Synthesis of branched-chain sugars and higher-carbon sugars enabled by site-selective C—H alkylation relying on 1,5hydrogen atom transfer of ethylenoxy radicals

Dongwei Li^a, Lingjun Wang^a, Jianjun Wang^a, Peng Wang^a, Ni Song^{a,b*}, Pengwei Chen^{a*}, Ming Li^{a,b*}

^aMolecular Synthesis Center, Key Laboratory of Marine Medicine, Chinese Ministry of Education,

School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.

^bLaboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and

Technology, Qingdao, 266237, China.

E-mail: nisong1975@ouc.edu.cn; chenpengwei@itbb.org.cn; lmsnouc@ouc.edu.cn.

Table of contents

Contents	Page	Spectra of new
Concerction		compounds
	51	
Table S1 Optimization of reaction condition	S2	
Table S2 Removal of the directing group 2-hydroxyethylene moiety of branched-chain sugars	S3	
Table S3 Removal of the directing group 2-hydroxyethylene moiety of higher-carbon sugars	S3	
Stereochemical confirmation of compound \$58 by Mosher ester analysis	S4	
Stereochemical confirmation of compound S60 by Mosher ester analysis	S5	
Stereochemical confirmation of compound S61 by Mosher ester analysis	S6	_
Stereochemical confirmation of compound S65 by Mosher ester analysis	S7	
Figure S5 Comparison of full ¹ H NMR spectra for compouds S57, S58, S59, S60, S65, S66, S61, S62, S63, S64, S67, and S68	S8	
Figure S6 Comparison of expanded ¹ H NMR spectra for compouds S57 , S58 , S59 , S60 , S65 , S66 , S61 , S62 , S63 , S64 , S67 , and S68 at 2.00–3.00 ppm	S8	
Table S8 ¹ H NMR chemical shifts and coupling constants of the methylene at β position of hydroxy group and of compounds S57, S58, S59, S60, S63, S64, S65, S66, S61, S62, S67, and S68	S9	
Preparation and spectroscopic data of 1a via intermediates S2–S5	S12–S13	S108–S110
Preparation and spectroscopic data of S4 and S5	S12–S13	S108–S109
Preparation of and spectroscopic data 1a	S13	S110
Preparation and spectroscopic data of 1b <i>via</i> intermediate S7	S14–S15	S111–S112
Preparation and spectroscopic data of S7	S14	S111
Preparation and spectroscopic data of 1b	S14–S15	S112
Preparation and spectroscopic data of 1c–1e via intermediates S9–S11	S15–S19	S113–S118

Preparation and spectroscopic data of S9	S15–S16	S113
Preparation and spectroscopic data of S10	S16–S17	S114
Preparation and spectroscopic data of S11	S17	S115
Preparation and spectroscopic data of 1c	S17–S18	S116
Preparation and spectroscopic data of 1d	S18–S19	S117
Preparation and spectroscopic data of 1e	S19	S118
Preparation and spectroscopic data of 1f via	520 522	G110 G1 00
intermediates S13-S15	520-522	5117-5122
Preparation and spectroscopic data of S13	S20	S119
Preparation and spectroscopic data of S14	S21	S120
Preparation and spectroscopic data of S15	S21–S22	S121
Preparation and spectroscopic data of 1f	S22	S122
Preparation and spectroscopic data of 1g	S22–S23	S123
Preparation and spectroscopic data of 1h	S23–S24	S124
Preparation and spectroscopic data of 1i	S24–S25	S125
Preparation and spectroscopic data of 1j via intermediate S20	S25–S27	S126–S127
Preparation and spectroscopic data of S20	S25–S26	S126
Preparation and spectroscopic data of 1j	S25–S24	S127
Preparation and spectroscopic data of 1k	S26–S27	S128
Preparation and spectroscopic data of 11 via intermediates S22 and S23	S28–S30	S129–S131
Preparation and spectroscopic data of S22	S28	S129
Preparation and spectroscopic data of S23	S29	S130
Preparation and spectroscopic data of 11	S29–S30	S131
Preparation and spectroscopic data of 1m via	820 822	G122 G125
intermediates S25-S27.	530-532	5152-5155
Preparation and spectroscopic data of S25	S30	S132

,		
Preparation and spectroscopic data of S26	S31	S133
Preparation and spectroscopic data of S27	S31–S32	S134
Preparation and spectroscopic data of 1m	S32	S135
Preparation and spectroscopic data of 1n <i>via</i> intermediate S29	S32–S34	S136–S137
Preparation and spectroscopic data of of S29	S33	S136
Preparation and spectroscopic data of 1n	S33–S34	S137
Preparation and spectroscopic data of 10 <i>via</i> intermediates S31 and S32	S34–S36	S138–S140
Preparation and spectroscopic data of S31	S34–S35	S138
Preparation and spectroscopic data of S32	S35	S139
Preparation and spectroscopic data of 10	S36	S140
Preparation and spectroscopic data of 1p via intermediates S34 and S35	S34–S36	S141–S143
Preparation and spectroscopic data of S34	S36–S37	S141
Preparation and spectroscopic data of S35	S37–S38	S142
Preparation and spectroscopic data of 1p	S38	S143
Preparation and spectroscopic data of 7a via intermediates S2 and S4	S39–S40	S144–S145
Preparation and spectroscopic data of S2	S39	S144
Preparation of S4	S39	S108
Preparation and spectroscopic data of 7a	S40	S145
Preparation and spectroscopic data of 7b via intermediates S37 and S38	S40–S41	S146–S148
Preparation and spectroscopic data of S37	S40-S41	S146
Preparation and spectroscopic data of S38	S41	S147
Preparation of 7b	S42	S148
Preparation of 7c	S42–S43	S149
Preparation and spectroscopic data of 7d via	S43–S44	S150–S151

		Г
intermediates S42		
Preparation and spectroscopic data of S42	S43–S44	S150
Preparation and spectroscopic data of 7d	S44	S151
Preparation and spectroscopic data of 7e via intermediate S44	S44–S46	S152–S153
Preparation and spectroscopic data of S44	S45	S152
Preparation and spectroscopic data of 7e	S45–S46	S153
Preparation and spectroscopic data of 7f <i>via</i> intermediates S46–S49	S46–S50	S154–S158
Preparation and spectroscopic data of S46	S46–S47	S154
Preparation and spectroscopic data of S47	S47–S48	S155
Preparation and spectroscopic data of S48	S48–S49	S156
Preparation and spectroscopic data of S49	S49–S50	S157
Preparation and spectroscopic data of 7f	S50	S158
Preparation and spectroscopic data of 3a and 3a'	S51–S52	S159–S163
Preparation and spectroscopic data of 3c	S53	S164–S166
Preparation and spectroscopic data of 3d	S53–S54	S166–S168
Preparation and spectroscopic data of 3e	S54–S55	S169–S171
Preparation and spectroscopic data of 3f	S55	S171–S173
Preparation and spectroscopic data of 3g	S55–S56	S174–S176
Preparation and spectroscopic data of 3h	S56–S57	S176–S178
Preparation and spectroscopic data of 3i	S57	S179–S181
Preparation and spectroscopic data of 3 j	S58	S181–S183
Preparation and spectroscopic data of 3k	S58–S59	S184–S186
Preparation and spectroscopic data of 31 and 31'	S59–S60	S186–S191
Preparation and spectroscopic data of $3m^{BrBz}$ and $3m'^{BrBz}$	S60–S61	S191–S196
Preparation and spectroscopic data of 3n and 3n'	S61–S62	S196–S200
Preparation and spectroscopic data of 30	S63	S201–S203

Preparation and spectroscopic data of 3p	S63–S64	S203–S205
Preparation and spectroscopic data of 4a	S64	S206–S208
Preparation and spectroscopic data of 4b	S65	S208–S210
Preparation and spectroscopic data of 4c	S65–S66	S211–S213
Preparation and spectroscopic data of 4d	S66	S213–S215
Preparation and spectroscopic data of 4e	S67	S216–S218
Preparation and spectroscopic data of 6a	S67–S68	S218–S220
Preparation and spectroscopic data of 6b	S68	S221–S223
Preparation and spectroscopic data of 6c	S69	S223–S225
Preparation and spectroscopic data of D-8a and L-8a	S69–S70	S226–S227
Preparation and spectroscopic data of D-8b and L-8b	S70–S71	S228–S229
Preparation and spectroscopic data of D-8c and L-8c	S72	S230–S231
Preparation and spectroscopic data of D-8d and L-8d	S73	S232–S233
Preparation and spectroscopic data of D-8e and L-8e	S74	S234–S235
Preparation and spectroscopic data of D-8f and L-8f	S75–S76	S236–S237
Preparation and spectroscopic data of 9	S76	S238
Preparation and spectroscopic data of 11	S77	S239
Preparation and spectroscopic data of 13 and 14	S77–S79	S240–S241
Preparation and spectroscopic data of 15	S80	S242
Preparation and spectroscopic data of S52 and S53	S80–S81	S243–S244
Preparation and spectroscopic data of S54	S81–S82	S245
Preparation and spectroscopic data of S55	S82–S83	S246
Preparation and spectroscopic data of S56	S83	S247
Preparation and spectroscopic data of S57	S83–S84	S248
Preparation and spectroscopic data of S58	S84–S85	S249
Preparation and spectroscopic data of S59	S85	S250
Preparation and spectroscopic data of S60	S86	S251
Preparation and spectroscopic data of S61	S86–S87	S252
Preparation and spectroscopic data of S62	S87	S253

Preparation and spectroscopic data of S63	S88	S254
Preparation and spectroscopic data of S64	S88–S89	S255
Preparation and spectroscopic data of S65	S89–S90	S256
Preparation and spectroscopic data of S66	S90	S257
Preparation and spectroscopic data of S67	S91	S258
Preparation and spectroscopic data of S68	S91–S92	S259
Preparation and spectroscopic data of S69	S93	S260–S261
Preparation and spectroscopic data of S70	S93–S94	S261–S262
Preparation and spectroscopic data of S71	S94–S95	S263–S264
Preparation and spectroscopic data of S72	S95	S264–S265
Preparation and spectroscopic data of S73	S96	S266–S267
Preparation and spectroscopic data of S74	S96–S97	S267–S268
Preparation and spectroscopic data of S75	S97–S98	S269–S270
Preparation and spectroscopic data of S76	S98	S270–S271
Preparation and spectroscopic data of S78	S99–S100	S272
Preparation and spectroscopic data of S79	S100–S101	S273
Preparation and spectroscopic data of S80	S101	S274
Preparation and spectroscopic data of S81	S101–S102	S275
Preparation and spectroscopic data of S82	S102	S276
Preparation and spectroscopic data of S83	S103	S277
Preparation and spectroscopic data of 18	S103–S104	S278
Preparation and spectroscopic data of 17	S104	S279–S281
Preparation and spectroscopic data of 20	S104–S105	S281–S282
Preparation and spectroscopic data of 16	S105–S106	S282–S283
References	S106–S107	_

General information

Unless otherwise stated, all commercially obtained reagents were used directly without further purification and all reactions were carried out in glassware or a standard Schlenk technique with magnetic stirring. Anhydrous dichloromethane (DCM), tetrahydrofuran (THF) and N.N-dimethylformamide (DMF) were obtained from an MBraun solvent purification system (SPS-800). Flash column chromatography was performed on Silica Gel H (300-400 or 200-300 mesh, Qingdao, China) using petroleum ether (PE), ethyl acetate (EA), DCM, methanol (MeOH) and mixtures thereof as the eluent. Analytical thin layer chromatography (TLC) was performed on Silicycle SiliaPlate glass-backed plates coated with silica gel (60 Å pore size, F-254 indicator) and visualized by exposure to ultraviolet light and/or staining with 8% sulfuric acid in methanol. HRMS (High-resolution mass spectra) were determined with a Thermo LTQ Orbitrap XL highresolution mass spectrometer. Optical rotations were determined with a JASCO P-1010 digital polarimeter. NMR spectra were measured on a Bruker AVENCE NEO 400 MHz spectrometer using chloroform-d (CDCl₃), methanol- d_4 as the solvent. Chemical shift values are reported in ppm with the solvent resonance as the internal standard (TMS: δ 0.00 for ¹H, Chloroform-d: δ 7.26 for ¹H, δ 77.00 for ¹³C, Methanol-d₄: δ 3.31 for ¹H, δ 49.15 for ¹³C. Data are reported as follows: chemical shifts (δ), multiplicity (s = singlet, d = doublet, dd = double doublet, t = triplet, m = multiplet), coupling constants J (Hz).

		НС	² 7	COOMe
PhthNO	OBZ PhSOn	Conditions ^a MeOOC		
В	zo Bzo OMe 1a 2a		BzO BzO OMe	BzÒl BzÒl OMe
Entry	Solvents	Concentration (mol/L)	Yield of $3a^b$	Yield of 3a' ^b
1	1,4-dioxane	0.05	42% (38%) ^c	20% (21%) ^c
2	THF	0.05	tra	ice
3	CH ₃ CN	0.05	no rea	action
4	Actone	0.05	34%	12%
5	PhCF ₃	0.05	40%	20%
6	PhCl	0.05	26%	18%
7	PhMe	0.05	27%	17%
8	DCE	0.05	33%	14%
9	MTBE	0.05	no rea	action
10	MTBE/1,4-dioxane	0.05	400/	200/
10	(9:1)	0.05	40%	20%
11	1,4-dioxane	0.1	37%	17%
12	1,4-dioxane	0.2	28%	13%
13 ^d	1,4-dioxane	0.1	42%	18%
14 ^e	1,4-dioxane	0.05	no rea	action
15 ^f	1,4-dioxane	0.05	no rea	action

Table S1 Optimization of reaction condition^a

^{*a*}Conditions: **1a** (0.10 mmol, 1.0 equiv), **2a** (0.30 mmol, 3.0 equiv), *fac*-Ir(ppy)₃ (0.001 mmol, 0.01 equiv) and Hantzsch ester (0.15 mmol, 1.5 equiv) in 2.0 mL solvent under argon atmosphere with blue LEDs (450 nm-470 nm) irradiation at 35 °C for 3 h, unless otherwise noted; ^{*b*}The Yields were determined by ¹H NMR analysis using 3,4,5-trichloropyridine as an internal standard; ^{*c*}The yields in the parenthesis were the isolated yields; ^{*d*} **2a** (0.60 mmol, 6.0 equiv) was used; ^{*e*}no light; ^{*f*}no *fac*-Ir(ppy)₃.

Table S2 Removal of the directing group 2-hydroxyethylene moiety of branchedchain sugars.

Reaction conditions: (a) TEMPO (0.1 equiv), BAIB (2.0 equiv), CH₂Cl₂/H₂O, rt, 3 h; (b) DPPA (1.2 equiv), DIPEA (1.2 equiv), DMF, rt, 3 h; (c) H₂O, 100 °C, 2 h.

Table S3 Removal of the directing group 2-hydroxyethylene moiety of higher-carbon sugars.

Reaction conditions: (a) TEMPO (0.1 equiv), BAIB (2.0 equiv), CH₂Cl₂/H₂O, rt, 3 h; (b) DPPA (1.2 equiv), DIPEA (1.2 equiv), DMF, rt, 3 h; (c) H₂O, 100 °C, 2 h.

Figure S1 ¹H NMR spectra of (*S*)-*O*-mosher ester S69 and (*R*)-*O*-mosher ester S70

Table S4 ¹H NMR chemical shifts and $\Delta\delta$ values of (*S*)-*O*-mosher ester S69 and (*R*)-*O*-mosher ester S70

7		NO.	δ_S	δ _R	$\Delta \delta = \delta_S - \delta_R$
MeOOC 6(S)		1	5.24	5.21	0.03
BzO	OBz OBz	2	5.06	5.00	0.06
$\Delta\delta < 0$	$\Delta\delta > 0$	3	6.05	6.04	0.01
Mosher I	Model	4	5.35	5.32	0.03
.7		5	4.22	4.21	0.01
MeOOC		6	2.79	2.88	-0.07
BzO	³ BZO	7a	6.10	6.19	-0.09
	OMe	7b	5.48	5.58	-0.1

Stereochemical confirmation of compound S60 by Mosher ester analysis

I. 4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2. fl (ppm)

Figure S2 ¹H NMR spectra of (*S*)-*O*-mosher ester S71 and (*R*)-*O*-mosher ester S72

Table S5 ¹H NMR chemical shifts and $\Delta\delta$ values of (*S*)-*O*-mosher ester S71 and (*R*)-*O*-mosher ester S72

7	NO.	δ_{S}	δ _R	$\Delta \delta = \delta_S - \delta_R$
	1	5.07	5.06	0.01
BzO" OBz	2	5.65	5.64	0.01
$\Delta\delta < 0$ $\Delta\delta > 0$	3	5.80	5.79	0.01
Mosher Model	4	5.94	5.89	0.05
,7	5	4.31	4.30	0.01
	6	2.82	2.90	-0.08
BZO 3 2 1	7a	6.00	6.13	-0.13
Оме	7b	5.33	5.53	-0.20

Stereochemical confirmation of compound S61 by Mosher ester analysis

Figure S3 ¹H NMR spectra of (S)-O-mosher ester S73 and (R)-O-mosher ester S74

Table S6 ¹H NMR chemical shifts and $\Delta\delta$ values of (S)-O-mosher ester S73 and (R)-O-mosher ester S74

Stereochemical confirmation of compound S65 by Mosher ester analysis

Figure S4 ¹H NMR spectra of (*S*)-*O*-mosher ester S75 and (*R*)-*O*-mosher ester S76

Table S7 ¹H NMR chemical shifts and $\Delta\delta$ values of (*S*)-*O*-mosher ester S75 and (*R*)-*O*-mosher ester S76

RA				
	NO.	δ _S	δ_R	$\Delta \delta = \delta_S - \delta_R$
TolS III 1 4 (R) 5 COOMe	1	5.33	5.33	0
	2	4.59	4.59	0
$\Delta\delta < 0$ $\Delta\delta > 0$	3	4.68	4.59	0.11
Mosner Model				
П	4	4.08	4.14	-0.06
MeOOC	5a	2.59	2.51	0.08
6 TRADING STOL	5b	2.93	2.89	0.04
	6a	6.24	6.11	0.13
X	6b	5.61	5.49	0.12

Figure S5 Full ¹H NMR spectra of compounds S57, S58, S59, S60, S65, S66, S61, S62, S63, S64, S67, and S68

Figure S6 Expanded ¹H NMR spectra of compounds S57, S58, S59, S60, S65, S66, S61, S62, S63, S64, S67, and S68 at 2.00–3.00 ppm

Table S8 ¹H NMR chemical shifts and coupling constants of the methylene at β position of hydroxy group and of compounds S57, S58, S59, S60, S65, S66, S61, S62, S63, S64, S67, and S68

Compound	δHa (<i>J</i>)	δH _b (<i>J</i>)
S57	2.83 (dd, <i>J</i> = 14.2, 1.8 Hz)	2.64 (dd, <i>J</i> = 14.1, 9.9 Hz)
S58 ^{<i>a</i>}	2.82 (dd, <i>J</i> = 14.1, 9.7 Hz)	2.57 (dd, J = 14.2, 3.0 Hz)
S59	2.92 (dd, J = 14.2, 2.0 Hz)	2.67 (dd, <i>J</i> = 14.2, 10.3 Hz).
S60 ^{<i>a</i>}	2.83 (dd, <i>J</i> = 14.2, 9.5 Hz)	2.59 (dd, <i>J</i> = 14.2, 3.5 Hz).
S65 ^{<i>a</i>}	2.68 (dd, <i>J</i> = 14.3, 3.5 Hz)	2.46 (dd, J = 14.3, 8.2 Hz)
S66	2.52 (dd, <i>J</i> = 14.0, 8.4 Hz)	$2.58 (\mathrm{dd}, J = 14.0, 4.6 \mathrm{Hz})$
S61 ^{<i>a</i>}	2.87 (dd, <i>J</i> = 14.5, 2.8 Hz)	2.50 (dd, J = 14.4, 7.6 Hz)
S62	2.67–2.60 (m, -)	2.67–2.60 (m, -)
S63 ^b	2.64 (dd, <i>J</i> = 14.2, 4.1 Hz)	2.47 (dd, J = 14.1, 8.8 Hz)
S64 ^b	2.54 (dd, J = 14.4, 10.2 Hz)	2.51 (dd, J = 14.0, 5.8 Hz)
$\mathbf{S67}^{b}$	2.80 (dd, <i>J</i> = 14.1, 1.4 Hz)	2.50 (dd, J = 14.1, 10.4 Hz)
S68 ^b	2.68 (dd, $J = 14.1$, 10.1 Hz)	2.40 (dd, $J = 14.1, 2.1$ Hz)

^{*a*}The configuration of C6-OH in pyranoid sugars and C5-OH in in furanoid sugars was determined by use of Mosher ester analysis; ^{*b*}The configuration of C6-OH in pyranoid sugars and C5-OH in in furanoid sugars was figured out by analogy.

General Procedure A: Allyl installation using NaH/AllBr.

HO HO HO HID (1.2 equiv), AllBr (1.2 equiv), DMF, rt

To a solution of alcohol (1.0 equiv) in dry DMF (20.0 mL) were added allyl bromide (AllBr) (1.2 equiv) and 60% dispersion of NaH in mineral oil (1.2 equiv) in ice bath under an argon atmosphere. The resultant solution was stirred at room temperature for 3 h. The reaction was quenched with NH₄Cl solution in ice bath. The resultant mixture was extracted with DCM, and the organic layer was washed with brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated *in vacuo*. The residue was purified by flash silica gel column chromatography to give the desired product.

General Procedure B: Allyl installation using 2,4,6-tris(allyloxy)-1,3,5triazine/TfOH.^[1]

A mixture of alcohol (1.0 equiv) and freshly activated 4Å MS in anhydrous 1,4dioxane was stirred at room temperature under an argon atmosphere for 1 h. 2,4,6tris(allyloxy)-1,3,5-triazine (1.0 equiv) and trifluoromethanesulfonic acid (TfOH) (0.4 equiv) were added at room temperature and then warmed to 55 °C. After TLC indicates full conversion, the reaction was filtered through a pad of Celite, the filtrate was diluted with DCM, then washed sequentially with saturated NaHCO₃ solution and brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated *in vacuo*. The residue was purified by flash silica gel column chromatography to give the desired product.

General Procedure C: Oxidative cleavage of double bond to aldehyde and reduction to alcohol.

To a solution of olefin (1.0 equiv) in 1,4-dioxane/H₂O ($\nu/\nu = 3:1$) were added 2,6-lutidine (2.0 equiv), OsO4 (0.0234 mol/L solution in *t*-BuOH, 0.02 equiv) and NaIO4 (4.0 equiv) at room temperature under an argon atmosphere. The resultant solution was stirred for 12 h and quenched with saturated aqueous Na₂SO₃ solution at 0 °C. The resultant mixture was extracted with EA, and the organic layer was washed with brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated *in vacuo* to give the crude product without further purification for next step. The crude product obtained as above was dissolved in dry MeOH, NaBH₄ (2.0 equiv) was added in ice bath under an argon atmosphere. After stirring for 1 h at room temperature, the reaction was quenched with saturated aqueous NH₄Cl solution in ice bath. The resultant mixture was extracted with DCM, and the organic layer was washed with 1M HCl solution and brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and solution in ice bath under an argon atmosphere. After stirring for 1 h at room temperature, the reaction was quenched with saturated aqueous NH₄Cl solution in ice bath. The resultant mixture was extracted with DCM, and the organic layer was washed with 1M HCl solution and brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated *in vacuo*. The residue was purified by flash silica gel column chromatography to give the desired product.

General Procedure D: Synthesis of N-alkoxyphthalimide by Mitsunobu reaction.

HO N-hydroxyphthalimide (1.2 equiv), THF, rt PhthNO PhthNO PhthNO PhthNO PhthO

To a solution of alcohol (1.0 equiv), PPh₃ (1.2 equiv) and *N*-hydroxyphthalimide (1.2 equiv) in THF was added diisopropylazodicarboxylate (DIAD) (1.2 equiv) over 3 min at room temperature under an argon atmosphere for 2 h. The mixture was diluted with DCM and washed with saturated NaHCO₃ solution and brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated *in vacuo*. The residue was purified by flash silica gel column chromatography to give the desired product.

Preparation of 1a via intermediates S2-S5

Methyl 2,3,4-tri-*O*-benzoyl-6-*O*-(2-hydroxyethyl)-α-D-glucopyranoside (S4) and Methyl 2,3,6-tri-*O*-benzoyl-4-*O*-(2-hydroxyethyl)-α-D-glucopyranoside (S5)

To a solution of S1^[2] (2.02 g, 4.00 mmol, 1.0 equiv) in THF (10.0 mL) was added allyl methyl 8.00 carbonate (845 μL. mmol, 2.0 equiv). А mixture of tris(dibenzylideneacetone)dipalladium (Pd₂(dba)₃) (37.0 mg, 40.0 µmol, 0.01 equiv) and 1,4-bis(diphenylphosphino)butane (dppb) (344.0 mg, 800.0 µmol, 0.2 equiv) in degassed THF (3.2 mL) was added at room temperature under an argon atmosphere. The mixture was warmed to 60 °C and stirred for 4 h. The mixture was evaporated to dryness and the residue was purified by flash silica gel column chromatography to give S2 and S3 (1.35 g, 2.47 mmol, 61%) as an inseparable mixture.

Following the general procedure C, S2 and S3 (1.35g, 2.47 mmol, 1.0 equiv) were treated with (575 uL, 4.94 mmol, 2.0 equiv), OsO₄ (0.0234 mol/L solution in *t*-BuOH, 2.1 mL, 49.4 μ mol, 0.02 equiv) and NaIO₄ (2.12 g, 9.88 mmol, 4.0 equiv) in 1,4-dioxane/H₂O (12.0 mL, v/v = 3:1) to give the aldehyde. The aldehyde was treated with NaBH₄ (280.1 mg, 7.41 mmol, 3.0 equiv) in MeOH (10.0 mL) to give S4 (136.0 mg, 237.5 μ mol, 10%) and S5 (735.0 mg, 1.34 mmol, 54%) as white foam after purification by silica gel column chromatography (PE:EA = 2:1).

For S4: [α]_D²⁵ = +59.17 (*c* 2.4, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.01–7.94 (m, 4H), 7.89–7.84 (m, 2H), 7.55–7.46 (m, 2H), 7.45–7.32 (m, 5H), 7.31–7.26 (m, 2H),

6.17 (t, J = 9.5 Hz, 1H), 5.77 (t, J = 9.9 Hz, 1H), 5.33–5.24 (m, 2H), 4.25–4.15 (m, 1H), 3.83–3.71 (m, 3H), 3.71–3.62 (m, 2H), 3.53–3.45 (m, 4H), 2.71 (brs, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.83, 165.77, 133.6, 133.4, 133.1, 129.95, 129.93, 129.7, 129.2, 129.1, 128.9, 128.5, 128.4, 128.3, 97.2, 73.2, 72.1, 70.5, 69.2, 69.1, 68.7, 61.6, 55.7; HRMS (ESI) *m/z* calcd for C₃₀H₃₄NO₁₀ [M+NH4]⁺ 568.2177, found 568.2185. **For S5**: $[\alpha]_{D}^{25} = +104.89$ (*c* 1.6, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.15– 8.07 (m, 2H), 8.04–7.92 (m, 4H), 7.65–7.56 (m, 1H), 7.54–7.46 (m, 4H), 7.42–7.33 (m, 4H), 6.06–5.98 (m, 1H), 5.21 (dd, J = 10.2, 3.6 Hz, 1H), 5.14 (d, J = 3.6 Hz, 1H), 4.76– 4.63 (m, 2H), 4.20–4.14 (m, 1H), 3.78 (t, J = 9.6 Hz, 1H), 3.74–3.66 (m, 2H), 3.65– 3.52 (m, 2H), 3.44 (s, 3H), 2.18 (t, J = 6.2 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.4, 166.1, 166.0, 133.41, 133.36, 129.9, 129.8, 129.7, 129.1, 128.6, 128.5, 128.4, 97.0, 77.4, 74.2, 72.6, 71.9, 68.9, 63.2, 62.0, 55.5; HRMS (ESI) *m/z* calcd for C₃₀H₃₄NO₁₀ [M+NH4]⁺ 568.2177, found 568.2169.

Methyl 2,3,6-tri-*O*-benzoyl-4-*O*-{2-[(1,3-dioxoisoindolin-2-yl)oxy]ethyl}-α-Dglucopyranoside (1a)

Following the general procedure D, **S5** (550.3 mg, 1.00 mmol, 1.0 equiv) was treated with PPh₃ (520.0 mg, 2.00 mmol, 2.0 equiv), *N*-hydroxyphthalimide (320.0 mg, 2.00 mmol, 2.0 equiv) and diisopropylazodicarboxylate (400 μ L, 2.00 mmol, 2.0 equiv) in THF (6.0 mL) to give **1a** (653.0 mg, 936.0 μ mol, 94%) as a white foam after purification by silica gel column chromatography (PE:DCM:EA = 5:1:1). $[\alpha]_D^{25}$ = +96.23 (*c* 2.3, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.12–8.04 (m, 2H), 8.02–7.94 (m, 4H), 7.79–7.69 (m, 4H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.52–7.41 (m, 4H), 7.39–7.30 (m, 4H), 6.03 (t, *J* = 9.6 Hz, 1H), 5.21–5.12 (m, 2H), 4.86–4.75 (m, 2H), 4.29–4.11 (m, 3H), 4.03–3.91 (m, 3H), 3.43 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.3, 166.0, 165.5, 163.3, 134.4, 133.3, 133.2, 133.0, 130.0, 129.7, 129.6, 129.1, 128.9, 128.4, 123.5, 96.9, 77.9, 77.6, 72.8, 72.2, 70.3, 68.7, 63.3, 55.4; HRMS (ESI) *m/z* calcd for C₃₈H₃₇N₂O₁₂ [M+NH₄]⁺ 713.2341, found 713.2340.

Preparation of 1b via intermediate S7

Methyl 2,3,6-tri-O-benzoyl-4-O-(2-hydroxyethyl)-α-D-galactopyranoside (S7)

Following the general procedure C, **S6**^[3] (1.11 g, 2.00 mmol, 1.0 equiv) was treated with 2,6-lutidine (470 μ L, 4.00 mmol, 2.0 equiv), OsO4 (0.0234 mol/L solution in *t*-BuOH, 1.7 mL, 40.0 μ mol, 0.02 equiv) and NaIO₄ (1.28 g, 6.00 mmol, 3.0 equiv) in 1,4-dioxane/H₂O (16.0 mL, $\nu/\nu = 3$:1) to give the aldehyde. The aldehyde was treated with NaBH₄ (151.3 mg, 4.00 mmol, 2.0 equiv) in MeOH (10.0 mL) to give **S7** (714.5 mg, 1.30 mmol, 65%) as a white foam after purification by silica gel column chromatography (PE:EA = 3:1). $[\alpha]_{D}^{25}$ = +104.30 (*c* 3.0, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09–7.95 (m, 6H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.54–7.43 (m, 4H), 7.41– 7.32 (m, 4H), 5.82 (dd, *J* = 10.8, 3.0 Hz, 1H), 5.72 (dd, *J* = 10.8, 3.6 Hz, 1H), 5.21 (d, *J* = 3.5 Hz, 1H), 4.65–4.59 (m, 2H), 4.38 (t, *J* = 6.5 Hz, 1H), 4.20 (d, *J* = 2.1 Hz, 1H), 3.93–3.85 (m, 1H), 3.78–3.73 (m, 2H), 3.72–3.65 (m, 1H), 3.44 (s, 3H), 2.51 (s, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.2, 166.1, 166.0, 133.5, 133.4, 133.3, 129.9, 129.8, 129.7, 129.6, 129.4, 129.2, 128.6, 128.4, 97.6, 76.7, 75.2, 71.1, 69.3, 68.1, 63.0, 62.2, 55.6; HRMS (ESI) *m*/*z* calcd for C₃₀H₃₄NO₁₀ [M+NH₄]⁺ 568.2177, found 568.2185.

Methyl 2,3,6-tri-*O*-benzoyl-4-*O*-{2-[(1,3-dioxoisoindolin-2-yl)oxy]ethyl}-α-Dgalactopyranoside (1b)

Following the general procedure D, S7 (624.5 mg, 1.13 mmol, 1.0 equiv) was treated

with PPh₃ (356.7 mg, 1.36 mmol, 1.2 equiv), *N*-hydroxyphthalimide (221.6 mg, 1.36 mmol, 1.2 equiv) and diisopropylazodicarboxylate (271 μ L, 1.36 mmol, 1.2 equiv) in THF (10.0 mL) to give **1b** (527.3 mg, 758.0 μ mol, 67%) as a white foam after purification by silica gel column chromatography (PE:EA = 2:1). $[\alpha]_D^{25}$ = +87.97 (*c* 1.5, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.08–8.01 (m, 4H), 7.99–7.94 (m, 2H), 7.84–7.79 (m, 2H), 7.75–7.70 (m, 2H), 7.56–7.46 (m, 3H), 7.44–7.32 (m, 6H), 5.83 (dd, *J* = 10.7, 2.9 Hz, 1H), 5.62 (dd, *J* = 10.7, 3.6 Hz, 1H), 5.12 (d, *J* = 3.6 Hz, 1H), 4.76 (dd, *J* = 11.4, 7.0 Hz, 1H), 4.48–4.41 (m, 1H), 4.39–4.23 (m, 4H), 3.95–3.84 (m, 1H), 3.40 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.2, 166.0, 165.8, 163.5, 134.5, 133.4, 133.2, 133.1, 129.9, 129.8, 129.7, 129.5, 129.3, 128.9, 128.6, 128.5, 128.4, 123.6, 97.4, 71.6, 71.3, 69.5, 68.4, 63.5, 55.4; HRMS (ESI) *m/z* calcd for C₃₈H₃₇N₂O₁₂ [M+NH₄]⁺713.2341, found 713.2360.

Methyl 4-*O*-allyl-6-*O-tert*-butyldiphenylsilyl-2,3-*O*-isopropylidene-α-D-mannopyranoside (S9)

Following the general procedure A, **S8**^[4] (9.42 g, 18.37 mmol, 1.0 equiv) was treated with AllBr (2.4 mL, 27.56 mmol, 1.5 equiv) and 60% dispersion of NaH in mineral oil (1.12 g, 27.56 mmol, 1.5 equiv) in DMF (50.0 mL) to give **S9** (9.31 g, 18.16 mmol, 99%) as a colorless oil after purification by silica gel column chromatography (PE:EA = 25:1). $[\alpha]_{D}^{25}$ = +10.42 (*c* 4.5, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79–7.69 (m, 4H), 7.46–7.33 (m, 6H), 5.92–5.74 (m, 1H), 5.25–5.16 (m, 1H), 5.14–5.04 (m, 1H),

4.94 (s, 1H), 4.38–4.26 (m, 1H), 4.24 (t, J = 6.0 Hz, 1H), 4.12 (d, J = 5.8 Hz, 1H), 4.06 (dd, J = 12.7, 5.8 Hz, 1H), 3.96–3.84 (m, 2H), 3.66–3.53 (m, 2H), 3.37 (s, 3H), 1.53 (s, 3H), 1.36 (s, 3H), 1.06 (s, 9H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 136.0, 135.8, 135.1, 133.9, 133.5, 129.7, 127.8, 127.7, 116.9, 109.4, 98.3, 79.0, 76.0, 75.5, 72.1, 69.7, 63.3, 54.8, 28.1, 26.9, 26.5, 19.5; HRMS (ESI) *m/z* calcd for C₂₉H₄₄NO₆Si [M+NH₄]⁺ 530.2932, found 530.2928.

Methyl 4-*O*-allyl-2,3-di-*O*-benzoyl-6-*O-tert*-butyldiphenylsilyl-α-D-mannopyranoside (S10)

To a solution of **S9** (9.30 g, 18.10 mmol, 1.0 equiv) in DCM/TFA/H₂O (111.0 mL, v/v/v=100/10/1) in ice bath under an argon atmosphere. The resultant solution was stirred for 30 min in ice bath. The reaction was quenched with saturated NaHCO₃ solution in ice bath. The resultant mixture was extracted with DCM, and the organic layer was washed with brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated in vacuo to give the crude product without further purification for next step. The crude product was dissolved in dry pyridine (60.0 mL), BzCl (5.3 mL, 45.25 mmol, 2.5 equiv) and 4-N,N-dimethylaminopyridine (DMAP) (442.0 mg, 3.62 mmol, 0.2 equiv) were added in ice bath under an argon atmosphere. The resultant solution was stirred for 12 h at room temperature. The reaction mixture was quenched with MeOH and concentrated in vacuo. The resulting residue was diluted with DCM and then washed sequentially with 1 M HCl solution, saturated NaHCO₃ solution and brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated in vacuo. The resulting residue was purified by silica gel column chromatography (PE:EA = 1:1) to afford S10 (12.31 g, 18.08 mmol, 100%) as a colorless oil. $[\alpha]_{D}^{25} = -51.80$ (c 2.8, CHCl₃); ¹H NMR (400 MHz, Chloroform-d) δ 8.10– 8.05 (m, 2H), 7.96–7.91 (m, 2H), 7.81–7.72 (m, 4H), 7.56 (t, J = 6.9 Hz, 1H), 7.50 (t, *J* = 7.4 Hz, 1H), 7.45–7.30 (m, 10H), 5.78–5.66 (m, 2H), 5.65–5.60 (m, 1H), 5.13–5.05 (m, 1H), 5.03–4.97 (m, 1H), 4.90 (d, J = 1.4 Hz, 1H), 4.30 (t, J = 9.8 Hz, 1H), 4.20– 4.14 (m, 2H), 4.07 (dd, J = 11.3, 3.3 Hz, 1H), 3.95 (dd, J = 11.3, 1.5 Hz, 1H), 3.83 (d, J = 9.6 Hz, 1H), 3.41 (s, 3H), 1.12 (s, 9H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.7, 165.5, 136.1, 135.8, 134.8, 133.8, 133.4, 133.2, 133.1, 130.1, 130.0, 129.8, 128.6, 128.5, 127.9, 127.7, 116.9, 98.7, 73.9, 72.9, 72.8, 72.4, 71.1, 62.8, 55.1, 27.0, 19.5; HRMS (ESI) *m*/*z* calcd for C₄₀H₄₄O₈SiNa [M+Na]⁺ 703.2698, found 703.2698.

Methyl 2,3-di-*O*-benzoyl-6-*O-tert*-butyldiphenylsilyl-4-*O*-(2-hydroxyethyl)-α-Dmannopyranoside (S11)

Following the general procedure C, S10 (10.00 g, 14.70 mmol, 1.0 equiv) was treated with 2,6-lutidine (3.4 mL, 29.40 mmol, 2.0 equiv), OsO4 (0.0234 mol/L solution in t-BuOH, 12.5 mL, 294.0 mmol, 0.02 equiv) and NaIO₄ (9.40 g, 44.10 mmol, 3.0 equiv) in 1,4-dioxane/H₂O (130.0 mL, v/v = 3:1) to give the aldehyde. The aldehyde was treated with NaBH₄ (834.0 mg, 22.05 mmol, 1.5 equiv) in MeOH (70.0 mL) to give **S11** (6.93 g, 10.11 mmol, 69%) as a white foam after purification by silica gel column chromatography (PE:EA = 6:1). $[\alpha]_{D}^{25} = -59.20$ (c 4.2, CHCl₃); ¹H NMR (400 MHz, Chloroform-d) & 8.14-8.07 (m, 2H), 7.99-7.90 (m, 2H), 7.83-7.74 (m, 4H), 7.60 (t, J = 7.4 Hz, 1H), 7.52 (t, J = 7.4 Hz, 1H), 7.45–7.33 (m, 10H), 5.73 (dd, J = 9.8, 3.4 Hz, 1H), 5.66-5.60 (m, 1H), 4.92-4.89 (m, 1H), 4.29 (t, J = 9.8 Hz, 1H), 4.09 (dd, J = 11.4, 3.3 Hz, 1H), 3.99 (dd, J = 11.4, 1.4 Hz, 1H), 3.84 (d, J = 9.6 Hz, 1H), 3.78–3.71 (m, 2H), 3.57–3.48 (m, 2H), 3.42 (s, 3H), 2.07–1.99 (m, 1H), 1.14 (s, 9H); ¹³C NMR (101 MHz, Chloroform-d) δ 165.8, 165.6, 136.1, 135.7, 133.6, 133.5, 133.3, 133.0, 130.0, 129.9, 129.8, 129.7, 128.6, 128.5, 127.9, 127.7, 98.7, 74.2, 73.9, 72.6, 72.3, 71.0, 62.9, 62.2, 55.1, 27.0, 19.5; HRMS (ESI) *m/z* calcd for C₃₉H₄₄O₉SiNa [M+Na]⁺ 707.2647, found 707.2645.

Methyl 2,3-di-*O*-benzoyl-6-*O-tert*-butyldiphenylsilyl-4-*O*-{2-[(1,3-dioxoisoindolin-2-yl)oxy]ethyl}-α-D-mannopyranoside (1c)

Following the general procedure D, **S11** (6.84 g, 10.00 mmol, 1.0 equiv) was treated with PPh₃ (3.15 g, 12.00 mmol, 1.2 equiv), *N*-hydroxyphthalimide (1.96 g, 12.00 mmol, 1.2 equiv) and diisopropylazodicarboxylate (2.4 mL, 12.0 mmol, 1.2 equiv) in THF (50.0 mL) to give **1c** (8.20 g, 9.88 mmol, 99%) as a white foam after purification by silica gel column chromatography (PE:EA = 5:1). $[\alpha]_{\rm p}^{25} = -42.31$ (*c* 2.8, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11–8.02 (m, 2H), 7.96–7.90 (m, 2H), 7.81–7.68 (m, 8H), 7.56 (t, *J* = 7.4 Hz, 1H), 7.46–7.37 (m, 3H), 7.36–7.27 (m, 8H), 5.65–5.60 (m, 2H), 4.89 (s, 1H), 4.31 (t, *J* = 9.4 Hz, 1H), 4.23–4.12 (m, 3H), 4.11–4.04 (m, 1H), 4.03–3.94 (m, 2H), 3.78 (d, *J* = 9.6 Hz, 1H), 3.39 (s, 3H), 1.11 (s, 9H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.6, 165.4, 163.3, 136.1, 135.8, 134.4, 133.7, 133.4, 133.3, 133.0, 129.7, 128.9, 128.6, 128.4, 127.7, 127.6, 123.5, 98.6, 77.2, 74.2, 72.9, 72.1, 70.9, 70.8, 62.8, 55.0, 27.0, 19.5; HRMS (ESI) *m/z* calcd for C₄₇H₅₁N₂O₁₁Si [M+NH4]⁺ 847.3257, found 847.3256.

Methyl 2,3-di-*O*-benzoyl-4-*O*-{2-[(1,3-dioxoisoindolin-2-yl)oxy]ethyl}-α-Dmannopyranoside (1d)

To a solution of **1c** (6.88 g, 8.30 mmol, 1.0 equiv) in THF (30.0 mL) was added HF·Py (8.3 mL) in ice bath under an argon atmosphere. The resultant solution was stirred at room temperature for 4 h. The reaction was quenched with saturated NaHCO₃ solution. The resultant mixture was extracted with DCM, and the organic layer was washed with 1 M HCl solution and brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated *in vacuo*. The resulting residue was purified by silica gel column chromatography (PE:EA = 1:1) to afford **1d** (4.81 g, 8.13 mmol, 98%) as a white foam. $[\alpha]_D^{25} = -21.52$ (*c* 4.1, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.08–8.02 (m, 2H), 7.95–7.89 (m, 2H), 7.83–7.77 (m, 2H), 7.76–7.71 (m, 2H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.50–7.42 (m, 3H), 7.35–7.29 (m, 2H), 5.66 (dd, *J* = 9.6, 3.3 Hz, 1H),

5.61 (dd, J = 3.3, 1.8 Hz, 1H), 4.88 (d, J = 1.5 Hz, 1H), 4.33–4.24 (m, 3H), 4.22–4.12 (m, 1H), 4.08–3.97 (m, 3H), 3.90–3.80 (m, 1H), 3.45 (s, 3H), 2.65 (s, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.5, 165.3, 163.6, 134.7, 133.5, 133.2, 129.9, 129.7, 129.6, 128.8, 128.6, 128.5, 123.7, 98.7, 77.9, 74.2, 73.0, 71.7, 70.7, 70.6, 61.6, 55.3; HRMS (ESI) *m*/*z* calcd for C₃₁H₃₃N₂O₁₁ [M+NH₄]⁺ 609.2079, found 609.2068.

Methyl 2,3,6-tri-*O*-benzoyl-4-*O*-{2-[(1,3-dioxoisoindolin-2-yl)oxy]ethyl}-α-Dmannopyranoside (1e)

To a solution of **1d** (1.23 g, 2.08 mmol, 1.0 equiv) in dry pyridine (8.0 mL) was added BzCl (320 μ L, 2.70 mmol, 1.3 equiv) and DMAP (25.7 mg, 208.0 μ mol, 0.1 equiv) in ice bath under an argon atmosphere. The resultant solution was stirred at room temperature for 2 h. The resultant mixture was quenched with MeOH and washed with 1 M HCl solution and brine. The organic layer was collected, dried over Na₂SO4, filtered off the solid and concentrated *in vacuo*. The resulting residue was purified by silica gel column chromatography (PE:EA = 1.5:1) to afford **1e** (1.43 g, 2.05 mmol, 98%) as a white foam. [a]_D²⁵ = +97.52 (*c* 0.8, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11–8.07 (m, 2H), 8.02–7.97 (m, 2H), 7.97–7.90 (m, 2H), 7.76–7.69 (m, 4H), 7.60–7.54 (m, 2H), 7.49–7.29 (m, 7H), 5.70 (dd, *J* = 9.5, 3.3 Hz, 1H), 5.66–5.61 (m, 1H), 4.92–4.85 (m, 2H), 4.82–4.77 (m, 1H), 4.32–4.21 (m, 3H), 4.18–4.11 (m, 1H), 4.10–3.97 (m, 2H), 3.48 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.3, 165.4, 165.3, 163.4, 134.5, 133.4, 133.2, 133.1, 130.0, 129.9, 129.81, 129.78, 128.6, 128.5, 123.6, 98.7, 74.8, 72.9, 70.7, 69.9, 55.4; HRMS (ESI) *m/z* calcd for C₃₈H₃₇N₂O₁₂ [M+NH₄]⁺ 713.2341, found 713.2347.

Preparation of 1f via intermediates S13-S15

Methyl [methyl 2,3-di-O-benzoyl-α-D-mannopyranosyluronate] (S13)

To a solution of S12^[5] (402.3 mg, 1.00 mmol, 1.0 equiv) in DCM/H₂O (11 mL, v/v =10:1) were added 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) (31.2 mg, 200.0 μ mol, 0.2 equiv) and PhI(OAc)₂ (644.2 mg, 2.00 mmol, 2.0 equiv) under an argon atmosphere. After stirring for 5 h at room temperature, the reaction was diluted with DCM and washed with Na₂S₂O₃ solution and brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid, and concentrated in vacuo. To a solution of the crude product obtained as above in DMF (10.0 mL) while chilled in an ice bath were added K₂CO₃ (262.4 mg, 2.00 mmol, 2.0 equiv) and MeI (185 µL, 3.00 mmol, 3.0 equiv) under an argon atmosphere. After stirring for 10 h at room temperature, the reaction was quenched with water and concentrated to dryness. The resulting residue was purified by silica gel column chromatography (PE:EA = 2:1) to afford S13 (350.3 mg, 813.9 μ mol, 81%) a white foam. $[\alpha]_{D}^{25} = -55.14$ (c 1.1, CHCl₃); ¹H NMR (400 MHz, Chloroform-d) δ 8.10–8.02 (m, 2H), 7.99–7.89 (m, 2H), 7.65–7.52 (m, 1H), 7.54–7.42 (m, 3H), 7.39-7.30 (m, 2H), 5.64 (dd, J = 9.7, 3.4 Hz, 1H), 5.59-5.52 (m, 1H), 5.00 (d, J = 1.5 Hz, 1H), 4.57–4.42 (m, 1H), 4.37 (d, J = 9.6 Hz, 1H), 3.88 (s, 3H), 3.53 (s, 3H), 3.25 (d, J = 3.5 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-d) δ 170.4, 165.9, 165.4, 133.5, 133.2, 129.8, 129.7, 129.3, 129.2, 128.5, 128.3, 99.0, 71.2, 69.9, 67.3, 55.7, 52.8; HRMS (ESI) *m/z* calcd for C₂₂H₂₃O₉ [M+H]⁺ 431.1337, found 431.1329.

Methyl [methyl 4-O-allyl-2,3-di-O-benzoyl-α-D-mannopyranosyluronate] (S14)

Following the general procedure B, **S13** (1.18 g, 2.70 mmol, 1.0 equiv) was treated with 2,4,6-tris(allyloxy)-1,3,5-triazine (3.0 mL, 13.50 mmol, 5.0 equiv) and TfOH (86 μ L, 1.08 mmol, 0.4 equiv) in 1,4-dioxane (10.0 mL) to give **S14** (771.3 mg, 1.64 mmol, 61%) as a white foam after purification by silica gel column chromatography (PE:EA = 2:1). $[a]_{D}^{25} = -59.10$ (*c* 0.6, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09–7.99 (m, 2H), 7.99–7.89 (m, 2H), 7.60 (t, *J* = 6.9 Hz, 1H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.49–7.44 (m, 2H), 7.42–7.34 (m, 2H), 5.83–5.72 (m, 1H), 5.69 (dd, *J* = 9.0, 3.4 Hz, 1H), 5.62–5.56 (m, 1H), 5.20–5.13 (m, 1H), 5.11–5.04 (m, 1H), 5.01 (d, *J* = 2.4 Hz, 1H), 4.40 (d, *J* = 8.9 Hz, 1H), 4.29 (t, *J* = 8.9 Hz, 1H), 4.15 (d, *J* = 5.7 Hz, 2H), 3.81 (s, 3H), 3.52 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.7, 165.5, 165.3, 134.2, 133.5, 133.4, 130.0, 129.8, 129.6, 129.5, 128.6, 128.5, 117.5, 99.0, 74.5, 73.7, 71.6, 71.4, 70.2, 55.9, 52.7; HRMS (ESI) *m/z* calcd for C₂₅H₂₇O9 [M+H]⁺471.1650, found 471.1643.

Methyl [methyl 2,3-di-*O*-benzoyl-4-*O*-(2-hydroxyethyl)-α-D-mannopyranosyluronate] (S15)

Following the general procedure C, **S14** (921.3 mg, 1.75 mmol, 1.0 equiv) was treated with 2,6-lutidine (410 μ L, 3.50 mmol, 2.0 equiv), OsO₄ (0.0234 mol/L solution in *t*-BuOH, 1.5 mL, 35.0 μ mol, 0.02 equiv) and NaIO₄ (1.49 g, 7.02 mmol, 4.0 equiv) in 1,4-dioxane/H₂O (12.0 mL, $\nu/\nu = 3:1$) to give the aldehyde. The aldehyde was treated with NaBH₄ (198.0 mg, 5.25 mmol, 3.0 equiv) in MeOH (10.0 mL) to give **S15** (638.9 mg, 1.35 mmol, 77%) as a colorless oil after purification by silica gel column chromatography (PE:EA = 1.3:1). $[\alpha]_D^{25} = -64.99$ (*c* 1.2, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11–7.99 (m, 2H), 7.97–7.87 (m, 2H), 7.65–7.57 (m, 1H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.51–7.45 (m, 2H), 7.42–7.33 (m, 2H), 5.70 (dd, *J* = 9.2, 3.4 Hz, 1H), 5.62–5.54 (m, 1H), 4.99 (d, *J* = 2.2 Hz, 1H), 4.40 (d, *J* = 9.2 Hz, 1H), 4.27 (t, *J* = 9.2

Hz, 1H), 3.85 (s, 3H), 3.81–3.70 (m, 2H), 3.68–3.56 (m, 2H), 3.53 (s, 3H), 2.36 (brs, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.9, 165.5, 165.4, 133.7, 133.5, 130.0, 129.8, 129.4, 128.7, 128.6, 99.1, 75.4, 74.5, 71.8, 71.0, 70.2, 62.1, 56.0, 53.0; HRMS (ESI) *m/z* calcd for C₂₄H₃₀NO₁₀ [M+NH₄]⁺ 492.1864, found 492.1859.

Methyl (methyl 2,3-di-*O*-benzoyl-4-*O*-{2-[(1,3-dioxoisoindolin-2-yl)oxy]ethyl}-α-D-mannopyranosyluronate) (1f)

Following the general procedure D, **S15** (140.0 mg, 295.0 μ mol, 1.0 equiv) was treated with PPh₃ (93.0 mg, 354.0 μ mol, 1.2 equiv), *N*-hydroxyphthalimide (57.7 mg, 354.0 μ mol, 1.2 equiv) and diisopropylazodicarboxylate (70 μ L, 354.0 μ mol, 1.2 equiv) in THF (5.0 mL) to give **1f** (147.3 mg, 237.7 μ mol, 80%) as a white foam after purification by silica gel column chromatography (PE:EA = 2:1). $[a]_{D}^{25} = -50.21$ (*c* 0.7, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05–7.99 (m, 2H), 7.98–7.89 (m, 2H), 7.80–7.75 (m, 2H), 7.74–7.70 (m, 2H), 7.64–7.54 (m, 1H), 7.50–7.40 (m, 3H), 7.35–7.28 (m, 2H), 5.64–5.59 (m, 1H), 5.59–5.55 (m, 1H), 4.97 (d, *J* = 2.4 Hz, 1H), 4.38–4.29 (m, 2H), 4.28–4.17 (m, 2H), 4.11–3.97 (m, 2H), 3.83 (s, 3H), 3.49 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.6, 165.5, 165.2, 163.4, 134.5, 133.5, 133.2, 130.0, 129.8, 129.6, 129.5, 129.0, 128.6, 128.5, 123.6, 98.9, 75.8, 71.7, 71.1, 70.7, 70.0, 55.9, 52.8; HRMS (ESI) *m/z* calcd for C₃₂H₃₃N₂O₁₂ [M+NH₄]⁺ 637.2028, found 637.2032.

Methyl 2,3-di-*O*-benzoyl-4-O-{2-[(1,3-dioxoisoindolin-2-yl)oxy]ethyl}-6-O-{3 α -acetyloxy-5 β -cholan-24-oate}- α -D-mannopyranoside (1g)

To a solution of **1d** (591.6 mg, 1.00 mmol, 1.0 equiv) and lithocholic (**S16**) (591.6 mg,

3.00 mmol, 3.0 equiv) in THF (30.0 mL) were added 1-(3-dimethylaminopropyl)-3ethylcarbodiimide hydrochloride (EDCI·HCl) (575.1 mg, 3.00 mmol, 3.0 equiv) and DMAP (36.7 mg, 0.3 mmol, 0.3 equiv) in ice bath under an argon atmosphere. The resultant solution was stirred at room temperature for 4 h. The resultant mixture was diluted with DCM and washed with NaHCO₃ solution and brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated in vacuo. The resulting residue was purified by silica gel column chromatography (PE:EA = 2:1) to afford **1g** (793.7 mg, 800.0 μ mmol, 80%) as a white foam. $[\alpha]_{D}^{25} = +39.83$ (*c* 2.4, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.10–8.02 (m, 1H), 7.95–7.88 (m, 1H), 7.80–7.71 (m, 3H), 7.60 (t, J = 7.4 Hz, 1H), 7.51–7.41 (m, 2H), 7.35–7.28 (m, 2H), 5.65 (dd, J =9.4, 3.3 Hz, 1H), 5.61–5.57 (m, 1H), 4.88 (d, J = 1.6 Hz, 1H), 4.77–4.67 (m, 1H), 4.63– 4.49 (m, 1H), 4.29–4.19 (m, 2H), 4.13 (t, J = 9.6 Hz, 1H), 4.09–3.99 (m, 2H), 3.99– 3.89 (m, 1H), 3.46 (s, 2H), 2.53–2.41 (m, 1H), 2.39–2.28 (m, 1H), 2.03 (s, 2H), 2.00– 1.91 (m, 1H), 1.89–1.75 (m, 5H), 1.73–1.66 (m, 1H), 1.60–1.49 (m, 2H), 1.49–1.31 (m, 6H), 1.30–1.20 (m, 2H), 1.20–0.94 (m, 5H), 0.93 (s, 3H), 0.63 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 174.0, 170.7, 165.3, 165.2, 163.3, 134.5, 133.4, 133.1, 129.8, 129.7, 129.6, 128.9, 128.5, 128.4, 123.5, 98.5, 77.5, 74.8, 74.4, 72.7, 70.6, 70.5, 69.6, 63.0, 56.5, 56.0, 55.2, 42.7, 41.9, 40.5, 40.2, 35.8, 35.3, 35.1, 34.6, 32.3, 31.1, 30.9, 28.2, 27.0, 26.7, 26.3, 24.2, 23.3, 21.5, 20.9, 18.3, 12.1; HRMS (ESI) m/z calcd for C₅₇H₆₉NO₁₄Na [M+NH₄]⁺ 1014.4610, found 1014.4626.

Methyl2,3-di-O-benzoyl-4-O-{2-[(1,3-dioxoisoindolin-2-yl)oxy]ethyl}-6-O-{4-(N,N-dipropylsulfamoyl)benzoyl}-α-D-mannopyranoside (1h)

To a solution of **1d** (591.6 mg, 1.00 mmol, 1.0 equiv) and probenecid (**S17**) (855.8 mg, 3.00 mmol, 3.0 equiv) in THF (30.0 mL) were added EDCI·HCl (575.1 mg, 3.00 mmol,

3.0 equiv) and DMAP (36.7 mg, 0.3 mmol, 0.3 equiv) in ice bath under an argon atmosphere. The resultant solution was stirred at room temperature for 4 h. The resultant mixture was diluted with DCM and washed with NaHCO3 solution and brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated in vacuo. The resulting residue was purified by silica gel column chromatography (PE:EA = 2:1) to afford **1h** (734.6 mg, 855.3 μ mol, 86%) as a white foam. $[\alpha]_{D}^{25} = +11.44$ (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.20–8.15 (m, 2H), 8.05–8.00 (m, 2H), 7.97–7.93 (m, 2H), 7.83–7.78 (m, 2H), 7.78–7.69 (m, 4H), 7.63 (t, J = 7.5 Hz, 1H), 7.48 (t, J = 7.4 Hz, 1H), 7.44–7.38 (m, 2H), 7.36–7.30 (m, 2H), 5.72 (dd, J = 9.5, 3.3 Hz, 1H), 5.65–5.56 (m, 1H), 4.96–4.89 (m, 2H), 4.86–4.79 (m, 1H), 4.37–4.25 (m, 2H), 4.24–4.14 (m, 2H), 4.08–3.99 (m, 2H), 3.49 (s, 3H), 3.14–3.06 (m, 4H), 1.61–1.50 (m, 4H), 0.92–0.84 (m, 6H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.5, 165.3, 165.0, 163.4, 144.3, 134.6, 133.6, 133.3, 130.3, 129.8, 129.7, 129.6, 128.8, 128.7, 128.5, 127.1, 123.6, 98.6, 77.9, 74.8, 72.8, 70.83, 70.76, 69.7, 64.0, 55.5, 50.1, 22.1, 11.3; HRMS (ESI) *m/z* calcd for C₄₄H₅₀N₃O₁₄S [M+NH₄]⁺ 876.3008, found 876.3003.

Methyl 2,3-di-*O*-benzoyl-4-*O*- $\{2-[(1,3-dioxoisoindolin-2-yl)oxy]ethyl\}-6-$ *O* $-<math>\{(S)-2-(6-methoxynaphthalen-2-yl)propanoyl\}-\alpha-d-mannopyranoside (1i)$

To a solution of **1d** (591.6 mg, 1.00 mmol, 1.0 equiv) and (*S*)-(+)-Naproxen (**S18**) (690.8, 3.00 mmol, 3.0 equiv) in THF (30.0 mL) were added EDCI·HCl (575.1 mg, 3.00 mmol, 3.0 equiv) and DMAP (36.7 mg, 0.3 mmol, 0.3 equiv) in ice bath under an argon atmosphere. The resultant solution was stirred at room temperature for 4 h. The resultant mixture was diluted with DCM and washed with NaHCO₃ solution and brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated *in vacuo*. The resulting residue was purified by silica gel column

chromatography (PE:EA = 2:1) to afford **1i** (724.1 mg, 900.8 μ mmol, 90%) as a white foam. [α]_D²⁵ = -66.83 (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.17–8.10 (m, 2H), 7.79–7.61 (m, 8H), 7.60–7.52 (m, 3H), 7.47 (t, *J* = 7.4 Hz, 1H), 7.42–7.36 (m, 2H), 7.34–7.28 (m, 2H), 7.05–6.99 (m, 2H), 5.61–5.56 (m, 1H), 5.46 (dd, *J* = 9.6, 3.4 Hz, 1H), 4.82 (d, *J* = 1.5 Hz, 1H), 4.59 (dd, *J* = 12.1, 3.6 Hz, 1H), 4.42 (dd, *J* = 12.1, 1.4 Hz, 1H), 4.01–3.94 (m, 1H), 3.91 (d, *J* = 9.9 Hz, 1H), 3.86 (s, 3H), 3.81 (t, *J* = 9.7 Hz, 1H), 3.75–3.71 (m, 2H), 3.29 (s, 3H), 3.27–3.20 (m, 1H), 2.95–2.70 (m, 1H), 1.61 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.0, 165.3, 165.0, 163.2, 157.7, 135.9, 134.4, 133.7, 133.6, 133.1, 129.9, 129.8, 129.7, 129.5, 129.1, 128.9, 128.8, 128.6, 128.3, 127.2, 126.4, 126.2, 123.4, 119.2, 105.4, 98.7, 77.1, 74.0, 72.6, 70.4, 70.1, 69.3, 63.4, 55.3, 55.1, 45.5, 17.8; HRMS (ESI) *m/z* calcd for C₄₅H₄₁NO₁₃Na [M+Na]⁺ 826.2470, found 826.2477.

Preparation of 1j via intermediate S20

p-Tolyl 4-*O*-(2-hydroxyethyl)-2,3-*O*-isopropylidene-1-thio-α-L-rhamnopyranoside (S20)

To a solution of **S19**^[4] (1.55 g, 5.00 mmol, 1.0 equiv) in DMF (20.0 mL) were added (2-bromoethoxy)-*tert*-butyldimethylsilane (1.6 mL, 7.50 mmol, 1.5 equiv) and 60% dispersion of NaH in mineral oil (300.0 mg, 7.50 mmol, 1.5 equiv) in ice bath under an argon atmosphere. The resultant solution was stirred at room temperature for 3 h. The reaction was quenched with NH₄Cl solution at 0 °C. The resultant mixture was extracted with DCM, and the organic layer was washed with brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated *in vacuo* to

give the crude product without further purification for next step. To a solution of the crude product obtained as above in THF (10.0 mL) was added TBAF (1 mol/L in THF, 7.5 mL, 7.50 mmol, 1.5 equiv) under an argon atmosphere. After stirring for 0.5 h at room temperature, the reaction mixture was extracted with DCM, and the organic layer was washed with brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated *in vacuo*. The resulting residue was purified by silica gel column chromatography (PE:EA = 4:1) to afford **S20** (1.12 g, 3.16 mmol, 63%) as a colorless oil. $[\alpha]_D^{25} = -96.27$ (*c* 1.3, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.40–7.32 (m, 2H), 7.20–7.08 (m, 2H), 5.66 (s, 1H), 4.34 (d, *J* = 5.6 Hz, 1H), 4.26–4.17 (m, 1H), 4.17–4.02 (m, 1H), 3.84–3.77 (m, 2H), 3.74 (d, *J* = 4.0 Hz, 2H), 3.34–3.15 (m, 1H), 2.75 (brs, 1H), 2.33 (s, 3H), 1.55 (s, 3H), 1.37 (s, 3H), 1.24 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 138.0, 132.6, 130.0, 129.6, 109.7, 84.1, 83.5, 78.0, 76.7, 73.8, 66.5, 62.4, 28.0, 26.4, 21.2, 17.6; HRMS (ESI) *m/z* calcd for C₁₈H₂₆O₅NaS [M+Na]⁺ 377.1393, found 377.1389.

p-Tolyl 4-*O*-{2-[(1,3-dioxoisoindolin-2-yl)oxy]ethyl}-2,3-*O*-isopropylidene-1-thioα-L-rhamnopyranoside (1j)

Following the general procedure D, **S20** (900.0 mg, 2.54 mmol, 1.0 equiv) was treated with PPh₃ (800.0 mg, 3.05 mmol, 1.2 equiv), *N*-hydroxyphthalimide (497.5 mg, 3.05 mmol, 1.2 equiv) and diisopropylazodicarboxylate (600 μ L, 3.05 mmol, 1.2 equiv) in THF (10.0 mL) to give **1j** (1.05 g, 2.10 mmol, 83%) as a white foam after purification by silica gel column chromatography (PE:EA = 5:1). [α]_D²⁵ = -158.80 (*c* 2.7, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ .90–7.78 (m, 2H), 7.78–7.70 (m, 2H), 7.34–7.30 (m, 2H), 7.15–7.07 (m, 2H), 5.61 (s, 1H), 4.47–4.34 (m, 2H), 4.29 (d, *J* = 5.7 Hz, 1H), 4.26–4.14 (m, 2H), 4.02–3.89 (m, 2H), 3.19 (dd, *J* = 9.7, 7.2 Hz, 1H), 2.32 (s, 3H), 1.51 (s, 3H), 1.32 (s, 3H), 1.18 (d, *J* = 6.2 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.6, 137.9, 134.5, 132.6, 129.9, 129.7, 129.1, 123.6, 109.5, 84.2, 82.9, 77.7, 77.2,

76.6, 69.3, 66.0, 28.1, 26.5, 21.2, 17.5; HRMS (ESI) *m/z* calcd for C₂₆H₃₃N₂O₇S [M+NH₄]⁺ 517.2003, found 517.1993.

p-Tolyl 4-*O*-{2-[(1,3-dioxoisoindolin-2-yl)oxy]ethyl}-1-thio-α-L-rhamnopyranoside (1k)

To a solution of **1j** (499.6 mg, 1.00 mmol, 1.0 equiv) in DCM/H₂O (6.0 mL, v/v = 10:1) was added TFA (220 μ L, 3.00 mmol, 3.0 equiv) at room temperature under an argon atmosphere. The resultant solution was stirred at room temperature for 5 h. The reaction was quenched with saturated NaHCO₃ solution at 0 °C. The resultant mixture was extracted with EA, and the organic layer was washed with brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated *in vacuo*. The resulting residue was purified by silica gel column chromatography (DCM:EA = 9:1) to afford **1k** (437.2 mg, 951.4 μ mol, 95%) as a colorless oil. [α]_D²⁵ = -139.54 (*c* 2.9, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88–7.81 (m, 2H), 7.80–7.68 (m, 2H), 7.32–7.28 (m, 2H), 7.14–7.03 (m, 2H), 5.40 (s, 1H), 4.46–4.32 (m, 2H), 4.30–4.22 (m, 1H), 4.19–4.03 (m, 2H), 4.03–3.98 (m, 2H), 3.94 (d, *J* = 9.1 Hz, 1H), 3.39 (t, *J* = 9.3 Hz, 1H), 3.00–2.84 (m, 1H), 2.31 (s, 3H), 1.30 (d, *J*=6.2 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.0, 137.4, 134.8, 131.9, 130.6, 129.8, 128.7, 123.8, 87.8, 83.2, 78.3, 72.5, 71.4, 70.6, 68.4, 21.1, 17.8; HRMS (ESI) *m/z* calcd for C₂₃H₂₉N₂O₇S [M+NH₄]⁺ 477.1690, found 477.1693.

Preparation of 11 via intermediates S22 and S23

Dimethylthexylsilyl 3-O-allyl-2,4,6-tri-O-benzoyl-α-D-glucopyranoside (S22)

To a solution of **S21**^[6] (1.92 g, 3.00 mmol, 1.0 equiv) in PhMe/CH₃CN/H₂O (30 mL, v/v/v = 1:1:1) was added ammonium cerium (IV) nitrate (CAN) (3.51 g, 7.52 mmol, 2.5 equiv) in ice bath under an argon atmosphere. After stirring for 1.5 h at room temperature, the reaction was quenched with saturated NaHCO₃ solution. The resultant mixture was extracted with DCM, and the organic layer was washed with brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated in vacuo to give the crude product without further purification for next step. The crude product was dissolved in dry DMF (20.0 mL), imidazole (510.0 mg, 7.50 mmol, 2.5 equiv) and TDSCl (1.07 g, 6.00 mmol, 2.0 equiv) were added under an argon atmosphere. The resultant solution was stirred for 12 h at room temperature. The reaction mixture was concentrated in vacuo. The resulting residue was purified by silica gel column chromatography (PE:EA = 10:1) to afford S22 (1.03 g, 1.53 mmol, 51%) as a colorless oil. $\left[\alpha\right]_{D}^{25} = -3.75$ (c 1.8, CHCl₃); ¹H NMR (400 MHz, Chloroform-d) δ 7.99-7.86 (m, 6H), 7.51-7.39 (m, 3H), 7.39-7.30 (m, 4H), 7.30-7.23 (m, 2H), 5.54-5.38 (m, 1H), 5.32 (t, J = 9.6 Hz, 1H), 5.21 (dd, J = 9.5, 7.7 Hz, 1H), 5.00–4.86 (m, 1H), 4.85–4.72 (m, 2H), 4.52–4.36 (m, 1H), 4.36–4.24 (m, 1H), 4.00–3.89 (m, 3H), 3.86 (t, J = 9.4 Hz, 1H), 1.41–1.31 (m, 1H), 0.67–0.50 (m, 12H), 0.00 (s, 3H), -0.08 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.3, 165.3, 164.9, 134.4, 133.6, 133.2, 130.2, 129.9, 129.81, 129.78, 129.5, 128.6, 128.5, 128.4, 117.5, 96.3, 79.6, 75.2, 73.1, 72.4, 71.5, 63.9, 33.9, 24.8, 19.9, 18.5, -1.8, -3.4; HRMS (ESI) m/z calcd for C₃₈H₅₀NO₉Si [M+NH₄]⁺ 692.3249, found 692.3251.

Dimethylthexylsilyl 2,4,6-tri-*O*-benzoyl-3-*O*-(2-hydroxyethyl)-α-D-glucopyranoside (S23)

Following the general procedure C, **S22** (675.0 mg, 1.00 mmol, 1.0 equiv) was treated with 2,6-lutidine (230 μ L, 2.00 mmol, 2.0 equiv), OsO4 (0.0234 mol/L solution in *t*-BuOH, 850.0 uL, 20.0 μ mol, 0.02 equiv) and NaIO4 (855.5 mg, 4.01 mmol, 4.0 equiv) in 1,4-dioxane/H₂O (8.0 mL, $\nu/\nu = 3:1$) to give the aldehyde. The aldehyde was treated with NaBH₄ (112.9 mg, 3.00 mmol, 3.0 equiv) in MeOH (5.0 mL) to give **S23** (535.2 mg, 788.4 μ mol, 79%) as a white foam after purification by silica gel column chromatography (PE:EA = 2.5:1). $[a]_{0}^{25} = -4.36$ (*c* 1.3, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98–7.82 (m, 6H), 7.50–7.37 (m, 3H), 7.37–7.22 (m, 6H), 5.33 (t, *J* = 9.6 Hz, 1H), 5.19 (dd, *J* = 9.5, 7.7 Hz, 1H), 4.82 (d, *J* = 7.6 Hz, 1H), 4.50–4.39 (m, 1H), 4.37–4.22 (m, 1H), 3.99–3.88 (m, 1H), 3.83 (t, *J* = 9.3 Hz, 1H), 3.55–3.44 (m, 2H), 3.37–3.27 (m, 2H), 1.78 (brs, 1H), 1.41–1.26 (m, 1H), 0.66–0.49 (m, 12H), 0.00 (s, 3H), -0.08 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.1, 167.4, 167.2, 135.6, 135.2, 135.1, 131.8, 131.7, 131.6, 131.1, 130.6, 130.4, 130.3, 98.0, 83.4, 77.1, 75.7, 74.1, 73.3, 65.6, 63.8, 35.8, 26.7, 21.8, 21.7, 20.3, 0.0, -1.6; HRMS (ESI) *m/z* calcd for C₃₇H₅₀NO₁₀Si [M+NH4]⁺ 696.3198, found 696.3196.

Dimethylthexylsilyl 2,4,6-tri-*O*-benzoyl-3-*O*-{2-[(1,3-dioxoisoindolin-2-yl)oxy]ethyl}-α-D-glucopyranoside (11)

Following the general procedure D, **S23** (380.0 mg, 560.0 μ mol, 1.0 equiv) was treated with PPh₃ (221.1 mg, 840.0 μ mol, 1.5 equiv), *N*-hydroxyphthalimide (137.0 mg, 840.0 μ mol, 1.5 equiv) and diisopropylazodicarboxylate (165 μ L, 840.0 μ mol, 1.5 equiv) in THF (5.0 mL) to give **11** (653.0 mg, 792.5 μ mol, 94%) as a white foam after purification by silica gel column chromatography (PE:EA = 2:1). [α]_D²⁵ = -1.90 (*c* 1.3, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09–7.97 (m, 6H), 7.74–7.68 (m, 4H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.49–7.40 (m, 2H), 7.40–7.30 (m, 6H), 5.42 (t, *J* = 9.6 Hz, 1H), 5.29 (dd, *J* = 9.5, 7.7 Hz, 1H), 4.95 (d, *J* = 7.6 Hz, 1H), 4.60–4.52 (m, 1H), 4.48–4.38 (m, 1H), 4.24 (t, *J* = 9.4 Hz, 1H), 4.12–4.00 (m, 3H), 3.98–3.88 (m, 2H), 1.53–1.42 (m, 1H), 0.74–0.65 (m, 12H), 0.11 (s, 3H), 0.03 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ
166.3, 165.3, 165.1, 163.3, 134.5, 133.3, 133.1, 133.0, 130.0, 130.1, 129.9, 129.5, 128.9, 128.5, 128.38, 128.36, 123.5, 96.2, 81.4, 75.0, 72.4, 71.2, 69.6, 63.8, 33.9, 24.8, 19.9, 18.5, -1.8, -3.4; HRMS (ESI) *m/z* calcd for C₄₅H₅₃N₂O₁₂Si [M+NH₄]⁺ 841.3362, found 841.3375.

Preparation of 1m via intermediates S25–S27

tert-Butyldimethylsilyl 4,6-di-O-benzylidene-2-deoxy-β-D-glucopyranoside (S25)

To a solution of **S24**^[7] (1.39 g, 5.00 mmol, 1.0 equiv) in CH₃CN (15.0 mL) were added PhCH(OMe)₂ (1.4 mL, 10.00 mmol, 2.0 equiv) and camphorsulfonic acid (116.2 mg, 500.0 μ mol, 0.1 equiv) in ice bath under an argon atmosphere. The resultant solution was stirred at room temperature for 1.5 h. The reaction was quenched with saturated NaHCO₃ solution. The resultant mixture was extracted with DCM, and the organic layer was washed with brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated *in vacuo*. The resulting residue was purified by silica gel column chromatography (PE:EA = 7:1) to afford **S25** (671.4 mg, 1.83 mmol, 37%) as a white foam. [α]₂²⁵ = -28.63 (*c* 1.2, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.55–7.46 (m, 2H), 7.43–7.33 (m, 3H), 5.53 (s, 1H), 4.90 (dd, *J* = 9.4, 2.1 Hz, 1H), 4.28 (dd, *J* = 10.5, 4.9 Hz, 1H), 3.92–3.83 (m, 1H), 3.80 (t, *J* = 10.3 Hz, 1H), 3.46 (t, *J* = 9.0 Hz, 1H), 3.43–3.26 (m, 1H), 2.60 (s, 1H), 2.31–2.14 (m, 1H), 1.80–1.68 (m, 1H), 0.91 (s, 9H), 0.13 (s, 3H), 0.13 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 137.4, 129.4, 128.5, 126.4, 102.1, 95.3, 83.2, 69.0, 68.4, 66.6, 41.4, 25.8, 18.2, -4.1, -5.1; HRMS (ESI) *m/z* calcd for C₁₉H₃₀O₅SiNa [M+Na]⁺ 389.1755, found 389.1759.

tert-Butyldimethylsilyl 3-*O*-allyl-4,6-di-*O*-benzylidene-2-deoxy-β-D-glucopyranoside (S26)

Following the general procedure A, **S25** (540.0 mg, 1.47 mmol, 1.0 equiv) was treated with AllBr (254 μ L, 2.94 mmol, 2.0 equiv) and 60% dispersion of NaH in mineral oil (118.0 mg, 2.94 mmol, 2.0 equiv) in DMF (20.0 mL) to give **S26** (576.1 mg, 1.42 mmol, 96%) as a colorless oil after purification by silica gel column chromatography (PE:EA = 30:1). $[\alpha]_{D}^{25} = -31.44$ (*c* 1.7, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.55–7.46 (m, 2H), 7.46–7.30 (m, 3H), 6.01–5.81 (m, 1H), 5.57 (s, 1H), 5.35–5.26 (m, 1H), 5.25–5.10 (m, 1H), 4.89 (dd, *J* = 9.5, 2.1 Hz, 1H), 4.38–4.23 (m, 2H), 4.16 (dd, *J* = 13.0, 5.8 Hz, 1H), 3.82 (t, *J* = 10.3 Hz, 1H), 3.75–3.56 (m, 2H), 3.45–3.29 (m, 1H), 2.41–2.20 (m, 1H), 1.77–1.64 (m, 1H), 0.91 (s, 9H), 0.14 (s, 3H), 0.13 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 137.7, 135.2, 129.0, 128.3, 126.2, 116.9, 101.5, 95.4, 83.1, 74.8, 71.7, 69.1, 66.9, 40.5, 25.8, 18.2, -4.0, -5.1; HRMS (ESI) *m/z* calcd for C₂₂H₃₄O₅SiNa [M+Na]⁺ 429.2068, found 429.2061.

tert-Butyldimethylsilyl 4,6-di-*O*-benzylidene-2-deoxy-3-*O*-(2-hydroxyethyl)-β-Dglucopyranoside (S27)

Following the general procedure C, **S26** (630.0 mg, 1.55 mmol, 1.0 equiv) was treated with 2,6-lutidine (355 μ L, 3.10 mmol, 2.0 equiv), OsO4 (0.0234 mol/L solution in *t*-BuOH, 1.3 mL, 31.0 μ mol, 0.02 equiv) and NaIO4 (1.33 g, 6.2 mmol, 4.0 equiv) in 1,4-dioxane/H₂O (16.0 mL, v/v = 3:1) to give the aldehyde. The aldehyde was treated with NaBH₄ (117.3 mg, 3.1 mmol, 2.0 equiv) in MeOH (10.0 mL) to give **S27** (505.0 mg, 1.23 mmol, 79%) as a colorless oil after purification by silica gel column chromatography (PE:EA = 3:1). $[\alpha]_D^{25} = -32.88$ (*c* 1.4, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.56–7.40 (m, 2H), 7.42–7.33 (m, 3H), 5.56 (s, 1H), 4.89 (dd, *J* = 9.5, 2.1 Hz, 1H), 4.28 (dd, *J* = 10.5, 5.0 Hz, 1H), 3.91–3.57 (m, 7H), 3.48–3.30 (m, 1H), 2.46 (s, 1H), 2.37–2.18 (m, 1H), 1.82–1.60 (m, 1H), 0.91 (s, 9H), 0.13 (s, 3H), 0.12 (s,

3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 137.3, 129.2, 128.5, 126.2, 101.7, 95.4, 82.6, 76.2, 72.0, 69.0, 66.8, 62.2, 40.5, 25.8, 18.1, -4.1, -5.1; HRMS (ESI) *m/z* calcd for C₂₁H₃₄O₆SiNa [M+Na]⁺ 433.2017, found 433.2025.

tert-Butyldimethylsilyl 4,6-di-*O*-benzylidene-2-deoxy-3-*O*-{2-[(1,3-dioxoisoindolin-2-yl)oxy]ethyl}-β-D-glucopyranoside (1m)

Following the general procedure D, **S27** (460.0 mg, 1.12 mmol, 1.0 equiv) was treated with PPh₃ (351.5 mg, 1.34 mmol, 1.2 equiv), *N*-hydroxyphthalimide (218.6 mg, 1.34 mmol, 1.2 equiv) and diisopropylazodicarboxylate (265 μ L, 1.34 mmol, 1.2 equiv) in THF (4.0 mL) to give **1m** (597.3 mg, 1.07 mmol, 96%) as a white foam after purification by silica gel column chromatography (PE:EA = 3:1). $[\alpha]_{D}^{25} = -28.74$ (*c* 1.4, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83–7.75 (m, 2H), 7.74–7.69 (m, 2H), 7.48–7.40 (m, 2H), 7.36–7.28 (m, 3H), 5.52 (s, 1H), 4.86 (dd, *J* = 9.5, 2.1 Hz, 1H), 4.44–4.34 (m, 1H), 4.34–4.27 (m, 1H), 4.25 (dd, *J* = 10.5, 4.9 Hz, 1H), 4.21–4.13 (m, 1H), 4.02–3.94 (m, 1H), 3.78 (t, *J* = 10.3 Hz, 1H), 3.71–3.62 (m, 1H), 3.53 (t, *J* = 9.0 Hz, 1H), 3.37–3.27 (m, 1H), 2.37–2.16 (m, 1H), 1.58–1.40 (m, 1H), 0.89 (s, 9H), 0.19 (s, 6H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.6, 137.6, 134.5, 129.0, 128.3, 126.1, 123.5, 101.3, 95.3, 83.4, 77.4, 76.0, 69.6, 69.0, 66.6, 40.3, 25.8, 18.1, -4.1, -5.1; HRMS (ESI) *m/z* calcd for C₂₉H₃₇NO₈SiNa [M+Na]⁺ 578.2181, found 578.2179.

Preparation of 1n via intermediate S29

Methyl 2,4,6-tri-O-benzoyl-3-O-(2-hydroxyethyl)-α-D-mannopyranoside (S29)

Following the general procedure C, **S28**^[8] (1.35 g, 2.47 mmol, 1.0 equiv) was treated with 2,6-lutidine (580 μ L, 4.94 mmol, 2.0 equiv), OsO4 (0.0234 mol/L solution in *t*-BuOH, 2.1 mL, 49.4 mmol, 0.02 equiv) and NaIO₄ (2.1 g, 9.88 mmol, 4.0 equiv) in 1,4-dioxane/H₂O (24.0 mL, $\nu/\nu = 3:1$) to give the aldehyde. The aldehyde was treated with NaBH₄ (187.0 mg, 4.94 mmol, 2.0 equiv) in MeOH (10.0 mL) to give **S29** (893.5 mg, 1.62 mmol, 67%) as a white foam after purification by silica gel column chromatography (PE:EA = 1.5:1). $[\alpha]_D^{25} = -13.15$ (*c* 0.8, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.14–8.00 (m, 6H), 7.61–7.54 (m, 3H), 7.47–7.34 (m, 6H), 5.78 (t, *J* = 9.9 Hz, 1H), 5.67–5.59 (m, 1H), 4.92 (d, *J* = 1.4 Hz, 1H), 4.70 (dd, *J* = 12.1, 2.6 Hz, 1H), 4.43 (dd, *J* = 12.1, 4.7 Hz, 1H), 4.31–4.22 (m, 1H), 4.13 (dd, *J* = 9.7, 3.3 Hz, 1H), 3.79–3.70 (m, 1H), 3.63–3.56 (m, 1H), 3.55–3.50 (m, 2H), 3.49 (s, 3H), 2.27 (s, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.4, 166.2, 165.7, 133.6, 133.2, 130.1, 130.0, 129.9, 129.5, 129.4, 128.7, 128.6, 99.2, 77.1, 72.9, 69.7, 68.9, 68.8, 63.2, 61.8, 55.6; HRMS (ESI) *m/z* calcd for C₃₀H₃₄NO₁₀ [M+NH₄]⁺ 568.2177, found 568.2183.

Methyl 2,4,6-tri-*O*-benzoyl-3-*O*-{2-[(1,3-dioxoisoindolin-2-yl)oxy]ethyl}-α-Dmannopyranoside (1n)

Following the general procedure D, **S29** (722.0 mg, 1.31 mmol, 1.0 equiv) was treated with PPh₃ (412.3 mg, 1.57 μ mol, 1.2 equiv), *N*-hydroxyphthalimide (256.4 mg, 1.57 mmol, 1.2 equiv) and diisopropylazodicarboxylate (310 μ L, 1.57 mmol, 1.2 equiv) in THF (4.0 mL) to give **1n** (767.8 mg, 1.10 mmol, 84%) as a white foam after purification by silica gel column chromatography (PE:EA = 2:1). $[\alpha]_D^{25} = -2.16$ (*c* 6.4, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.10–8.04 (m, 4H), 8.03–7.99 (m, 2H), 7.72–7.64 (m, 4H), 7.58–7.52 (m, 2H), 7.48 (t, *J* = 7.9 Hz, 1H), 7.42–7.31 (m, 6H), 5.77 (t, *J* = 9.9 Hz, 1H), 5.69–5.64 (m, 1H), 4.93 (d, J = 1.5 Hz, 1H), 4.65 (dd, J = 12.1, 2.6 Hz, 1H), 4.41 (dd, J = 12.1, 4.8 Hz, 1H), 4.33 (dd, J = 9.7, 3.3 Hz, 1H), 4.28–4.21 (m, 1H), 4.20–4.15 (m, 2H), 4.05–3.96 (m, 1H), 3.92–3.84 (m, 1H), 3.47 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.4, 165.8, 165.6, 163.4, 134.4, 133.32, 133.27, 133.1, 130.1, 130.0, 129.9, 129.72, 129.69, 128.9, 128.5, 123.6, 99.0, 77.8, 76.8, 69.7, 68.9, 68.8, 68.7, 63.3, 55.5; HRMS (ESI) *m/z* calcd for C₃₈H₃₃NO₁₂Na [M+Na]⁺ 718.1895, found 718.1899.

Preparation of 10 via intermediates S31 and S32

tert-Butyldimethylsilyl 3-O-allyl-2,3,6-tri-O-benzoyl-β-D-galactopyranoside (S31)

To a solution of **S30**^[9] (1.15 g, 1.80 mmol, 1.0 equiv) in PhMe/CH₃CN/H₂O (15.0 mL, $\nu/\nu/\nu = 1:1:1$) was added CAN (2.53 g, 5.40 mmol, 3.0 equiv) in ice bath under an argon atmosphere. After stirring for 0.5 h in ice bath, the reaction was quenched with saturated NaHCO₃ solution. The resultant mixture was extracted with DCM, and the organic layer was washed with brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated *in vacuo* to give the crude product without further purification for next step. The crude product was dissolved in dry DMF (10.0 mL), imidazole (306.3 mg, 4.50 mmol, 2.5 equiv) and *tert*-butyldimethylsilyl chloride (TBSCI) (542.6 mg, 3.60 mmol, 2.0 equiv) were added under an argon atmosphere. The resultant solution was stirred for 12 h at room temperature. The reaction mixture was concentrated *in vacuo*. The resulting residue was purified by silica gel column chromatography (PE:EA = 10:1) to afford **S31** (586.3 mg, 906.5 μ mol, 51%) as a white foam. [α]_D²⁵ = +54.17 (*c* 3.0, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11–8.02

(m, 2H), 8.01–7.89 (m, 4H), 7.52–7.42 (m, 3H), 7.42–7.25 (m, 6H), 5.72 (d, J = 2.9 Hz, 1H), 5.63–5.49 (m, 1H), 5.38 (dd, J = 10.1, 7.8 Hz, 1H), 5.11–5.02 (m, 1H), 4.98–4.91 (m, 1H), 4.79 (d, J = 7.7 Hz, 1H), 4.51–4.28 (m, 2H), 4.11–3.96 (m, 2H), 3.87 (dd, J = 13.3, 6.4 Hz, 1H), 3.71 (dd, J = 10.1, 3.5 Hz, 1H), 0.67 (s, 9H), -0.00 (s, 3H), -0.08 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.3, 166.1, 165.4, 134.3, 133.5, 133.4, 133.1, 130.3, 129.9, 129.8, 129.7, 129.5, 128.6, 128.5, 117.8, 96.7, 76.6, 73.4, 71.8, 70.8, 67.5, 63.2, 25.6, 18.0, -4.1, -5.1; HRMS (ESI) *m/z* calcd for C₃₆H₄₆NO₉Si [M+NH₄]⁺ 664.2936, found 664.2950.

tert-Butyldimethylsilyl 2,3,6-tri-*O*-benzoyl-3-*O*-(2-hydroxyethyl)-β-D-galactopyranoside (S32)

Following the general procedure C, S31 (400.0 mg, 620.0 µmol, 1.0 equiv) was treated with 2,6-lutidine (145 μ L, 1.24 mmol, 2.0 equiv), OsO₄ (0.0234 mol/L solution in t-BuOH, 530 µL, 12.4 µmol, 0.02 equiv) and NaIO₄ (530.0 mg, 2.48 mmol, 4.0 equiv) in 1,4-dioxane/H₂O (8.0 mL, v/v = 3:1) to give the aldehyde. The aldehyde was treated with NaBH₄ (35.0 mg, 930.0 µmol, 1.5 equiv) in MeOH (3.0 mL) to give S32 (301.5 mg, 463.3 µmol, 75%) as a colorless oil after purification by silica gel column chromatography (PE:EA = 2:1). $[\alpha]_{D}^{25} = +54.59$ (c 0.7, CHCl₃); ¹H NMR (400 MHz, Chloroform-d) & 8.20-8.12 (m, 2H), 8.07-8.00 (m, 4H), 7.64-7.54 (m, 3H), 7.52-7.48 (m, 2H), 7.47-7.41 (m, 4H), 5.84 (d, J = 2.8 Hz, 1H), 5.45 (dd, J = 10.0, 7.8 Hz, 1H), 4.91 (d, *J* = 7.7 Hz, 1H), 4.59 (dd, *J* = 11.4, 7.4 Hz, 1H), 4.45 (dd, *J* = 11.4, 5.5 Hz, 1H), 4.16 (t, J = 6.3 Hz, 1H), 3.82 (dd, J = 10.1, 3.5 Hz, 1H), 3.79–3.71 (m, 1H), 3.63–3.57 (m, 1H), 3.54–3.48 (m, 2H), 2.43 (s, 1H), 0.79 (s, 9H), 0.12 (s, 3H), 0.04 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 166.7, 166.3, 165.5, 133.7, 133.4, 133.3, 130.3, 129.9, 129.7, 129.6, 129.3, 128.7, 128.6, 128.5, 96.6, 79.7, 73.9, 73.5, 71.6, 68.4, 62.9, 61.8, 25.6, 18.0, -4.1, -5.1; HRMS (ESI) m/z calcd for C₃₅H₄₆NO₁₀Si [M+NH₄]⁺ 668.2885, found 668.2899.

tert-Butyldimethylsilyl 2,3,6-tri-*O*-benzoyl-3-*O*-{2-[(1,3-dioxoisoindolin-2-yl)oxy]ethyl}-β-D-galactopyranoside (10)

Following the general procedure D, **S32** (260.0 mg, 400.0 μ mol, 1.0 equiv) was treated with PPh₃ (125.9 mg, 480.0 μ mol, 1.2 equiv), *N*-hydroxyphthalimide (78.3 mg, 480.0 μ mol, 1.2 equiv) and diisopropylazodicarboxylate (95 μ L, 480.0 μ mol, 1.2 equiv) in THF (4.0 mL) to give **10** (284.1 mg, 356.9 μ mol, 89%) as a white foam after purification by silica gel column chromatography (PE:EA = 3:1). $[\alpha]_D^{25}$ = +31.07 (*c* 1.7, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.18–8.12 (m, 2H), 8.11–8.05 (m, 4H), 7.75–7.66 (m, 4H), 7.62–7.53 (m, 2H), 7.53–7.45 (m, 3H), 7.45–7.37 (m, 4H), 6.08 (d, *J* = 2.8 Hz, 1H), 5.48 (dd, *J* = 10.1, 7.7 Hz, 1H), 4.97 (d, *J* = 7.7 Hz, 1H), 4.61 (dd, *J* = 11.3, 7.5 Hz, 1H), 4.53–4.41 (m, 2H), 4.32–4.21 (m, 3H), 4.00–3.91 (m, 1H), 3.89–3.82 (m, 1H), 0.79 (s, 9H), 0.12 (s, 3H), 0.05 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.3, 166.1, 165.5, 163.7, 134.6, 133.4, 133.2, 133.0, 129.8, 129.6, 128.9, 128.6, 128.5, 128.4, 123.7, 96.7, 79.7, 78.4, 73.7, 71.7, 68.3, 67.6, 63.1, 25.6, 18.0, -4.1, -5.1; HRMS (ESI) *m/z* calcd for C4₃H₄₉N₂O₁₂Si [M+NH4]⁺ 813.3049, found 813.3061.

Preparation of 1p via intermediates S34 and S35.

Methyl 2-*O*-allyl-6-*O-tert*-butyldiphenylsilyl-3,4-*O*-isopropylidene-α-D-galactopyranoside (S34)

Following the general procedure A, **S33**^[10] (3.22 g, 6.74 mmol, 1.0 equiv) was treated with AllBr (985 μ L, 9.52 mmol, 1.4 equiv) and 60% dispersion of NaH in mineral oil (380.0 mg, 9.52 mmol, 1.4 equiv) in DMF (40.0 mL) to give **S34** (3.31 g, 6.46 mmol, 96%) as a colorless oil after purification by silica gel column chromatography (PE:EA = 8:1). [α]_D²⁵ = +54.92 (*c* 1.4, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.76–7.69 (m, 4H), 7.47–7.35 (m, 6H), 6.00–5.88 (m, 1H), 5.32–5.25 (m, 1H), 5.20 (d, *J* = 10.3 Hz, 1H), 4.75 (d, *J* = 3.5 Hz, 1H), 4.32–4.28 (m, 2H), 4.27 (d, *J* = 5.3 Hz, 1H), 4.19 (dd, *J* = 13.0, 6.4 Hz, 1H), 4.05 (t, *J* = 7.2 Hz, 1H), 3.97 (dd, *J* = 9.8, 6.8 Hz, 1H), 3.88 (dd, *J* = 9.8, 6.5 Hz, 1H), 3.53 (dd, *J* = 7.4, 3.5 Hz, 1H), 3.39 (s, 3H), 1.52 (s, 3H), 1.36 (s, 3H), 1.08 (s, 9H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 135.7, 135.0, 133.6, 133.5, 129.8, 127.8, 127.7, 117.9, 109.1, 98.4, 76.7, 76.2, 73.4, 71.9, 67.7, 63.0, 55.4, 28.4, 26.9, 26.5, 19.3; HRMS (ESI) *m/z* calcd for C₂₉H₄₀O₆SiNa [M+Na]⁺ 535.2486, found 535.2491.

Methyl 6-*O-tert*-butyldiphenylsilyl-2-*O*-(2-hydroxyethyl)-3,4-*O*-isopropylidene-α-D-galactopyranoside (S35)

Following the general procedure C, **S34** (3.21 g, 6.24 mmol, 1.0 equiv) was treated with 2,6-lutidine (1.5 mL, 12.48 mmol, 2.0 equiv), OsO₄ (0.0234 mol/L solution in *t*-BuOH, 5.3 mL, 124.8 μ mol, 0.02 equiv) and NaIO₄ (5.33 g, 24.96 mmol, 4.0 equiv) in 1,4-dioxane/H₂O (40.0 mL, $\nu/\nu = 3:1$) to give the aldehyde. The aldehyde was treated with NaBH₄ (472.3 mg, 12.48 mmol, 2.0 equiv) in MeOH (20.0 mL) to give **S35** (2.81 g, 5.44 mmol, 87%) as a white foam after purification by silica gel column chromatography (PE:EA = 1.5:1). [α]_D²⁵ = +52.51 (*c* 2.5, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.76–7.67 (m, 4H), 7.47–7.35 (m, 6H), 4.79 (d, *J* = 3.5 Hz, 1H), 4.34–4.25 (m, 2H), 4.05 (dd, *J* = 6.5, 3.2 Hz, 1H), 3.98 (dd, *J* = 9.8, 6.9 Hz, 1H), 3.89 (dd, *J* = 9.9, 6.5 Hz, 1H), 3.81–3.70 (m, 4H), 3.52 (dd, *J* = 7.3, 3.5 Hz, 1H), 3.39 (s, 3H), 3.11 (s, 1H), 1.53 (s, 3H), 1.35 (s, 3H), 1.08 (s, 9H); ¹³C NMR (101 MHz, Chloroform-*d*) δ

135.6, 133.5, 133.3, 129.7, 127.7, 127.6, 109.2, 97.9, 78.9, 75.7, 73.2, 72.7, 67.8, 62.9, 61.9, 55.3, 28.2, 26.8, 26.4, 19.2; HRMS (ESI) *m/z* calcd for C₂₈H₄₄NO₇Si [M+NH₄]⁺ 534.2882, found 534.2895.

Methyl 6-*O-tert*-butyldiphenylsilyl-2-*O*-{2-[(1,3-dioxoisoindolin-2-yl)oxy]ethyl}-3,4-*O*-isopropylidene-α-D-galactopyranoside (1p)

Following the general procedure D, **S35** (1.03 g, 2.00 mmol, 1.0 equiv) was treated with PPh₃ (629.5 mg, 2.40 mmol, 1.2 equiv), *N*-hydroxyphthalimide (391.4 mg, 2.40 mmol, 1.2 equiv) and diisopropylazodicarboxylate (480 μ L, 2.4 mmol, 1.2 equiv) in THF (10.0 mL) to give **1p** (1.09 g, 1.65 mmol, 82%) as a white foam after purification by silica gel column chromatography (PE:EA = 3:1). $[\alpha]_{D}^{25}$ = +114.49 (*c* 1.8, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.84–7.79 (m, 2H), 7.75–7.66 (m, 6H), 7.45–7.33 (m, 6H), 4.79 (d, *J* = 3.5 Hz, 1H), 4.48–4.40 (m, 1H), 4.38–4.31 (m, 1H), 4.27–4.21 (m, 2H), 4.18–4.11 (m, 1H), 4.07–4.01 (m, 1H), 4.01–3.92 (m, 2H), 3.85 (dd, *J* = 9.6, 6.2 Hz, 1H), 3.55 (dd, *J* = 7.0, 3.6 Hz, 1H), 3.24 (s, 3H), 1.51 (s, 3H), 1.31 (s, 3H), 1.05 (s, 9H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.4, 135.7, 134.4, 133.4, 129.7, 129.0, 127.7, 123.5, 109.1, 98.3, 78.8, 77.5, 76.2, 73.3, 69.6, 67.6, 63.0, 55.2, 28.4, 26.8, 26.4, 19.2; HRMS (ESI) *m/z* calcd for C₃₆H₄₇N₂O₉Si [M+NH₄]⁺ 679.3045, found 679.3057.

Preparation of 7a via intermediates S2 and S4

Methyl 6-*O*-allyl-2,3,4-tri-*O*-benzoyl-α-D-glucopyranoside (S2)

Following the general procedure B, **S1** (1.52 g, 3.00 mmol, 1.0 equiv) was treated with 2,4,6-tris(allyloxy)-1,3,5-triazine (670.0 μ L, 3.00 mmol, 1.0 equiv) and TfOH (100 μ L, 1.2 mmol, 0.4 equiv) in 1,4-dioxane (3.0 mL) to give **S2** (1.47 g, 2.69 mmol, 90%) as a white foam after purification by silica gel column chromatography (PE:EA = 3:1). [α]²⁵ = +47.80 (*c* 3.1, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.06–7.92 (m, 4H), 7.92–7.81 (m, 2H), 7.55–7.47 (m, 2H), 7.46–7.34 (m, 5H), 7.32–7.27 (m, 2H), 6.15 (t, *J* = 9.6 Hz, 1H), 5.92–5.78 (m, 1H), 5.61 (t, *J* = 9.9 Hz, 1H), 5.33–5.18 (m, 3H), 5.13–5.07 (m, 1H), 4.29–4.17 (m, 1H), 4.07–3.94 (m, 2H), 3.72–3.57 (m, 2H), 3.48 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.9, 165.3, 134.3, 133.4, 133.1, 130.0, 129.8, 129.7, 129.3, 129.2, 129.1, 128.4, 128.3, 97.0, 72.7, 72.2, 70.6, 69.6, 68.9, 68.6, 55.6; HRMS (ESI) *m/z* calcd for C₃₁H₃₄NO₉ [M+NH₄]⁺ 564.2228, found 564.2219.

Methyl 2,3,4-tri-O-benzoyl-6-O-(2-hydroxyethyl)-α-D-glucopyranoside (S4)

Following the general procedure C, **S2** (1.47 g, 2.69 mmol, 1.0 equiv) was treated with 2,6-lutidine (630 μ L, 5.38 mmol, 2.0 equiv), OsO₄ (0.0234 mol/L solution in *t*-BuOH, 2.3 mL, 0.0538 mmol, 0.02 equiv) and NaIO₄ (2.31 g, 10.76 mmol, 4.0 equiv) in 1,4-dioxane/H₂O (12.0 mL, v/v = 3:1) to give the aldehyde. The aldehyde was treated with NaBH₄ (203.0 mg, 5.38 mmol, 2.0 equiv) in MeOH (10.0 mL) to give **S4** (1.11 g, 2.02 mmol, 75%) as a white foam after purification by silica gel column chromatography (PE:EA = 1.3:1).

Methyl 2,3,4-tri-*O*-benzoyl-6-*O*-{2-[(1,3-dioxoisoindolin-2-yl)oxy]ethyl}-α-Dglucopyranoside (7a)

Following the general procedure D, **S4** (330.1 mg, 600.0 μ mol, 1.0 equiv) was treated with PPh₃ (315.0 mg, 1.20 mmol, 2.0 equiv), *N*-hydroxyphthalimide (195.9 mg, 1.20 mmol, 2.0 equiv) and diisopropylazodicarboxylate (175 μ L, 1.20 mmol, 2.0 equiv) in THF (6.0 mL) to give **7a** (370.0 mg, 531.9 μ mol, 89%) as a white foam after purification by silica gel column chromatography (PE:DCM:EA = 5:1:1). $[a]_D^{25}$ = +33.56 (*c* 2.2, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99–7.91 (m, 4H), 7.89–7.83 (m, 2H), 7.83–7.78 (m, 2H), 7.77–7.70 (m, 2H), 7.54–7.45 (m, 2H), 7.42–7.31 (m, 5H), 7.31–7.26 (m, 2H), 6.09 (t, *J* = 9.9 Hz, 1H), 5.49 (t, *J* = 9.9 Hz, 1H), 5.15 (dd, *J* = 10.2, 3.6 Hz, 1H), 5.03 (d, *J* = 3.6 Hz, 1H), 4.43–4.34 (m, 1H), 4.34–4.25 (m, 1H), 4.18–4.06 (m, 1H), 3.91–3.81 (m, 2H), 3.80–3.62 (m, 2H), 3.34 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.9, 165.5, 163.5, 134.5, 133.44, 133.39, 133.2, 130.0, 129.9, 129.8, 129.4, 129.2, 129.1, 128.50, 128.49, 128.4, 96.8, 72.2, 70.6, 70.3, 70.1, 69.7, 68.9, 55.5; HRMS (ESI) *m/z* calcd for C₃₈H₃₇N₂O₁₂ [M+NH₄]⁺ 713.2341, found 713.2335.

Preparation of 7b via intermediates S37 and S38

Methyl 6-*O*-allyl-2,3,4-tri-*O*-benzoyl-α-D-mannopyranoside (S37)

Following the general procedure B, $\mathbf{S36}^{[11]}$ (2.53 g, 5.00 mmol, 1.0 equiv) was treated with 2,4,6-tris(allyloxy)-1,3,5-triazine (1.2 mL, 5.00 mmol, 1.0 equiv) and TfOH (177 μ L, 1.20 mmol, 0.4 equiv) in 1,4-dioxane (17.0 mL) to give **S37** (2.39 g, 4.38 mmol,

88%) as a white foam after purification by silica gel column chromatography (PE:EA = 4:1). $[\alpha]_{D}^{25} = -157.71$ (*c* 3.2, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.14–8.08 (m, 2H), 8.01–7.94 (m, 2H), 7.87–7.77 (m, 2H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.55–7.45 (m, 3H), 7.45–7.34 (m, 3H), 7.29–7.24 (m, 2H), 5.95 (t, *J* = 10.0 Hz, 1H), 5.91–5.82 (m, 2H), 5.71–5.65 (m, 1H), 5.32–5.22 (m, 1H), 5.12 (d, *J* = 11.3 Hz, 1H), 5.03–4.96 (m, 1H), 4.33–4.20 (m, 1H), 4.13–3.92 (m, 2H), 3.79–3.67 (m, 2H), 3.54 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.67, 165.65, 165.6, 134.5, 133.6, 133.4, 133.2, 130.1, 129.9, 129.8, 129.5, 129.4, 129.3, 128.7, 128.5, 128.4, 117.2, 98.7, 72.7, 70.6, 70.3, 70.1, 69.2, 67.5, 55.5; HRMS (ESI) *m*/*z* calcd for C₃₁H₃₄NO₉ [M+NH₄]⁺ 564.2228, found 564.2219.

Following the general procedure C, **S37** (1.10 g, 2.00 mmol, 1.0 equiv) was treated with 2,6-lutidine (466 μ L, 4.00 mmol, 2.0 equiv), OsO₄ (0.0234 mol/L solution in *t*-BuOH, 1.7 mL, 40.0 μ mol, 0.02 equiv) and NaIO₄ (1.70 g, 4.00 mmol, 4.0 equiv) in 1,4-dioxane/H₂O (12.0 mL, v/v = 3:1) to give the aldehyde. The aldehyde was treated with NaBH₄ (151.3 mg, 4.00 mmol, 2.0 equiv) in MeOH (10.0 mL) to give **S38** (806.8 mg, 1.47 mmol, 73%) as a white foam after purification by silica gel column chromatography (PE:EA = 1.3:1). $[\alpha]_D^{25} = -122.82$ (*c* 1.3, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.15–8.09 (m, 2H), 8.01–7.96 (m, 2H), 7.86–7.79 (m, 2H), 7.61 (t, *J* = 7.5 Hz, 1H), 7.56–7.46 (m, 3H), 7.46–7.35 (m, 3H), 7.30–7.22 (m, 2H), 6.12 (t, *J* = 10.1 Hz, 1H), 5.90 (dd, *J* = 10.2, 3.3 Hz, 1H), 5.67 (dd, *J* = 3.2, 1.9 Hz, 1H), 5.01 (d, *J* = 1.6 Hz, 1H), 4.25–4.17 (m, 1H), 3.83–3.66 (m, 5H), 3.58–3.47 (m, 4H), 2.74 (brs, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.1, 165.7, 165.6, 133.7, 133.3, 130.1, 130.0, 129.8, 129.5, 129.2, 129.1, 128.7, 128.6, 128.4, 98.9, 73.2, 70.5, 70.1, 70.0, 69.6, 67.1, 61.9, 55.7; HRMS (ESI) *m/z* calcd for C₃₀H₃₄NO₁₀ [M+NH₄]⁺ 568.2177, found 568.2174.

Methyl2,3,4-tri-O-benzoyl-6-O-{2-[(1,3-dioxoisoindolin-2-yl)oxy]ethyl}-α-D-mannopyranoside (7b)

Following the general procedure D, **S38** (1.45 g, 2.63 mmol, 1.0 equiv) was treated with PPh₃ (828.8 mg, 3.16 mmol, 1.2 equiv), *N*-hydroxyphthalimide (515.5 mg, 3.16 mmol, 1.2 equiv) and diisopropylazodicarboxylate (530 μ L, 3.16 mmol, 1.2 equiv) in THF (6.0 mL) to give **7b** (1.72 g, 2.47 mmol, 94%) as a white foam after purification by silica gel column chromatography (PE:EA = 1.5:1). $[\alpha]_{D}^{25}$ = -145.23 (*c* 1.2, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.13–8.04 (m, 2H), 7.98–7.91 (m, 2H), 7.87–7.78 (m, 2H), 7.75–7.66 (m, 4H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.56–7.47 (m, 3H), 7.46–7.32 (m, 3H), 7.26–7.22 (m, 2H), 5.88–5.71 (m, 2H), 5.58 (t, *J* = 1.8 Hz, 1H), 4.70 (d, *J* = 1.5 Hz, 1H), 4.42–4.34 (m, 1H), 4.33–4.26 (m, 1H), 4.20–4.06 (m, 1H), 3.98–3.84 (m, 2H), 3.83–3.67 (m, 2H), 3.39 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.9, 165.74, 165.67, 163.6, 134.5, 133.8, 133.5, 133.3, 130.2, 130.0, 129.9, 129.6, 129.44, 129.40, 129.3, 128.9, 128.6, 128.5, 123.6, 98.5, 77.6, 70.7, 70.6, 70.22, 70.20, 70.1, 67.6, 55.5; HRMS (ESI) *m/z* calcd for C₃₈H₃₇N₂O₁₂ [M+NH₄]⁺ 713.2341, found 713.2339.

6-*O*-{2-[(1,3-dioxoisoindolin-2-yl)oxy]ethyl}-1,2,3,4-di-*O*-isopropylidene-α-Dgalactopyranose (7c)

Following the general procedure D, **S39**^[15] (430.0 mg, 1.41 mmol, 1.0 equiv) was treated with PPh₃ (443.5 mg, 1.69 mmol, 1.2 equiv), *N*-hydroxyphthalimide (275.1 mg, 1.69 mmol, 1.2 equiv) and diisopropylazodicarboxylate (335 μ L, 1.69 mmol, 1.2 equiv) in THF (5.0 mL) to give **7c** (596.3 mg, 1.33 mmol, 94%) as a white foam after purification by silica gel column chromatography (PE:EA = 2:1). [α]_D²⁵ = -38.89 (*c* 0.9, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.89–7.78 (m, 2H), 7.78–7.71 (m, 2H),

5.48 (d, J = 5.0 Hz, 1H), 4.55 (dd, J = 7.9, 2.4 Hz, 1H), 4.44–4.32 (m, 2H), 4.27 (dd, J = 5.0, 2.4 Hz, 1H), 4.20 (dd, J = 7.9, 1.8 Hz, 1H), 4.03–3.82 (m, 3H), 3.74 (dd, J = 10.3, 5.5 Hz, 1H), 3.63 (dd, J = 10.3, 6.8 Hz, 1H), 1.47 (s, 3H), 1.43 (s, 3H), 1.32 (s, 3H), 1.30 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.5, 134.5, 129.1, 123.6, 109.3, 108.6, 96.4, 77.3, 71.2, 70.7, 70.6, 70.3, 69.5, 66.8, 26.1, 25.0, 24.5; HRMS (ESI) *m/z* calcd for C₂₂H₃₁N₂O₉ [M+NH₄]⁺ 467.2024, found 467.2019.

Preparation of 7d via intermediates S40 and S41

Methyl 5-*O*-(2-hydroxyethyl)-2,3-*O*-isopropylidene-β-D-ribofuranoside (S42)

Following the general procedure A, **S40**^[13] (2.04 g, 10.00 mmol, 1.0 equiv) was treated with AllBr (1.1 mL, 12.00 mmol, 1.2 equiv) and 60% dispersion of NaH in mineral oil (480.0 mg, 12.00 mmol, 1.2 equiv) in DMF (20.0 mL) to give the crude product **S41** without further purification for next step. Following the general procedure C, the obtained crude product (1.0 equiv) was treated with 2,6-lutidine (2.3 mL, 20.00 mmol, 2.0 equiv), OsO4 (0.0234 mol/L solution in *t*-BuOH, 8.5 mL, 20.0 μ mol, 0.02 equiv) and NaIO₄ (8.50 g, 40.00 mmol, 4.0 equiv) in 1,4-dioxane/H₂O (50.0 mL, $\nu/\nu = 3:1$) to give the aldehyde. The aldehyde was treated with NaBH₄ (756.0 mg, 20.00 mmol, 2.0 equiv) in MeOH (50.0 mL) to give **S42** (1.15 g, 4.63 mmol, 46%) as a colorless oil after purification by silica gel column chromatography (PE:EA = 1:1). $[\alpha]_D^{25} = -50.56$ (*c* 1.6, CHCl₃); 1H NMR (400 MHz, Chloroform-*d*) δ 4.98 (s, 1H), 4.70 (d, *J* = 5.9 Hz, 1H), 4.59 (d, *J* = 5.9 Hz, 1H), 4.37 (d, *J* = 6.1 Hz, 1H), 3.76–3.66 (m, 2H), 3.66–3.46 (m, 4H), 3.35 (s, 3H), 2.71 (brs, 1H), 1.49 (s, 3H), 1.33 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 112.4, 110.0, 85.5, 85.2, 82.0, 72.5, 72.2, 61.7, 55.1, 26.5, 25.0; HRMS (ESI) *m/z* calcd for C₁₁H₂₀O₆Na [M+Na]⁺ 271.1152, found 271.1156.

Methyl 5-*O*-{2-[(1,3-dioxoisoindolin-2-yl)oxy]ethyl}-2,3-*O*-isopropylidene-β-Dribofuranoside (7d)

Following the general procedure D, **S42** (1.10 g, 4.40 mmol, 1.0 equiv) was treated with PPh₃ (1.27 g, 4.84 mmol, 1.2 equiv), *N*-hydroxyphthalimide (790.0 mg, 4.84 mmol, 1.2 equiv) and diisopropylazodicarboxylate (960 μ L, 4.84 mmol, 1.2 equiv) in THF (5.0 mL) to give **7d** (1.21 g, 3.08 mmol, 70%) as a white foam after purification by silica gel column chromatography (PE:EA = 1.5:1). [α]_D²⁵ = -26.24 (*c* 1.6, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.89–7.80 (m, 2H), 7.79–7.67 (m, 2H), 4.92 (s, 1H), 4.64 (d, *J* = 6.0 Hz, 1H), 4.54 (d, *J* = 6.0 Hz, 1H), 4.48–4.31 (m, 2H), 4.31–4.15 (m, 1H), 3.92–3.79 (m, 2H), 3.63–3.44 (m, 2H), 3.30 (s, 3H), 1.44 (s, 3H), 1.29 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.6, 134.6, 129.1, 123.7, 112.4, 109.4, 85.2, 84.9, 82.1, 77.3, 72.3, 69.4, 54.9, 26.5, 25.1; HRMS (ESI) *m*/*z* calcd for C₁₉H₂₇N₂O₈ [M+NH₄]⁺ 411.1762, found 411.1761.

Preparation of 7e via intermediate S44

p-Tolyl 5-*O*-(2-hydroxyethyl)-2,3-*O*-isopropylidene-1-thio-β-_D-ribofuranoside (S44)

To a solution of S43^[14] (2.60 g, 8.77 mmol, 1.0 equiv) in DMF (30.0 mL) were added (2-bromoethoxy)-tert-butyldimethylsilane (2.8 mL, 13.16 mmol, 1.5 equiv), TBAI (325.0 mg, 880.0 μ mol, 0.1 equiv) and 60% dispersion of NaH in mineral oil (526.0 mg, 13.16 mmol, 1.5 equiv) in ice bath under an argon atmosphere. The resultant solution was stirred at room temperature for 3 h. The reaction was quenched with NH₄Cl solution at 0 °C. The resultant mixture was extracted with DCM, and the organic layer was washed with brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated in vacuo to give the crude product without further purification for next step. To a solution of the crude product obtained as above in THF (10.0 mL) was added TBAF (1 mol/L in THF, 13.1 mL, 13.1 mmol, 1.5 equiv) under an argon atmosphere. After stirring for 0.5 h at room temperature, the reaction mixture was extracted with DCM, and the organic layer was washed with brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated in vacuo. The resulting residue was purified by silica gel column chromatography (PE:EA = 2.5:1) to afford S44 (1.81 g, 5.32 mmol, 61%) as a colorless oil. $[\alpha]_{D}^{25} = -107.48$ (c 1.4, CHCl₃); ¹H NMR (400 MHz, Chloroform-d) δ 7.44–7.35 (m, 2H), 7.17–7.07 (m, 2H), 5.45 (d, J = 2.2 Hz, 1H), 4.78–4.69 (m, 2H), 4.39–4.30 (m, 1H), 3.77–3.68 (m, 4H), 3.68–3.57 (m, 2H), 2.52 (brs, 1H), 2.32 (s, 3H), 1.50 (s, 3H), 1.34 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) & 137.9, 132.4, 130.1, 129.9, 113.6, 93.4, 86.1, 85.5, 82.6, 72.9, 71.6, 61.8, 27.1, 25.5, 21.2; HRMS (ESI) m/z calcd for C₁₇H₂₈NO₅S [M+NH₄]⁺ 358.1683, found 358.1688.

p-Tolyl 5-*O*-{2-[(1,3-dioxoisoindolin-2-yl)oxy]ethyl}-2,3-*O*-isopropylidene-1-thioβ-D-ribofuranoside (7e)

Following the general procedure D, **S43** (435.0 mg, 1.28 mmol, 1.0 equiv) was treated with PPh₃ (403.3 mg, 1.54 mmol, 1.2 equiv), *N*-hydroxyphthalimide (251.0 mg, 1.54 mmol, 1.2 equiv) and diisopropylazodicarboxylate (310 μ L, 1.54 mmol, 1.2 equiv) in THF (5.0 mL) to give **7d** (561.1 mg, 1.16 mmol, 91%) as a white foam after purification by silica gel column chromatography (PE:EA = 2:1). [a]_D²⁵ = -151.40 (c 0.8, CHCl₃); ¹H NMR (400 MHz, Chloroform-d) δ 7.91–7.80 (m, 2H), 7.81–7.72 (m, 2H), 7.43–7.34 (m, 2H), 7.16–7.00 (m, 2H), 5.40 (d, J = 1.8 Hz, 1H), 4.88–4.64 (m, 2H), 4.46–4.32 (m, 2H), 4.26 (t, J = 6.3 Hz, 1H), 3.98–3.82 (m, 2H), 3.82–3.65 (m, 2H), 2.32 (s, 3H), 1.46 (s, 3H), 1.30 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 163.6, 137.7, 134.6, 132.2, 130.5, 129.9, 129.0, 123.7, 113.4, 93.3, 85.9, 85.3, 82.6, 77.3, 71.7, 69.6, 27.0, 25.5, 21.2; HRMS (ESI) *m/z* calcd for C₂₅H₃₁N₂O₇S [M+NH₄]⁺ 503.1846, found 503.1840.

Preparation of 7f via intermediate S46-S49

Methyl 2,3,4-tri-*O*-benzoyl-6-*O*-*tert*-butyldimethylsilyl- α -D-mannopyranosyl-(1 \rightarrow 6)-2,3,4-tri-*O*-benzoyl- α -D-mannopyranoside (S46)

To a solution of **S45**^[12] (1.05 g, 1.50 mmol, 1.0 equiv), **S37** (1.14 g, 2.25 mmol, 1.5

equiv) and freshly activated 4 Å MS in DCM (10.0 mL) were added N-iodosuccimide (NIS) (675.0 mg, 3.00 mmol, 2.0 equiv) and silver triflate (AgOTf) (77.0 mg, 0.3 mmol, 0.2 equiv) in ice bath under an argon atmosphere. The resultant solution was stirred in ice bath for 1 h. The reaction was quenched with saturated NaHCO₃ solution and Na₂S₂O₃ solution in ice bath. The resultant mixture was extracted with DCM, and the organic layer was washed with brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated *in vacuo*. The resulting residue was purified by silica gel column chromatography (PE:EA = 9:1) to afford S46 (1.35 g, 1.23) mmol, 82%) as a white foam. $[\alpha]_{D}^{25} = -85.77$ (c 2.5, CHCl₃); ¹H NMR (400 MHz, Chloroform-d) & 8.28-8.19 (m, 2H), 8.18-8.13 (m, 2H), 8.13-8.02 (m, 4H), 7.99-7.88 (m, 4H), 7.68–7.56 (m, 5H), 7.55–7.40 (m, 8H), 7.37–7.32 (m, 5H), 6.13–6.04 (m, 2H), 6.03-5.96 (m, 2H), 5.83-5.79 (m, 2H), 5.25-5.18 (m, 1H), 5.12 (d, J = 1.2 Hz, 1H), 4.51–4.43 (m, 1H), 4.24–4.15 (m, 2H), 3.83 (dd, *J* = 10.8, 1.8 Hz, 1H), 3.81–3.73 (m, 2H), 3.71 (s, 3H), 0.91 (s, 9H), 0.04--0.04 (m, 6H); ¹³C NMR (101 MHz, Chloroformd) & 165.8, 165.7, 165.6, 165.5, 165.40, 165.35, 133.51, 133.47, 133.4, 133.21, 133.17, 133.0, 130.0, 129.88, 129.85, 129.77, 129.75, 129.6, 129.5, 129.43, 129.40, 129.2, 129.1, 128.8, 128.54, 128.53, 128.4, 128.3, 98.7, 97.6, 77.3, 71.5, 70.7, 70.6, 70.3, 69.5, 67.2, 66.7, 66.5, 61.9, 55.6, 25.8, 18.2, -5.5; HRMS (ESI) m/z calcd for C₆₁H₆₆NO₁₇Si [M+NH₄]⁺ 1112.4095, found 1112.4115.

Methyl 2,3,4-tri-*O*-benzoyl- α -D-mannopyranosyl- $(1\rightarrow 6)$ -2,3,4-tri-*O*-benzoyl- α -D-mannopyranoside (S47)

To a solution of **S46** (1.35 g, 1.23 mmol, 1.0 equiv) in THF (10.0 mL) was added HF·Py (1.2 mL) in ice bath under an argon atmosphere. The resultant solution was stirred at room temperature for 4 h. The reaction was quenched with saturated NaHCO₃ solution. The resultant mixture was extracted with DCM, and the organic layer was washed with

brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated *in vacuo*. The resulting residue was purified by silica gel column chromatography (PE:EA = 1.5:1) to afford **S47** (1.17 g, 1.19 mmol, 97%) as a white foam. $[\alpha]_{\rm D}^{25} = -102.26$ (*c* 1.6, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.20–8.14 (m, 2H), 8.11–8.05 (m, 2H), 8.04–7.99 (m, 2H), 7.99–7.93 (m, 2H), 7.90–7.80 (m, 4H), 7.64–7.51 (m, 5H), 7.51–7.37 (m, 7H), 7.34–7.26 (m, 6H), 6.09–6.00 (m, 2H), 5.92 (dd, *J* = 10.1, 3.3 Hz, 1H), 5.82 (t, *J* = 10.1 Hz, 1H), 5.78–5.70 (m, 2H), 5.17 (d, *J* = 1.4 Hz, 1H), 5.03 (d, *J* = 1.4 Hz, 1H), 4.44–4.33 (m, 1H), 4.08 (dd, *J* = 10.9, 5.5 Hz, 1H), 4.06–4.00 (m, 1H), 3.79 (dd, *J* = 10.9, 2.0 Hz, 1H), 3.68–3.58 (m, 4H), 3.58–3.51 (m, 1H), 2.59 (t, *J* = 6.5 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.6, 165.7, 165.6, 165.5, 165.4, 165.3, 133.7, 133.6, 133.54, 133.50, 133.2, 130.04, 129.99, 129.96, 129.8, 129.7, 129.4, 129.3, 129.2, 129.0, 128.9, 128.8, 128.7, 128.6, 128.5, 128.3, 98.9, 97.8, 71.1, 70.5, 70.2, 69.6, 69.4, 67.2, 67.1, 66.8, 61.1, 55.6; HRMS (ESI) *m/z* calcd for C₅₅H₅₂NO₁₇ [M+NH₄]⁺998.3230, found 998.3249.

Methyl 6-*O*-allyl-2,3,4-tri-*O*-benzoyl-α-D-mannopyranosyl-(1→6)-2,3,4-tri-*O*benzoyl-α-D-mannopyranoside (S48)

To a solution of **S47** (346.0 mg, 352.7 μ mol, 1.0 equiv) in DCM (3.0 mL) were added AllBr (72 μ L, 846.5 μ mol, 2.4 equiv), AgOTf (198.0 mg, 775.9 μ mol, 2.2 equiv) and 2,6-di-*tert*-butylpyridine (235 μ L, 1.06 mmol, 3.0 equiv) in ice bath under an argon atmosphere. The resultant solution was stirred for 3 h at room temperature. The resultant mixture was diluted with DCM and washed with 1M HCl solution and brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated *in vacuo*. The resulting residue was purified by silica gel column chromatography (PE:EA = 2:1) to afford **S48** (246.0 mg, 240.9 μ mol, 68%) as a white foam. [α]²⁵_D = -91.83 (*c* 3.3, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.22–8.14 (m, 2H), 8.13–8.05 (m, 2H), 8.05–7.97 (m, 4H), 7.91–7.80 (m, 4H), 7.61–7.50 (m, 5H), 7.49–7.36 (m, 7H), 7.35–7.25 (m, 6H), 6.07 (t, J = 10.1 Hz, 1H), 5.98–5.90 (m, 3H), 5.79–5.74 (m, 2H), 5.74–5.65 (m, 1H), 5.21–5.10 (m, 2H), 5.10–4.97 (m, 2H), 4.46– 4.35 (m, 1H), 4.28–4.20 (m, 1H), 4.14 (dd, J = 10.9, 5.6 Hz, 1H), 3.93–3.74 (m, 3H), 3.63 (s, 3H), 3.56 (dd, J = 11.0, 5.2 Hz, 1H), 3.48 (dd, J = 10.9, 2.5 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-d) δ 165.8, 165.6, 165.5, 165.4, 134.4, 133.6, 133.52, 133.48, 133.4, 133.2, 133.1, 130.1, 130.0, 129.92, 129.90, 129.88, 129.8, 129.5, 129.4, 129.2, 129.1, 128.9, 128.6, 128.5, 128.4, 117.0, 98.8, 97.6, 72.4, 70.6, 70.4, 70.34, 70.25, 70.2, 69.5, 68.7, 67.3, 67.1, 66.6, 55.6; HRMS (ESI) m/z calcd for C₅₈H₅₆NO₁₇ [M+NH₄]⁺ 1038.3543, found 1038.3563.

Methyl 2,3,4-tri-*O*-benzoyl-6-*O*-(2-hydroxyethyl)- α -D-mannopyranosyl-(1 \rightarrow 6)-2,3,4-tri-*O*-benzoyl- α -D-mannopyranoside (S49)

Following the general procedure C, **S48** (1.09 g, 1.07 mmol, 1.0 equiv) was treated with 2,6-lutidine (250 μ L, 2.14 mmol, 2.0 equiv), OsO4 (0.0234 mol/L solution in *t*-BuOH, 1.0 mL, 22.0 mmol, 0.02 equiv) and NaIO₄ (920.0 mg, 4.31 mmol, 4.0 equiv) in 1,4-dioxane/H₂O (12.0 mL, $\nu/\nu = 3:1$) to give the aldehyde. The aldehyde was treated with NaBH₄ (40.0 mg, 1.07 mmol, 1.0 equiv) in MeOH (10.0 mL) to give **S49** (739.5 mg, 721.5 μ mol, 68%) as a white foam after purification by silica gel column chromatography (PE:EA = 1.5:1). [α]_D²⁵ = -99.76 (*c* 1.9, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.20–8.16 (m, 2H), 8.14–8.07 (m, 2H), 8.07–7.96 (m, 4H), 7.94–7.78 (m, 4H), 7.62–7.51 (m, 5H), 7.51–7.37 (m, 7H), 7.37–7.31 (m, 2H), 7.31–7.26 (m, 4H), 6.10 (t, *J* = 10.0 Hz, 1H), 6.04 (t, *J* = 10.1 Hz, 1H), 5.99 (dd, *J* = 10.2, 3.3 Hz, 1H), 5.79–5.71 (m, 2H), 5.17 (d, *J* = 1.3 Hz, 1H), 5.04 (s, 1H), 4.39 (dd, *J* = 9.9, 5.3 Hz, 1H), 4.22 (d, *J* = 7.4 Hz, 1H), 4.10 (dd, *J* = 10.9, 5.6 Hz, 1H), 3.79 (dd, *J* = 10.9, 1.7 Hz, 1H), 3.73–3.59 (m, 6H), 3.58–3.51 (m, 2H), 3.47–3.35 (m,

1H), 2.68 (s, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.1, 165.8, 165.7, 165.6, 165.5, 165.4, 133.7, 133.6, 133.3, 133.2, 130.13, 130.05, 130.0, 129.9, 129.8, 129.43, 129.42, 129.3, 129.24, 129.16, 129.1, 128.9, 128.7, 128.6, 128.4, 98.9, 97.8, 73.1, 70.6, 70.4, 70.3, 70.1, 70.0, 69.5, 69.2, 67.1, 67.0, 66.8, 61.8, 55.7; HRMS (ESI) *m/z* calcd for C₅₇H₅₆NO₁₈ [M+NH₄]⁺ 1042.3492, found 1042.3523.

 $\label{eq:methyl} Methyl 2,3,4-tri-O-benzoyl-6-O-\{2-[(1,3-dioxoisoindolin-2-yl)oxy]ethyl\}-\alpha-d-drifted mannopyranosyl-(1\to6)-2,3,4-tri-O-benzoyl-\alpha-d-drifted mannopyranoside (7f)$

Following the general procedure D, S49 (653.0 mg, 637.1 µmol, 1.0 equiv) was treated with PPh₃ (201.9 mg, 770.0 µmol, 1.2 equiv), N-hydroxyphthalimide (125.6 mg, 770.0 μ mol, 1.2 equiv) and diisopropylazodicarboxylate (150 μ L, 770.0 μ mol, 1.2 equiv) in THF (5.0 mL) to give **7f** (674.1 mg, 576.1 μ mol, 91%) as a white foam after purification by silica gel column chromatography (PE:EA = 1.5:1). $\left[\alpha\right]_{D}^{25} = -89.28$ (c 1.8, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.24–8.14 (m, 2H), 8.12–8.03 (m, 2H), 8.03–7.95 (m, 4H), 7.90–7.76 (m, 4H), 7.74–7.58 (m, 5H), 7.58–7.47 (m, 6H), 7.46–7.40 (m, 3H), 7.39-7.34 (m, 2H), 7.33-7.26 (m, 6H), 6.07 (t, J = 10.1 Hz, 1H), 5.97-5.88 (m, 2H), 5.81 (t, J = 10.0 Hz, 1H), 5.76 (d, J = 1.5 Hz, 1H), 5.69 (d, J = 2.9 Hz, 1H), 5.05 (s, 1H), 4.83 (s, 1H), 4.38 (dd, J = 10.0, 3.6 Hz, 1H), 4.26–4.10 (m, 3H), 4.05 (dd, J = 11.0, 3.6 Hz, 1H), 4.26–4.10 (m, 3H), 4.26–4.10 (m, 3H 5.3 Hz, 1H), 3.78–3.67 (m, 1H), 3.67–3.46 (m, 7H); ¹³C NMR (101 MHz, Chloroformd) & 166.0, 165.9, 165.8, 165.7, 165.6, 165.5, 163.5, 134.5, 133.8, 133.7, 133.64, 133.56, 133.4, 133.3, 130.3, 130.2, 130.1, 130.0, 129.6, 129.5, 129.43, 129.40, 129.3, 129.0, 128.9, 128.71, 128.65, 128.5, 123.6, 99.0, 97.6, 77.7, 70.7, 70.6, 70.5, 70.3, 70.11, 70.08, 69.7, 69.6, 67.4, 67.2, 66.6, 55.8; HRMS (ESI) m/z calcd for C₆₅H₅₉N₂O₂₀ [M+NH₄]⁺ 1187.3656, found 1187.3689.

Synthesis of branched-chain sugars and higher-carbon sugars General Procedure E:

A mixture of sugar-based *N*-alkoxyphthalimide (1.0 equiv), radical acceptor (3.0 equiv), Hantzsch ester (1.5 equiv) and *fac*-Ir(ppy)₃ (0.01 equiv) was placed in a 10 mL of clearcolored glass reaction tube. 1,4-Dioxane was added into the tube to result in 0.05 M of a mixture, then the mixture was evacuated and backfilled with argon for three times. After stirring for 3 h at 35 °C under the irradiation of blue LEDs (450 nm-470 nm), the mixture was diluted with CH₂Cl₂, and sequentially washed with saturated NaHCO₃ solution and brine. The organic layer was collected, dried over anhydrous Na₂SO₄, filtered off the solid, and concentrated *in vacuo*. The residue was purified by flash silica gel column chromatography to give the desired product.

Methyl 2,3,6-tri-*O*-benzoyl-4-*O*-(2-hydroxyethyl)-4-*C*-[2-(methoxycarbonyl)allyl]-α-D-galactopyranoside (3a) and Methyl 2,3,6-tri-*O*-benzoyl-4-*O*-(2-hydroxyethyl)-4-*C*-[2-(methoxycarbonyl)allyl]-α-D-glucopyranoside (3a')

Following the general procedure E, **1a** (139.2 mg, 200.0 μ mol, 1.0 equiv) and **2a** (152.7 mg, 600.5 μ mol, 3.0 equiv) were treated with hantzsch ester (76.1 mg, 300.4 μ mol, 1.5 equiv) and *fac*-Ir(ppy)₃ (1.3 mg, 2.0 μ mol, 0.01 equiv) in 1,4-dioxane (4.0 mL) to give **3a** (49.0 mg, 75.6 μ mol, 38%) and **3a'** (27.6 mg, 42.6 μ mol, 21%) as white foam after purification by silica gel column chromatography (PE:EA = 1.5:1).

For **3a**: $[a]_{D}^{25} = +25.91$ (*c* 3.0, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09–8.03 (m, 2H), 8.01–7.94 (m, 2H), 7.94–7.88 (m, 2H), 7.60–7.30 (m, 9H), 6.37 (s, 1H), 5.99 (d, *J* = 10.5 Hz, 1H), 5.94 (s, 1H), 5.55 (dd, *J* = 10.5, 3.6 Hz, 1H), 5.19 (d, *J* = 3.6 Hz, 1H), 4.96 (dd, *J* = 12.0, 1.4 Hz, 1H), 4.61 (dd, *J* = 12.0, 8.4 Hz, 1H), 4.28–4.18 (m, 2H), 4.07–3.98 (m, 1H), 3.94–3.81 (m, 2H), 3.62 (s, 3H), 3.39 (s, 3H), 3.13 (d, *J* = 14.2 Hz, 1H), 2.87 (d, *J* = 14.3 Hz, 1H), 2.47 (s, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 137.8, 166.6, 166.1, 160.0, 134.6, 133.5, 133.3, 133.2, 130.8, 130.0, 129.9, 129.8, 129.7, 129.5, 129.2, 128.64, 128.55, 128.4, 96.9, 79.9, 71.7, 71.2, 70.9, 67.1, 64.3, 62.6, 55.4, 52.4, 32.3; HRMS (ESI) *m/z* calcd for C₃₅H₄₀NO₁₂ [M+NH₄]⁺ 666.2545, found 666.2542.

For **3a'**: $[a]_{D}^{25} = +99.25$ (*c* 0.8, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09–8.01 (m, 4H), 7.97–7.91 (m, 2H), 7.61–7.55 (m, 1H), 7.54–7.43 (m, 4H), 7.42–7.32 (m, 4H), 6.14 (d, *J* = 10.4 Hz, 1H), 6.06 (d, *J* = 1.3 Hz, 1H), 5.71 (s, 1H), 5.35 (dd, *J* = 10.4, 4.0 Hz, 1H), 5.19 (d, *J* = 4.0 Hz, 1H), 4.78–4.71 (m, 1H), 4.60–4.52 (m, 2H), 3.94–3.88 (m, 1H), 3.83–3.75 (m, 1H), 3.71–3.63 (m, 1H), 3.63–3.55 (m, 1H), 3.55–3.43 (m, 5H), 3.36 (s, 3H), 2.97 (d, *J* = 14.2 Hz, 1H), 2.38 (s, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.2, 166.5, 166.0, 165.8, 138.3, 133.5, 133.4, 130.0, 129.9, 129.8, 129.7, 129.5, 129.1, 128.6, 128.5, 126.7, 96.7, 78.7, 71.5, 69.7, 68.9, 64.0, 62.8, 62.1, 55.3, 51.8, 32.2; HRMS (ESI) *m/z* calcd for C₃₅H₄₀NO₁₂ [M+NH₄]⁺ 666.2545, found 666.2547.

Methyl 2,3-di-O-benzoyl-6-O-tert-butyldiphenylsilyl-4-O-(2-hydroxyethyl)-4-C-

[2-(methoxycarbonyl)allyl]-α-D-talopyranoside (3c)

Following the general procedure E, **1c** (166.0 mg, 200.2 μ mol, 1.0 equiv) and **2a** (152.7 mg, 603.6 μ mol, 3.0 equiv) were treated with hantzsch ester (76.3 mg, 301.3 μ mol, 1.5 equiv) and *fac*-Ir(ppy)₃ (1.3 mg, 2.0 μ mol, 0.01 equiv) in 1,4-dioxane (4.0 mL) to give **3c** (74.6 mg, 95.4 μ mol, 48%) as a white foam after purification by silica gel column chromatography (PE:EA = 2:1). $[\alpha]_{D}^{25} = -43.32$ (*c* 2.8, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.00–7.94 (m, 2H), 7.90–7.85 (m, 2H), 7.81–7.73 (m, 4H), 7.57–7.50 (m, 2H), 7.48–7.34 (m, 10H), 6.26 (s, 1H), 5.64 (s, 1H), 5.55–5.49 (m, 2H), 4.91 (d, *J* = 2.4 Hz, 1H), 4.23–4.16 (m, 1H), 4.16–4.10 (m, 2H), 3.82–3.74 (m, 2H), 3.59 (s, 3H), 3.57–3.53 (m, 1H), 3.52–3.44 (m, 4H), 3.13 (d, *J* = 14.3 Hz, 1H), 2.60 (d, *J* = 14.3 Hz, 1H), 2.09 (s, 1H), 1.09 (s, 9H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.6, 165.9, 165.5, 135.9, 135.8, 135.5, 133.6, 133.4, 133.3, 130.0, 129.9, 129.8, 129.7, 128.6, 128.5, 127.9, 127.8, 98.6, 77.2, 75.5, 70.4, 69.1, 65.7, 62.8, 62.4, 55.5, 52.4, 32.4, 26.9, 19.3; HRMS (ESI) *m/z* calcd for C₄₄H₅₀O₁₁SiNa [M+Na]⁺ 805.3015, found 805.3019.

Methyl 2,3-di-*O*-benzoyl-4-*O*-(2-hydroxyethyl)-4-*C*-[2-(methoxycarbonyl)allyl]-α-D-talopyranoside (3d)

Following the general procedure E, **1d** (118.3 mg, 200.0 μ mol, 1.0 equiv) and **2a** (152.7 mg, 603.6 μ mol, 3.0 equiv) were treated with hantzsch ester (76.3 mg, 301.3 μ mol, 1.5 equiv) and *fac*-Ir(ppy)₃ (1.3 mg, 2.0 μ mol, 0.01 equiv) in 1,4-dioxane (4.0 mL) to give **3d** (68.5 mg, 125.9 μ mol, 63%) as a white foam after purification by silica gel column chromatography (PE:EA = 1:2). $[\alpha]_{D}^{25} = -14.8$ (*c* 2.4, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05–7.98 (m, 2H), 7.93–7.87 (m, 2H), 7.58–7.51 (m, 2H), 7.44–7.36 (m, 4H), 6.34 (s, 1H), 5.67 (s, 1H), 5.59 (dd, *J* = 3.7, 1.8 Hz, 1H), 5.48 (d, *J* = 3.8 Hz,

1H), 4.90 (d, J = 1.6 Hz, 1H), 4.19 (dd, J = 11.9, 5.7 Hz, 1H), 4.10 (dd, J = 12.1, 2.9 Hz, 1H), 4.01–3.94 (m, 1H), 3.94–3.86 (m, 2H), 3.79–3.70 (m, 1H), 3.69 (s, 3H), 3.66–3.59 (m, 1H), 3.42 (s, 3H), 3.17 (d, J = 14.0 Hz, 1H), 2.97 (s, 1H), 2.75 (d, J = 14.0 Hz, 1H), 2.19 (s, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.7, 165.9, 165.5, 135.2, 133.5, 131.0, 130.0, 129.7, 129.6, 128.7, 128.5, 99.1, 78.0, 73.2, 70.1, 68.9, 66.0, 62.3, 61.7, 55.5, 52.6, 32.1; HRMS (ESI) *m*/*z* calcd for C₂₈H₃₂O₁₁Na [M+Na]⁺ 567.1837, found 567.1824.

Methyl 2,3,6-tri-*O*-benzoyl-4-*O*-(2-hydroxyethyl)-4-*C*-[2-(methoxycarbonyl)allyl]α-D-talopyranoside (3e)

Following the general procedure E, **1e** (139.0 mg, 200.0 μ mol, 1.0 equiv) and **2a** (152.6 mg, 600.0 μ mol, 3.0 equiv) were treated with hantzsch ester (75.9 mg, 300.0 μ mol, 1.5 equiv) and *fac*-Ir(ppy)₃ (1.3 mg, 2.0 μ mol, 0.01 equiv) in 1,4-dioxane (4.0 mL) to give **3e** (108.8 mg, 167.8 μ mol, 84%) as a white foam after purification by silica gel column chromatography (PE:EA = 1.5:1).

Procedure for Scale Preparation of Compound 3e

Following the general procedure E, **1e** (4.18 g, 6.00 mmol, 1.0 equiv) and **2a** (4.58 g, 18.00 mmol, 3.0 equiv) were treated with hantzsch ester (2.28 g, 9.0 mmol, 1.5 equiv) and *fac*-Ir(ppy)₃ (39.3 mg, 60.0 μ mol, 0.01 equiv) in 1,4-dioxane (60.0 mL) to give **3e** (2.27 g, 3.50 mmol, 58%) as a white foam after purification by silica gel column chromatography (PE:EA = 2:1). $[\alpha]_D^{25}$ = +47.08 (*c* 1.4, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 (d, *J* = 7.3 Hz, 2H), 8.02–7.92 (m, 4H), 7.61–7.51 (m, 3H), 7.49–7.36 (m, 6H), 6.40 (s, 1H), 5.81 (s, 1H), 5.64 (d, *J* = 3.6 Hz, 1H), 5.59–5.52 (m, 1H), 4.96 (d, *J* = 2.5 Hz, 1H), 4.95–4.85 (m, 2H), 4.33–4.23 (m, 1H), 4.01–3.82 (m, 2H), 3.76–3.67 (m, 1H), 3.67–3.60 (m, 4H), 3.43 (s, 3H), 3.24 (d, *J* = 14.4 Hz, 1H), 2.28 (brs, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.4, 166.7, 165.8, 165.5, 135.0, 133.43, 133.42, 133.2, 130.8, 130.0, 129.9, 129.7, 129.6, 129.50,

129.46, 128.7, 128.5, 128.4, 98.5, 77.3, 72.3, 70.1, 69.0, 66.0, 63.7, 62.4, 55.5, 52.4, 32.3; HRMS (ESI) *m/z* calcd for C₃₅H₄₀NO₁₂ [M+NH₄]⁺ 666.2545, found 666.2549.

Methyl {methyl 2,3-di-*O*-benzoyl-4-*O*-(2-Hydroxyethyl)-4-*C*-[2-(methoxycarbonyl)allyl]-α-D-talopyranosyluronate} (3f)

Following the general procedure E, **1f** (62.3 mg, 100.2 μ mol, 1.0 equiv) and **2a** (76.0 mg, 300.0 μ mol, 3.0 equiv) were treated with hantzsch ester (38.0 mg, 150.0 μ mol, 1.5 equiv) and *fac*-Ir(ppy)₃ (0.7 mg, 1.0 μ mol, 0.01 equiv) in 1,4-dioxane (2.0 mL) to give **3f** (32.1 mg, 51.9 μ mol, 52%) as a white foam after purification by silica gel column chromatography (PE:EA = 1.5:1). [α]_p²⁵ = -2.38 (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.00–7.95 (m, 2H), 7.94–7.89 (m, 2H), 7.60–7.51 (m, 2H), 7.46–7.35 (m, 4H), 6.40 (s, 1H), 6.00 (s, 1H), 5.60–5.47 (m, 2H), 5.23 (s, 1H), 4.66 (s, 1H), 3.91 (dd, *J* = 6.1, 3.5 Hz, 1H), 3.89–3.80 (m, 4H), 3.73–3.64 (m, 4H), 3.61–3.56 (m, 1H), 3.51 (s, 3H), 3.36 (d, *J* = 14.3 Hz, 1H), 2.98 (d, *J* = 14.2 Hz, 1H), 2.56 (brs, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.3, 167.5, 165.6, 165.5, 136.0, 135.2, 133.4, 133.3, 130.5, 129.9, 129.7, 129.6, 129.4, 128.6, 128.4, 99.0, 72.7, 69.8, 68.5, 65.2, 62.0, 56.3, 52.6, 52.4, 31.7; HRMS (ESI) *m/z* calcd for C₂₉H₃₆NO₁₂ [M+NH4]⁺ 590.2232, found 590.2233.

Following the general procedure E, 1g (198.2 mg, 199.9 µmol, 1.0 equiv) and 2a (152.7

mg, 603.6 μ mol, 3.0 equiv) were treated with hantzsch ester (76.3 mg, 301.3 μ mol, 1.5 equiv) and fac-Ir(ppy)₃ (1.3 mg, 2.0 µmol, 0.01 equiv) in 1,4-dioxane (4.0 mL) to give 3g (99.1 mg, 104.5 μ mol, 52%) as a white foam after purification by silica gel column chromatography (PE:EA = 2:1). $[\alpha]_{D}^{25} = +39.83$ (c 2.4, CHCl₃); ¹H NMR (400 MHz, Chloroform-d) & 8.01–7.96 (m, 2H), 7.96–7.92 (m, 2H), 7.60–7.51 (m, 2H), 7.46–7.37 (m, 4H), 6.38 (s, 1H), 5.77 (s, 1H), 5.57 (d, J = 3.6 Hz, 1H), 5.56–5.53 (m, 1H), 4.92 (d, J = 2.3 Hz, 1H), 4.77-4.58 (m, 3H), 4.12 (d, J = 8.6 Hz, 1H), 4.03-3.82 (m, 2H),3.78-3.67 (m, 4H), 3.66-3.60 (m, 1H), 3.44 (s, 3H), 3.22 (d, J = 14.4 Hz, 1H), 2.75 (d, J = 14.3 Hz, 1H), 2.46–2.37 (m, 1H), 2.35–2.22 (m, 2H), 2.03 (s, 3H), 2.01–1.94 (m, 1H), 1.90–1.78 (m, 5H), 1.73–1.65 (m, 1H), 1.61–1.49 (m, 2H), 1.49–1.34 (m, 8H), 1.31–1.17 (m, 4H), 1.16–0.97 (m, 6H), 0.95–0.90 (m, 6H), 0.65 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.4, 170.7, 167.4, 165.8, 165.5, 135.0, 133.4, 130.7, 129.9, 129.7, 129.4, 128.6, 128.4, 98.4, 77.1, 74.4, 72.2, 70.0, 68.9, 65.9, 63.0, 62.3, 56.5, 56.0, 55.4, 52.4, 42.8, 41.9, 40.4, 40.2, 35.8, 35.4, 35.0, 34.6, 32.2, 32.2, 31.3, 31.0, 28.2, 27.0, 26.6, 26.3, 24.2, 23.4, 21.5, 20.8, 18.3, 12.1; HRMS (ESI) m/z calcd for C₅₄H₇₆NO₁₄ [M+NH₄]⁺ 962.5260, found 962.5281.

Methyl 2,3-di-*O*-benzoyl-6-*O*-[4-(*N*,*N*-dipropylsulfamoyl)benzoyl]-4-*O*-(2hydroxyethyl)-4-*C*-[2-(methoxycarbonyl)allyl]-α-D-talopyranoside (3h)

Following the general procedure E, **1h** (171.8 mg, 200.2 μ mol, 1.0 equiv) and **2a** (152.7 mg, 603.6 μ mol, 3.0 equiv) were treated with hantzsch ester (76.3 mg, 301.3 μ mol, 1.5 equiv) and *fac*-Ir(ppy)₃ (1.3 mg, 2.0 μ mol, 0.01 equiv) in 1,4-dioxane (4.0 mL) to give **3h** (110.2 mg, 135.8 μ mol, 68%) as a white foam after purification by silica gel column chromatography (PE:EA = 2:1). $[\alpha]_{D}^{25}$ = +51.83 (*c* 1.8, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.21–8.16 (m, 2H), 8.02–7.98 (m, 2H), 7.98–7.94 (m, 2H), 7.92–7.88

(m, 2H), 7.62–7.52 (m, 2H), 7.47–7.37 (m, 4H), 6.41 (s, 1H), 5.80 (s, 1H), 5.65 (d, J = 3.6 Hz, 1H), 5.59–5.55 (m, 1H), 5.00–4.89 (m, 3H), 4.30–4.24 (m, 1H), 4.01–3.88 (m, 2H), 3.78–3.71 (m, 1H), 3.69–3.61 (m, 4H), 3.43 (s, 3H), 3.23 (d, J = 14.4 Hz, 1H), 3.15–3.08 (m, 4H), 2.84 (d, J = 14.3 Hz, 1H), 2.25 (brs, 1H), 1.62–1.49 (m, 4H), 0.93–0.83 (m, 6H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.4, 165.8, 165.5, 165.3, 144.5, 134.9, 133.5, 133.3, 131.0, 130.2, 129.9, 129.7, 129.4, 129.3, 128.7, 128.5, 127.1, 98.5, 77.3, 72.2, 70.0, 68.9, 66.0, 64.4, 62.4, 52.5, 49.9, 32.3, 22.0, 11.2; HRMS (ESI) *m/z* calcd for C₄₁H₄₉NO₁₄NaS [M+Na]⁺ 834.2766, found 834.2778.

Methyl 2,3-di-*O*-benzoyl-4-*O*-(2-hydroxyethyl)-4-*C*-[2-(methoxycarbonyl)allyl]-6-*O*-{2-(*S*)-(6-methoxynaphthalen-2-yl)propanoyl}-α-D-talopyranoside (3i)

Following the general procedure E, **1i** (160.8 mg, 200.2 μ mol, 1.0 equiv) and **2a** (152.7 mg, 603.6 μ mol, 3.0 equiv) were treated with hantzsch ester (76.3 mg, 301.3 μ mol, 1.5 equiv) and *fac*-Ir(ppy)₃ (1.3 mg, 2.0 μ mol, 0.01 equiv) in 1,4-dioxane (4.0 mL) to give **3i** (87.8 mg, 116.1 μ mol, 58%) as a white foam after purification by silica gel column chromatography (PE:EA = 5:1). [α]_D²⁵ = +20.18 (*c* 3.1, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98–7.94 (m, 2H), 7.93–7.89 (m, 2H), 7.73–7.63 (m, 3H), 7.58–7.49 (m, 2H), 7.44–7.35 (m, 5H), 7.13 (dd, *J* = 8.9, 2.5 Hz, 1H), 7.09 (d, *J* = 2.3 Hz, 1H), 6.32 (s, 1H), 5.70 (s, 1H), 5.51 (d, *J* = 3.5 Hz, 1H), 5.48–5.45 (m, 1H), 4.74 (d, *J* = 2.3 Hz, 1H), 4.70–4.62 (m, 2H), 4.06–3.99 (m, 1H), 3.95–3.82 (m, 6H), 3.74–3.66 (m, 1H), 3.66–3.57 (m, 4H), 3.15 (d, *J* = 14.3 Hz, 1H), 2.96 (s, 3H), 2.70 (d, *J* = 14.3 Hz, 1H), 2.23 (s, 1H), 1.62 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.8, 167.4, 165.8, 165.5, 157.7, 135.5, 134.9, 133.8, 133.5, 130.8, 130.0, 129.7, 129.5, 129.2, 129.0, 128.7, 128.5, 127.2, 126.3, 126.1, 119.1, 105.6, 98.3, 77.1, 72.1, 70.0, 68.9, 65.9, 63.6, 62.4, 55.4, 54.9, 52.4, 45.6, 32.2, 18.6; HRMS (ESI) *m/z* calcd for C4₂H₄₄O₁₃Na [M+Na]⁺779.2674, found 779.2665.

p-Tolyl 4-*O*-(2-hydroxyethyl)-2,3-*O*-isopropylidene-4-*C*-[2-(methoxycarbonyl)allyl]-1-thio-α-L-talopyranoside (3j)

Following the general procedure E, **1j** (100.3 mg, 200.0 μ mol, 1.0 equiv) and **2a** (152.3 mg, 598.7 μ mol, 3.0 equiv) were treated with hantzsch ester (76.3 mg, 301.3 μ mol, 1.5 equiv) and *fac*-Ir(ppy)₃ (1.3 mg, 2.0 μ mol, 0.01 equiv) in 1,4-dioxane (4.0 mL) to give **3j** (70.3 mg, 155.5 μ mol, 78%) as a white foam after purification by silica gel column chromatography (PE:EA = 2:1). $[a]_{D}^{25} = -52.56$ (*c* 0.4, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.55–7.41 (m, 2H), 7.18–7.05 (m, 2H), 6.31 (s, 1H), 5.74 (s, 1H), 4.83 (d, *J* = 9.1 Hz, 1H), 4.30 (d, *J* = 4.9 Hz, 1H), 4.23–4.11 (m, 1H), 3.94 (dd, *J* = 9.1, 5.0 Hz, 1H), 3.79–3.71 (m, 5H), 3.71–3.62 (m, 2H), 2.80 (d, *J* = 14.7 Hz, 1H), 2.59 (brs, 1H), 2.44 (d, *J* = 14.7 Hz, 1H), 2.33 (s, 3H), 1.55 (s, 3H), 1.46 (d, *J* = 6.9 Hz, 3H), 1.37 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.0, 138.2, 135.5, 133.4, 129.6, 129.3, 128.6, 110.4, 79.4, 76.9, 75.0, 74.2, 72.4, 63.5, 62.2, 52.2, 34.3, 28.2, 25.7, 21.2, 13.0; HRMS (ESI) *m/z* calcd for C₂₃H₃₂O₇SNa [M+Na]⁺ 475.1761, found 475.1756.

p-Tolyl 4-*O*-(2-hydroxyethyl)-4-*C*-[2-(methoxycarbonyl)allyl]-1-thio-α-L-talopyranoside (3k)

Following the general procedure E, **1k** (91.9 mg, 200.0 μ mol, 1.0 equiv) and **2a** (152.3 mg, 598.7 μ mol, 3.0 equiv) were treated with hantzsch ester (76.3 mg, 301.3 μ mol, 1.5 equiv) and *fac*-Ir(ppy)₃ (1.3 mg, 2.0 μ mol, 0.01 equiv) in 1,4-dioxane (4.0 mL) to give **3k** (43.6 mg, 105.8 μ mol, 53%) as a white foam after purification by silica gel column chromatography (PE:EA = 2:1). $[\alpha]_D^{25} = -69.11$ (*c* 1.3, CHCl₃); ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.34–7.24 (m, 2H), 7.15–6.99 (m, 2H), 6.44 (d, *J* = 3.0 Hz, 1H), 5.73

(d, J = 2.4 Hz, 1H), 5.37 (s, 1H), 4.54 (d, J = 3.5 Hz, 1H), 4.30–4.17 (m, 1H), 3.98 (d, J = 2.6 Hz, 1H), 3.84–3.67 (m, 1H), 3.67–3.55 (m, 1H), 3.54–3.45 (m, 2H), 3.14 (d, J = 17.6 Hz, 1H), 2.73–2.60 (m, 1H), 2.23 (s, 3H), 1.22 (d, J = 6.7 Hz, 3H); ¹³C NMR (101 MHz, Methanol- d_4) δ 165.3, 137.9, 132.3, 132.1, 130.0, 129.8, 129.5, 89.9, 77.1, 75.5, 70.7, 70.1, 67.0, 61.1, 31.8, 19.7, 13.3; HRMS (ESI) *m/z* calcd for C₂₀H₂₈O₇SNa [M+Na]⁺ 477.1448, found 477.1447.

Dimethylthexylsilyl 2,4,6-tri-*O*-benzoyl-3-*O*-(2-hydroxyethyl)-3-*C*-[2-(methoxycarbonyl)allyl]-β-D-allopyranoside (3l) and Dimethylthexylsilyl 2,4,6-tri-*O*benzoyl-3-*O*-(2-hydroxyethyl)-3-*C*-[2-(methoxycarbonyl)allyl]-β-D-glucopyranoside (3l')

Following the general procedure E, **11** (82.4 mg, 100.0 μ mol, 1.0 equiv) and **2a** (76.3 mg, 300.0 μ mol, 3.0 equiv) were treated with hantzsch ester (38.1 mg, 150.1 μ mol, 1.5 equiv) and *fac*-Ir(ppy)₃ (0.7 mg, 1.1 μ mol, 0.01 equiv) in 1,4-dioxane (2.0 mL) to give **31** (38.3 mg, 49.3 μ mol, 49%) and **31'** (27.0 mg, 34.8 μ mol, 35%) as white foam after purification by silica gel column chromatography (PE:EA = 1.5:1).

For **3I**: $[\alpha]_{D}^{25} = -2.70$ (*c* 1.3, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.01–7.84 (m, 6H), 7.57–7.46 (m, 2H), 7.45–7.33 (m, 5H), 7.33–7.21 (m, 2H), 6.24 (s, 1H), 5.87 (s, 1H), 5.22–5.18 (m, 1H), 5.17–5.10 (m, 2H), 4.43–4.27 (m, 3H), 4.17–4.04 (m, 2H), 3.93–3.80 (m, 2H), 3.39 (s, 3H), 2.93–2.74 (m, 2H), 2.38–2.26 (brs, 1H), 1.39–1.31 (m, 1H), 0.64–0.50 (m, 12H), 0.00 (s, 3H), -0.11 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.5, 166.2, 165.8, 165.1, 134.2, 133.7, 133.3, 133.1, 130.8, 130.2, 129.9, 129.84, 129.82, 129.5, 128.8, 128.6, 128.3, 94.5, 80.2, 74.8, 71.8, 71.1, 66.2, 64.4, 62.8, 52.3, 33.7, 24.7, 19.8, 19.7, 18.5, 18.4, -1.8, -3.3; HRMS (ESI) *m/z* calcd for C₄₂H₅₆NO₁₂Si [M+NH₄]⁺ 794.3566, found 794.3570.

For **3I'**: $[\alpha]_D^{25} = -2.16$ (*c* 1.2, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98–7.92 (m, 6H), 7.56–7.46 (m, 3H), 7.42–7.32 (m, 6H), 6.04–6.01 (m, 1H), 5.69 (s, 1H), 5.57

(d, J = 9.3 Hz, 1H), 5.43 (d, J = 7.4 Hz, 1H), 5.19 (d, J = 7.4 Hz, 1H), 4.51 (dd, J = 11.4, 2.7 Hz, 1H), 4.44–4.29 (m, 2H), 3.77–3.70 (m, 2H), 3.57–3.47 (m, 5H), 3.26–3.06 (m, 2H), 1.99–1.88 (m, 1H), 1.47–1.35 (m, 1H), 0.66–0.61 (m, 12H), 0.08 (s, 3H), 0.00 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.0, 166.2, 165.6, 165.3, 136.3, 133.7, 133.3, 133.2, 130.1, 130.0, 129.9, 129.8, 129.2, 128.6, 128.4, 128.0, 95.0, 79.6, 73.1, 71.3, 69.3, 64.2, 63.4, 62.1, 51.9, 33.9, 24.7, 19.9, 19.8, 18.5, 18.4, -1.8, -3.3; HRMS (ESI) *m*/*z* calcd for C₄₂H₅₆NO₁₂Si [M+NH₄]⁺794.3566, found 794.3578.

tert-Butyldimethylsilyl4,6-di-O-benzylidene-2-deoxy-3-O-[2-O-(4-bromo-
benzoyl)ethyl]-3-C-[2-(methoxycarbonyl)allyl]- β -D-allopyranoside(3m^{BrBz})and
tert-Butyldimethylsilyl4,6-di-O-benzylidene-2-deoxy-3-O-[2-O-(4-bromo-
benzoyl)ethyl]-3-C-[2-(methoxycarbonyl)allyl]- β -D-glucopyranoside(3m'^{BrBz})

A mixture of **1m** (111.1 mg, 200.0 μ mol, 1.0 equiv), **2a** (152.7 mg, 603.6 μ mol, 3.0 equiv), hantzsch ester (76.3 mg, 301.3 μ mol, 1.5 equiv) and *fac*-Ir(ppy)₃ (1.3 mg, 2.0 μ mol, 0.01 equiv) were placed in a 10 mL clear-colored glass reaction tube. After 1,4-dioxane (4.0 mL) was added, the reaction was exchanged three times using argon gas and exposed to blue LEDs (450 nm-470 nm) at 35 °C with stirring for 3 h. The resultant mixture was diluted with DCM and washed with saturated NaHCO₃ solution and brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated *in vacuo* give the crude product without further purification for next step. The crude product was dissolved in THF (10.0 mL), *p*-bromobenzoic acid (63.9 mg, 318.0 μ mol, 1.6 equiv), EDCI·HCl (61.0 mg, 318.0 μ mol, 1.6 equiv) and DMAP (2.4 mg, 21.0 μ mol, 0.1 equiv) were added at temperature under an argon atmosphere. The resultant solution was stirred at room temperature for 8 h. The resultant mixture was diluted with DCM and washed with saturated NaHCO₃ solution and brine.

The resulting residue was purified by silica gel column chromatography (PE:EA = 10:1) to afford $3m^{BrBz}$ (32.1 mg, 46.5 μ mol, 23%) and $3m'^{BrBz}$ (25.1 mg, 36.4 μ mol, 18%) as white foam.

For **3m**^{BrBz}: $[\alpha]_{D}^{25} = -7.35$ (*c* 0.2, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91– 7.84 (m, 2H), 7.56–7.47 (m, 2H), 7.45–7.38 (m, 2H), 7.36–7.27 (m, 3H), 6.26 (s, 1H), 5.64 (s, 1H), 5.31 (s, 1H), 5.12 (d, *J* = 7.5 Hz, 1H), 4.46–4.35 (m, 2H), 4.30–4.21 (m, 1H), 4.17 (dd, *J* = 10.4, 5.1 Hz, 1H), 3.99–3.90 (m, 1H), 3.90–3.81 (m, 1H), 3.69–3.59 (m, 4H), 3.53 (d, *J* = 9.4 Hz, 1H), 2.88 (d, *J* = 14.0 Hz, 1H), 2.77 (d, *J* = 14.1 Hz, 1H), 1.97–1.88 (m, 1H), 1.41 (dd, *J* = 13.8, 9.1 Hz, 1H), 0.80 (s, 9H), -0.00 (s, 3H), -0.02 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.8, 165.9, 137.7, 135.8, 131.9, 131.3, 129.2, 129.1, 128.5, 128.2, 126.3, 102.4, 93.7, 82.3, 76.4, 69.5, 65.0, 64.1, 62.1, 52.2, 43.6, 33.3, 25.8, 18.2, -4.2, -5.1; HRMS (ESI) *m/z* calcd for C₃₃H₄₇BrNO₉Si [M+NH₄]⁺ 708.2198, found 708.2217.

For **3m**^{*/*BrBz}: $[\alpha]_D^{25} = -6.00$ (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.89– 7.83 (m, 2H), 7.55–7.49 (m, 2H), 7.48–7.41 (m, 2H), 7.38–7.31 (m, 3H), 6.30 (s, 1H), 5.78 (s, 1H), 5.52 (s, 1H), 5.15–5.03 (m, 1H), 4.45–4.37 (m, 2H), 4.32 (dd, *J* = 10.4, 4.7 Hz, 1H), 3.97–3.84 (m, 3H), 3.79 (t, *J* = 10.1 Hz, 1H), 3.70–3.61 (m, 4H), 3.03 (d, *J* = 15.1 Hz, 1H), 2.82 (d, *J* = 15.1 Hz, 1H), 1.97–1.89 (m, 1H), 1.71 (dd, *J* = 13.2, 9.7 Hz, 1H), 0.89 (s, 9H), 0.15–0.09 (m, 6H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.3, 166.0, 137.5, 135.4, 131.8, 131.3, 129.5, 129.2, 128.4, 126.2, 101.6, 94.4, 82.5, 76.4, 69.7, 65.6, 64.8, 60.9, 52.1, 41.5, 30.1, 25.8, -4.2, -5.2; HRMS (ESI) *m/z* calcd for C₃₃H₄₃BrO₉SiNa [M+Na]⁺ 713.1752, found 713.1757.

Methyl 2,4,6-tri-*O*-benzoyl-3-*O*-(2-hydroxyethyl)-3-*C*-[2-(methoxycarbonyl)allyl]α-D-mannopyranoside (3n) and Methyl 2,4,6-tri-*O*-benzoyl-3-*O*-(2-hydroxyethyl)-3-*C*-[2-(methoxycarbonyl)allyl]-α-D-altropyranoside (3n')

Following the general procedure E, **1n** (487.0 mg, 700.0 μ mol, 1.0 equiv) and **2a** (534.2 mg, 2.10 mmol, 3.0 equiv) were treated with hantzsch ester (266.0 mg, 1.05 mmol, 1.5 equiv) and *fac*-Ir(ppy)₃ (4.6 mg, 7.0 μ mol, 0.01 equiv) in 1,4-dioxane (4.0 mL) to give **3n** (318.7 mg, 491.7 μ mol, 70%) and **3n'** (106.6 mg, 164.5 μ mol, 23%) as white foam after purification by silica gel column chromatography (PE:EA = 1:1).

For **3n**: $[\alpha]_{D}^{25} = -11.13$ (*c* 0.7, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11–8.04 (m, 6H), 7.61–7.53 (m, 3H), 7.49–7.38 (m, 6H), 6.30 (s, 1H), 5.98 (d, *J* = 9.1 Hz, 1H), 5.91 (s, 1H), 5.59 (d, *J* = 2.0 Hz, 1H), 4.88 (d, *J* = 1.9 Hz, 1H), 4.62 (dd, *J* = 12.0, 3.3 Hz, 1H), 4.54 (dd, *J* = 12.0, 5.3 Hz, 1H), 4.40–4.31 (m, 1H), 3.78–3.71 (m, 1H), 3.68 (s, 3H), 3.61–3.55 (m, 1H), 3.55–3.52 (m, 1H), 3.47 (s, 3H), 3.36–3.30 (m, 2H), 3.25 (d, *J* = 14.5 Hz, 1H), 2.26 (brs, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.2, 166.3, 165.6, 165.5, 136.2, 133.8, 133.7, 133.2, 130.0, 129.9, 129.8, 129.4, 129.3, 128.8, 128.5, 99.6, 77.9, 73.4, 69.2, 68.9, 65.8, 63.5, 62.1, 55.9, 52.2, 30.7; HRMS (ESI) *m/z* calcd for C₃₅H₃₆O₁₂Na [M+Na]⁺ 671.2099, found 671.2095.

For **3n'**: $[\alpha]_D^{25} = -23.6$ (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.15–7.98 (m, 6H), 7.67–7.59 (m, 2H), 7.56 (t, *J* = 7.4 Hz, 1H), 7.52–7.44 (m, 4H), 7.44–7.38 (m, 2H), 6.09 (s, 1H), 6.02 (d, *J* = 10.3 Hz, 1H), 5.36 (s, 1H), 5.07 (s, 1H), 4.84 (s, 1H), 4.73–4.67 (m, 1H), 4.65–4.59 (m, 1H), 4.47–4.40 (m, 1H), 4.16 (t, *J* = 8.1 Hz, 1H), 4.05 (d, *J* = 8.4 Hz, 1H), 3.74 (d, *J* = 10.5 Hz, 1H), 3.70–3.63 (m, 1H), 3.56 (s, 3H), 3.49 (s, 3H), 3.15 (d, *J* = 14.8 Hz, 1H), 2.60 (d, *J* = 14.8 Hz, 1H), 1.68 (s, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.9, 166.2, 165.6, 164.9, 134.9, 134.0, 133.9, 133.2, 130.0, 129.9, 129.2, 129.0, 128.9, 128.5, 100.1, 78.5, 72.1, 71.8, 66.0, 65.9, 63.3, 62.1, 56.6, 52.1, 31.5; HRMS (ESI) *m*/*z* calcd for C₃₅H₄₀NO₁₂ [M+NH₄]⁺ 666.2545, found 666.2553.

tert-Butyldimethylsilyl 2,4,6-tri-O-benzoyl-3-O-(2-hydroxyethyl)-3-C-[2-

(methoxycarbonyl)allyl]-β-D-galactopyranoside (30)

Following the general procedure E, **10** (159.2 mg, 200.2 μ mol, 1.0 equiv) and **2a** (152.7 mg, 603.6 μ mol, 3.0 equiv) were treated with hantzsch ester (76.3 mg, 301.3 μ mol, 1.5 equiv) and *fac*-Ir(ppy)₃ (1.3 mg, 2.0 μ mol, 0.01 equiv) in 1,4-dioxane (4.0 mL) to give **30** (102.2 mg, 136.6 μ mol, 68%) as a white foam after purification by silica gel column chromatography (PE:EA = 4:1). [α]_D²⁵ = +76.37 (*c* 0.6, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09–8.01 (m, 2H), 7.98–7.93 (m, 4H), 7.53–7.43 (m, 3H), 7.42–7.31 (m, 6H), 6.34 (s, 1H), 5.83 (s, 1H), 5.62 (d, *J* = 7.5 Hz, 1H), 5.55 (s, 1H), 4.97 (d, *J* = 7.5 Hz, 1H), 4.49–4.40 (m, 2H), 4.27–4.16 (m, 1H), 3.54 (s, 3H), 3.53–3.49 (m, 1H), 3.38–3.33 (m, 1H), 3.29 (d, *J* = 15.2 Hz, 1H), 3.24–3.13 (m, 2H), 2.88 (d, *J* = 15.2 Hz, 1H), 1.86 (s, 1H), 0.66 (s, 9H), 0.00 (s, 3H), -0.11 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.4, 166.2, 166.1, 164.9, 134.4, 133.6, 133.5, 133.2, 130.5, 130.0, 129.9, 129.8, 129.7, 129.3, 128.8, 128.6, 128.4, 95.8, 78.7, 74.6, 71.5, 70.6, 65.0, 62.7, 62.0, 52.3, 30.5, 25.4, 17.8, -4.1, -5.1; HRMS (ESI) *m/z* calcd for C₄₀H₅₂NO₁₂Si [M+NH4]⁺ 766.3253, found 766.3265.

Methyl 6-*O-tert*-butyldiphenylsilyl-2-*O*-(2-hydroxyethyl)-3,4-*O*-isopropylidene-2-*C*-[2-(methoxycarbonyl)allyl]-α-D-talopyranoside (3p)

Following the general procedure E, **1p** (132.4 mg, 200.0 μ mol, 1.0 equiv) and **2a** (152.7 mg, 603.6 μ mol, 3.0 equiv) were treated with hantzsch ester (76.3 mg, 301.3 μ mol, 1.5 equiv) and *fac*-Ir(ppy)₃ (1.3 mg, 2.0 μ mol, 0.01 equiv) in 1,4-dioxane (4.0 mL) to give **3p** (66.7 mg, 108.6 μ mol, 54%) as a white foam after purification by silica gel column chromatography (PE:EA = 1:1). $[\alpha]_{D}^{25}$ = +33.54 (*c* 0.4, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73–7.67 (m, 4H), 7.44–7.33 (m, 6H), 6.17 (d, *J* = 1.1 Hz, 1H), 5.65 (s, 1H), 4.73 (s, 1H), 4.27 (d, *J* = 5.9 Hz, 1H), 4.21 (dd, *J* = 5.9, 3.3 Hz, 1H), 4.01 (dd, *J* = 9.1, 6.2 Hz, 1H), 3.98–3.93 (m, 1H), 3.89 (dd, *J* = 9.1, 5.8 Hz, 1H), 3.76 (s, 3H), 3.71–3.56 (m, 4H), 3.22 (s, 3H), 2.88 (d, *J* = 14.0 Hz, 1H), 2.59 (d, *J* = 14.0 Hz, 1H), 1.49 (s, 3H), 1.30 (s, 3H), 1.05 (s, 9H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.1,

137.1, 135.7, 133.6, 129.7, 127.74, 127.69, 127.2, 109.2, 99.8, 74.5, 73.2, 71.7, 68.3, 63.1, 63.0, 61.7, 55.2, 52.0, 33.5, 26.9, 26.3, 25.6, 19.3; HRMS (ESI) *m/z* calcd for C₃₃H₄₆O₉SiNa [M+Na]⁺ 637.2803, found 637.2800.

Methyl 2,3,6-tri-*O*-benzoyl-4-*O*-(2-hydroxyethyl)-4-*C*-{2-[(pent-4-yn-1-yloxy)carbonyl]allyl}-α-D-talopyranoside (4a)

Following the general procedure E, **1e** (139.2 mg, 200.0 μ mol, 1.0 equiv) and **2b**^[16] (175.4 mg, 600.0 μ mol, 3.0 equiv) were treated with hantzsch ester (76.3 mg, 301.3 μ mol, 1.5 equiv) and *fac*-Ir(ppy)₃ (1.3 mg, 2.0 μ mol, 0.01 equiv) in 1,4-dioxane (4.0 mL) to give **4a** (42.1 mg, 60.1 μ mol, 30%) as a white foam after purification by silica gel column chromatography (PE:EA = 3:1). $[\alpha]_{D}^{25}$ = +17.96 (*c* 0.3, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11–8.05 (m, 2H), 8.01–7.93 (m, 4H), 7.61–7.51 (m, 3H), 7.48–7.36 (m, 6H), 6.37 (s, 1H), 5.80 (s, 1H), 5.64 (d, *J* = 3.4 Hz, 1H), 5.58–5.53 (m, 1H), 4.96 (d, *J* = 2.3 Hz, 1H), 4.93–4.88 (m, 2H), 4.26 (t, *J* = 5.2 Hz, 1H), 4.23–4.08 (m, 2H), 3.99–3.93 (m, 1H), 3.93–3.85 (m, 1H), 3.77–3.69 (m, 1H), 3.68–3.59 (m, 1H), 3.44 (s, 3H), 3.21 (d, *J* = 15.1 Hz, 1H), 2.85 (d, *J* = 14.3 Hz, 1H), 2.27–2.21 (m, 2H), 2.03 (s, 1H), 1.93 (t, *J* = 2.6 Hz, 1H), 1.87–1.78 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.0, 166.8, 165.9, 165.6, 135.2, 133.5, 133.3, 130.7, 130.1, 130.0, 129.8, 129.7, 129.5, 128.8, 128.6, 128.5, 98.6, 83.1, 77.4, 72.4, 70.1, 69.2, 69.1, 66.1, 64.1, 63.8, 62.4, 55.6, 32.4, 27.5, 15.3; HRMS (ESI) *m/z* calcd for C₃₉H₄₄NO₁₂ [M+NH₄]⁺ 718.2858, found 718.2876.

Methyl 2,3,6-tri-*O*-benzoyl-4-*C*-[2-(benzyloxycarbonyl)allyl]-4-*O*-(2-hydroxyethyl)-α-D-talopyranoside (4b)

Following the general procedure E, **1e** (139.2 mg, 200.0 μ mol, 1.0 equiv) and **2c**^[16] (189.8 mg, 600.0 μ mol, 3.0 equiv) were treated with hantzsch ester (76.3 mg, 301.3 μ mol, 1.5 equiv) and *fac*-Ir(ppy)₃ (1.3 mg, 2.0 μ mol, 0.01 equiv) in 1,4-dioxane (4.0 mL) to give **4b** (90.1 mg, 124.4 μ mol, 62%) as a white foam after purification by silica gel column chromatography (PE:EA = 3:1). [α]₂₅²⁵ = +18.66 (*c* 3.6, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11–8.05 (m, 2H), 8.04–7.94 (m, 4H), 7.61–7.52 (m, 3H), 7.47–7.38 (m, 6H), 7.34–7.28 (m, 5H), 6.43 (s, 1H), 5.83 (s, 1H), 5.68 (d, *J* = 3.8 Hz, 1H), 5.58 (t, *J* = 3.3 Hz, 1H), 5.14 (d, *J* = 12.4 Hz, 1H), 5.08 (d, *J* = 12.4 Hz, 1H), 4.97 (d, *J* = 2.9 Hz, 1H), 4.95–4.90 (m, 2H), 4.28 (t, *J* = 5.3 Hz, 1H), 4.01–3.86 (m, 2H), 3.75–3.60 (m, 2H), 3.40 (s, 3H), 3.24 (d, *J* = 14.4 Hz, 1H), 2.89 (d, *J* = 14.4 Hz, 1H), 2.19 (s, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.9, 166.7, 165.8, 165.6, 135.7, 135.1, 133.5, 133.2, 130.9, 130.1, 130.0, 129.8, 129.7, 129.5, 128.7, 128.6, 128.5, 128.3, 98.5, 77.4, 72.4, 70.2, 69.1, 67.1, 66.1, 63.7, 62.4, 55.5, 32.4; HRMS (ESI) *m/z* calcd for C₄₁H₄₄NO₁₂ [M+NH₄]⁺ 742.2858, found 742.2878.

Methyl 2,3,6-tri-*O*-benzoyl-4-*O*-(2-hydroxyethyl)-4-*C*-[2-(cyano)allyl]-α-D-talopyranoside (4c)

Following the general procedure E, **1e** (139.2 mg, 200.0 μ mol, 1.0 equiv) and **2d**^[16] (124.4 mg, 600.0 μ mol, 3.0 equiv) were treated with hantzsch ester (76.3 mg, 301.3 μ mol, 1.5 equiv) and *fac*-Ir(ppy)₃ (1.3 mg, 2.0 μ mol, 0.01 equiv) in 1,4-dioxane (4.0 mL) to give **5c** (72.4 mg, 117.7 μ mol, 59%) as a white foam after purification by silica gel column chromatography (PE:EA =1.5:1). $[\alpha]_{D}^{25}$ = +55.28 (*c* 2.8, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.13–8.07 (m, 2H), 8.00–7.91 (m, 4H), 7.61–7.51 (m, 3H), 7.49–7.42 (m, 4H), 7.41–7.35 (m, 2H), 6.09 (s, 1H), 5.94 (s, 1H), 5.77 (d, *J* = 3.8 Hz, 1H), 5.49 (t, *J* = 3.6 Hz, 1H), 5.17–5.09 (m, 1H), 5.06 (d, *J* = 3.6 Hz, 1H), 4.48 (dd, *J* = 8.7, 2.2 Hz, 1H), 3.99–3.83 (m, 2H), 3.77–3.61 (m, 2H), 3.45 (s, 3H), 3.08 (d, *J* = 14.6 Hz, 1H), 2.73 (d, *J* = 14.6 Hz, 1H), 2.52 (s, 1H); ¹³C
NMR (101 MHz, Chloroform-*d*) δ 166.9, 165.7, 165.5, 137.2, 133.8, 133.6, 133.4, 129.92, 129.89, 129.85, 129.8, 129.3, 129.0, 128.9, 128.6, 128.5, 118.8, 116.7, 98.1, 76.8, 72.6, 69.9, 69.0, 66.3, 62.5, 62.1, 56.0, 36.9; HRMS (ESI) *m/z* calcd for C₃₄H₃₇N₂O₁₀ [M+NH₄]⁺ 633.2443, found 633.2456.

Methyl 2,3,6-tri-*O*-benzoyl-4-*O*-(2-hydroxyethyl)-4-*C*-[2-(phenylsulfonyl)allyl]-α-D-talopyranoside (4d)

Following the general procedure E, **1e** (139.2 mg, 200.0 μ mol, 1.0 equiv) and **2e**^[16] (193.4 mg, 600.0 μ mol, 3.0 equiv) were treated with hantzsch ester (76.3 mg, 301.3 μ mol, 1.5 equiv) and *fac*-Ir(ppy)₃ (1.3 mg, 2.0 μ mol, 0.01 equiv) in 1,4-dioxane (4.0 mL) to give **4d** (67.5 mg, 92.4 μ mol, 46%) as a white foam after purification by silica gel column chromatography (PE:EA =2:1). [*a*]_D²⁵ = +54.88 (*c* 3.2, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11–8.05 (m, 2H), 7.98–7.93 (m, 2H), 7.93–7.86 (m, 4H), 7.62–7.54 (m, 3H), 7.54–7.43 (m, 7H), 7.39–7.30 (m, 2H), 6.63 (s, 1H), 6.30 (s, 1H), 5.87 (d, *J* = 2.4 Hz, 1H), 5.34 (s, 1H), 5.16 (s, 1H), 5.05 (d, *J* = 4.7 Hz, 1H), 4.72 (dd, *J* = 16.9 Hz, 1H), 2.79 (d, *J* = 16.9 Hz, 1H), 2.35 (s, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.9, 165.7, 165.5, 145.0, 138.0, 135.0, 133.9, 133.7, 133.5, 133.3, 130.0, 129.9, 129.78, 129.75, 129.5, 129.3, 129.1, 128.8, 128.6, 128.5, 97.2, 77.3, 73.4, 70.5, 69.2, 65.3, 62.4, 61.9, 56.0, 55.2, 30.0; HRMS (ESI) *m/z* calcd for C₃₉H₃₈O₁₂NaS [M+Na]⁺ 753.1976, found 753.1982.

Methyl 2,3,6-tri-*O*-benzoyl-4-*O*-(2-hydroxyethyl)-4-*C*-[2-(phenyl)allyl]-α-D-talopyranoside (4e)

Following the general procedure E, **1e** (139.2 mg, 200.0 μ mol, 1.0 equiv) and **2f**^[16] (163.4 mg, 600.0 μ mol, 3.0 equiv) were treated with hantzsch ester (76.3 mg, 301.3 μ mol, 1.5 equiv) and *fac*-Ir(ppy)₃ (1.3 mg, 2.0 μ mol, 0.01 equiv) in 1,4-dioxane (4.0 mL) to give **4e** (75.5 mg, 113.3 μ mol, 57%) as a white foam after purification by silica gel column chromatography (PE:EA = 1:1). [α]₂₅²⁵ = +43.26 (*c* 2.6, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02–7.98 (m, 2H), 7.96–7.92 (m, 2H), 7.92–7.88 (m, 2H), 7.59–7.51 (m, 3H), 7.46–7.37 (m, 6H), 7.35–7.30 (m, 2H), 7.21–7.14 (m, 2H), 7.04 (t, *J* = 7.4 Hz, 1H), 5.65 (d, *J* = 3.7 Hz, 1H), 5.61 (d, *J* = 1.5 Hz, 1H), 5.31–5.27 (m, 1H), 5.15 (s, 1H), 4.85 (d, *J* = 1.6 Hz, 1H), 4.63–4.53 (m, 2H), 4.04–3.91 (m, 3H), 3.78–3.69 (m, 1H), 3.66–3.58 (m, 1H), 3.42 (d, *J* = 14.0 Hz, 1H), 3.34 (s, 3H), 2.86 (d, *J* = 13.9 Hz, 1H), 2.29 (s, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.5, 166.0, 165.2, 144.0, 142.1, 133.5, 133.1, 130.1, 130.0, 129.8, 129.7, 129.6, 128.8, 128.7, 128.5, 128.4, 127.9, 126.8, 120.6, 98.6, 78.0, 71.7, 70.2, 69.0, 66.1, 64.0, 62.5, 54.9, 36.8; HRMS (ESI) *m/z* calcd for C₃₉H₄₂NO₁₀ [M+NH₄]⁺ 684.2803, found 684.2814.

Methyl2,3,6-tri-O-benzoyl-4-O-(2-hydroxyethyl)-4-C-[2-(methoxycarbonyl)-ethyl]-α-D-talopyranoside (6a)

Following the general procedure E, **1e** (139.2 mg, 200.0 μ mol, 1.0 equiv) and **5a** (54 μ L, 600.0 μ mol, 3.0 equiv) were treated with hantzsch ester (76.3 mg, 301.3 μ mol, 1.5 equiv) and *fac*-Ir(ppy)₃ (1.3 mg, 2.0 μ mol, 0.01 equiv) in 1,4-dioxane (4.0 mL) to give **6a** (58.6 mg, 92.1 μ mol, 46%) as a white foam after purification by silica gel column chromatography (PE:EA =2:1). $[\alpha]_{D}^{25}$ = +5.24 (*c* 2.7, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09–8.06 (m, 2H), 8.05–8.00 (m, 2H), 7.97–7.92 (m, 2H), 7.61–7.52 (m, 3H), 7.48–7.38 (m, 6H), 5.77 (d, *J* = 3.6 Hz, 1H), 5.46 (t, *J* = 3.2 Hz, 1H), 5.02 (d, *J* = 2.9 Hz, 1H), 4.90 (s, 1H), 4.78 (dd, *J* = 12.0, 2.6 Hz, 1H), 4.31 (dd, *J* = 8.5, 2.7 Hz, 1H), 3.83–3.65 (m, 4H), 3.63 (s, 3H), 3.41 (s, 3H), 2.69–2.53 (m, 2H), 2.50–2.39 (m, 1H), 2.30 (s, 1H), 2.10–2.01 (m, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.8,

166.8, 165.9, 165.7, 133.7, 133.5, 133.4, 130.0, 129.9, 129.7, 129.5, 129.2, 128.8, 128.6, 128.5, 98.4, 76.3, 72.3, 69.7, 69.4, 65.3, 62.7, 62.4, 55.7, 52.0, 28.4, 26.1; HRMS (ESI) *m/z* calcd for C₃₄H₄₀NO₁₂ [M+NH₄]⁺ 654.2545, found 654.2551.

Methyl 2,3,6-tri-*O*-benzoyl-4-*C*-[2-(benzyloxycarbonyl)ethyl]-4-*O*-(2-hydroxyethyl)-α-D-talopyranoside (6b)

Following the general procedure E, **1e** (139.2 mg, 200.0 μ mol, 1.0 equiv) and **5b** (92 μ L, 600.0 μ mol, 3.0 equiv) were treated with hantzsch ester (76.3 mg, 301.3 μ mol, 1.5 equiv) and *fac*-Ir(ppy)₃ (1.3 mg, 2.0 μ mol, 0.01 equiv) in 1,4-dioxane (4.0 mL) to give **6b** (75.2 mg, 103.8 μ mol, 52%) as a white foam after purification by silica gel column chromatography (PE:EA =2:1). $[\alpha]_{D}^{25} = -4.91$ (*c* 2.8, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.10–8.05 (m, 2H), 8.05–8.01 (m, 2H), 7.96–7.92 (m, 2H), 7.61–7.53 (m, 3H), 7.48–7.38 (m, 6H), 7.34–7.28 (m, 5H), 5.78 (d, *J* = 3.7 Hz, 1H), 5.46 (t, *J* = 3.4 Hz, 1H), 5.08 (s, 2H), 5.01 (d, *J* = 2.9 Hz, 1H), 4.94–4.84 (m, 1H), 4.77 (dd, *J* = 12.1, 2.7 Hz, 1H), 4.31 (dd, *J* = 8.5, 2.8 Hz, 1H), 3.86–3.60 (m, 4H), 3.40 (s, 3H), 2.74–2.56 (m, 2H), 2.54–2.42 (m, 1H), 2.15–2.00 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.2, 166.7, 165.8, 165.6, 135.6, 133.3, 129.7, 128.3, 98.4, 77.1, 69.6, 69.4, 66.8, 65.2, 62.6, 62.3, 55.7, 28.5, 25.9; HRMS (ESI) *m/z* calcd for C₄₀H₄₄NO₁₂ [M+NH₄]⁺ 730.2858, found 730.2875.

Methyl 2,3,6-tri-*O*-benzoyl-4-*C*-(2-cyanoethyl)-4-*O*-(2-hydroxyethyl)-α-D-talopyranoside (6c)

Following the general procedure E, **1e** (139.2 mg, 200.0 μ mol, 1.0 equiv) and **5c** (40 μ L, 600.0 μ mol, 3.0 equiv) were treated with hantzsch ester (76.3 mg, 301.3 μ mol, 1.5

equiv) and *fac*-Ir(ppy)₃ (1.3 mg, 2.0 μ mol, 0.01 equiv) in 1,4-dioxane (4.0 mL) to give **6c** (59.1 mg, 98.0 μ mol, 49%) as a white foam after purification by silica gel column chromatography (PE:EA =2:1). $[\alpha]_{D}^{25}$ = +17.57 (*c* 2.9, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11–8.06 (m, 2H), 8.03–7.99 (m, 2H), 7.99–7.92 (m, 2H), 7.63–7.54 (m, 3H), 7.50–7.39 (m, 6H), 5.76 (d, *J* = 3.6 Hz, 1H), 5.41 (t, *J* = 3.2 Hz, 1H), 5.04 (d, *J* = 3.3 Hz, 1H), 4.93 (d, *J* = 9.1 Hz, 1H), 4.79 (dd, *J* = 12.2, 2.6 Hz, 1H), 4.27 (dd, *J* = 8.4, 2.6 Hz, 1H), 3.82–3.60 (m, 4H), 3.39 (s, 3H), 2.85–2.72 (m, 1H), 2.70–2.59 (m, 1H), 2.50–2.42 (m, 1H), 2.26–2.10 (m, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.9, 165.7, 133.9, 133.6, 133.5, 129.9, 129.7, 129.6, 129.3, 128.8, 128.71, 128.65, 128.5, 118.9, 98.2, 75.9, 72.1, 69.3, 65.5, 62.1, 55.8, 27.4, 12.1; HRMS (ESI) *m/z* calcd for C₃₃H₃₃NO₁₀Na [M+Na]⁺ 626.1997, found 626.1999.

Methyl [methyl 2,3,4-tri-*O*-benzoyl-7,8-di-deoxy-6-*O*-(2-hydroxyethyl)-8methylene-*D*-glycero-α-*D*-nonglucopyranosyluronate] (*D*-8a) and Methyl [methyl 2,3,4-tri-*O*-benzoyl-7,8-di-deoxy-6-*O*-(2-hydroxyethyl)-8-methylene-*L*-glycero-α-*D*-nonglucopyranosyluronate] (*L*-8a)

Following the general procedure E, **7a** (118.3 mg, 170.0 μ mol, 1.0 equiv) and **2a** (129.9 mg, 510.6 μ mol, 3.0 equiv) were treated with hantzsch ester (64.7 mg, 255.5 μ mol, 1.5 equiv) and *fac*-Ir(ppy)₃ (1.1mg, 1.7 μ mol, 0.01 equiv) in 1,4-dioxane (3.4 mL) to give **D-8a** (33.0 mg, 50.9 μ mol, 30%) and **L-8a** (68.5 mg, 105.7 μ mol, 62%) as white foam after purification by silica gel column chromatography (PE:EA = 1.5:1).

For **D-8a**: [*α*]_D²⁵ = +20.40 (*c* 0.2, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ ¹H NMR (400 MHz, Chloroform-*d*) δ 8.01–7.94 (m, 4H), 7.88–7.84 (m, 2H), 7.61–7.49 (m, 2H), 7.44–7.34 (m, 5H), 7.32–7.27 (m, 2H), 6.20 (d, *J* = 1.5 Hz, 1H), 6.15–6.07 (m, 1H), 5.72 (t, *J* = 9.9 Hz, 1H), 5.59 (d, *J* = 1.5 Hz, 1H), 5.26–5.20 (m, 2H), 4.32 (dd, *J* = 10.2, 1.7 Hz, 1H), 3.83–3.74 (m, 2H), 3.70–3.62 (m, 6H), 3.55–3.48 (m, 1H), 3.46 (s, 3H),

2.67 (d, J = 6.8 Hz, 2H), 2.30 (s, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.6, 165.9, 165.3, 137.3, 134.4, 133.6, 133.5, 133.2, 130.0, 129.9, 129.8, 129.6, 129.3, 129.2, 129.1, 128.6, 128.5, 128.4, 128.3, 127.9, 97.1, 78.4, 72.24, 72.21, 71.0, 69.9, 69.6, 62.1, 55.8, 52.0, 34.1; HRMS (ESI) *m/z* calcd for C₃₅H₄₀NO₁₂ [M+NH₄]⁺ 666.2545, found 666.2541.

For L-8a: $[\alpha]_D^{25} = +38.06$ (*c* 2.6, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.00– 7.91 (m, 4H), 7.89–7.83 (m, 2H), 7.55–7.47 (m, 2H), 7.43–7.33 (m, 5H), 7.32–7.27 (m, 2H), 6.29 (s, 1H), 6.10 (t, *J* = 9.9 Hz, 1H), 5.85 (t, *J* = 9.8 Hz, 1H), 5.74 (s, 1H), 5.34– 5.22 (m, 2H), 4.12 (d, *J* = 10.0 Hz, 1H), 3.82–3.69 (m, 4H), 3.65 (s, 3H), 3.53–3.46 (m, 4H), 2.93 (dd, *J* = 14.0, 6.2 Hz, 1H), 2.73 (dd, *J* = 14.0, 7.1 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.1, 165.9, 165.8, 165.7, 136.9, 133.6, 133.4, 133.1, 129.94, 129.87, 129.7, 129.2, 129.1, 129.0, 128.5, 128.4, 128.3, 97.6, 75.0, 72.5, 72.0, 70.7, 69.6, 69.0, 62.1, 56.4, 52.0, 33.3; HRMS (ESI) *m*/*z* calcd for C₃₅H₄₀NO₁₂ [M+NH4]⁺ 666.2545, found 666.2545.

Methyl [methyl 2,3,4-tri-*O*-benzoyl-7,8-di-deoxy-6-*O*-(2-hydroxyethyl)-8methylene-*D*-*glycero*-α-*D*-nonmannopyranosyluronate] (*D*-8b) and Methyl [methyl 2,3,4-tri-*O*-benzoyl-7,8-di-deoxy-6-*O*-(2-hydroxyethyl)-8-methylene-*L*-*glycero*-α-*D*-nonmannopyranosyluronate] (*L*-8b)

Following the general procedure E, **7b** (695.6 mg, 1.00 mmol, 1.0 equiv) and **2a** (762.9 mg, 3.00 mmol, 3.0 equiv) were treated with hantzsch ester (380.0 mg, 1.5 mmol, 1.5 equiv) and *fac*-Ir(ppy)₃ (6.5 mg, 10.0 μ mol, 0.01 equiv) in 1,4-dioxane (20.0 mL) to give **D-8b** (191.7 mg, 295.7 μ mol, 30%) and **L-8b** (340.5 mg, 525.3 μ mol, 53%) as white foam after purification by silica gel column chromatography (PE:EA = 1.5:1). For **D-8b**: $[\alpha]_D^{25} = -73.40$ (*c* 1.8, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.16 (d, J = 7.3 Hz, 2H), 7.98 (d, J = 7.3 Hz, 2H), 7.83 (d, J = 7.3 Hz, 2H), 7.62–7.58 (m, 1H),

7.54–7.46 (m, 3H), 7.45–7.36 (m, 3H), 7.26–7.22 (m, 2H), 6.21–6.19 (m, 1H), 6.14 (t, J = 10.1 Hz, 1H), 5.83 (dd, J = 10.0, 3.2 Hz, 1H), 5.68–5.63 (m, 1H), 5.57 (s, 1H), 4.99–4.94 (m, 1H), 4.31 (d, J = 10.1 Hz, 1H), 3.95–3.87 (m, 1H), 3.86–3.79 (m, 1H), 3.71–3.67 (m, 2H), 3.66 (s, 3H), 3.56–3.53 (m, 1H), 3.51 (s, 3H), 2.85 (brs, 1H), 2.75–2.61 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.5, 165.6, 165.5, 165.4, 133.6, 133.5, 133.1, 130.0, 129.8, 129.5, 129.31, 129.25, 129.1, 128.7, 128.5, 128.3, 128.2, 127.7, 98.6, 78.7, 72.5, 71.4, 70.6, 70.5, 67.1, 62.2, 55.6, 51.9, 34.8; HRMS (ESI) *m/z* calcd for C₃₅H₄₀NO₁₂ [M+NH₄]⁺ 666.2545, found 666.2545.

For L-8b: $[\alpha]_{D}^{25} = -118.66$ (*c* 4.7, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.15 (d, J = 7.5 Hz, 2H), 7.95 (d, J = 7.6 Hz, 2H), 7.81 (d, J = 7.6 Hz, 2H), 7.60 (t, J = 6.2 Hz, 1H), 7.54–7.46 (m, 3H), 7.44–7.34 (m, 3H), 7.26–7.21 (m, 2H), 6.29 (s, 1H), 6.24 (t, J = 10.1 Hz, 1H), 5.82 (dd, J = 10.1, 3.0 Hz, 1H), 5.75 (s, 1H), 5.66 (s, 1H), 5.06 (s, 1H), 4.10 (d, J = 9.9 Hz, 1H), 3.88–3.77 (m, 4H), 3.62 (s, 3H), 3.59–3.51 (m, 4H), 2.95 (dd, J = 14.8, 5.4 Hz, 1H), 2.75 (dd, J = 13.9, 7.1 Hz, 1H), 2.66 (brs, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.2, 166.1, 165.7, 165.6, 137.0, 133.7, 133.3, 130.1, 129.93, 129.85, 129.5, 129.3, 129.21, 129.17, 128.7, 128.61, 128.57, 128.4, 99.0, 75.1, 72.3, 70.8, 70.4, 67.0, 62.4, 56.2, 52.0, 33.4; HRMS (ESI) *m*/*z* calcd for C₃₅H₄₀NO₁₂ [M+NH₄]⁺ 666.2545, found 666.2553.

Methyl [7,8-di-deoxy-6-*O*-(2-hydroxyethyl)-1,2,3,4-di-*O*-isopropylidene-8methylene-*D*-*glycero*-α-*D*-nongalactopyranosyluronate] (D-8c) and Methyl [7,8-dideoxy-6-*O*-(2-hydroxyethyl)-1,2,3,4-di-*O*-isopropylidene-8-methylene-*L*-*glycero*α-*D*-nongalactopyranosyluronate] (L-8c)

Following the general procedure E, **7c** (89.8 mg, 200.0 μ mol, 1.0 equiv) and **2a** (152.3 mg, 598.9 μ mol, 3.0 equiv) were treated with hantzsch ester (76.3 mg, 301.2 μ mol, 1.5 equiv) and *fac*-Ir(ppy)₃ (1.3 mg, 2.0 μ mol, 0.01 equiv) in 1,4-dioxane (4.0 mL) to give

D-8c (46.6 mg, 115.9 μ mol, 58%) and L-8c (19.8 mg, 49.2 μ mol, 25%) as white foam after purification by silica gel column chromatography (PE:EA = 2:1).

For **b-8c**: $[\alpha]_{D}^{25} = -65.41$ (*c* 0.8, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 6.22 (d, J = 1.5 Hz, 1H), 5.83 (s, 1H), 5.53 (d, J = 5.1 Hz, 1H), 4.62 (dd, J = 7.9, 2.3 Hz, 1H), 4.44 (dd, J = 8.0, 1.9 Hz, 1H), 4.31 (dd, J = 5.1, 2.4 Hz, 1H), 3.87–3.69 (m, 5H), 3.69–3.56 (m, 4H), 3.47 (brs, 1H), 2.99 (dd, J = 14.1, 4.3 Hz, 1H), 2.50 (dd, J = 14.2, 4.1 Hz, 1H), 1.49 (s, 3H), 1.46 (s, 3H), 1.36 (s, 3H), 1.32 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.3, 136.3, 128.8, 109.1, 108.5, 96.5, 76.4, 72.2, 70.8, 70.3, 67.3, 61.9, 51.9, 32.0, 25.9, 25.9, 24.9, 24.5; HRMS (ESI) *m/z* calcd for C₁₉H₃₄NO₉ [M+NH₄]⁺ 420.2228, found 420.2232.

For L-8c: $[\alpha]_D^{25} = -28.99$ (*c* 1.8, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 6.23 (s, 1H), 5.74 (s, 1H), 5.61 (d, *J* = 5.1 Hz, 1H), 4.59 (dd, *J* = 7.9, 2.1 Hz, 1H), 4.31 (dd, *J* = 5.1, 2.2 Hz, 1H), 4.27 (dd, *J* = 8.0, 1.4 Hz, 1H), 3.85–3.79 (m, 1H), 3.77 (s, 3H), 3.74–3.71 (m, 1H), 3.65–3.56 (m, 3H), 3.30 (brs, 1H), 2.76 (dd, *J* = 13.9, 4.7 Hz, 1H), 2.57 (dd, *J* = 13.8, 8.1 Hz, 1H), 1.52 (s, 3H), 1.47 (s, 3H), 1.34 (s, 3H), 1.33 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.8, 137.0, 128.0, 109.4, 108.6, 96.6, 78.7, 73.4, 71.6, 71.1, 70.6, 70.3, 61.9, 52.0, 34.2, 26.1, 25.9, 24.8, 24.3; HRMS (ESI) *m/z* calcd for C₁₉H₃₄NO₉ [M+NH₄]⁺ 420.2228, found 420.2228.

Methyl [methyl 6,7-di-deoxy-5-*O*-(2-hydroxyethyl)-2,3-*O*-isopropylidene-7methylene-*D*-*glycero*-*α*-*D*-octribofuranosyluronate] (*D*-8d) and Methyl [methyl 6,7di-deoxy-5-*O*-(2-hydroxyethyl)-2,3-*O*-isopropylidene-7-methylene-*L*-*glycero*-*α*-*D*octribofuranosyluronate] (*L*-8d)

Following the general procedure E, **7d** (78.7 mg, 200.0 μ mol, 1.0 equiv) and **2a** (152.3 mg, 598.9 μ mol, 3.0 equiv) were treated with hantzsch ester (76.3 mg, 301.2 μ mol, 1.5 equiv) and *fac*-Ir(ppy)₃ (1.3 mg, 2.0 μ mol, 0.01 equiv) in 1,4-dioxane (4.0 mL) to give

D-8d (27.5 mg, 79.4 μ mol, 40%) and **L-8d** (19.3 mg, 55.8 μ mol, 28%) as white foam after purification by silica gel column chromatography (PE:EA = 2:1).

For **b-8d**: $[\alpha]_D^{25} = -75.63$ (*c* 3.2, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 6.28 (d, J = 1.2 Hz, 1H), 5.74 (s, 1H), 4.97 (s, 1H), 4.81 (d, J = 6.0 Hz, 1H), 4.57 (d, J = 6.0 Hz, 1H), 4.13 (d, J = 5.2 Hz, 1H), 3.79–3.72 (m, 4H), 3.70–3.61 (m, 2H), 3.59–3.53 (m, 1H), 3.52–3.44 (m, 1H), 3.41 (s, 3H), 3.23 (brs, 1H), 2.78–2.54 (m, 2H), 1.48 (s, 3H), 1.33 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.5, 136.3, 128.7, 112.3, 110.9, 87.8, 85.7, 80.8, 79.3, 72.1, 61.8, 55.9, 52.0, 33.9, 26.6, 25.0; HRMS (ESI) *m/z* calcd for C₁₆H₃₀NO₈ [M+NH₄]⁺ 364.1966, found 364.1970.

For L-8d: $[\alpha]_D^{25} = -13.44$ (*c* 2.0, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 6.26 (d, J = 1.2 Hz, 1H), 5.74 (s, 1H), 5.02 (s, 1H), 4.72 (d, J = 6.0 Hz, 1H), 4.56 (d, J = 6.0 Hz, 1H), 4.18 (dd, J = 4.8, 1.7 Hz, 1H), 3.77 (s, 3H), 3.74–3.68 (m, 1H), 3.68–3.58 (m, 3H), 3.58–3.50 (m, 1H), 3.40 (s, 3H), 3.04 (brs, 1H), 2.67–2.54 (m, 2H), 1.49 (s, 3H), 1.32 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.4, 136.6, 128.5, 112.6, 110.0, 88.8, 85.6, 82.0, 78.4, 71.1, 61.9, 55.4, 52.0, 34.1, 26.8, 25.1; HRMS (ESI) *m/z* calcd for C₁₆H₃₀NO₈ [M+NH4]⁺ 364.1966, found 364.1968.

Methyl [*p*-tolyl 6,7-di-deoxy-5-*O*-(2-hydroxyethyl)-2,3-*O*-isopropylidene-7methylene-*D*-*glycero*-1-thio-α-*D*-octribofuranosyluronate] (*D*-8e) and Methyl [*p*tolyl 6,7-di-deoxy-5-*O*-(2-hydroxyethyl)-2,3-*O*-isopropylidene-7-methylene-*Lglycero*-1-thio-α-*D*-octribofuranosyluronate] (*L*-8e)

Following the general procedure E, **7e** (97.1 mg, 200.0 μ mol, 1.0 equiv) and **2a** (152.3 mg, 598.9 μ mol, 3.0 equiv) were treated with hantzsch ester (76.3 mg, 301.2 μ mol, 1.5 equiv) and *fac*-Ir(ppy)₃ (1.3 mg, 2.0 μ mol, 0.01 equiv) in 1,4-dioxane (4.0 mL) to give **D-8e** (43.8 mg, 100.0 μ mol, 50%) and **L-8e** (23.9 mg, 54.5 μ mol, 27%) as white foam after purification by silica gel column chromatography (PE:EA = 2:1).

For **D-8e**: $[\alpha]_D^{25} = -51.63$ (*c* 0.2, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42–7.33 (m, 2H), 7.20–7.07 (m, 2H), 6.25 (s, 1H), 5.70 (s, 1H), 5.34 (d, *J* = 3.7 Hz, 1H), 4.81 (dd, *J* = 6.4, 2.8 Hz, 1H), 4.65 (dd, *J* = 6.4, 3.7 Hz, 1H), 4.06 (dd, *J* = 5.0, 2.8 Hz, 1H), 3.87–3.78 (m, 1H), 3.78–3.71 (m, 4H), 3.71–3.60 (m, 3H), 2.75 (s, 1H), 2.68–2.53 (m, 2H), 2.33 (s, 3H), 1.51 (s, 3H), 1.35 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.7, 137.8, 136.4, 132.0, 130.2, 130.0, 128.8, 114.3, 92.3, 87.3, 85.4, 80.8, 78.4, 72.8, 62.1, 52.2, 34.1, 27.3, 25.6, 21.2; HRMS (ESI) *m/z* calcd for C₂₂H₃₄NO₇S [M+NH₄]⁺ 456.2050, found 456.2048.

For L-8e: $[\alpha]_{D}^{25} = -91.73$ (*c* 0.3, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44–7.38 (m, 2H), 7.16–7.09 (m, 2H), 6.26 (d, *J* = 1.3 Hz, 1H), 5.75 (s, 1H), 5.38 (d, *J* = 3.0 Hz, 1H), 4.73 (dd, *J* = 6.2, 3.0 Hz, 1H), 4.65 (dd, *J* = 6.2, 2.6 Hz, 1H), 4.15 (dd, *J* = 5.0, 2.7 Hz, 1H), 3.77 (s, 3H), 3.75–3.63 (m, 4H), 3.65–3.55 (m, 1H), 2.71 (dd, *J* = 13.5, 6.1 Hz, 1H), 2.60 (dd, *J* = 13.5, 6.8 Hz, 1H), 2.33 (s, 3H), 1.50 (s, 3H), 1.33 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.6, 137.8, 136.5, 132.3, 129.9, 128.9, 114.0, 93.5, 87.6, 86.3, 82.4, 78.9, 72.1, 62.2, 52.2, 33.8, 27.3, 25.6, 21.2; HRMS (ESI) *m/z* calcd for C₂₂H₃₄NO₇S [M+NH₄]⁺ 456.2050, found 456.2038.

Methyl {methyl [2,3,4-tri-*O*-benzoyl-7,8-di-deoxy-6-*O*-(2-hydroxyethyl)-8-methylene-D-glycero- α -D-nonmannopyranosyluronate]}-(1 \rightarrow 6)-2,3,4-tri-*O*-benzoyl- α -D-mannopyranoside (D-8f) and Methyl {methyl [2,3,4-tri-*O*-benzoyl-7,8-di-deoxy-6-*O*-(2-hydroxyethyl)-8-methylene-L-glycero- α -D-nonmanno-

pyranosyluronate]}-(1→6)-2,3,4-tri-*O*-benzoyl-α-D-mannopyranoside (L-8f)

Following the general procedure E, **7f** (234.3 mg, 200.2 μ mol, 1.0 equiv) and **2a** (152.5 mg, 599.4 μ mol, 3.0 equiv) were treated with hantzsch ester (76.0 mg, 300.0 μ mol, 1.5 equiv) and *fac*-Ir(ppy)₃ (1.3 mg, 2.0 μ mol, 0.01 equiv) in 1,4-dioxane (4.0 mL) to give **D-8f** (56.1 mg, 50.0 μ mol, 25%) and **L-8f** (117.7 mg, 104.9 μ mol, 52%) as white foam

after purification by silica gel column chromatography (PE:EA = 1.5:1).

For **D-8f**: $[\alpha]_{D}^{25} = -79.74$ (*c* 2.0, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.20–8.15 (m, 2H), 8.14–8.10 (m, 2H), 8.07–7.98 (m, 4H), 7.88–7.82 (m, 4H), 7.61–7.47 (m, 8H), 7.45–7.34 (m, 6H), 7.31–7.26 (m, 4H), 6.10 (s, 1H), 6.08–6.00 (m, 2H), 5.98–5.91 (m, 2H), 5.78–5.72 (m, 2H), 5.46 (s, 1H), 5.14 (s, 1H), 5.06 (s, 1H), 4.47–4.30 (m, 2H), 4.11 (dd, J = 10.8, 6.1 Hz, 1H), 3.78 (d, J = 10.6 Hz, 1H), 3.69–3.63 (m, 5H), 3.55 (s, 3H), 3.45 (s, 2H), 3.35–3.23 (m, 1H), 2.66 (s, 1H), 2.62–2.54 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.5, 165.7, 165.6, 165.53, 165.45, 165.4, 165.3, 137.4, 134.3, 133.57, 133.55, 133.5, 133.2, 133.1, 130.01, 129.98, 129.9, 129.8, 129.7, 129.6, 129.31, 129.29, 129.2, 129.1, 129.0, 128.8, 128.7, 128.6, 128.3, 128.2, 127.5, 98.7, 97.4, 78.5, 72.4, 70.6, 70.5, 70.3, 70.2, 69.5, 67.1, 67.0, 66.7, 62.0, 55.6, 51.8, 34.1; HRMS (ESI) *m/z* calcd for C₆₂H₆₂NO₂₀ [M+NH₄]⁺ 1140.3860, found 1140.3888.

For L-8f: $[\alpha]_D^{25} = -81.14$ (*c* 4.8, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.19–8.08 (m, 4H), 8.04–7.99 (m, 2H), 7.98–7.89 (m, 2H), 7.89–7.79 (m, 4H), 7.64–7.44 (m, 8H), 7.44–7.33 (m, 6H), 7.28–7.24 (m, 4H), 6.23 (t, *J* = 10.0 Hz, 1H), 6.05 (s, 1H), 5.97 (dd, *J* = 10.0, 3.3 Hz, 1H), 5.94–5.86 (m, 2H), 5.77–5.72 (m, 1H), 5.72–5.67 (m, 1H), 5.64 (s, 1H), 5.23 (s, 1H), 5.09 (s, 1H), 4.41 (t, *J* = 7.6 Hz, 1H), 4.29 (d, *J* = 10.0 Hz, 1H), 4.08 (dd, *J* = 10.7, 7.2 Hz, 1H), 3.90–3.80 (m, 1H), 3.80–3.71 (m, 4H), 3.68 (s, 3H), 3.51 (s, 4H), 2.85 (dd, *J* = 14.0, 7.3 Hz, 1H), 2.64 (dd, *J* = 14.0, 5.5 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.9, 166.0, 165.8, 165.6, 165.49, 165.45, 165.4, 136.7, 133.63, 133.59, 133.5, 133.22, 133.17, 130.0, 129.90, 129.88, 129.8, 129.7, 129.3, 129.2, 129.1, 128.9, 128.73, 128.65, 128.6, 128.5, 128.3, 98.6, 97.3, 75.2, 72.4, 71.4, 70.5, 70.3, 70.2, 69.9, 69.4, 67.5, 67.1, 67.0, 62.3, 55.6, 51.8, 33.8; HRMS (ESI) *m*/*z* calcd for C₆₂H₆₂NO₂₀ [M+NH4]⁺ 1140.3860, found 1140.3890.

Elaboration of 2-hydroxyethylene moiety

Methyl 2,3,6-tri-*O*-benzoyl-4-*O*-(2-((2-nitrophenyl)sulfonamido)ethyl)-4-*C*-[2-(methoxycarbonyl)allyl]-α-D-talopyranoside (9)

To a solution of **3e** (64.8 mg, 100.0 µmol, 1.0 equiv), PPh₃ (39.0 mg, 150.0 µmol, 1.5 equiv) and NsNH₂ (60.7 mg, 300.0 µmol, 3.0 equiv) in THF (2.0 mL) was added diisopropylazodicarboxylate (30 µL, 150.0 µmol, 1.5 equiv) over 1 min at room temperature under an atmosphere. The resultant solution was stirred overnight at room temperature and quenched with saturated NaHCO₃ solution. The resultant mixture was extracted with DCM, and the organic layer was washed with brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated in vacuo. The resulting residue was purified by silica gel column chromatography (PhMe:EA = 10:1) to afford **9** (48.5 mg, 58.2 μ mol, 58%) as a white foam. $[\alpha]_{D}^{25} = +30.91$ (*c* 1.7, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.10–8.03 (m, 3H), 8.00–7.95 (m, 2H), 7.93–7.86 (m, 3H), 7.76–7.69 (m, 2H), 7.62–7.53 (m, 3H), 7.49–7.38 (m, 6H), 6.37 (s, 1H), 5.84 (t, J = 5.8 Hz, 1H), 5.77 (s, 1H), 5.55 (s, 2H), 4.93 (s, 1H), 4.77 (d, J = 11.3 Hz, 1H),4.71–4.63 (m, 1H), 4.21 (d, J = 8.4 Hz, 1H), 4.06–3.90 (m, 2H), 3.61 (s, 3H), 3.40 (s, 3H), 3.28-3.18 (m, 2H), 3.13 (d, J = 14.2 Hz, 1H), 2.63 (d, J = 14.2 Hz, 1H); 13 C NMR (101 MHz, Chloroform-d) & 167.2, 166.4, 165.8, 165.3, 148.3, 134.7, 133.7, 133.5, 133.4, 133.2, 132.7, 131.0, 130.7, 130.0, 129.9, 129.7, 129.6, 129.4, 129.3, 128.7, 128.6, 128.5, 125.8, 98.5, 77.6, 71.9, 69.9, 63.6, 62.9, 55.4, 53.5, 52.5, 44.5, 32.1; HRMS (ESI) m/z calcd for C₄₁H₄₄N₃O₁₅S [M+HH₄]⁺ 850.2488, found 850.2498.

Methyl 2,3,6-tri-*O*-benzoyl-4-*O*-(2-(2,3,4,6-tetra-*O*-benzoyl-α-D-mannopyranosyloxy)ethyl)-4-*C*-[2-(methoxycarbonyl)allyl]-α-D-talopyranoside (11)

To a solution of **10** (111.2 mg, 150.0 μ mol, 1.5 equiv), **3e** (65.0 mg, 100.0 μ mol, 1.0 equiv) and freshly activated 4 Å MS in DCM (2.0 mL) was added TMSOTf (2 μ L, 1.0

 μ mol, 0.1 equiv) in ice bath under an argon atmosphere. The resultant solution was stirred for 1 h in ice bath and quenched with saturated NaHCO₃ solution. The resultant mixture was extracted with DCM, and the organic layer was washed with brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated in vacuo. The resulting residue was purified by silica gel column chromatography (PE:EA = 2:1) to afford **11** (120.7 mg, 99%) as a white foam. $[\alpha]_{D}^{25} = +10.20$ (c 1.8, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.23–8.14 (m, 2H), 8.05–7.97 (m, 8H), 7.93-7.85 (m, 2H), 7.85-7.79 (m, 2H), 7.62-7.47 (m, 6H), 7.46-7.28 (m, 13H), 7.20-7.13 (m, 2H), 6.51 (s, 1H), 6.24 (t, J = 10.0 Hz, 1H), 6.00–5.91 (m, 2H), 5.73–5.61 (m, 3H), 5.09–4.96 (m, 4H), 4.89 (d, J = 11.7 Hz, 1H), 4.74–4.61 (m, 2H), 4.38–4.24 (m, 2H), 4.16–3.98 (m, 2H), 3.67–3.58 (m, 4H), 3.45 (s, 3H), 3.39 (d, J = 14.4 Hz, 1H), 2.99 (d, J = 14.4 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.4, 166.3, 166.2, 165.8, 165.7, 165.5, 165.4, 135.1, 133.52, 133.47, 133.1, 133.0, 132.9, 131.1, 130.2, 130.1, 129.91, 129.87, 129.8, 129.7, 129.6, 129.4, 129.2, 128.8, 128.6, 128.5, 128.3, 98.6, 97.5, 77.4, 72.3, 70.5, 70.3, 70.2, 69.4, 69.0, 67.8, 66.7, 64.4, 63.7, 62.8, 55.4, 52.4, 32.2; HRMS (ESI) *m/z* calcd for C₆₉H₆₆NO₂₁ [M+HH₄]⁺ 1244.4122, found 1244.4149.

(5*S*,6*R*,8*S*,9*S*,10*R*)-6-((benzoyloxy)methyl)-8-methoxy-3-(methoxycarbonyl)-3methyl-1,7-dioxaspiro[4.5]decane-9,10-diyl dibenzoate (13) and (6*S*,7*R*,9*S*,10*S*,11*R*)-7-((benzoyloxy)methyl)-9-methoxy-4-(methoxycarbonyl)-1,8dioxaspiro[5.5]undecane-10,11-diyl dibenzoate (14)

To a solution of **S50** (132.5 mg, 200.0 μ mol, 1.0 equiv) in dry DCM (3.0 mL) were added *N*-hydroxyphthalimide (32.6 mg, 100.0 μ mol, 0.1 equiv), EDCI-HCl (38.3 mg, 200.0 μ mol, 1.0 equiv) and DMAP (0.3 mg, 2.5 μ mol, 0.013 equiv) at room temperature under an argon atmosphere. The resultant solution was stirred for 2 h at room temperature and quenched with saturated NaHCO₃ solution. The resultant mixture was

extracted with DCM, and the organic layer was washed with brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated *in vacuo* to give the crude product **S51** without further purification for next step. The crude product obtained above, *fac*-Ir(ppy)₃ (6.5 mg, 10.0 μ mol, 0.05 equiv) and hantzsch ester (76.0 mg, 300.0 μ mol, 1.5 equiv) were placed in a 100 mL clear-colored glass bottle. After 1,4-dioxane (20.0 mL) was added, the reaction was exchanged three times using argon gas and exposed to blue LEDs (450 nm-470 nm) at 35 °C with stirring overnight. The resultant mixture was diluted with DCM and washed with saturated NaHCO₃ solution and brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated *in vacuo*. The resulting residue was purified by silica gel column chromatography (PE:EA = 8:1) to afford **13** (18.5 mg, 29.9 μ mol, 15%) and **14** (21.7 mg, 35.1 μ mol, 18%) as white foam.

For **13**: $[\alpha]_D^{25} = -27.22$ (*c* 0.8, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.16–8.10 (m, 2H), 8.10–8.04 (m, 2H), 7.96–7.90 (m, 2H), 7.61–7.51 (m, 3H), 7.50–7.42 (m, 4H), 7.42–7.34 (m, 2H), 5.63 (d, *J* = 3.5 Hz, 1H), 5.42 (t, *J* = 3.1 Hz, 1H), 5.04 (d, *J* = 2.6 Hz, 1H), 4.73–4.65 (m, 2H), 4.55 (d, *J* = 9.0 Hz, 1H), 4.32–4.24 (m, 1H), 3.88 (d, *J* = 9.0 Hz, 1H), 3.78 (s, 3H), 3.44 (s, 3H), 2.98 (d, *J* = 14.4 Hz, 1H), 1.94 (d, *J* = 14.5 Hz, 1H), 1.20 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.4, 166.6, 165.9, 165.6, 133.5, 133.3, 133.1, 130.2, 130.1, 129.9, 129.8, 129.6, 129.2, 128.6, 128.5, 128.4, 98.2, 83.6, 78.3, 73.4, 72.7, 69.3, 62.9, 55.4, 52.8, 50.5, 42.9, 22.8; HRMS (ESI) *m/z* calcd for C₃₄H₃₈NO₁₁ [M+HH₄]⁺ 636.2439, found 636.2444.

For 14: $[\alpha]_D^{25} = +63.47$ (*c* 0.9, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.15–8.05 (m, 4H), 7.91–7.85 (m, 2H), 7.64–7.56 (m, 2H), 7.55–7.44 (m, 5H), 7.37–7.29 (m, 2H), 5.78 (d, *J* = 2.9 Hz, 1H), 5.63–5.47 (m, 1H), 5.36 (dd, *J* = 7.4, 3.3 Hz, 1H), 5.26 (d, *J* = 7.4 Hz, 1H), 4.62–4.52 (m, 2H), 3.93 (d, *J* = 12.5 Hz, 1H), 3.75–3.64 (m, 4H), 3.45 (s, 3H), 2.90–2.72 (m, 1H), 2.66–2.51 (m, 1H), 2.01–1.77 (m, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.1, 166.8, 165.7, 165.2, 133.4, 133.3, 133.2, 130.0, 129.8, 129.7, 129.5, 128.7, 128.5, 128.3, 96.4, 74.6, 74.1, 73.0, 69.0, 61.8, 60.7, 56.7, 52.2, 35.8, 31.6, 26.7; HRMS (ESI) *m/z* calcd for C₃₄H₃₈NO₁₁ [M+HH₄]⁺ 636.2439, found 636.2448.

Removal of directing group 2-hydroxyethylene moiety

General Procedure F: Curtius rearrangement reaction

To a solution of **alcohol** (1.0 equiv) in DCM/H₂O ($\nu/\nu = 10.1$) were added TEMPO (0.2 equiv) and PhI(OAc)₂ (2.0 equiv) at room temperature under an argon atmosphere. The resultant solution was stirred for 12 h and quenched with Na₂S₂O₃ solution. The resultant mixture was extracted with DCM, and the organic layer was washed and brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated in vacuo. The resulting residue was purified by silica gel column chromatography for next step without further characterization. The crude product obtained as above was dissolved in DMF, diphenylphosphoryl azide (DPPA) (1.2 equiv) and N,N-diisopropylethylamine (DIPEA) (1.2 equiv) were added in ice bath under an argon atmosphere. After stirring for 2 h at room temperature, H₂O (0.5 mL) was added to the reaction mixture. The resultant solution was heat to 110 °C for 3 h. The resultant mixture was extracted with DCM, and the organic layer was washed sequentially with 1M HCl solution, saturated NaHCO₃ solution and brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated in vacuo. The residue was purified by flash silica gel column chromatography to give the desired product.

Methyl2,3,6-tri-O-benzoyl-4-C-[2-(methoxycarbonyl)allyl]-α-D-talopyranoside(15)

Following the general procedure F, **3e** (648.7 mg, 1.00 mmol, 1.0 equiv) was treated with TEMPO (15.6 mg, 100.0 μ mol, 0.1 equiv) and PhI(OAc)₂ (644.2 mg, 2.00 mmol, 2.0 equiv) in DCM/H₂O (11.0 mL, $\nu/\nu = 10$:1) to give the acid (569.3 mg, 859.1 μ mol,

86%) as a white foam. The acid (324.7 mg, 490.0 μmol, 1.0 equiv) was treated with DPPA (127 μL, 588.0 μmol, 1.2 equiv) and DIPEA (102 μL, 588.0 μmol, 1.2 equiv) in DMF (5.0 mL) to give **15** (203.4 mg, 336.4 μmol, 69%) as a white foam after purification by silica gel column chromatography (PE:EA = 3:1). $[\alpha]_D^{25} = -13.05$ (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11–8.03 (m, 2H), 8.02–7.94 (m, 2H), 7.94–7.87 (m, 2H), 7.63–7.55 (m, 2H), 7.55–7.41 (m, 5H), 7.41–7.31 (m, 2H), 6.16 (s, 1H), 5.74 (s, 1H), 5.55 (dd, *J* = 3.8, 1.8 Hz, 1H), 5.41 (d, *J* = 3.8 Hz, 1H), 5.08–4.86 (m, 2H), 4.81–4.60 (m, 1H), 4.21 (dd, *J* = 8.1, 2.3 Hz, 1H), 4.08 (s, 1H), 3.45 (s, 3H), 3.40 (s, 3H), 2.90 (d, *J* = 14.3 Hz, 1H), 2.74 (d, *J* = 14.3 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.4, 166.7, 165.5, 165.0, 135.5, 133.6, 133.4, 133.3, 130.1, 130.0, 129.9, 129.7, 129.5, 129.4, 128.7, 128.6, 128.4, 98.6, 73.4, 72.9, 69.4, 69.3, 63.8, 55.5, 52.2, 38.3; HRMS (ESI) *m/z* calcd for C₃₃H₃₆NO₁₁ [M+NH₄]⁺ 622.2283, found 622.2296.

Methyl2,3,6-tri-O-benzoyl-4-C-[2-(methoxycarbonyl)allyl]-α-D-galatco-pyranoside (S52) and Methyl 2,3,6-tri-O-benzoyl-3'-methylenespiro(4-deoxy-α-D-galactopyranose-4,5'-tetrahydrofuran-1-one) (S53)

Following the general procedure F, **3a** (64.8 mg, 100.0 μ mol, 1.0 equiv) was treated with TEMPO (3.2 mg, 20.0 μ mol, 0.2 equiv) and PhI(OAc)₂ (64.4 mg, 200.0 μ mol, 2.0 equiv) in DCM/H₂O (3.3 mL, $\nu/\nu = 10$:1) to give the acid (63.2 mg, 95.5 μ mol, 96%) as a colorless oil. The acid (36.5 mg, 55.1 μ mol, 1.0 equiv) was treated with DPPA (14 μ L, 66.1 μ mol, 1.2 equiv) and DIPEA (12 μ L, 66.1 μ mol, 1.2 equiv) in DMF (1.0 mL) to give **S52** (11.5 mg, 19.0 μ mol, 35%) and **S53** (5.7 mg, 10.0 μ mol, 18%) as white foam after purification by silica gel column chromatography (PE:EA = 4:1). For **S52**: $[\alpha]_{\rm D}^{25} = +47.08$ (*c* 1.1, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.12–8.03

For S52: $\lfloor \alpha \rfloor_D = +47.08$ (*c* 1.1, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) 8 8.12–8.03 (m, 2H), 7.93–7.86 (m, 4H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.50–7.42 (m, 4H), 7.39–7.30 (m, 4H), 5.99 (s, 1H), 5.76 (s, 1H), 5.71 (d, *J* = 10.0 Hz, 1H), 5.46 (dd, *J* = 10.0, 3.7 Hz, 1H), 5.43 (s, 1H), 5.25 (d, J = 3.6 Hz, 1H), 4.94 (dd, J = 12.0, 2.7 Hz, 1H), 4.59 (dd, J = 11.9, 7.7 Hz, 1H), 4.15 (dd, J = 7.6, 2.2 Hz, 1H), 3.38 (s, 3H), 3.29 (s, 3H), 2.92 (d, J = 14.5 Hz, 1H), 2.63 (d, J = 14.5 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.7, 166.8, 166.1, 165.5, 135.2, 133.3, 133.2, 130.1, 130.0, 129.9, 129.5, 128.6, 128.4, 97.0, 75.1, 73.1, 71.8, 71.4, 63.8, 55.4, 52.3, 41.1; HRMS (ESI) *m/z* calcd for C₃₃H₃₂O₁₁Na [M+Na]⁺ 627.1837, found 627.1840.

For **S53**: $[\alpha]_{D}^{25} = +48.03$ (*c* 0.4, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09–8.02 (m, 2H), 7.94–7.87 (m, 4H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.54–7.44 (m, 4H), 7.40–7.31 (m, 4H), 6.18–6.11 (m, 1H), 5.98 (d, *J* = 10.5 Hz, 1H), 5.53 (s, 1H), 5.50 (dd, *J* = 10.4, 3.4 Hz, 1H), 5.31 (d, *J* = 3.5 Hz, 1H), 4.69 (dd, *J* = 12.0, 2.8 Hz, 1H), 4.46 (dd, *J* = 12.0, 6.8 Hz, 1H), 4.32 (dd, *J* = 6.7, 2.7 Hz, 1H), 3.42 (s, 3H), 3.23 (dt, *J* = 18.3, 2.8 Hz, 1H), 2.98 (d, *J* = 18.3 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.9, 166.6, 166.1, 165.8, 133.9, 133.7, 133.4, 132.5, 130.0, 130.0, 129.8, 129.5, 129.2, 128.7, 128.5, 123.5, 97.1, 82.9, 71.6, 70.8, 70.4, 62.8, 55.8, 32.2; HRMS (ESI) *m/z* calcd for C₃₂H₂₈O₁₀Na [M+Na]⁺ 595.1575, found 595.1578.

p-Tolyl 2,3-*O*-isopropylidene-4-*C*-[2-(methoxycarbonyl)allyl]-1-thio-α-L-talopyranoside (S54)

Following the general procedure F, **3j** (101.2 mg, 223.6 µmol, 1.0 equiv) was treated with TEMPO (7.0 mg, 44.7 µmol, 0.2 equiv) and PhI(OAc)₂ (144.1 mg, 447.2 µmol, 2.0 equiv) in DCM/H₂O (3.3 mL, v/v = 10:1) to give the acid (101.6 mg, 223.6 µmol, 100%) as a colorless oil. The acid (101.6 mg, 223.6 µmol, 1.0 equiv) was treated with DPPA (58 µL, 268.3 µmol, 1.2 equiv) and DIPEA (46 µL, 268.3 µmol, 1.2 equiv) in DMF (1.0 mL) to give **S54** (54.3 mg, 132.9 µmol, 60%) as a white foam after purification by silica gel column chromatography (PE:EA = 3:1). $[\alpha]_{D}^{25} = -127.40$ (*c* 1.3, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 (d, *J* = 8.0 Hz, 2H), 7.12 (d, *J* = 7.9 Hz, 2H), 6.26 (s, 1H), 5.68 (s, 1H), 5.59 (d, *J* = 2.2 Hz, 1H), 4.20–4.13 (m, 2H), 4.07–

4.00 (m, 1H), 3.77 (s, 3H), 3.23 (s, 1H), 2.53 (d, J = 13.7 Hz, 1H), 2.44 (d, J = 13.7 Hz, 1H), 2.33 (s, 3H), 1.50 (s, 3H), 1.30 (s, 3H), 1.26 (d, J = 6.4 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.7, 137.8, 136.4, 132.5, 129.83, 129.75, 129.1, 109.6, 83.0, 75.8, 74.7, 71.1, 70.7, 52.2, 40.1, 26.3, 25.6, 21.2, 13.9; HRMS (ESI) *m/z* calcd for C₂₁H₂₉O₆S [M+H]⁺ 409.1679, found 409.1683.

Methyl 2,4,6-tri-*O*-benzoyl-3-*C*-[2-(methoxycarbonyl)allyl]-α-D-mannopyranoside (S55)

Following the general procedure F, **3n** (25.7 mg, 39.6 μ mol, 1.0 equiv) was treated with TEMPO (1.3 mg, 7.9 μ mol, 0.2 equiv) and PhI(OAc)₂ (25.5 mg, 79.2 μ mol, 2.0 equiv) in DCM/H₂O (3.3 mL, $\nu/\nu = 10$:1) to give the acid (26.2 mg, 39.6 μ mol, 100%) as a colorless oil. The acid (26.2 mg, 39.6 μ mol, 1.0 equiv) was treated with DPPA (10 μ L, 47.5 μ mol, 1.2 equiv) and DIPEA (8 μ L, 47.5 μ mol, 1.2 equiv) in DMF (1.0 mL) to give **S55** (13.7 mg, 22.7 μ mol, 57%) as a white foam after purification by silica gel column chromatography (PE:EA = 3:1). $[\alpha]_{D}^{25} = -19.56$ (*c* 0.4, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.12–8.05 (m, 6H), 7.64–7.52 (m, 3H), 7.49–7.38 (m, 6H), 6.38 (s, 1H), 5.91 (s, 1H), 5.63 (d, *J* = 8.3 Hz, 1H), 5.39 (d, *J* = 2.9 Hz, 1H), 4.98 (d, *J* = 2.8 Hz, 1H), 4.68 (dd, *J* = 12.3, 6.4 Hz, 1H), 4.61 (dd, *J* = 12.0, 2.9 Hz, 1H), 4.44–4.36 (m, 1H), 4.34 (s, 1H), 3.70 (s, 3H), 3.48 (s, 3H), 3.24–3.07 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.1, 166.4, 166.0, 165.9, 134.9, 133.7, 133.5, 133.2, 131.4, 130.1, 130.0, 129.9, 129.8, 129.5, 128.7, 128.6, 128.5, 99.3, 73.3, 72.9, 72.6, 63.5, 56.0, 52.7, 29.8; HRMS (ESI) *m/z* calcd for C₃₃H₃₃O₁₁ [M+H]⁺ 605.2017, found 605.2023.

Methyl6-O-tert-butyldiphenylsilyl-3,4-O-isopropylidene-2-C-[2-(methoxy-
carbonyl)allyl]-α-D-talopyranoside (S56)

Following the general procedure F, **3p** (45.7 mg, 74.3 μ mol, 1.0 equiv) was treated with TEMPO (2.3 mg, 14.9 μ mol, 0.2 equiv) and PhI(OAc)₂ (47.9 mg, 148.6 μ mol, 2.0 equiv) in DCM/H₂O (3.3 mL, $\nu/\nu = 10$:1) to give the acid (46.7 mg, 74.3 μ mol, 100%) as a colorless oil. The acid (46.7 mg, 74.3 μ mol, 1.0 equiv) was treated with DPPA (19 μ L, 89.2 μ mol, 1.2 equiv) and DIPEA (15 μ L, 89.2 μ mol, 1.2 equiv) in DMF (1.0 mL) to give **S56** (24.8 mg, 43.5 μ mol, 58%) as a white foam after purification by silica gel column chromatography (PE:EA = 3:1). [α]²⁵ = +33.24 (*c* 0.8, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.78–7.63 (m, 4H), 7.47–7.32 (m, 6H), 6.24–6.17 (m, 1H), 5.63 (s, 1H), 4.44 (s, 1H), 4.24 (dd, *J* = 5.7, 2.6 Hz, 1H), 4.12 (d, *J* = 5.7 Hz, 1H), 4.05–3.95 (m, 2H), 3.95–3.84 (m, 1H), 3.75 (s, 3H), 3.28 (s, 3H), 2.84 (d, *J* = 13.6 Hz, 1H), 2.68 (s, 1H), 2.46 (d, *J* = 13.7 Hz, 1H), 1.54 (s, 3H), 1.33 (s, 3H), 1.05 (s, 9H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.6, 136.6, 135.8, 133.7, 133.6, 129.8, 127.9, 127.81, 127.75, 109.3, 102.7, 74.0, 71.7, 70.2, 67.3, 63.1, 55.2, 52.0, 37.1, 26.9, 25.9, 19.3; HRMS (ESI) *m/z* calcd for C₃₁H₄₆NO₈Si [M+NH4]⁺ 588.2987, found 588.2995.

Methyl [methyl 2,3,4-tri-*O*-benzoyl-7,8-di-deoxy-8-methylene-*D*-*glycero*-α-*D*nonglucopyranosyluronate] (S57)

Following the general procedure F, **b-8a** (36.6 mg, 56.4 μ mol, 1.0 equiv) was treated with TEMPO (1.8 mg, 11.3 μ mol, 0.2 equiv) and PhI(OAc)₂ (36.3 mg, 112.8 μ mol, 2.0 equiv) in DCM/H₂O (3.3 mL, v/v = 10:1) to give the acid (37.3 mg, 56.4 μ mol, 100%) as a colorless oil. The acid (37.3 mg, 56.4 μ mol, 1.0 equiv) was treated with DPPA (15 μ L, 67.7 μ mol, 1.2 equiv) and DIPEA (12 μ L, 67.7 μ mol, 1.2 equiv) in DMF (1.0 mL) to give **S57** (19.1 mg, 31.6 μ mol, 56%) as a white foam after purification by silica gel column chromatography (PE:EA = 3:1). [α]_D²⁵ = +38.84 (*c* 0.3, CHCl₃); ¹H NMR (400

MHz, Chloroform-*d*) δ 8.05–7.91 (m, 4H), 7.87 (d, *J* = 7.3 Hz, 2H), 7.54–7.44 (m, 2H), 7.44–7.34 (m, 5H), 7.33–7.28 (m, 2H), 6.27 (s, 1H), 6.16 (t, *J* = 9.7 Hz, 1H), 5.75 (s, 1H), 5.60 (t, *J* = 9.9 Hz, 1H), 5.31–5.18 (m, 2H), 4.24 (dd, *J* = 10.4, 2.8 Hz, 1H), 3.91 (d, *J* = 9.6 Hz, 1H), 3.69 (s, 3H), 3.49 (s, 3H), 2.87–2.79 (m, 1H), 2.75 (s, 1H), 2.64 (dd, *J* = 14.1, 9.9 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.5, 166.0, 165.9, 165.7, 137.3, 133.6, 133.5, 133.2, 130.1, 130.0, 129.8, 129.4, 129.2, 129.1, 128.6, 128.5, 128.4, 96.9, 72.3, 71.7, 70.8, 70.7, 70.1, 55.7, 52.3, 34.3; HRMS (ESI) *m/z* calcd for C₃₃H₃₃O₁₁ [M+H]⁺ 605.2017, found 605.2032.

Methyl [methyl 2,3,4-tri-*O*-benzoyl-7,8-di-deoxy-8-methylene-*L*-*glycero*-α-Dnonglucopyranosyluronate] (\$58)

Following the general procedure F, L-**8a** (45.7 mg, 70.5 μ mol, 1.0 equiv) was treated with TEMPO (2.2 mg, 14.1 μ mol, 0.2 equiv) and PhI(OAc)₂ (45.4 mg, 141.0 μ mol, 2.0 equiv) in DCM/H₂O (3.3 mL, $\nu/\nu = 10$:1) to give the acid (46.7 mg, 70.5 μ mol, 100%) as a colorless oil. The acid (46.7 mg, 70.5 μ mol, 100%) was treated with DPPA (18 μ L, 84.6 μ mol, 1.2 equiv) and DIPEA (15 μ L, 84.6 μ mol, 1.2 equiv) in DMF (1.0 mL) to give **S58** (20.9 mg, 34.6 μ mol, 49%) as a white foam after purification by silica gel column chromatography (PE:EA = 3:1). [α]₂₅²⁵ = +35.11 (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.03–7.92 (m, 4H), 7.92–7.77 (m, 2H), 7.59–7.47 (m, 2H), 7.46–7.34 (m, 5H), 7.32–7.27 (m, 2H), 6.28 (s, 1H), 6.21 (t, *J* = 9.8 Hz, 1H), 5.76 (s, 1H), 5.61 (t, *J* = 9.9 Hz, 1H), 5.31–5.25 (m, 2H), 3.98 (d, *J* = 10.0 Hz, 1H), 3.91–3.83 (m, 1H), 3.66 (s, 3H), 3.47 (s, 3H), 2.82 (dd, *J* = 14.1, 9.7 Hz, 1H), 2.57 (dd, *J* = 14.2, 3.0 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.7, 166.7, 165.9, 136.9, 133.8, 133.5, 133.3, 130.2, 130.1, 129.8, 129.2, 128.7, 128.6, 128.4, 97.4, 72.1, 71.2, 70.3, 70.2, 67.2, 56.0, 52.1, 35.9; HRMS (ESI) *m/z* calcd for C₃₃H₃₃O₁₁ [M+H]⁺ 605.2017, found 605.2023.

Methyl [methyl 2,3,4-tri-*O*-benzoyl-7,8-di-deoxy-8-methylene-*D*-*glycero*-α-*D*nonmannopyranosyluronate] (S59)

Following the general procedure F, **D-8b** (38.9 mg, 60.0 µmol, 1.0 equiv) was treated with TEMPO (1.9 mg, 12.0 µmol, 0.2 equiv) and PhI(OAc)₂ (38.7 mg, 120.1 µmol, 2.0 equiv) in DCM/H₂O (3.3 mL, v/v = 10.1) to give the acid (38.9 mg, 58.7 μ mol, 98%) as a colorless oil. The acid (38.9 mg, 58.7 µmol, 1.0 equiv) was treated with DPPA (16 μ L, 70.4 μ mol, 1.2 equiv) and DIPEA (12 μ L, 70.4 μ mol, 1.2 equiv) in DMF (1.0 mL) to give S59 (19.7 mg, 32.6 μ mol, 55%) as a white foam after purification by silica gel column chromatography (PE:EA = 3:1). $[\alpha]_{D}^{25} = -28.88$ (*c* 0.7, CHCl₃); ¹H NMR (400 MHz, Chloroform-d) & 8.11-8.06 (m, 2H), 8.00-7.95 (m, 2H), 7.86-7.81 (m, 2H), 7.64–7.58 (m, 1H), 7.54–7.46 (m, 3H), 7.45–7.35 (m, 3H), 7.26–7.23 (m, 2H), 6.27 (d, J = 1.2 Hz, 1H), 5.96–5.90 (m, 1H), 5.87 (dd, J = 9.8, 3.1 Hz, 1H), 5.76 (s, 1H), 5.67 (dd, J = 3.0, 1.8 Hz, 1H), 5.00 (d, J = 1.6 Hz, 1H), 4.26 (dd, J = 9.6, 2.8 Hz, 1H), 3.97 (dt, J = 10.2, 2.6 Hz, 1H), 3.66 (s, 3H), 3.53 (s, 3H), 2.92 (dd, J = 14.2, 2.0 Hz, 1H),2.67 (dd, J = 14.2, 10.3 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-d) δ 168.4, 165.8, 165.5, 137.3, 133.6, 133.5, 133.2, 129.9, 129.8, 129.7, 129.4, 129.2, 129.1, 128.7, 128.5, 128.4, 128.3, 98.5, 72.7, 70.8, 70.6, 70.3, 67.6, 55.5, 52.1, 34.1; HRMS (ESI) m/z calcd for C₃₃H₃₃O₁₁ [M+H]⁺ 605.2017, found 605.2029.

Methyl [methyl 2,3,4-tri-*O*-benzoyl-7,8-di-deoxy-8-methylene-*L*-*glycero*-α-Dnonmannopyranosyluronate] (S60)

Following the general procedure F, L-8b (38.9 mg, 60.0 µmol, 1.0 equiv) was treated

with TEMPO (1.9 mg, 12.0 μ mol, 0.2 equiv) and PhI(OAc)₂ (38.7 mg, 120.1 μ mol, 2.0 equiv) in DCM/H₂O (3.3 mL, $\nu/\nu = 10$:1) to give the acid (39.4 mg, 59.4 μ mol, 99%) as a colorless oil. The acid (39.4 mg, 59.4 μ mol, 1.0 equiv) was treated with DPPA (16 μ L, 71.3 μ mol, 1.2 equiv) and DIPEA (12 μ L, 71.3 μ mol, 1.2 equiv) in DMF (1.0 mL) to give **S60** (19.3 mg, 31.9 μ mol, 53%) as a white foam after purification by silica gel column chromatography (PE:EA = 3:1). [α]²⁵_D = -92.40 (*c* 2.1, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.14–8.08 (m, 2H), 8.00–7.94 (m, 2H), 7.85–7.79 (m, 2H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.54–7.45 (m, 3H), 7.44–7.34 (m, 3H), 7.25–7.21 (m, 2H), 6.28 (d, *J* = 1.1 Hz, 1H), 6.04–5.96 (m, 1H), 5.96–5.91 (m, 1H), 5.76 (s, 1H), 5.70–5.65 (m, 1H), 5.06–5.03 (m, 1H), 3.99 (d, *J* = 9.2 Hz, 1H), 3.91 (dd, *J* = 9.4, 3.4 Hz, 1H), 3.63 (s, 3H), 3.52 (s, 3H), 2.83 (dd, *J* = 14.2, 9.5 Hz, 1H), 2.59 (dd, *J* = 14.2, 3.5 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.6, 166.5, 165.6, 165.5, 136.9, 133.62, 133.56, 133.2, 130.0, 129.9, 129.7, 129.3, 129.1, 128.8, 128.7, 128.5, 128.3, 128.2, 99.0, 72.2, 70.6, 69.8, 67.7, 67.3, 55.7, 51.9, 36.0; HRMS (ESI) *m*/*z* calcd for C₃₃H₃₃O₁₁ [M+H]⁺ 605.2017, found 605.2034.

Methyl [7,8-di-deoxy-1,2,3,4-di-*O*-isopropylidene-8-methylene-*D*-*glycero*-α-*D*nongalactopyranosyluronate] (S61)

Following the general procedure F, **D-8c** (30.3 mg, 75.3 μ mol, 1.0 equiv) was treated with TEMPO (2.4 mg, 15.1 μ mol, 0.2 equiv) and PhI(OAc)₂ (48.5 mg, 150.6 μ mol, 2.0 equiv) in DCM/H₂O (3.3 mL, v/v = 10:1) to give the acid (31.1 mg, 74.7 μ mol, 99%) as a colorless oil. The acid (31.1 mg, 74.7 μ mol, 1.0 equiv) was treated with DPPA (19 μ L, 89.6 μ mol, 1.2 equiv) and DIPEA (16 μ L, 89.6 μ mol, 1.2 equiv) in DMF (1.0 mL) to give **S61** (15.7 mg, 43.8 μ mol, 58%) as a white foam after purification by silica gel column chromatography (PE:EA = 3:1). [α]_D²⁵ = -43.07 (*c* 0.8, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 6.29 (d, *J* = 1.3 Hz, 1H), 5.84 (s, 1H), 5.55 (d, *J* = 5.1 Hz, 1H),

4.62 (dd, J = 8.0, 2.3 Hz, 1H), 4.50 (dd, J = 8.0, 1.8 Hz, 1H), 4.32 (dd, J = 5.1, 2.4 Hz, 1H), 3.98–3.87 (m, 1H), 3.78 (s, 3H), 3.55 (dd, J = 8.4, 1.6 Hz, 1H), 3.40 (s, 1H), 2.87 (dd, J = 14.5, 2.8 Hz, 1H), 2.50 (dd, J = 14.4, 7.6 Hz, 1H), 1.50 (s, 3H), 1.47 (s, 3H), 1.37 (s, 3H), 1.33 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.5, 136.8, 129.3, 109.3, 108.6, 96.6, 70.9, 70.8, 70.7, 69.7, 69.2, 52.5, 36.4, 26.13, 26.09, 25.1, 24.5; HRMS (ESI) *m/z* calcd for C₁₇H₂₇O₈ [M+H]⁺ 359.1700, found 359.1707.

Methyl [7,8-di-deoxy-1,2,3,4-di-*O*-isopropylidene-8-methylene-*L-glycero*-α-Dnongalactopyranosyluronate] (S62)

Following the general procedure F, L-8c (30.3 mg, 75.3 μ mol, 1.0 equiv) was treated with TEMPO (2.4 mg, 15.1 μ mol, 0.2 equiv) and PhI(OAc)₂ (48.5 mg, 150.6 μ mol, 2.0 equiv) in DCM/H₂O (3.3 mL, $\nu/\nu = 10:1$) to give the acid (31.4 mg, 75.3 μ mol, 100%) as a colorless oil. The acid (31.4 mg, 75.3 μ mol, 1.0 equiv) was treated with DPPA (19 μ L, 90.4 μ mol, 1.2 equiv) and DIPEA (16 μ L, 90.4 μ mol, 1.2 equiv) in DMF (1.0 mL) to give **S62** (16.3 mg, 45.5 μ mol, 60%) as a white foam after purification by silica gel column chromatography (PE:EA = 3:1). [α]_D²⁵ = -48.12 (*c* 0.7, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 6.28 (s, 1H), 5.81 (s, 1H), 5.64 (d, *J* = 5.0 Hz, 1H), 4.65–4.52 (m, 1H), 4.40–4.31 (m, 2H), 4.22–4.14 (m, 1H), 3.76 (s, 3H), 3.61 (s, 1H), 2.64 (d, *J* = 6.5 Hz, 2H), 1.49 (s, 6H), 1.34 (s, 3H), 1.33 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.8, 136.4, 128.7, 109.7, 108.7, 96.8, 73.4, 71.2, 70.5, 69.7, 67.9, 52.0, 35.8, 26.2, 25.9, 25.0, 24.2; HRMS (ESI) *m/z* calcd for C₁₇H₂₇O₈ [M+H]⁺ 359.1700, found 359.1707.

Methyl [methyl 6,7-di-deoxy-2,3-*O*-isopropylidene-7-methylene-*D*-*glycero*-α-*D*-octribofuranosyluronate] (S63)

Following the general procedure F, **p-8d** (34.6 mg, 100.0 μ mol, 1.0 equiv) was treated with TEMPO (3.1 mg, 2.0 μ mol, 0.2 equiv) and PhI(OAc)₂ (64.4 mg, 200.0 μ mol, 2.0 equiv) in DCM/H₂O (3.3 mL, $\nu/\nu = 10$:1) to give the acid (36.0 mg, 99.8 μ mol, 100%) as a colorless oil. The acid (36.0 mg, 99.8 μ mol, 1.0 equiv) was treated with DPPA (26 μ L, 119.8 μ mol, 1.2 equiv) and DIPEA (21 μ L, 119.8 μ mol, 1.2 equiv) in DMF (1.0 mL) to give **S63** (18.6 mg, 61.6 μ mol, 62%) as a white foam after purification by silica gel column chromatography (PE:EA = 3:1). [α]_D²⁵ = -33.76 (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 6.30 (d, *J* = 1.1 Hz, 1H), 5.74 (s, 1H), 4.97 (s, 1H), 4.90 (d, *J* = 6.0 Hz, 1H), 4.58 (d, *J* = 6.0 Hz, 1H), 4.21 (d, *J* = 3.4 Hz, 1H), 3.91–3.81 (m, 1H), 3.80–3.72 (m, 4H), 3.42 (s, 3H), 2.64 (dd, *J* = 14.2, 4.1 Hz, 1H), 2.47 (dd, *J* = 14.1, 8.8 Hz, 1H), 1.48 (s, 3H), 1.33 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.9, 136.7, 128.3, 112.3, 110.1, 90.9, 85.9, 80.3, 71.0, 55.8, 52.2, 36.0, 26.5, 24.8; HRMS (ESI) *m/z* calcd for C₁₄H₂₂O₇Na [M+Na]⁺ 325.1258, found 325.1267.

Methyl [methyl 6,7-di-deoxy-2,3-*O*-isopropylidene-7-methylene-L-*glycero*-α-Doctribofuranosyluronate] (S64)

Following the general procedure F, L-8c (17.5 mg, 50.5 μ mol, 1.0 equiv) was treated with TEMPO (1.6 mg, 10.1 μ mol, 0.2 equiv) and PhI(OAc)₂ (32.6 mg, 101.2 μ mol, 2.0 equiv) in DCM/H₂O (3.3 mL, $\nu/\nu = 10$:1) to give the acid (18.1 mg, 50.2 μ mol, 99%) as a colorless oil. The acid (18.1 mg, 50.2 μ mol, 1.0 equiv) was treated with DPPA (13 μ L, 60.2 μ mol, 1.2 equiv) and DIPEA (11 μ L, 60.2 μ mol, 1.2 equiv) in DMF (1.0 mL) to give S64 (7.4 mg, 24.5 μ mol, 49%) as a white foam after purification by silica gel column chromatography (PE:EA = 3:1). [α]_D²⁵ = -23.08 (*c* 0.4, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 6.27 (d, *J* = 1.3 Hz, 1H), 5.73–5.65 (m, 1H), 4.98 (s, 1H), 4.82 (d, *J* = 5.9 Hz, 1H), 4.59 (d, *J* = 6.0 Hz, 1H), 4.36 (d, *J* = 2.6 Hz, 1H), 3.84–3.69 (m, 4H), 3.49 (s, 3H), 3.43–3.30 (m, 1H), 2.64–2.41 (m, 2H), 1.48 (s, 3H), 1.31 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.7, 137.0, 128.0, 112.2, 110.7, 90.0, 85.7, 82.7, 70.8, 56.1, 52.1, 37.1, 26.5, 24.8; HRMS (ESI) *m*/*z* calcd for C₁₄H₂₂O₇Na [M+Na]⁺ 325.1258, found 325.1268.

Methyl [*p*-tolyl 6,7-di-deoxy-2,3-*O*-isopropylidene-7-methylene-*D*-*glycero*-1-thioα-*D*-octribofuranosyluronate] (S65)

Following the general procedure F, **b-8e** (68.8 mg, 156.9 μ mol, 1.0 equiv) was treated with TEMPO (4.9 mg, 31.4 μ mol, 0.2 equiv) and PhI(OAc)₂ (101.1 mg, 313.8 μ mol, 2.0 equiv) in DCM/H₂O (3.3 mL, $\nu/\nu = 10$:1) to give the acid (49.0 mg, 108.3 μ mol, 69%) as a colorless oil. The acid (49.0 mg, 108.3 μ mol, 1.0 equiv) was treated with DPPA (28 μ L, 130.0 μ mol, 1.2 equiv) and DIPEA (23 μ L, 130.0 μ mol, 1.2 equiv) in DMF (1.0 mL) to give **S65** (30.1 mg, 76.4 μ mol, 70%) as a white foam after purification by silica gel column chromatography (PE:EA = 3:1). [α]₂₅²⁵ = -133.72 (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 (d, *J* = 8.1 Hz, 2H), 7.13 (d, *J* = 7.9 Hz, 2H), 6.27 (s, 1H), 5.68 (s, 1H), 5.50 (d, *J* = 2.4 Hz, 1H), 4.93 (dd, *J* = 6.3, 1.7 Hz, 1H), 4.70 (dd, *J* = 6.3, 2.4 Hz, 1H), 4.08 (dd, *J* = 5.8, 1.7 Hz, 1H), 4.06–3.98 (m, 1H), 3.77 (s, 3H), 3.29 (s, 1H), 2.68 (dd, *J* = 14.3, 3.5 Hz, 1H), 2.46 (dd, *J* = 14.3, 8.2 Hz, 1H), 2.33 (s, 3H), 1.51 (s, 3H), 1.35 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.5, 137.8, 136.5, 131.8, 129.9, 129.8, 128.8, 113.5, 92.6, 89.9, 85.7, 81.2, 70.4, 52.2, 35.9, 26.9, 25.3, 21.1; HRMS (ESI) *m/z* calcd for C₂₀H₃₀NO₆S [M+HH₄]⁺ 412.1788, found 412.1791.

Methyl [p-tolyl 6,7-di-deoxy-2,3-O-isopropylidene-7-methylene-L-glycero-1-thio-

a-d-octribofuranosyluronate] (S66)

Following the general procedure F, L-**8**e (58.7 mg, 133.9 μ mol, 1.0 equiv) was treated with TEMPO (4.2 mg, 26.8 μ mol, 0.2 equiv) and PhI(OAc)₂ (86.3 mg, 267.8 μ mol, 2.0 equiv) in DCM/H₂O (3.3 mL, $\nu/\nu = 10$:1) to give the acid (37.7 mg, 83.3 μ mol, 62%) as a colorless oil. The acid (37.7 mg, 83.3 μ mol, 1.0 equiv) was treated with DPPA (22 μ L, 99.9 μ mol, 1.2 equiv) and DIPEA (17 μ L, 99.9 μ mol, 1.2 equiv) in DMF (1.0 mL) to give **S66** (27.6 mg, 70.0 μ mol, 84%) as a white foam after purification by silica gel column chromatography (PE:EA = 3:1). [α]_D²⁵ = -71.49 (c 0.6, CHCl₃); ¹H NMR (400 MHz, Chloroform-d) δ 7.43 (d, J = 8.1 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 6.32–6.24 (m, 1H), 5.69 (s, 1H), 5.52 (d, J = 2.6 Hz, 1H), 4.80 (dd, J = 6.2, 1.2 Hz, 1H), 4.73 (dd, J = 6.1, 2.6 Hz, 1H), 4.25–4.18 (m, 1H), 3.89 (dt, J = 8.0, 4.7 Hz, 1H), 3.76 (s, 3H), 2.60–2.49 (m, 2H), 2.34 (s, 3H), 1.51 (s, 3H), 1.34 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 167.5, 138.1, 136.6, 132.0, 130.0, 129.6, 128.1, 113.4, 93.6, 89.7, 85.7, 82.8, 70.7, 52.0, 36.8, 27.0, 25.3, 21.1; HRMS (ESI) m/z calcd for C₂₀H₃₀NO₆S [M+HH₄]⁺ 412.1788, found 412.1794.

Methyl {methyl [2,3,4-tri-*O*-benzoyl-7,8-di-deoxy-8-methylene-*D*-*glycero*- α -*D*-nonmannopyranosyluronate]}-(1 \rightarrow 6)-2,3,4-tri-*O*-benzoyl- α -*D*-mannopyranoside (S67)

Following the general procedure F, **b-8f** (40.0 mg, 35.6 μ mol, 1.0 equiv) was treated with TEMPO (1.1 mg, 7.1 μ mol, 0.2 equiv) and PhI(OAc)₂ (22.9 mg, 71.2 μ mol, 2.0 equiv) in DCM/H₂O (3.3 mL, $\nu/\nu = 10$:1) to give the acid (40.4 mg, 35.6 μ mol, 100%)

as a colorless oil. The acid (40.4 mg, 35.6 μ mol, 1.0 equiv) was treated with DPPA (9 μ L, 42.7 μ mol, 1.2 equiv) and DIPEA (8 μ L, 42.7 μ mol, 1.2 equiv) in DMF (1.0 mL) to give S67 (23.3 mg, 21.6 μ mol, 61%) as a white foam after purification by silica gel column chromatography (PE:EA = 3:1). $[\alpha]_{D}^{25} = -45.09$ (*c* 1.2, CHCl₃); ¹H NMR (400 MHz, Chloroform-d) & 8.18-8.13 (m, 2H), 8.08-8.04 (m, 2H), 8.04-7.95 (m, 4H), 7.90–7.78 (m, 4H), 7.60 (t, J = 7.4 Hz, 1H), 7.56–7.36 (m, 11H), 7.36–7.31 (m, 2H), 7.31–7.26 (m, 4H), 6.22–6.17 (m, 1H), 6.00 (t, J = 10.0 Hz, 1H), 5.96–5.92 (m, 2H), 5.90 (d, J = 10.0 Hz, 1H), 5.74 (dd, J = 3.1, 1.7 Hz, 1H), 5.71 (s, 1H), 5.62 (s, 1H), 5.18–5.14 (m, 1H), 5.06–5.02 (m, 1H), 4.42–4.35 (m, 1H), 4.29 (dd, J = 9.1, 2.5 Hz, 1H), 4.13 (dd, J = 10.9, 5.8 Hz, 1H), 3.90–3.83 (m, 1H), 3.81 (d, J = 11.0 Hz, 1H), 3.64 (s, 3H), 3.59 (s, 3H), 2.86–2.70 (m, 1H), 2.50 (dd, J = 14.1, 10.4 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.1, 165.8, 165.68, 165.65, 165.5, 165.34, 165.26, 137.2, 133.5, 133.4, 133.1, 130.0, 129.9, 129.83, 129.81, 129.7, 129.4, 129.34, 129.26, 129.2, 129.1, 128.7, 128.50, 128.46, 128.3, 128.2, 98.7, 97.5, 72.9, 70.6, 70.5, 70.4, 70.3, 70.2, 69.5, 67.6, 67.2, 66.9, 55.6, 52.0, 34.2; HRMS (ESI) m/z calcd for C₆₀H₅₅O₁₉ [M+H]⁺ 1079.3332, found 1079.3345.

Methyl {methyl [2,3,4-tri-*O*-benzoyl-7,8-di-deoxy-8-methylene-L-*glycero*- α -D-nonmannopyranosyluronate]}-(1 \rightarrow 6)-2,3,4-tri-*O*-benzoyl- α -D-mannopyranoside (S68)

Following the general procedure F, L-**8f** (95.3 mg, 84.9 μ mol, 1.0 equiv) was treated with TEMPO (2.6 mg, 17.0 μ mol, 0.2 equiv) and PhI(OAc)₂ (54.7 mg, 169.8 μ mol, 2.0 equiv) in DCM/H₂O (3.3 mL, $\nu/\nu = 10$:1) to give the acid (90.7 mg, 79.8 μ mol, 94%) as a colorless oil. The acid (90.7 mg, 79.8 μ mol, 1.0 equiv) was treated with DPPA (21 μ L, 95.6 μ mol, 1.2 equiv) and DIPEA (17 μ L, 95.6 μ mol, 1.2 equiv) in DMF (1.0 mL) to give **S68** (48.6 mg, 45.1 μ mol, 56%) as a white foam after purification by silica gel

column chromatography (PE:EA = 3:1). $[a]_{D}^{25} = -47.01$ (*c* 2.0, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11–8.05 (m, 4H), 8.02–7.93 (m, 4H), 7.88–7.80 (m, 4H), 7.59 (t, *J* = 7.5 Hz, 1H), 7.57–7.52 (m, 2H), 7.51–7.43 (m, 6H), 7.43–7.36 (m, 4H), 7.36–7.31 (m, 2H), 7.29–7.26 (m, 3H), 6.06 (d, *J* = 1.1 Hz, 1H), 6.01 (dd, *J* = 10.1, 3.2 Hz, 1H), 5.98–5.93 (m, 2H), 5.93–5.88 (m, 1H), 5.76–5.73 (m, 1H), 5.70 (dd, *J* = 3.0, 1.6 Hz, 1H), 5.52 (s, 1H), 5.20 (s, 1H), 5.10–5.04 (m, 1H), 4.40 (t, *J* = 7.4 Hz, 1H), 4.16 (d, *J* = 9.6 Hz, 1H), 4.07 (dd, *J* = 10.7, 7.0 Hz, 1H), 3.87–3.80 (m, 1H), 3.75 (d, *J* = 8.8 Hz, 1H), 3.66 (s, 3H), 3.50 (s, 3H), 2.85 (s, 1H), 2.68 (dd, *J* = 14.1, 10.1 Hz, 1H), 2.46–2.32 (m, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.3, 166.6, 165.7, 165.54, 165.53, 165.51, 165.4, 136.8, 133.6, 133.5, 133.2, 130.0, 129.92, 129.88, 129.8, 129.7, 129.29, 129.26, 129.2, 128.90, 128.88, 128.7, 128.64, 128.57, 128.5, 128.3, 127.9, 98.6, 97.4, 72.4, 70.5, 70.4, 70.0, 69.8, 69.4, 67.7, 67.5, 67.3, 66.7, 55.6, 51.7, 35.9; HRMS (ESI) *m/z* calcd for C₆₀H₅₅O₁₉ [M+H]⁺ 1079.3332, found 1079.3345.

Mosher's method for the determination of absolute stereochemistry C6-OH on higher-carbon sugars

General Procedure G: Synthesis of O-mosher ester

To a solution of alcohol (1.0 equiv) in dry pyridine were added DMAP (2.0 equiv) and (*R*)-(-)- α -methoxy- α -(trifluoromethyl)phenylacetyl chloride ((*R*)-MTPA-Cl) (2.0 equiv) at 0 °C. The mixture was warmed to room temperature and stirred for 1 h. After removal of solvent by rotary evaporation, the crude product was purified by flash silica gel column chromatography to give the (*S*)-*O*-Mosher ester. The same procedure was used with (*S*)-(+)- α -methoxy- α -(trifluoromethyl)phenylacetyl chloride ((*S*)-MTPA-Cl) in preparation of the analogous (*R*)-*O*-Mosher ester.

Methyl {methyl 2,3,4-tri-*O*-benzoyl-7,8-di-deoxy-6-*O*-[(*S*)-(-)-α-methoxy-α-(trifluoromethyl)-phenylacetyl]-8-methylene-L-*glycero*-α-D-nonglucopyranosyluronate} (S69)

Following the general procedure G, **S58** (16.1 mg, 26.7 μ mol, 1.0 equiv) was treated with DMAP (6.5 mg, 53.4 μ mol, 2.0 equiv), (*R*)-MTPA-Cl (10 μ L, 53.4 μ mol, 2.0 equiv) in pyridine (0.5 mL) to give **S69** ((*S*)-*O*-Mosher ester) (12.1 mg, 14.7 μ mol, 55%) as a white foam after purification by silica gel column chromatography (PE:EA = 4:1). $[\alpha]_{D}^{25}$ = +28.78 (*c* 0.7, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.01–7.95 (m, 2H), 7.95–7.89 (m, 2H), 7.87–7.81 (m, 2H), 7.68–7.63 (m, 2H), 7.54–7.48 (m, 2H), 7.49–7.43 (m, 4H), 7.42–7.34 (m, 4H), 7.30 (t, *J* = 7.7 Hz, 2H), 6.10 (s, 1H), 6.05 (t, *J* = 9.9 Hz, 1H), 5.62 (t, *J* = 7.1 Hz, 1H), 5.48 (s, 1H), 5.32 (t, *J* = 9.8 Hz, 1H), 5.24 (d, *J* = 3.5 Hz, 1H), 5.06 (dd, *J* = 10.3, 3.6 Hz, 1H), 4.26–4.19 (m, 1H), 3.64 (s, 3H), 3.60 (s, 3H), 3.46 (s, 3H), 2.79 (d, *J* = 7.0 Hz, 2H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -71.02; ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.5, 165.9, 165.8, 165.7, 165.0, 134.7, 133.4, 133.3, 133.1, 131.7, 130.0, 129.8, 129.7, 129.6, 129.3, 129.2, 129.0, 128.5, 128.4, 128.3, 128.1, 124.6, 97.2, 71.8, 70.7, 70.6, 69.6, 68.8, 56.1, 55.4, 52.0, 34.5; HRMS (ESI) *m/z* calcd for C₄₃H₄₃F₃NO₁₃ [M+NH4]⁺ 838.2681, found 838.2703.

Methyl {methyl 2,3,4-tri-*O*-benzoyl-7,8-di-deoxy-6-*O*-[(*R*)-(-)- α -methoxy- α -(trifluoromethyl)-phenylacetyl]-8-methylene-L-*glycero*- α -D-nonglucopyranosyl-uronate} (S70)

Following the general procedure G, **S58** (16.1 mg, 26.7 μ mol, 1.0 equiv) was treated with DMAP (6.5 mg, 53.4 μ mol, 2.0 equiv), (*R*)-MTPA-Cl (10 μ L, 53.4 μ mol, 2.0 equiv) in pyridine (0.5 mL) to give **S70** ((*R*)-*O*-Mosher ester) (10.8 mg, 13.2 μ mol, 49%) as a white foam after purification by silica gel column chromatography (PE:EA = 4:1). [α]_D²⁵ = +34.46 (*c* 0.6, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 (d, *J* = 7.4 Hz, 2H), 7.91 (d, *J* = 7.4 Hz, 2H), 7.85 (d, *J* = 7.4 Hz, 2H), 7.70–7.63 (m, 2H), 7.54–7.49 (m, 2H), 7.48–7.43 (m, 4H), 7.40–7.35 (m, 4H), 7.32 (d, J = 7.8 Hz, 2H), 6.19 (s, 1H), 6.04 (t, J = 9.8 Hz, 1H), 5.62 (t, J = 6.9 Hz, 1H), 5.59 (s, 1H), 5.35 (t, J = 9.7 Hz, 1H), 5.21 (d, J = 3.4 Hz, 1H), 5.00 (dd, J = 10.4, 3.5 Hz, 1H), 4.20 (d, J = 10.1 Hz, 1H), 3.64 (s, 3H), 3.60 (s, 3H), 3.45 (s, 3H), 2.88 (d, J = 6.8 Hz, 2H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -71.21; ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.5, 165.9, 165.8, 165.7, 165.0, 134.7, 133.4, 133.3, 133.1, 131.7, 130.0, 129.8, 129.7, 129.6, 129.3, 129.2, 129.0, 128.5, 128.4, 128.3, 128.1, 124.6, 121.8, 97.2, 71.8, 70.7, 70.6, 69.6, 68.8, 56.1, 55.4, 52.0, 34.5; HRMS (ESI) *m/z* calcd for C₄₃H₄₃F₃NO₁₃ [M+NH4]⁺ 838.2681, found 838.2692.

Methyl {methyl 2,3,4-tri-*O*-benzoyl-7,8-di-deoxy-6-*O*-[(*S*)-(-)-α-methoxy-α-(trifluoromethyl)-phenylacetyl]-8-methylene-*D*-*glycero*-α-*D*-Nonmannopyranosyluronate} (S71)

Following the general procedure G, **S60** (16.1 mg, 26.7 μ mol, 1.0 equiv) was treated with DMAP (6.5 mg, 53.4 μ mol, 2.0 equiv), (*R*)-MTPA-Cl (10 μ L, 53.4 μ mol, 2.0 equiv) in pyridine (0.5 mL) to give **S71** ((S)-*O*-Mosher ester) (17.3 mg, 21.1 μ mol, 79%) as a white foam after purification by silica gel column chromatography (PE:EA = 4:1). [α]_D²⁵ = -71.23 (*c* 1.7, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 (d, *J* = 7.2 Hz, 2H), 7.96 (d, *J* = 8.4 Hz, 2H), 7.86 (d, *J* = 7.2 Hz, 2H), 7.60–7.54 (m, 3H), 7.51 (t, *J* = 7.5 Hz, 1H), 7.46–7.33 (m, 8H), 7.29 (d, *J* = 7.9 Hz, 2H), 6.00 (s, 1H), 5.94 (t, *J* = 10.1 Hz, 1H), 5.80 (dd, *J* = 10.0, 3.3 Hz, 1H), 5.74 (t, *J* = 6.5 Hz, 1H), 5.65 (dd, *J* = 3.2, 1.7 Hz, 1H), 5.39 (s, 1H), 5.07 (s, 1H), 4.31 (d, *J* = 10.2 Hz, 1H), 3.66 (s, 3H), 3.55 (s, 3H), 3.53 (s, 3H), 2.82 (d, *J* = 6.8 Hz, 2H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -72.04; ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.5, 166.0, 165.8, 165.5, 165.2, 134.7, 133.6, 133.3, 133.2, 131.6, 129.9, 129.8, 129.7, 129.5, 129.4, 129.2, 129.1, 128.5, 128.4, 128.3, 128.2, 128.0, 121.7, 99.0, 70.7, 70.6, 70.4, 66.4, 56.0, 55.6, 52.0, 34.6; HRMS (ESI) *m/z* calcd for C₄₃H₄₃F₃NO₁₃ [M+NH₄]⁺ 838.2681, found 838.2704. Methyl {methyl 2,3,4-tri-*O*-benzoyl-7,8-di-deoxy-6-*O*-[(*R*)-(-)- α -methoxy- α -(trifluoromethyl)-phenylacetyl]-8-methylene-*D*-glycero- α -*D*-nonmannopyranosyl-uronate} (S72)

Following the general procedure G, **S60** (16.1 mg, 26.7 μ mol, 1.0 equiv) was treated with DMAP (6.5 mg, 53.4 μ mol, 2.0 equiv), (*S*)-MTPA-Cl (10 μ L, 53.4 μ mol, 2.0 equiv) in pyridine (0.5 mL) to give **S72** ((*R*)-*O*-Mosher ester) (15.4 mg, 18.8 μ mol, 70%) as a white foam after purification by silica gel column chromatography (PE:EA = 4:1). [α]_D²⁵ = -56.00 (*c* 0.7, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 (d, *J* = 7.4 Hz, 2H), 7.92 (d, *J* = 7.4 Hz, 2H), 7.83 (d, *J* = 7.4 Hz, 2H), 7.63–7.55 (m, 3H), 7.51 (t, *J* = 7.4 Hz, 1H), 7.44–7.34 (m, 8H), 7.31–7.26 (m, 2H), 6.13 (s, 1H), 5.89 (t, *J* = 10.0 Hz, 1H), 5.83–5.77 (m, 1H), 5.73 (t, *J* = 6.6 Hz, 1H), 5.66–5.62 (m, 1H), 5.53 (s, 1H), 5.06 (s, 1H), 4.30 (d, *J* = 10.1 Hz, 1H), 3.65 (s, 3H), 3.54 (s, 3H), 3.53 (s, 3H), 2.93–2.88 (m, 2H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -70.99; ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.6, 165.9, 165.8, 165.5, 165.1, 135.1, 133.5, 133.3, 133.2, 131.7, 129.9, 129.8, 129.7, 129.6, 129.3, 129.2, 129.1, 129.0, 128.5, 128.4, 128.3, 128.1, 99.0, 71.1, 70.5, 70.5, 66.4, 56.0, 55.3, 34.5; HRMS (ESI) *m*/*z* calcd for C₄₃H₄₃F₃NO₁₃ [M+NH₄]⁺ 838.2681, found 838.2694.

Methyl {7,8-di-deoxy-6-*O*-[(*S*)-(-)-α-methoxy-α-(trifluoromethyl)-phenylacetyl]-1,2,3,4-di-*O*-isopropylidene-8-methylene-*D*-*glycero*-α-*D*-nongalactopyranosyluronate} (\$73)

Following the general procedure G, S61 (9.6 mg, 26.7 μ mol, 1.0 equiv) was treated with DMAP (6.5 mg, 53.4 μ mol, 2.0 equiv), (*R*)-MTPA-Cl (10 μ L, 53.4 μ mol, 2.0 equiv) in pyridine (0.5 mL) to give S73 ((*S*)-*O*-Mosher ester) (13.7 mg, 23.8 μ mol, 89%) as a

white foam after purification by silica gel column chromatography (PE:EA = 5:1). [α] ²⁵_D = -53.87 (*c* 0.7, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.60–7.50 (m, 2H), 7.45–7.31 (m, 3H), 6.22 (s, 1H), 5.67 (s, 1H), 5.59–5.50 (m, 2H), 4.52 (dd, *J* = 7.9, 2.4 Hz, 1H), 4.30 (dd, *J* = 5.0, 2.5 Hz, 1H), 4.00 (dd, *J* = 7.6, 1.5 Hz, 1H), 3.79 (d, *J* = 10.1 Hz, 1H), 3.75 (s, 3H), 3.49 (s, 3H), 3.18 (dd, *J* = 14.9, 2.5 Hz, 1H), 2.58 (dd, *J* = 14.9, 8.4 Hz, 1H), 1.48 (s, 3H), 1.45 (s, 3H), 1.31 (s, 3H), 1.28 (s, 3H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -71.96; ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.0, 165.2, 135.9, 131.8, 129.6, 128.5, 128.2, 127.9, 109.5, 108.7, 96.4, 72.7, 70.7, 70.4, 70.1, 68.1, 55.3, 52.0, 33.9, 26.0, 24.8, 24.6; HRMS (ESI) *m*/*z* calcd for C₂₇H₃₇F₃NO₁₀ [M+NH4]⁺ 592.2364, found 592.2379.

Methyl {7,8-di-deoxy-6-*O*-[(*R*)-(-)-α-methoxy-α-(trifluoromethyl)-phenylacetyl]-1,2,3,4-di-*O*-isopropylidene-8-methylene-L-*glycero*-α-D-Nongalactopyranosyluronate} (S74)

Following the general procedure H, **S61** (9.6 mg, 26.7 μ mol, 1.0 equiv) was treated with DMAP (6.5 mg, 53.4 μ mol, 2.0 equiv), (*S*)-MTPA-Cl (10 μ L, 53.4 μ mol, 2.0 equiv) in pyridine (0.5 mL) to give **S74** ((*R*)-*O*-Mosher ester) (12.4 mg, 21.6 μ mol, 81%) as a white foam after purification by silica gel column chromatography (PE:EA = 5:1). [α] ²⁵/_p = -39.87 (*c* 0.8, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 (d, *J* = 7.0 Hz, 2H), 7.42–7.33 (m, 3H), 6.13 (s, 1H), 5.59–5.53 (m, 2H), 5.48 (td, *J* = 8.3, 3.0 Hz, 1H), 4.60 (dd, *J* = 7.8, 2.1 Hz, 1H), 4.33 (dd, *J* = 4.9, 2.3 Hz, 1H), 4.23 (d, *J* = 9.2 Hz, 1H), 3.88 (d, *J* = 8.0 Hz, 1H), 3.74 (s, 3H), 3.53 (s, 3H), 3.23–3.13 (m, 1H), 2.54 (dd, *J* = 14.8, 8.6 Hz, 1H), 1.48 (s, 6H), 1.33 (s, 3H), 1.32 (s, 3H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ 167.0, 165.6, 135.6, 132.2, 129.5, 128.6, 128.2, 127.9, 109.6, 108.7, 96.5, 73.1, 70.8, 70.4, 70.3, 68.0, 55.2, 51.9, 33.7, 26.0, 25.9, 24.9, 24.6; HRMS (ESI) *m/z* calcd for C₂₇H₃₇F₃NO₁₀ [M+NH4]⁺

Methyl {*p*-tolyl 6,7-di-deoxy-5-*O*-[(*S*)-(-)-α-methoxy-α-(trifluoromethyl)-phenylacetyl]-2,3-*O*-isopropylidene-7-methylene-*D*-*glycero*-1-thio-α-*D*-Octribofuranosyluronate} (S75)

Following the general procedure G, **S65** (10.5 mg, 26.7 μ mol, 1.0 equiv) was treated with DMAP (6.5 mg, 53.4 μ mol, 2.0 equiv), (*R*)-MTPA-Cl (10 μ L, 53.4 μ mol, 2.0 equiv) in pyridine (0.5 mL) to give **S75** ((*S*)-*O*-Mosher ester) (8.8 mg, 14.4 μ mol, 54%) as a white foam after purification by silica gel column chromatography (PE:EA = 5:1). [α]_D²⁵ = -46.54 (*c* 0.4, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.57–7.49 (m, 2H), 7.42–7.36 (m, 5H), 7.11 (d, *J* = 8.0 Hz, 2H), 6.23 (s, 1H), 5.75–5.65 (m, 1H), 5.61 (s, 1H), 5.33 (d, *J* = 2.5 Hz, 1H), 4.61–4.53 (m, 2H), 4.08 (dd, *J* = 6.7, 1.9 Hz, 1H), 3.74 (s, 3H), 3.50 (s, 3H), 2.93 (dd, *J* = 14.7, 3.2 Hz, 1H), 2.59 (dd, *J* = 14.8, 9.4 Hz, 1H), 2.32 (s, 3H), 1.47 (s, 3H), 1.27 (s, 3H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -71.20; ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.7, 166.0, 137.7, 135.1, 131.7, 130.1, 129.9, 129.6, 129.0, 128.4, 127.7, 114.5, 92.1, 86.3, 84.9, 80.9, 73.3, 55.6, 52.1, 34.1, 27.0, 25.2, 22.7, 21.1; HRMS (ESI) *m/z* calcd for C₃₀H₃₇F₃NO₈S [M+NH4]⁺ 628.2186, found 628.2189.

Methyl {*p*-tolyl 6,7-di-deoxy-5-*O*-[(*R*)-(-)-α-methoxy-α-(trifluoromethyl)-phenylacetyl]-2,3-*O*-isopropylidene-7-methylene-L-*glycero*-1-thio-α-D-octribofuranosyluronate} (S76)

Following the general procedure G, S65 (16.1 mg, 26.7 µmol, 1.0 equiv) was treated

with DMAP (6.5 mg, 53.4 μ mol, 2.0 equiv), (*S*)-MTPA-Cl (10 μ L, 53.4 μ mol, 2.0 equiv) in pyridine (0.5 mL) to give **S76** ((*R*)-*O*-Mosher ester) (9.3 mg, 15.2 μ mol, 57%) as a white foam after purification by silica gel column chromatography (PE:EA = 5:1). [α]_D²⁵ = -48.98 (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.61–7.55 (m, 2H), 7.44–7.37 (m, 5H), 7.12 (d, *J* = 7.9 Hz, 2H), 6.11 (s, 1H), 5.76–5.69 (m, 1H), 5.49 (s, 1H), 5.33 (d, *J* = 3.8 Hz, 1H), 4.68 (dd, *J* = 6.7, 3.1 Hz, 1H), 4.59 (dd, *J* = 6.7, 3.8 Hz, 1H), 4.14 (dd, *J* = 6.2, 3.1 Hz, 1H), 3.74 (s, 3H), 3.56 (s, 3H), 2.89 (dd, *J* = 14.4, 3.2 Hz, 1H), 2.51 (dd, *J* = 14.5, 9.8 Hz, 1H), 2.33 (s, 3H), 1.51 (s, 3H), 1.32 (s, 3H); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -70.93; ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.6, 166.0, 137.8, 134.7, 132.2, 131.9, 130.1, 129.9, 129.6, 129.3, 128.4, 127.5, 114.8, 91.9, 86.2, 84.8, 80.8, 73.3, 55.6, 52.0, 34.3, 27.1, 25.3, 22.7, 21.1; HRMS (ESI) *m/z* calcd for C₃₀H₃₇F₃NO₈S [M+NH4]⁺ 628.2186, found 628.2176.

Synthesis of shewanellose-type building block

tert-Butyldimethylsilyl 2-azido-3,4,6-tri-*O*-acetyl-2-deoxy-β-D-galactopyranoside (S77)

To a solution of **19** (4.39 g, 9.33 mmol, 1.0 equiv) in actone/H₂O (20.0 mL, v/v = 9:1) was added *N*-bromosuccinimide (NBS) (2.51 g, 14.00 mmol, 1.5 equiv) in ice bath under an argon atmosphere. After stirring for 2 h at room temperature, the resultant

mixture was diluted with DCM, and washed with Na₂S₂O₃ solution, NaHCO₃ solution and brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated *in vacuo*. The crude product obtained above was dissolved in dry DMF (20.0 mL), TBSCl (1.69 g, 11.21 mmol, 1.2 equiv) and imidazole (1.27 mg, 18.67 mmol, 2.0 equiv) were added at room temperature under an argon atmosphere. The resultant solution was stirred for 6 h at room temperature and quenched with H₂O. The resultant mixture was extracted with DCM, and the organic layer was washed with 1M HCl solution, saturated NaHCO₃ solution and brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated *in vacuo*. The resulting residue was purified by silica gel column chromatography (PE:EA = 9:1) to afford **S77**^[17] (4.11 g, 9.23 mmol, 99%) as a white foam.

tert-Butyldimethylsilyl 2-azido-2-deoxy-6-*O*-(*p*-toluenesulfonyl)-1-β-D-galactopyranoside (S78)

To a solution of **S77** (7.71 g, 17.30 mmol, 1.0 equiv) in dry MeOH (20.0 mL) was added 60% dispersion of NaH in mineral oil (69.2 mg, 1.73 mmol, 0.1 equiv) in ice bath under an argon atmosphere. After stirring for 2 h at room temperature, the reaction was neutralized with seralite acidic resin, which was further removed by filtration. The mixture was evaporated to dryness. The crude product obtained above was dissolved in dry pyridine (40.0 mL), tosyl chloride (TsCl) (3.63 g, 19.03 mmol, 1.1 equiv) and DMAP (211.4 mg, 1.73 mmol, 0.1 equiv) were added at room temperature under an argon atmosphere. The resultant solution was stirred for 1 h at room temperature and quenched with H₂O. The resultant mixture was extracted with DCM, and the organic layer was washed with 1M HCl solution, saturated NaHCO₃ solution and brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated *in vacuo*. The resulting residue was purified by silica gel column chromatography (PE:EA = 1.5:1) to afford **S78** (6.67 g, 14.11 mmol, 82%) as a colorless oil. $[\alpha]_{D}^{25} = +10.35$ (*c* 2.9, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.70–7.64 (m, 2H), 7.26–

7.21 (m, 2H), 4.36 (d, J = 7.2 Hz, 1H), 4.15 (dd, J = 10.4, 5.3 Hz, 1H), 4.01 (dd, J = 10.4, 7.0 Hz, 1H), 3.78 (s, 1H), 3.58 (t, J = 6.2 Hz, 1H), 3.36–3.27 (m, 2H), 3.09 (s, 1H), 2.94–2.87 (m, 1H), 2.33 (s, 3H), 0.79 (s, 9H), 0.02 (s, 3H), 0.00 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.3, 132.3, 130.0, 128.0, 97.3, 72.3, 71.3, 68.2, 67.5, 66.0, 25.6, 21.7, 17.9, -4.3, -5.3; HRMS (ESI) *m*/*z* calcd for C₁₉H₃₅N₄O₇SiS [M+HH₄]⁺ 491.1990, found 491.1990.

tert-Butyldimethylsilyl 2-azido-2-deoxy-6-deoxy-6-iodo-1-β-D-galactopyranoside (S79)

To a solution of **S78** (6.67 g, 14.08 mmol, 1.0 equiv) in 1,2-dimethoxyethane (DME) (50.0 mL) were added tetrabutylammonium iodide (TBAI) (15.61 g, 42.24 mmol, 3.0 equiv) and NaI (4.23 g, 28.16 mmol, 2.0 equiv) in ice bath under an argon atmosphere. The resultant solution was stirred for 12 h at 90 °C. The resultant mixture was diluted with DCM, and washed with Na₂S₂O₃ solution and brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated *in vacuo*. The resulting residue was purified by silica gel column chromatography (PE:EA = 1.5:1) to afford **S79** (4.97 g, 11.58 mmol, 82%) as a yellow oil. $[\alpha]_{D}^{25}$ = +65.68 (*c* 2.0, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 4.49 (d, *J* = 7.3 Hz, 1H), 4.05 (s, 1H), 3.60 (t, *J* = 6.9 Hz, 1H), 3.51–3.39 (m, 3H), 3.37–3.30 (m, 2H), 3.22 (s, 1H), 0.94 (s, 9H), 0.21 (s, 3H), 0.19 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 97.5, 75.7, 71.8, 69.0, 66.0, 25.7, 18.0, 2.0, -3.8, -5.2.; HRMS (ESI) *m/z* calcd for C₁₃H₂₅IN₃O₆Si [M+HCOO]⁻ 474.0563, found 474.0565.

tert-Butyldimethylsilyl 2-azido-2-deoxy-1-β-D-fucopyranoside (S80)

To a solution of **S79** (4.97 g, 11.62 mmol, 1.0 equiv) in DME (40.0.0 mL) were added NaCNBH₃ (3.64 g, 57.92 mmol, 5.0 equiv) and 2,2'-azobis(2-methylpropionitrile)

(AIBN) (190.5 mg, 1.16 mmol, 0.1 equiv) in ice bath under an argon atmosphere. The resultant solution was stirred for 1.5 h at 90 °C. The resultant mixture was diluted with DCM, and washed with brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated *in vacuo*. The resulting residue was purified by silica gel column chromatography (PE:EA = 1.5:1) to afford **S80** (3.06 g, 10.09 mmol, 87%) as a colorless oil. $[\alpha]_{D}^{25}$ = +11.56 (*c* 1.4, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 4.46 (d, *J* = 7.5 Hz, 1H), 3.68 (d, *J* = 4.3 Hz, 1H), 3.59–3.51 (m, 1H), 3.42–3.35 (m, 2H), 3.17 (s, 1H), 2.78 (d, *J* = 5.6 Hz, 1H), 1.31 (d, *J* = 6.5 Hz, 3H), 0.92 (s, 9H), 0.14 (s, 3H), 0.14 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 97.3, 72.3, 70.9, 70.5, 66.5, 25.6, 18.0, 16.3, -4.3, -5.2; HRMS (ESI) *m/z* calcd for C₁₃H₂₆N₃O₆Si [M+HCOO]⁻ 348.1596, found 348.1591.

tert-Butyldimethylsilyl 2-azido-2-deoxy-3-*O*-(*tert*-butyldimethylsilyl)-1-β-Dfucopyranoside (S81)

To a solution of **S80** (3.06 g, 10.08 mmol, 1.0 equiv) in DCM (30.0 mL) were added TBSCI (1.83 g, 20.18 mmol, 2.0 equiv) and imidazole (1.38 g, 12.10 mmol, 1.2 equiv) in ice bath under an argon atmosphere. The resultant solution was stirred for 3 h at room temperature and quenched with saturated NaHCO₃ solution. The resultant mixture was extracted with DCM, and the organic layer was washed with brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated *in vacuo*. The resulting residue was purified by silica gel column chromatography (PE:EA = 25:1) to afford **S81** (3.03 g, 7.26 mmol, 72%) as a colorless oil. $[\alpha]_D^{25} = +18.26$ (*c* 2.2, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 4.41 (d, *J* = 7.6 Hz, 1H), 3.55–3.45 (m, 2H), 3.41 (dd, *J* = 9.7, 3.3 Hz, 1H), 3.33 (dd, *J* = 9.6, 7.7 Hz, 1H), 2.50 (s, 1H), 1.33 (d, *J* = 6.5 Hz, 3H), 0.92 (s, 9H), 0.91 (s, 9H), 0.16 (s, 3H), 0.14 (s, 3H), 0.13 (s, 3H), 0.11 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 97.2, 73.5, 71.5, 70.1, 67.0, 25.8, 18.1, 16.5, -4.1, -4.5, -4.7, -5.2; HRMS (ESI) *m/z* calcd for C₁₉H₄₀N₃O₆Si₂ [M+HCOO]⁻ 462.2461, found 462.2467.
tert-Butyldimethylsilyl 4-*O*-allyl-2-azido-2-deoxy-3-*O*-(*tert*-butyldimethylsilyl)-1β-D-fucopyranoside (S82)

To a solution of **S81** (2.76 g, 6.00 mmol, 1.0 equiv) in dry DMF (30.0 mL) were added AllBr (2.2 mL, 30.00 mmol, 5.0 equiv) and 60% dispersion of NaH in mineral oil (312.3 mg, 7.80 mmol, 1.3 equiv) at -20 °C under an argon atmosphere. The resultant solution was stirred for 2 h at -20 °C and quenched with NH₄Cl solution. The resultant mixture was extracted with DCM, and the organic layer was washed with brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated *in vacuo*. The resulting residue was purified by silica gel column chromatography (PE:EA = 70:1) to afford **S82** (1.83 g, 4.00 mmol, 67%) as a colorless oil. $[\alpha]_{D}^{25} = +2.58$ (*c* 0.7, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 6.04–5.81 (m, 1H), 5.27–5.20 (m, 1H), 5.18–5.12 (m, 1H), 4.50–4.40 (m, 1H), 4.38 (d, *J* = 7.5 Hz, 1H), 4.12 (dd, *J* = 12.7, 6.9 Hz, 1H), 3.55–3.35 (m, 3H), 3.24 (d, *J* = 2.6 Hz, 1H), 1.24 (d, *J* = 6.4 Hz, 3H), 0.94 (s, 9H), 0.92 (s, 9H), 0.16 (s, 3H), 0.13 (s, 3H), 0.13 (s, 3H), 0.11 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 135.5, 117.0, 97.4, 78.7, 74.44, 74.43, 70.4, 67.2, 25.9, 18.2, 16.9, -4.1, -4.3, -4.7, -5.2; HRMS (ESI) *m/z* calcd for C₂₁H₄₄N₃O₄Si₂ [M+H]⁺ 458.2865, found 458.2871.

tert-Butyldimethylsilyl 2-azido-2-deoxy-4-*O*-(2-hydroxyethyl)-3-*O*-(*tert*-butyldimethylsilyl)-1-β-D-fucopyranoside (S83)

Following the general procedure C, **S82** (1.83 g, 3.99 mmol, 1.0 equiv) was treated with 2,6-lutidine (930 μ L, 8.04 mmol, 2.0 equiv), OsO₄ (0.0234 mol/L solution in *t*-BuOH, 3.4 mL, 80.0 μ mol, 0.02 equiv) and NaIO₄ (3.41 g, 15.96 mmol, 4.0 equiv) in 1,4-dioxane/H₂O (40.0 mL, v/v = 3:1) to give the aldehyde. The aldehyde was treated with NaBH₄ (307.6 mg, 8.00 mmol, 2.0 equiv) in MeOH (10.0 mL) to give **S83** (1.31 g, 2.84

mmol, 71%) as a colorless oil after purification by silica gel column chromatography (PE:EA = 7:1). $[\alpha]_D^{25}$ = +5.89 (*c* 0.6, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 4.24 (d, *J* = 7.2 Hz, 1H), 3.78–3.68 (m, 1H), 3.66–3.61 (m, 1H), 3.61–3.53 (m, 2H), 3.37–3.23 (m, 3H), 3.11 (d, *J* = 2.4 Hz, 1H), 2.71 (s, 1H), 1.14 (d, *J* = 6.4 Hz, 3H), 0.79 (s, 9H), 0.78 (s, 9H), 0.02 (s, 3H), -0.00 (s, 3H), -0.01 (s, 3H), -0.02 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 97.4, 81.0, 75.7, 74.3, 70.6, 67.1, 62.3, 26.0, 25.8, 18.3, 18.1, 16.9, -4.1, -4.2, -4.6, -5.1; HRMS (ESI) *m/z* calcd for C₂₀H₄₃ClN₃O₅Si₂ [M+Cl]⁻ 496.2435, found 496.2440.

tert-Butyldimethylsilyl 2-azido-2-deoxy-4-*O*-{2-[(1,3-dioxoisoindolin-2-yl)oxy]ethyl}-3-*O*-(*tert*-butyldimethylsilyl)-1-β-D-fucopyranoside (18)

Following the general procedure D, **S83** (1.31 g, 2.84 mmol, 1.0 equiv) was treated with PPh₃ (894.4 mg, 3.41 mmol, 1.2 equiv), *N*-hydroxyphthalimide (556.3 mg, 3.41 mmol, 1.2 equiv) and diisopropylazodicarboxylate (680 µL, 3.41 mmol, 1.2 equiv) in THF (10.0 mL) to give **18** (1.43 g, 2.36 mmol, 83%) as a colorless oil after purification by silica gel column chromatography (PE:EA = 8:1). $[\alpha]_{D}^{25}$ = +6.72 (*c* 0.9, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73–7.66 (m, 2H), 7.65–7.59 (m, 2H), 4.37–4.28 (m, 1H), 4.23 (d, *J* = 7.1 Hz, 1H), 4.22–4.11 (m, 2H), 3.93–3.80 (m, 1H), 3.39–3.32 (m, 1H), 3.31–3.28 (m, 1H), 3.28–3.17 (m, 2H), 1.21 (d, *J* = 6.4 Hz, 3H), 0.79 (s, 9H), 0.78 (s, 9H), 0.02 (s, 3H), 0.00 (s, 3H), -0.01 (s, 3H), -0.02 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.6, 134.6, 129.0, 123.6, 97.4, 81.1, 78.2, 74.7, 71.4, 70.5, 67.0, 25.9, 25.8, 18.2, 18.1, 16.7, -4.1, -4.3, -4.7, -5.1; HRMS (ESI) *m/z* calcd for C₂₈H₄₆ClN₄O₇Si₂ [M+Cl]⁻ 641.2599, found 641.2607.

tert-Butyldimethylsilyl 2-azido-2-deoxy-4-*O*-(2-hydroxyethyl)-4-*C*-[2-(methoxycarbonyl)allyl]-3-*O*-(*tert*-butyldimethylsilyl)-1-β-D-fucopyranoside (17)

Following the general procedure E, **18** (1.48 g, 2.44 mmol, 1.0 equiv) and **2a** (1.86 g, 7.32 mmol, 3.0 equiv) were treated with hantzsch ester (927.0 mg, 3.66 mmol, 1.5 equiv) and *fac*-Ir(ppy)₃ (16.0 mg, 24.4 μ mol, 0.01 equiv) in 1,4-dioxane (48.8 mL) to give **17** (932.9 mg, 1.67 mmol, 68%) as a colorless oil after purification by silica gel column chromatography (PE:EA = 6:1). $[\alpha]_D^{25}$ = +18.46xx (*c* 2.9, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 6.23 (s, 1H), 5.66 (s, 1H), 4.38 (d, *J* = 6.9 Hz, 1H), 4.08–3.99 (m, 1H), 3.88–3.78 (m, 1H), 3.76 (s, 3H), 3.73–3.64 (m, 2H), 3.55–3.44 (m, 2H), 3.31–3.22 (m, 1H), 2.88–2.71 (m, 2H), 2.57 (s, 1H), 1.21 (d, *J* = 6.2 Hz, 3H), 0.92 (s, 9H), 0.91 (s, 9H), 0.20 (s, 3H), 0.17 (s, 3H), 0.12 (s, 6H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.2, 136.7, 128.7, 97.4, 78.5, 75.5, 73.7, 68.0, 66.7, 62.8, 52.4, 32.5, 26.3, 25.8, 18.9, 18.1, 15.4, -3.5, -4.1, -4.2, -5.0; HRMS (ESI) *m/z* calcd for C₂₅H₄₉ClN₃O₇Si₂ [M+Cl]⁻ 594.2803, found 594.2811.

tert-Butyldimethylsilyl 2-azido-2-deoxy-4-*C*-[2-(methoxycarbonyl)allyl]-3-*O*-(*tert*butyldimethylsilyl)-1-β-D-fucopyranoside (20)

Following the general procedure F, **17** (559.9 mg, 1.00 mmol, 1.0 equiv) was treated with TEMPO (15.6 mg, 100.0 μ mol, 0.2 equiv) and PhI(OAc)₂ (644.2 mg, 2.00 mmol, 2.0 equiv) in DCM/H₂O (11 mL, $\nu/\nu = 10$:1) to give the acid (547.5 mg, 954.1 μ mol, 95%) as a colorless oil. The acid (274.6 mg, 478.5 μ mol, 1.0 equiv) was treated with DPPA (113 μ L, 526.4 μ mol, 1.1 equiv) and DIPEA (92 μ L, 526.4 μ mol, 1.1 equiv) in DMF (5.0 mL) to give **20** (137.3 mg, 266.2 μ mol, 56%) as a colorless oil after purification by silica gel column chromatography (PE:EA = 3:1). [α]_D²⁵ = +13.85 (*c* 0.2, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 6.11 (s, 1H), 5.51 (s, 1H), 4.27 (d, *J* = 7.6 Hz, 1H), 3.63 (s, 3H), 3.26 (d, *J* = 9.5 Hz, 1H), 3.20 (d, *J* = 7.6 Hz, 1H), 3.19–3.14

(m, 1H), 2.66 (d, J = 1.2 Hz, 1H), 2.61 (d, J = 14.2 Hz, 1H), 2.35 (d, J = 14.3 Hz, 1H), 1.14 (d, J = 6.2 Hz, 3H), 0.82 (s, 9H), 0.78 (s, 9H), 0.09 (s, 3H), 0.06 (s, 3H), 0.00 (s, 3H), -0.01 (s, 3H).; ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.2, 136.7, 129.2, 96.9, 74.7, 74.5, 73.0, 67.8, 52.3, 36.9, 26.2, 25.8, 18.8, 18.1, 15.1, -3.5, -4.1, -4.2, -5.1.; HRMS (ESI) *m*/*z* calcd for C₂₃H₄₆N₃O₆Si₂ [M+H]⁺ 516.2920, found 516.2925.

3-((2*R*,3*S*,4*R*,5*R*,6*S*)-5-azido-4,6-bis((*tert*-butyldimethylsilyl)oxy)-3-hydroxy-2methyl-tetrahydro-2*H*-pyran-3-yl)-2-hydroxyacrylamide (16)

$$\begin{array}{c} \text{MeOOC} \begin{pmatrix} \text{OH} \\ \text{TBSO} \\ \text{N}_{3} \\ \text{20} \end{array} \xrightarrow{10 \text{ O}_{3}, -78 \text{ °C}, \text{ CH}_2\text{Cl}_2, 15 \text{ min, then Me}_2\text{S, rt, overnight} \\ 21 \text{ NH}_3 \text{ H}_2\text{O}, \text{ THF, rt, 30 min, 81\%} \\ 81\% \\ \text{B1\%} \\ \text{TBSO} \\ \text{TBSO} \\ \text{TBSO} \\ \text{N}_3 \\ \text{TBSO} \\ \text{N}_3 \end{array}$$

To a solution of 20 (30.2 mg, 58.3 µmol, 1.0 equiv) in CH₂Cl₂ (2.0 mL) was cooled to -78 °C. The O₃ (generated from O₂ and carried by the flow of O₂) was bubbled though this solution for 15 min. The colour of the solution turn blue, which indicated the saturation of O₃ in DCM. The excess amount of O₃ was blown off by the flow of O₂ and the purple colour disappeared. To this solution, Me₂S (0.20 mL, excess) was added to reduce the peroxide intermediate. The resultant solution was stirred for overnight at room temperature. The mixture was evaporated to dryness. The crude product obtained above was dissolved in dry THF (2.0 mL), NH₃·H₂O (50 μ L) was added at room temperature under an argon atmosphere. The resultant solution was stirred for 30 min at room temperature. The resultant mixture was extracted with DCM and washed with H₂O and brine. The organic layer was collected, dried over Na₂SO₄, filtered off the solid and concentrated in vacuo. The resulting residue was purified by silica gel column chromatography (PE:EA = 3.5:1) to afford 16 (23.8 mg, 47.3 μ mol, 81%) as a white foam. $[\alpha]_{D}^{25} = +22.03$ (c 1.2, CHCl₃); ¹H NMR (400 MHz, Chloroform-d) δ 6.57 (brs, 1H), 5.54 (s, 1H), 4.43 (dd, J = 5.5, 2.0 Hz, 1H), 3.74–3.52 (m, 1H), 3.40–3.24 (m, 2H), 1.87 (brs, 1H), 0.96 (d, J = 6.4 Hz, 3H), 0.78 (s, 9H), 0.68 (s, 9H), -0.01 (s, 9H), -0.16 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.8, 143.8, 115.5, 97.1, 86.5, 72.4, 71.0, 68.0, 25.6, 18.0, 18.0, 14.0, -4.2, -4.4, -4.7, -5.1; HRMS (ESI) m/z calcd for C₂₁H₄₃N₄O₆Si₂ [M+H]⁺ 503.2716, found 503.2724.

References

- K. Yamada, N. Hayakawa, H. Fujita, M. Kitamura and M. Kunishima, *Chem. Pharm. Bull.*, 2017, 65, 112–115.
- [2] V. Bou and J. Vilarrasa, Tetrahedron Lett., 1990, 31, 567–568.
- [3] M. A. Nashed and L. Anderson, *Carbohydr. Res.*, 1977, 56, 325–336.
- [4] H. R. H. Elsaidi and T. L. Lowary, Chem. Sci., 2015, 6, 3161–3172.
- [5] Z. Ma, J. Zhang and F. Kong, *Tetrahedron: Asymmetry*, 2003, 14, 2595–2603.
- [6] G. Zong, X. Cai, X. Liang, J. Zhang and D. Wang, *Carbohydr. Res.*, 2011, 346, 2533–2539.
- [7] T. Müller and R. R. Schmidt, Tetrahedron Lett., 1997, 38, 5473-5476.
- [8] L. Chen and F. Kong, J. Carbohydr. Chem., 2002, 21, 341–353.
- [9] L. Chen and F. Kong, *Carbohydr. Res.*, 2002, **337**, 1373–1380.
- [10] S. Knapp and P. J. Kukkola, J. Org. Chem., 1990, 55, 1632–1636.
- [11] G. D. Kishore Kumar and S. Baskaran, J. Org. Chem., 2005, 70, 4520–4523.
- [12] M. K. Christensen, M. Meldal and K. Bock, J. Chem. Soc., Perkin Trans. 1, 1993, 13, 1453–1460.
- [13] P. Ji, Y. Zhang, Y. Wei, H. Huang, W. Hu, P. A. Mariano and W. Wang, *Org. Lett.*, 2019, 21, 3086–3092.
- [14] J. Kandasamy, D. Atia-Glikin, V. Belakhov and T. Baasov, Med. Chem. Comm., 2011, 2, 165.
- [15] G. Crucius, M. Hanack and T. Ziegler, J. Carbohydr. Chem., 2015, 34, 263–302.
- [16] H. Liu, L. Ge, D. Wang, N. Chen and C. Feng, *Angew. Chem., Int. Ed.*, 2019, 58, 3918–3922.
- [17] J. Li and B. Yu, Angew. Chem. Int. Ed., 2015, 54, 6618-6621.

NMR Spectra of new compounds

¹³C NMR Spectra of compound S4

¹³C NMR Spectra of compound S5

¹³C NMR Spectra of compound 1a

¹H NMR Spectra of compound S7

¹³C NMR Spectra of compound S7

¹³C NMR Spectra of compound S9

¹³C NMR Spectra of compound S10

¹³C NMR Spectra of compound 1c

¹H NMR Spectra of compound 1d

¹³C NMR Spectra of compound 1d

¹³C NMR Spectra of compound S13

¹³C NMR Spectra of compound S14

¹H NMR Spectra of compound S15

¹³C NMR Spectra of compound S15

¹H NMR Spectra of compound 1f

¹H NMR Spectra of compound 1g

¹³C NMR Spectra of compound 1g

¹H NMR Spectra of compound 1h

¹³C NMR Spectra of compound 1i

110 100 f1 (ppm)

¹³C NMR Spectra of compound S20

¹³C NMR Spectra of compound 1j

¹³C NMR Spectra of compound 1k

¹H NMR Spectra of compound S22

¹³C NMR Spectra of compound S22

¹H NMR Spectra of compound S26

¹³C NMR Spectra of compound S29

¹H NMR Spectra of compound S31

¹³C NMR Spectra of compound S31

¹³C NMR Spectra of compound 10

¹³C NMR Spectra of compound S34

¹³C NMR Spectra of compound S35

¹³C NMR Spectra of compound 1p

¹H NMR Spectra of compound S2

¹³C NMR Spectra of compound S2

¹H NMR Spectra of compound 7a

¹³C NMR Spectra of compound 7a

¹³C NMR Spectra of compound S37

¹H NMR Spectra of compound S38

¹³C NMR Spectra of compound S38

¹³C NMR Spectra of compound 7b

110 100 f1 (ppm)

30 20

200 190

¹³C NMR Spectra of compound 7c

¹³C NMR Spectra of compound S42

¹³C NMR Spectra of compound 7d

¹³C NMR Spectra of compound S44

¹³C NMR Spectra of compound 7e

¹H NMR Spectra of compound S46

¹³C NMR Spectra of compound S46

¹H NMR Spectra of compound S47

¹³C NMR Spectra of compound S47

¹H NMR Spectra of compound S48

¹H NMR Spectra of compound S49

¹³C NMR Spectra of compound S49

¹H NMR Spectra of compound 7f

¹³C NMR Spectra of compound 7f

¹³C NMR Spectra of compound 3a

100 90 fl (ppm) 80

60 50

 $\frac{1}{70}$

140 130 120 110

40 30 20

10 0

00 190 180 170 160 150

HSQC NMR Spectra of compound 3a

COSY NMR Spectra of compound 3a

NOESY NMR Spectra of compound 3a

¹H NMR Spectra of compound 3a'

¹³C NMR Spectra of compound 3a'

COSY NMR Spectra of compound 3a'

NOESY NMR Spectra of compound 3a'

¹³C NMR Spectra of compound 3c

HSQC Spectra of compound 3c

¹H NMR Spectra of compound 3d

¹³C NMR Spectra of compound 3d

NOESY Spectra of compound 3d

¹³C NMR Spectra of compound 3e

HSQC NMR Spectra of compound 3e

¹H NMR Spectra of compound 3f

¹³C NMR Spectra of compound 3f

COSY NMR Spectra of compound 3f

¹H NMR Spectra of compound 3g

¹³C NMR Spectra of compound 3g

HSQC Spectra of compound 3g

COSY Spectra of compound 3g

¹H NMR Spectra of compound 3h

COSY Spectra of compound 3h

¹³C NMR Spectra of compound 3i

¹³C NMR Spectra of compound 3j

HSQC Spectra of compound 3j

COSY Spectra of compound 3j

¹H NMR Spectra of compound 3k

COSY Spectra of compound 3k

¹H NMR Spectra of compound 31

¹³C NMR Spectra of compound 31

COSY NMR Spectra of compound 31

NOESY NMR Spectra of compound 31

HSQC NMR Spectra of compound 3l'

COSY Spectra of compound 3m^{BrBz}

¹³C NMR Spectra of compound 3m'^{BrBz}

¹H NMR Spectra of compound 3n

¹³C NMR Spectra of compound 3n

COSY Spectra of compound 3n

NOESY Spectra of compound 3n

¹³C NMR Spectra of compound 3n'

¹³C NMR Spectra of compound 30

¹³C NMR Spectra of compound 3p

COSY Spectra of compound 3p

NOESY Spectra of compound 3p

¹³C NMR Spectra of compound 4a

HSQC Spectra of compound 4a

¹³C NMR Spectra of compound 4b

¹H NMR Spectra of compound 4c

5.5 5.0 4.5 4.0 f1 (ppm) 0.0 9.5 8.0 7.5 7.0 6.5 6.0 9.0 8, 5 3. 5 3.0 2.5 2.0 0, 0 -0.5 1.5 1.0 0.5

-1

¹³C NMR Spectra of compound 4d

HSQC Spectra of compound 4d

COSY Spectra of compound 4d

¹H NMR Spectra of compound 4e

¹³C NMR Spectra of compound 4e

HSQC Spectra of compound 4e

COSY Spectra of compound 4e

¹³C NMR Spectra of compound 6a

HSQC Spectra of compound 6a

COSY Spectra of compound 6a

¹H NMR Spectra of compound 6b

¹³C NMR Spectra of compound 6b

HSQC Spectra of compound 6b

¹³C NMR Spectra of compound 6c

¹³C NMR Spectra of compound D-8a

¹³C NMR Spectra of compound L-8a

¹³C NMR Spectra of compound D-8b

¹³C NMR Spectra of compound L-8b

¹H NMR Spectra of compound D-8c

¹³C NMR Spectra of compound D-8c

¹H NMR Spectra of compound L-8c

¹³C NMR Spectra of compound L-8c

¹³C NMR Spectra of compound D-8d

¹³C NMR Spectra of compound L-8d

¹H NMR Spectra of compound D-8e

¹³C NMR Spectra of compound D-8e

¹³C NMR Spectra of compound L-8e

¹H NMR Spectra of compound D-8f

¹³C NMR Spectra of compound D-8f

¹H NMR Spectra of compound L-8f

¹³C NMR Spectra of compound L-8f

¹³C NMR Spectra of compound 9

¹H NMR Spectra of compound 11

¹³C NMR Spectra of compound 11

¹H NMR Spectra of compound 13

¹³C NMR Spectra of compound 13

¹³C NMR Spectra of compound 14

¹³C NMR Spectra of compound 15

¹H NMR Spectra of compound S52

¹³C NMR Spectra of compound S52

¹H NMR Spectra of compound S53

¹³C NMR Spectra of compound S53

¹H NMR Spectra of compound S54

¹³C NMR Spectra of compound S54

¹H NMR Spectra of compound S55

¹³C NMR Spectra of compound S55

30 20

110 100 f1 (ppm)

¹³C NMR Spectra of compound S58

¹H NMR Spectra of compound S59

¹³C NMR Spectra of compound S59

¹H NMR Spectra of compound S60

¹³C NMR Spectra of compound S60

¹³C NMR Spectra of compound S61

¹³C NMR Spectra of compound S62

¹³C NMR Spectra of compound S63

¹³C NMR Spectra of compound S64

¹H NMR Spectra of compound S65

¹³C NMR Spectra of compound S65

¹H NMR Spectra of compound S66

¹³C NMR Spectra of compound S66

¹H NMR Spectra of compound S67

¹³C NMR Spectra of compound S67

¹H NMR Spectra of compound S68

¹³C NMR Spectra of compound S68

¹³C NMR Spectra of compound S69

MeOOC Me BZO-BZC BzÒ ÓMe S69 Chloroform-d, 376 MHz

10

0 -10

-20 -30 -40 -50 -60 -70

¹⁹F NMR Spectra of compound S69

-90 -100 -110 -120 f1 (ppm) -130

-140 -150 -160 -170 -180 -190 -200 -210 -2

¹³C NMR Spectra of compound S70

CF₃ MeOOC . OMe BzO-BzC BzÒ ÒМе **\$**70 Chloroform-d, 376 MHz

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 fl (ppm)

¹⁹F NMR Spectra of compound S70

¹³C NMR Spectra of compound S71

¹⁹F NMR Spectra of compound S71

¹H NMR Spectra of compound S72

¹³C NMR Spectra of compound S72

OMe MeOOC BEZ ÓMe S72 Chloroform-d, 376 MHz

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 fl (ppm)

¹⁹F NMR Spectra of compound S72

¹³C NMR Spectra of compound S73

¹³C NMR Spectra of compound S74

¹⁹F NMR Spectra of compound S74

¹H NMR Spectra of compound S75

¹³C NMR Spectra of compound S75

¹³C NMR Spectra of compound S76

¹⁹F NMR Spectra of compound S76

¹³C NMR Spectra of compound S78

¹³C NMR Spectra of compound S79

¹³C NMR Spectra of compound S80

¹H NMR Spectra of compound S81

¹³C NMR Spectra of compound S81

¹H NMR Spectra of compound S82

¹³C NMR Spectra of compound S82

¹³C NMR Spectra of compound S83

¹³C NMR Spectra of compound 18

¹³C NMR Spectra of compound 17

4.0 = 4.5 -5.0 = 5.5 -6.0 = -6.5 -7.0 = -7.5 -8.0

7.5

¹H NMR Spectra of compound 20

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR Spectra of compound 16