59(\mathrm{p}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.40-1.23(\mathrm{~m}, 9 \mathrm{H}), 0.86(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $3 \mathrm{H})$.
$D \%=1-\frac{\frac{9.00-8.62}{1}}{\frac{1.97+2.01+8.00+3.02}{2+2+8+3}}=1-\frac{0.380}{1.000}=62 \%$

S-heptyl 2-phenylpropanethioate (3v) ${ }^{4}$
Yellow liquid (Yield $=85 \% ; 44.9 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.27(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.83(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~m}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.45(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.26-1.16(\mathrm{~m}, 8 \mathrm{H}), 0.81(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 3 \mathrm{H})$.

S-heptyl 2-phenylpropanethioate-2,3,3,3- $d_{4}\left(\mathbf{d}^{2}-3 v\right)$

Yellow liquid (Yield $=81 \% ; 42.8 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.33-7.15(\mathrm{~m}, 5 \mathrm{H}), 3.83(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.77$ $(\mathrm{m}, 2 \mathrm{H}), 1.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.46(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.26-1.17(\mathrm{~m}, 8 \mathrm{H}), 0.81(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H})$.

ஹ

$\underbrace{\substack{N \\ N}}$

4.2 Deuterium-labeled phenylsilane were synthesized by following a literature procedure. ${ }^{5}$

PhSiD_{3}
phenylsilane- d_{3}
${ }^{1} \mathrm{H}^{2}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.63-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 3 \mathrm{H})$.
$D \%=1-\frac{\frac{0.26}{3}}{\frac{2.00+3.08}{2+3}}=1-\frac{0.087}{1.016}=91 \%$

S-butyl 2-phenylpropanethioate (3a) ${ }^{\mathbf{6}}$
Yellow liquid (Yield $=90 \% ; 40.0 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.26(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.22(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.83(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.45(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{~m}, 2 \mathrm{H}), 0.83(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H})$.

S-butyl 2-phenylpropanethioate-2,3,3,3- $d_{4}\left(\mathrm{~d}^{2}-3 a\right)$
Yellow liquid (Yield $=85 \% ; 37.7 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.31-7.19(\mathrm{~m}, 5 \mathrm{H}), 3.83(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.69(\mathrm{~m}$, $2 \mathrm{H}), 1.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.46-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~m}, 2 \mathrm{H}), 0.83(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H})$.

4.3 Deuterium-labeled 2-Vinylnaphthalene ($\mathrm{d}^{\mathbf{2}} \mathbf{- 1 k}$) were synthesized by following a literature procedure. ${ }^{7}$

2-(vinyl-2,2- d_{2})naphthalene ($\mathbf{d}^{\mathbf{2}} \mathbf{- 1 k}$)
White solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.81(\mathrm{~m}, 3 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 2 \mathrm{H}), 6.88$ ($\mathrm{s}, 1 \mathrm{H}$).

S-butyl 2-(naphthalen-2-yl) propanethioate (3k)
Yellow liquid (Yield $=91 \%$; 49.5 mg); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~m}, 3 \mathrm{H})$, $4.05(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.50(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{HRMS}$ (ESI) $\left[\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{OS}+\mathrm{H}\right]^{+}$calculated mass 273.1316, measured mass 273.1308.

S-butyl 2-(naphthalen-2-yl) propanethioate-2,3,3,3- $d_{4}\left(\mathrm{~d}^{2}-3 \mathrm{k}\right)$

Yellow liquid (Yield $=86 \% ; 46.8 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.32(\mathrm{~m}$, $3 \mathrm{H}), 3.97(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~m}, 2 \mathrm{H}), 0.79(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H})$.

$$
D(D) \%=1-\frac{\frac{0.86}{1}}{\frac{2.94+0.95+2.86+2.05+2.23+2.14+3}{3+1+3+2+2+2+3}}=1-\frac{0.86}{1.011}=15 \%
$$

5. Mechanism verification experiments

5.1 Mechanism of free radical elimination ${ }^{a}$

${ }^{a}$ Reaction conditions: $\mathbf{1 a}(0.2 \mathrm{mmol})$, 2a (1.7 equiv.), $\mathrm{PdCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}(5.0 \mathrm{~mol} \%)$, ligand ($10 \mathrm{~mol} \%$), $\mathrm{ZnI}_{2}(20 \mathrm{~mol} \%), \mathrm{PhSiH} 3(1.8$ equiv.), butylated hydroxytoluene (1.0 equiv.), NMP $(0.5 \mathrm{~mL}), \mathrm{CO}_{2}(20 \mathrm{bar})$, and stirred at $80^{\circ} \mathrm{C}$ for 18 h . Yield of $\mathbf{3 a}$ and $\mathbf{4 a}$ was determined by GC analysis using dodecane as the internal standard.

5.2 Verification of palladium hydrogen species.

In the glove box, add $0.01 \mathrm{mmol}(8 \mathrm{mg})$ of $\mathrm{PdCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}, 0.4 \mathrm{mmol}(44 \mu \mathrm{~L})$ of phenylsilane and $500 \mu \mathrm{~L}$ of deuterated benzene into the young tube, then remove the glove box and heat at $80^{\circ} \mathrm{C}$ for 4 h to test ${ }^{1} \mathrm{H}$ NMR and ${ }^{31} \mathrm{P}$ NMR: negative hydrogen signals were not found and ${ }^{31} \mathrm{P}-\mathrm{NMR}$ signal (25.09 ppm) of $\mathrm{PdCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}$ was observed (experiment A). After adding $0.4 \mathrm{mmol}(36 \mu \mathrm{~L}) \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{SH}$ to the above reaction solution and heated at $80{ }^{\circ} \mathrm{C}$ for 1 h to test ${ }^{1} \mathrm{H}$ NMR and ${ }^{31} \mathrm{P}$ NMR: a new negative hydrogen signals at -14.36 ppm and a new ${ }^{31} \mathrm{P}-\mathrm{NMR}$ signal at 42.10 ppm were observed might be
 for 4 h and 18 h increased the negative hydrogen signal and ${ }^{31} \mathrm{P}-\mathrm{NMR}$ signal (42.10 ppm) (experiments C and D).

B: $\mathrm{PdCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}+\mathrm{PhSiH}_{3}+\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{SH} ; 1 \mathrm{~h}$
A: $\mathrm{PdCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}+\mathrm{PhSiH}_{3}$

.20	-14.25	-14.30	-14.35	-14.40	-14.45	-14
		$\mathrm{f} 1(\mathrm{ppm})$				

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectra of various reaction components in $\mathrm{C}_{6} \mathrm{D}_{6}$. Reaction conditions: $\mathrm{A}: \mathrm{PdCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}\left(0.01 \mathrm{mmol}^{(}\right), \mathrm{PhSiH} 3(0.4 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $80^{\circ} \mathrm{C}$ for 4 h ; B: $\mathrm{PdCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}(0.01 \mathrm{mmol}), \mathrm{PhSiH}_{3}(0.4 \mathrm{mmol}), n \mathrm{BuSH}(0.4 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $80{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~h} ; \mathrm{C}^{2} \mathrm{PdCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}$ $(0.01 \mathrm{mmol}), \mathrm{PhSiH}_{3}(0.4 \mathrm{mmol}) n \mathrm{BuSH}(0.4 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $80^{\circ} \mathrm{C}$ for $4 \mathrm{~h} ; \mathrm{D}: \mathrm{PdCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}(0.01 \mathrm{mmol}), \mathrm{PhSiH}_{3}(0.4 \mathrm{mmol})$ and $n B u S H$ $(0.4 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $80^{\circ} \mathrm{C}$ for 18 h .

Figure S3. ${ }^{31} \mathrm{P}$ NMR spectra of various reaction componets in $\mathrm{C}_{6} \mathrm{D}_{6}$. Reaction conditions: A: $\mathrm{PdCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}\left(0.01 \mathrm{mmol}^{(}\right), \mathrm{PhSiH} 3(0.4 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $80^{\circ} \mathrm{C}$ for $4 \mathrm{~h} ; \mathrm{B}: \mathrm{PdCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}(0.01 \mathrm{mmol}), \mathrm{PhSiH}_{3}(0.4 \mathrm{mmol}), n \mathrm{BuSH}(0.4 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $80{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~h} ; \mathrm{C}^{2} \mathrm{PdCl}_{2}(\mathrm{PCy})_{2}$ $(0.01 \mathrm{mmol}), \mathrm{PhSiH}_{3}(0.4 \mathrm{mmol}), n \mathrm{BuSH}(0.4 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $80^{\circ} \mathrm{C}$ for $4 \mathrm{~h} ; \mathrm{D}: \mathrm{PdCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}(0.01 \mathrm{mmol}), \mathrm{PhSiH} 3(0.4 \mathrm{mmol})$ and $n \mathrm{BuSH}$ $(0.4 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $80^{\circ} \mathrm{C}$ for 18 h .

5.3 Reduction of CO_{2} with phenylsilane ${ }^{4}$

$\mathrm{PdCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}(0.01 \mathrm{mmol})$				
PhSiH_{3}	CO_{2}	L1 (0.02 mmol)	CO +	$\mathrm{HCOOSiR}_{3}$
0.36 mmol	20 bar	$\mathrm{ZnI}_{2}(0.04 \mathrm{mmol})$ NMP (0.5 mL)	detected by GC:ca. 700 ppm	detected by NMR
		$80^{\circ} \mathrm{C}, 18 \mathrm{~h}$		

Scheme S3. Reaction conditions: $\mathrm{PdCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}(0.01 \mathrm{mmol}), \mathbf{L 1}\left(0.02 \mathrm{mmol}^{2}, \mathrm{ZnI}_{2}(0.04 \mathrm{mmol}), \mathrm{PhSiH}_{3}(0.36 \mathrm{mmol}), \mathrm{NMP}(0.5 \mathrm{~mL})\right.$, $\mathrm{CO}_{2}(20 \mathrm{bar})$ and stirred at $80^{\circ} \mathrm{C}$ for 18 h .

In a glove box, a 4 mL sealing tube with a magnetic stirring bar was charged with phenylsilane (0.36 mmol), $\mathrm{PdCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}(0.01 \mathrm{mmol}), \mathbf{L} 1(0.02 \mathrm{mmol}), \mathrm{ZnI}_{2}(0.04 \mathrm{mmol})$, and $\mathrm{NMP}(0.5 \mathrm{~mL})$. Then the tube was sealed, taken out of the glove box and placed into the autoclave. The autoclave was sealed and purged three times with CO_{2} gas, then pressurized to 20 atm . Finally, the autoclave was heated at $80^{\circ} \mathrm{C}$ for 18 h with stirring. After the reaction finished, the autoclave was cooled to room temperature and the gas phase was carefully vented to a balloon. GC analysis of the gas sample indicates the presence of a small amount of $\mathrm{CO}(\mathrm{ca} 700 \mathrm{ppm}$.$) and residual \mathrm{CO}_{2}$ in the gas phase of the reaction system (Figure S4). The sticky turbid mixture was filtered through a short cotton plug, and an aliquot of the filtrate was sampled and analyzed by ${ }^{1} \mathrm{H}-/{ }^{13} \mathrm{C}-\mathrm{NMR}$ analyses. As shown in Figures $\mathbf{S 5}$ and $\mathbf{S 6}$, the signal corresponding to silyl formate was observed in ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra.

Figure S4. GC chromatograms for $\mathrm{CO}\left(t_{\mathrm{R}}=12.08 \mathrm{~min}\right)$ gases generated in situ from the reaction of PhSiH_{3} and CO_{2} in reaction conditions.

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ of the liquid phase in the reaction of CO_{2} with PhSiH 3 in standard conditions, indicating the in-situ generation of $\mathrm{HCOOSiR}_{3}$.

Figure S6. ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ of the liquid phase in the reaction of CO_{2} with PhSiH_{3} in standard conditions, indicating the in-situ generation of $\mathrm{HCOOSiR}_{3}$.

5.4 Carboxylic acid species capture experiment

In the glove box, add styrene (0.2 mmol), $n \mathrm{BuSH}$ (1.7 equiv.), $\mathrm{PdCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}(5.0 \mathrm{~mol} \%)$, $\mathbf{L 1}(10.0 \mathrm{~mol} \%), \mathrm{PhSiH}_{3}(1.8$ equiv.), $\mathrm{ZnI}_{2}(20 \mathrm{~mol} \%)$, NMP ($300 \mu \mathrm{~L}$) and $100 \mu \mathrm{~L}$ of deuterated benzene into the J. Young/valved NMR tube, then remove the glove box and purge with ${ }^{13} \mathrm{CO}_{2}$, heat at $80{ }^{\circ} \mathrm{C}$ for 30 min to test ${ }^{13} \mathrm{C}$ NMR: a peak at 177.34 ppm in ${ }^{13} \mathrm{C}$ NMR was observed might correspond to the formation of carboxylate Pd species $\mathbf{D},{ }^{13} \mathrm{C}$-labelled CO_{2} NMR signals appeared at $\delta=128.24 \mathrm{ppm}$, NMP signal was observed at 173.73 ppm , product 3a signal was detected at $\delta=200.34 \mathrm{ppm}$, demonstrating the formation of the thioester product $\mathbf{3 a}$ using ${ }^{13} \mathrm{C}$-labelled CO_{2} under our conditions.

Figure S7. In-situ ${ }^{13} \mathrm{C}$ NMR spectra.

To a 4 mL sealing tube in a nitrogen-filled glovebox, the styrene (0.2 mmol), $n \mathrm{BuSH}$ (1.7 equiv.), $\mathrm{PdCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}$ (5.0 $\mathrm{mol} \%$), $\mathbf{L 1}$ ($10.0 \mathrm{~mol} \%$), PhSiH_{3} (1.8 equiv.), ZnI_{2} ($20 \mathrm{~mol} \%$), were added followed by addition of solvent N methylpyrrolidone (NMP) $(0.5 \mathrm{~mL})$. Then the tube was sealed, taken out of the glovebox and placed into the autoclave. The autoclave was sealed and purged three times with CO_{2} gas, then pressurized to 20 atm . At last, the autoclave was heated at $80^{\circ} \mathrm{C}$ for 1 h with stirring. After the reaction finished, the autoclave was cooled to room temperature and the pressure was carefully released. After that, the reaction system was quenched by adding aqueous hydrochloric acid, and the crude ${ }^{1} \mathrm{H}$ NMR spectrum was tested. Peaks were found for the 2-phenylpropionic acid species.

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectra of hydrochloric acid quenching experiment.
In order to verify whether the peak marked in the Figure S8 is the 2-phenylpropionic acid species, we added a drop of 2-phenylpropionic acid species to the NMR tube and found that it was indeed the peak of the 2-phenylpropionic acid.

Experimental Procedure: To a 4 mL sealing tube in a nitrogen-filled glovebox, the styrene $\mathbf{1 a}(0.2 \mathrm{mmol}), n \mathrm{BuSH} \mathbf{2 a}$ (1.7 equiv.), $\mathrm{PdCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}(5 \mathrm{~mol} \%)$, ligand $\mathbf{L} \mathbf{1}(10 \mathrm{~mol} \%)$, phenylsilane (1.8 equiv.), zinc iodide ($20 \mathrm{~mol} \%$) and a stirring bar were added followed by addition of solvent N-methylpyrrolidone (NMP) $(0.5 \mathrm{~mL})$. Then the tube was sealed, taken out of the glovebox and placed into the autoclave. The autoclave was sealed and purged three times with CO_{2} gas, then filled with 1 bar ${ }^{13} \mathrm{CO}$, then filled with 20 bar ${ }^{12} \mathrm{CO}_{2}$. At last, the autoclave was heated at $80^{\circ} \mathrm{C}$ for 18 h with stirring. After the reaction finished, the autoclave was cooled to room temperature and the pressure was carefully released. The product was purified by silica gel giving the isolated yield. Only $30 \%{ }^{13} \mathrm{C}$ incorporation was found in the carboxyl group of the thioester product form HRMS (Figure S10).

\#	\mathbf{m} / \mathbf{z}	Res.	\mathbf{S} / \mathbf{N}	I	I \%	FWHM
1	98.9752	10525	535.0	71377	3.4	0.0094
2	105.0698	10356	634.8	85969	4.1	0.0101
3	122.0577	10664	1122.1	153995	7.3	0.0114
4	149.0449	12361	383.0	58122	2.7	0.0121
5	158.0505	12484	1116.5	177795	8.4	0.0127
6	158.5521	12739	660.2	105342	5.0	0.0124
7	165.0583	12980	425.9	70027	3.3	0.0127
8	185.1139	11214	304.9	54777	2.6	0.0165
9	223.1154	12808	374.7	76068	3.6	0.0174
10	242.0884	14009	1191.8	256411	12.1	0.0173
11	242.5900	14103	1376.2	296383	14.0	0.0172
12	243.0912	13320	712.1	153668	7.3	0.0182
13	243.5913	12443	267.6	57851	2.7	0.0196
14	245.0969	13308	9758.5	2119519	100.0	0.0184
15	246.1003	13384	5626.7	1221953	57.7	0.0184
16	247.1000	10556	902.2	196348	9.3	0.0234
17	248.1006	11066	381.7	83363	3.9	0.0224
18	251.0940	14413	596.1	131337	6.2	0.0174
19	251.5955	14350	687.9	151757	7.2	0.0175
20	252.0982	10945	350.5	77472	3.7	0.0230
21	263.1077	13425	424.2	95457	4.5	0.0196
22	264.1105	13544	248.3	55908	2.6	0.0195
23	301.1410	14130	707.9	165817	7.8	0.0213
24	353.1421	15474	342.4	83691	3.9	0.0228
25	353.6439	15655	578.2	141410	6.7	0.0226
26	354.1462	13740	478.6	117055	5.5	0.0258
27	354.6500	11712	317.9	77707	3.7	0.0303
28	355.1542	10698	193.3	47262	2.2	0.0332
29	360.3235	14459	359.7	88016	4.2	0.0249
30	413.2660	14551	591.8	143673	6.8	0.0284

Figure S10. Mass spectrum of product 3a.

Experimental Procedure: To a 4 mL sealing tube in a nitrogen-filled glovebox, the styrene $\mathbf{1 a}(0.2 \mathrm{mmol}), n \mathrm{BuSH} \mathbf{2 a}$ (1.7 equiv.), $\mathrm{PdCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}(5 \mathrm{~mol} \%)$, ligand $\left.\mathbf{L} \mathbf{(1 0 ~} \mathrm{mol} \%\right)$, zinc iodide ($20 \mathrm{~mol} \%$) and a stirring bar were added followed by addition of solvent N-methylpyrrolidone (NMP) (0.5 mL). Then the tube was sealed, taken out of the glovebox and placed into the autoclave. The autoclave was sealed and purged three times with CO_{2} gas, then filled with 1 bar ${ }^{13} \mathrm{CO}$, then filled with 20 bar ${ }^{12} \mathrm{CO}_{2}$. At last, the autoclave was heated at $80^{\circ} \mathrm{C}$ for 18 h with stirring. After the reaction finished, the autoclave was cooled to room temperature and the pressure was carefully released. The product was purified by silica gel giving the isolated yield. $95 \%{ }^{13} \mathrm{C}$ incorporation was found in the carboxyl group of the thioester product form HRMS (${ }^{13} \mathrm{C}$-labeled product as the main product) (Figure S11).

$\#$	\mathbf{m} / \mathbf{z}	Res.	\mathbf{S} / \mathbf{N}	\mathbf{I}	$\mathbf{I} \%$	FWHM
1	98.9753	10017	2195.6	136766	6.2	0.0099
2	105.0699	10781	1295.5	82751	3.7	0.0097
3	116.9860	10908	923.6	60504	2.7	0.0107
4	149.5467	12183	469.1	36310	1.6	0.0123
5	158.5521	12341	1793.3	150476	6.8	0.0128
6	165.5600	13169	590.8	52624	2.4	0.0126
7	167.5576	13215	419.2	37919	1.7	0.0127
8	193.5732	13532	1012.2	106562	4.8	0.0143
9	224.1185	13000	892.1	109856	5.0	0.0172
10	233.0969	13263	440.7	56968	2.6	0.0176
11	243.0917	13927	1912.8	258178	11.7	0.0175
12	243.5932	13892	587.5	79469	3.6	0.0175
13	244.0927	12416	380.4	51628	2.3	0.0197
14	245.0948	10105	699.7	95435	4.3	0.0243
15	246.1003	13307	16201.6	2215455	100.0	0.0185
16	247.1036	13092	2274.1	311668	14.1	0.0189
17	248.1010	11129	1208.6	166090	7.5	0.0223
18	252.0971	14408	1074.4	150268	6.8	0.0175
19	252.5989	13846	313.8	44000	2.0	0.0182
20	253.1055	7686	239.0	33623	1.5	0.0329
21	264.1110	13521	780.9	113704	5.1	0.0195
22	301.1408	13912	1187.8	185920	8.4	0.0216
23	302.1445	14150	213.2	33498	1.5	0.0214
24	354.6472	15680	569.8	97278	4.4	0.0226
25	355.1494	14760	272.4	46532	2.1	0.0241
26	355.6550	10544	245.2	41878	1.9	0.0337
27	360.3236	14077	739.1	126608	5.7	0.0256
28	413.2662	14664	1002.2	176781	8.0	0.0282
29	414.2698	14621	262.9	46433	2.1	0.0283
30	441.2975	14910	464.7	83870	3.8	0.0296

Figure S11. Mass spectrum of product 3a.

5.6 Details of DFT calculations

To further probe the nature of the regioselective thiocarbonylation of alkenes with carbon dioxide, DFT calculations at the GAUSSIAN 09^{8} series of programs at the ω B97X-D level were carried out on the whole catalytic cycles shown in Figure S12. The LANL2DZ basis set for the Pd center and the $6-311+G(d, p)$ basis sets were used for all the other atoms for the geometry
optimizations. To roughly evaluate the effect of the solvent, the polarized continuous model (PCM) in N-methylpyrrolidone as the solvent was employed in the calculations. For the convenience of calculation, the molecular treatment is simplified. As shown in Figure S12, active Pd-H species \mathbf{B} is generated from the oxidative addition of methyl thiol with $\operatorname{Pd}(0)$ species \mathbf{A} with the sulfur atom at the trans position, ${ }^{9}$ which is endothermic by $1.44 \mathrm{kcal} / \mathrm{mol}$ and the calculated results agree well with experiments present in Scheme S2-a and Figures S2-S3. After insertion by styrene, benzyl-Pd complex C is generated, and this reaction is exothermic by $1.98 \mathrm{kcal} / \mathrm{mol}$. Then benzyl-Pd complex \mathbf{C} was transformed into carboxylate Pd species $\mathrm{R}\left(\mathrm{CO}_{2}\right) \mathrm{Pd} \mathbf{D}$ upon the migratory insertion of CO_{2} into the $\mathrm{Pd}-\mathrm{C}$ bond. One O atom of CO_{2} approaches the Pd center and C of CO_{2} interacts with C connected to the $\alpha-\mathrm{C}$ of styrene to form a five-membered ring, which the length of the $\mathrm{Pd}-\mathrm{O}$ and $\mathrm{Pd}-\mathrm{H}$ bond is 2.12 and $2.78 \AA$, respectively. And the reaction is exothermic by $5.60 \mathrm{kcal} / \mathrm{mol}$, which is favorable in energy.

Figure S12. Mechanistic studies for Pd-catalyzed thiocarbonylation of alkene using CO_{2} by DFT (kcal/mol).

Optimized energies in N-methylpyrrolidone solvent
Table S6. Optimized energies in N-methylpyrrolidone solvent (a.u., ω B97X-D, 298.15K)

Intermediate	E(a.u.)
$\mathbf{A}-\mathrm{PdL}_{2}$	-1048.846925
$\mathrm{CH}_{3} \mathrm{SH}^{2}$	-438.687864
$\mathbf{B - L}_{2} \mathrm{PdHSCH}_{3}$	-1487.532497
PhCHCH_{2}	-309.511727
\mathbf{C}	-1797.047381
CO_{2}	-188.592907
\mathbf{D}	-1985.649209
PhSiH_{3}	-522.836131
\mathbf{E}	-2508.470862
\mathbf{F}	-1562.760348

Cartesian coordinates of key stationary points in DFT study (unit in \AA).

A	Coordinates (Angstroms)			
	X	Y	Z	
P	2.32251100	-0.00029800	0.00006900	
C	3.15082600	-0.46645100	1.57220700	
H	2.85100400	-1.47705800	1.85653500	
H	4.23908200	-0.42923100	1.46772900	

H	2.84172000	0.21880200	2.36391900
C	3.14681600	1.59632000	-0.38155000
H	4.23539200	1.49081400	-0.35861000
H	2.83914000	1.93786700	-1.37176700
H	2.84228800	2.34730200	0.35012400
C	3.15098800	-1.12723000	-1.19106600
H	2.85167100	-2.15705500	-0.98691600
H	2.84172400	-0.87471000	-2.20724700
H	4.23923100	-1.04633000	-1.11481400
Pd	-0.00000900	-0.00010100	-0.00002800
P	-2.32250600	0.00040400	-0.00001100
C	-3.14688400	-1.59649400	0.38052000
H	-4.23544300	-1.49093200	0.35749500
H	-2.84228100	-2.34699700	-0.35160300
H	-2.83933600	-1.93866200	1.37057200
C	-3.15109700	1.12650300	1.19184300
H	-2.85186400	2.15650500	0.98845300
H	-4.23935500	1.04559400	1.11559000
H	-2.84174400	0.87329400	2.20781600
C	-3.15062000	0.46769300	-1.57190700
H	-2.84149000	-0.21710400	-2.36397400
H	-4.23887800	0.43047400	-1.46753600
H	-2.85070800	1.47844000	-1.85562300
$\mathrm{CH}_{3} \mathrm{SH}$	Coordinates (Angstroms)		
	X	Y Z	
C	0.04832900	1.15611700	0.00000000
H	1.09320300	1.46492400	0.00000000
H	-0.43658300	1.54627300	0.89332900
H	-0.43658300	1.54627300	-0.89332900
S	0.04832900	-0.66578600	0.00000000
H	-1.28328300	-0.84160400	0.00000000
B	Coordinates (Angstroms)		
	X	Y Z	
P	2.32787900	-0.47074400	-0.02995900
C	3.17736900	0.88492300	-0.91044700
H	2.85099700	1.83458400	-0.48364600
H	4.26089200	0.78787700	-0.80630700
H	2.91239800	0.85962200	-1.96897700
C	3.12880400	-1.96989200	-0.69899400
H	4.21526700	-1.90958700	-0.59691400
H	2.75969100	-2.84452000	-0.16096800
H	2.86902800	-2.07782100	-1.75348500
C	2.99779300	-0.35327100	1.66533300
H	2.65048300	0.57809700	2.11535300
H	2.63053100	-1.19069400	2.26110400
H	4.09044900	-0.37046100	1.65104200
P	-2.32772500	-0.47095100	-0.02991900
C	-2.99794700	-0.35276100	1.66519900
H	-4.09060100	-0.36987300	1.65068900
H	-2.63088600	-1.19000000	2.26135200
H	-2.65064200	0.57875300	2.11491000
C	-3.17704400	0.88426500	-0.91126100

$\left.\begin{array}{lrrr}\hline \text { H } & -2.91205800 & 0.85820000 & -1.96976800 \\ \mathrm{H} & -4.26057900 & 0.78739500 & -0.80708300 \\ \mathrm{H} & -2.85056200 & 1.83415600 & -0.48506500 \\ \mathrm{C} & -3.12851800 & -1.97041000 & -0.69841200 \\ \mathrm{H} & -2.75941700 & -2.84480600 & -0.15999900 \\ \mathrm{H} & -4.21499200 & -1.91012300 & -0.59645600 \\ \mathrm{H} & -2.86865100 & -2.07874700 & -1.75284000 \\ \mathrm{Pd} & 0.00007700 & -0.35725600 & -0.05659900 \\ \mathrm{H} & 0.00022300 & -1.83789800 & -0.56191900 \\ \mathrm{~S} & -0.00045300 & 1.99261400 & 0.73300900 \\ \mathrm{C} & -0.00031700 & 2.87432800 & -0.87202300 \\ \mathrm{H} & -0.88405500 & 2.62236100 & -1.46213800 \\ \mathrm{H} & -0.00293400 & 3.95155100 & -0.69178300 \\ \mathrm{H} & 0.88598400 & 2.62622200 & -1.45990900 \\ \hline \text { PhCHCH } & \text { Coordinates } & \text { (Angstroms) } & \\ \hline \text { C } & \mathrm{X} & \mathrm{Y} & \mathrm{Z}\end{array}\right)$
$\left.\begin{array}{lrrr}\hline \text { C } & 0.12659900 & 3.66247300 & 0.00128000 \\ \mathrm{H} & -0.38324000 & 3.88978100 & 0.93927900 \\ \mathrm{H} & 0.90088000 & 4.41418600 & -0.17114600 \\ \mathrm{H} & -0.59873200 & 3.67753500 & -0.81177800 \\ \mathrm{C} & 2.10007800 & 2.30456000 & 1.45035200 \\ \mathrm{H} & 2.79009900 & 1.46882200 & 1.54221100 \\ \mathrm{H} & 2.66936500 & 3.21029300 & 1.22617000 \\ \mathrm{H} & 1.57371600 & 2.44290200 & 2.39650700 \\ \mathrm{Pd} & -0.60332500 & 0.14505000 & 0.11973700 \\ \mathrm{~S} & -2.27321100 & 1.44688900 & -1.17448300 \\ \mathrm{C} & -3.16504100 & 2.36677300 & 0.13017400 \\ \mathrm{H} & -2.52900300 & 3.12236100 & 0.59405000 \\ \mathrm{H} & -4.02878600 & 2.86801100 & -0.31212300 \\ \mathrm{H} & -3.52168400 & 1.69262200 & 0.91149700 \\ \mathrm{C} & 0.78022100 & -1.14560100 & 1.08960000 \\ \mathrm{H} & 0.32696200 & -2.12905200 & 0.98646200 \\ \mathrm{C} & 2.05640500 & -1.21166700 & 0.31157100 \\ \mathrm{C} & 3.30785200 & -0.89390500 & 0.84888900 \\ \mathrm{C} & 2.02465900 & -1.64318000 & -1.02628100 \\ \mathrm{C} & 4.46753300 & -0.95800500 & 0.07749000 \\ \mathrm{H} & 3.38959700 & -0.60053500 & 1.88952000 \\ \mathrm{C} & 3.17539600 & -1.71846500 & -1.79430000 \\ \mathrm{H} & 1.06662600 & -1.90287400 & -1.46763600 \\ \mathrm{C} & 4.40984600 & -1.36326600 & -1.24913800 \\ \mathrm{H} & 5.42086600 & -0.69564700 & 0.52439800 \\ \mathrm{H} & 3.11212000 & -2.04828000 & -2.82605100 \\ \mathrm{H} & 5.31116400 & -1.41151400 & -1.84986800 \\ \mathrm{C} & 0.90377200 & -0.85863500 & 2.57963000 \\ \mathrm{H} & 1.55799300 & -1.58785000 & 3.07881300 \\ \mathrm{H} & 1.30203600 & 0.13504300 & 2.79396600 \\ \mathrm{H} & -0.07844500 & -0.92287900 & 3.05540600 \\ \hline \mathrm{CO} & \text { Coordinates } & (\text { Angstroms) } & \\ \hline \mathrm{C} & \mathrm{X} & \mathrm{Y} & \mathrm{Z} \\ \mathrm{H} & 0.00000000 & 0.00000000 & 0.00000000 \\ \mathrm{H} & 0.00000000 & 0.00000000 & 1.15651600 \\ \mathrm{O} & 0.00000000 & 0.00000000 & -1.15651600 \\ \hline \mathrm{H} & \text { Coordinates } & (\text { Angstroms) } & \\ \mathrm{H} & \mathrm{X} & \mathrm{Y} & \mathrm{Z}\end{array}\right)$

C	0.51051900	3.49426600	-0.44906500
H	1.01336000	4.35671800	-0.00549400
H	1.11500900	3.10077900	-1.26851600
H	-0.45875700	3.79331700	-0.84907200
C	-0.55380000	3.00607300	2.19432700
H	-0.57876500	2.31579900	3.03964700
H	-0.01860100	3.91338900	2.48480200
H	-1.57922100	3.25991900	1.92431800
C	1.96837800	1.90074600	1.43737100
H	2.62110700	1.58330600	0.62428400
H	2.35960100	2.82007000	1.88007500
H	1.93278600	1.11116600	2.18847200
Pd	-0.89504400	0.22388100	0.19433100
S	-2.14905900	1.34939000	-1.43177800
C	-3.25706100	2.43551100	-0.47329300
H	-2.71728200	3.26559500	-0.01418400
H	-3.99281000	2.84634000	-1.16739300
H	-3.78276500	1.87624100	0.30185300
C	1.53556600	-2.02732200	-0.04604100
H	0.60704600	-1.96333000	-0.61849700
C	2.47373200	-0.97714500	-0.61151300
C	3.76338300	-0.82317100	-0.09830600
C	2.06546400	-0.14169400	-1.65124600
C	4.61872900	0.14764800	-0.60491100
H	4.09350000	-1.45785800	0.71711200
C	2.91845400	0.83349000	-2.15996300
H	1.06823900	-0.25220800	-2.06586300
C	4.19753300	0.98345200	-1.63606500
H	5.61339100	0.25927400	-0.18755100
H	2.58109300	1.47619400	-2.96588800
H	4.86326900	1.74430900	-2.02768900
C	2.10260000	-3.43941600	-0.18846000
H	2.29980600	-3.65744700	-1.24121000
H	3.03327600	-3.54784700	0.37055100
H	1.39733300	-4.18356000	0.19094700
C	1.19980100	-1.67616800	1.42082100
O	0.26404200	-0.82589300	1.63272500
O	1.84710400	-2.20011700	2.33099000
PhSiH_{3}	Coordinates (Angstroms)		
	X	Y Z	
C	-0.01138400	-1.64634500	1.20370900
C	-0.01138400	-0.25502600	1.20149700
C	-0.00827000	0.46501200	0.00000000
C	-0.01138400	-0.25502600	-1.20149700
C	-0.01138400	-1.64634500	-1.20370900
C	-0.01042500	-2.34391600	0.00000000
H	-0.01511300	-2.18518000	2.14482000
H	-0.01753700	0.27194700	2.15114400
H	-0.01753700	0.27194700	-2.15114400
H	-0.01511300	-2.18518000	-2.14482000
H	-0.01239800	-3.42840900	0.00000000
Si	0.02547400	2.34179800	0.00000000

H	1.42169000	2.85243300	0.00000000
H	-0.65762200	2.85357100	-1.21507700
H	-0.65762200	2.85357100	1.21507700
E	Coordinates (Angstroms)		
E	X	Y Z	
P	0.13008700	-2.01982500	-1.31053100
C	0.41738300	-3.78069600	-0.94039100
H	-0.53063700	-4.31539800	-1.00727400
H	1.13236200	-4.20485400	-1.64926800
H	0.81196500	-3.87644000	0.07264400
C	1.80552000	-1.29873200	-1.28319000
H	2.47270500	-1.86569400	-1.93662500
H	1.77335500	-0.26100600	-1.61635300
H	2.18508900	-1.31914900	-0.26075700
C	-0.34152100	-1.98735500	-3.07098500
H	-1.31502400	-2.46561700	-3.18593600
H	-0.41276200	-0.95228200	-3.41037500
H	0.40045900	-2.51502900	-3.67454100
P	-2.86122100	-0.11713500	1.79453400
C	-4.65671300	-0.29358900	1.54798800
H	-5.19660000	0.12434900	2.40080200
H	-4.94038900	0.24031000	0.63909400
H	-4.91401200	-1.34572800	1.42524000
C	-2.53237500	-0.91560200	3.40516300
H	-1.49343300	-0.72777200	3.68231000
H	-3.19216600	-0.51141100	4.17674000
H	-2.68169100	-1.99299400	3.32875000
C	-2.65093100	1.65452800	2.15902500
H	-3.01439900	2.24450400	1.31770700
H	-3.21361900	1.91837300	3.05790100
H	-1.59197700	1.86686800	2.30806700
Pd	-1.38395400	-0.98068000	0.15665400
S	-2.93390300	-2.58475800	-0.55833400
C	-3.01063700	-3.77131800	0.82391500
H	-3.48377800	-3.33711000	1.70616400
H	-3.61208500	-4.62070500	0.49414200
H	-2.01567900	-4.13046000	1.09069300
C	-0.23554400	1.80231700	-1.25376600
H	-0.35772400	0.81973100	-1.71477200
C	-1.61946400	2.41689800	-1.15310300
C	-1.79231700	3.70853700	-0.65086500
C	-2.74834000	1.70037100	-1.55077900
C	-3.06087200	4.26435200	-0.53921300
H	-0.92640100	4.27514300	-0.32614000
C	-4.02112900	2.25148800	-1.43579000
H	-2.63281500	0.69919200	-1.95389000
C	-4.18217400	3.53507000	-0.92673500
H	-3.17680000	5.26534800	-0.13844600
H	-4.88635800	1.67630300	-1.74721300
H	-5.17235700	3.96662200	-0.83329200
C	0.70602600	2.63706700	-2.12085200
H	0.27747400	2.77016800	-3.11748800

$\left.\begin{array}{lrrc}\hline & & \\ \hline \text { H } & 0.87797700 & 3.61978000 & -1.67915400 \\ \mathrm{H} & 1.67699100 & 2.14576200 & -2.22450500 \\ \mathrm{C} & 0.32529600 & 1.58098200 & 0.16908600 \\ \mathrm{O} & 0.01288000 & 0.49475000 & 0.77334600 \\ \mathrm{O} & 1.02925000 & 2.45536100 & 0.68166500 \\ \mathrm{C} & 7.17290700 & -1.26500500 & -0.17528200 \\ \mathrm{C} & 5.91210800 & -0.68304400 & -0.10950400 \\ \mathrm{C} & 5.71739600 & 0.55820900 & 0.51212400 \\ \mathrm{C} & 6.83266600 & 1.19697200 & 1.06597100 \\ \mathrm{C} & 8.09793900 & 0.61869100 & 1.00333200 \\ \mathrm{C} & 8.26950900 & -0.61365900 & 0.38315700 \\ \mathrm{H} & 7.30158200 & -2.22613300 & -0.66100400 \\ \mathrm{H} & 5.06948400 & -1.20728500 & -0.55263600 \\ \mathrm{H} & 6.71708500 & 2.16027800 & 1.55384200 \\ \mathrm{H} & 8.94908900 & 1.13015900 & 1.43956200 \\ \mathrm{H} & 9.25365000 & -1.06634800 & 0.33287400 \\ \mathrm{Si} & 3.99905900 & 1.32149800 & 0.60448100 \\ \mathrm{H} & 3.11673100 & 0.44203700 & 1.40708700 \\ \mathrm{H} & 4.11393900 & 2.65980100 & 1.23248700 \\ \mathrm{H} & 3.44986300 & 1.43773900 & -0.76789700 \\ \hline \mathrm{~F} & \text { Coordinates } & \text { (Angstroms) } & \\ \hline \mathrm{C} & \mathrm{X} & \mathrm{Y} & \mathrm{Z}\end{array}\right)$

6. Competition reactions ${ }^{a}$

Competition reactions between different substrates were carried out (Scheme S4). Interestingly, the carbonylation of styrene in the presence of both O - and S-nucleophiles exclusively produced thioester 3a, with no loss in activity (86% Scheme S4, eq A). This might indicate that the stronger Pd-S interaction of $n \mathrm{BuSH}$ than Pd-O interaction of $n \mathrm{BuOH}$ is
critical to give the product. When using 1:1 mixture of styrene (1a) and β-methylstyrene (1ak), both products 3a and 3ak can be detected, indicating the impact of steric effect of internal alkenes ($97 \% \mathrm{vs} 49 \%$ Scheme $\mathbf{S 4}$, eq B). Competition reaction of primary and secondary thiols was tested, and similar yields of the corresponding thioesters were formed (57% vs 53% Scheme S4, eq C). Steric hindrance effect of thiols is minor. In the competition reaction of styrene with alkyl thiol and aryl thiol, the yield of thioester from alkyl thiol $\mathbf{2 w}$ was much higher than the yield from aryl thiol 2aa, probably due to the weaker S-H polarity and Pd-S interaction of arylthiol (55% vs 23% Scheme S4, eq D).

Scheme S4. ${ }^{a}$ Standard conditions: 1a/1ak (0.2 mmol), $\mathbf{2 a} / \mathbf{2 a}{ }^{\mathbf{\prime}} / \mathbf{2 w} / \mathbf{2 a a}(1.7$ equiv. $), \mathrm{PdCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}(5 \mathrm{~mol} \%), \mathbf{L 1}\left(10.0 \mathrm{~mol}^{2}\right), \mathrm{PhSiH}_{3}(1.8$ equiv.), CO_{2} (20 bar), NMP (0.5 mL), and stirred at $80^{\circ} \mathrm{C}$ for 18 h . Yields were determined by quant. NMR spectroscopy using $1,1,2,2-$ tetrachloroethane as the internal standard.

7. Procedures for gram-scale experiment

Experimental Procedure for product 3a ($\mathbf{5} \mathbf{~ m m o l}$ scale): The substrate $\mathbf{1 a}$ (5 mmol), thiol $\mathbf{2 a}$ (1.7 equiv.), palladium catalyst ($5 \mathrm{~mol} \%$), ligand $\mathbf{L} \mathbf{1}(10 \mathrm{~mol} \%)$, phenylsilane (1.8 equiv.), and a stirring bar were added to a 35 mL autoclave, followed by addition of solvent N-methylpyrrolidone (NMP) (6 mL). The autoclave was sealed and purged three times with CO_{2} gas, then pressurized to 20 atm . At last, the autoclave was heated at $80{ }^{\circ} \mathrm{C}$ for 18 h with stirring. After the reaction finished, the autoclave was cooled to room temperature and the pressure was carefully released. The solution was diluted with water and extracted with ethyl acetate (50 mL). The combined organic extracts were washed with brine, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The residue was purified by column chromatography on silica gel (200:1 petroleum ether:ethyl acetate, visualized with UV) to afford product $\mathbf{3 a}$ (936 mg , 84\% yield, b/l > 99:1).

8. General procedure for the preparation of Estrone Derivatives

To estrone ($1.00 \mathrm{~g}, 3.70 \mathrm{mmol}, 1.00$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(19 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added triethylamine ($1.03 \mathrm{~mL}, 7.40 \mathrm{mmol}$, 2.00 equiv.) and trifluoromethanesulfonic anhydride ($684 \mu \mathrm{~L}, 4.07 \mathrm{mmol}, 1.10$ equiv.). The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 20 min before the addition of saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The combined organic phases are washed with brine (40 mL) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel eluting with hexanes/EtOAc 4:1 (v/v) to afford 1.30 g of the title compound $\mathbf{S} \mathbf{1}^{10}$ as a colorless oil ($1.34 \mathrm{~g}, 90 \%$ yield).

3-Vinyl-estrone 1an ${ }^{10}$ was synthesized by using 3-(Trifluoromethanesulfonyl)estrone $\mathbf{S 1}$ ($600 \mathrm{mg}, 1.49 \mathrm{mmol}, 1$ equiv.), vinyltributylstannane ($436 \mu \mathrm{~L}, 1.49 \mathrm{mmol}, 1$ equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(35 \mathrm{mg}, 0.03 \mathrm{mmol}, 0.02$ equiv.), $\mathrm{LiCl}(316 \mathrm{mg}$, $7.45 \mathrm{mmol}, 5$ equiv.), and DMF ($23 \mathrm{~mL}, 0.067 \mathrm{M}$ solution). The crude product was purified by flash column chromatography using gradient elution $(500 \mathrm{~mL}$ of 100% hexanes, 200 mL of 5% ethyl acetate in hexanes, and 300 mL of 8% ethyl acetate in hexanes) to obtain 363 mg (87%) white solid.

9. General procedure for the preparation of naproxen (3am') ${ }^{11}$

A solution of 3am $(0.2 \mathrm{mmol})$ in $\mathrm{EtOH}(2 \mathrm{~mL})$, was added a previously prepared solution of LiOH in $\mathrm{H}_{2} \mathrm{O}_{2}$ ($\mathrm{LiOH} 0.92 \mathrm{~g}, 38.4 \mathrm{mmol} ; 30 \% \mathrm{H}_{2} \mathrm{O}_{2} 6.2 \mathrm{~mL} ; \mathrm{H}_{2} \mathrm{O} 11.5 \mathrm{~mL}$). The mixture was stirred at rt for 3 min , then quenched with dil. HCl . Afterwards extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and usual work up are performed. The residue purified by column chromatography with petro ether/ethyl acetate (100:1 to $10: 1$) as the eluent to get rac-naproxen 3am' (41.9 mg , 91% yield) as a white solid.

10. Asymmetric thiocarbonylation reation ${ }^{a}$

To a 4 mL sealing tube in a nitrogen-filled glovebox, the alkene (0.2 mmol), thiol ($1.7 \mathrm{equiv}, 0.34 \mathrm{mmol}$), palladiumcatalyst ($5.0 \mathrm{mmol} \%, 0.01 \mathrm{mmol}$), L12 ($10.0 \mathrm{mmol} \%, 0.02 \mathrm{mmol}$), PhSiH_{3} (1.8 equiv, 0.36 mmol), $\mathrm{ZnI}_{2}(20.0 \mathrm{mmol} \%$, $0.04 \mathrm{mmol})$ were added followed by addition of solvent N-methylpyrrolidone (NMP) (0.5 mL). Then the tube was sealed, taken out of the glovebox and placed into the autoclave. The autoclave was sealed and purged three times with CO_{2} gas, then pressurized to 20 atm . Finally, the autoclave was heated at $80^{\circ} \mathrm{C}$ for 36 h with stirring. After the reaction finished, the autoclave was cooled to room temperature and the pressure was carefully released. The results were measured by GC and HPLC analysis.

${ }^{a}$ Reaction conditions: styrene (0.2 mmol), butyl thiol (1.7 equiv.), PdCl_{2} ($\left.\mathrm{PCy}_{3}\right)_{2}(5.0 \mathrm{~mol} \%), \mathbf{L 1 2}$ ($10.0 \mathrm{~mol} \%$), $\mathrm{PhSiH}_{3}\left(1.8 \mathrm{equiv}\right.$), ZnI_{2} $(20.0 \mathrm{~mol} \%), \mathrm{CO}_{2}(20 \mathrm{bar})$, NMP $(0.5 \mathrm{~mL})$, and stirred at $80^{\circ} \mathrm{C}$ for 36 h . Yield of 3aaa was determined by GC analysis using dodecane as the internal standard. Enantiomeric excess was determined by chiral HPLC analysis.

11. Characterization spectra data of compounds.

S-butyl 2-phenylpropanethioate (3a) ${ }^{\mathbf{6}}$
Yellow liquid (Yield $=90 \% ; 40.0 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.26(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.22(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.83(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.45(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{~m}, 2 \mathrm{H}), 0.83(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=201.2,140.1,128.7,127.9,127.4,54.3,31.5,28.8,22.0,18.5,13.6$.

S-butyl 2-(o-tolyl) propanethioate (3b)
Yellow liquid (Yield $=89 \% ; 42.0 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.36(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H})$, $4.19(\mathrm{q}, ~ J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.57(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=201.7,138.4,136.2,130.5,127.3,127.2,126.4,50.1,31.5,28.8,22.0,19.9$, 18.1, 13.6. HRMS (ESI) $\left[\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{OS}+\mathrm{Na}\right]^{+}$calculated mass 259.1127, measured mass 259.1127.

S-butyl 2-(m-tolyl) propanethioate (3c)

Yellow liquid (Yield $=90 \% ; 42.5 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.25-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.85(\mathrm{q}, ~ J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.35(\mathrm{q}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $0.89(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=201.4,140.0,138.3,128.6,128.5,128.2,125.0,54.3,31.5,28.8$, 22.0, 21.4, 18.5, 13.6. HRMS (ESI) $\left[\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{OS}+\mathrm{Na}\right]^{+}$calculated mass 259.1127, measured mass 259.1128.

S-butyl 2-(p-tolyl) propanethioate (3d)
Yellow liquid (Yield $=94 \% ; 44.4 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.85(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.49(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.39-1.32(\mathrm{~m}$, $2 \mathrm{H}), 0.89(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=201.5,137.1,129.4,128.4,127.8,53.9,31.5,28.8,22.0,21.1$, 18.5, 13.6. HRMS (ESI) $\left[\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{OS}+\mathrm{Na}\right]^{+}$calculated mass 259.1127, measured mass 259.1133.

\boldsymbol{S}-butyl 2-(2-methoxyphenyl) propanethioate (3e)
Yellow liquid (Yield $=81 \% ; 40.8 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.53-1.48(\mathrm{~m}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 2 \mathrm{H}), 1.38$ $-1.32(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=202.2,157.1,128.7,128.5,128.4,120.7,110.7$, 55.5, 47.3, 31.6, 28.6, 21.9, 17.2, 13.6. HRMS (ESI) $\left[\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}+\mathrm{Na}\right]^{+}$calculated mass 275.1076, measured mass 275.1079.

S-butyl 2-(3-methoxyphenyl) propanethioate (3f)
Yellow liquid (Yield $=86 \% ; 43.3 \mathrm{mg})$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.26(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.87(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.90-2.81(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.52$ $(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=201.1,159.8,141.6$, 129.6, 120.3, 113.7, 112.7, 55.2, 54.3, 31.5, 28.8, 22.0, 18.4, 13.5. HRMS (ESI) $\left[\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}+\mathrm{Na}\right]^{+}$calculated mass 275.1076, measured mass 275.1086.

S-butyl 2-(4-methoxyphenyl) propanethioate (3g)
Yellow liquid (Yield $=87 \%$; 43.8 mg); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.22(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.82(\mathrm{q}, ~ J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.37-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $0.88(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=201.7,159.0,132.1,129.0,114.0,55.2,53.4,31.5,28.8,22.0,18.5$, 13.5. HRMS (ESI) $\left[\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}+\mathrm{Na}\right]^{+}$calculated mass 275.1076, measured mass 275.1083.

S-butyl 2-(4-(tert-butyl) phenyl) propanethioate (3h)
Yellow liquid (Yield $=94 \% ; 52.3 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.79(\mathrm{q}, ~ J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.71(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.31-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{~s}$,
$9 \mathrm{H}), 0.81(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=201.5,150.2,136.9,127.5,125.6,53.8,34.5,31.5,31.4,28.8$, 22.0, 18.5, 13.6. HRMS (ESI) $\left[\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{OS}+\mathrm{Na}\right]^{+}$calculated mass 301.1597, measured mass 301.1601.

S-butyl 2-([1,1'-biphenyl]-4-yl) propanethioate (3i)
Yellow liquid (Yield $=92 \% ; 54.8 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.58(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.41(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.78(\mathrm{~m}, 2 \mathrm{H}), 1.58$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.52(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.40-1.34(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $201.3,140.8,140.4,139.1,128.8,128.3,127.4,127.3,127.1,54.0,31.5,28.9,22.0,18.5,13.6$. HRMS (ESI) $\left[\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{OS}+\mathrm{Na}\right]^{+}$ calculated mass 321.1284 , measured mass 321.1280 .

S-butyl 2-(naphthalen-1-yl) propanethioate (3j)
Yellow liquid (Yield $=93 \% ; 50.6 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.47(\mathrm{~m}, 4 \mathrm{H}), 4.68(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.48$ $(\mathrm{m}, 2 \mathrm{H}), 1.35-1.29(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=202.0,136.0,134.0,131.6,129.1$, 128.1, 126.4, 125.7, 125.6, 125.4, 123.2, 50.0, 31.4, 28.8, 21.9, 18.4, 13.5. HRMS (ESI) $\left[\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{OS}+\mathrm{H}\right]^{+}$calculated mass 273.1308, measured mass 273.1298.

S-butyl 2-(naphthalen-2-yl) propanethioate (3k)
Yellow liquid (Yield $=91 \% ; 49.5 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~m}, 3 \mathrm{H})$, $4.06(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.51(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=201.3,137.5,133.5,132.8,128.4,127.9,127.7,126.8,126.2,125.9,54.4,31.5,28.9,22.0,18.5,13.6$. HRMS (ESI) $\left[\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{OS}+\mathrm{H}\right]^{+}$calculated mass 273.1308, measured mass 273.1316.

S-butyl 2-(4-fluorophenyl) propanethioate (3I)
Yellow liquid (Yield $=81 \% ; 38.9 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.20(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{q}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.69(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.23(\mathrm{~m}, 2 \mathrm{H}), 0.81(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=201.2,162.2(\mathrm{~d}, J=244.0 \mathrm{~Hz}), 135.7(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 129.4(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 115.5(\mathrm{~d}, J=22.0$ Hz), 53.4, 31.4, 28.8, 21.9, 18.6, 13.5. ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-115.29$. HRMS (ESI) $\left[\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{FOS}+\mathrm{H}\right]^{+}$calculated mass 241.1057, measured mass 241.1064 .

S-butyl 2-(4-chlorophenyl) propanethioate (3m)

Yellow liquid (Yield $=83 \% ; 42.5 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.85(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.77(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.38-1.30(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=200.9,138.5,133.3,129.2,128.8,53.6,31.4,28.9,22.0,18.5,13.6$. HRMS (ESI) $\left[\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ClOS}+\mathrm{H}\right]^{+}$calculated mass 257.0761, measured mass 257.0765.

S-butyl 2-(4-bromophenyl) propanethioate (3n)
Yellow liquid (Yield $=84 \% ; 50.4 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.83(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=198.9,137.1,129.9,127.7,119.5,51.7,29.5,27.0,20.0,16.5,11.6$. HRMS (ESI)

S-butyl 2-(2-fluorophenyl) propanethioate (30)
Yellow liquid (Yield $=80 \% ; 38.4 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.95(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.53-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=200.7,160.5(\mathrm{~d}, J=246.0 \mathrm{~Hz}), 129.0(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 129.0(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 127.2(\mathrm{~d}, J=14$ $\mathrm{Hz}), 124.3(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 115.5(\mathrm{~d}, J=22 \mathrm{~Hz}), 46.5(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 31.5,28.8,21.9,17.5,13.6 .{ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-117.51$. HRMS (ESI) $\left[\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{FOS}+\mathrm{H}\right]^{+}$calculated mass 241.1057, measured mass 241.1056.

S-butyl 2-(2-chlorophenyl) propanethioate (3p)
Yellow liquid (Yield $=83 \% ; 42.5 \mathrm{mg}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H})$, $4.42(\mathrm{q}, ~ J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.52(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.50(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.39-1.32(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=200.7$, 137.7, 134.2, 129.7, 128.9, 128.6, 127.2, 50.2, 31.5, 28.8, 21.9, 17.8, 13.5. HRMS (ESI) $\left[\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ClOS}+\mathrm{H}\right]^{+}$calculated mass 257.0761, measured mass 257.0755 .

S-butyl 2-(4-(trifluoromethyl) phenyl) propanethioate (3q)
Yellow liquid (Yield $=85 \% ; 49.3 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.95(\mathrm{q}, ~ J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.53-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=200.5,143.9,129.7(\mathrm{q}, J=33.0 \mathrm{~Hz}), 128.2,125.6(\mathrm{q}, J=4.0 \mathrm{~Hz}), 124.1(\mathrm{~d}, J=270 \mathrm{~Hz})$, $54.01,31.40,28.92,21.95,18.51,13.53 .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-62.56$. HRMS (ESI) $\left[\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{OS}+\mathrm{Na}\right]^{+}$calculated mass 313.0844, measured mass 313.0837.

4-(1-(butylthio)-1-oxopropan-2-yl) phenyl acetate (3r)

Yellow liquid (Yield $=84 \% ; 47.0 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.81(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.32-1.25(\mathrm{~m}, 2 \mathrm{H})$, $0.82(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=201.0,169.4,150.0,137.5,128.9,121.7,53.6,31.4,28.8,22.0$, 21.1, 18.6, 13.5. HRMS (ESI) $\left[\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~S}+\mathrm{Na}\right]^{+}$calculated mass 303.1025, measured mass 303.1027.

S, S^{\prime}-dibutyl 2, 2'-(1,3-phenylene)dipropanethioate (3s) ${ }^{12}$
Yellow liquid (Yield $=58 \% ; 42.5 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.32-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~s}$, $1 \mathrm{H}), 3.90(\mathrm{~m}, 2 \mathrm{H}), 2.89-2.83(\mathrm{~m}, 4 \mathrm{H}), 1.56(\mathrm{~s}, 6 \mathrm{H}), 1.56-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.37(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=201.2,140.4,128.9,127.8,126.8,54.2,31.5,28.8,21.9,18.5,13.6$.

S-butyl 2-(3-vinylphenyl)propanethioate (3t)

Yellow liquid (Yield $=29 \% ; 14.4 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.34-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~m}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.77(\mathrm{~m}, 2 \mathrm{H})$, $1.53(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.51-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.32(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $201.2,140.3,140.0,136.7,128.8,127.3,125.9,125.2,114.2,54.2,31.5,28.8,22.0,18.5,13.5$. HRMS (ESI) $\left[\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{OS}+\mathrm{Na}\right]^{+}$ calculated mass 271.1128, measured mass 271.1127.

S-butyl 2-phenylbutanethioate (3u/3ak)

Yellow liquid; Yield (3ak) $=67 \%(31.6 \mathrm{mg})$; Yield $(\mathbf{3 u})=88 \%(41.5 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.27(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 3 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.33$ $-1.26(\mathrm{~m}, 2 \mathrm{H}), 0.84(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=200.7,138.7,128.6,128.2,127.3,62.3,31.5,28.8,26.6,21.9$, 13.5, 12.1. HRMS (ESI) $\left[\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{OS}+\mathrm{Na}\right]^{+}$calculated mass 259.1127, measured mass 259.1131.

S-heptyl 2-phenylpropanethioate (3v) ${ }^{4}$
Yellow liquid (Yield $=85 \% ; 44.9 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.27(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.83(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~m}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.45(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.26-1.16(\mathrm{~m}, 8 \mathrm{H}), 0.81(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=201.3,140.1,128.6,127.9,127.4,54.3,31.7,29.4,29.1,28.8,28.7,22.6,18.5$, 14.0.

S-cyclohexyl 2-phenylpropanethioate (3w) ${ }^{13}$
Yellow liquid (Yield $=87 \% ; 43.2 \mathrm{mg}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.28(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.79(\mathrm{q}, ~ J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.39-1.32(\mathrm{~m}, 2 \mathrm{H})$, $1.32-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.11(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=201.0,140.2,128.6,127.9,127.3,54.3,42.5,33.1$, 32.9, 26.0, 26.0, 25.6, 18.5.

S-isopropyl 2-phenylpropanethioate ($\mathbf{3 x})^{14}$
Yellow liquid (Yield $=80 \% ; 33.3 \mathrm{mg}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.33-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{q}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=201.3,140.1,128.6,127.9,127.3,54.2,34.8,22.9,22.8,18.4$.

S-(tert-butyl) 2-phenylpropanethioate (3y) ${ }^{13}$
Yellow liquid (Yield $=77 \% ; 34.2 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.14(\mathrm{~m}, 5 \mathrm{H}), 3.72(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=201.5,140.3,128.5,127.7,127.1,54.5,47.8,29.7,18.5$.

S-benzyl 2-phenylpropanethioate (3z) ${ }^{4}$

Yellow liquid (Yield $=68 \% ; 34.8 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.35(\mathrm{t}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 7.27(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 4 \mathrm{H})$, 4.17-4.03(m, 2H), $3.92(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=200.5,139.7,137.4$, $128.8,128.7,128.6,128.0,127.5,127.2,54.1,33.5,18.4$.

S-(p-tolyl) 2-phenylpropanethioate (3aa) ${ }^{13}$
Yellow liquid (Yield $=64 \% ; 32.8 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.27(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.15(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H})$, $7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 199.5, 139.7, 139.5, 134.4, 129.9, 128.8, 128.1, 127.5, 124.4, 54.0, 21.3, 18.7.

S-(4-methoxyphenyl) 2-phenylpropanethioate (3ab)

Yellow liquid (Yield $=65 \% ; 35.4 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.33-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.82$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=200.0$, 160.6, 139.7, 136.0, 132.7, 128.7, 128.0, 127.5, 114.8, 55.3, 53.8, 18.7. HRMS (ESI) $\left[\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}\right]^{+}$calculated mass 273.0944, measured mass 273.0950.

S-(4-bromophenyl) 2-phenylpropanethioate (3ac) ${ }^{13}$
Yellow liquid (Yield $=58 \% ; 37.0 \mathrm{mg}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=8.0 \mathrm{~Hz}, 5 \mathrm{H})$, $7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{q}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=198.4,139.3$, 135.9, 132.3, 128.8, 128.1, 127.7, 127.1, 123.9, 54.2, 18.5 .

S-(4-fluorophenyl) 2-phenylpropanethioate (3ad)
Yellow liquid (Yield $=75 \% ; 39 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.06(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=199.1,163.4(\mathrm{~d}, J=249.0$ $\mathrm{Hz}), 139.4,136.5(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 128.8,128.0,127.7,123.2(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 116.4(\mathrm{~d}, J=23.0 \mathrm{~Hz}), 54.0,18.6 .{ }^{19} \mathrm{~F}$ NMR (377 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-111.35$. $\mathrm{HRMS}(\mathrm{ESI})\left[\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FOS}+\mathrm{H}\right]^{+}$calculated mass 261.0744, measured mass 261.0748.

S-(3-(dimethylamino)propyl) 2-phenylpropanethioate (3ae)
Yellow liquid (Yield $=63 \% ; 31.6 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.28-7.21(\mathrm{~m}, 5 \mathrm{H}), 3.83(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 6 \mathrm{H}), 1.63(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=201.1,140.0,128.7,127.9,127.4,58.4,54.3,45.4,27.6,27.0,18.4$. HRMS (ESI) $\left[\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NOS}+\mathrm{H}\right]^{+}$calculated mass 252.1420 , measured mass 252.1417.

S-(3-(dimethylamino)propyl) 2-(4-methoxyphenyl)propanethioate (3af)
Yellow liquid (Yield $=85 \% ; 47.8 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.83(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 6 \mathrm{H}), 1.68(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=201.5,159.0,132.0,129.0,114.1,58.4,55.2,53.4,45.4,27.6,27.0,18.4$. HRMS (ESI) $\left[\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}+\mathrm{H}\right]^{+}$calculated mass 282.1523, measured mass 282.1528 .

S-(3-(dimethylamino)propyl) 2-(2-methoxyphenyl)propanethioate (3ag)
Yellow liquid (Yield $=80 \% ; 45.0 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.25(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 6 \mathrm{H}), 1.68$ $(\mathrm{m}, 2 \mathrm{H}), 1.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=202.0,157.1,128.6,128.6,128.4,120.7,110.7,58.5,55.5$, 47.3, 45.4, 27.7, 26.9, 17.2. HRMS (ESI) $\left[\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}+\mathrm{H}\right]^{+}$calculated mass 282.1526, measured mass 282.1522 .

S-(3-(dimethylamino)propyl) 2-(4-chlorophenyl)propanethioate (3ah)
Yellow liquid (Yield $=42 \% ; 23.9 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.86(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 6 \mathrm{H}), 1.70(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=200.7,138.4,133.3,129.2,128.8,58.4,53.6,45.4,27.5,27.1,18.4$. HRMS (ESI) $\left[\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{ClNOS}+\mathrm{H}\right]^{+}$ calculated mass 286.1029, measured mass 286.1027.

S-butyl (S)-2-(4-(dimethylamino)phenyl)propanethioate (3ai)

Yellow liquid (Yield $=73 \% ; 38.7 \mathrm{mg})$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.18(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.78(\mathrm{q}, ~ J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 6 \mathrm{H}), 2.81(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.49(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.32(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=202.2,150.0,128.7$, 127.7, 112.6, 53.4, 40.6, 31.6, 28.8, 22.0, 18.4, 13.6. HRMS (ESI) $\left[\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NOS}+\mathrm{H}\right]^{+}$calculated mass 266.1575, measured mass 266.1573.

S-butyl 2,3-dihydro-1H-indene-1-carbothioate (3aj)
Yellow liquid (Yield $=79 \% ; 37.0 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.22(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{q}, ~ J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~m}, 1 \mathrm{H}), 2.99-2.87(\mathrm{~m}, 3 \mathrm{H}), 2.50-2.33(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.54(\mathrm{~m}, 2 \mathrm{H})$, $1.40(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=201.1,144.6,140.7,127.8,126.5,125.1,124.8,59.1$, 31.9, 31.6, 30.0, 28.8, 22.0, 13.6. HRMS (ESI) $\left[\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{OS}+\mathrm{Na}\right]^{+}$calculated mass 257.0971, measured mass 257.0971.

\boldsymbol{S}-butyl 2-(4-methoxyphenyl) butanethioate (3al)
Yellow liquid (Yield $=73 \% ; 38.8 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.21(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=201.1,158.9$, 130.7, 129.2, 114.0, 61.4, 55.2, 31.5, 28.7, 26.6, 22.0, 13.5, 12.1 . HRMS (ESI) $\left[\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S}+\mathrm{Na}\right]^{+}$calculated mass 289.1233, measured mass 289.1234.

S-butyl 2-(6-methoxynaphthalen-2-yl) propanethioate (3am) ${ }^{15}$
Yellow liquid (Yield $=89 \% ; 53.8 \mathrm{mg})$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.75-7.71(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.13(\mathrm{~m}$, $2 \mathrm{H}), 4.04(\mathrm{q}, ~ J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 2.93-2.80(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.57-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~m}, 2 \mathrm{H})$, $0.90(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=201.4,157.8,135.2,133.9,129.4,129.0,127.2,126.6,126.5,119.1$, 105.7, 55.3, 54.3, 31.5, 28.9, 22.0, 18.5, 13.6.

2-(6-methoxynaphthalen-2-yl) propanoic acid (3am') ${ }^{16}$
White solid (Yield $=91 \% ; 41.9 \mathrm{mg}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}$): $\delta=12.29(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H})$, $7.38(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=176.0,157.6,136.8,133.7,129.6,128.9,127.3,126.9,126.1,119.2,106.2,55.6,45.1,18.9$.

(8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl trifluoromethanesulfonate (S1) ${ }^{11}$
White solid (Yield $=90 \% ; 1.34 \mathrm{~g}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99$ $(\mathrm{s}, 1 \mathrm{H}), 2.94(\mathrm{~m}, 2 \mathrm{H}), 2.51(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.94(\mathrm{~m}, 1 \mathrm{H})$, $1.70-1.59(\mathrm{~m}, 3 \mathrm{H}), 1.55-1.47(\mathrm{~m}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=220.3,147.6,140.3,139.3,127.2$, $121.2,118.3,50.4,47.9,44.1,37.8,35.8,31.5,29.4,26.1,25.7,21.6,13.8$.

(8R,9S,13S,14S)-13-methyl-3-vinyl-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one (1an) ${ }^{10}$ White solid (Yield $=87 \% ; 363 \mathrm{mg}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14$ $(\mathrm{s}, 1 \mathrm{H}), 6.66(\mathrm{~m}, 1 \mathrm{H}), 5.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 2.21$ $-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.00(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.56(\mathrm{~m}, 3 \mathrm{H}), 1.54-1.45(\mathrm{~m}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=220.8,139.6,136.6,136.6,135.3,126.9,125.5,123.6,113.2,50.6,48.0,44.5,38.2,35.9,31.6,29.4,26.5$, 25.7, 21.6, 13.9.

S-butyl 2-((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3yl)propanethioate (3an)
Yellow liquid (Yield $=83 \% ; 66 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04$ $(\mathrm{s}, 1 \mathrm{H}), 3.83(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~m}, 2 \mathrm{H}), 2.88-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~m}, 1 \mathrm{H})$, 2.10-2.03 (m, 2H), 2.03-1.90(m, 2H), 1.64-1.58(m, 2H), 1.58-1.53(m, 2H), $1.52(\mathrm{~s}, 3 \mathrm{H}), 1.49-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.39-$ $1.32(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.24(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~m}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=220.6,201.3,138.9,137.5$, $136.8,128.3,125.6,125.2,53.8,50.6,48.0,44.4,38.1,35.8,31.7,31.5,29.4,28.8,26.5,25.7,22.0,21.6,18.6,13.9,13.6$. HRMS (ESI) $\left[\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{~S}+\mathrm{Na}\right]^{+}$calculated mass 421.2174, measured mass 421.2177.

12. References

T. Ye, L. Xu, Z. Zhang, R. Chen, H. Li, X. Hui, C. Zheng and W. Huang, J. Am. Chem. Soc., 2016, 138, 9655-9662.
A. D. Burrows, M. F. Mahon and M. Varrone, Dalton Trans., 2004, 20, 3321-3330.
V. Hirschbeck, P. H. Gehrtz and I. Fleischer, J. Am. Chem. Soc., 2016, 138, 16794-16799.
X. Ren, Z. Zheng, L. Zhang, Z. Wang, C. Xia and K. Ding, Angew. Chem., Int. Ed., 2016, 55, 1-5. Y. Kratish, D. Bravo-Zhivotovskii and Y. Apeloig, ACS Omega, 2017, 2, 372-376. M. Clericuzio, I. Degani, S. Dughera and R. Fochi, Synthesis, 2002, 7, 921-927. Y.-H. Yao, H.-Y. Yang, M. Chen, F. Wu, X.-X. Xu and Z.-H. Guan, J. Am. Chem. Soc., 2021, 143, 85-91. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B.

Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, 2009. Gaussian 09. A. 02 edn. Gaussian, Inc.: Wallingford CT.

9 S. Zhang, W.-Q. Chen, A. Yu and L.-N. He, ChemCatChem, 2015, 7, 3972-3977.
10 R. Skoda-Földes, L. Kollár, F. Marinelli and A. Arcadi, Steroids, 1994, 59, 691-695.
11 T. Furuya, A. E. Strom and T. Ritter, J. Am. Chem. Soc., 2009, 131, 1662-1663.
12 D. J. Crowley, U.S. Patent 3373205A, 1968.
13 H.-J. Ai, F. Zhao, H.-Q. Geng and X.-F Wu, ACS Catal., 2021, 11, 3614-3619.
14 J. Liao, X. Wang, W. Yu and M. Wang, C.N. Patent 110183366 A, 2019.
15 C.-S. Chang, S.-W. Tsai and C.-N. Lin, Tetrahedron: Asymmetry, 1998, 9, 2799-2807.
16 K. B. Rajurkar, S. S. Tonde, M. R. Didgikar, S. S. Joshi and R. V. Chaudhari, Ind. Eng. Chem. Res., 2007, 46, 8480-8489.

13. NMR spectrums

/ $1 / 1$

 $\stackrel{\infty}{\infty}$

\qquad

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra of $\mathbf{L} 1$

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra of $\mathbf{L} 2$

సฺ ก̣ Nָ Nָ ก̣ $\underbrace{N N N}$

$$
\int||\mid
$$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 b}$

NNNNN오N

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 3c

 $\sigma=5 \sigma 5000$

© ल e or
लN
우웅ㅇㅇ웅

N్

$\stackrel{\infty}{\infty} \stackrel{\sim}{\sim}$

N N No

$$
\xrightarrow[N]{N}
$$

-201.52

-150.22
-136.91
-127.48
-125.55

$$
{ }^{1} \mathrm{H} \text { and }{ }^{13} \mathrm{C} \text { NMR spectra of } \mathbf{3 h}
$$

 －NへNへNへNへ

요융 －ナ゙ホ

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3} \mathbf{j}$
 かへ人NへN入Nへ

กヲ ヲ N

~

(s)

$\stackrel{\circ}{\circ}$ ®N

11

N	N	
O	¢-0	
	T	「-「-

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ spectra of $\mathbf{3 q}$

 $1 \mid$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 w}$

$\stackrel{\infty}{\infty}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 a b}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 3ac
$\underbrace{\substack{m}} \underbrace{\sim} \underbrace{\sim}$
No̊on
$\underbrace{+\quad \text { - m }}$
$\stackrel{80}{8}$

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{3 a d}$

ヘ̣̂ Ṇ へへべNべN

$\stackrel{N}{\stackrel{N}{\sim}}$

19＇102－
ω
∞
$\stackrel{\infty}{\infty}$

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ spectra of 3af
Nicn
入场人000
$\underbrace{\infty}$

96. $102-$

8
$\stackrel{1}{1}$

B 웅N
$\stackrel{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{\sim}$
NO욱
ㅊ..
$\stackrel{\ominus}{\stackrel{\circ}{7}}$

〒
$\stackrel{\infty}{\sim} \stackrel{\sim}{c} \stackrel{\infty}{\sim} \stackrel{\infty}{\sim}$

চ

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ spectra of 3aj

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ spectra of 3ak and $\mathbf{3 u}$

N0

M
Nị
눙
 두N ํ ํ $\stackrel{m}{\sim}$

(200

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ spectra of $\mathbf{3} \mathbf{a m}{ }^{\prime}$
 ハート

๙omp oin

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ spectra of $\mathbf{1 S}$

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ spectra of $\mathbf{1 a n}$

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ spectra of 3an

14．Chiral HPLC chromatogram

\boldsymbol{S}－butyl（ \boldsymbol{S} ）－2－phenylpropanethioate（3aaa）${ }^{16}$
Yellow liquid；Yield $=38 \%, \mathrm{~b} / 1>99 / 1$ ，ee $=46 \%$ ，HPLC analysis：Daicel Chiralpak OJ－H，n－hexane $/ i$－propanol $=500: 1$ ，flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$ ，retention time： 11.67 min （major）and 13.56 （minor）．$[\alpha]_{\mathrm{D}}{ }^{20}=+30.0\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right)$ ．

Feak	$\frac{54 \mathrm{nmm}}{\text { Ret．Time }}$	Height	Area	Area\％
	11.673	80404	1765909	72.649
	13.559	29907	664818	27.351
怘计				100.000

