Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Supporting Information

Photoredox- and Piezo-Catalysed Access to Complex Trifluoromethylated Polycyclic Structures from Ynamides

Amal Lakhal, Maud Villeneuve, Laure Haberkorn, Jean-Marie Fourquez, Jeremy Forte, Geoffrey Gontard, Louis Fensterbank*, Cyril Ollivier*

Table of Contents

1. General information2				
2. Optimization of the reaction parameters4				
3. Mechanoredox trifluoromethylation cyclization cascade reaction				
4. Side reactivity and unsuccessful substrates10				
5. Diastereoselectivity11				
6. Synthesis of protected Ynamides12				
6.1 General procedure I-a12				
6.2 General procedure I-b12				
6.3 General procedure I-c12				
6.4 Characterization data of protected ynamides12				
7. Synthesis of Ynamides				
7.1 General procedure II				
7.2 Characterization data of ynamides28				
8. Trifluoromethylated products43				
8.1 General procedure: photoredox43				
8.2 Procedure for mechanoredox trifluoromethylation cyclization cascade reaction				
8.3 Characterization data of Trifluoromethylated products43				
9. NMR Spectra				
9.1 Protected Ynamides				
9.2 Ynamides100				
9.3 Trifluoromethylated products131				
10. References				
11. X-Ray Analysis Data				

1. General information

Reactions were carried out under an argon atmosphere. Glassware for reactions was flame-dried under vacuum prior to use. Liquids and solutions were transferred with syringes.

Acetonitrile (MeCN) was dried over thermally activated 4 Å molecular sieves (MS). Tetrahydrofuran (THF) was dried over sodium/benzophenone and thermally distilled. BaTiO3 (tetragonal powder, <3 μ m, 99%, product number: 208108, Sigma-Aldrich). All solid state reactions were performed using grinding vessels in an Anton Paar BM500 (Fig. S1). Both jars and balls were made of stainless steel (Fig. S2). Unless otherwise stated, standard solvents and reagents were obtained from BLD, Doug Discovery, Tokyo Chemical Industry (TCI), Sigma-Aldrich, Alfa Aesar and were used as received. The amides used in ynamide synthesis were prepared according to reported procedures in literature.¹

Flash column chromatography was performed on Silica 60 M (40–63 μ m, Macherey Nagel) silica gel. Technical grade solvents were distilled prior to use. TLC analyses were performed on Merck 60 F254 silica gel pre-coated aluminum-backed plates with a layer thickness of 200 μ m. Product spots were visualized under UV light (λ max = 254 nm) and/or by staining with a potassium permanganate solution.

¹H, ¹³C and ¹⁹F NMR spectra were recorded on Bruker AV300 and AV400 instruments. CDCl₃ and DMSO-*d*₆ were purchased from Eurisotop and used as received. Chemical shifts are reported in parts per million (ppm) and are referenced to the residual solvent signals as the internal standard (CDCl₃: δ = 7.26 ppm, DMSO-*d*₆: δ = 2.50 ppm for ¹H NMR and CDCl₃: δ = 77.16 ppm, DMSO-*d*₆: δ = 39.52 ppm for ¹³C NMR). Data are reported as follows: chemical shift, multiplicity (s = singlet, bs = broad singlet, d = doublet, t = triplet, q = quartet, quint = quintet, hept = heptuplet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, tt = triplet of triplets...), coupling constants (Hz) and integration. ¹⁹F NMR spectra were calibrated according to the IUPAC recommendation using a unified chemical shift scale based on the proton resonance of Me₄Si as primary reference. Melting points (M.p.) were determined with a Stuart Scientific SMP3 melting point apparatus and are not corrected.

High resolution mass spectrometry (HRMS) analyses were obtained using a S3 mass spectrometer MicroTOF from Bruker with an electron spray ion source (ESI) and a TOF detector at the Institut Parisien de Chimie Moléculaire (Sorbonne Université). Compound names were generated by the computer program ChemDraw according to the guidelines specified by the International Union of Pure and Applied Chemistry (IUPAC).

Photocatalyzed reactions were irradiated under a blue LED light array homemade apparatus. Reactions were carried out in sealed tubes at a distance of approximately 2 cm from the LEDs and an average temperature of 27°C was maintained by an air cooling system.

All reactions were performed under an atmosphere of argon unless otherwise stated, and monitored by thin layer chromatography (T.L.C.), or by ¹H and ¹⁹F NMR spectroscopy.

Fig. S1. Anton Paar BM500 used in this study. Fig. S2. Stainless-steel jar used in this study.

Fig. S3. Homemade Photoreactor used in this study.

2. Optimization of the reaction parameters

Procedure for optimization and control studies: To a 4 mL reaction vial equipped with a stir bar was added *N*-benzyl-*N*-ethynyl-3-methylbutanamide **1a** (0.1 mmol, 1 equiv.), the CF₃ donor and the appropriate photocatalyst (0.025 equiv.). The vial was sealed with a cap and was evacuated and purged with argon three times via an inlet needle. The vial was then charged with the appropriate anhydrous solvent (1 mL) and was degassed with three freeze-pump-thaw cycles. After this, the cap was sealed with Parafilm[®] M and the vial was irradiated in the aforementioned LED reactor for indicated time. The temperature of the reaction was maintained at approximately 27 °C via a fan. After this time, an aliquot of the solution was dissolved in deuterated CDCl₃, and the reaction mixture was analyzed by ¹H and ¹⁹F NMR.

Trifluoromethyl radical source:

Togni I

Umemoto.BF₄

Umemoto.F

Magnier

Table S1: Optimization of the trifluoromethylation cyclization cascade.

						Yield (%) ^[c]	
Entry	CF_3 donor	Equiv.	PC (2.5 mol%)	Solvent ^[a]	t(h) ^[b]	2a	2aa
1	Togni I	1.2	lr(ppy) ₃	DMSO	6	42	n.d
2	Togni I	1.2	lr(ppy) ₃	DMF	12	29	n.d
3	Togni I	1.2	lr(ppy) ₃	MeCN	3	53	n.d
4	Togni I	1.2	lr(ppy) ₃	MeOH	16	43	n.d
5	Togni I	1.2	lr(ppy) ₃	EtOAc	24	21 +20% SM	n.d
6	Togni I	1.2	lr(ppy) ₃	DCM	24	17 +10% SM	n.d
7	Togni I	1.05	lr(ppy) ₃	MeCN	4	45	5
8	Togni I	1.5	lr(ppy) ₃	MeCN	20	55	n.d
9	Umemoto	1.2	lr(ppy) ₃	MeCN	18	22	n.d
10	Umemoto.BF ₄	1.2	lr(ppy) ₃	MeCN	20	n.d	n.d
11	Magnier	1.2	lr(ppy) ₃	MeCN	8	21	n.d
12	Umemoto Na ₂ HPO ₄ (1.2 eq)	1.2	[lr(dtbby)(ppy) ₂][PF ₆]	MeCN	1	traces	n.d
13	Togni II	1.2	lr(ppy) ₃	MeCN	1.5	60	13
14	Togni II	1.2	[lr(dtbby)(ppy) ₂][PF ₆]	MeCN	21	35	n.d
15	Togni II	1.2	[Ru(bpy) ₃]Cl ₂ .6H ₂ O	MeCN	17	40	n.d
16	Togni II	1.2	lr(ppy) ₃ (1.5 mol%)	MeCN	17	36	3
17	Togni II	1.2	lr(ppy) ₃ (5 mol%)	MeCN	15	41	4
18	Togni II	1.2	lr(ppy) ₃	MeCN (0.4 M)	12	30	7
19	Togni II	1.2	lr(ppy) ₃	MeCN (0.06M)	18	28	5
20	Togni II	1.2	lr(ppy) ₃	MeOH	15	30	n.d
21	Togni II	1.2	Ir(ppy) ₃ in dark	MeCN	24	n.d	n.d
22	Togni II	1.2	-	MeCN	24	n.d	n.d

Standard conditions: **1a** (0.1 mmol, 1 equiv.), Togni II reagent (1.2 equiv.), $Ir(ppy)_3$ (2.5 mol%), MeCN (0.1 M), r.t, time 1-24h. [a] concentration of the reaction 0.1 M. [b] time until complete conversion of **1a** except for entries 5 and 6. [c] yields determined by ¹H NMR spectroscopy using an internal standard (1,3,5-trimethoxybenzene).

3. Mechanoredox trifluoromethylation cyclization cascade reaction

Ynamide **1g** (20.1 mg, 0.1 mmol), CF₃ source, and BaTiO₃ were placed in a stainless-steel milling jar (5.0 mL) with a stainless-steel ball (8 mm diameter) under air. Then LAG (X μ L/mg for the solid reactants) was added to the mixture. After the jar was closed in air, the jar was placed in a ball milling apparatus (Anton Paar BM500). After grinding for the indicated time, the reaction mixture was passed through a short silica gel column eluting with ethyl acetate. The crude material was analyzed by ¹⁹F and ¹H NMR with 4,4'-Difluorobenzophenone as an internal standard to determine the NMR yield.

Table S2: Optimization of the mechanoredox trifluoromethylation cyclization cascade.

Entry	CF ₃ source	Piezoelectric material	LAG, Hz	Conditions (balls, h)	Yield
1	Togni I (1.2 eq)	BaTiO ₃ (5 eq)	Acetone (0.2µL), 30 Hz	8mm steel ball, 3h	4%, degradation
2	Togni I (1.2 eq)	BaTiO ₃ (0.1 eq)	Acetone (0.2µL), 30 Hz	8mm steel ball, 3h	15%, 7% of 1g
3	Togni I (1.2 eq)	BaTiO ₃ (0.5 eq)	Acetone (0.2µL), 30 Hz	8mm steel ball, 3h	12%, 13% of 1g
4	Togni II (1.2 eq)	BaTiO ₃ (0.5 eq)	Acetone (0.2µL), 30 Hz	8mm steel ball, 3h	9%, messy
5	∫Togni I (1 eq)	BaTiO ₃ (0.1 eq)	Acetone (0.2µL), 30 Hz	8mm steel ball, 3h	10%, 57% 1g
2 eq of 1g 6	Togni I (1 eq)	BaTiO ₃ (5 eq)	Acetone (0.2µL), 30 Hz	8mm steel ball, 3h	3%, 23% of 1g
7	Togni I (1.2 eq)	BaTiO ₃ (0.1 eq)	MeCN (0.2µL), 30 Hz	8mm steel ball, 3h	14%, 7% of 1g
8	Togni I (2 eq)	BaTiO ₃ (0.1 eq)	Acetone (0.2µL), 30 Hz	8mm steel ball, 3h	18%, 6% of 1g
9	Togni I (2 eq)	BaTiO ₃ (0.1 eq)	Acetone (0.2µL), 30 Hz	3x3mm balls, 3h	5%, 31% of 1g
10	Togni I (2 eq)	BaTiO ₃ (0.2 eq)	Acetone (0.2µL), 30 Hz	3x3mm balls, 3h	N.D, degradation
11	Togni I (2 eq)	BaTiO ₃ (0.1 eq)	Acetone (0.2µL), 20 Hz	3h	7%, 33% of 1g
12	Togni I (1.2 eq)	BaTiO ₃ (0.1 eq)	Acetone (0.2µL), 30 Hz	ZrO ₂ ball 7mm, 3h	15%, 9% of 1g
13	Togni I (1.2 eq)	BaTiO ₃ (0.1 eq)	Acetone (0.2µL), 30 Hz	in glovebox (Argon), 3h	2%
14	Togni I (2 eq)	BaTiO ₃ (0.1 eq)	Acetone (0.2µL), 30 Hz	6 x ZrO ₂ balls 5mm, 3h	18.6%
15	Togni I (2 eq)	BaTiO ₃ (0.1 eq)	Acetone (0.2µL), 30 Hz	10 mm steel ball, 3h	18%
16	Togni I (2 eq)	BaTiO ₃ (0.1 eq)	Acetone (0.3µL), 30 Hz	3h	10%
17	Togni I (2 eq)	BaTiO ₃ (0.1 eq)	Acetone (0.3µL), 30 Hz	2h	5%, 16% of 1g
18	Togni I (2 eq)	BaTiO ₃ (0.05 eq)	Acetone (0.3µL), 30 Hz	3h	17%
19	Togni I (2 eq)	BaTiO ₃ (0.1x2 eq)	Acetone (0.2µL), 30 Hz	2h	2%, 44% of 1g
22	Togni I (0.5x3 eq)	BaTiO ₃ (0.1 eq)	Acetone (0.2µL), 30Hz	add 0.5eq each 1h, 3h	15%
23	Togni I (2 eq)	BaTiO ₃ (0.1 eq)	Acetone (0.3µL), 30Hz	Sand (2 eq/mg), 3h	15%
24	Togni I (2 eq)	BaTiO ₃ (0.1 eq)	Acetone (0.3µL), 10 Hz	13h	23%
25	Togni I (2 eq)	BaTiO ₃ (0.1 eq)	Acetone (0.3µL), 10 Hz	7h	12%, 15% of 1g

Entry	CF ₃ source	Piezoelectric material	LAG, Hz	Conditions (balls, h)	Yield
26	Togni I (2 eq)	BaTiO ₃ (5 eq)	Acetone (0.3µL), 10 Hz	8mm steel ball, 6h	6%
27	Togni I (2 eq)	BaTiO ₃ (0.1 eq)	Acetone (0.3µL), 20 Hz	8mm steel ball, 2h	2%, 45% of 1g
28	Togni I (2 eq)	BaTiO ₃ (0.1 eq)	Acetone (0.3µL), 7 Hz	8mm steel ball, 13h	22%
29	Togni I (2 eq)	BaTiO ₃ (0.1 eq)	Acetone (0.67µL), 7 Hz	8mm steel ball, 13h	30%
30	Togni I (2 eq)	BaTiO ₃ (0.05 eq)	Acetone (0.67µL), 30 Hz	8mm steel ball, 3h	32%
31	Togni I (2 eq)	BaTiO ₃ (0.1 eq)	Acetone (0.67µL), 30 Hz	8mm steel ball, 3h, Silica (5eq)	30%
32	Togni I (2 eq)	BaTiO ₃ (0.1 eq)	Acetone (0.67µL), 30 Hz	8mm steel ball, 3h, Alumina (5eq)	N.D
33	Togni I (2 eq)	BaTiO ₃ (0.05 eq)	Acetone (0.67µL), 30 Hz	8mm steel ball, 3h, 0.2 mmol scale	33%
34	Togni I (2 eq)	BaTiO ₃ (0.05 eq)	Acetone (1.2µL), 10 Hz	8mm steel ball, 13h	38%
35	Togni I (2 eq)	BaTiO ₃ (0.05 eq)	Acetone (1.2µL), 30 Hz	8mm steel ball, 3h	38%
36	Togni I (2 eq)	BaTiO ₃ (0.05 eq)	Acetone (2µL), 30 Hz	8mm steel ball, 3h	26%, 22% of 1g
37	Togni I (2 eq)	BaTiO ₃ (0.05 eq)	Acetone (1.5µL), 30 Hz	8mm steel ball, 3h	24%
38	Togni I (2 eq)	BaTiO ₃ (0.05 eq)	Acetone (0.87µL), 30 Hz	8mm steel ball, 3h	30%
39	Togni I (4 eq)	BaTiO ₃ (0.05 eq)	Acetone (1.2µL), 30 Hz	8mm steel ball, 3h	35%
40	Togni I (4 eq)	BaTiO ₃ (0.1 eq)	Acetone (1.2µL), 30 Hz	8mm steel ball, 3h	32%
41	Togni I (1.5 eq)	BaTiO ₃ (0.05 eq)	Acetone (1.2µL), 30 Hz	8mm steel ball, 3h	22%
42	Togni I (2 eq)	BaTiO ₃ (0.05 eq)	Acetone (1.2µL), 30 Hz	10mm SS ball, 3h	30%
43	Togni I (2 eq)	BaTiO ₃ (0.05 eq)	Acetone (1.2µL), 30 Hz	6x5mm SS ball, 3h	20%
44	Togni I (2 eq)	BaTiO ₃ (0.05 eq)	Acetone (1.2µL), 30 Hz	6x5mm ZrO ₂ ball, 3h	24%
45	Togni I (2 eq)	BaTiO ₃ (0.05 eq)	EtOAc (1.2µL), 30 Hz	8mm steel ball, 3h	37%
46	Togni I (2 eq)	BaTiO ₃ (0.05 eq)	Cyclohexane (1.2µL), 30 Hz	8mm steel ball, 3h	15%
47	Togni I (2 eq)	BaTiO ₃ (0.05 eq)	MeOH (1.2µL), 30 Hz	8mm steel ball, 3h	19%
48	Togni I (2 eq)	BaTiO ₃ (0.05 eq)	DMF (1.2µL), 30 Hz	8mm steel ball, 3h	8%
49	Togni I (2 eq)	LiNbO ₃ (0.05 eq)	Acetone (1.2µL), 30 Hz	8mm steel ball, 3h	22%, 16% of 1g
50	Togni I (2 eq)	LiNbO ₃ (0.5 eq)	Acetone (1.2µL), 30 Hz	8mm steel ball, 3h	21%, 9% of 1g
51	Togni I (2 eq)	LiNbO ₃ (10 eq)	Acetone (1.2µL), 30 Hz	8mm steel ball, 3h	6%, 44% of 1g
52	F-umemoto (2 eq)	BaTiO ₃ (0.05 eq)	Acetone (1.2µL), 30 Hz	8mm steel ball, 3h	5%, degradation
53	Togni I (2 eq)	BaTiO ₃ (0.025 eq)	Acetone (1.2µL), 30 Hz	8mm steel ball, 3h	14%, 19% of 1g
54	Togni I (2 eq)	BaTiO ₃ (0.05 eq)	Acetone (1.2µL), 30 Hz	8mm steel ball, 3.5h	13.8%, 29% of 1g
55	Togni I (2 eq)	BaTiO ₃ (0.05 eq)	Acetone (1.2µL), 30 Hz	8mm steel ball, 5h, 0.3 mmol scale	15%, 10% of 1g
56	Togni I (2 eq)	BaTiO ₃ (0.05 eq)	Acetone (1.2µL), 30 Hz	8mm steel ball, 6x(30 min at 30Hz, and 15 min pause)	24%, 15% of 1g

Degradation of the tricyclic compound **2g** under ball milling conditions (30% degradation).

reaction performed on 0.1 mmol scale

4. Side reactivity and unsuccessful substrates

It's worth noting some limitation of this cascade. Notably the reaction in presence of cyclopropyl **Y1** leads to the radical clock product **P2** via a 1,4-HAT process. Azetiridine and carbamate ynamides gave mostly degradation products, alongside traces of the product. In the case of ynamides **Y4** and **Y5**, the vinyl radical undergoes a 1,6-HAT instead of a 1,5 resulting in the formation **P4** and **P5** alongside degradation products. We investigated substrates bearing a protected ynamide function (**1y**). Unsurprisingly, when the radical acceptor is protected with a CH₃ or a TMS group no reaction occurs, likely due to the steric hinderance they impose. Ynamide **1z** with a benzamide group was tested as well (Fig. S4). Upon addition of CF₃ radical on **1z** the vinyl radical undergoes a 5-exo-trig cyclization with the arene which is consistent with our previous study² that showed that the intermediate vinyl radical undergoes faster cyclization on the benzamide ring than HAT.

Fig. S4. Reactivity of other ynamides under photoredox conditions.

5. Diastereoselectivity

Fig. S5. Beckwith-Houk model for the 5-*exo-trig* cyclization of 2e.

The diastereoselectivity of the third generated stereogenic center could be explained with the Beckwith-Houk. If we take compound **2e** as a case study, the introduction of a polar nitrogen introduces both steric and electronic repulsions between the α -imidoalkyl radical and the trifluoromethylated olefin. In this scenario, the most stable transition state is the boat-equatorial TS **4**, leading to the formation of trans pyrrolidinone **5** after cyclization. Conversely, the other diastereoisomer probably originates from the chair-equatorial **4'**, resulting in the formation of cis pyrrolidinone **5'** through a 5-exo-trig cyclization process. TS **4'** is likely the least stable transition state due to the bulky phtalimide substituent in an axial position.

6. Synthesis of protected Ynamides

6.1 General procedure I-a

In a sealed tube flushed with argon was loaded the amide (1 equiv.), $CuSO_4.5H_2O$ (0.1 equiv.), 1,10- phenanthroline (0.2 equiv.) and K_3PO_4 (2 equiv.). To this mixture was added a solution of 2-bromoethynyl(triisopropyl)silane³ (1.1 equiv., 1M) in toluene. The reaction mixture was capped and heated at 82 °C for 2.5 days. The reaction mixture was cooled to rt, filtered through a pad of Celite (rinsed with DCM). The filtrate was concentrated under vacuum. The crude product was purified by silica gel column chromatography.

6.2 General procedure I-b

To a solution of the amide (1 equiv.) in toluene (1 M) was added KHMDS (0.5 M in toluene, 1.1 equiv.) at RT. The reaction mixture was stirred at 80°C for 20 min and phenyl(trimethylsilylethynyl)iodonium triflate⁴ (1.1 equiv.) was added. The reaction mixture was stirred at 80°C for 1 h, then stirred at rt for 5 h. The reaction mixture was washed with water and extracted twice with EtOAc. The combined organic layers were dried over MgSO4, filtered and concentrated to dryness. The crude was purified by column chromatography.

6.3 General procedure I-c

In a round-bottom flask under argon was dissolved the triazole⁵ (1 equiv.) in THF (0.2 M).The solution was cooled down to 0 °C and n-BuLi (2.5M in hexanes, 1.05 eq.) was added dropwise. The mixture was stirred at 0°C for 30 min, then the electrophile (1.05 eq.) was added. The reaction mixture was stirred at rt for 30 min. The solution was quenched with water and extracted with EtOAc. The combined org. layers were dried over MgSO4, filtered and concentrated to dryness. The crude was purified by column chromatography.

6.4 Characterization data of protected ynamides

N-benzyl-3-methyl-*N*-((triisopropylsilyl)ethynyl)butanamide (1a-SiR₃)

Starting from *N*-benzyl-3-methylbutanamide (0.956 g, 5 mmol), and by following general procedure **I-a**, compound **1a-SiR₃** (1.153 g, 62% yield) was obtained as a yellow oil by flash chromatography (40% DCM/PE)

¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.33 (m, 5H), 4.68 (s, 2H), 2.59 (d, J = 7.1 Hz, 2H), 2.21 (sept, J = 6.8 Hz, 1H), 1.01 (s, 3H), 1.01 (bs, 18H), 0.96 (d, J = 6.8 Hz, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ ppm 174, 136.1, 128.8 (2C), 128.4 (2C), 127.8, 98.4, 72.3, 51.4, 43.4, 25.8, 22.4 (2C), 18.6 (6C), 11.3 (3C).

HRMS (ESI) calcd. for C₂₃H₃₇NOSiH [M+H]+: 372.2717, Found 372.2716.

N-(4-fluorobenzyl)-3-methyl-*N*-((triisopropylsilyl)ethynyl)butanamide (1b-SiR₃)

Starting from *N*-(4-fluorobenzyl)-3-methylbutanamide (1.046 g, 5 mmol), and by following general procedure **I-a**, compound **1b-SiR**₃ (1.496 g, 76% yield) was obtained as an orange oil by flash chromatography (40% DCM/PE).

¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.31 (dd, J = 8.5, 5.4 Hz, 2H), 6.99 (td, J = 8.8, 1.2 Hz, 2H), 4.64 (s, 2H), 2.58 (dd, J = 7.1, 1.0 Hz, 2H), 2.19 (dh, J = 13.5, 6.7 Hz, 1H), 1.01 (br s, 21H), 0.95 (dd, J = 6.6, 1.1 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm 174.0, 163.9 (d, J = 245.5 Hz), 132.1 (d, J = 3.3 Hz), 130.7 (d, J = 8.3 Hz), 115.4 (d, J = 21.6 Hz), 98.2, 72.6, 50.7, 43.4, 25.9, 22.5, 18.7, 11.4. ¹⁹**F NMR** (376 MHz, CDCl3) δ ppm -114.52.

HRMS (ESI) calcd. for C₂₃H₃₆FNOSiH [M+H]+: 390.2623. Found 390.2625.

N-(4-methoxybenzyl)-3-methyl-*N*-((triisopropylsilyl)ethynyl)butanamide (1c-SiR₃)

Starting from N-(4-methoxybenzyl)-3-methylbutanamide (1.106 g, 5 mmol), and by following general procedure **I-a**, compound **1c-SiR**₃ (1.496 g, 62% yield) was obtained as an orange oil by flash chromatography (30% DCM/PE).

¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.27 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 8.7 Hz, 2H), 4.61 (s, 2H), 3.79 (s, 3H), 2.57 (d, J = 7.2 Hz, 2H), 2.20 (dp, J = 13.6, 6.8 Hz, 1H), 1.02 (s, 21H), 0.95 (d, J = 6.6 Hz, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ ppm 174.0, 159.4, 130.4, 128.5, 113.9, 98.5, 72.3, 55.4, 50.9, 43.5, 25.9, 22.5, 18.7, 11.5.

HRMS (ESI) calcd. for C₂₄H₃₉NO2SiH [M+H]+: 402.2823. Found 402.2821.

N-benzyl-2-cyclobutyl-N-((triisopropylsilyl)ethynyl)acetamide (1d-SiR₃)

Starting from *N*-benzyl-2-cyclobutylacetamide (1.016 g, 5 mmol), and by following general procedure **I-a**, compound **1d-SiR₃** (1.305 g, 68% yield) was obtained as an orange oil by flash chromatography (40% DCM/PE).

¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.31 (m, 5H), 4.65 (s, 2H), 2.82 (bs, 2H), 2.79 (m, 1H), 2.13 (m, 2H), 1.87 (m, 2H), 1.74 (m, 2H), 1.02 (bs, 21H).

¹³C NMR (101 MHz, CDCl₃) δ ppm 173.7, 136.3, 128.9 (2C), 128.6 (2C), 127.9, 98.5, 72.4, 51.3, 41.6, 32.4, 28.3, 18.8 (3C), 18.7 (6C), 11.5 (3C).

HRMS (ESI) Calcd. for C₂₄H₃₇NOSiH [M+H]+: 384.2717. Found 384.272.

(1R,3S,5r,7r)-N-benzyl-N-((triisopropylsilyl)ethynyl)adamantane-2-carboxamide (1f-SiR₃)

Starting from (1R,3S,5r,7r)-*N*-benzyladamantane-2-carboxamide (1.347 g, 5 mmol), and by following general procedure **I-a**, compound **1f-SiR**₃ (0.907 g, 40% yield) was obtained as a pale yellow oil by flash chromatography (40% DCM/PE).

¹H NMR (400 MHz, CDCl₃) δ ppm 7.34-7.25 (m, 5H), 4.68 (s, 2H), 3.34 (s, 1H), 2.27 (m, 4H), 1.86 (m, 4H), 1.75 (m, 4H), 1.60 (d, *J* = 12.6 Hz, 2H), 1.02 (br s, 21H).
¹³C NMR (101 MHz, CDCl₃) δ ppm 176.7, 136.6, 128.7 (2C), 128.5 (2C), 127.8, 98.7, 72.0, 51.8, 48.2, 38.8, 37.6, 32.8, 30.1, 28.0, 27.4, 18.7 (6C), 11.5 (3C).
HRMS (ESI) calcd. for C₂₉H₄₃NOSiH [M+H]+: 450.3187. Found 450.3185.

3-methyl-N-phenyl-N-((triisopropylsilyl)ethynyl)butanamide (1g-SiR₃)

Starting from 3-methyl-*N*-phenylbutanamide (0.886 g, 5 mmol), and by following general procedure **I-a**, compound **1g-SiR₃** (1.348 g, 75% yield) was obtained as a yellow oil by flash chromatography (40% DCM/PE).

¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.46 (d, J = 7.7 Hz, 2H), 7.37 (t, J = 7.6 Hz, 2H), 7.26 (t, J = 7.5 Hz, 1H), 2.77 (d, J = 7.3 Hz, 2H), 2.3 (sept, J = 6.8 Hz, 1H), 1.09 (bs, 21H), 1.04 (d, J = 6.7 Hz, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ ppm 173.8, 139.2, 128.9 (2C), 127.1, 125.0 (2C), 98.2, 71.8, 44.1, 25.8, 22.6 (2C), 18.8 (6C), 11.5 (3C).

HRMS (ESI) Calcd. for C₂₂H₃₆NOSi [M+H]+: 358.2561, found 358.2565.

N-(4-methoxyphenyl)-3-methyl-N-((triisopropylsilyl)ethynyl)butanamide (1h-SiR₃)

Starting from *N*-(4-methoxyphenyl)-3-methylbutanamide (1.036 g, 5mmol), and by following general procedure **I-a**, compound **1h-SiR**₃ (1.240 g, 64% yield) was obtained as an off yellow solid by flash chromatography (40% DCM/PE).

¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.34 (d, J = 8.9 Hz, 2H), 6.91 (d, J = 8.9 Hz, 2H), 3.81 (s, 1H), 2.74 (d, J = 7.6 Hz, 2H), 2.29 (sept, J = 6.9 Hz, 1H), 1.08 (bs, 21H), 1.03 (d, J = 6.7 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ ppm 173.9, 158.4, 132.1, 126.4 (2C), 114.2 (2C), 98.6, 71.2, 55.6, 43.9, 25.9, 22.6 (2C), 18.8 (6C), 11.6 (3C). HRMS (ESI) Calcd for C₂₃H₃₇NO2SiH [M+H]+: 388.2666, Found 388.2657. M.p.: 49-50°C

N-(4-chlorophenyl)-3-methyl-N-((triisopropylsilyl)ethynyl)butanamide (1i-SiR₃)

Starting from *N*-(4-chlorophenyl)-3-methylbutanamide (1.058 g, 5 mmol), and by following general procedure **I-a**, compound **1i-SiR**₃ (1.184 g, 60% yield) was obtained as a yellow oil by flash chromatography (40% DCM/PE).

¹H NMR (400 MHz, CDCl₃) δ ppm 7.42 (d, J = 9.0 Hz, 2H), 7.35 (d, J = 9.0 Hz, 2H), 2.76 (d, J = 6.7 Hz, 2H), 2.29 (sept, J = 6.7 Hz, 1H), 1.09 (bs, 21H), 1.04 (d, J = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ ppm 173.5, 137.7, 132.5, 129.1 (2C), 126.2 (2C), 97.6, 72.4, 44.1, 25.8, 22.6 (2C), 18.8 (6C), 11.6 (3C). HRMS (ESI) Calcd. for C₂₂H₃₄CINOSiH [M+H]+: 392.2171, Found 392.2164.

N-(4-fluorophenyl)-3-methyl-*N*-((triisopropylsilyl)ethynyl)butanamide (1j-SiR₃)

Starting from *N*-(4-fluorophenyl)-3-methylbutanamide (0.976 g, 5 mmol), and by following general procedure **I-a**, compound **1j-SiR**₃ (1.099 g, 58% yield) was obtained as a yellow oil by flash chromatography (20% DCM/PE).

¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.41 (dd, *J* = 5.0, 7.3 Hz, 2H), 7.07 (t, *J* = 8.0 Hz, 2H), 2.76 (d, *J* = 6.9 Hz, 2H), 2.29 (sept, *J* = 6.8 Hz, 1H), 1.09 (bs, 21H), 1.03 (d, *J* = 6.6 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm 173.7, 162.5 (d, J = 247.3 Hz), 135.2, 126.8 (2C, d, J = 8.8 Hz), 115.8 (2C, d, J = 23.0 Hz), 98.1, 72.0, 44.0, 25.8, 22.6 (2C), 18.8 (6C), 11.6 (3C). ¹⁹**F NMR** (376 MHz, CDCl3) δ ppm -114.79. **HRMS (ESI)** Calcd. for C₂₂H₃₄FNOSiH [M+H]+: 376.2466, Found 376.2467.

N-(benzo[d][1,3]dioxol-5-yl)-3-methyl-N-((triisopropylsilyl)ethynyl)butanamide (1k-SiR₃)

Starting from *N*-(benzo[*d*][1,3]dioxol-5-yl)-3-methylbutanamide (1.106 g, 5 mmol), and by following general procedure **I-a**, compound **1k-SiR**₃ (1.209 g, 60% yield) was obtained as a yellow oil by flash chromatography (40% DCM/PE).

¹**H NMR** (400 MHz, CDCl3) δ ppm 6.88 (m, 2H), 6.80 (d, *J* = 8.1 Hz, 1H), 5.98 (s, 2H), 2.73 (d, *J* = 7.1 Hz, 2H), 2.28 (m, 1H), 1.08 (s, 21H), 1.03 (d, *J* = 6.7 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl3) δ ppm 173.9, 147.8, 146.7, 133.1, 118.8, 108.1, 107.0, 101.8, 98.3, 71.4, 43.8, 25.8, 22.6, 18.8 (6C), 11.5 (3C).

HRMS (ESI) calcd. for C₂₃H₃₅NO₃SiH [M+H]+: 402.2459. Found 402.2458.

3-methyl-*N*-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-*N*-((trimethylsilyl)ethynyl)butanamide (1I-SiR₃)

Starting from 3-methyl-*N*-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)butanamide (1.819 mg, 6 mmol), and by following general procedure **I-b**, compound **1I-SiR**₃ (0.811 g, 34% yield) was obtained as a yellow solid by flash chromatography (10% EtOAc/PE).

¹H NMR (400 MHz, CDCl₃) δ ppm 7.83 (d, J = 8.5 Hz, 2H), 7.43 (d, J = 8.4 Hz, 2H), 2.69 (d, J = 7.0 Hz, 2H), 2.28 (dq, J = 13.5, 6.8 Hz, 1H), 1.34 (s, 12H), 1.04 (d, J = 6.7 Hz, 6H), 0.20 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ ppm 173.6, 141.5, 135.6 (2C), 124.3 (2C), 96.7, 84.0 (2C), 75.4, 44.0, 25.9, 24.9 (4C), 22.6 (2C), 0.1 (3C). HRMS (ESI) calcd. for C₂₂H₃₄BNO₃SiH [M+H]+: 400.2474. Found 400.2476. M.p.: 92°C

3-methyl-N-(naphthalen-2-yl)-N-((triisopropylsilyl)ethynyl)butanamide (1m-SiR₃)

Starting from 3-methyl-*N*-(naphthalen-2-yl)butanamide (1.136 g, 5 mmol), and by following general procedure **I-a**, compound **1m-SiR₃** (1.204 g, 59% yield) was obtained as a yellow oil by flash chromatography (40% DCM/PE).

¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.96 (d, *J* = 2.2 Hz, 1H), 7.89 – 7.78 (m, 3H), 7.61 (dd, *J* = 8.8, 2.2 Hz, 1H), 7.49 (m, 2H), 2.84 (d, *J* = 7.1 Hz, 2H), 2.35 (dq, *J* = 13.6, 6.8 Hz, 1H), 1.12 (br s, 21H), 1.09 (d, *J* = 6.7 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm 173.9, 136.7, 133.4, 132.2, 128.7, 128.1, 127.7, 126.6, 126.3, 123.4, 123.2, 98.2, 72.0, 44.2, 25.9, 22.6 (2C), 18.8 (6C), 11.6 (3C).

HRMS (ESI) calcd. for C₂₆H₃₇NOSiH [M+H]+: 408.2717. Found 408.2719.

3-methyl-N-(thiophen-3-yl)-N-((triisopropylsilyl)ethynyl)butanamide (1n-SiR₃)

Starting from 3-methyl-*N*-(thiophen-3-yl)butanamide (3.000 g, 16.2 mmol), and by following general procedure **I-a**, compound **1n-SiR**₃ (2.680 g, 46% yield) was obtained as a yellow oil by flash chromatography (40% DCM/PE).

¹**H NMR** (500 MHz, CDCl3) δ ppm 7.54 (dd, J = 3.3, 1.4 Hz, 1 H), 7.36 (dd, J = 5.3, 1.4 Hz, 1 H), 7.25 (dd, J = 5.3, 3.3 Hz, 1 H), 2.76 (d, J = 7.1 Hz, 2 H), 2.28 (sept, J = 6.7 Hz, 1 H), 1.12 (m, 18 H), 1.11 (m, 3 H), 1.03 (d, J = 6.7 Hz, 6 H). ¹³**C NMR** (125 MHz, CDCl3) δ ppm 172.9, 136.7, 124.2, 123.2, 114.7, 97.2, 73.5, 44.4, 25.8, 22.6 (2C), 18.8 (6C), 11.6 (3C).

HRMS (ESI) calcd. for C₂₀H₃₄NOSSi [M+H]+: 364.2125, found 364.2125.

3,5,5-trimethyl-N-phenyl-N-((triisopropylsilyl)ethynyl)hexanamide (1o-SiR₃)

Starting from 3,5,5-trimethyl-*N*-phenylhexanamide (1.167 g, 5 mmol), and by following general procedure **I-a**, compound **1o-SiR₃** (1.717 g, 83% yield) was obtained as an orange oil by flash chromatography (40% DCM/PE).

¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.46 (d, *J* = 8.3 Hz, 2H), 7.39 (t, *J* = 8.1 Hz, 2H), 7.26 (t, *J* = 8.1 Hz, 1H), 2.80 (qd, *J* = 25.2, 18.5, 7.1 Hz, 2H), 2.27 (m, 1H), 1.39 (dd, *J* = 10.7, 3.6 Hz, 1H), 1.17 (dd, *J* = 14.4, 6.8 Hz, 1H), 1.10 (br s, 22H), 1.08 (m, 3H), 0.94 (br d, *J* = 1.3 Hz, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm 173.74, 139.23, 128.93, 127.06, 125.03, 98.24, 71.83, 50.44, 44.54, 31.23, 30.17, 27.17, 23.12, 18.83, 11.58.

HRMS (ESI) Calcd. For C₂₆H₄₃NOSiH [M+H]+: 414.3187. Found 414.3186.

3-(tert-butoxy)-N-phenyl-N-((triisopropylsilyl)ethynyl)propenamide (1p-SiR₃)

Starting from 3-(*tert*-butoxy)-*N*-phenylpropanamide (1.016 g, 5 mmol), and by following general procedure **I-a**, compound **1p-SiR**₃ (0.492 g, 24% yield) was obtained as a brown oil by flash chromatography (80% PE/EtOAc).

¹H NMR (400 MHz, CDCl₃) δ ppm 7.46 (d, J = 8.5 Hz, 2 H), 7.39 (t, J = 7.5 Hz, 2 H), 7.26 (d, J = 7.6 Hz, 1 H), 3.76 (t, J = 6.6 Hz, 2 H), 3.07 (t, J = 6.5 Hz, 2 H), 1.21 (s, 2H), 1.08 (s, 2 H). ¹³C NMR (101 MHz, CDCl₃) δ ppm 172.5, 139.2, 128.9 (2C), 127.1, 125.0 (2C), 97.9, 73.3, 71.89, 57.5, 36.8, 27.6 (3C), 18.8 (9C), 11.5 (3C). HRMS (ESI) Calcd. for C₂₄H₃₉NO₂SiH [M+H]+: 402.2823. Found 402.282.

3-(1,3-dioxoisoindolin-2-yl)-N-phenyl-N-((trimethylsilyl)ethynyl)propenamide (1q-SiR₃)

Starting from 1-phenyl-4-(trimethylsilyl)-1*H*-1,2,3-triazole (0.913 g, 4.2 mmol) and phthalimideporpanoyl chloride (1.000 g, 4.2 mmol), and by following general procedure **I-c**, compound **1q**-**SiR**₃ (0.554 g, 34% yield) was obtained as an orange solid by flash chromatography (20% EtOAc/PE).

¹H NMR (400 MHz, CDCl₃) δ ppm 7.86 (dd, J = 5.4, 3.0 Hz, 2H), 7.71 (dd, J = 5.4, 3.0 Hz, 2H), 7.40 (m, 4H), 7.29 (m, 1H), 4.12 (t, J = 7.0 Hz, 2H), 3.24 (t, J = 6.8 Hz, 2H), 0.15 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ ppm 171.5, 168.2 (2C), 138.6, 134.1 (2C), 132.2, 129.1 (2C), 127.6, 125.3, 123.5 (2C), 96.0, 75.6, 34.0, 33.8, 0.1. HRMS (ESI) Calcd. For C₂₂H₂₂N₂O₃SiH [M+H]+: 391.1472. Found 391.1475. M.p.: 122°C

(1R,3S,5r,7r)-N-phenyl-N-((triisopropylsilyl)ethynyl)adamantane-2-carboxamide (1r-SiR₃)

Starting from (1R,3S,5r,7r)-*N*-phenyladamantane-2-carboxamide (1.276 g, 5 mmol), and by following general procedure **I-a**, compound **1r-SiR**₃ (1.587 g, 73% yield) was obtained as an orange solid by flash chromatography (30% DCM/PE).

¹H NMR (400 MHz, CDCl₃) δ ppm 7.43-7.36 (m, 4 H), 7.25 (t, J = 7.2 Hz, 1 H), 3.57 (br s, 1 H), 2.42 (br s, 1 H), 2.30 (br d, J = 12.8 Hz, 2 H), 1.96-1.82 (m, 6 H), 1.77 (br s, 2 H), 1.64 (br d, J = 12.6 Hz, 2 H), 1.09 (s, 21 H). ¹³C NMR (101 MHz, CDCl₃) δ ppm 176.6, 139.7, 128.8 (2C), 126.9, 125.3 (2C), 98.3, 71.3, 48.6, 38.8, 37.6, 32.8, 30.2, 28.0, 27.5, 18.8 (9C), 11.6 (3C). HRMS (ESI) Calcd. for C₂₈H₄₁NOSiH [M+H]+: 436.3030. Found 436.3030. M.p.: 61°C

(3as,6as)-N-phenyl-N-((triisopropylsilyl)ethynyl)hexahydro-2,5-methanopentalene-3a(1H)carboxamide (1s-SiR₃)

Starting from $(3a_{5},6a_{5})$ -*N*-phenylhexahydro-2,5-methanopentalene-3a(1H)-carboxamide (1.206 g, 5 mmol), and by following general procedure **I-a**, compound **1s-SiR**₃ (0.624 g, 30% yield) was obtained as a yellow oil by flash chromatography (40% DCM/PE).

¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.43 – 7.35 (m, 4H), 7.27 (ddd, *J* = 10.1, 4.9, 3.2 Hz, 1H), 3.18 (t, *J* = 6.7 Hz, 1H), 2.35 (dt, *J* = 11.6, 2.4 Hz, 4H), 2.21 (dd, *J* = 9.9, 2.9 Hz, 2H), 2.05 (m, 2H), 1.71 – 1.58 (m, 4H), 1.06 (m, 21H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm 177.4, 141.5, 128.8, 127.2, 126.1, 99.1, 72.2, 56.9, 47.0, 43.7, 42.6, 37.8, 35.1, 18.7, 11.6.

HRMS (ESI) calcd. for C₂₇H₃₉NOSiH [M+H]+: 422.2874. Found 422.2868.

2-cyclobutyl-N-phenyl-N-((triisopropylsilyl)ethynyl)acetamide (1t-SiR₃)

Starting from 2-cyclobutyl-*N*-phenylacetamide (0.946 g, 5 mmol), and by following general procedure **I-a**, compound **1t-SiR₃** (1.037 g, 56% yield) was obtained as a pale orange oil by flash chromatography (40% DCM/PE).

¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.45 (d, *J* = 7.8 Hz, 2H), 7.38 (t, *J* = 7.6 Hz, 2H), 7.25 (t, *J* = 7.4 Hz, 1H), 3.00 (d, *J* = 7.4 Hz, 2H), 2.86 (sept, *J* = 7.7 Hz, 1H), 2.19 (m, 2H),1.91 (m, 2H), 1.79 (m, 2H), 1.10 (bs, 21H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm 173.3, 139.1, 128.9 (2C), 127.0, 124.9 (2C), 98.1, 71.8, 42.8, 32.3, 28.4 (2C), 18.8 (6C), 11.6 (3C).

HRMS (ESI) Calcd. for C₂₃H₃₅NOSiH [M+H]+: 370.2561, Found 370.2555.

N-phenyl-N-((triisopropylsilyl)ethynyl)cyclobutanecarboxamide (1u-SiR₃)

Starting from *N*-phenylcyclobutanecarboxamide (0.876 g, 5 mmol), and by following general procedure **I-a**, compound **1u-SiR₃** (1.104 g, 62% yield) was obtained as a pale orange oil by flash chromatography (40% DCM/PE).

¹H NMR (400 MHz, CDCl₃) δ ppm 7.47 (d, J = 8.6 Hz, 2 H), 7.38 (t, J = 7.6 Hz, 2 H), 7.25 (t, J = 7.3 Hz, 1 H), 3.94 (quint, J = 8.5 Hz, 1 H), 2.42 (m, 2H), 2.32 (m, 2H), 1.97 (m, 2H), 1.09 (s, 21H). ¹³C NMR (101 MHz, CDCl₃) δ ppm 175.89, 139.35, 128.90 (2C), 126.95, 124.83 (2C), 97.67, 71.08, 39.14, 25.27 (2C), 18.80 (9C), 18.26, 11.60 (3C). HRMS (ESI) Calcd. for C₂₂H₃₃NOSiH [M+H]+: 356.2404. Found 356.2405.

2-cyclohexyl-N-phenyl-N-((triisopropylsilyl)ethynyl)acetamide (1v-SiR₃)

Starting from 2-cyclohexyl-*N*-phenylacetamide (1.086 g, 5 mmol), and by following general procedure **I-a**, compound **1v-SiR₃** (1.272 g, 64% yield) was obtained as a pale yellow oil by flash chromatography (40% DCM/PE).

¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.46 (d, *J* = 7.9 Hz, 2H), 7.38 (t, *J* = 7.7 Hz, 2H), 7.26 (t, 1 H), 2.76 (d, *J* = 7.1 Hz, 2H), 2.01 (m, 1H), 1.82 (m, 2H),1.70 (m, 2H), 1.29 (m, 4H), 1.19 (m, 2H), 1.09 (bs, 21H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm 173.7, 139.2, 128.9 (2C), 127.0, 125.0 (2C), 98.2, 71.7, 42.9, 35.0, 33.3 (2C), 26.4, 26.2 (2C), 18.8 (6C), 11.6 (3C).

HRMS (ESI) Calcd. for C₂₅H₃₉NOSiH [M+H]+: 398.2874, Found 398.2865.

2-cyclopentyl-N-phenyl-N-((triisopropylsilyl)ethynyl)acetamide (1w-SiR₃)

Starting from 2-cyclopentyl-*N*-phenylacetamide (1.016 g, 5 mmol), and by following general procedure **I-a**, compound **1w-SiR₃** (1.277 g, 66% yield) was obtained as a pale yellow oil by flash chromatography (40% DCM/PE).

¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.46 (d, *J* = 7.9 Hz, 2H), 7.38 (t, *J* = 7.4 Hz, 2H), 7.26 (t, *J* = 7.2 Hz, 1H), 2.90 (d, *J* = 7.2 Hz, 2H), 2.43 (sept, *J* = 7.7 Hz, 1H), 1.90 (m, 2H), 1.65/1.53 (m, 4 H), 1.26 (m, 2H), 1.09 (bs, 21H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm 174.0, 139.2, 128.9 (2C), 127.0, 124.9 (2C), 98.2, 71.7, 41.5, 36.5, 32.6 (2C), 25.1 (2C), 18.8 (6C), 11.6 (3C).

HRMS (ESI) Calcd. for C₂₄H₃₇NOSiNa [M+H]+: 406.2537, Found 406.2528.

3-methyl-N-phenyl-N-((triisopropylsilyl)ethynyl)pentanamide (1x-SiR₃)

Starting from 3-methyl-*N*-phenylpentanamide (0.956 g, 5 mmol), and by following general procedure **I-a**, compound **1x-SiR**₃ (1.426 g, 76% yield) was obtained as an orange oil by flash chromatography (40% DCM/PE).

¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.46 (d, J = 8.5 Hz, 2 H), 7.39 (t, J = 8.4, 7.4 Hz, 2 H), 7.26 (t, J = 7.3 Hz, 1 H), 2.80 (qd rotamere, J = 39.3, 14.8, 6.6 Hz, 2 H), 2.11 (m, 1 H), 1.48 (m, 1 H), 1.30 (m, 1 H), 1.09 (br s, 21 H), 1.03 (d, J = 6.7 Hz, 3 H), 0.94 (t, J = 7.5 Hz, 3 H). ¹³C NMR (101 MHz, CDCl₃) δ ppm 173.9, 139.2, 128.9, 127.0, 125.0, 98.2, 71.8, 42.2, 31.9, 29.6, 19.3, 18.8, 11.6, 11.4.

HRMS (ESI) Calcd. For C₂₃H₃₇NOSiH [M+H]+: 372.2717. Found 372.2718.

3-methyl-N-phenyl-N-(prop-1-yn-1-yl)butanamide (1ya)

Starting from 4-methyl-1-phenyl-1*H*-1,2,3-triazole (0.796 g, 5 mmol) and isovaleryl chloride (0.64 mL, 5.25 mmol), and by following general procedure **I-c**, compound **1ya** (0.645 g, 60% yield) was obtained as an orange solid by flash chromatography (20% EtOAc/PE). Note: HRMS could not be obtained for this compound

¹**H NMR** (400 MHz, CDCl3) δ ppm 7.52 (m, 3 H), 7.38 (m, 2 H), 2.60 (s, 3 H), 2.42 (d, J = 6.8 Hz, 2 H), 2.09 (sept, J = 6.8 Hz, 1 H), 0.84 (d, J = 6..8 Hz, 6 H). ¹³**C NMR** (101 MHz, CDCl3) δ ppm 191.7, 146.2, 137.4, 133.4, 130.1, 129.4 (2C), 125.6 (2C), 51.6, 24.7, 22.5 (2C), 12.7. **M.p.:** 78°C

3-methyl-N-(pyridin-4-yl)-N-((trimethylsilyl)ethynyl)butanamide (1yb)

Starting from 4-(4-(trimethylsilyl)-1*H*-1,2,3-triazol-1-yl)pyridine (1.092 g, 5 mmol), and by following general procedure **I-c**, compound **1yb** (0.960 g, 70% yield) was obtained as an orange oil by flash chromatography (30% EtOAc/PE).

¹H NMR (400 MHz, CDCl₃) δ ppm 8.59 (d, J = 6.2 Hz, 2 H), 7.56 (d, J = 6.2 Hz, 2 H), 2.74 (d, J = 7.0 Hz, 2 H), 2.29 (m, 1 H), 1.04 (d, J = 6.3 Hz, 2 H), 0.25 (s, 9 H). ¹³C NMR (101 MHz, CDCl₃) δ ppm 173.38, 150.66 (2C), 146.12, 117.56 (2C), 94.30, 78.39, 44.73, 25.75, 22.58 (2C), 0.01 (3C). HRMS (ESI) Calcd. for C₁₅H₂₂N₂OSiH [M+H]+: 275.1574. Found 275.1575.

N-isopentyl-N-((triisopropylsilyl)ethynyl)benzamide (1z-SiR₃)

Starting from *N*-isopentylbenzamide (0.956 g, 5 mmol), and by following general procedure **I-a**, compound **1z-SiR₃** (1.022 g, 55% yield) was obtained as a yellow oil by flash chromatography (40% DCM/PE).

¹H NMR (400 MHz, CDCl₃) δ ppm 7.76 (d, *J* = 7.5 Hz, 2H), 7.42 (t, *J* = 7.4 Hz, 2H), 7.36 (t, *J* = 7.6 Hz, 2H), 3.74 (t, *J* = 7.3 Hz, 2H), 1.71 (m, 3H), 0.98 (d, *J* = 6.3 Hz, 6H), 0.94 (br s, 21H).
¹³C NMR (101 MHz, CDCl₃) δ ppm 171.2, 134.3, 131.1, 128.6 (2C), 127.9 (2C), 99.1, 71.3, 47.5, 36.3, 25.8, 22.6, 18.6 (6C), 11.4 (3C).
HRMS (ESI) calcd. for C₂₃H₃₇NOSiH [M+H]+: 372.2717. Found 372.2719.

2-cyclopropyl-N-phenyl-N-((triisopropylsilyl)ethynyl)acetamide (Y1-SiR₃)

Starting from 2-cyclopropyl-*N*-phenylacetamide (0.876 g, 5 mmol), and by following general procedure **I-a**, compound **Y1-SiR**₃ (0.347 g, 20% yield) was obtained as a yellow oil by flash chromatography (40% DCM/PE).

¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.48 (d, *J* = 7.5 Hz, 2H), 7.39 (t, *J* = 7.8 Hz, 2H), 7.25 (t, *J* = 6.9 Hz, 1H), 2.80 (d, *J* = 6.8 Hz, 2H), 1.27 (m, 1H), 1.06 (s, 21H), 0.60 (q, *J* = 7.3 Hz, 2H), 0.26 (q, *J* = 5.2 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ ppm 173.91, 139.11, 128.94, 127.05, 124.89, 98.07, 77.16, 71.86, 40.56, 18.80, 11.58, 7.10, 4.49.
 HRMS (ESI) Calcd. For C₂₂H₃₃NOSiH [M+H]+: 356.2404, found 356.2415.

tert-butyl 3-(phenyl((trimethylsilyl)ethynyl)carbamoyl)azetidine-1-carboxylate (Y2-SiR₃)

Starting from *tert*-butyl 3-(phenylcarbamoyl)azetidine-1-carboxylate (1.658 g, 6 mmol), and by following general procedure **I-b**, compound **Y2-SiR**₃ (1.340 g, 60% yield) was obtained as a light brown oil by flash chromatography (20% EtOAct/PE).

¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.41 (m, 4H), 7.30 (m, 1H), 4.25 (t, *J* = 8.7 Hz, 2H), 4.14 (t, *J* = 8.2 Hz, 2H), 3.99 (m, 1H), 1.45 (s, 10H), 0.21 (s, 9H).

 $^{13}\textbf{C}$ NMR (101 MHz, CDCl_3) δ ppm 172.7, 156.2, 138.4, 129.3, 127.6, 124.8, 95.1, 79.9, 75.8, 51.4, 33.6, 28.5, 0.1.

HRMS (ESI) Calcd. For C₂₀H₂₈N₂O₃SiH [M+H]+: 373.1942. Found 373.1947.

isopropyl phenyl((triisopropylsilyl)ethynyl)carbamate (Y3-SiR₃)

Starting from isopropyl phenylcarbamate (0.896 g, 5 mmol), and by following general procedure **I-a**, compound **Y3-SiR₃** (1.699 g, 94% yield) was obtained as an orange oil by flash chromatography (40% DCM/PE).

¹H NMR (400 MHz, CDCl₃) δ ppm 7.55 (d, J = 8.4 Hz, 2H), 7.37 (t, J = 8.6 Hz, 2H), 7.23 (t, J = 7.6 Hz, 1H), 5.05 (h, J = 6.3 Hz, 1H), 1.35 (d, J = 6.3 Hz, 6H), 1.11 (s, 21H). ¹³C NMR (101 MHz, CDCl₃) δ ppm 154.2, 139.5, 128.8 (2C), 126.4, 124.0 (2C), 96.6, 77.1, 71.73, 69.0, 22.1 (2C), 18.8 (6C), 11.6 (3C). HRMS (ESI) calcd. for C₂₁H₃₃NO₂SiH [M+H]+: 360.2353. Found 360.2353. 2-(2,3-dihydro-1*H*-inden-2-yl)-*N*-phenyl-*N*-((triisopropylsilyl)ethynyl)acetamide (Y4-SiR₃)

Starting from 2-(2,3-dihydro-1*H*-inden-2-yl)-*N*-phenylacetamide (1.256 g, 5 mmol), and by following general procedure **I-a**, compound **Y4-SiR**₃ (1.159 g, 54% yield) was obtained as a pale brown oil by flash chromatography (40% DCM/PE).

¹**H NMR** (400 MHz, CDCl3) δ ppm 7.50 (d, J = 8.5 Hz, 2H), 7.41 (t, J = 8.3 Hz, 2H), 7.29 (t, J = 7.3 Hz, 1H), 7.22 (dd, J = 5.3, 3.3 Hz, 2H), 7.18 – 7.12 (m, 2H), 3.24 (dd, J = 15.6, 7.0 Hz, 2H), 3.14 – 3.02 (m, 3H), 2.74 (dd, J = 15.4, 6.4 Hz, 2H), 1.07 (brs, 21H).

¹³**C NMR** (101 MHz, CDCl3) δ ppm 173.5, 142.8, 139.0, 128.9, 127.1, 126.4, 124.8, 124.6, 97.9, 72.2, 41.1, 39.2, 36.0, 18.8, 11.5.

HRMS (ESI) calcd. for C₂₈H₃₇NOSiH [M+H]+: 432.2717. Found 432.2717.

tert-butyl 3-(2-oxo-2-(phenyl((trimethylsilyl)ethynyl)amino)ethyl)azetidine-1-carboxylate (Y5-SiR₃)

Starting from *tert*-butyl 3-(2-oxo-2-(phenylamino)ethyl)azetidine-1-carboxylate (0.580 g, 2 mmol), and by following general procedure **I-b**, compound **Y5-SiR**₃ (0.377 g, 48% yield) was obtained as a brown oil by flash chromatography (20% EtOAc/PE).

¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.40 (m, 4H), 7.29 (m, 1H), 4.14 (t, *J* = 8.5 Hz, 2H), 3.66 (dd, *J* = 8.9, 5.4 Hz, 2H), 3.14 (d, *J* = 7.7 Hz, 2H), 2.98 (ddt, *J* = 10.9, 8.0, 4.0 Hz, 1H), 1.44 (s, 9H), 0.21 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm 172.3, 156.4, 138.4, 129.1 (2C), 127.5, 125.1 (2C), 96.0, 79.5, 76.1, 39.5, 28.5, 25.2, 0.1.

HRMS (ESI) calcd. for C₂₁H₃₀N₂O₃SiH [M+H]+: 387.2098. Found 387.2101.

7. Synthesis of Ynamides

7.1 General procedure II

To a solution of the protected ynamide (1 equiv.) in tetrahydrofuran (0.2 M) under argon at 0°C was added tetrabutylammonium fluoride (1M in THF, 1.3 equiv.) dropwise. The reaction mixture was stirred at 0°C for 1 h. After completion of the reaction, a saturated solution of NH₄Cl was added, the aqueous phase was extracted three times with EtOAc. After washing with a saturated solution of NaCl, the organic phases were dried over MgSO₄ and concentrated. The crude was purified by column chromatography. The obtained ynamides were stored in the freezer.

7.2 Characterization data of ynamides

N-benzyl-N-ethynyl-3-methylbutanamide (1a)

Starting from the corresponding ynamide $1a-SiR_3$ (0.584 g, 1.57 mmol), and by following the general procedure II, compound 1a (0.181 g, 54% yield) was obtained as a yellow-white solid by flash chromatography (10% EtOAc/PE).

¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.36 – 7.30 (m, 5H), 4.69 (s, 2H), 2.98 (s, 1H), 2.57 (d, *J* = 7.0 Hz, 2H), 2.21 (dq, *J* = 13.5, 6.8 Hz, 1H), 0.97 (d, *J* = 6.7 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm 174.1, 136.2, 128.6 (3C), 128.0 (2C), 78.1, 62.2, 51.2, 43.1, 25.7, 22.6.

HRMS (ESI) Calcd. for C₁₄H₁₇NOH [M+H]+: 216.1383, Found 216.1378. **M.p.:** 36°C

N-ethynyl-N-(4-fluorobenzyl)-3-methylbutanamide (1b)

Starting from the corresponding ynamide **1b-SiR**₃ (0.975 g, 2.5 mmol), and by following the general procedure **II**, compound **1b** (0.497 g, 85% yield) was obtained as a yellow yellow by flash chromatography (10% EtOAc/PE).

¹H NMR (400 MHz, CDCl3) δ ppm 7.32 (dd, J = 8.5, 5.5 Hz, 2H), 7.01 (t, J = 8.5 Hz, 2H), 4.64 (s, 2H), 2.99 (s, 1H), 2.55 (d, J = 7.0 Hz, 2H), 2.19 (non, J = 6.7 Hz, 1H), 0.96 (d, J = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl3) δ ppm 174.1, 163.9, 161.4, 132.1 (d, J = 3.4 Hz), 130.5 (d, J = 8.3 Hz, 2C), 115.5 (d, J = 21.5 Hz, 2C), 77.9, 62.3, 50.5, 43.1, 25.7, 22.5 (2C). ¹⁹F NMR (376 MHz, CDCl3) δ ppm -114.26. HRMS (ESI) calcd. for C₁₄H₁₆FNOH [M+H]+: 234.1289. Found 234.129.

N-ethynyl-*N*-(4-methoxybenzyl)-3-methylbutanamide (1c)

Starting from the corresponding ynamide $1c-SiR_3$ (0.767 g, 1.9 mmol), and by following the general procedure II, compound 1c (0.273 g, 58% yield) was obtained as a yellow oil by flash chromatography (10% EtOAc/PE).

¹H NMR (400 MHz, CDCl3) δ ppm 7.28 (d, J = 8.8 Hz, 2H), 6.86 (d, J = 6.9 Hz, 2H), 4.61 (s, 2H), 3.79 (s, 3H), 2.97 (s, 1H), 2.54 (d, J = 7.0 Hz, 2H), 2.20 (m, 1H), 0.96 (d, J = 6.7 Hz, 6H).
¹³C NMR (101 MHz, CDCl3) δ ppm 174.1, 159.5, 130.2 (2C), 128.4, 114.0 (2C), 78.1, 62.2, 55.3, 50.7, 43.1, 25.7, 22.5 (2C).

HRMS (ESI) calcd. for C₁₅H₁₉NO₂H [M+H]+: 246.1489. Found 246.1489.

N-benzyl-2-cyclobutyl-N-ethynylacetamide (1d)

Starting from the corresponding ynamide $1d-SiR_3$ (0.713 g, 1.85 mmol), and by following the general procedure II, compound 1d (0.368 g, 89% yield) was obtained as a yellow oil by flash chromatography (10% EtOAc/PE).

¹H NMR (400 MHz, CDCl₃) δ ppm 7.32 (m, 5H), 4.66 (s, 2H), 2.97 (s, 1H), 2.80 (m, 3H), 2.15 (m, 2H), 1.88 (m, 2H), 1.74 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ ppm δ 173.83, 136.22, 128.65 (3C), 128.05 (2C), 78.10, 62.15, 51.13, 41.12, 32.26, 28.41, 18.85. HRMS (ESI) Calcd. for C₁₅H₁₇NOH [M+H]+: 228.1383. Found 228.1376.

N-benzyl-3-(1,3-dioxoisoindolin-2-yl)-N-ethynylpropanamide (1e)

Compound was received from Servier as white solid.

¹**H** NMR (400 MHz, CDCl₃) δ ppm 7.84 (m, 2 H), 7.71 (m, 2H), 7.33 (br m, 4H), 7.26 (m, 1H), 4.66 (s, 2 H), 4.06 (t, J = 7.4 Hz, 2 H), 3.11 (t, J = 7.4 Hz, 2 H), 2.93 (s, 1 H). ¹³C NMR (400 MHz, CDCl₃) δ ppm 171.82, 168.13, 135.67, 134.10, 132.20, 128.79, 128.67, 128.17, 123.43, 62.90, 51.23, 33.79, 33.10. HRMS (ESI) Calcd. for C₂₀H₁₆N₂O₃Na [M+Na]⁺: 355.1053, Found 355.1044. M.p.: 138°C

(1R,3S,5r,7r)-N-benzyl-N-ethynyladamantane-2-carboxamide (1f)

Starting from the corresponding ynamide $1f-SiR_3$ (0.706 g, 1.57 mmol), and by following the general procedure II, compound 1f (0.281 g, 61% yield) was obtained as a transparent oil by flash chromatography (10% EtOAc/PE).

¹**H NMR** (400 MHz, CDCl3) δ ppm 7.34-7.28 (m, 5H), 4.68 (s, 2H), 3.31 (br s, 1H), 3.00 (s, 1H), 2.26 (m, 4H), 1.92-1.74 (m, 8H), 1.61 (d, *J* = 12.4 Hz, 2H).

¹³**C NMR** (101 MHz, CDCl3) δ ppm 176.8, 136.6, 128.6 (2C), 128.4 (2C), 127.9, 78.3, 61.9, 51.3, 48.0, 38.6 (2C), 37.6, 32.7 (2C), 30.0 (2C), 27.9, 27.4.

HRMS (ESI) calcd. for C₂₀H₂₃NOH [M+H]+: 294.1852. Found 294.1853.

N-ethynyl-3-methyl-N-phenylbutanamide (1g)

Starting from the corresponding ynamide $1g-SiR_3$ (0.502 g, 1.4 mmol), and by following the general procedure II, compound 1g (0.161 g, 57% yield) was obtained as a yellow solid by flash chromatography (10% EtOAc/PE).

¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.42 (m, 2 H), 7.41 (m, 2 H), 7.31 (dt, J = 8.8, 4.3 Hz, 1 H), 3.06 (s, 1 H), 2.68 (br d, J = 7.0 Hz, 2 H), 2.28 (dq, J = 13.5, 6.6 Hz, 1H), 1.04 (m, 6 H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm 173.8, 138.9, 129.2 (2C), 127.6, 125.6 (2C), 77.5, 61.2, 43.5, 25.8, 22.6, 22.5.

HRMS (ESI) Calcd. for C₁₃H₁₅NOH [M+H]+: 202.1226, Found 202.1222. **M.p.:** 55°C

N-ethynyl-N-(4-methoxyphenyl)-3-methylbutanamide (1h)

Starting from the corresponding ynamide **1h-SiR**₃ (0.530 g, 1.367 mmol), and by following the general procedure **II**, compound **1h** (0.137 g, 44% yield) was obtained as a yellow solid by flash chromatography (10% EtOAc/PE).

¹H NMR (400 MHz, CDCl₃) δ ppm 7.29 (d, J = 8.2 Hz, 2 H), 6.92 (d, J = 8.4 Hz, 2 H), 3.81 (s, 3 H), 3.03 (s, 1 H), 2.64 (bs, 2 H), 2.26 (dq, J = 13.6, 6.7 Hz, 1H), 1.02 (d, J = 6.3 Hz, 6 H). ¹³C NMR (101 MHz, CDCl₃) δ ppm 174.1, 158.9, 131.8, 127.0 (2C), 114.5 (2C), 78.2, 60.8, 55.6, 43.3, 25.8, 22.4 (2C). HRMS (ESI) Calcd. for C₁₄H₁₇NO₂H [M+H]+: 232.1332, Found 232.1333. M.p.: 49-50°C

N-(4-chlorophenyl)-N-ethynyl-3-methylbutanamide (1i)

Starting from the corresponding ynamide **1i-SiR**₃ (0.551 g, 1.405 mmol), and by following the general procedure **II**, compound **1i** (90 mg, 27% yield) was obtained as a yellow oil by flash chromatography (10% EtOAc/PE).

¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.37 (m, 4 H), 3.09 (s, 3 H), 2.69 (d, *J* = 6.9 Hz, 2 H), 2.26 (dq, *J* = 13.5, 6.7 Hz, 1H), 1.03 (d, *J* = 6.7 Hz, 6 H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm 173.67, 137.38, 133.08, 129.27 (2C), 126.68 (2C), 61.77, 43.55, 25.74, 22.62 (2C).

HRMS (ESI) Calcd. for C₁₃H₁₄CINOH [M+H]+: 236.0837, Found 236.0837.

N-ethynyl-N-(4-fluorophenyl)-3-methylbutanamide (1j)

Starting from the corresponding ynamide 1j-SiR₃ (0.492 g, 1.30 mmol), and by following the general procedure II, compound 1j (58 mg, 19% yield) was obtained as a yellow solid by flash chromatography (10% EtOAc/PE).

¹H NMR (400 MHz, CDCl₃) δ ppm 7.38 (m, 2 H), 7.09 (t, J = 8.5 Hz, 2 H), 3.07 (s, 3 H), 2.68 (d, J = 6.9 Hz, 2 H), 2.27 (sept, J = 6.7 Hz, 1 H), 1.03 (d, J = 6.8 Hz, 6 H). ¹³C NMR (101 MHz, CDCl₃) δ ppm173.8, 162.8 (d, J = 247.5 Hz), 134.8 (d, J = 3.2 Hz), 127.4 (d, J = 7.3 Hz), 116.0 (d, J = 22.7 Hz), 77.7, 61.4, 43.4, 25.7, 22.6. ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -114.11. HRMS (ESI) Calcd. for C₁₃H₁₄FNOH [M+H]+: 220.1132, Found 220.1133. M.p.: 68°C N-(benzo[d][1,3]dioxol-5-yl)-N-ethynyl-3-methylbutanamide (1k)

Starting from the corresponding ynamide **1k-SiR**₃ (0.665 g, 1.65 mmol), and by following the general procedure **II**, compound **1k** (0.178 g, 44% yield) was obtained as a brown solid by flash chromatography (10% EtOAc/PE).

¹**H NMR** (400 MHz, CDCl3) δ ppm 6.87 – 6.80 (m, 3H), 6.00 (s, 2H), 3.04 (s, 1H), 2.63 (m, 2H), 2.26 (m, 1H), 1.02 (d, J = 6.7 Hz, 7H). ¹³**C NMR** (101 MHz, CDCl3) δ ppm 174.0, 148.1, 147.2, 132.8, 119.4, 108.3, 107.4, 101.9, 78.0, 61.0, 43.3, 25.8, 22.6, 22.5. **HRMS (ESI)** calcd. for C₁₄H₁₅NO₃H [M+H]+: 246.1125. Found 246.1126. **M.p.:** 43°C

N-ethynyl-3-methyl-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)butanamide (1)

Starting from the corresponding ynamide **1I-SiR**₃ (0.720 g, 1.8 mmol), and by following the general procedure **II**, compound **1I** (0.344 g, 58% yield) was obtained as a yellow solid by flash chromatography (10% EtOAc/PE).

¹**H NMR** (400 MHz, CDCl3) δ ppm 7.86 (d, J = 8.5 Hz, 2H), 7.46 (d, J = 8.5 Hz, 2H), 3.09 (s, 1H), 2.70 (d, J = 7.0 Hz, 2H), 2.30 (m, 1H), 1.37 (s, 12H), 1.05 (d, J = 6.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl3) δ ppm 173.6, 141.4, 135.7 (2C), 124.5 (2C), 84.1, 77.6, 61.6, 43.6, 25.7, 25.01, 25.0, 22.6 (4C), 22.5 (2C). HRMS (ESI) calcd. for C₁₉H₂₆BNO₃H [M+H]+: 328.2079. Found 328.2073. M.p.: 80°C

N-ethynyl-3-methyl-N-(naphthalen-2-yl)butanamide (1m)

Starting from the corresponding ynamide $1m-SiR_3$ (0.746 g, 1.83 mmol), and by following the general procedure II, compound 1m (0.280 g, 60% yield) was obtained as a yellow oil by flash chromatography (10% EtOAc/PE).

¹**H NMR** (400 MHz, CDCl3) δ ppm 7.94 – 7.81 (m, 4H), 7.56 – 7.47 (m, 3H), 3.12 (s, 1H), 2.74 (d, *J* = 7.0 Hz, 2H), 2.33 (dt, *J* = 13.6, 6.8 Hz, 1H), 1.07 (d, *J* = 6.7 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl3) δ ppm 174.0, 136.4, 133.5, 132.4, 129.0, 128.1, 127.8, 126.7, 126.6, 123.9, 123.8, 77.9, 61.4, 43.5, 25.8, 22.6 (2C).

HRMS (ESI) calcd. for C₁₇H₁₇NOH [M+H]+: 252.1383. Found 252.1383.

N-ethynyl-3-methyl-*N*-(thiophen-3-yl)butanamide (1n)

Starting from the corresponding ynamide **1n-SiR**₃ (2.680 g, 7.37 mmol), and by following the general procedure **II**, compound **1n** (0.928 g, 61% yield) was obtained as an orange oil by flash chromatography (20% EtOAc/PE).

¹**H NMR** (500 MHz, CDCl3) δ ppm 7.5 (dd, J = 3.2, 1.5 Hz, 1H), 7.31 (dd, J = 5.2, 1.5 Hz, 1H), 7.27 (dd, J = 5.3, 3.2 Hz, 1H), 3.20 (s, 1 H), 2.70 (br d, J = 6.6 Hz, 2 H), 2.27 (sept, J = 6.8 Hz, 1 H), 1.03 (d, J = 6.7 Hz, 6 H).

¹³**C NMR** (125 MHz, CDCl3) δ ppm 173.1, 136.5, 124.6 (2C), 123.4 (2C), 115.3, 77.6, 62.6, 43.8, 25.7, 22.6 (2C).

HRMS (ESI) calcd. for C₁₁H₁₄NOS [M+H]+: 208.0791, found 208.0791.

N-ethynyl-3,5,5-trimethyl-N-phenylhexanamide (10)

Starting from the corresponding ynamide **1o-SiR**₃ (0.618 g, 1.49 mmol), and by following the general procedure **II**, compound **1o** (0.201 g, 52% yield) was obtained as a yellow oil by flash chromatography (10% EtOAc/PE).

¹H NMR (400 MHz, CDCl3) δ ppm 7.41 (m, 4H), 7.30 (m, 1H), 3.07 (s, 1H), 2.71 (qd, J = 45.3, 8.0, 6.0 Hz, 2H), 2.25 (m, 2H), 1.27 (qd, J = 50.6, 6.6, 4.1 Hz, 2H), 1.06 (d, J = 6.6 Hz, 3H), 0.93 (s, 9H). ¹³C NMR (101 MHz, CDCl3) δ ppm 173.87, 138.97, 129.22 (2C), 127.62, 125.58 (2C), 78.03, 61.21, 50.90, 44.24, 31.30, 30.17, 30.08, 27.07, 22.85.

HRMS (ESI) calcd. for C₁₇H₂₃NOH [M+Na]⁺: 258.1852. Found 258.1855.

3-(tert-butoxy)-N-ethynyl-N-phenylpropanamide (1p)

Starting from the corresponding ynamide **1p-SiR**₃ (0.486 g, 1.21 mmol), and by following the general procedure **II**, compound **1p** (0.230 g, 77% yield) was obtained as a yellow oil by flash chromatography (10% EtOAc/PE).

¹**H NMR** (400 MHz, CDCl3) δ ppm 7.41 (m, 4 H), 7.30 (m, 1 H), 3.74 (t, *J* = 6.8 Hz, 2 H), 3.05 (s, 1 H), 3.01 (br s, 2 H), 1.22 (s, 9 H).

¹³**C NMR** (101 MHz, CDCl3) δ ppm 172.6, 138.8, 129.2 (2C), 127.7, 125.6 (2C), 77.5, 73.4, 61.4, 57.4, 36.2, 27.6 (3C).

HRMS (ESI) calcd. for C₁₅H₁₉NO₂H [M+H]+: 246.1489. Found 246.1490.
3-(1,3-dioxoisoindolin-2-yl)-N-ethynyl-N-phenylpropanamide (1q)

Starting from the corresponding ynamide **1q-SiR**₃ (0.514 g, 1.31 mmol), and by following the general procedure **II**, compound **1q** (0.261 g, 63% yield) was obtained as a yellow solid by flash chromatography (10% EtOAc/PE).

¹**H NMR** (400 MHz, CDCl3) δ ppm 7.85 (dd, J = 5.2, 3.2 Hz, 2H), 7.71 (dd, J = 5.5, 2.9 Hz, 2H), 7.40 (m, 4H), 7.30 (m, 1H), 4.11 (t, J = 7.2 Hz, 2H), 3.23 (br t, J = 6.8 Hz, 2H), 3.02 (s, 1H).

¹³**C NMR** (101 MHz, CDCl3) δ ppm 171.56, 168.20, 138.37, 134.16, 132.23, 129.29, 127.86, 125.48, 123.48, 77.36, 61.75, 33.85, 33.68.

HRMS (ESI) calcd. for $C_{19}H_{14}N_2O_3H$ [M+H]+: 319.1077. Found 319.1079. **M.p.:** 143°C

(1R,3S,5r,7r)-N-ethynyl-N-phenyladamantane-2-carboxamide (1r)

Starting from the corresponding ynamide $1r-SiR_3$ (0.936 g, 2.12 mmol), and by following the general procedure II, compound 1r (0.451 g, 76% yield) was obtained as a white solid by flash chromatography (10% EtOAc/PE).

¹H NMR (400 MHz, CDCl₃) δ ppm 7.39 (m, 4 H), 7.28 (m, 1 H), 3.48 (br s, 1 H), 3.08 (s, 1 H), 2.39 (br s, 2 H), 2.28 (d, J = 12.9 Hz, 2 H), 1.96-1.82 (m, 6 H), 1.77 (br s, 2 H), 1.65 (d, J = 12.9 Hz, 2 H). ¹³C NMR (101 MHz, CDCl₃) δ ppm 176.7, 139.3, 129.1 (2C), 127.4, 125.7 (2C), 78.1, 60.9, 48.3, 38.7, 37.6, 32.7, 30.1, 27.9, 27.4.

HRMS (ESI) Calcd. for C₁₉H₂₁NOH [M+H]+: 280.1696. Found 280.1697. **M.p.:** 110°C (3as,6as)-N-ethynyl-N-phenylhexahydro-2,5-methanopentalene-3a(1H)-carboxamide (1s)

Starting from the corresponding ynamide **1s-SiR**₃ (0.510 g, 1.2 mmol), and by following the general procedure **II**, compound **1s** (0.302 g, 94% yield) was obtained as a white solid by flash chromatography (10% EtOAc/PE).

¹**H** NMR (400 MHz, CDCl3) δ ppm 7.45 – 7.33 (m, 4H), 7.35 – 7.27 (m, 1H), 3.14 (t, J = 6.9 Hz, 1H), 3.05 (s, 1H), 2.37 (dd, J = 7.8, 2.1 Hz, 4H), 2.04 (dp, J = 8.0, 2.3 Hz, 4H), 1.72 – 1.52 (m, 4H). ¹³C NMR (101 MHz, CDCl3) δ ppm 177.9, 140.9, 129.1, 127.6, 126.2, 78.7, 61.8, 56.7, 47.1, 43.7, 42.8, 37.7, 35.2. HRMS (ESI) calcd. for C₁₈H₁₉NOH [M+H]+: 266.1539. Found 266.154. M.p.: 135°C

2-cyclobutyl-N-ethynyl-N-phenylacetamide (1t)

Starting from the corresponding ynamide $1t-SiR_3$ (0.700 g, 1.89 mmol), and by following the general procedure II, compound 1t (0.200 g, 49% yield) was obtained as a pale yellow oil by flash chromatography (10% EtOAc/PE).

¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.40 (m, 4 H), 7.30 (m, 1 H), 3.06 (s, 1 H), 2.91 (br d, *J* = 7.5 Hz, 2 H), 2.83 (sept, *J* = 7.7 Hz, 1 H), 2.19 (m, 2 H), 1.97/1.75 (m, 4 H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm 173.5, 138.8, 129.2 (2C), 127.6, 125.5 (2C), 77.9, 61.2, 41.6, 32.2, 28.5 (2C), 18.9.

HRMS (ESI) Calcd. for C₁₄H₁₅NOH [M+H]+: 214.1226, Found 214.1222.

N-ethynyl-N-phenylcyclobutanecarboxamide (1u)

Starting from the corresponding ynamide 1u-SiR₃ (0.747 g, 2.1 mmol), and by following the general procedure II, compound 1u (0.273 g, 65% yield) was obtained as a pale yellow solid by flash chromatography (10% EtOAc/PE).

¹**H NMR** (400 MHz, CDCl3) δ ppm 7.41 (m, 4 H), 7.30 (m, 1 H), 3.82 (br s, 1 H), 3.01 (s, 1 H), 2.48-2.38 (m, 2 H), 2.27 (br s, 2 H), 2.05-1.90 (m, 2 H).

¹³**C NMR** (101 MHz, CDCl3) δ ppm 176.1, 138.9, 129.1 (2C), 127.5, 125.3 (2C), 77.3, 60.5, 38.7, 25.2 (2C), 18.1.

HRMS (ESI) calcd. for C₁₃H₁₃NOH [M+H]+:200.1070. Found 200.1071. **M.p.:** 49°C

2-cyclohexyl-N-ethynyl-N-phenylacetamide (1v)

Starting from the corresponding ynamide $1v-SiR_3$ (0.725 g, 1.825 mmol), and by following the general procedure II, compound 1v (0.140 g, 32% yield) was obtained as a yellow solid by flash chromatography (10% EtOAc/PE).

¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.40 (d, *J* = 4.6 Hz, 4 H), 7.30 (m, *J* = 4.5 Hz, 1 H), 3.06 (s, 1 H), 2.67 (d, *J* = 6.6 Hz, 2 H), 1.96 (m, 1 H), 1.86/1.62 (m, 5 H), 1.29 (q, *J* = 12.8 Hz, 2 H), 1.18 (br t, *J* = 12.3 Hz, 1 H), 1.05 (q, *J* = 12.3 Hz, 2 H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm 173.8, 138.9, 129.2 (2C), 127.6, 125.6 (2C), 77.9, 61.2, 42.2, 35.1, 33.2 (2C), 26.3, 26.23 (2C).

HRMS (ESI) Calcd. for C₁₆H₁₉NOH [M+H]+: 242.1539, Found 242.1539. **M.p.:** 68-70°C

2-cyclopentyl-N-ethynyl-N-phenylacetamide (1w)

Starting from the corresponding ynamide **1w-SiR**₃ (0.948 g, 2.471 mmol), and by following the general procedure **II**, compound **1w** (90 mg, 16% yield) was obtained as a yellow oil by flash chromatography (10% EtOAc/PE).

¹H NMR (400 MHz, CDCl₃) δ ppm 7.41 (m, 2 H), 7.40 (m, 2 H), 7.30 (m, 1 H), 3.06 (s, 1 H), 2.82 (br d, J = 7.3 Hz, 2 H), 2.39 (sept, J = 7.6 Hz, 1 H), 1.91 (m, 2 H), 1.61 (m, 4 H), 1.25 (m, 2 H). ¹³C NMR (101MHz, CDCl₃) δ ppm 174.1, 138.9, 129.2 (2C), 127.6, 125.5 (2C), 77.9, 61.2, 40.8, 36.5, 32.6 (2C), 25.2 (2C).

HRMS (ESI) Calcd. for C₁₅H₁₇NOH [M+H]+: 228.1383, Found 228.1376.

N-ethynyl-3-methyl-N-phenylpentanamide (1x)

Starting from the corresponding ynamide 1x-SiR₃ (0.824 g, 2.21 mmol), and by following the general procedure II, compound 1x (0.224 g, 47% yield) was obtained as a yellow oil by flash chromatography (10% EtOAc/PE).

¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.46 – 7.37 (m, 4H), 7.30 (m, 1H), 3.06 (s, 1H), 2.70 (ddd, J = 80.2, 15.3, 6.9 Hz, 2H), 2.07 (d, J = 6.7 Hz, 1H), 1.52 – 1.24 (m, 3H), 1.01 (d, J = 6.7 Hz, 3H), 0.93 (t, J = 7.4 Hz, 3H).

¹³**C NMR** (101MHz, CDCl₃) δ ppm 174.0, 138.9, 129.2, 127.6, 125.6, 77.9, 61.2, 41.6, 32.0, 29.6, 19.4, 17.8, (12.4, 11.5, silanol).

HRMS (ESI) Calcd. for C₁₄H₁₇NOH [M+H]+: 216.1383. Found 216.1376.

N-ethynyl-*N*-isopentylbenzamide (1z)

Starting from the corresponding ynamide 1z-SiR₃ (0.702 g, 1.89 mmol), and by following the general procedure II, compound 1z (0.311 g, 74% yield) was obtained as a yellow oil by flash chromatography (10% EtOAc/PE).

¹H NMR (400 MHz, CDCl3) δ ppm 7.76 (d, J = 7.9 Hz, 2H), 7.47 (tt, J = 7.3, 1.3 Hz, 1H), 7.40 (t, J = 7.7 Hz, 2H), 3.73 (dd, J = 8.1, 5.2 Hz, 2H), 2.77 (s, 1H), 1.77 – 1.62 (m, 3H), 0.98 (d, J = 6.3 Hz, 6H). ¹³C NMR (101 MHz, CDCl3) δ ppm 171.1, 133.9, 131.4, 128.7 (2C), 127.9 (2C), 78.8, 61.0, 47.6, 36.2, 25.8, 22.6 (2C).

HRMS (ESI) calcd. for C₁₄H₁₇NOH [M+H]+: 216.1383. Found 216.1382.

2-cyclopropyl-N-ethynyl-N-phenylacetamide (Y1)

Starting from the corresponding ynamide **Y1-SiR**₃ (0.347 g, 0.97 mmol), and by following the general procedure **II**, compound **Y1** (0.108 mg, 55% yield) was obtained as a yellow solid by flash chromatography (10% EtOAc/PE).

¹**H** NMR (400 MHz, CDCl₃) δ ppm 7.42 (m, 4 H), 7.30 (t, J = 7.1 Hz, 1 H), 3.05 (s, 1 H), 2.72 (d, J = 7.0 Hz, 2 H), 1.20 (m, 1 H), 0.61 (dt, J = 8.1, 5.7 Hz, 2 H), 0.25 (q, J = 5.3 Hz, 2 H). ¹³C NMR (101 MHz, CDCl₃) δ ppm 174.0, 138.8, 129.2 (2C), 127.6, 125.4 (2C), 77.8, 61.2, 40.0, 17.8, 6.9, 4.5. HRMS (ESI) Calcd. for C₁₃H₁₃NOH [M+H]+: 200.1070, Found 200.1065. M.p.: 81°C

tert-butyl 3-(ethynyl(phenyl)carbamoyl)azetidine-1-carboxylate (Y2)

Starting from the corresponding ynamide **Y2-SiR**₃ (0.755 g, 2.02 mmol), and by following the general procedure **II**, compound **Y2** (85 mg, 14% yield) was obtained as a yellow oil by flash chromatography (50% EtOAc/PE).

¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.43 (m, 4H), 7.33 (m, *J* = 4.4 Hz, 1H), 4.30 – 4.22 (m, 2H), 4.13 (t, *J* = 7.2 Hz, 2H), 3.99 (br s, 1H), 3.07 (s, 1H), 1.45 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm 72.9, 156.2, 138.2, 129.3, 127.9, 125.0, 80.0, 77.3, 76.4, 61.6, 51.4, 33.4, 28.5, 28.5.

HRMS (ESI) Calcd. for C₁₇H₂₀N₂O₃H [M+H]+: 301.1547. Found 301.1552.

isopropyl ethynyl(phenyl)carbamate (Y3)

Starting from the corresponding ynamide **Y3-SiR**₃ (0.950 g, 2.64 mmol), and by following the general procedure **II**, compound **Y3** (0.528 g, 98% yield) was obtained as an off yellow solid by flash chromatography (10% EtOAc/PE).

¹H NMR (400 MHz, CDCl3) δ ppm 7.47 (d, J = 8.5 Hz, 2H), 7.38 (t, J = 8.4 Hz, 2H), 7.27 (t, J = 7.3 Hz, 1H), 5.06 (hept, J = 6.3 Hz, 1H), 2.89 (s, 1H), 1.34 (d, J = 6.3 Hz, 6H). ¹³C NMR (101 MHz, CDCl3) δ ppm 154.1, 139.2, 129.0 (2C), 127.1, 124.8 (2C), 76.6, 72.1, 58.5, 21.9 (2C). HRMS (ESI) calcd. for C₁₂H₁₃NO₂NH₄ [M+NH₄]+: 221.1285. Found 221.1286. M.p.: 92°C 2-(2,3-dihydro-1H-inden-2-yl)-N-ethynyl-N-phenylacetamide (Y4)

Starting from the corresponding ynamide **Y4-SiR**₃ (0.691 g, 1.6 mmol), and by following the general procedure **II**, compound **Y4** (0.351 g, 80% yield) was obtained as a white solid by flash chromatography (10% EtOAc/PE).

¹**H NMR** (400 MHz, CDCl3) δ ppm 7.48 – 7.40 (m, 4H), 7.34 – 7.29 (m, 1H), 7.22 (dd, J = 5.4, 3.4 Hz, 2H), 7.16 (m, 2H), 3.23 (dd, J = 15.6, 7.3 Hz, 2H), 3.07 (s, 1 H), 3.02 (m, 3H), 2.75 (m, J = 15.8, 6.8 Hz, 2H). ¹³**C NMR** (101 MHz, CDCl3) δ ppm 173.6, 142.8 (2C), 138.8, 129.2 (2C), 127.7, 126.4 (2C), 125.5 (2C), 124.6 (2C), 77.7 (2C), 77.1, 61.6, 40.5, 39.1 (2C), 36.0. **HRMS (ESI)** calcd. for C₁₉H₁₇NOH [M+H]+: 276.1383. Found 276.1383. **M.p.:** 91°C

tert-butyl 3-(2-(ethynyl(phenyl)amino)-2-oxoethyl)azetidine-1-carboxylate (Y5)

Starting from the corresponding ynamide **Y5-SiR**₃ (0.485 g, 1.25 mmol), and by following the general procedure **II**, compound **Y5** (0.160 g, 41% yield) was obtained as an orange oil by flash chromatography (20% EtOAc/PE).

¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.41 (m, 4H), 7.31 (m, 1H), 4.14 (t, *J* = 8.5 Hz, 2H), 3.66 (m, 2H), 3.13 (br s, 2H), 3.11 (s, 1H), 2.98 (m, 1H), 1.44 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ ppm 172.4, 156.4, 138.4, 129.3 (2C), 127.8, 125.3 (2C), 79.5, 77.3, 61.9, 39.4, 28.5 (3C), 25.2.

HRMS (ESI) Calcd. for C₁₈H₂₂N₂O₃H [M+H]+: 315.1703. Found 315.1705.

8. Trifluoromethylated products

8.1 General procedure: photoredox

To a capped vial equipped with a stirring bar was added fac-Ir(ppy)₃ (0.025 equiv.), ynamide **1** (1.0 equiv.), and the Togni reagent (1.2 equiv.). The reaction vial was evacuated and back-filled with nitrogen three times. Degassed MeCN (0.1 M) was added. The reaction mixture was freeze pumped twice to deoxygenate the solvent. The vial was sealed. The stirred mixture was irradiated with blue LEDs for the specified time. The reaction mixture was concentrated, washed with an aqueous solution of NaHCO₃ and extracted with EtOAc. The residue was purified twice by a column chromatography, first with PE/EtOAc 80:20, and then a second column with Toluene/EtOAc 90:10.

8.2 Procedure for mechanoredox trifluoromethylation cyclization cascade reaction

Ynamide (0.1 mmol, 1 equiv.), Togni I reagent (66.01 mg, 0.2 mmol, 2 equiv.), and tet-BaTiO₃ (1.16 mg, 0.005 mmol, 0.05 equiv.) were placed in a stainless-steel milling jar (5.0 mL) with a stainless-steel ball (8 mm, diameter) in air. Then Acetone (1.2 μ L/mg for the solid reactants) was added to the mixture. After the jar was closed in air, the jar was placed in a ball mill (Anton Paar BM500). After grinding for the 3h at 30 Hz, the reaction mixture was passed through a short silica gel column eluting with ethyl acetate. The crude material was purified by silica gel column chromatography.

8.3 Characterization data of Trifluoromethylated products

All products were obtained in a racemic mixture of (R,R) and (S,S).

1,1-dimethyl-10-(trifluoromethyl)-1,5,10,10a-tetrahydropyrrolo[1,2-*b*]isoquinolin-3(2*H*)-one (2a)

Following the general procedure for the preparation of fluorinated tricycles: starting from the corresponding ynamide **1a** (43 mg, 0.2 mmol), Togni II reagent (189.6 mg, 0.24 mmol) using $Ir(ppy)_3$ (3.3 mg, 0.005 mmol) as photocatalyst, and irradiating the mixture for 1h 15 min. The

compound **2a** (29.4 mg, 52% yield) was obtained as white solid by flash chromatography (PE/EtOAc 50:50).

¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.30 (m, 3H), 7.22 (d, *J* = 8.1 Hz, 1H), 4.98 (d, *J* = 15.4 Hz, 1H), 4.05 (d, *J* = 2.3 Hz, 1H), 3.98 (d, *J* = 15.4 Hz, 1H), 3.56 (p, *J* = 10.6 Hz, 1H), 2.45 (d, *J* = 15.8 Hz, 1H), 2.13 (d, *J* = 15.8 Hz, 1H), 1.26 (s, 3H), 0.75 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ ppm 172.1, 136.2, 131.4, 128.9, 128.0, 127.9 (q, *J* = 279.3 Hz), 127.5 (q, *J* = 1.9 Hz), 127.1, 62.0 (q, *J* = 2.2 Hz), 47.2, 43.1 (q, *J* = 27.1 Hz), 40.6, 39.4, 24.6, 21.8.
 ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -70.30.

HRMS (ESI): calcd. for C₁₅H₁₆F₃NOH [M+H]⁺: 284.1257. Found 284.1256. **M.p.:** 140.6-142.4°C

(3,3-dimethyl-5-oxo-2-(2,2,2-trifluoro-1-phenylethyl)pyrrolidin-1-yl)methyl 2-iodobenzoate (2aa)

The compound **2aa** (13.8 mg, 13% yield) was obtained as a colorless oil by flash chromatography (PE/EtOAc 80:20).

¹**H NMR** (400 MHz, CDCl₃) δ ppm 8.01 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.82 (dd, *J* = 7.9, 1.7 Hz, 1 H), 7.38 (m, 4 H), 7.31 (m, 2 H), 7.15 (td, *J* = 7.7, 1.7 Hz, 1 H), 6.02 (d, *J* = 10.6 Hz, 1 H), 5.62 (d, *J* = 10.6 Hz, 1 H), 4.12 (m, 1 H), 3.68 (dq, *J* = 11.2, 8.2 Hz, 1 H), 1.70 (d, *J* = 16.5 Hz, 1 H), 1.41 (d, *J* = 16.6 Hz, 1 H), 1.26 (s, 3 H), 1.14 (s, 3 H).

¹⁹**F NMR** (101 MHz, CDCl₃) δ ppm -65.74.

¹³C NMR (376 MHz, CDCl₃) δ ppm 176.9, 166.3, 141.6, 134.4, 133, 131, 130.6 (2C), 130.4, 128.8 (3C), 128, 126.5, 94.3, 67.6, 65.2, 51.1, 43.9, 38.9, 30.4, 22.6.

HRMS (ESI): calcd. for C₂₂H₂₂F₃INO₃ [M+H]⁺: 532.0591, found 532.0602.

8-fluoro-1,1-dimethyl-10-(trifluoromethyl)-1,5,10,10a-tetrahydropyrrolo[1,2-*b*]isoquinolin-3(2*H*)-one (2b)

Following the general procedure for the preparation of fluorinated tricycles: starting from the corresponding ynamide **1b** (46.6 mg, 0.2 mmol), Togni II reagent (189.6 mg, 0.24 mmol) using $Ir(ppy)_3$ (3.3 mg, 0.005 mmol) as photocatalyst, and irradiating the mixture for 3 h. The compound **2b** (36.1 mg, 60% yield) was obtained as a yellow solid by flash chromatography (PE/EtOAc 80:20).

¹**H NMR** (400 MHz, CDCl3) δ ppm 7.20 (dd, J = 8.2, 5.5 Hz, 1H), 7.03 (ddd, J = 10.1, 8.0, 2.2 Hz, 2H), 4.97 (d, J = 15.3 Hz, 1H), 4.03 (d, J = 2.2 Hz, 1H), 3.91 (d, J = 15.3 Hz, 1H), 3.53 (qd, J = 10.3, 2.2 Hz, 1H), 2.44 (d, J = 15.9 Hz, 1H), 2.15 (d, J = 15.9 Hz, 1H), 1.25 (s, 3H), 0.75 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ ppm 172.0, 163.0, 160.5, 132.1 (d, J = 3.1 Hz), 129.4 (dd, J = 8.2, 2.2 Hz), 128.6 (d, J = 7.9 Hz), 126.3 (q, J = 279.3 Hz), 118.2 (d, J = 21.2 Hz), 116.1 (d, J = 21.2 Hz), 61.7 (q, J = 2.2 Hz), 47.1, 43.1 (qd, J = 26.6, 1.3 Hz), 40.0 (brq, J = 1.3 Hz), 39.4, 24.6, 21.8. ¹⁹**F NMR** (376 MHz, CDCl₃) δ ppm -70.17, -113.76. **HRMS (ESI):** calcd. for C₁₅H₁₅F₄NOH [M+H]+:302.1163. Found 302.1164. **M.p.:** 132°C

8-methoxy-1,1-dimethyl-10-(trifluoromethyl)-1,5,10,10a-tetrahydropyrrolo[1,2-*b*]isoquinolin-3(2*H*)-one (2c)

Following the general procedure for the preparation of fluorinated tricycles: starting from the corresponding ynamide **1c** (49.1 mg, 0.2 mmol), Togni II reagent (189.6 mg, 0.24 mmol) using $Ir(ppy)_3$ (3.3 mg, 0.005 mmol) as photocatalyst, and irradiating the mixture for 3 h. The compound **2c** (19 mg, 30% yield) was obtained as a pale yellow oil by flash chromatography (PE/EtOAc 80:20), and with a second column with Toluene/EtOAc 90:10.

¹**H NMR** (400 MHz, CDCl3) δ ppm 7.14 (d, J = 8.3 Hz, 1H), 6.84 (m, 2H), 4.92 (d, J = 15.2 Hz, 1H), 4.02 (d, J = 2.1 Hz, 1H), 3.90 (d, J = 15.1 Hz, 1H), 3.80 (s, 3H), 3.50 (qd, J = 10.5, 2.1 Hz, 1H), 2.44 (d, J = 15.8 Hz, 1H), 2.13 (d, J = 15.8 Hz, 1H), 1.24 (s, 3H), 0.75 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ ppm 172.0, 158.9, 128.5 (q, J = 2.0 Hz), 128.3, 128.0, 126.3 (q, J = 280.1 Hz), 117.1, 114.0, 61.9 (q, J = 2.1 Hz), 55.5, 47.2, 43.3 (q, J = 26.3 Hz), 40.1, 39.5, 24.6, 21.8.
¹⁹F NMR (376 MHz, CDCl₃) δ ppm -70.16.

HRMS (ESI): calcd. for C₁₆H₁₈F₃NO₂H [M+H]+:314.1362. Found 314.1362. **M.p.:** 136°C (3,3-dimethyl-5-oxo-2-(2,2,2-trifluoro-1-(4-methoxyphenyl)ethyl)pyrrolidin-1-yl)methyl 2iodobenzoate (2ca)

The compound **2ca** (29 mg, 26% yield) was obtained as a pale yellow oil by flash chromatography (PE/EtOAc 90:10).

¹**H NMR** (400 MHz, CDCl3) δ ppm 8.00 (dd, J = 8.0, 1.2 Hz, 1H), 7.81 (dd, J = 7.8, 1.7 Hz, 1H), 7.39 (td, J = 7.6, 1.2 Hz, 1H), 7.21 (d, J = 8.7 Hz, 2H), 7.16 (td, J = 7.7, 1.7 Hz, 1H), 6.89 (m, 2H), 6.02 (d, J = 10.6 Hz, 1H), 5.61 (d, J = 10.5 Hz, 1H), 4.17 (d, J = 1.4 Hz, 1H), 3.80 (s, 3H), 3.63 (m, 1H), 1.70 (d, J = 16.6 Hz, 1H), 1.44 (d, J = 16.6 Hz, 1H), 1.25 (s, 3H), 1.13 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm 177.1, 166.2, 160.1, 141.6, 134.4, 133.1, 131.9, 131.3, 128.1, 126.6 (q, *J* = 280.9 Hz), 122.2 (q, *J* = 1.4 Hz), 114.5, 94.3, 67.8 (q, *J* = 4.1 Hz), 65.1 (d, *J* = 2.1 Hz), 55.3, 50.1 (q, *J* = 26.2 Hz), 43.9, 39.0, 30.4, 22.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ ppm -66.04.

HRMS (ESI): calcd. for C₂₃H₂₃F₃INO₄Na [M+Na]+: 584.0516. Found 584.0515.

10'-(trifluoromethyl)-10',10a'-dihydro-5'*H*-spiro[cyclobutane-1,1'-pyrrolo[1,2-*b*]isoquinolin]-3'(2'*H*)-one (2d)

Following the general procedure for the preparation of fluorinated tricycles: starting from the corresponding ynamide **1d** (45.5 mg, 0.2 mmol), Togni II reagent (189.6 mg, 0.24 mmol) using $Ir(ppy)_3$ (3.3 mg, 0.005 mmol) as photocatalyst, and irradiating the mixture for 15 h. The compound **2d** (20 mg, 34% yield) was obtained as a pale yellow solid by flash chromatography (PE/EtOAc 80:20), and with a second column with Toluene/EtOAc 90:10.

¹**H NMR** (400 MHz, CDCl3) δ ppm 7.37 – 7.33 (m, 1H), 7.32 – 7.27 (m, 2H), 7.22 (dd, J = 6.6, 2.4 Hz, 1H), 4.92 (d, J = 15.4 Hz, 1H), 4.04 (d, J = 2.7 Hz, 1H), 3.95 (d, J = 15.4 Hz, 1H), 3.84 (qd, J = 10.3, 2.8 Hz, 1H), 2.61 – 2.55 (m, 2H), 2.27 – 2.16 (m, 1H), 2.10 – 1.83 (m, 4H), 1.60 (dddd, J = 14.3, 11.3, 5.2, 2.4 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₂) δ ppm 172 0, 137 2, 131 5, 128 8, 127 9, 127 1 (m, J = 2.3 Hz), 127 0

¹³**C NMR** (101 MHz, CDCl₃) δ ppm 172.0, 137.2, 131.5, 128.8, 127.9, 127.1 (q, *J* = 2.3 Hz), 127.0, 126.5 (q, *J* = 279.9 Hz), 60.6 (q, *J* = 2.2 Hz), 45.8, 44.8, 43.9 (q, *J* = 26.5 Hz), 40.8, 28.6 (d, *J* = 3.8 Hz), 15.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ ppm -69.87.

HRMS (ESI): calcd. for C₁₆H₁₆F₃NOH [M+H]+: 296.1257. Found 296.1258. **M.p.:** 115°C

2-((1*S*,10*R*)-3-oxo-10-(trifluoromethyl)-1,2,3,5,10,10a-hexahydropyrrolo[1,2-*b*]isoquinolin-1-yl)isoindoline-1,3-dione (2e)

Following the general procedure for the preparation of fluorinated tricycles: starting from the corresponding ynamide **1e** (43.1 mg, 0.2 mmol), Togni II reagent (142.2 mg, 0.18 mmol) using $Ir(ppy)_3$ (2.5 mg, 0.0037 mmol) as photocatalyst, and irradiating the mixture for 3 h. A mixture of two diastereoisomers were obtained.

2-((1*S*,10*R*,10a*R*)-3-oxo-10-(trifluoromethyl)-1,2,3,5,10,10a-hexahydropyrrolo[1,2-*b*]isoquinolin-1-yl)isoindoline-1,3-dione (2e)

The compound **2e** (31.3 mg, 39% yield) was obtained as a pale yellow oil by flash chromatography (PE/EtOAc 20:80).

¹**H NMR** (400 MHz, DMSO-*d6*) δ ppm 7.75 (br m, 4H), 7.36 (d, *J* = 7.6 Hz, 1H), 7.31 (td, *J* = 7.4, 1.4 Hz, 1H), 7.23 (d, *J* = 7.7 Hz, 1H), 7.16 (td, *J* = 7.5, 1.5 Hz, 1H), 5.20 (t, *J* = 9.1 Hz, 1H), 4.93 (d, *J* = 16.0 Hz, 1H), 4.66 (dd, *J* = 7.0, 5.2 Hz, 1H), 4.00 (m, 2H), 2.96 (ddd, *J* = 17.3, 9.3, 1.4 Hz, 1H), 2.62 (dd, *J* = 17.3, 1.5 Hz, 1H).

¹³**C NMR** (101 MHz, DMSO-*d6*) δ ppm 170.8 (2C), 167.6, 135.1 (4C), 134.3, 131.5, 130.5, 128.1, 126.9, 126.7 (q, *J* = 280.5 Hz), 126.7 (2C), 123.1, 55.1 (q, *J* = 2.7 Hz), 46.5, 41.1 (q, *J* = 25.0 Hz), 40.4, 35.4.

¹⁹**F NMR** (376 MHz, DMSO-*d6*) δ ppm -69.14.

HRMS (ESI): calcd. for C₂₁H₁₅F₃N₂O₃Na [M+Na]+ : 423.0927. Found 423.0925.

2-((1*S*,10*R*,10a*S*)-3-oxo-10-(trifluoromethyl)-1,2,3,5,10,10a-hexahydropyrrolo[1,2-*b*]isoquinolin-1-yl)isoindoline-1,3-dione (2e')

The compound **2e'** (5 mg, 6% yield) was obtained as a yellow oil by flash chromatography (PE/EtOAc 20:80).

¹**H NMR** (400 MHz, DMSO-*d6*) δ ppm 7.95 (m, 2H), 7.91 (m, 2H), 7.46 (br d, *J* = 6.9 Hz, 1H), 7.39 (m, 3H), 5.01 (m, 1H), 4.98 (d, *J* = 16.4 Hz, 1H), 4.43 (m, 1H), 4.42 (m, 1H), 4.13 (d, *J* = 16.3 Hz, 1H), 2.84 (m, 2H).

¹³**C NMR** (101 MHz, DMSO-*d6*) δ ppm 169.4, 167.3 (2C), 134.9, 134.8, 131.3, 129.7, 127.38 (q, *J* = 280.7 Hz), 123.3, 56.7 (q, *J* = 2.9 Hz), 48.8, 46.1, 45.9 (q, *J* = 24.7 Hz), 40.3, 34.2.

¹⁹**F NMR** (376 MHz, DMSO-*d6*) δ ppm -69.79 (d, *J* = 10.8 Hz).

HRMS (ESI): calcd. for C₂₁H₁₅F₃N₂O₃H [M+H]+ : 401.1108. found 401.1108.

(7a*R*,8*S*,10*R*,12*S*,13a*S*)-14-(trifluoromethyl)-8,9,10,11,12,13,13b,14-octahydro-5*H*-8,12:10,13a-dimethanocycloocta[3,4]pyrrolo[1,2-*b*]isoquinolin-7(7a*H*)-one (2f)

Following the general procedure for the preparation of fluorinated tricycles: starting from the corresponding ynamide **1f** (58.7 mg, 0.2 mmol), Togni II reagent (189.6 mg, 0.24 mmol) using $Ir(ppy)_3$ (3.3 mg, 0.005 mmol) as photocatalyst, and irradiating the mixture for 3 h. The compound **2f** (30 mg, 40% yield) was obtained as a yellow oil by flash chromatography (PE/EtOAc 80:20).

¹**H NMR** (400 MHz, CDCl3) δ ppm 7.36 – 7.22 (m, 4H), 5.02 (d, *J* = 15.5 Hz, 1H), 3.97 (d, *J* = 15.5 Hz, 1H), 3.85 (d, *J* = 1.9 Hz, 1H), 3.53 (qd, *J* = 10.7, 1.9 Hz, 1H), 2.38 (m, 2H), 2.13 (p, *J* = 3.2 Hz, 1H), 1.93 (dt, *J* = 12.9, 1.9 Hz, 1H), 1.89 – 1.54 (m, 8H), 1.25 – 1.17 (m, 1H), 1.03 (dq, *J* = 12.6, 2.8 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm 173.1, 136.2, 131.2, 128.9, 127.8, 127.6 (d, *J* = 2.3 Hz), 127.2, 126.6 (q, *J* = 280.3 Hz), 61.2 (q, *J* = 2.3 Hz), 54.5, 42.4 (q, *J* = 26.2 Hz), 42.3, 40.2, 38.7, 37.7, 37.1, 32.6, 32.1, 28.6, 27.1, 26.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ ppm -70.33.

HRMS (ESI): calcd. for C₂₁H₂₂F₃NOH [M+H]+:362.1726. Found 362.1727.

1,1-dimethyl-9-(trifluoromethyl)-1,2,9,9a-tetrahydro-3H-pyrrolo[1,2-a]indol-3-one (2g)

Following the general procedure for the preparation of fluorinated tricycles: starting from the corresponding ynamide **1g** (40 mg, 0.2 mmol), Togni II reagent (189.6 mg, 0.24 mmol) using $Ir(ppy)_3$ (3.3 mg, 0.005 mmol) as photocatalyst, and irradiating the mixture for 1 h. The compound **2g** (38.5 mg, 72% yield) was obtained as white solid by flash chromatography (PE/EtOAc 80:20).

¹H NMR (400 MHz, CDCl₃) δ ppm 7.67 (d, *J* = 7.9 Hz, 1H), 7.36 (q, *J* = 8.0, 7.6 Hz, 2H), 7.11 (d, *J* = 7.6 Hz, 1H), 4.46 (d, *J* = 8.5 Hz, 1H), 4.13 (p, *J* = 8.5 Hz, 1 H), 2.80 (d, *J* = 16.0 Hz, 1H), 2.33 (d, *J* = 16.1 Hz, 1H), 1.30 (s, 3H), 1.06 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ ppm 171.4, 140.4, 130.0, 127.5/124.8 (q, *J* = 277.1 Hz), 125.8, 124.5, 114.9, 71.0 (q, *J* = 3.0 Hz), 51.0, 46.0 (q, *J* = 29.2 Hz), 39.86, 25.10, 22.60. ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -68.57. HRMS (ESI): calcd. for C₁₄H₁₅F₃NO [M+H]+: 270.1100, found 270.1102. M.p.: 75.5-77°C

7-methoxy-1,1-dimethyl-9-(trifluoromethyl)-1,2,9,9a-tetrahydro-3*H*-pyrrolo[1,2-*a*]indol-3-one (2h)

Following the general procedure for the preparation of fluorinated tricycles: starting from the corresponding ynamide **1h** (46.2 mg, 0.2 mmol), Togni II reagent (189.6 mg, 0.24 mmol) using $Ir(ppy)_3$ (3.3 mg, 0.005 mmol) as photocatalyst, and irradiating the mixture for 1.5 h. The compound **2h** (34.7 mg, 58% yield) was obtained in a mixture of diastereoisomers (95:5) as a pale yellow solid by flash chromatography (PE/EtOAc 80:20), and was purified a second time with column with Toluene/EtOAc 90:10.

¹**H NMR** (400 MHz, CDCl3) δ ppm 7.57 (d, J = 8.7 Hz, 1H), 6.92 (dt, J = 2.6, 1.4 Hz, 1H), 6.87 (ddd, J = 8.7, 2.5, 0.8 Hz, 1H), 4.45 (d, J = 8.5 Hz, 1H), 4.10 (p, J = 8.4 Hz, 1H), 3.79 (s, 3H), 2.78 (d, J = 15.9 Hz, 1H), 2.29 (d, J = 15.9 Hz, 1H), 1.29 (s, 3H), 1.05 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ ppm 170.8, 157.0, 134.1, 128.0 (q, J = 2.4 Hz), 126.1 (q, J = 277.4 Hz), 115.5, 114.8, 112.1, 71.4 (q, J = 2.9 Hz), 55.9, 50.9, 46.1 (q, J = 28.9 Hz), 39.7, 29.8, 25.2, 22.7.
 ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -68.51.

HRMS (ESI): calcd. for C₁₅H₁₆F₃NO₂H [M+H]+: 300.1206. Found 300.1207. **M.p.:** 108°C

7-chloro-1,1-dimethyl-9-(trifluoromethyl)-1,2,9,9a-tetrahydro-3*H*-pyrrolo[1,2-*a*]indol-3-one (2i)

Following the general procedure for the preparation of fluorinated tricycles: starting from the corresponding ynamide **1i** (36.5 mg, 0.154 mmol), Togni II reagent (146.8 mg, 0.185 mmol) using $Ir(ppy)_3$ (2.5 mg, 0.0038 mmol) as photocatalyst, and irradiating the mixture for 1 h 30 min. The compound **2i** (36.3 mg, 77% yield) was obtained as a pale yellow solid by flash chromatography (PE/EtOAc 80:20).

¹**H** NMR (400 MHz, CDCl₃) δ ppm 7.60 (d, J = 8.48 Hz, 1H), 7.35 (s, 1H), 7.32 (d, J = 8.48 Hz, 1H), 4.47 (d, J = 8.25 Hz, 1H), 4.10 (p, J = 8.48 Hz, 1H), 2.78 (d, J = 16.20 Hz, 1H), 2.32 (d, J = 16.20 Hz, 1H), 1.30 (s, 3H), 1.05 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ ppm 171.4, 139.1, 130.2, 129.6, 128.2 (q, J = 2.5 Hz), 126.2, 125.7 (q, J = 276.2 Hz), 115.8, 71.2 (q, J = 2.6 Hz), 50.7, 46.0 (q, J = 29.5 Hz), 39.9, 25.0, 22.5. ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -68.60. HRMS (ESI): calcd. For C₁₄H₁₃ClF₃NOH 304.0711. Found 304.0709. M.p.: 72°C

7-fluoro-1,1-dimethyl-9-(trifluoromethyl)-1,2,9,9a-tetrahydro-3*H*-pyrrolo[1,2-*a*]indol-3-one (2j)

Following the general procedure for the preparation of fluorinated tricycles: starting from the corresponding ynamide **1**j (43.1 mg, 0.15 mmol), Togni II reagent (142.2 mg, 0.18 mmol) using $Ir(ppy)_3$ (2.5 mg, 0.0037 mmol) as photocatalyst, and irradiating the mixture for 1 h. The compound **2**j (27.1 mg, 63% yield) was obtained as a pale yellow solid by flash chromatography (PE/EtOAc 80:20).

¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.62 (dd, J = 8.7, 4.7 Hz, 1H), 7.09 (d, J = 8.43 Hz, 1H), 7.04 (t, J = 8.72 Hz, 1H), 4.49 (d, J = 8.52 Hz, 1H), 4.12 (p, J = 8.43 Hz, 1H), 2.79 (d, J = 16.0 Hz, 1H), 2.32 (d, J = 16.0 Hz, 1H), 1.30 (s, 3H), 1.06 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm 171.2, 159.6 (d, J = 246.5 Hz), 136.7, 128.23 (dd, J = 8.6 Hz), 125.9 (q, J = 277.5 Hz), 116.8 (d, J = 23.5 Hz), 115.8 (d, J = 8.2 Hz), 113.5 (d, J = 25.2 Hz), 71.4 (q, J = 2.6 Hz), 50.8, 46.2 (q, J = 29.5 Hz), 39.8, 25.1, 22.7. ¹⁹**F NMR** (376 MHz, CDCl₃) δ ppm -68.68, -117.22. **HRMS (ESI):** calcd. for C₁₄H₁₃F₄NOH 288.1006. Found 288.1007. **M.p.:** 80°C

8,8-dimethyl-9-(trifluoromethyl)-7,8,8a,9-tetrahydro-6*H*-[1,3]dioxolo[4,5-*f*]pyrrolo[1,2*a*]indol-6-one (2k)

Following the general procedure for the preparation of fluorinated tricycles: starting from the corresponding ynamide **1k** (49 mg, 0.2 mmol), Togni II reagent (189.6 mg, 0.24 mmol) using $Ir(ppy)_3$ (3.3 mg, 0.005 mmol) as photocatalyst, and irradiating the mixture for 1 h 30 min. The compound **2k** (21 mg, 34% yield, d.r 95:5) was obtained as a pale yellow solid by flash chromatography (PE/EtOAc 80:20), and with a second column with Toluene/EtOAc 90:10.

¹**H** NMR (400 MHz, CDCl3) δ ppm 7.23 (s, 1H), 6.81 (m, 1H), 5.97 (s, 2H), 4.43 (d, J = 8.3 Hz, 1H), 4.03 (p, J = 8.3 Hz, 1H), 2.76 (d, J = 15.9 Hz, 1H), 2.28 (d, J = 16.0 Hz, 1H), 1.28 (s, 3H), 1.04 (s, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ ppm 171.0, 149.0, 144.8, 135.3, 126.1 (q, J = 275.7 Hz), 118.2 (q, J = 2.6 Hz), 106.0, 101.9, 97.6, 71.7 (q, J = 2.8 Hz), 50.8, 46.0 (q, J = 29.5 Hz), 39.8, 25.0, 22.6. ¹⁹**F** NMR (376 MHz, CDCl₃) δ ppm -68.17, -69.13 (major). HRMS (ESI): calcd. for C₁₅H₁₄F₃NO₃H [M+H]+: 314.0999. Found 314.0999. M.p.: 161°C

1,1-dimethyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9-(trifluoromethyl)-1,2,9,9a-tetrahydro-3*H*-pyrrolo[1,2-*a*]indol-3-one (2l)

Following the general procedure for the preparation of fluorinated tricycles: starting from the corresponding ynamide **1** (65.4 mg, 0.2 mmol), Togni II reagent (189.6 mg, 0.24 mmol) using $Ir(ppy)_3$ (3.3 mg, 0.005 mmol) as photocatalyst, and irradiating the mixture for 3 h. The compound **2** (45.2 mg, 57% yield) was obtained as a yellow solid by flash chromatography (PE/EtOAc 60:40).

¹**H NMR** (400 MHz, CDCl3) δ ppm 7.81 (d, *J* = 8.3 Hz, 2H), 7.66 (d, *J* = 7.9 Hz, 1H), 4.44 (d, *J* = 8.2 Hz, 1H), 4.08 (p, *J* = 8.4 Hz, 1H), 2.78 (d, *J* = 16.0 Hz, 1H), 2.32 (d, *J* = 16.0 Hz, 1H), 1.33 (d, *J* = 3.3 Hz, 12H), 1.29 (s, 3H), 1.02 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ ppm 171.6, 142.8, 137.2, 132.2, 126.0 (q, J = 277.9 Hz), 125.9 (q, J = 2.2 Hz), 114.1, 84.0, 71.0 (q, J = 2.8 Hz), 51.0, 45.8 (q, J = 29.4 Hz), 40.0, 25.0, 24.9, 24.9, 22.3.
¹⁹F NMR (376 MHz, CDCl₃) δ ppm -68.45.

HRMS (ESI): calcd. for C₂₀H₂₅BF₃NO₃H [M+H]+:396.1952. Found 396.1953. **M.p.:** 210°C

1,1-dimethyl-11-(trifluoromethyl)-1,2,11,11a-tetrahydro-3*H*-benzo[*f*]pyrrolo[1,2-*a*]indol-3-one (2m)

Following the general procedure for the preparation of fluorinated tricycles: starting from the corresponding ynamide **1m** (50.3 mg, 0.2 mmol), Togni II reagent (189.6 mg, 0.24 mmol) using $Ir(ppy)_3$ (3.3 mg, 0.005 mmol) as photocatalyst, and irradiating the mixture for 1 h 30 min. The compound **2m** (34 mg, 53% yield) was obtained as a pale yellow oil by flash chromatography (PE/EtOAc 80:20), and with a second column with Toluene/EtOAc 90:10.

¹**H NMR** (400 MHz, CDCl3) δ ppm 8.00 (d, *J* = 8.7 Hz, 1H), 7.96 – 7.84 (m, 3H), 7.54 (ddd, *J* = 8.4, 6.8, 1.4 Hz, 1H), 7.42 (ddd, *J* = 8.1, 6.8, 1.1 Hz, 1H), 4.54 (m, 2H), 2.80 (d, *J* = 15.7 Hz, 1H), 2.27 (d, *J* = 15.7 Hz, 1H), 1.34 (s, 3H), 0.88 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm 174.2, 142.1, 131.8, 131.5, 130.8, 129.2, 127.5, 126.7 (q, *J* = 279.7 Hz), 124.6, 123.4 (q, *J* = 4.5 Hz), 117.5 (q, *J* = 2.3 Hz), 114.7, 71.4 (q, *J* = 3.3 Hz), 50.0, 46.1 (q, *J* = 29.1 Hz), 41.6, 24.2, 21.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ ppm -67.60.

HRMS (ESI): calcd. for C₁₈H₁₆F₃NOH [M+H]+:320.1257. Found 320.1257.

7,7-dimethyl-8-(trifluoromethyl)-6,7,7a,8-tetrahydro-5H-thieno[2,3-b]pyrrolizin-5-one (2n)

Following the general procedure for the preparation of fluorinated tricycles: starting from the corresponding ynamide **1n** (83 mg, 0.4 mmol), Togni II reagent (379.2 mg, 0.48 mmol) using $Ir(ppy)_3$ (6.6 mg, 0.01 mmol) as photocatalyst, and irradiating the mixture for 1 h 30 min. The compound **2n** (68 mg, 60% yield) was obtained as a pale yellow oil by flash chromatography (PE/EtOAc 80:20), and with a second column with Toluene/EtOAc 90:10.

¹**H NMR** (500 MHz, CDCl3) δ ppm 7.31 (dd, J = 5.2, 1.1 Hz, 1 H), 7.17 (d, J = 5.2 Hz, 1 H), 4.81 (d, J = 7.8 Hz, 1 H), 4.25 (quint, J = 7.7 Hz, 1 H), 2.76 (dd, J = 15.8, 0.6 Hz, 1 H), 2.27 (d, J = 15.8 Hz, 1 H), 1.29 (s, 3 H), 1.08 (s, 3 H).

¹³**C NMR** (125 MHz, CDCl3) δ ppm 170.3, 145.1, 131.7, 125.5 (q, J = 278.2 Hz), 120.1 (bq, J = 3.3 Hz), 115.0, 77.2 (bq, J = 2.4 Hz), 50.1, 46.2 (q, J = 30.9 Hz), 40.4, 25.0, 22.9.

¹⁹**F NMR** (376 MHz, CDCl3) δ ppm -70.67.

HRMS (ESI): calcd. for C₁₂H₁₃F₃NOS [M+H]+: 276.0664, found 276.0664.

(1*R*,9*R*,9a*R*)-1-methyl-1-neopentyl-9-(trifluoromethyl)-1,2,9,9a-tetrahydro-3*H*-pyrrolo[1,2*a*]indol-3-one (2o)

Following the general procedure for the preparation of fluorinated tricycles: starting from the corresponding ynamide **10** (51.5 mg, 0.2 mmol), Togni II reagent (189.6 mg, 0.24 mmol) using $Ir(ppy)_3$ (3.3 mg, 0.005 mmol) as photocatalyst, and irradiating the mixture for 1 h 30 min. the compound **20** (20.2 mg, 31% yield, d.r. 96:4) was isolated as yellow solid by flash chromatography (PE/EtOAc 80:20).

¹**H NMR** (400 MHz, CDCl3) δ ppm 7.68 (d, J = 7.9 Hz, 1H), 7.35 (m, 2H), 7.10 (td, J = 7.6, 1.1 Hz, 1H), 4.36 (d, J = 7.5 Hz, 1H), 4.11 (p, J = 8.2 Hz, 1H), 2.87 (d, J = 15.9 Hz, 1H), 2.49 (d, J = 15.8 Hz, 1H), 1.71 (d, J = 14.5 Hz, 1H), 1.57 (m, 1H), 1.08 (s, 3H), 1.03 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm 172.6, 141.0, 130.1, 126.2 (q, J = 2.4 Hz), 126.0, 125.9 (q, J = 277.4 Hz), 124.4, 114.9, 72.7 (q, J = 2.7 Hz), 51.8, 50.2, 45.9 (q, J = 28.9 Hz), 45.0, 32.1, 31.7, 20.7. ¹⁹**F NMR** (376 MHz, CDCl₃) δ ppm -68.44, -68.65 mixture 96:4. **HRMS (ESI):** calcd. for C₁₈H₂₂F₃NOH [M+H]+: 326.1726. Found 326.1727. **M.p.:** 118°C

(1*S*,9*R*)-1-(*tert*-butoxy)-9-(trifluoromethyl)-1,2,9,9a-tetrahydro-3*H*-pyrrolo[1,2-*a*]indol-3-one (2p)

Following the general procedure for the preparation of fluorinated tricycles: starting from the corresponding ynamide **1p** (49.1 mg, 0.2 mmol), Togni II reagent (189.6 mg, 0.24 mmol) using $Ir(ppy)_3$ (3.3 mg, 0.005 mmol) as photocatalyst, and irradiating the mixture for 16 h. Two diastereoisomers were isolated as white oils by flash chromatography (PE/EtOAc 70:30).

(1*S*,9*R*,9a*R*)-1-(*tert*-butoxy)-9-(trifluoromethyl)-1,2,9,9a-tetrahydro-3*H*-pyrrolo[1,2-*a*]indol-3-one (2p)

The compound **2p** (7.7 mg, 12% yield) was obtained as a white oil by flash chromatography (PE/EtOAc 70:30).

¹**H NMR** (400 MHz, CDCl3) δ ppm 7.64 (d, *J* = 8.0 Hz, 1H), 7.36 (m, 2H), 7.12 (td, *J* = 7.6, 1.1 Hz, 1H), 4.49 (t, *J* = 8.0 Hz, 1H), 4.31 (dt, *J* = 9.2, 7.6 Hz, 1H), 4.04 (p, *J* = 8.2 Hz, 1H), 2.83 (m, 2H), 1.24 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm 169.8, 140.2, 130.1, 126.6 (q, *J* = 2.4 Hz), 125.9 (q, *J* = 277.7 Hz), 125.8 (brd, *J* = 1.6 Hz), 124.9, 115.7, 74.7, 73.9, 67.5 (q, *J* = 2.6 Hz), 51.3 (q, *J* = 29.5 Hz), 44.8, 29.8, 28.4.

¹⁹**F NMR** (376 MHz, CDCl₃) δ ppm -68.47.

HRMS (ESI): calcd. for C₁₆H₁₈F₃NO₂H [M+H]+:314.1362. Found 314.1363.

(1*S*,9*R*,9a*S*)-1-(*tert*-butoxy)-9-(trifluoromethyl)-1,2,9,9a-tetrahydro-3*H*-pyrrolo[1,2-*a*]indol-3-one (2p')

The compound **2p'** (9.5 mg, 15% yield) was obtained as a white oil by flash chromatography (PE/EtOAc 70:30).

¹**H NMR** (400 MHz, CDCl3) δ ppm 7.64 (d, J = 7.9 Hz, 1H), 7.35 (m, 2H), 7.11 (td, J = 7.6, 1.1 Hz, 1H), 4.79 (dd, J = 9.0, 4.5 Hz, 1H), 4.62 (p, J = 8.9 Hz, 1H), 4.42 (t, J = 4.5 Hz, 1H), 3.06 (dd, J = 16.7, 4.5 Hz, 1H), 2.56 (d, J = 16.7 Hz, 1H), 1.21 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm 170.8, 139.9, 129.7, 127.7 (q, J = 2.6 Hz), 126.4 (q, J = 277.1 Hz), 125.6, 124.6, 115.2, 75.6, 67.5 (q, J = 3.2 Hz), 67.2, 45.9, 45.2 (q, J = 29.1 Hz), 28.3. ¹⁹**E NMR** (276 MHz, CDCl) δ ppm 68.02

¹⁹**F NMR** (376 MHz, CDCl₃) δ ppm -68.03.

HRMS (ESI): calcd. for C₁₆H₁₈F₃NO₂H [M+H]+:314.1362. Found 314.1362.

2-(3-oxo-9-(trifluoromethyl)-2,3,9,9a-tetrahydro-1*H*-pyrrolo[1,2-*a*]indol-1-yl)isoindoline-1,3dione (2q)

Following the general procedure for the preparation of fluorinated tricycles: starting from the corresponding ynamide **1q** (63.6 mg, 0.2 mmol), Togni II reagent (189.6 mg, 0.24 mmol) using $Ir(ppy)_3$ (3.3 mg, 0.005 mmol) as photocatalyst, and irradiating the mixture for 1 h 30 min. The compound **2q** (29.5 mg, 38% yield) was obtained as a pale orange solid by flash chromatography (PE/EtOAc 50:50), and with a second column with Toluene/EtOAc 70:30.

¹**H NMR** (400 MHz, CDCl3) δ ppm 7.88 – 7.74 (m, 4H), 7.40 (tt, J = 7.7, 1.1 Hz, 1H), 7.28 (m, 2H), 7.10 (td, J = 7.6, 1.1 Hz, 1H), 5.35 (ddd, J = 8.6, 6.8, 0.9 Hz, 1H), 5.09 (dd, J = 9.6, 6.8 Hz, 1H), 3.88 (p, J = 8.3 Hz, 1H), 3.41 (dd, J = 17.6, 8.6 Hz, 1H), 2.78 (dd, J = 17.6, 0.9 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ ppm 170.1, 140.0, 134.8, 131.3, 130.4, 126.1 (q, J = 2.5 Hz), 125.6 (q, J = 277.8 Hz), 125.4, 124.8, 124.2, 115.7, 65.1 (q, J = 3.2 Hz), 47.4 (q, J = 29.6 Hz), 46.8, 41.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ ppm -68.67.

HRMS (ESI): calcd. for $C_{20}H_{13}F_3N_2O_3H$ [M+H]+:387.0951. Found 387.0952. **M.p.:** 180°C

9'-(t(6a*R*,7*S*,9*R*,11*S*,12a*S*)-13-(trifluoromethyl)-7,8,9,10,11,12,12b,13-octahydro-7,11:9,12adimethanocycloocta[3,4]pyrrolo[1,2-*a*]indol-6(6a*H*)-one (2r)

Following the general procedure for the preparation of fluorinated tricycles: starting from the corresponding ynamide 1r (55.9 mg, 0.2 mmol), Togni II reagent (189.6 mg, 0.24 mmol) using $Ir(ppy)_3$ (3.3 mg, 0.005 mmol) as photocatalyst, and irradiating the mixture for 2 h 30 min. The compound 2r (49 mg, 70% yield) was obtained as a pale yellow solid by flash chromatography (PE/EtOAc 80:20), and with a second column with Toluene/EtOAc 90:10.

¹**H NMR** (400 MHz, CDCl3) δ ppm 7.67 (d, J = 7.9 Hz, 1H), 7.34 (m, 2H), 7.06 (td, J = 7.6, 1.1 Hz, 1H), 4.21 (d, J = 7.9 Hz, 1H), 4.11 (p, J = 8.4 Hz, 1H), 2.73 (q, J = 1.9 Hz, 1H), 2.42 (h, J = 3.4 Hz, 1H), 2.12 (hept, J = 3.3 Hz, 1H), 1.98 (m, 2H), 1.87 (m, 2H), 1.79 – 1.61 (m, 5H), 1.54 (dq, J = 12.3, 3.6 Hz, 1H), 1.36 (dq, J = 12.4, 2.8 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm 172.8, 141.3, 129.9, 126.3 (q, *J* = 276.7 Hz), 126.1 (q, *J* = 2.4 Hz), 125.9, 124.0, 115.0, 69.9 (q, *J* = 3.0 Hz), 57.3, 44.3 (q, *J* = 29.3 Hz), 42.4, 39.3, 37.5, 36.8, 33.4, 31.9, 28.3, 27.3, 26.4.

¹⁹**F NMR** (376 MHz, CDCl₃) δ ppm -69.00.

HRMS (ESI): calcd. for C₂₀H₂₀F₃NOH [M+H]+:348.1570. Found 348.157. **M.p.:** 130°C

(2*S*,5*R*,5a*S*,5b*S*,6*R*,12a*R*)-6-(trifluoromethyl)-2,3,3a,4,5,5a,5b,6-octahydro-1*H*,12*H*-2,5-methanopentaleno[1',6a':3,4]pyrrolo[1,2-*a*]indol-12-one (2s)

Following the general procedure for the preparation of fluorinated tricycles: starting from the corresponding ynamide **1s** (53.1 mg, 0.2 mmol), Togni II reagent (189.6 mg, 0.24 mmol) using

 $Ir(ppy)_3$ (3.3 mg, 0.005 mmol) as photocatalyst, and irradiating the mixture for 3 h. Two compounds were isolated as white solids by flash chromatography (PE/EtOAc 80:20), compound **2s** (23 mg, 36% yield).

¹**H NMR** (400 MHz, CDCl3) δ ppm 7.66 (dd, *J* = 8.3, 1.1 Hz, 1H), 7.35 (m, 2H), 7.11 (td, *J* = 7.6, 1.1 Hz, 1H), 4.33 (dd, *J* = 9.7, 7.8 Hz, 1H), 3.96 (p, *J* = 8.6 Hz, 1H), 2.70 (t, *J* = 6.9 Hz, 1H), 2.50 (d, *J* = 6.6 Hz, 2H), 2.37 (m, 1H), 2.20 (dddd, *J* = 13.5, 11.0, 4.6, 2.1 Hz, 2H), 1.92 – 1.72 (m, 4H), 1.69 – 1.58 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ ppm 175.6, 140.4, 129.9, 127.6 (q, *J* = 2.5 Hz), 126.2 (q, *J* = 277.1 Hz), 125.2, 124.7, 115.8, 63.5 (q, *J* = 3.3 Hz), 63.1, 60.4, 53.2 (q, *J* = 29.1 Hz), 44.8, 44.6, 44.3, 40.6, 39.2, 37.3, 35.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ ppm -68.37.

HRMS (ESI): calcd. for C₁₉H₁₈F₃NOH [M+H]+:334.1413. Found 334.1413.

M.p.: 158°C

(6a*S*,8*R*,10*S*,11a*S*,11b*R*,12*R*)-12-(trifluoromethyl)-8,9,10,11,11b,12-hexahydro-6*H*,7*H*-6a,10:8,11a-dimethanocyclohepta[3,4]pyrrolo[1,2-*a*]indol-6-one (2sa)

The compound **2sa** (5 mg, 8% yield) was obtained as a white solid by flash chromatography (PE/EtOAc 80:20).

¹**H NMR** (400 MHz, CDCl3) δ ppm 7.64 (d, *J* = 7.9 Hz, 1H), 7.35 (qt, *J* = 7.8, 1.5 Hz, 2H), 7.12 (td, *J* = 7.6, 1.1 Hz, 1H), 4.49 (d, *J* = 11.1 Hz, 1H), 4.14 (m, 1H), 2.59 (m, 2H), 2.17 – 1.98 (m, 5H), 1.95 – 1.81 (m, 4H), 1.69 (tt, *J* = 3.0, 1.4 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ ppm 174.4, 140.2, 129.8, 129.5, 128.1 (q, J = 2.3 Hz), 125.3, 124.9, 115.9, 69.8 (q, J = 3.2 Hz), 65.0, 52.4, 51.5, 48.0 (q, J = 29.1 Hz), 47.2, 45.5, 45.4, 41.1, 39.7, 34.5.
 ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -63.66 (impurity), -67.91.

HRMS (ESI): calcd. for C₁₉H₁₈F₃NOH [M+H]+:334.1413. Found 334.1413. **M.p.:** 155°C

9'-(trifluoromethyl)-9',9a'-dihydrospiro[cyclobutane-1,1'-pyrrolo[1,2-a]indol]-3'(2'H)-one (2t)

Following the general procedure for the preparation of fluorinated tricycles: starting from the corresponding ynamide **1t** (46 mg, 0.2 mmol), Togni II reagent (189.6 mg, 0.24 mmol) using $Ir(ppy)_3$ (3.3 mg, 0.005 mmol) as photocatalyst, and irradiating the mixture for 20 h. The compound **2t** (25 mg, 44% yield) was obtained as a pale yellow solid by flash chromatography (PE/EtOAc 80:20), and with a second column with Toluene/EtOAc 90:10.

¹H NMR (400 MHz, CDCl3) δ ppm 7.64 (d, *J* = 7.9 Hz, 1H), 7.41 (d, *J* = 7.6 Hz, 1H), 7.33 (d, *J* = 7.6 Hz, 1H), 7.10 (td, *J* = 7.6, 1.1 Hz, 1H), 4.50 (d, *J* = 8.6 Hz, 1H), 4.30 (p, *J* = 8.4 Hz, 1H), 2.93 (d, *J* = 16.2 Hz, 1H), 2.77 (d, *J* = 16.2 Hz, 1H), 2.31 – 2.07 (m, 3H), 2.04 – 1.82 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ ppm 170.8, 139.9, 130.1, 126.7 (q, *J* = 2.4 Hz), 125.8, 125.7 (q, *J* = 278.2 Hz), 124.6, 115.0, 69.2 (q, *J* = 2.8 Hz), 49.5, 47.4 (q, *J* = 28.5 Hz), 45.7, 29.2, 28.4, 15.8. ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -68.31. HRMS (ESI): calcd. for C₁₅H₁₄F₃NOH [M+H]+: 282.1100. Found 282.1101. M.p.: 94°C

9-(trifluoromethyl)-1,2,2a,9,9a,9b-hexahydro-3*H*-cyclobuta[3,4]pyrrolo[1,2-*a*]indol-3-one (2u)

Following the general procedure for the preparation of fluorinated tricycles: starting from the corresponding ynamide **1u** (40 mg, 0.2 mmol), Togni II reagent (189.6 mg, 0.24 mmol) using $Ir(ppy)_3$ (3.3 mg, 0.005 mmol) as photocatalyst, and irradiating the mixture for 20 h. The compound **2u** (13.6 mg, 25% yield) was obtained as a pale yellow oil by flash chromatography (PE/EtOAc 80:20), and with a second column with Toluene/EtOAc 90:10.

¹**H NMR** (400 MHz, CDCl3) δ ppm 7.74 (d, *J* = 7.7 Hz, 1H), 7.38 (t, *J* = 7.7 Hz, 2H), 7.14 (td, *J* = 7.6, 1.2 Hz, 1H), 4.78 (dd, *J* = 9.9, 5.6 Hz, 1H), 4.07 (p, *J* = 8.5 Hz, 1H), 3.37 (m, 2H), 2.46 (m, 1H), 2.26 – 2.00 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ ppm 174.7, 140.4, 130.0, 128.2 (q, *J* = 2.4 Hz), 126.4 (q, *J* = 277.4 Hz), 125.6, 124.9, 115.6, 64.3 (q, *J* = 3.4 Hz), 46.9, 46.7 (q, *J* = 27.5 Hz), 36.1, 22.9, 20.5.
¹⁹F NMR (376 MHz, CDCl₃) δ ppm -68.33.

HRMS (ESI): calcd. for C₁₄H₁₂F₃NOH [M+H]+:268.0944. Found 268.0944.

(9'*R*,9a'*R*)-9'-(trifluoromethyl)-9',9a'-dihydrospiro[cyclohexane-1,1'-pyrrolo[1,2-*a*]indol]-3'(2'*H*)-one (2v)

Following the general procedure for the preparation of fluorinated tricycles: starting from the corresponding ynamide 1v (49.6 mg, 0.205 mmol), Togni II reagent (194 mg, 0.246 mmol) using Ir(ppy)₃ (3.4 mg, 0.005 mmol) as photocatalyst, and irradiating the mixture for 21 h. The compound 2v (13.4 mg, 21% yield) was obtained as a yellow oil by flash chromatography (PE/EtOAc 80:20), and with a second column with Toluene/EtOAc 90:10.

¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.67 (d, *J* = 7.9 Hz, 1H), 7.35 (m, 2H), 7.13 – 7.09 (td, *J* = 7.6, 1.1 Hz, 1H), 4.41 (d, *J* = 8.5 Hz, 1H), 4.24 (p, *J* = 8.4 Hz, 1H), 2.78 (d, *J* = 16.3 Hz, 1H), 2.59 (dd, *J* = 16.4, 1.9 Hz, 1H), 1.76 – 1.58 (m, 5H), 1.45 – 1.26 (m, 5H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm 171.2, 140.3, 130.0, 126.6 (q, *J* = 2.1 Hz), 125.9, 124.9 (q, *J* = 277.7 Hz), 124.5, 114.9, 71.8 (q, *J* = 2.7 Hz), 45.6 (q, *J* = 28.5 Hz), 45.5, 43.4, 35.5, 29.7, 25.9, 23.5, 21.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ ppm -68.23.

HRMS (ESI): calcd. for C₁₇H₁₈F₃NOH [M+H]+: 310.1413. Found 310.1413.

7-iodo-2-phenyl-1-(2,2,2-trifluoroethyl)-2-azaspiro[4.5]decan-3-one (2va)

The compound **2va** (17.5 mg, 20% yield) was obtained as a yellow oil by flash chromatography (PE/EtOAc 70:30).

¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.41 (t, *J* = 7.8 Hz, 2H), 7.32 (d, *J* = 7.8 Hz, 2H), 7.26 (t, *J* = 7.5 Hz, 1H), 4.16 (tt, *J* = 12.9, 4.1 Hz, 1H), 4.07 (dd, *J* = 7.0, 4.1 Hz, 1H), 2.55 (d, *J* = 5.1 Hz, 1H), 2.46 (m, 1H), 2.40 (dt, *J* = 12.7, 2.2 Hz, 1H), 2.27 (m, 1H), 2.19 – 2.08 (m, 1H), 1.97 (dt, *J* = 12.3, 6.8 Hz, 2H), 1.68 – 1.53 (m, 4H), 0.88 (tdd, *J* = 11.6, 7.9, 4.9 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm 171.7, 136.6, 129.4, 126.9, 124.6, 64.6 (br q, *J* = 2.8 Hz), 45.7, 43.1, 40.3, 39.8, 34.8, 33.4 (q, *J* = 29.8 Hz), 29.8, 24.6, 23.5.

```
<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ ppm -62.30.
```

HRMS (ESI): calcd. for C₁₇H₁₉F₃INOH [M+H]+: 438.0536 . Found 438.0537.

9'-(trifluoromethyl)-9',9a'-dihydrospiro[cyclopentane-1,1'-pyrrolo[1,2-*a*]indol]-3'(2'*H*)-one (2w)

Following the general procedure for the preparation of fluorinated tricycles: starting from the corresponding ynamide **1w** (45.4 mg, 0.20 mmol), Togni II reagent (194 mg, 0.246 mmol) using $Ir(ppy)_3$ (3.4 mg, 0.005 mmol) as photocatalyst, and irradiating the mixture for 22 h. The compound **2w** (12.4 mg, 21% yield) was obtained as an off white oil by flash chromatography (PE/EtOAc 80:20), and with a second column with Toluene/EtOAc 90:10.

¹**H NMR** (400 MHz, DMSO-*d6*) δ ppm 7.54 (d, *J* = 7.8 Hz, 1H), 7.41 (m, 2H), 7.16 (td, *J* = 7.6, 1.2 Hz, 1H), 4.75 (d, *J* = 7.7 Hz, 1H), 4.66 (p, *J* = 8.6 Hz, 1H), 2.92 (d, *J* = 15.6 Hz, 1H), 2.35 (d, *J* = 15.6 Hz, 1H), 1.83 – 1.56 (m, 7H), 1.27 (m, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm 166.4, 135.3, 125.1, 121.5 (br q, *J* = 2.2 Hz), 121.2 (q, *J* = 278.2 Hz), 120.9, 119.5, 110.0, 64.1 (br q, *J* = 2.7 Hz), 46.2, 44.9, 41.7 (q, *J* = 28.1 Hz), 29.9, 27.7, 19.3, 19.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ ppm -68.42.

HRMS (ESI): calcd. for C₁₆H₁₇F₃NO [M+H]+: 296.1257, found 296.1257.

7-iodo-2-phenyl-1-(2,2,2-trifluoroethyl)-2-azaspiro[4.4]nonan-3-one (2wa)

The compound **2wa** (6 mg, 7% yield) was obtained as a yellow oil by flash chromatography (PE/EtOAc 70:30).

¹**H NMR** (400 MHz, CDCl₃) δ ppm 7.40 (m, 4H), 7.25 (m, 1H), 4.38 (m, 1H), 4.15 (dd, J = 6.2, 3.5 Hz, 1H), 2.8 (d, J = 16.7 Hz, 1 H), 2.75 (d, J = 16.6 Hz, 1 H), 2.62 (dd, J = 14.9, 7.5 Hz, 1H), 2.57/2.46 (m, 1H), 2.44/2.22 (m, 4H), 2.11/2.05 (m, 1H), 1.92 (dt, J = 13.2, 7.5 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ ppm 172.1, 136.8, 129.4, 126.6, 125.7 (q, J = 277.6 Hz), 123.8, 64.3 (bq, J = 2.5 Hz), 48.3, 46.1, 45.3, 40.6, 38.8, 35.2 (q, J = 28.4 Hz), 20.5. ¹⁹**F NMR** (376 MHz, CDCl₃) δ ppm -62.75.

HRMS (ESI): calcd. for C₁₆H₁₈F₃INO [M+H]+: 424.0380, found 424.0376.

(15,55,75)-7-iodo-2-phenyl-1-(2,2,2-trifluoroethyl)-2-azaspiro[4.4]nonan-3-one (2wa')

The compound **2wa'** (7 mg, 8% yield) was obtained as a yellow oil by flash chromatography (PE/EtOAc 70:30).

¹**H NMR** (500 MHz, CDCl₃) δ ppm 7.42 (m, 4 H), 7.27 (tt, *J* = 6.9, 1.6 Hz, 1H), 4.38 (bt, J = 5.0 Hz, 1 H), 4.29 (p, J = 7.3 Hz, 1 H), 2.63/2.52 (m, 2 H), 2.48/2.34 (m, 5 H), 2.28 (dddd, *J* = 14.3, 9.3, 6.9, 5.1 Hz, 1H), 2.14/1.95 (m, 2 H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm 171.6, 136.8, 129.4, 126.7, 125.5 (q, J = 277.1 Hz), 124.1, 64.1 (bq, J = 2.4 Hz), 48.2, 46.8, 44.8, 40.0, 37.9, 35.3 (q, J = 28.5 Hz), 19.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ ppm -62.17.

HRMS (ESI): calcd. for C₁₆H₁₈F₃INO [M+H]+: 424.0380, found 424.0376.

(1*S*,9*R*,9a*S*)-1-ethyl-1-methyl-9-(trifluoromethyl)-1,2,9,9a-tetrahydro-3*H*-pyrrolo[1,2-*a*]indol-3-one, (1*R*,9*R*,9a*R*)-1-ethyl-1-methyl-9-(trifluoromethyl)-1,2,9,9a-tetrahydro-3*H*-pyrrolo[1,2*a*]indol-3-one (2x)

Following the general procedure for the preparation of fluorinated tricycles: starting from the corresponding ynamide 1x (43.1 mg, 0.2 mmol), Togni II reagent (189.6 mg, 0.24 mmol) using Ir(ppy)₃ (3.3 mg, 0.005 mmol) as photocatalyst, and irradiating the mixture for 16 h. The compound 2x (19 mg, 33% yield, d.r 80:20) was obtained as a pale yellow oil by flash chromatography (PE/EtOAc 80:20), and with a second column with Toluene/EtOAc 90:10.

¹**H NMR** (400 MHz, CDCl3) δ ppm 7.68 (m, 1H), 7.33 (m, 2H), 7.10 (td, J = 7.6, 1.1 Hz, 1H), 4.48 (d, J = 8.2 Hz, 1H), 4.13 (p, J = 8.3 Hz, 1H), 2.79 (dd, J = 16.0, 0.9 Hz, 1H), 2.26 (d, J = 16.0 Hz, 1H), 1.63 (dt, J = 14.1, 7.2 Hz, 2H), 1.25 (s, 1H), 1.02 (m, 6H), 0.88 (t, J = 7.4 Hz, 1H).

Second diastereoisomer: ¹**H NMR** (400 MHz, CDCl3) δ ppm 7.63 (m, 1H), 7.33 (s, 2H), 7.10 (m, 1H), 4.51 (d, *J* = 8.6 Hz, 1H), 4.23 (m, 1H), 2.66 (d, *J* = 16.4 Hz, 1H), 2.56 (d, *J* = 16.3 Hz, 1H), 1.65 (m, 1H), 1.25 (s, 3H), 0.88 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm 171.6, 171.3, 140.6, 140.2, 130.0, 126.6 (q, *J* = 2.6 Hz), 126.5 (q, *J* = 2.6 Hz), 126.2 (q, *J* = 277.3 Hz), 125.9, 124.5, 115.0, 71.9 (q, *J* = 2.8 Hz), 70.1 (q, *J* = 2.8 Hz), 53.5, 47.8, 46.7, 46.2 (q, *J* = 22.3 Hz), 45.9 (q, *J* = 30.0 Hz),, 43.8, 42.5, 41.5, 36.2, 33.8, 31.1, 29.8, 29.2, 29.0, 27.8, 27.7, 23.2, 22.7, 20.5, 20.1, 19.5, 19.0, 18.9, 14.4, 11.5, 9.1, 8.3.

¹⁹**F NMR** (376 MHz, CDCl₃) δ ppm -68.53, -68.59.

HRMS (ESI): calcd. for C₁₅H₁₆F₃NOH [M+H]+: 284.1257. Found 284.1257. **M.p.:** 101°C

4-(2-iodoethyl)-4-methyl-1-phenyl-5-(2,2,2-trifluoroethyl)pyrrolidin-2-one (2xa)

The compound **2xa** (10 mg, 12% yield) was obtained as a pale yellow oil by flash chromatography (PE/EtOAc 70:30).

¹**H NMR** (400 MHz, CDCl3) δ ppm 7.41 (t, J = 7.7 Hz, 2H), 7.41 (d, J = 7.8 Hz, 2H), 7.26 (t, J = 7.4 Hz, 1H), 4.13 (dd, J = 6.9, 4.2 Hz, 1H), 3.24 (ddd, J = 10.9, 9.6, 5.9 Hz, 1H), 3.12 (ddd, J = 11.6, 9.6, 5.9 Hz, 1H), 2.57 (d, J = 16.6 Hz, 1H), 2.53 – 2.42 (m, 1H), 2.36 (d, J = 16.2 Hz, 1H), 2.35 – 2.14 (m, 3H), 1.33 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm 171.9, 136.7, 129.4, 126.9, 124.6, 64.0 (q, *J* = 2.8 Hz), 43.1, 41.7, 41.5, 33.6 (q, *J* = 28.3 Hz), 29.8, 24.7, -2.4.

¹⁹**F NMR** (376 MHz, CDCl₃) δ ppm -62.36.

HRMS (ESI): calcd. for C₁₅H₁₇F₃INOH [M+H]+: 412.0380. Found 412.0379.

(E)-5-iodo-N-phenyl-N-((E)-3,3,3-trifluoroprop-1-en-1-yl)pent-2-enamide (A1)

Following the general procedure for the preparation of fluorinated tricycles: starting from the corresponding ynamide **Y1** (39.8 mg, 0.20 mmol), Togni II reagent (194 mg, 0.246 mmol) using $Ir(ppy)_3$ (3.4 mg, 0.005 mmol) as photocatalyst, and irradiating the mixture for 22 h. The compound **A1** (5.5 mg, 7% yield) was obtained as an off white oil by flash chromatography (PE/EtOAc 80:20), and with a second column with Toluene/EtOAc 90:10.

¹**H NMR** (400 MHz, CDCl3) δ ppm δ 8.30 (dq, J = 14.4, 2.0 Hz, 1H), 7.53 (m, 3H), 7.21 (m, 2H), 6.94 (dt, J = 15.2, 7.0 Hz, 1H), 5.66 (dt, J = 15.1, 1.5 Hz, 1H), 4.56 (dq, J = 14.4, 6.5 Hz, 1H), 3.09 (t, J = 7.0 Hz, 2H), 2.66 (qd, J = 7.0, 1.5 Hz, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm 164.1, 147.2, 137.4, 136.1 (q, *J* = 7.5 Hz), 130.7, 129.8, 129.0, 125.9, 122.3, 101.0 (q, *J* = 34.7 Hz), 36.1, 1.6.

¹⁹**F NMR** (376 MHz, CDCl₃) δ ppm -60.31.

HRMS (ESI): calcd. for C₁₄H₁₃F₃INOH [M+H]+: 396.0067. Found 396.0066.

(*E*)-2-(2-oxo-2-(phenyl(3,3,3-trifluoroprop-1-en-1-yl)amino)ethyl)-2,3-dihydro-1*H*-inden-1-yl 2-iodobenzoate (A4)

Following the general procedure for the preparation of fluorinated tricycles: starting from the corresponding ynamide Y4 (55.1 mg, 0.2 mmol), Togni II reagent (189.6 mg, 0.24 mmol) using $Ir(ppy)_3$ (3.3 mg, 0.005 mmol) as photocatalyst, and irradiating the mixture for 16 h. The compound A4 (20 mg, 17% yield) was obtained as an yellow oil by flash chromatography (PE/EtOAc 90:10).

¹**H NMR** (400 MHz, CDCl3) δ ppm 8.27 (d, J = 14.4 Hz, 1H), 7.99 (dd, J = 8.0, 1.2 Hz, 1H), 7.78 (dd, J = 7.8, 1.7 Hz, 1H), 7.55 – 7.44 (m, 3H), 7.41 – 7.35 (m, 2H), 7.29 (m, 1H), 7.25 – 7.13 (m, 5H), 6.14 (d, J = 5.4 Hz, 1H), 4.54 (m, 1H), 3.42 (dd, J = 16.1, 8.2 Hz, 1H), 3.10 (tdd, J = 13.9, 6.9, 3.5 Hz, 1H), 2.63 (dd, J = 16.1, 6.6 Hz, 2H), 2.33 (dd, J = 16.7, 8.9 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm 170.6, 166.8, 142.5, 141.4, 139.8, 137.5, 135.8 (q, *J* = 7.3 Hz), 135.0, 132.8, 131.2, 130.8 (br s), 129.8, 129.3, 128.8 (br s), 128.1, 127.1, 125.6, 125.0, 100.4 (q, *J* = 34.8 Hz), 94.2, 83.3, 42.4, 38.7, 36.9, 29.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ ppm -60.27.

HRMS (ESI): calcd. for C₂₇H₂₁F₃INO₃Na [M+Na]+: 614.0410. Found 614.041.

tert-butyl (*E*)-2-((2-iodobenzoyl)oxy)-3-(2-oxo-2-(phenyl(3,3,3-trifluoroprop-1-en-1-yl)amino)ethyl)azetidine-1-carboxylate (A5)

Following the general procedure for the preparation of fluorinated tricycles: starting from the corresponding ynamide **Y5** (62.8 mg, 0.2 mmol), Togni II reagent (189.6 mg, 0.24 mmol) using $Ir(ppy)_3$ (3.3 mg, 0.005 mmol) as photocatalyst, and irradiating the mixture for 3 h. the compound **A5** (18.8 mg, 15% yield) was isolated as yellow oil by flash chromatography (PE/EtOAc 75:25).

¹**H NMR** (400 MHz, CDCl3) δ ppm 8.22 (d, J = 14.5 Hz, 1H), 8.00 (d, J = 7.9 Hz, 1H), 7.86 (d, J = 7.9 Hz, 1H), 7.57 (dq, J = 14.0, 7.3 Hz, 3H), 7.41 (t, J = 7.6 Hz, 1H), 7.26 – 7.20 (m, 2H), 7.17 (t, J = 7.6 Hz, 1H), 6.09 (s, 1H), 4.48 (dq, J = 13.6, 6.6 Hz, 1H), 3.67 (d, J = 1.7 Hz, 2H), 3.04 – 2.93 (m, 1H), 2.72 (d, J = 17.9 Hz, 1H), 2.63 (dd, J = 7.9, 1.6 Hz, 1H), 2.45 (d, J = 11.7 Hz, 1H), 1.41 (m, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ ppm 169.6, 165.3, 154.8, 141.6, 137.2, 135.4 (q, J = 7.8 Hz), 134.0,

133.2, 131.5, 130.1, 128.1, 100.8 (q, J = 34.5 Hz), 94.3, 88.2, 81.1, 79.5, 51.8, 38.4, 36.7, 35.0, 28.4, 25.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ ppm -60.41.

HRMS (ESI): calcd. for C₂₆H₂₆F₃IN₂O₅Na [M+Na]+:653.0731. Found 653.073.

2-isopentyl-3-(2,2,2-trifluoroethylidene)isoindolin-1-one (2z)

Following the general procedure for the preparation of fluorinated tricycles: starting from the corresponding ynamide **1z** (43.1 mg, 0.2 mmol), Togni II reagent (189.6 mg, 0.24 mmol) using $Ir(ppy)_3$ (3.3 mg, 0.005 mmol) as photocatalyst, and irradiating the mixture for 2 h. The compound **2z** (22 mg, 39% yield) was obtained as mixture of E/Z isomers (E/Z ratio 63:37), as a pale yellow oil by flash chromatography (PE/EtOAc 90:10).

(E)-2-isopentyl-3-(2,2,2-trifluoroethylidene)isoindolin-1-one

¹**H NMR** (400 MHz, CDCl3) δ ppm 7.85 (m, 1H), 7.66 – 7.53 (m, 3H), 5.42 (q, *J* = 8.9 Hz, 1H), 3.75 (dd, *J* = 7.8, 6.2 Hz, 2H) 1.52 (dt, *J* = 8.8, 6.7 Hz, 3H), 0.99 (d, *J* = 6.6 Hz, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ ppm 166.7, 144.7 (q, *J* = 5.9 Hz), 137.3, 132.9, 131.3, 124.9 (q, *J* = 5.6 Hz), 123.6, 122.9, 119.8, 94.9 (q, *J* = 39.7 Hz), 38.1, 37.0 (q, *J* = 2.0 Hz), 36.5, 26.3, 22.5. ¹⁹**F NMR** (376 MHz, CDCl₃) δ ppm -52.92. **HRMS (ESI):** calcd. for C₁₅H₁₆F₃NOH [M+H]+:284.1257. Found 284.1257.

(Z)-2-isopentyl-3-(2,2,2-trifluoroethylidene)isoindolin-1-one

¹**H NMR** (400 MHz, CDCl3) δ ppm 8.01 (d, *J* = 7.7 Hz, 1H), 7.85 (m, 1H), 7.66 – 7.53 (m, 2H), 5.62 (q, *J* = 9.6 Hz, 1H), 3.91 (dd, *J* = 8.2, 5.7 Hz, 2H), 1.66 (ddq, *J* = 13.2, 8.8, 6.7 Hz, 3H), 0.96 (d, *J* = 6.5 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ ppm 168.6, 141.7 (q, *J* = 7.0 Hz), 132.7, 132.6, 131.0, 130.2, 128.3, 127.6, 125.6, 124.7, 123.7, 122.0, 90.9 (q, *J* = 39.4 Hz), 40.6 (q, *J* = 4.2 Hz), 26.5, 22.5.

¹⁹F NMR (376 MHz, CDCl₃) δ ppm -50.23. HRMS (ESI): calcd. for $C_{15}H_{16}F_3$ NOH [M+H]+:284.1257. Found 284.1257.

f1 (ppm) 80 70

¹³C NMR of **1d-SiR**₃

¹³C NMR of **1f-SiR**₃

¹H NMR of **1n-SiR**₃

90 80 f1 (ppm) -1

$^{\rm 13}{\rm C}$ NMR of ${\bf 1f}$

Ν Ì

-4.11

. . . f1 (ppm)

f1 (ppm)

2.22 2.22 2.75 2.75 2.71 2.75 2.71 2.75 2.71 2.73

9.3 Trifluoromethylated products ¹H NMR of **2a**

AML-56-carac.10.fid

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 fl (ppm)

f1 (ppm)

¹³C NMR of **2b**

AML-209-1-6444 03/19/19/2 82 82 12	4.90	4 05 3 3 97 3 85 3 85 3 85 3 85 3 85 3 85 3 85 3 85	1223 1223 1223 1223 1223 1223 123 12

20 0 -50 -60 10 -10 -70 -80 f1 (ppm) -170 -18 -20 -30 -40 -90 -100 -110 -120 -130 -140 -150 -160

¹H NMR of **2k**

COSY experiment of 2q

8.0

0.0

COSY experiment of 2s

NOESY experiment of 2s

¹³C NMR of **2sa**

COSY experiment of 2sa

AMI 114- carac 10 fid	
XWC-11-0 00 4 M M	33
NN NNN	NN
	$\mathbf{\nabla}$
11 11 1	- T

O N CF₃

4.51 4.49 4.49 7.295 2.21 2.22 2.22 2.23 2.21 2.119 7.1197

¹³C NMR of **2t**

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 f1 (ppm) -110 -120 -130 -140 -150 -160 -170 -180 -190

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 11 (ppm)

¹H NMR of **2wa**

	· · · ·						· · ·				· ·											
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200
											f1 (ppm)											

¹⁹F NMR of **2wa'**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -10 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 fl(ppm)

¹H NMR of **2x**

¹⁹F NMR of **2xa**

f1 (ppm)

HMBC experiment of 2z

9.0

$^{19}\mathsf{F}\,\mathsf{NMR}$ of A1

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm) COSY experiment of A1

¹³C NMR of **A4**

-10 -20 -30 -40 -50 -60 -70 -80 -90 –100 f1 (ppm) -110 -120 -130 -140 -150 -160 -170 -180 -190

¹⁹F NMR of **A5**

AML-189-carac.22.fid

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 fl(ppm)

10. References

- 1 S. Couty, B. Liegault, C. Meyer, J. Cossy. *Tetrahedron*, 2006, **62**, 3882–3895.
- (a)- M. Cassé, C. Nisole, H. Dossmann, Y. Gimbert, J.-M. Fourquez, L. Haberkorn, C. Ollivier,
 L. Fensterbank, *Sci. China Chem.*, 2019, **62**, 1542–1546; (b)- T. V. RajanBabu, *Acc. Chem. Res.*, 1991, **24**, 139.
- 3 Y. Rubin, S. S. Lin, C. B. Knobler, J. Anthony, A. M. Boldi, F. Diederich. *J. Am. Chem. Soc.*, 1991, **113**, 6943–6949.
- 4 T. Kitamura, M. Kotani, Y. Fujiwara. *Synthesis*, 1998, **10**, 1416–1418.
- 5 C. Panja, J. V. Puttaramu, T. K. Chandran, R. Y. Nimje, H. Kumar, A. Gupta, P. N. Arunachalam, J. R. Corte, A. Mathur. *Journal of Fluorine Chemistry*, 2020, **236**, 109516.

11. X-Ray Analysis Data

Crystals were obtained by using vapor diffusion from DCM to pentane for compounds **2d**, **2a**, **2g**, **2o**. **2t** was obtained by long evaporation from DCM.

X-Ray crystal structure determination

Single crystals were selected, mounted onto a cryoloop and transferred into a cold nitrogen gas stream. Intensity data were collected with a Bruker Kappa-APEX2 CCD diffractometer using a micro-source CuK α radiation (**2a**, **2d**, **2g** and **2t**) or a graphite-monochromated MoK α radiation (**2o**). Data collection, unit-cell parameters determination, integration and data reduction were performed with the Bruker APEX4/SAINT¹ suite at 200K. The structures were solved with SHELXT² and refined anisotropically by full-matrix least-squares methods with SHELXL³ using Olex2⁴ software (**2d**, **2a**, **2g** and **2o**) or WinGx⁵ suite of programs (**2t**).

The structures were deposited at the Cambridge Crystallographic Data Centre with numbers CCDC 2295985-2295988 and 2301768, and can be obtained free of charge via <u>www.ccdc.cam.ac.uk</u>.

	2d	2a	2g	2t	20
CCDC deposit number	2295985	2295986	2295987	2295988	2301768
Empirical formula ^a	$C_{16}H_{16}F_3NO$	$C_{15}H_{16}F_3NO$	$C_{14}H_{14}F_3NO$	$C_{15}H_{14}F_3NO$	C ₁₈ H ₂₂ F ₃ NO
Moiety Formula	$C_{16}H_{16}F_3NO$	$C_{15}H_{16}F_3NO$	$C_{14}H_{14}F_3NO$	$C_{15}H_{14}F_3NO$	$C_{18}H_{22}F_3NO$
Formula weight (g/mol)	295.30	283.29	269.26	281.27	325.36
Temperature (K)	200	200	200	200	200
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Orthorhombic
Space group a (Å)	P21/n 7.4696(3)	P21/c 9.2596(9)	Pc 14.7284(17)	P2 ₁ /c 6.7312(2)	P2 ₁ 2 ₁ 2 ₁ 8.0465(7)

Table S3. Crystallographic data for 2d, 2a, 2g, 2t and 2o.

b (Å)	19.5327(8)	11.2829(10)	9.1741(8)	24.6023(7)	12.9285(12)	
c (Å)	10.1253(4)	13.4672(12)	9.7832(13)	8.2365(2)	16.1143(15)	
α (°)	90	90	90	90	90	
β (°)	110.184(2)	103.525(6)	98.521(8)	110.277(2)	90	
γ (°)	90	90	90	90	90	
Volume (Å ³)	1386.57(10)	1368.0(2)	1307.3(3)	1279.46(6)	1676.4(3)	
Z	4	4	4	4	4	
ρ _{calc} (g/cm³)	1.415	1.375	1.368	1.460	1.289	
Absorption	0 987					
coefficient μ (mm ⁻	(CuKα)	0.974 (CuKα)	0.991 (CuKα)	1.041 (CuKα)	0.102 (ΜοΚα)	
¹)	(cultu)					
F(000)	616	592	560	584	688	
Crystal size (mm²)	0.26 × 0.19 ×	0.99 × 0.35 ×	$0.50 \times 0.10 \times$	0.77 × 0.06 ×	0.40 × 0.20 ×	
	0.18	0.29	0.09	0.04	0.20	
Wavelength λ (Å)	1.54178	1.54178	1.54178	1.54178	0.71073	
2A range (°)	9.054 -	9.824 -	9.640 -	7.186 -	4.04 - 56.838	
	132.956	134.476	103.738	133.178		
Miller indexes	-6 ≤ h ≤ 8,	-11 ≤ h ≤ 10,	-14 ≤ h ≤ 15,	-5 ≤ h ≤ 7,	-10 ≤ h ≤ 10,	
ranges	-23 ≤ k ≤ 23,	-13 ≤ k ≤ 10,	-8 ≤ k ≤ 9,	-29 ≤ k ≤ 29,	-17 ≤ k ≤ 8,	
langes	-12 ≤ ≤ 11	-15 ≤ l ≤ 16	-9≤ ≤9	-9≤ ≤9	-21≤ ≤21	
Measured	10353	10750	16063	8124	13483	
reflections	10555	10750	10005	0124	13403	
Unique	2418	2417	2890	2249	4206	
reflections	2410	2417	2050	2275	4200	
Rint / Rainna	0.0345 /	0.0488 /	0.1376 /	0.0231/	0.0304 /	
	0.0257	0.0386	0.0891	0.0205	0.0354	
Reflections	2027	1971	2240	1909	3361	
[l ≥ 2σ(l)]	2027	1971	2210	1909	5501	
Restraints	0	0	2	0	0	
Parameters	191	184	348	181	212	
Goodness-of-fit F ²	1.032	1.063	1.019	1.051	1.006	
Final R indexes ^{b c}	R1 = 0.0470,	R1 = 0.0493	R1 = 0.0707	R1 = 0.0496	R1 = 0.0590	
[all data]	wR2 =	wR2 = 0.1055	wR2 = 0.1137	wR2 = 0.1162	wR2 = 0.0936	
	0.1020	WILL 0.1000	0.110,	0.1102	0.0550	
Final R indexes ^{b c}	R1 = 0.0389,	R1 = 0.0395	R1 = 0.0505	R1 = 0.0422	R1 = 0.0412	
$[1 > 2\sigma(1)]$	wR2 =	wR2 = 0.0994	wR2 = 0.1040	wR2 = 0.1097	wR2 = 0.0867	
[. = ===(.,)]	0.0972	0.0004				
Largest diff.	0.24 / -0.21	0.17 / -0.18	0.14 / -0.18	0.20/-0.29	0.19 / -0.14	
peak/hole (e/Å ³)			0.11, 0.10	0.20, 0.25	0.10 / 0.14	
Flack parameter	NC	NC	-0.2(3)	NC	0.4(3)	

^a Including solvent molecules (if presence)

^b
$$R1 = \sum ||F_o| - |F_c|| / \sum |F_o|$$

^c wR2 =
$$\sqrt{\sum (w(F_o^2 - F_c^2)) / \sum (w(F_o^2)^2)}$$

Datablock 2g - ellipsoid plot

Datablock 2t - ellipsoid plot

Datablock 20 - ellipsoid plot

Datablock 2d - ellipsoid plot

- Bruker. APEX3 / SAINT. Bruker AXS Inc., Madison, Wisconsin, USA, 2012 https://www.bruker.com/en/products-and-solutions/diffractometers-and-x-raymicroscopes/single-crystal-x-ray-diffractometers/sc-xrd-software/apex.html (accessed 2023-06-26).
- (2) Sheldrick, G. M. SHELXT Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr A Found Adv 2015, 71 (1), 3–8. https://doi.org/10.1107/S2053273314026370.
- (3) Sheldrick, G. M. Crystal Structure Refinement with *SHELXL*. *Acta Crystallogr C Struct Chem* **2015**, *71* (1), 3–8. https://doi.org/10.1107/S2053229614024218.
- (4) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2 : A Complete Structure Solution, Refinement and Analysis Program. J Appl Crystallogr 2009, 42 (2), 339–341. <u>https://doi.org/10.1107/S0021889808042726</u>.
- (5) Farrugia, L. J. *J Appl Crystallog* **2012**, *45*, 849-854. http://dx.doi.org/10.1107/S0021889812029111