Supporting Information

Dearomatization-Rearomatization Strategy for Construction of 4 H -Quinolizin-4ones via C-H Bond Functionalization of Pyridines

Dong Qiu, ${ }^{1,2}$ and Yijin Su ${ }^{* 1}$

[^0]
Table of Contents

1. General Procedures and Bromide Effect. 3
2. Synthesis of Pyridinium Salts and Spectra Data 4
1a: 4
lb: 5
1c: 6
1d: 8
1f: 9
1g: 10
1h: 12
1i: 13
1j: 14
1k: 16
3. Synthesis of Products and Spectra Data 18
3aa: 18
3ba: 19
3ca: 20
3da: 22
3ea: 23
3fa: 24
3ga: 26
3ha: 27
3ia: 29
3ja: 30
3ka: 32
3ab: 33
3ac: 35
3ad: 36
3ae: 37
3af: 39
3ag: 40
3ah: 41
3ai: 43
3aj: 44
3ak: 45
3al: 47
3am: 48
4. Three-Component Reaction and Mechanism Study 51
Scheme 4 51
Scheme 5 51
Scheme 6 54
Scheme 7 57
5. X-ray Information for 3aa 59
6. Reference 61

1. General Procedures and Bromide Effect

All the commercial available regents and solvents were used as received. NMR spectra were obtained with Avance TM III 400 MHz instruments, the chemical shifts were quoted on the δ-scale in ppm. Multiplicities are reported as follows: singlet (s), doublet (d), triplet(t), doublet of doublets (dd), doublet of doublet of doublets (ddd), doublet of triplets (dt), doublet of quartets (dq), triplet of doublets (td), quartet (q), quartet of doublets (qd), and multiplet (m). Couplingconstants (J) are reported in Hz. High resolution mass spectra(HRMS) were measured at a Bruker micrOTOF-QII instruments.
(1.2 eq.)

Scheme S1. Bromide Effect at $35{ }^{\circ} \mathrm{C}$ in toluene. ${ }^{[a], ~[b] ~}[\mathrm{a}]$ Reaction conditions: 1a $(0.36 \mathrm{mmol}), 2(0.30$ $\mathrm{mmol})$, DABCO (0.60 mmol) in toluene (3.0 mL) under open-flask condition at $35^{\circ} \mathrm{C}$ for 15 h ; [b] Yields determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 1,3,5-trimethoxybenzene as internal standard.

Scheme S2. Bromide Effect at $60{ }^{\circ} \mathrm{C}$ in $\mathrm{MeCN} .{ }^{[\mathrm{ab]},[\mathrm{~b}]}[\mathrm{a}]$ Reaction conditions: $1 \mathrm{a}(0.36 \mathrm{mmol}), 2(0.30$ $\mathrm{mmol})$, DABCO (0.60 mmol) in MeCN (3.0 mL) under open-flask condition at $60^{\circ} \mathrm{C}$ for 15 h ; [b] Yields determined by ${ }^{1}$ H NMR spectroscopy using 1,3,5-trimethoxybenzene as internal standard.

2. Synthesis of Pyridinium Salts and Spectra Data

The starting materials of pyridinium salts are listed below. 1e were prepared following reported procedures ${ }^{[1]}$.

1a

1e

$1 i$

1k

1a:
1-(1-(2-chlorophenyl)-2-methoxy-2-oxoethyl)pyridin-1-ium bromide

Synthesis procedure for 1a: pyridine (5.5 mmol) and ethyl methyl 2-bromo-2-(2-chlorophenyl)acetate (5 mmol) were added in 3 mL of ethyl acetate and stirred at room temperature for 6 hours. Then the resulting precipitate was filtered and washed with ethyl acetate to afford 1a, as white solid $(1.18 \mathrm{~g}$, yield=69\%).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.10(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.76(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.80-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.71-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 166.7,148.0,145.2,134.5,133.1,132.3,130.8,128.7,128.7,128.5$, 71.8, 54.3.

1b:
1-(2-methoxy-2-oxo-1-phenylethyl)pyridin-1-ium bromide

Synthesis procedure for $\mathbf{1 b}$: pyridine (10 mmol) and methyl 2-bromo-2-phenylacetate (8 mmol) were added in 4 mL of ethyl acetate and stirred at room temperature for 8 hours. Then the resulting precipitate was filtered and washed with ethyl acetate to afford $\mathbf{1 b}$, as white solid (1.575 g , yield $=64 \%$).
${ }^{1} \mathrm{H}$ NMR (400 MHz , Deuterium Oxide) $\delta 9.05-8.86(\mathrm{~m}, 2 \mathrm{H}), 8.67(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{t}, J=7.1$ Hz, 2H), $7.70-7.54$ (m, 5H), 7.12 (s, 1H), 3.97 (s, 3H).
${ }^{13} \mathrm{C}$ NMR (101 MHz , Deuterium Oxide) $\delta 168.4,147.5,144.6,131.4,130.2,129.7,128.3,74.9,54.6$.

1c:
1-(1-methoxy-1-oxopropan-2-yl)pyridin-1-ium bromide

Synthesis procedure for $\mathbf{1 c}$: pyridine (10 mmol) and methyl 2-bromopropanoate (8 mmol) were added in 4 mL of 1,4 dioxane and stirred at $35^{\circ} \mathrm{C}$ for 8 hours. Then the resulting precipitate was filtered and washed with ethyl acetate to afford $\mathbf{1 c}$, as colorless solid (1.18 g , yield $=60 \%$).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.15(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.71(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 5.94(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ (s, 3H), 1.93 (d, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 168.6,147.0,144.9,127.9,67.3,53.4,17.3$.

1d:

1-(1,3-diethoxy-1,3-dioxopropan-2-yl)pyridin-1-ium bromide

Synthesis procedure for $\mathbf{1 d}$: pyridine (12 mmol) and diethyl 2-bromomalonate (10 mmol) were added in 5 mL of ethyl acetate and stirred at room temperature for 8 hours. Then the resulting precipitate was filtered and washed with ethyl acetate to afford $\mathbf{1 d}$, as light orange solid (2.39 g , yield $=75 \%$).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.15(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.79(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 4.45-4.15(\mathrm{~m}, 4 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 162.3$, 148.1, 147.0, 127.3, 72.0, 63.7, 13.6.

1f:
1-(1-(2-chlorophenyl)-2-methoxy-2-oxoethyl)-4-methoxypyridin-1-ium bromide

Synthesis procedure for 1f: 4-methoxypyridine (8 mmol) and methyl 2-bromo-2-(2-chlorophenyl)acetate (5 mmol) were added in 4 mL of ethyl acetate and stirred at room temperature for 10 hours. Then the resulting precipitate was filtered and washed with ethyl acetate to afford $\mathbf{1 f}$, as colorless solid (1.373 g , yield=74\%).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.83(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.70-7.58(\mathrm{~m}, 6 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{~s}$, $3 \mathrm{H}), 3.88$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 171.9,167.1,146.2,134.3,132.8,131.9,130.7,129.2,128.6,113.7$, 69.81, 58.4, 54.1.

1g:
4-(tert-butyl)-1-(1-(2-chlorophenyl)-2-methoxy-2-oxoethyl)pyridin-1-ium bromide

Synthesis procedure for $\mathbf{1 g}$: 4-(tert-butyl)pyridine (8mmol) and methyl 2-bromo-2-(2chlorophenyl)acetate (5 mmol) were added in 3 mL of ethyl acetate and stirred at room temperature for 8 hours. Then the resulting precipitate was filtered and washed with ethyl acetate to afford $\mathbf{1 g}$, as white solid (1.546 g , yield $=78 \%$).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.02(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.28(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{dd}, J=7.4$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, DMSO- d_{6}) $\delta 172.3,166.8,144.4,134.4,133.0,132.3,130.8,128.9,128.7,125.4$, 70.8, 54.3, 36.6, 29.4.

1h:
1-(1-(2-chlorophenyl)-2-methoxy-2-oxoethyl)-4-methylpyridin-1-ium bromide

Synthesis procedure for $\mathbf{1 h}$: 4-methylpyridine (10 mmol) and methyl 2-bromo-2-(2-chlorophenyl) acetate (8 mmol) were added in 4 mL of ethyl acetate and stirred at room temperature for 10 hours. Then the resulting precipitate was filtered and washed with ethyl acetate to afford $\mathbf{1 h}$, as light pink solid (2.801 g , yield=99\%).
${ }^{1}$ H NMR (400 MHz , Deuterium Oxide) $\delta 8.73(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.76-7.56$ (m, 4H), $7.24(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Deuterium Oxide) $\delta 168.2,162.8,143.6,135.2,133.1,131.3,131.1,128.7,128.5$, 128.1, 54.7, 21.7.

1i:
4-acetyl-1-(1-(2-chlorophenyl)-2-methoxy-2-oxoethyl)pyridin-1-ium bromide

Synthesis procedure for 1i: 1-(pyridin-4-yl)ethan-1-one (8mmol) and methyl 2-bromo-2-(2chlorophenyl)acetate (9 mmol) were added in 4 mL of ethyl acetate and stirred at room temperature for 10 hours. Then the resulting precipitate was filtered and washed with ethyl acetate to afford $\mathbf{1 i}$, as brown solid (1.173 g , yield $=38 \%$).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.31$ - 9.27 (m, 2H), 8.53 (d, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.79 (dd, $J=7.4,1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.71-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.53$ (s, 1H), 3.91 (s, 3H), 2.73 (s, 3H).
${ }^{13}{ }^{13}$ NMR (101 MHz , DMSO- d_{6}) $\delta 146.7$, 134.5, 133.2, 132.3, 130.8, 128.8, 126.3, 72.0, 54.4, 27.3.

1 j :
1-(1-(2-chlorophenyl)-2-methoxy-2-oxoethyl)-3,5-dimethylpyridin-1-ium bromide

Synthesis procedure for $\mathbf{1 j}$: 3,5-dimethylpyridine (8 mmol) and methyl 2-bromo-2-(2chlorophenyl)acetate (5 mmol) were added in 3 mL of ethyl acetate and stirred at room temperature for 10 hours. Then the resulting precipitate was filtered and washed with ethyl acetate to afford $\mathbf{1} \mathbf{j}$, as brown solid (1.686 g , yield=91\%).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.89(\mathrm{~s}, 2 \mathrm{H}), 8.51(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.54(\mathrm{~m}$, $3 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, DMSO- d_{6}) $\delta 166.6,148.9,141.7,138.4,134.5,132.9,132.3,130.6,128.6,128.6$, 71.6, 54.3, 17.8.

1k:
2-(1-(2-chlorophenyl)-2-methoxy-2-oxoethyl)isoquinolin-2-ium bromide

Synthesis procedure for $\mathbf{1 k}$: isoquinoline (8 mmol) and methyl 2-bromo-2-(2-chlorophenyl)acetate (5 mmol) were added in 3 mL of ethyl acetate and stirred at room temperature for 10 hours. Then the resulting precipitate was filtered and washed with ethyl acetate to afford $\mathbf{1 k}$, as orange solid $(1.928 \mathrm{~g}$, yield=98\%).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 10.11(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.66(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.46$ $-8.27(\mathrm{~m}, 2 \mathrm{H}), 8.12(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{~s}$, $3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $_{6}$) $\delta 166.8,150.8,138.4,137.8,134.8,134.6,133.0,132.2,131.7,131.3$, 130.7, 128.8, 128.7, 127.4, 127.0, 126.1, 71.8, 54.3.

3. Synthesis of Products and Spectra Data

3aa:
2-benzyl-4-(2-chlorophenyl)pyrrolo[3,4-a]quinolizine-1,3,5(2H)-trione

General procedure: 1-(1-(2-chlorophenyl)-2-methoxy-2-oxoethyl)pyridin-1-ium bromide 1a ($0.36 \mathrm{mmol}, 123.3 \mathrm{mg}, 1.2$ equiv), 1-benzyl-1H-pyrrole-2,5-dione 2 a ($0.3 \mathrm{mmol}, 56.2 \mathrm{mg}, 1.0$ equiv), $1,4-$ Diazabicyclo[2.2.2]octane (DABCO, $0.6 \mathrm{mmol}, 67.3 \mathrm{mg}, 2.0$ equiv) were added sequentially to 3.0 mL of 1,2 -Dichloroethane. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 20 h in open flask. Then solvent was removed by rotary evaporator, the residual crude products was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, PE/EA=2:1, v/v; $R_{f}=0.4$) to afford compound 3aa (yellow solid, $m . p=87-89^{\circ} \mathrm{C}, 117.1 \mathrm{mg}$, yield= $=94 \%$). HRMS(ESI+)m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{O}_{3}, 415.0844$; found, 415.0842 .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.16-9.11(\mathrm{~m}, 1 \mathrm{H}), 8.64$ (dt, $\left.J=8.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.07$ (ddd, $J=8.9$, $6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.34-7.23(\mathrm{~m}, 5 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, DMSO- d_{6}) $\delta 166.0,165.3,157.9,140.0,137.1,136.6,133.5,132.5,131.7,129.9$, 129.1, 128.9, 128.6, 127.6, 127.5, 126.7, 121.9, 118.4, 98.1, 40.9.

3ba:
2-benzyl-4-phenylpyrrolo[3,4-a]quinolizine-1,3,5(2H)-trione

General procedure: 1-(2-methoxy-2-oxo-1-phenylethyl)pyridin-1-ium bromide $\mathbf{1 b}$ (0.36 mmol , 111.0 mg , 1.2equiv), 1-benzyl-1H-pyrrole-2,5-dione $\quad \mathbf{2 a} \quad(0.3 \mathrm{mmol}, \quad 56.2 \mathrm{mg}, \quad 1.0 \mathrm{equiv})$, $1,4-$ Diazabicyclo[2.2.2]octane (DABCO, $0.6 \mathrm{mmol}, 67.3 \mathrm{mg}, 2.0$ equiv) were added sequentially to 3.0 mL of 1,2 -Dichloroethane. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 20 h in open flask. Then solvent was removed by rotary evaporator, the residual crude products was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, $\mathrm{PE} / \mathrm{EA}=2: 1, \mathrm{v} / \mathrm{v} ; \mathrm{Rf}=0.4$) to afford compound 3ba (yellow solid, $\mathrm{m} . \mathrm{p}=109-111^{\circ} \mathrm{C}, 89.2 \mathrm{mg}$, yield $=78 \%$). HRMS(ESI+)m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}, 381.1234$; found, 381.1234.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 9.17(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.80(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{ddd}, J=$ 9.0, 6.7, 1.3 Hz, 1H), $7.55-7.40(\mathrm{~m}, 7 \mathrm{H}), 7.31-7.19$ (m, 4H), 4.80 (s, 2H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 166.4,165.8,159.5,139.9,136.3,135.2,134.6,131.3,130.6$, 128.9, 128.8, 128.7, 128.6, 127.8, 122.8, 119.4, 117.0, 99.4, 41.8.

3ca:
2-benzyl-4-methylpyrrolo[3,4-a]quinolizine-1,3,5(2H)-trione

General procedure: 1-(1-methoxy-1-oxopropan-2-yl)pyridin-1-ium bromide $\mathbf{1 c}(0.36 \mathrm{mmol}, 88.6 \mathrm{mg}$, 1.2equiv), 1-benzyl-1H-pyrrole-2,5-dione 2a ($0.3 \mathrm{mmol}, 56.2 \mathrm{mg}$, 1.0equiv), 1,4-Diazabicyclo[2.2.2] octane (DABCO, $0.6 \mathrm{mmol}, 67.3 \mathrm{mg}, 2.0 \mathrm{equiv}$) were added sequentially to 3.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$. The mixture
was stirred at $60^{\circ} \mathrm{C}$ for 20 h in open flask. Then solvent was removed by rotary evaporator, the residual crude products was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{PE} / \mathrm{EA}=1: 1, \mathrm{v} / \mathrm{v} ; \mathrm{Rf}=0.45\right)$ to afford compound 3ca (yellow solid, m.p $=195-197^{\circ} \mathrm{C}, 56.2 \mathrm{mg}$, yield $=59 \%$).
HRMS(ESI+)m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}, 319.1077$; found, 319.1074.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 9.05(\mathrm{dt}, J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.65(\mathrm{dt}, J=9.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.61$ (ddd, $J=9.0,6.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.13$ (ddd, $J=7.4,6.6,1.5 \mathrm{~Hz}$, 1 H), 4.84 ($\mathrm{s}, 2 \mathrm{H}$), 2.64 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 167.3,166.3,160.5,138.8,136.4,135.2,133.5,128.7,128.6$, $128.0,127.8,122.6,118.4,116.5,98.8,77.2,41.6,11.7$.

3da：

ethyl 2－benzyl－1，3，5－trioxo－1，2，3，5－tetrahydropyrrolo［3，4－a］quinolizine－4－carboxylate

General procedure：1－（1，3－diethoxy－1，3－dioxopropan－2－yl）pyridin－1－ium bromide id（ 0.36 mmol ， 114.6 mg ， 1.2 equiv）， 1 －benzyl－ 1 H －pyrrole－2，5－dione $\quad \mathbf{2 a} \quad(0.3 \mathrm{mmol}, \quad 56.2 \mathrm{mg}, \quad 1.0 \mathrm{equiv}$ ）， $1,4-$ Diazabicyclo［2．2．2］octane（DABCO， $0.6 \mathrm{mmol}, 67.3 \mathrm{mg}, 2.0$ equiv）were added sequentially to 3.0 mL of 1,2 －Dichloroethane．The mixture was stirred at $60^{\circ} \mathrm{C}$ for 20 h in open flask．Then solvent was removed by rotary evaporator，the residual crude products was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$ ， $\mathrm{PE} / \mathrm{EA}=1: 1, \mathrm{v} / \mathrm{v}$ ； $\mathrm{Rf}=0.5$ ）to afford compound 3da（yellow solid， $\mathrm{m} . \mathrm{p}=169-171^{\circ} \mathrm{C}, 57.2 \mathrm{mg}$ ，yield＝51\％）． HRMS（ESI＋）m／z：$[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{5}, 377.1132$ ；found，377．1124．
${ }^{1} \mathrm{H}$ NMR（ 400 MHz, DMSO－d_{6} ）$\delta 9.16(\mathrm{dt}, J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.60(\mathrm{dt}, J=8.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.14$（ddt， $J=8.7,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{td}, J=7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.22(\mathrm{~m}, 5 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H}), 4.34(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$ ．
${ }^{13} \mathrm{C}$ NMR（ 101 MHz, DMSO－d_{6} ）$\delta 165.8,165.0,163.2,156.1,140.7,138.1,136.5,136.3,129.6,128.6$ ， $127.51,127.5,122.0,119.0,107.2,98.3,61.6,41.0,13.9$ ．

3ea:

2-benzylpyrrolo[3,4-a]quinolizine-1,3,5(2H)-trione

General procedure: 1-(2-methoxy-2-oxoethyl)pyridin-1-ium bromide $\mathbf{1 e}(0.36 \mathrm{mmol}, 83.6 \mathrm{mg}$, 1.2equiv), 1-benzyl-1H-pyrrole-2,5-dione 2a ($0.3 \mathrm{mmol}, \quad 56.2 \mathrm{mg}, \quad 1.0$ equiv), 2,2,6,6Tetramethylpiperidoxyl (TEMPO, $0.6 \mathrm{mmol}, 93.8 \mathrm{mg}, 2.0$ equiv), 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU, $0.6 \mathrm{mmol}, 90.0 \mu \mathrm{~L}$, 2.0equiv) were added sequentially to 3.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 15 h in N_{2} atmosphere. Then solvent was removed by rotary evaporator, the residual crude products was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{PE} / \mathrm{EA}=1: 1, \mathrm{v} / \mathrm{v} ; \mathrm{Rf}=0.4\right)$ to afford compound 3ea (yellow solid, m.p=171-174 ${ }^{\circ} \mathrm{C}, 14.1 \mathrm{mg}$, yield $=15 \%$). HRMS(ESI +)m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3}, 305.0921$; found, 305.0912.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 9.17(\mathrm{dd}, J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $8.68(\mathrm{dt}, J=8.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77$ (ddd, $J=8.9,6.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.23(\mathrm{~m}, 4 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 166.4,166.2,159.2,141.0,136.2,135.4,128.9,128.7,128.6$, 127.9, 122.8, 117.0, 102.2, 99.2, 41.8.

3fa:
2-benzyl-4-(2-chlorophenyl)-9-methoxypyrrolo[3,4-a]quinolizine-1,3,5(2H)-trione

General procedure: 1-(1-(2-chlorophenyl)-2-methoxy-2-oxoethyl)-4-methoxypyridin-1-ium bromide $\mathbf{1 f}(0.36 \mathrm{mmol}, 134.3 \mathrm{mg}, 1.2$ equiv), 1-benzyl-1H-pyrrole-2,5-dione 2a ($0.3 \mathrm{mmol}, 56.2 \mathrm{mg}, 1.0 \mathrm{equiv}$), 1,8 -Diazabicyclo[5.4.0]undec-7-ene ($\mathrm{DBU}, 0.75 \mathrm{mmol}, 113.0 \mu \mathrm{~L}, 2.5$ equiv) were added sequentially to 2.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 20 h in O_{2} atmosphere. Then solvent was removed by rotary evaporator, the residual crude products was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, $\mathrm{PE} / \mathrm{EA}=2: 1, \mathrm{v} / \mathrm{v}$; $\mathrm{Rf}=0.3$) to afford compound 3fa (yellow solid, $\mathrm{m} . \mathrm{p}=88-90^{\circ} \mathrm{C}, 47.9 \mathrm{mg}$, yield $=36 \%$). HRMS(ESI+)m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{ClN}_{2} \mathrm{O}_{4}, 445.0950$; found, 445.0945 .
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 1 \mathrm{H})$, $7.46-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.19(\mathrm{dd}, J=8.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 166.2,165.4,164.8,157.9,142.3,137.1,136.7,133.7,132.6,131.8$, $131.5,129.7,128.8,128.6,127.5,127.4,126.6,112.0,111.5,98.8,95.6,56.9,40.8$.

General procedure: 1-(1-(2-chlorophenyl)-2-methoxy-2-oxoethyl)-4-methylpyridin-1-ium bromide $\mathbf{1 h}$ ($0.36 \mathrm{mmol}, 128.4 \mathrm{mg}, 1.2$ equiv), 1-benzyl-1H-pyrrole-2,5-dione 2 a ($0.3 \mathrm{mmol}, 56.2 \mathrm{mg}, 1.0 \mathrm{equiv}$), $1,4-$ Diazabicyclo[2.2.2]octane (DABCO, $0.6 \mathrm{mmol}, 67.3 \mathrm{mg}, 2.0$ equiv) were added sequentially to 3.0 mL of 1,2 -Dichloroethane. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 20 h in open flask. Then solvent was removed by rotary evaporator, the residual crude products was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, $\mathrm{PE} / \mathrm{EA}=2: 1, \mathrm{v} / \mathrm{v}$; $\mathrm{Rf}=0.4$) to afford compound 3 ha (yellow solid, $\mathrm{m} . \mathrm{p}=235-237^{\circ} \mathrm{C}, 55.8 \mathrm{mg}$, yield $=43 \%$). HRMS(ESI+)m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{ClN}_{2} \mathrm{O}_{3}, 429.1000$; found, 429.0999.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 9.10(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{dt}, J=2.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.50$ $(\mathrm{m}, 1 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.33-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{dd}, J=7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.84-4.71(\mathrm{~m}, 2 \mathrm{H})$, $2.55(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) δ 166.6, 165.6, 158.5, 148.0, 140.3, 137.2, 136.4, 134.3, 131.9, $131.2,129.8,129.4,128.6,128.6,127.7,126.5,121.1,119.8,114.4,97.9,54.8,41.7,21.7$.

3ia
9-acetyl-2-benzyl-4-(2-chlorophenyl)pyrrolo[3,4-a]quinolizine-1,3,5(2H)-trione

General procedure: 4-acetyl-1-(1-(2-chlorophenyl)-2-methoxy-2-oxoethyl)pyridin-1-ium bromide $\mathbf{1 i}$ ($0.36 \mathrm{mmol}, 138.5 \mathrm{mg}, 1.2$ equiv), 1-benzyl-1H-pyrrole-2,5-dione 2 a ($0.3 \mathrm{mmol}, 56.2 \mathrm{mg}, 1.0 \mathrm{equiv}$), $1,4-$ Diazabicyclo[2.2.2]octane (DABCO, $0.6 \mathrm{mmol}, 67.3 \mathrm{mg}, 2.0$ equiv) were added sequentially to 3.0 mL of 1,2 -Dichloroethane. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 20 h in open flask. Then solvent was removed by rotary evaporator, the residual crude products was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, $\mathrm{PE} / \mathrm{EA}=2: 1, \mathrm{v} / \mathrm{v} ; \mathrm{Rf}=0.4$) to afford compound 3 ia (yellow solid, $\mathrm{m} . \mathrm{p}=100-102^{\circ} \mathrm{C}, 72.5 \mathrm{mg}$, yield $=53 \%$). HRMS(ESI +)m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{ClN}_{2} \mathrm{O}_{4}, 457.0950$; found, 457.0957.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 9.15(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.06(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=$ $7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=7.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.26-7.18(\mathrm{~m}, 3 \mathrm{H}), 4.73(\mathrm{~d}, J=$ $4.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.68 (s, 3H).
${ }^{13}$ C NMR (101 MHz, Chloroform-d) δ 194.7, 166.1, 164.9, 158.3, 140.1, 139.7, 136.6, 136.0, 134.1, $131.6,130.6,130.3,129.6,129.5,128.7,128.7,128.0,126.7,123.8,118.9,113.5,101.6,42.0,26.4$.

3ja:

2-benzyl-4-(2-chlorophenyl)-8,10-dimethylpyrrolo[3,4-a]quinolizine-1,3,5(2H)-trione

General procedure: 1-(1-(2-chlorophenyl)-2-methoxy-2-oxoethyl)-3,5-dimethylpyridin-1-ium bromide $1 \mathbf{j}$ ($0.36 \mathrm{mmol}, 133.5 \mathrm{mg}$, 1.2equiv), 1-benzyl-1H-pyrrole-2,5-dione 2a ($0.3 \mathrm{mmol}, 56.2 \mathrm{mg}$,
1.0equiv), 1,4-Diazabicyclo[2.2.2]octane (DABCO, $0.6 \mathrm{mmol}, 67.3 \mathrm{mg}, ~ 2.0$ equiv) were added sequentially to 3.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 20 h in open flask. Then solvent was removed by rotary evaporator, the residual crude products was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{PE} / \mathrm{EA}=2: 1\right.$, $\mathrm{v} / \mathrm{v} ; \mathrm{Rf}=0.55$) to afford compound $\mathbf{3 j a}$ (yellow solid, $\mathrm{m} . \mathrm{p}=183-185^{\circ} \mathrm{C}, 112.9 \mathrm{mg}$, yield=85\%).
HRMS(ESI+)m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{ClN}_{2} \mathrm{O}_{3}$, 443.1157; found, 443.1153 .
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 9.13(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.38$ (ddt, $J=7.3,6.3,2.2 \mathrm{~Hz}$, $5 \mathrm{H}), 7.31-7.22(\mathrm{~m}, 3 \mathrm{H}), 4.81-4.71(\mathrm{~m}, 2 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz , Chloroform- d) $\delta 165.5,165.3,158.5,141.0,140.6,137.7$, 136.4, 134.2, 134.0, 131.7, 129.7, 129.3, 128.5, 127.6, 127.3, 126.6, 126.1, 114.4, 100.5, 41.8, 24.0, 18.3.

| 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |
| :--- |

3ka:
2-benzyl-4-(2-chlorophenyl)pyrrolo[3',4':3,4]pyrido[2,1-a]isoquinoline-1,3,5(2H)-trione

General procedure: 2-(1-(2-chlorophenyl)-2-methoxy-2-oxoethyl)isoquinolin-2-ium bromide $\mathbf{1 k}$ ($0.36 \mathrm{mmol}, 141.4 \mathrm{mg}, 1.2$ equiv), 1-benzyl-1H-pyrrole-2,5-dione 2a ($0.3 \mathrm{mmol}, 56.2 \mathrm{mg}, 1.0 \mathrm{equiv}$), 2,2,6,6-Tetramethylpiperidoxyl (TEMPO, $0.6 \mathrm{mmol}, 93.8 \mathrm{mg}, 2.0 \mathrm{equiv}$), 1,8 -Diazabicyclo[5.4.0]undec7 -ene (DBU, $0.6 \mathrm{mmol}, 90.0 \mu \mathrm{~L}, 2.0$ equiv) were added sequentially to 3.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 15 h in N_{2} atmosphere. Then solvent was removed by rotary evaporator, the residual crude products was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{PE} / \mathrm{EA}=2: 1, \mathrm{v} / \mathrm{v}\right.$; $\left.\mathrm{Rf}=0.5\right)$ to afford compound 3 ka (yellow solid, m.p $=86-89^{\circ} \mathrm{C}, 31.2 \mathrm{mg}$, yield $=22 \%$).
HRMS(ESI+)m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{ClN}_{2} \mathrm{O}_{3}, 465.1000$; found, 465.1008 .
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 9.96-9.88(\mathrm{~m}, 1 \mathrm{H}), 9.01(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{td}, J=7.4,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.79(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 3 \mathrm{H}), 4.95-$ 4.79 ($\mathrm{m}, 2 \mathrm{H}$).
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 166.2,164.7,159.3,143.4,137.6,136.1,134.1,133.5,133.3$, $131.7,131.5,131.3,130.1,129.5,128.8,128.7,128.4,127.9,126.7,126.5,125.0,124.0,119.4,117.3$, 102.2, 42.4 .

3ab:
4-(2-chlorophenyl)-2-methylpyrrolo[3,4-a]quinolizine-1,3,5(2H)-trione

General procedure: 1-(1-(2-chlorophenyl)-2-methoxy-2-oxoethyl)pyridin-1-ium bromide 1a ($0.36 \mathrm{mmol}, 123.3 \mathrm{mg}, 1.2$ equiv), 1 -methyl-1H-pyrrole-2,5-dione 2 b ($0.3 \mathrm{mmol}, 34.0 \mathrm{mg}, 1.0 \mathrm{equiv}$), $1,4-$

Diazabicyclo[2.2.2]octane (DABCO, $0.6 \mathrm{mmol}, 67.3 \mathrm{mg}, 2.0$ equiv) were added sequentially to 3.0 mL of 1,2 -Dichloroethane. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 20 h in open flask. Then solvent was removed by rotary evaporator, the residual crude products was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, $\mathrm{PE} / \mathrm{EA}=1: 1, \mathrm{v} / \mathrm{v} ; \mathrm{Rf}=0.45$) to afford compound $\mathbf{3 a b}$ (yellow solid, $\mathrm{m} . \mathrm{p}=183-186^{\circ} \mathrm{C}, 85.8 \mathrm{mg}$, yield $=84 \%$). HRMS(ESI+)m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{ClN}_{2} \mathrm{O}_{3}, 339.0531$; found, 339.0525 .
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.12$ (d, $\left.J=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.64$ (ddd, $\left.J=8.9,1.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.07$ (ddd, $J=8.9,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.39(\mathrm{~m}, 5 \mathrm{H}), 2.98(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 166.3,165.6,157.8,139.7,136.8,136.7,133.5,132.5,131.8,129.9$, 129.0, 128.8, 126.6, 121.8, 118.2, 113.8, 98.5, 23.8.

3ac:

4-(2-chlorophenyl)-2-ethylpyrrolo[3,4-a]quinolizine-1,3,5(2H)-trione

General procedure: 1-(1-(2-chlorophenyl)-2-methoxy-2-oxoethyl)pyridin-1-ium bromide 1a ($0.36 \mathrm{mmol}, 123.3 \mathrm{mg}, 1.2 \mathrm{equiv}$), 1-ethyl-1H-pyrrole-2,5-dione 2 c ($0.3 \mathrm{mmol}, 37.6 \mathrm{mg}, 1.0 \mathrm{equiv}$), $1,4-$ Diazabicyclo[2.2.2]octane (DABCO, $0.6 \mathrm{mmol}, 67.3 \mathrm{mg}, 2.0$ equiv) were added sequentially to 3.0 mL of 1,2 -Dichloroethane. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 20 h in open flask. Then solvent was removed by rotary evaporator, the residual crude products was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, $\mathrm{PE} / \mathrm{EA}=1: 1, \mathrm{v} / \mathrm{v} ; \mathrm{Rf}=0.6$) to afford compound 3ac (yellow solid, $\mathrm{m} . \mathrm{p}=161-163^{\circ} \mathrm{C}, 97.8 \mathrm{mg}$, yield $=92 \%$). HRMS(ESI +)m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{O}_{3}, 353.0687$; found, 353.0676.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.11(\mathrm{dt}, J=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{dt}, J=8.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.05$ (ddd, $J=8.9,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dt}, J=7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.37(\mathrm{~m}, 4 \mathrm{H}), 3.53(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $1.12(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 166.0,165.3,157.8,139.8,136.8,136.5,133.5,132.5,131.8,129.8$, 129.0, 128.8, 126.6, 121.7, 118.2, 113.7, 98.2, 32.4, 13.5.

3ad:
4-(2-chlorophenyl)-2-dodecylpyrrolo[3,4-a]quinolizine-1,3,5(2H)-trione

General procedure: 1-(1-(2-chlorophenyl)-2-methoxy-2-oxoethyl)pyridin-1-ium bromide 1a ($0.36 \mathrm{mmol}, 123.3 \mathrm{mg}, 1.2$ equiv), 1-dodecyl-1H-pyrrole-2,5-dione 2 d ($0.3 \mathrm{mmol}, 79.6 \mathrm{mg}, 1.0$ equiv), 1,4 Diazabicyclo[2.2.2]octane (DABCO, $0.6 \mathrm{mmol}, 67.3 \mathrm{mg}, 2.0$ equiv) were added sequentially to 3.0 mL of 1,2-Dichloroethane. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 20 h in open flask. Then solvent was removed by rotary evaporator, the residual crude products was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, $\mathrm{PE} / \mathrm{EA}=2: 1, \mathrm{v} / \mathrm{v} ; \mathrm{Rf}=0.5$) to afford compound 3ad (yellow oil, 98.9 mg , yield $=67 \%$).
HRMS(ESI+)m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{ClN}_{2} \mathrm{O}_{3}, 493.2252$; found, 493.2248 .
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 9.21(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.82-8.78(\mathrm{~m}, 1 \mathrm{H}), 7.78$ (ddd, $J=8.6$, $6.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $1.64(\mathrm{p}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.29-1.22(\mathrm{~m}, 18 \mathrm{H}), 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 166.8,165.8,158.5,140.2,137.0,135.0,134.3,131.8,131.1$, $130.0,129.5,129.1,126.6,122.8,117.1,115.5,99.2,38.3,31.9,29.6,29.5,29.4,29.3,29.1,28.4,26.9$, 22.7, 14.1.

3ae:

4-(2-chlorophenyl)-2-cyclohexylpyrrolo[3,4-a]quinolizine-1,3,5(2H)-trione

General procedure: 1-(1-(2-chlorophenyl)-2-methoxy-2-oxoethyl)pyridin-1-ium bromide 1a ($0.36 \mathrm{mmol}, 123.3 \mathrm{mg}, 1.2$ equiv), 1-cyclohexyl-1H-pyrrole-2,5-dione 2e ($0.3 \mathrm{mmol}, 54.0 \mathrm{mg}, 1.0 \mathrm{equiv}$), 1,4-Diazabicyclo[2.2.2]octane (DABCO $, 0.6 \mathrm{mmol}, 67.3 \mathrm{mg}, 2.0$ equiv) were added sequentially to 3.0 mL
of 1,2-Dichloroethane. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 20 h in open flask. Then solvent was removed by rotary evaporator, the residual crude products was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, $\mathrm{PE} / \mathrm{EA}=1: 1, \mathrm{v} / \mathrm{v} ; \mathrm{Rf}=0.8$) to afford compound 3ae (yellow solid, m.p=89-91 ${ }^{\circ} \mathrm{C}, 95.2 \mathrm{mg}$, yield=78\%). HRMS(ESI+)m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{ClN}_{2} \mathrm{O}_{3}, 407.1157$; found, 407.1149.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 9.21(\mathrm{dt}, J=7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.81(\mathrm{dt}, J=9.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.78$ (ddd, $J=8.9,6.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{tt}, J$ $=12.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{tdd}, J=15.8,11.1,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.86-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.63(\mathrm{~m}, 3 \mathrm{H}), 1.34$ $-1.20(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform- d) δ 166.8, 165.8, 158.5, 140.2, 136.8, 135.0, 134.3, 131.8, 131.2, $129.9,129.5,129.1,126.6,122.8,117.1,115.3,99.2,51.1,29.7,29.6,26.0,25.1$.

3af:

2-(tert-butyl)-4-(2-chlorophenyl)pyrrolo[3,4-a]quinolizine-1,3,5(2H)-trione

General procedure: 1-(1-(2-chlorophenyl)-2-methoxy-2-oxoethyl)pyridin-1-ium bromide 1a ($0.36 \mathrm{mmol}, 123.3 \mathrm{mg}, 1.2$ equiv), 1 -(tert-butyl)-1H-pyrrole-2,5-dione $2 \mathrm{f}(0.3 \mathrm{mmol}, 44.0 \mu \mathrm{~L}, 1.0 \mathrm{equiv}$), 1,4-Diazabicyclo[2.2.2] octane (DABCO , $0.6 \mathrm{mmol}, 67.3 \mathrm{mg}, 2.0 \mathrm{equiv}$) were added sequentially to 3.0 mL of 1,2-Dichloroethane. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 20 h in open flask. Then solvent was removed by rotary evaporator, the residual crude products was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, $\mathrm{PE} / \mathrm{EA}=1: 1, \mathrm{v} / \mathrm{v} ; \mathrm{Rf}=0.8$) to afford compound 3af (yellow solid, $\mathrm{m} . \mathrm{p}=166-168^{\circ} \mathrm{C}, 99.1 \mathrm{mg}$, yield $=87 \%$). HRMS(ESI +) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{ClN}_{2} \mathrm{O}_{3}, 381.1000$; found, 381.0994 .
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.14(\mathrm{dt}, J=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.69$ (ddd, $J=8.9,1.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 8.05 (ddd, $J=8.9,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.39(\mathrm{~m}, 5 \mathrm{H}), 1.57(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 167.6,166.3,157.8,139.6,136.8,136.1,133.5,132.4,132.0,129.6$, 129.1, 128.8, 126.6, 121.8, 118.3, 112.6, 98.3, 57.3, 28.6.

3ag:
4-(2-chlorophenyl)-2-phenylpyrrolo[3,4-a]quinolizine-1,3,5(2H)-trione

General procedure: 1-(1-(2-chlorophenyl)-2-methoxy-2-oxoethyl)pyridin-1-ium bromide 1a ($0.36 \mathrm{mmol}, 123.3 \mathrm{mg}, 1.2$ equiv), 1 -phenyl-1H-pyrrole-2,5-dione 2 g ($0.3 \mathrm{mmol}, 51.9 \mathrm{mg}, 1.0 \mathrm{equiv}$), $1,4-$ Diazabicyclo[2.2.2]octane (DABCO, $0.6 \mathrm{mmol}, 67.3 \mathrm{mg}, 2.0$ equiv) were added sequentially to 3.0 mL of 1,2-Dichloroethane. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 20 h in open flask. Then solvent was removed by rotary evaporator, the residual crude products was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, $\mathrm{PE} / \mathrm{EA}=1: 1, \mathrm{v} / \mathrm{v} ; \mathrm{Rf}=0.45$) to afford compound $\mathbf{3 a g}$ (yellow solid, $\mathrm{m} . \mathrm{p}=188-191^{\circ} \mathrm{C}, 99.5 \mathrm{mg}$, yield $=83 \%$). HRMS(ESI+)m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{O}_{3}, 401.0687$; found, 401.0679.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.21(\mathrm{dt}, J=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.72(\mathrm{dt}, J=8.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.13$ (ddd, $J=8.6,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.37(\mathrm{~m}, 10 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 165.3,164.6,157.8,140.2,137.3,136.3,133.6,132.6,131.8,131.7$, 129.9, 129.3, 128.9, 128.8, 128.0, 127.2, 126.6, 122.0, 118.6, 113.8, 98.1.

3ah:
4-(2-chlorophenyl)-2-(4-hydroxyphenyl)pyrrolo[3,4-a]quinolizine-1,3,5(2H)-trione

General procedure: 1-(1-(2-chlorophenyl)-2-methoxy-2-oxoethyl)pyridin-1-ium bromide 1a ($0.36 \mathrm{mmol}, 123.3 \mathrm{mg}, 1.2$ equiv), 1-(4-hydroxyphenyl)-1H-pyrrole-2,5-dione 2 h ($0.3 \mathrm{mmol}, 56.7 \mathrm{mg}$, 1.0equiv), 1,4-Diazabicyclo[2.2.2]octane (DABCO, $0.6 \mathrm{mmol}, 67.3 \mathrm{mg}, ~ 2.0$ equiv) were added sequentially to 3.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 20 h in open flask. Then solvent
was removed by rotary evaporator, the residual crude products was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{PE} / \mathrm{EA}=1: 1, \mathrm{v} / \mathrm{v} ; \mathrm{Rf}=0.3\right.$) to afford compound 3ah (yellow solid, $\mathrm{m} . \mathrm{p}=310-313^{\circ} \mathrm{C}, 113.0 \mathrm{mg}$, yield=90\%).
HRMS(ESI+)m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{O}_{4}, 417.0637$; found, 417.0642.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.75(\mathrm{~s}, 1 \mathrm{H}), 9.18(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.10$ (t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.84$ (d, $J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) δ 165.6, 164.8, 157.8, 157.1, 140.1, 137.1, 136.3, 133.5, 132.5, 131.8, 129.8, 129.2, 128.8, 128.5, 126.6, 122.6, 121.9, 118.4, 115.3, 113.7, 98.1.

3ai:

4-(2-chlorophenyl)pyrrolo[3,4-a]quinolizine-1,3,5(2H)-trione

General procedure: 1-(1-(2-chlorophenyl)-2-methoxy-2-oxoethyl)pyridin-1-ium bromide 1a ($0.36 \mathrm{mmol}, \quad 123.3 \mathrm{mg}, \quad 1.2$ equiv), 1 H -pyrrole-2,5-dione $\mathbf{2 i}(0.3 \mathrm{mmol}, ~ 29.1 \mathrm{mg}, 1.0 \mathrm{equiv}), 1,4-$ Diazabicyclo[2.2.2]octane (DABCO, $0.6 \mathrm{mmol}, 67.3 \mathrm{mg}, 2.0$ equiv) were added sequentially to 3.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 20 h in open flask. Then solvent was removed by rotary evaporator, the residual crude products was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{PE} / \mathrm{EA}=1: 1\right.$, v / v; $\mathrm{Rf}=0.4$) to afford compound 3ai (yellow solid, $\mathrm{m} . \mathrm{p}=288-290^{\circ} \mathrm{C}, 68.5 \mathrm{mg}$, yield $=70 \%$). HRMS(ESI +)m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{ClN}_{2} \mathrm{O}_{3}, 325.0374$; found, 415.325.0378.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.32(\mathrm{~s}, 1 \mathrm{H}), 9.12(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.03$ (ddd, $J=8.5,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.39(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 167.5,166.9,157.9,139.8,137.4,136.7,133.6,132.5,131.9,129.7$, $129.0,128.8,126.6,121.9,118.3,113.2,99.3$.

3aj:
3-(2-chlorophenyl)-N,N-dimethyl-4-oxo-4H-quinolizine-1-carboxamide

General procedure: 1-(1-(2-chlorophenyl)-2-methoxy-2-oxoethyl)pyridin-1-ium bromide 1a (0.3 mmol , $102.8 \mathrm{mg}, \quad 1.0$ equiv), N, N-dimethylacrylamide $\quad \mathbf{2 j} \quad(0.6 \mathrm{mmol}, \quad 61.8 \mu \mathrm{~L}, \quad 2.0$ equiv), $2,2,6,6-$ Tetramethylpiperidoxyl (TEMPO, $0.75 \mathrm{mmol}, 117.2 \mathrm{mg}, 2.5$ equiv), 1,8 -Diazabicyclo[5.4.0]undec- 7 -ene (DBU, $0.9 \mathrm{mmol}, 134.4 \mu \mathrm{~L}, 3.0$ equiv) were added sequentially to 3.0 mL of DMSO. The mixture was stirred at $120^{\circ} \mathrm{C}$ for 40 h in open flask. After the reaction liquid was cooled to room temperature, 100 ml of water was added and extracted by 50 ml of ethyl acetate for three times. The organic phase was isolated and ethyl acetate was removed by rotary evaporator, the residual crude products was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{PE} / \mathrm{EA}=1: 1, \mathrm{v} / \mathrm{v} ; \mathrm{Rf}=0.3\right.$) to afford compound 3aj (yellow oil, 39.7 mg , yield=40\%).
HRMS(ESI+)m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{O}_{2}, 327.0895$; found, 327.0897.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 9.30(\mathrm{dt}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.87(\mathrm{dt}, J=9.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72$ (s, 1H), $7.54-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{ddd}, J=7.8,6.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~d}, J=27.8$ $\mathrm{Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 168.4,156.3,141.0,138.0,135.8,133.7,132.2,131.4,129.8$, 129.1, 128.5, 126.7, 123.6, 117.4, 115.8, 109.0.

3ak:
3-(2-chlorophenyl)-N,N-diethyl-4-oxo-4H-quinolizine-1-carboxamide

General procedure: 1-(1-(2-chlorophenyl)-2-methoxy-2-oxoethyl)pyridin-1-ium bromide 1a ($0.45 \mathrm{mmol}, 154.2 \mathrm{mg}, 1.5 \mathrm{equiv}$), N, N-diethylacrylamide 2 k ($0.3 \mathrm{mmol}, 41.3 \mu \mathrm{~L}$, 1.0 equiv), $2,2,6,6-$ Tetramethylpiperidoxyl (TEMPO, $0.75 \mathrm{mmol}, 117.2 \mathrm{mg}, 2.5$ equiv), 1,8 -Diazabicyclo[5.4.0]undec-7-ene (DBU, $0.9 \mathrm{mmol}, 134.4 \mu \mathrm{~L}, 3.0$ equiv) were added sequentially to 3.0 mL of DMSO. The mixture was stirred at $120^{\circ} \mathrm{C}$ for 40 h in Ar. After the reaction liquid was cooled to room temperature, 100 ml of water was added and extracted by 50 ml of ethyl acetate for three times. The organic phase was isolated and ethyl acetate was removed by rotary evaporator, the residual crude products was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{PE} / \mathrm{EA}=1: 1, \mathrm{v} / \mathrm{v} ; \mathrm{Rf}=0.3\right)$ to afford compound 3ak (yellow oil, 29.0mg, yield=27\%).
HRMS(ESI+)m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClN}_{2} \mathrm{O}_{2}, 355.1208$; found, 355.1202.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 9.30(\mathrm{dt}, J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{dt}, J=9.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68$ $(\mathrm{s}, 1 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{ddd}, J=7.8,6.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.31(\mathrm{~m}$, $4 \mathrm{H}), 1.29-1.05(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 167.8,156.3,140.4,137.1,135.8,133.7,132.1,131.2,129.8$, 129.0, 128.4, 126.7, 123.2, 117.8, 115.7, 110.2.

:

Abstract

3al:
tert-butyl 3-(2-chlorophenyl)-4-oxo-4H-quinolizine-1-carboxylate

General procedure: 1-(1-(2-chlorophenyl)-2-methoxy-2-oxoethyl)pyridin-1-ium bromide $\mathbf{1 a}$ (0.3 mmol , $102.8 \mathrm{mg}, 1.0$ equiv), tert-butyl acrylate $21(0.6 \mathrm{mmol}, 88.0 \mu \mathrm{~L}, 2.0$ equiv), $2,2,6,6$-Tetramethylpiperidoxyl (TEMPO, $0.75 \mathrm{mmol}, 117.2 \mathrm{mg}, 2.5$ equiv), 1,8 -Diazabicyclo[5.4.0]undec-7-ene (DBU, 0.9 mmol , $134.4 \mu \mathrm{~L}, 3.0$ equiv) were added sequentially to 3.0 mL of toluene. The mixture was stirred at $100^{\circ} \mathrm{C}$ for 40 h in Ar atmosphere. Then solvent was removed by rotary evaporator, the residual crude products was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{PE} / \mathrm{EA}=2: 1, \mathrm{v} / \mathrm{v} ; \mathrm{Rf}=0.5\right)$ to afford compound 3al (yellow oil, 34.4 mg , yield $=32 \%$).

HRMS(ESI +)m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClNO}_{3}, 356.1048$; found, 356.1051.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 9.40$ (ddd, $J=7.3,1.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 9.31 (ddd, $J=9.3,1.4,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{ddd}, J=9.3,6.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.22$ (ddd, $J=7.3,6.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 164.6,156.8,144.5,141.5,136.0,134.0,133.2,132.0,129.7$, 129.0, 128.9, 126.7, 124.1, 117.0, 116.2, 103.4, 81.3, 28.3.

3am:
diethyl (3-(2-chlorophenyl)-4-0x0-4H-quinolizin-1-yl)phosphonate

General procedure: 1-(1-(2-chlorophenyl)-2-methoxy-2-oxoethyl)pyridin-1-ium bromide 1a (0.6 mmol , 205.6 mg , 2.0equiv), diethyl vinylphosphonate $2 \mathrm{~m}(0.3 \mathrm{mmol}, 46.3 \mu \mathrm{~L}, \quad 1.0$ equiv), 2,2,6,6Tetramethylpiperidoxyl (TEMPO, $0.75 \mathrm{mmol}, 117.2 \mathrm{mg}, 2.5$ equiv), 1,8 -Diazabicyclo[5.4.0]undec-7-ene (DBU, $1.2 \mathrm{mmol}, 179.2 \mu \mathrm{~L}, 4.0$ equiv) were added sequentially to 3.0 mL of toluene. The mixture was stirred at $100^{\circ} \mathrm{C}$ for 20 h in N_{2} atmosphere. Then solvent was removed by rotary evaporator, the residual crude products was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{PE} / \mathrm{EA}=0: 1, \mathrm{v} / \mathrm{v} ; \mathrm{Rf}=0.5\right)$ to afford compound 3am (yellow oil, 13.0 mg , yield=11\%).
HRMS(ESI+)m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClNO}_{4} \mathrm{P}, 392.0813$; found, 392.0808 .
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 9.40(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{dd}, J=9.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J$ $=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{ddd}, J=8.7,6.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.26-$ $7.21(\mathrm{~m}, 1 \mathrm{H}), 4.27-4.06(\mathrm{~m}, 4 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) δ 156.9, 145.4, 143.6, 143.5, 135.8, 134.0, 132.8, 132.1, 129.8, 129.2, 129.1, 126.7, 124.8, 124.7, 117.8, 117.6, 116.3, 99.2, 97.1, 77.2, 62.4, 16.3.
${ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.89$.

4. Three-Component Reaction and Mechanism Study

Scheme 4:

General procedure: pyridine ($9.0 \mathrm{mmol}, 728.0 \mathrm{uL}$), methyl 2-bromo-2-(2-chlorophenyl)acetate (4.5 mmol, 757.0 uL), 1-benzyl-1H-pyrrole-2,5-dione 2a ($3.0 \mathrm{mmol}, 562.0 \mathrm{mg}, 1.0 \mathrm{equiv}$), and $1,4-$ Diazabicyclo[2.2.2]octane (DABCO, $6.0 \mathrm{mmol}, 673.0 \mathrm{mg}, 2.0$ equiv) were added sequentially to 20.0 mL of toluene. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 72 h in open flask. Then solvent was removed by rotary evaporator, the residual crude products was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{PE} / \mathrm{EA}=2: 1, \mathrm{v} / \mathrm{v}\right.$; $\mathrm{R}_{\mathrm{f}}=0.4$) to afford compound 3aa (yellow solid, 405.0 mg , yield=33\%).

Scheme 5:

1-(tert-butyl) 3-methyl 3-(2-chlorophenyl)-2,3-dihydroindolizine-1,3-dicarboxylate (5al)

$1 \mathbf{a}$

DCE (3.0 mL)
air (open flask) $60^{\circ} \mathrm{C}$, 20h

3al (n.d.)

5al (44\%)

General procedure: 1-(1-(2-chlorophenyl)-2-methoxy-2-oxoethyl)pyridin-1-ium bromide 1a ($0.36 \mathrm{mmol}, 123.3 \mathrm{mg}$, 1.2 equiv), tert-butyl acrylate $2 \mathrm{l}(0.3 \mathrm{mmol}, 44.0 \mu \mathrm{~L}, 1.0 \mathrm{equiv}$), $1,4-$ Diazabicyclo[2.2.2] octane (DABCO, $0.6 \mathrm{mmol}, 67.3 \mathrm{mg}, 2.0$ equiv) were added sequentially to 3.0 mL of 1,2 -Dichloroethane. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 20 h in open flask. Then solvent was removed by rotary evaporator, the residual crude products was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, $\mathrm{PE} / \mathrm{EA}=5: 1, \mathrm{v} / \mathrm{v} ; \mathrm{Rf}=0.65$) to afford compound 5al (orange oil, 50.6mg, yield=44\%).
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.42$ (dd, $J=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.32-7.21$ (m, 3H), 7.06 (dd, $J=$ $7.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dt}, J=7.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.74(\mathrm{~m}, 1 \mathrm{H}), 5.70(\mathrm{ddd}, J=7.3,6.3,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, 4.08 (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.85$ (s, 3H), 2.97 (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.47 (s, 9H).
${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 169.8$, 165.9, 134.3, 133.6, 131.2, 129.5, 126.9, 118.7, 105.4, 53.6, 40.7, 28.8.

tert-butyl 3-(2-chlorophenyl)indolizine-1-carboxylate (4al)

4al (n.d.)
Synthesis procedure: 5al ($0.45 \mathrm{mmol}, 174.6 \mathrm{mg}, 1.0$ equiv) and DBU ($0.9 \mathrm{mmol}, 135.0 \mathrm{uL}, 2.0$ equiv) were added to 4.5 mL of toluene. The mixture was stirred at $100^{\circ} \mathrm{C}$ for 4 days in Ar atmosphere. Neither 4 H -quinolizin-4-one (3al) nor indolizine (4al) were observed by TLC. Then TEMPO (0.45 mmol , $70.3 \mathrm{mg}, 1.0$ equiv) was added in the reaction mixture. After 24 hours, solvent was removed by rotary evaporator, the residual crude products were purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{PE} / \mathrm{EA}=5: 1 \mathrm{v} / \mathrm{v}\right.$; $\mathrm{Rf}=0.8$) to afford compound 4al (orange oil, 45.4 mg , yield=31\%).
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.22(\mathrm{dt}, J=9.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dt}, J=7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.52$ $-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.67(\mathrm{td}, J=6.8,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.62(\mathrm{~s}, 9 \mathrm{H})$.

Scheme 6A:
diethyl 2-benzyl-1,3-dioxo-1,2,3,3a,9a,9b-hexahydro-4H-pyrrolo[3,4-a]indolizine-4,4dicarboxylate (6da)

Synthesis procedure: 1-(1,3-diethoxy-1,3-dioxopropan-2-yl)pyridin-1-ium bromide 1d (0.36 mmol , $114.6 \mathrm{mg}, 1.2$ equiv), 1-benzyl-1H-pyrrole-2,5-dione 2a ($0.3 \mathrm{mmol}, 56.2 \mathrm{mg}, 1.0$ equiv), $1,4-$ Diazabicyclo[2.2.2]octane ($\mathrm{DABCO}, 0.6 \mathrm{mmol}, 67.3 \mathrm{mg}, 2.0$ equiv) were added sequentially to 3.0 mL of 1,2-Dichloroethane. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 2 h under a nitrogen atmosphere. Then solvent was removed by rotary evaporator, the residual crude products was purified by column chromatography ($\mathrm{SiO} 2, \mathrm{PE} / \mathrm{EA}=5: 1, \mathrm{v} / \mathrm{v} ; \mathrm{Rf}=0.5$) to afford compound $\mathbf{6 d a}$ (yellow oil, 85.6 mg , yield= 67%). HRMS(ESI+)m/z: [M+Na]+ calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}, 447.1527$; found, 447.1522.
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.30-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.53(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.94-5.86(\mathrm{~m}, 1 \mathrm{H})$, 5.65 (dd, $J=9.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.11$ (ddd, $J=7.1,5.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.71-4.58(\mathrm{~m}, 2 \mathrm{H}), 4.38-4.25(\mathrm{~m}$, $4 \mathrm{H}), 4.25-4.20(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{dt}, J=7.3,3.7 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 175.0,174.2,166.2,165.3,135.0,132.8,128.6,128.1,127.8$, 124.7, 113.1, 101.94, 73.8, 62.7, 62.5, 58.4, 49.4, 45.2, 42.7, 14.3, 13.9.

Scheme 6B: NMR Yield.

(A) additive $=$ none, yield $=28 \%$ (conversion $=100 \%$)
(B) additive $=$ DABCO 1.0 eq., yield $=42 \%$ (conversion $=100 \%$)
(C) additive = DABCO 1.0 eq. \& 1d $50 \mathrm{~mol} \%$, yield $=56 \%$ (conversion $=100 \%$)
(A) diethyl 2-benzyl-1,3-dioxo-1,2,3,3a,9a,9b-hexahydro-4H-pyrrolo[3,4-a]indolizine-4,4dicarboxylate $\mathbf{6 d a}(0.3 \mathrm{mmol}, 127.4 \mathrm{mg})$ were added to 3.0 mL of DCE. The mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 40 h under open-flsk conditions. 28% NMR Yield of 3da was obtained using 1,3,5trimethoxybenzene as internal standard.
(B) diethyl 2-benzyl-1,3-dioxo-1,2,3,3a,9a,9b-hexahydro-4H-pyrrolo[3,4-a]indolizine-4,4dicarboxylate 6da $(0.3 \mathrm{mmol}, 127.4 \mathrm{mg})$ and DABCO $(0.3 \mathrm{mmol}, 33.6 \mathrm{mg})$ were added to 3.0 mL of DCE. The mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 40 h under open-flsk conditions. 42% NMR Yield of 3da was obtained using 1,3,5- trimethoxybenzene as internal standard.
(C) diethyl 2-benzyl-1,3-dioxo-1,2,3,3a,9a,9b-hexahydro-4H-pyrrolo[3,4-a]indolizine-4,4dicarboxylate 6da ($0.3 \mathrm{mmol}, 127.4 \mathrm{mg}$), DABCO $(0.3 \mathrm{mmol}, 33.6 \mathrm{mg})$ and $1 \mathrm{~d}(0.15 \mathrm{mmol}, 47.7 \mathrm{mg}$, 0.5 equiv.) were added to 3.0 mL of DCE. The mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 40 h under open-flsk conditions. 42% NMR Yield of 3da was obtained using 1,3,5- trimethoxybenzene as internal standard..

Scheme 6C:

6da
3da
(A) additive $=$ none, yield $=45 \%$ (conversion $=100 \%$)
(B) additive $=$ DABCO 3.0 eq., yield $=47 \%$ (conversion $=100 \%$)
(C) additive = DABCO 3.0 eq. \& 1d $50 \mathrm{~mol} \%$, yield $=76 \%$ (conversion $=100 \%$)
(A) diethyl 2-benzyl-1,3-dioxo-1,2,3,3a,9a,9b-hexahydro-4H-pyrrolo[3,4-a]indolizine-4,4dicarboxylate 6da ($0.3 \mathrm{mmol}, 127.4 \mathrm{mg}$) and TEMPO ($0.6 \mathrm{mmol}, 93.8 \mathrm{mg}, 2.0$ equiv) were added sequentially to 6.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 20 h in an Argon atmosphere. Then solvent was removed by rotary evaporator, the residual crude products was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{PE} / \mathrm{EA}=1: 1, \mathrm{v} / \mathrm{v} ; \mathrm{Rf}=0.5\right.$) to afford compound 3da (yellow solid, m.p=169-171 ${ }^{\circ} \mathrm{C}$, 51.2 mg , yield $=45 \%$).
(B) diethyl 2-benzyl-1,3-dioxo-1,2,3,3a,9a,9b-hexahydro-4H-pyrrolo[3,4-a]indolizine-4,4dicarboxylate $6 \mathbf{d a}(0.3 \mathrm{mmol}, 127.4 \mathrm{mg})$, DABCO $(0.9 \mathrm{mmol}, 101.0 \mathrm{mg})$ and TEMPO $(0.6 \mathrm{mmol}, 93.8 \mathrm{mg}$, 2.0equiv) were added sequentially to 6.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 20 h in an Argon atmosphere. Then solvent was removed by rotary evaporator, the residual crude products was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{PE} / \mathrm{EA}=1: 1, \mathrm{v} / \mathrm{v} ; \mathrm{Rf}=0.5\right)$ to afford compound 3da (yellow solid, m.p $=169-171^{\circ} \mathrm{C}, 53.2 \mathrm{mg}$, yield $=47 \%$).
(C) diethyl 2-benzyl-1,3-dioxo-1,2,3,3a,9a,9b-hexahydro-4H-pyrrolo[3,4-a]indolizine-4,4dicarboxylate 6da ($0.3 \mathrm{mmol}, 127.4 \mathrm{mg}$), DABCO $(0.9 \mathrm{mmol}, 101.0 \mathrm{mg})$, $\mathbf{1 d}(0.15 \mathrm{mmol}, 47.7 \mathrm{mg}$, 0.5 equiv.) and TEMPO ($0.6 \mathrm{mmol}, 93.8 \mathrm{mg}, 2.0$ equiv) were added sequentially to 6.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 20 h in an Argon atmosphere. Then solvent was removed by rotary evaporator, the residual crude products was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{PE} / \mathrm{EA}=1: 1\right.$, v/v; $\mathrm{Rf}=0.5$) to afford compound 3da (yellow solid, $\mathrm{m} . \mathrm{p}=169-171^{\circ} \mathrm{C}, 85.8 \mathrm{mg}$, yield $=76 \%$).

Scheme 7A:
methyl 10-benzyl-2,3-dimethoxy-9,11-dioxo-8-phenyl-5,8,8a,9,10,11,11a,11b-octahydro-6Hpyrrolo [3',4':3,4]pyrrolo[2,1-a]isoquinoline-8-carboxylate (6la)

General procedure: 6,7-dimethoxy-2-(2-methoxy-2-oxo-1-phenylethyl)-3,4-dihydroisoquinolin-2-ium bromide $11(0.25 \mathrm{mmol}, 107.5 \mathrm{mg}, 1.25$ equiv), 1 -benzyl-1H-pyrrole-2,5-dione 2a $(0.2 \mathrm{mmol}, 37.5 \mathrm{mg}$, 1.0equiv), 1,4-Diazabicyclo[2.2.2]octane (DABCO, $0.6 \mathrm{mmol}, 44.9 \mathrm{mg}, ~ 2.0$ equiv) were added sequentially to 3.0 mL of 1,2 -Dichloroethane. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 15 h in open flask. Then solvent was removed by rotary evaporator, the residual crude products was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{PE} / \mathrm{EA}=5: 1, \mathrm{v} / \mathrm{v} ; \mathrm{Rf}=0.6\right.$) to afford compound 6la (yellow oil, 95.9 mg , yield=91\%).
HRMS(ESI+)m/z: [M+H] calcd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6}, 527.2177$; found, 527.2185.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.63-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 2 \mathrm{H})$, $7.37-7.27(\mathrm{~m}, 4 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) δ 176.4, 175.6, 169.0, 147.9, 147.7, 139.9, 135.8, 129.1, 128.6, $128.5,127.9,127.9,126.4,125.6,111.2,109.8,61.9,56.8,56.0,55.9,51.5,49.6,44.4,42.8,29.4$.

Scheme 7B:
methyl 10-benzyl-2,3-dimethoxy-9,11-dioxo-8-phenyl-5,8,8a,9,10,11,11a,11b-octahydro-6H-pyrrolo[3',4':3,4]pyrrolo[2,1-a]isoquinoline-8-carboxylate (6la)

General procedure: 6,7-dimethoxy-2-(2-methoxy-2-oxo-1-phenylethyl)-3,4-dihydroisoquinolin-2-ium bromide 11 ($0.45 \mathrm{mmol}, 189.1 \mathrm{mg}, 1.5 \mathrm{equiv}$), 1-benzyl-1H-pyrrole-2,5-dione 2a ($0.3 \mathrm{mmol}, 56.2 \mathrm{mg}$, 1.0equiv), 1,4-Diazabicyclo[2.2.2] octane (DABCO, $1.2 \mathrm{mmol}, 134.6 \mathrm{mg}, 4.0 \mathrm{equiv}$), TEMPO (0.6 mmol , $93.8 \mathrm{mg}, 2.0$ equiv) were added sequentially to 6.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 20 h under an argon atmosphere. Then solvent was removed by rotary evaporator, the residual crude products was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{PE} / \mathrm{EA}=5: 1, \mathrm{v} / \mathrm{v} ; \mathrm{Rf}=0.6\right)$ to afford compound $6 \mathbf{l a}$ (yellow oil, 111.7 mg , yield=71\%).

5. X-ray Information for 3aa

Crystals suitable of 3aa for X-ray analysis could be successfully grown by slow volatilization in ethyl acetate.

3aa CCDC:2282683

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 1_a
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 1


```
The following ALERTS were generated. Each ALERT has the format
test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.
Alert level C
PLAT230_ALERT_2_C Hirshfeld Test Diff for C4 --C5 . 6.0 s.u.
PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of C6 Check
PLAT906_ALERT_3_C Large K Value in the Analysis of Variance ...... 3.890
Check
PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.600 33 Report
PLAT992_ALERT_5_C Repd & Actual _reflns_number_gt Values Differ by 14 Check
Alert level G
PLAT154_ALERT_1_G The s.u.'s on the Cell Angles are Equal ..(Note) 0.002
Degree
PLAT432_ALERT_2_G Short Inter X...Y Contact Cl1 ..C10 . 3.25 Ang.
1-x,1-y,1-z = 2_666 Check
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 1155 Note
PLAT941_ALERT_3_G Average HKL Measurement Multiplicity ........... 1.3 Low
PLAT951_ALERT_5_G Calculated (ThMax) and CIF-Reported Kmax Differ 2 Units
PLAT957_ALERT_1_G Calculated (ThMax) and Actual (FCF) Kmax Differ 2 Units
PLAT965_ALERT_2_G The SHELXL WEIGHT Optimisation has not Converged Please
Check
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density. 7 Info
O ALERT level A = Most likely a serious problem - resolve or explain
O ALERT level B = A potentially serious problem, consider carefully
5 ALERT level C = Check. Ensure it is not caused by an omission or oversight
8 ALERT level G = General information/check it is not something unexpected
2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
5 ~ A L E R T ~ t y p e ~ 2 ~ I n d i c a t o r ~ t h a t ~ t h e ~ s t r u c t u r e ~ m o d e l ~ m a y ~ b e ~ w r o n g ~ o r ~ d e f i c i e n t
3 ALERT type 3 Indicator that the structure quality may be low
1 ALERT type 4 Improvement, methodology, query or suggestion
2 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (Acta Crystallographica, Journal of Applied Crystallography, Journal
of Synchrotron Radiation); however, if you intend to submit to Acta Crystallographica Section C or E or IUCrData, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of $\mathbf{0 6} / \mathbf{0 7} / \mathbf{2 0 2 3}$; check.def file version of $\mathbf{3 0 / 0 6} / \mathbf{2 0 2 3}$

6. Reference

1 Shi. -Z. Zhu, Chao. -Y. Qin, Yan. -L. Wang, Qian. -I. Chu, Journal of Fluorine Chemistry. 1999, 99(2), 183-187.

[^0]: ${ }^{1}$ State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000 (China)
 E-mail: suyj@licp.cas.cn
 ${ }^{2}$ University of Chinese Academy of Sciences, Beijing 100049 (China)

